1
|
Afghan TS, Khan SN, Awan FM, Obaid A, Basri R, Ullah A, Khan S, Naz A, Ullah K, Jabbar A. An integrated approach for genetic risk profiling of typhoid, tuberculosis, and cholera in local population of tehsil Haripur. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 131:105756. [PMID: 40339732 DOI: 10.1016/j.meegid.2025.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
Despite notable progress in public health throughout the 21st century, infectious diseases like tuberculosis, typhoid, and cholera remain serious threats to global health, particularly in high-risk regions. Understanding the genetic factors that influence susceptibility and resistance to these diseases is essential for developing more effective strategies for their prevention and treatment. This study investigates the genetic variations associated with these infectious diseases with a focus on regions where these diseases are most prevalent. The aim of this study is to identify genetic variants that may influence susceptibility to tuberculosis, typhoid, and cholera. A thorough analysis of genetic variants associated with susceptibility and resistance to tuberculosis, typhoid, and cholera was conducted. Using publicly available genetic data from various ethnic groups. The allele frequency of the prioritized variants was calculated to assess their distribution within the different populations, including Middle Eastern, Ashkenazi Jewish, European (Non-Finnish), Latino/Admixed American, South Asian, East Asian, European (Finnish), North Asian, Southeast Asian, African American, and Swedish populations. The variants of the IL1β gene exhibiting the highest allele frequencies in the South Asian population were identified and subsequently examined within the local population. Specifically, the variants rs1143627 and rs1143629, which demonstrate the highest allele frequencies and are associated with typhoid, tuberculosis, and cholera, were subjected to detailed analysis. To determine their distribution and potential impact on disease susceptibility. In the local population, statistical analysis of the available sample revealed allele frequencies of 0.1128 % for IL1β (rs1143627) and 0.18 % for IL1β (rs1143629). Furthermore, these findings revealed that certain genetic profiles may play a role in the population's overall response to infectious diseases such as tuberculosis, typhoid, and cholera. This research has the potential to guide future public health strategies for more effective management and prevention of these diseases.
Collapse
Affiliation(s)
- Tahira Sher Afghan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Ayesha Obaid
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Rabea Basri
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Amin Ullah
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Saira Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Kamran Ullah
- Department of Biology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Jabbar
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
2
|
Ralf A, Zandstra D, van Wersch B, Köksal Z, Larmuseau MHD, Rosa A, Jobling MA, D'Amato ME, Courts C, Gysi M, Haas C, Flores R, Neis M, Wetton JH, Kiesler K, Ameur A, Azonbakin S, Bôžiková A, Choma A, De Ungria MC, Corradini B, Cruz C, Dunkelmann B, Ferri G, Fleckhaus J, Fragou D, Gaens N, Gonçalves R, Havaš Auguštin D, Helm K, Hölzl-Müller P, Kaliszan M, Kasu M, Kovatsi L, Lesaoana M, Mizuno N, Neuhuber F, Nováčková J, Ňuňuková A, Pamjav H, Parson W, Ramankulov Y, Rangel Villalobos H, Rębała K, Rootsi S, Salvador J, Šarac J, Steffen CR, Stenzl V, Török T, Villems R, Watahiki H, Zhabagin M, Schneider PM, Kayser M. UYSD: a novel data repository accessible via public website for worldwide population frequencies of Y-SNP haplogroups. Eur J Hum Genet 2025:10.1038/s41431-025-01854-5. [PMID: 40341774 DOI: 10.1038/s41431-025-01854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025] Open
Abstract
For decades, there has been scientific interest in the variation and geographic distribution of paternal lineages associated with the human Y chromosome. However, the relevant data have been dispersed across numerous publications, making it difficult to consolidate. Additionally, understanding the relationships between different variants, and the tools used to analyze them, have evolved over time, further complicating efforts to harmonize this information. The Universal Y-SNP Database (UYSD) marks a substantial advancement by providing a comprehensive and accessible platform for Y-SNP and haplogroup data from populations around the world. UYSD harmonizes diverse datasets into a unified repository, facilitating the exploration of global Y-chromosomal variation. The platform handles data generated with both high- and low-throughput technology and is compatible with the automated analysis software tool, Yleaf v3. Key functionalities include the ability to: i) visualize haplogroup distributions on an interactive world map, ii) estimate haplogroup frequencies in geographic regions with sparse data through interpolation, and iii) display detailed phylogenetic trees of Y-chromosomal haplogroups. Currently, UYSD encompasses data from over 6,600 males across 27 populations. This dataset largely aligns with known global Y-haplogroup patterns, but also reveals unexplored finer-scale geographic variations. While the present dataset is largely European-centered, UYSD is designed for ongoing expansion by the scientific community, aiming to include more global data and higher-resolution population sequencing data. The platform thus offers valuable insights into human genetic diversity and migration patterns, serving several fields of research such as: human population genetics, genetic anthropology, ancient DNA analysis and forensic genetics.
Collapse
Affiliation(s)
- Arwin Ralf
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
- Department of Pathology and Clinical Bioinformatics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Dion Zandstra
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bram van Wersch
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Zehra Köksal
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maarten H D Larmuseau
- Laboratory of Human Genetic Genealogy, Department Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | - Cornelius Courts
- University Hospital of Cologne, Institute of Legal Medicine, Cologne, Germany
| | - Mario Gysi
- University of Zurich, Zurich, Switzerland
| | | | | | - Maximilian Neis
- University Hospital of Cologne, Institute of Legal Medicine, Cologne, Germany
| | - Jon H Wetton
- University of Leicester, Leicester, United Kingdom
| | - Kevin Kiesler
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
| | | | | | - Andrej Choma
- Institute of Forensic Science, Bratislava, Slovak Republic
| | | | - Beatrice Corradini
- Institute of Legal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Gianmarco Ferri
- Institute of Legal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Jan Fleckhaus
- Ludwig Maximilian University, Institute of Legal Medicine, Munich, Germany
| | - Domniki Fragou
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Noah Gaens
- Laboratory of Human Genetic Genealogy, Department Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | - Petra Hölzl-Müller
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Mohaimin Kasu
- University of the Western Cape, Western Cape, South Africa
| | - Leda Kovatsi
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mpasi Lesaoana
- University of the Western Cape, Western Cape, South Africa
- Lesotho Mounted Police, Maseru, Lesotho
| | - Natsuko Mizuno
- National Research Institute of Police Science, Kashiwa, Japan
| | | | | | - Alena Ňuňuková
- Institute of Forensic Science, Bratislava, Slovak Republic
| | - Horolma Pamjav
- Hungarian Institute for Forensic Sciences, Institute of Forensic Genetics, Budapest, Hungary
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Forensic Science Program, The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | - Jelena Šarac
- Institute for Anthropological Research, Zagreb, Croatia
| | - Carolyn R Steffen
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | | | | | | | - Maxat Zhabagin
- Nazarbayev University, Astana, Kazakhstan
- National Center for Biotechnology, Astana, Kazakhstan
| | - Peter M Schneider
- University Hospital of Cologne, Institute of Legal Medicine, Cologne, Germany
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
- Department of Pathology and Clinical Bioinformatics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Amer K, Soliman NA, Soror S, Gad YZ, Moustafa A, Elmonem MA, Amer M, Ragheb A, Kotb A, Taha T, Ali W, Sakr M, Ghaffar KA. Egypt Genome: Towards an African new genomic era. J Adv Res 2025; 71:415-427. [PMID: 38844121 DOI: 10.1016/j.jare.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Studying the human genome is crucial to embrace precision medicine through tailoring treatment and prevention strategies to the unique genetic makeup and molecular information of individuals. After human genome project (1990-2003) generated the first full sequence of a human genome, there have been concerns towards Northern bias due to underrepresentation of other populations. Multiple countries have now established national genome projects aiming at the genomic knowledge that can be harnessed from their populations, which in turn can serve as a basis for their health care policies in the near future. AIM OF REVIEW The intention is to introduce the recently established Egypt Genome (EG) to delineate the genomics and genetics of both the modern and Ancient Egyptian populations. Leveraging genomic medicine to improve precision medicine strategies while building a solid foundation for large-scale genomic research capacity is the fundamental focus of EG. KEY SCIENTIFIC CONCEPTS EG generated genomic knowledge is predicted to enrich the existing human genome and to expand its diversity by studying the underrepresented African/Middle Eastern populations. The insightful impact of EG goes beyond Egypt and Africa as it fills the knowledge gaps in health and disease genomics towards improved and sustainable genomic-driven healthcare systems for better outcomes. Promoting the integration of genomics into clinical practice and spearheading the implementation of genomic-driven healthcare and precision medicine is therefore a key focus of EG. Mining into the wealth of Ancient Egyptian Genomics to delineate the genetic bridge between the contemporary and Ancient Egyptian populations is another excitingly unique area of EG to realize the global vision of human genome.
Collapse
Affiliation(s)
- Khaled Amer
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt.
| | - Neveen A Soliman
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt; Department of Pediatrics, Center of Pediatric Nephrology and Transplantation, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Sameh Soror
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Yehia Z Gad
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Center, Cairo, Egypt; Ancient DNA Laboratory, National Museum of Egyptian Civilization, Egypt
| | - Ahmed Moustafa
- Department of Biology, and Bioinformatics and Integrative Genomics Lab, American University in Cairo, Cairo, Egypt
| | - Mohamed A Elmonem
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt; Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - May Amer
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Ameera Ragheb
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Amira Kotb
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt; Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Tarek Taha
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Wael Ali
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Mahmoud Sakr
- Academy of Scientific Research & Technology, Egypt
| | - Khaled Abdel Ghaffar
- Department of Oral Medicine, Periodontolgy and Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt; Ministry of Health and Population, Cairo, Egypt
| |
Collapse
|
4
|
Lee H, Kim W, Kwon N, Kim C, Kim S, An JY. Lessons from national biobank projects utilizing whole-genome sequencing for population-scale genomics. Genomics Inform 2025; 23:8. [PMID: 40050991 PMCID: PMC11887102 DOI: 10.1186/s44342-025-00040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Large-scale national biobank projects utilizing whole-genome sequencing have emerged as transformative resources for understanding human genetic variation and its relationship to health and disease. These initiatives, which include the UK Biobank, All of Us Research Program, Singapore's PRECISE, Biobank Japan, and the National Project of Bio-Big Data of Korea, are generating unprecedented volumes of high-resolution genomic data integrated with comprehensive phenotypic, environmental, and clinical information. This review examines the methodologies, contributions, and challenges of major WGS-based national genome projects worldwide. We first discuss the landscape of national biobank initiatives, highlighting their distinct approaches to data collection, participant recruitment, and phenotype characterization. We then introduce recent technological advances that enable efficient processing and analysis of large-scale WGS data, including improvements in variant calling algorithms, innovative methods for creating multi-sample VCFs, optimized data storage formats, and cloud-based computing solutions. The review synthesizes key discoveries from these projects, particularly in identifying expression quantitative trait loci and rare variants associated with complex diseases. Our review introduces the latest findings from the National Project of Bio-Big Data of Korea, which has advanced our understanding of population-specific genetic variation and rare diseases in Korean and East Asian populations. Finally, we discuss future directions and challenges in maximizing the impact of these resources on precision medicine and global health equity. This comprehensive examination demonstrates how large-scale national genome projects are revolutionizing genetic research and healthcare delivery while highlighting the importance of continued investment in diverse, population-specific genomic resources.
Collapse
Affiliation(s)
- Hyeji Lee
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Wooheon Kim
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Nahyeon Kwon
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Chanhee Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Sungmin Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea.
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea.
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
5
|
Siqueiros‐Sanchez M, Bussu G, Portugal AM, Ronald A, Falck‐Ytter T. Genetic and environmental contributions to individual differences in visual attention and oculomotor control in early infancy. Child Dev 2025; 96:619-634. [PMID: 39445681 PMCID: PMC11868694 DOI: 10.1111/cdev.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Infants differ in their level of eye movement control, which at the extreme could be linked to autism. We assessed eye movements in 450 twins (225 pairs, 57% monozygotic, 46% female, aged 5-6 months) using the gap-overlap eye-tracking task. Shorter latency in the gap condition was associated with having more parent-rated autistic traits at 2 years. Latency across the task's three conditions was primarily explained by one highly heritable latent factor likely representing individual differences in basic oculomotor efficiency and/or in visual information processing. Additionally, disengagement of attention was linked to unique genetic factors, suggesting that genetic factors involved in visual attention are different from those involved in basic visual information processing and oculomotor efficiency.
Collapse
Affiliation(s)
- Monica Siqueiros‐Sanchez
- Department of Women's and Children's Health, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry ResearchKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Giorgia Bussu
- Development and Neurodiversity Lab, Department of PsychologyUppsala UniversityUppsalaSweden
| | - Ana Maria Portugal
- Development and Neurodiversity Lab, Department of PsychologyUppsala UniversityUppsalaSweden
| | | | - Terje Falck‐Ytter
- Department of Women's and Children's Health, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry ResearchKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
- Development and Neurodiversity Lab, Department of PsychologyUppsala UniversityUppsalaSweden
| |
Collapse
|
6
|
Zhao Z, Naha A, Kostopoulos N, Sekretareva A. Advanced algorithm for step detection in single-entity electrochemistry: a comparative study of wavelet transforms and convolutional neural networks. Faraday Discuss 2025; 257:384-398. [PMID: 39466283 DOI: 10.1039/d4fd00130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Single-entity electrochemistry (SEE) is an emerging field within electrochemistry focused on investigating individual entities such as nanoparticles, bacteria, cells, or single molecules. Accurate identification and analysis of SEE signals require effective data processing methods for unbiased and automated feature extraction. In this study, we apply and compare two approaches for step detection in SEE data: discrete wavelet transforms (DWT) and convolutional neural networks (CNN).
Collapse
Affiliation(s)
- Ziwen Zhao
- Department of Chemistry - Ångström, Uppsala University, 75120 Uppsala, Sweden.
| | - Arunava Naha
- Department of Electrical Engineering, Uppsala University, 75120 Uppsala, Sweden
| | | | - Alina Sekretareva
- Department of Chemistry - Ångström, Uppsala University, 75120 Uppsala, Sweden.
| |
Collapse
|
7
|
Basri R, Aqeel MB, Awan FM, Khan SN, Obaid A, Parveen R, Mohsin M, Akhtar W, Shah AH, Afghan TS, Alam A, Khan S, Naz A. An integrated approach to predict genetic risk for Mosquito-Borne diseases in the local Population of Tehsil Haripur, Khyber Pakhtunkhwa, Pakistan. Sci Rep 2025; 15:3478. [PMID: 39875533 PMCID: PMC11775262 DOI: 10.1038/s41598-025-88095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025] Open
Abstract
Highly variable response shown by individuals against mosquito-borne infections suggests that host genetic factors play an important role in determining mosquito-borne disease onset. Therefore, it is necessary to determine the genetic risk of these diseases in specific populations. The current study aimed to determine the percentage of individuals in the general population carrying mosquito-borne disease susceptibility and protection-related variants. This study initially aggregated mosquito-borne disease susceptibility and protection-related variants from all publically available data and literature. Afterward, the allele frequency was calculated 1009 genetic variants of 366 genes associated with susceptibility and protection to estimate the global prevalence in multiple ethnicities (Middle Eastern, Ashkenazi Jewish, European (Non-Finnish), Latino/Admixed American, South Asian, East Asian, European (Finnish), North Asian, Southeast Asian, African American, and Swedish population). Furthermore, the cumulative allele frequency of all susceptibility and protection-related variants was calculated in diverse ethnic groups and the relationship with mosquito-borne disease-associated morbidity and mortality was examined to determine whether results are consistent with founder effect in these populations. Two prioritized genetic variants of IL-10 (rs1800871) and FcγRIIA (rs1801274) were examined in the Tehsil Haripur population to assess the genetic risks linked to susceptibility and protection against mosquito-borne diseases. The findings of this study revealed overlapping genes most implicated in mosquito-borne disease linked with susceptibility and protection across different ethnic ancestries. In the available sample size, the percentage of TC and TT genotypes in IL-10 genetic variant (rs1800871) was 12% and 88%, respectively and GA and GG genotypes in FcγRIIA(rs1801274) genetic variant were 6% and 94% respectively. Based on statistical analysis, the percentage allele frequency of IL-10 (rs1800871) variant was 0.2112% and the FcγRIIA (rs1801274) variant is 0.1128% in the current study. Additionally, this study reflects that screening of genetic variants associated with susceptibility and protection in a population gives better insights into organizing public health awareness campaigns to control diseases.
Collapse
Affiliation(s)
- Rabea Basri
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Muslim Bin Aqeel
- Department of Microbiology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Ayesha Obaid
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Rubina Parveen
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Mohsin
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wajeeha Akhtar
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Abdal Hussain Shah
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Tahira Sher Afghan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Amir Alam
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Saira Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| |
Collapse
|
8
|
Preussner A, Leinonen J, Riikonen J, Pirinen M, Tukiainen T. Y chromosome sequencing data suggest dual paths of haplogroup N1a1 into Finland. Eur J Hum Genet 2025; 33:89-97. [PMID: 39465313 PMCID: PMC11711460 DOI: 10.1038/s41431-024-01707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
The paternally inherited Y chromosome is highly informative of genetic ancestry, therefore making it useful in studies of population history. In Finland, two Y-chromosomal haplogroups reveal the major substructure of the population: N1a1 enriched in the northeast and I1a in the southwest, suggested to reflect eastern and western ancestry contributions to the population. Yet, beyond these major Y-chromosomal lineages, the distribution of finer-scale Y-chromosomal variation has not been assessed in Finland. Here, we provide the most comprehensive Y-chromosomal study among the Finns to date, exploiting sequences for 1802 geographically mapped Finnish Y chromosomes from the FINRISK project. We assessed the distribution of common Y-chromosomal haplogroups (frequency ≥1%) throughout 19 Finnish regions and compared the autosomal genetic backgrounds of the Y-chromosomal haplogroups. With such high-resolution data, we were able to find previously unreported sublineages and resolve phylogenetic relationships within haplogroups N1a1 (64%), I1a (25%), R1a (4.3%), and R1b (4.8%). We further find novel geographical enrichment patterns among these Y-chromosomal haplogroups, most notably observed for haplogroup N1a1 dividing into two lineages with differing distributions. While sublineage N-Z1934 (42%) followed a northeastern enrichment pattern observed for all N1a1 carriers in general, sublineage N-VL29 (22%) displayed an enrichment in the southwest. Further, the carriers of N-VL29 showed a higher proportion of southwestern autosomal ancestry compared to carriers of N-Z1934. Collectively, these results point to distinct demographics within haplogroup N1a1, possibly induced by two distinct arrival routes into Finland. Overall, our study suggests a more complex genetic population history for Finns than previously proposed.
Collapse
Affiliation(s)
- Annina Preussner
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jaakko Leinonen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juha Riikonen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Jerkovic Gulin S, Kravvas G, Seifert O. Regional Variations in the Incidence of Lichen Sclerosus in Sweden: Insights from a Nationwide Register Study (2001-2021). J Clin Med 2024; 13:7836. [PMID: 39768759 PMCID: PMC11676550 DOI: 10.3390/jcm13247836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Lichen Sclerosus (LSc) is a chronic inflammatory skin condition predominantly affecting the anogenital regions, with a well-recognised potential for malignancy. This study examines the incidence, demographic characteristics, and regional distribution of LSc in Sweden over a 20-year period. The analysis is based on data from the Swedish National Patient Register (NPR), with a focus on cases diagnosed in specialist care settings. Methods: A nationwide register-based study was conducted using data from the NPR, identifying cases of LSc diagnosed between 1 January 2001 and 1 January 2021. Data analysis explored incidence by region, sex, age, and diagnostic care setting. A total of 154,424 patients with LSc were included, and the control group consisted of the general Swedish population without known LSc. Results: The mean annual incidence of LSc was 0.81 per 1000 individuals across Sweden, with higher rates in females (1.14 per 1000) compared to males (0.47 per 1000). Incidence varied significantly across regions, with Blekinge, Kalmar, and Gotland exhibiting the highest rates. This study analysed the distribution of LSc diagnoses across medical specialties, finding that 29.8% of cases were managed by dermatology and venereology, while 17.2% were handled by gynaecology and obstetrics. The analysis of marital status revealed that the proportion of married and divorced LSc patients was significantly lower than the national averages for men and women. Conclusions: This study highlights significant regional variations in LSc incidence. Future research should investigate whether environmental factors, genetic predisposition, socioeconomic disparities, or variations in healthcare access contribute to the variations in incidence. Such insights could lead to more targeted public health strategies for managing LSc across different regions.
Collapse
Affiliation(s)
- Sandra Jerkovic Gulin
- Department of Dermatology and Venereology, Ryhov County Hospital, Sjukhusgatan, 553 05 Jönköping, Sweden;
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Georgios Kravvas
- Department of Dermatology, University College London Hospitals, 235 Euston Road, London NW1 2BU, UK;
| | - Oliver Seifert
- Department of Dermatology and Venereology, Ryhov County Hospital, Sjukhusgatan, 553 05 Jönköping, Sweden;
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
10
|
Ilinca A, Kafantari E, Wallenius J, Kristoffersson U, Englund E, Puschmann A, Lindgren AG. Diagnosing Monogenic Stroke at Younger Age. Stroke 2024; 55:2846-2855. [PMID: 39498567 DOI: 10.1161/strokeaha.124.048044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND An increasing number of monogenic conditions underlying stroke are being identified. We explored the possibilities of increasing the diagnostic yield of monogenic stroke in a population under 56 years of age. METHODS Fifty probands ≤55 years at their first stroke episode were characterized clinically and investigated by whole genome sequencing. Probands had one or more of: (1) one or more first to second degree relatives with stroke under 60 years or same stroke-causing condition/disease; (2) no hypertension, hypercholesterolemia, diabetes, heart disease, or smoking; or (3) either multiple stroke episodes or multiple arterial dissections. Variants with minor allele frequency under 0.01, identified by using our stroke gene panels, were assessed. The stroke subtypes, including large artery atherosclerotic, large artery nonatherosclerotic (tortuosity, dolichoectasia, aneurysm, nonatherosclerotic dissection, or occlusion), cerebral small vessel disease, cardioembolic (arrhythmia, heart defect, or cardiomyopathy), coagulation dysfunctions (venous thrombosis, arterial thrombosis, or bleeding tendency), intracerebral hemorrhage, vascular malformations (cavernoma or arteriovenous malformations), metabolic disorders, or cryptogenic embolic, were used for genotype-phenotype correlation. In a final step, we combined genetic and clinical information to determine if the genetic variant likely was the cause of stroke in the patients. RESULTS Whole genome sequencing of younger patients with stroke identified 17 clinically matching genetic variants in 15 of 50 (30%) patients, while a stronger clinical correlation with stroke was established in only 6 (12%) of them. Stroke-related genetic variants were identified in 4 of 5 (80%) patients with cardioembolic stroke subtype, 3 of 4 (75%) with intracerebral hemorrhage, 7 of 18 (39%) with cryptogenic embolic stroke, 1 of 6 (17%) with small vessel disease, and 3 of 15 (20%) of patients with nonatherosclerotic large artery stroke, including 1 of 11 (9%) with cervical dissection stroke. CONCLUSIONS Careful clinical interpretation of whole genome data using stroke gene panels can detect monogenic causes of early stroke, allowing individualized follow-up and opening new possibilities for potential treatment.
Collapse
Affiliation(s)
- Andreea Ilinca
- Department of Clinical Sciences Lund, Neurology, Lund University; Department of Neurology, Skåne University Hospital, Lund, Sweden (A.I., E.K., J.W., A.P., A.G.L.)
| | - Efthymia Kafantari
- Department of Clinical Sciences Lund, Neurology, Lund University; Department of Neurology, Skåne University Hospital, Lund, Sweden (A.I., E.K., J.W., A.P., A.G.L.)
| | - Joel Wallenius
- Department of Clinical Sciences Lund, Neurology, Lund University; Department of Neurology, Skåne University Hospital, Lund, Sweden (A.I., E.K., J.W., A.P., A.G.L.)
| | - Ulf Kristoffersson
- Department of Laboratory Medicine, Clinical Genetics, Lund University; Regional Laboratories, Region Skåne, Sweden (U.K.)
| | - Elisabet Englund
- Department of Clinical Sciences Lund, Pathology, Lund University; Regional Laboratories, Region Skåne, Sweden (E.E.)
| | - Andreas Puschmann
- Department of Clinical Sciences Lund, Neurology, Lund University; Department of Neurology, Skåne University Hospital, Lund, Sweden (A.I., E.K., J.W., A.P., A.G.L.)
- SciLifeLab National Research Infrastructure, Lund University, Sweden (A.P.)
| | - Arne G Lindgren
- Department of Clinical Sciences Lund, Neurology, Lund University; Department of Neurology, Skåne University Hospital, Lund, Sweden (A.I., E.K., J.W., A.P., A.G.L.)
| |
Collapse
|
11
|
Eisfeldt J, Ameur A, Lenner F, Ten Berk de Boer E, Ek M, Wincent J, Vaz R, Ottosson J, Jonson T, Ivarsson S, Thunström S, Topa A, Stenberg S, Rohlin A, Sandestig A, Nordling M, Palmebäck P, Burstedt M, Nordin F, Stattin EL, Sobol M, Baliakas P, Bondeson ML, Höijer I, Saether KB, Lovmar L, Ehrencrona H, Melin M, Feuk L, Lindstrand A. A national long-read sequencing study on chromosomal rearrangements uncovers hidden complexities. Genome Res 2024; 34:1774-1784. [PMID: 39472022 DOI: 10.1101/gr.279510.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/25/2024] [Indexed: 11/22/2024]
Abstract
Clinical genetic laboratories often require a comprehensive analysis of chromosomal rearrangements/structural variants (SVs), from large events like translocations and inversions to supernumerary ring/marker chromosomes and small deletions or duplications. Understanding the complexity of these events and their clinical consequences requires pinpointing breakpoint junctions and resolving the derivative chromosome structure. This task often surpasses the capabilities of short-read sequencing technologies. In contrast, long-read sequencing techniques present a compelling alternative for clinical diagnostics. Here, Genomic Medicine Sweden-Rare Diseases has explored the utility of HiFi Revio long-read genome sequencing (lrGS) for digital karyotyping of SVs nationwide. The 16 samples from 13 families were collected from all Swedish healthcare regions. Prior investigations had identified 16 SVs, ranging from simple to complex rearrangements, including inversions, translocations, and copy number variants. We have established a national pipeline and a shared variant database for variant calling and filtering. Using lrGS, 14 of the 16 known SVs are detected. Of these, 13 are mapped at nucleotide resolution, and one complex rearrangement is only visible by read depth. Two Chromosome 21 rearrangements, one mosaic, remain undetected. Average read lengths are 8.3-18.8 kb with coverage exceeding 20× for all samples. De novo assembly results in a limited number of phased contigs per individual (N50 6-86 Mb), enabling direct characterization of the chromosomal rearrangements. In a national pilot study, we demonstrate the utility of HiFi Revio lrGS for analyzing chromosomal rearrangements. Based on our results, we propose a 5-year plan to expand lrGS use for rare disease diagnostics in Sweden.
Collapse
Affiliation(s)
- Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 65 Solna, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Felix Lenner
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Esmee Ten Berk de Boer
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 65 Solna, Sweden
| | - Marlene Ek
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Josephine Wincent
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Raquel Vaz
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jesper Ottosson
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Tord Jonson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 223 62 Lund, Sweden
| | - Sofie Ivarsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 223 62 Lund, Sweden
| | - Sofia Thunström
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Alexandra Topa
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Simon Stenberg
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Anna Rohlin
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Anna Sandestig
- Department of Clinical Genetics, Linköping University Hospital, 581 85 Linköping, Sweden
| | - Margareta Nordling
- Department of Clinical Genetics, Linköping University Hospital, 581 85 Linköping, Sweden
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Pia Palmebäck
- Department of Clinical Genetics, Linköping University Hospital, 581 85 Linköping, Sweden
| | - Magnus Burstedt
- Department of Medical Bioscience, Medical and Clinical Genetics, Umeå University, 901 87 Umeå, Sweden
| | - Frida Nordin
- Department of Pharmacology and Clinical Neurosciences, Umeå University, 901 87 Umeå, Sweden
| | - Eva-Lena Stattin
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Maria Sobol
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Ida Höijer
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Kristine Bilgrav Saether
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 65 Solna, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Hans Ehrencrona
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 223 62 Lund, Sweden
| | - Malin Melin
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden;
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
12
|
Bilgrav Saether K, Eisfeldt J, Bengtsson JD, Lun MY, Grochowski CM, Mahmoud M, Chao HT, Rosenfeld JA, Liu P, Ek M, Schuy J, Ameur A, Dai H, Hwang JP, Sedlazeck FJ, Bi W, Marom R, Wincent J, Nordgren A, Carvalho CMB, Lindstrand A. Leveraging the T2T assembly to resolve rare and pathogenic inversions in reference genome gaps. Genome Res 2024; 34:1785-1797. [PMID: 39486878 DOI: 10.1101/gr.279346.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/12/2024] [Indexed: 11/04/2024]
Abstract
Chromosomal inversions (INVs) are particularly challenging to detect due to their copy-number neutral state and association with repetitive regions. Inversions represent about 1/20 of all balanced structural chromosome aberrations and can lead to disease by gene disruption or altering regulatory regions of dosage-sensitive genes in cis Short-read genome sequencing (srGS) can only resolve ∼70% of cytogenetically visible inversions referred to clinical diagnostic laboratories, likely due to breakpoints in repetitive regions. Here, we study 12 inversions by long-read genome sequencing (lrGS) (n = 9) or srGS (n = 3) and resolve nine of them. In four cases, the inversion breakpoint region was missing from at least one of the human reference genomes (GRCh37, GRCh38, T2T-CHM13) and a reference agnostic analysis was needed. One of these cases, an INV9 mappable only in de novo assembled lrGS data using T2T-CHM13 disrupts EHMT1 consistent with a Mendelian diagnosis (Kleefstra syndrome 1; MIM#610253). Next, by pairwise comparison between T2T-CHM13, GRCh37, and GRCh38, as well as the chimpanzee and bonobo, we show that hundreds of megabases of sequence are missing from at least one human reference, highlighting that primate genomes contribute to genomic diversity. Aligning population genomic data to these regions indicated that these regions are variable between individuals. Our analysis emphasizes that T2T-CHM13 is necessary to maximize the value of lrGS for optimal inversion detection in clinical diagnostics. These results highlight the importance of leveraging diverse and comprehensive reference genomes to resolve unsolved molecular cases in rare diseases.
Collapse
Affiliation(s)
- Kristine Bilgrav Saether
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Insitutet, 171 65 Solna, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden;
- Science for Life Laboratory, Karolinska Insitutet, 171 65 Solna, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jesse D Bengtsson
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Ming Yin Lun
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Christopher M Grochowski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Medhat Mahmoud
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
- Cain Pediatric Neurology Research Laboratories, Jan and Dan Duncan Neurological Research Institute, Houston, Texas 77030, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas 77024, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics Laboratory, Baylor College of Medicine, Houston, Texas 77021, USA
| | - Marlene Ek
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jakob Schuy
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics Laboratory, Baylor College of Medicine, Houston, Texas 77021, USA
| | - James Paul Hwang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fritz J Sedlazeck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Computer Science, Rice University, Houston, Texas 77251, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics Laboratory, Baylor College of Medicine, Houston, Texas 77021, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| | - Josephine Wincent
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Laboratory Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | | | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden;
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
13
|
Brolin KA, Bäckström D, Wallenius J, Gan-Or Z, Puschmann A, Hansson O, Swanberg M. GBA1 T369M and Parkinson's disease - Further evidence of a lack of association in the Swedish population. Parkinsonism Relat Disord 2024; 130:107191. [PMID: 39514913 DOI: 10.1016/j.parkreldis.2024.107191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Variants in GBA1 are important genetic risk factors in Parkinson's disease (PD). GBA1 T369M has been linked to an ∼80 % increased PD risk but the reports are conflicting and the relevance of GBA1 variants in different populations varies. A lack of association between T369M and PD in the Swedish population was recently reported but needs further validation. We therefore investigated T369M in 1,808 PD patients and 2,183 controls and our results support that T369M is not a risk factor for PD in the Swedish population.
Collapse
Affiliation(s)
- Kajsa Atterling Brolin
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden; Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, EC1M 6BQ, London, UK.
| | - David Bäckström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Joel Wallenius
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Ziv Gan-Or
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada; Clinical Research Unit, The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Andreas Puschmann
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Neurology, Skåne University Hospital, Lund, Sweden; SciLifeLab National Research Infrastructure, Lund University, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Maria Swanberg
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Rosenblad T, Lindén M, Ambite I, Brandström P, Hansson S, Godaly G. Genetic determinants of renal scarring in children with febrile UTI. Pediatr Nephrol 2024; 39:2703-2715. [PMID: 38767678 PMCID: PMC11272715 DOI: 10.1007/s00467-024-06394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Febrile urinary tract infections (UTIs) are among the most severe bacterial infections in infants, in which a subset of patients develops complications. Identifying infants at risk of recurrent infections or kidney damage based on clinical signs is challenging. Previous observations suggest that genetic factors influence UTI outcomes and could serve as predictors of disease severity. In this study, we conducted a nationwide survey of infant genotypes to develop a strategy for infection management based on individual genetic risk. Our aims were to identify genetic susceptibility variants for renal scarring (RS) and genetic host factors predisposing to dilating vesicoureteral reflux (VUR) and recurrent UTIs. METHODS To assess genetic susceptibility, we collected and analyzed DNA from blood using exome genotyping. Disease-associated genetic variants were identified through bioinformatics analysis, including allelic frequency tests and odds ratio calculations. Kidney involvement was defined using dimercaptosuccinic acid (DMSA) scintigraphy. RESULTS In this investigation, a cohort comprising 1087 infants presenting with their first episode of febrile UTI was included. Among this cohort, a subset of 137 infants who underwent DMSA scanning was subjected to gene association analysis. Remarkable genetic distinctions were observed between patients with RS and those exhibiting resolved kidney involvement. Notably, the genetic signature indicative of renal scarring prominently featured mitochondrial genes. CONCLUSIONS In this nationwide study of genetic susceptibility to RS after febrile UTIs in infancy, we identified a profile dominated by mitochondrial polymorphisms. This profile can serve as a predictor of future complications, including RS and recurrent UTIs.
Collapse
Affiliation(s)
- Therese Rosenblad
- Section for Pediatric Nephrology, Skåne University Hospital, Lund, Sweden
| | - Magnus Lindén
- Department of Pediatrics, Halland Hospital, Halmstad, Sweden
| | - Ines Ambite
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Per Brandström
- Pediatric Uro-Nephrology Centre, Queen Silvia's Children's Hospital, Gothenburg, Sweden
| | - Sverker Hansson
- Pediatric Uro-Nephrology Centre, Queen Silvia's Children's Hospital, Gothenburg, Sweden
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gabriela Godaly
- Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
15
|
Paucar M, Nilsson D, Engvall M, Laffita-Mesa J, Söderhäll C, Skorpil M, Halldin C, Fazio P, Lagerstedt-Robinson K, Solders G, Angeria M, Varrone A, Risling M, Jiao H, Nennesmo I, Wedell A, Svenningsson P. Spinocerebellar ataxia type 4 is caused by a GGC expansion in the ZFHX3 gene and is associated with prominent dysautonomia and motor neuron signs. J Intern Med 2024; 296:234-248. [PMID: 38973251 DOI: 10.1111/joim.13815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
BACKGROUND Spinocerebellar ataxia 4 (SCA4), characterized in 1996, features adult-onset ataxia, polyneuropathy, and linkage to chromosome 16q22.1; its underlying mutation has remained elusive. OBJECTIVE To explore the radiological and neuropathological abnormalities in the entire neuroaxis in SCA4 and search for its mutation. METHODS Three Swedish families with undiagnosed ataxia went through clinical, neurophysiological, and neuroimaging tests, including PET studies and genetic investigations. In four cases, neuropathological assessments of the neuroaxis were performed. Genetic testing included short read whole genome sequencing, short tandem repeat analysis with ExpansionHunter de novo, and long read sequencing. RESULTS Novel features for SCA4 include dysautonomia, motor neuron affection, and abnormal eye movements. We found evidence of anticipation; neuroimaging demonstrated atrophy in the cerebellum, brainstem, and spinal cord. [18F]FDG-PET demonstrated brain hypometabolism and [11C]Flumazenil-PET reduced binding in several brain lobes, insula, thalamus, hypothalamus, and cerebellum. Moderate to severe loss of Purkinje cells in the cerebellum and of motor neurons in the anterior horns of the spinal cord along with pronounced degeneration of posterior tracts was also found. Intranuclear, mainly neuronal, inclusions positive for p62 and ubiquitin were sparse but widespread in the CNS. This finding prompted assessment for nucleotide expansions. A polyglycine stretch encoding GGC expansions in the last exon of the zink finger homeobox 3 gene was identified segregating with disease and not found in 1000 controls. CONCLUSIONS SCA4 is a neurodegenerative disease caused by a novel GGC expansion in the coding region of ZFHX3, and its spectrum is expanded to include dysautonomia and neuromuscular manifestations.
Collapse
Affiliation(s)
- Martin Paucar
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - José Laffita-Mesa
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Cilla Söderhäll
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Skorpil
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Fazio
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Göran Solders
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Angeria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hong Jiao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Inger Nennesmo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Per Svenningsson
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Wang S, Elmgren JK, Eisfeldt J, Asad S, Ek M, Bilcha K, Befekadu A, Wahlgren CF, Nordenskjöld M, Taylan F, Tapia-Paez I, Bradley M. Uncommon Variants in FLG2 and NOD2 Are Associated with Atopic Dermatitis in the Ethiopian Population. JID INNOVATIONS 2024; 4:100284. [PMID: 38859976 PMCID: PMC11163169 DOI: 10.1016/j.xjidi.2024.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 06/12/2024] Open
Abstract
Loss-of-function variants in the FLG gene have been identified as the strongest cause of susceptibility to atopic dermatitis (AD) in Europeans and Asians. However, very little is known about the genetic etiology behind AD in African populations, where the prevalence of AD is notably high. We sought to investigate the genetic origins of AD by performing whole-genome sequencing in an Ethiopian family with 12 individuals and several affected in different generations. We identified 2 variants within FLG2 (p.D13Y) and NOD2 (p.A918S) genes cosegregating with AD in the affected individuals. Further genotyping analyses in both Ethiopian and Swedish AD cases and controls revealed a significant association with the FLG2 variant (p.D13Y, P < .0013) only in the Ethiopian cohort. However, the NOD2 variant (p.A918S) did not show any association in our Ethiopian cohort. Instead, 2 previously recognized NOD2 variants (p.A849V, P < .0085 and p.G908R, P < .0036) were significantly associated with AD in our Ethiopian cohort. Our study indicates that the FLG2 and NOD2 genes might be important in the etiology of AD in Ethiopians. Additional genetic and functional studies are needed to confirm the role of these genes and the associated variants into the development of AD.
Collapse
Affiliation(s)
- Sailan Wang
- Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Julia K. Elmgren
- Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Samina Asad
- Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marlene Ek
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Kassahun Bilcha
- Department of Dermatovenereology, Faculty of Medicine, Gondar University, Gondar, Ethiopia
- U.S. Dermatology Partners, Dulles, Virginia, USA
| | - Annisa Befekadu
- Department of Dermatovenereology, Faculty of Medicine, Gondar University, Gondar, Ethiopia
| | - Carl-Fredrik Wahlgren
- Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Isabel Tapia-Paez
- Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Bradley
- Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Waman VP, Ashford P, Lam SD, Sen N, Abbasian M, Woodridge L, Goldtzvik Y, Bordin N, Wu J, Sillitoe I, Orengo CA. Predicting human and viral protein variants affecting COVID-19 susceptibility and repurposing therapeutics. Sci Rep 2024; 14:14208. [PMID: 38902252 PMCID: PMC11190248 DOI: 10.1038/s41598-024-61541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/07/2024] [Indexed: 06/22/2024] Open
Abstract
The COVID-19 disease is an ongoing global health concern. Although vaccination provides some protection, people are still susceptible to re-infection. Ostensibly, certain populations or clinical groups may be more vulnerable. Factors causing these differences are unclear and whilst socioeconomic and cultural differences are likely to be important, human genetic factors could influence susceptibility. Experimental studies indicate SARS-CoV-2 uses innate immune suppression as a strategy to speed-up entry and replication into the host cell. Therefore, it is necessary to understand the impact of variants in immunity-associated human proteins on susceptibility to COVID-19. In this work, we analysed missense coding variants in several SARS-CoV-2 proteins and their human protein interactors that could enhance binding affinity to SARS-CoV-2. We curated a dataset of 19 SARS-CoV-2: human protein 3D-complexes, from the experimentally determined structures in the Protein Data Bank and models built using AlphaFold2-multimer, and analysed the impact of missense variants occurring in the protein-protein interface region. We analysed 468 missense variants from human proteins and 212 variants from SARS-CoV-2 proteins and computationally predicted their impacts on binding affinities for the human viral protein complexes. We predicted a total of 26 affinity-enhancing variants from 13 human proteins implicated in increased binding affinity to SARS-CoV-2. These include key-immunity associated genes (TOMM70, ISG15, IFIH1, IFIT2, RPS3, PALS1, NUP98, AXL, ARF6, TRIMM, TRIM25) as well as important spike receptors (KREMEN1, AXL and ACE2). We report both common (e.g., Y13N in IFIH1) and rare variants in these proteins and discuss their likely structural and functional impact, using information on known and predicted functional sites. Potential mechanisms associated with immune suppression implicated by these variants are discussed. Occurrence of certain predicted affinity-enhancing variants should be monitored as they could lead to increased susceptibility and reduced immune response to SARS-CoV-2 infection in individuals/populations carrying them. Our analyses aid in understanding the potential impact of genetic variation in immunity-associated proteins on COVID-19 susceptibility and help guide drug-repurposing strategies.
Collapse
Affiliation(s)
- Vaishali P Waman
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Paul Ashford
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Su Datt Lam
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Neeladri Sen
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Mahnaz Abbasian
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Laurel Woodridge
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Yonathan Goldtzvik
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Nicola Bordin
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Jiaxin Wu
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Ian Sillitoe
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Christine A Orengo
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
18
|
Bilgrav Saether K, Eisfeldt J, Bengtsson J, Lun MY, Grochowski CM, Mahmoud M, Chao HT, Rosenfeld JA, Liu P, Schuy J, Ameur A, Hwang JP, Sedlazeck FJ, Bi W, Marom R, Nordgren A, Carvalho CMB, Lindstrand A. Mind the gap: the relevance of the genome reference to resolve rare and pathogenic inversions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.22.24305780. [PMID: 38712270 PMCID: PMC11071548 DOI: 10.1101/2024.04.22.24305780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Both long-read genome sequencing (lrGS) and the recently published Telomere to Telomere (T2T) reference genome provide increased coverage and resolution across repetitive regions promising heightened structural variant detection and improved mapping. Inversions (INV), intrachromosomal segments which are rotated 180° and inserted back into the same chromosome, are a class of structural variants particularly challenging to detect due to their copy-number neutral state and association with repetitive regions. Inversions represent about 1/20 of all balanced structural chromosome aberrations and can lead to disease by gene disruption or altering regulatory regions of dosage sensitive genes in cis . Here we remapped the genome data from six individuals carrying unsolved cytogenetically detected inversions. An INV6 and INV10 were resolved using GRCh38 and T2T-CHM13. Finally, an INV9 required optical genome mapping, de novo assembly of lrGS data and T2T-CHM13. This inversion disrupted intron 25 of EHMT1, confirming a diagnosis of Kleefstra syndrome 1 (MIM#610253). These three inversions, only mappable in specific references, prompted us to investigate the presence and population frequencies of differential reference regions (DRRs) between T2T-CHM13, GRCh37, GRCh38, the chimpanzee and bonobo, and hundreds of megabases of DRRs were identified. Our results emphasize the significance of the chosen reference genome and the added benefits of lrGS and optical genome mapping in solving rearrangements in challenging regions of the genome. This is particularly important for inversions and may impact clinical diagnostics.
Collapse
|
19
|
Brolin KA, Bäckström D, Wallenius J, Gan-Or Z, Puschmann A, Hansson O, Swanberg M. Is GBA1 T369M not a risk factor for Parkinson's disease in the Swedish population? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.15.24304347. [PMID: 38559109 PMCID: PMC10980128 DOI: 10.1101/2024.03.15.24304347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Variants in GBA1 are important genetic risk factors in Parkinson's disease (PD). GBA1 T369M has been linked to an ~80% increased PD risk but the reports are conflicting and the relevance of GBA1 variants in different populations varies. A lack of association between T369M and PD in the Swedish population was recently reported but needs further validation. We therefore investigated T369M in 1,808 PD patients and 2,183 controls and our results support that T369M is not a risk factor for PD in the Swedish population.
Collapse
Affiliation(s)
- Kajsa Atterling Brolin
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, EC1M 6BQ, London, UK
| | - David Bäckström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Joel Wallenius
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Ziv Gan-Or
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- Clinical Research Unit, The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Andreas Puschmann
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- SciLifeLab National Research Infrastructure, Lund University, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Maria Swanberg
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Wang S, Nikamo P, Laasonen L, Gudbjornsson B, Ejstrup L, Iversen L, Lindqvist U, Alm JJ, Eisfeldt J, Zheng X, Catrina SB, Taylan F, Vaz R, Ståhle M, Tapia-Paez I. Rare coding variants in NOX4 link high ROS levels to psoriatic arthritis mutilans. EMBO Mol Med 2024; 16:596-615. [PMID: 38379095 PMCID: PMC10940640 DOI: 10.1038/s44321-024-00035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Psoriatic arthritis mutilans (PAM) is the rarest and most severe form of psoriatic arthritis, characterized by erosions of the small joints and osteolysis leading to joint disruption. Despite its severity, the underlying mechanisms are unknown, and no susceptibility genes have hitherto been identified. We aimed to investigate the genetic basis of PAM by performing massive parallel sequencing in sixty-one patients from the PAM Nordic cohort. We found rare variants in the NADPH oxidase 4 (NOX4) in four patients. In silico predictions show that the identified variants are potentially damaging. NOXs are the only enzymes producing reactive oxygen species (ROS). NOX4 is specifically involved in the differentiation of osteoclasts, the cells implicated in bone resorption. Functional follow-up studies using cell culture, zebrafish models, and measurement of ROS in patients uncovered that these NOX4 variants increase ROS levels both in vitro and in vivo. We propose NOX4 as the first candidate susceptibility gene for PAM. Our study links high levels of ROS caused by NOX4 variants to the development of PAM, offering a potential therapeutic target.
Collapse
Affiliation(s)
- Sailan Wang
- Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Nikamo
- Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Leena Laasonen
- Helsinki Medical Imaging Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Bjorn Gudbjornsson
- Centre for Rheumatology Research, University Hospital and Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Leif Ejstrup
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Ulla Lindqvist
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Jessica J Alm
- Department of Microbiology, Tumor and Cell Biology & National Pandemic Center, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Xiaowei Zheng
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Diabetes, Academic Specialist Center, Stockholm, Sweden
| | - Fulya Taylan
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Raquel Vaz
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mona Ståhle
- Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Dermatology and Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Isabel Tapia-Paez
- Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Johansson J, Lidéus S, Frykholm C, Gunnarsson C, Mihalic F, Gudmundsson S, Ekvall S, Molin AM, Pham M, Vihinen M, Lagerstedt-Robinson K, Nordgren A, Jemth P, Ameur A, Annerén G, Wilbe M, Bondeson ML. Gustavson syndrome is caused by an in-frame deletion in RBMX associated with potentially disturbed SH3 domain interactions. Eur J Hum Genet 2024; 32:333-341. [PMID: 37277488 PMCID: PMC10923852 DOI: 10.1038/s41431-023-01392-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/07/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023] Open
Abstract
RNA binding motif protein X-linked (RBMX) encodes the heterogeneous nuclear ribonucleoprotein G (hnRNP G) that regulates splicing, sister chromatid cohesion and genome stability. RBMX knock down experiments in various model organisms highlight the gene's importance for brain development. Deletion of the RGG/RG motif in hnRNP G has previously been associated with Shashi syndrome, however involvement of other hnRNP G domains in intellectual disability remain unknown. In the current study, we present the underlying genetic and molecular cause of Gustavson syndrome. Gustavson syndrome was first reported in 1993 in a large Swedish five-generation family presented with profound X-linked intellectual disability and an early death. Extensive genomic analyses of the family revealed hemizygosity for a novel in-frame deletion in RBMX in affected individuals (NM_002139.4; c.484_486del, p.(Pro162del)). Carrier females were asymptomatic and presented with skewed X-chromosome inactivation, indicating silencing of the pathogenic allele. Affected individuals presented minor phenotypic overlap with Shashi syndrome, indicating a different disease-causing mechanism. Investigation of the variant effect in a neuronal cell line (SH-SY5Y) revealed differentially expressed genes enriched for transcription factors involved in RNA polymerase II transcription. Prediction tools and a fluorescence polarization assay imply a novel SH3-binding motif of hnRNP G, and potentially a reduced affinity to SH3 domains caused by the deletion. In conclusion, we present a novel in-frame deletion in RBMX segregating with Gustavson syndrome, leading to disturbed RNA polymerase II transcription, and potentially reduced SH3 binding. The results indicate that disruption of different protein domains affects the severity of RBMX-associated intellectual disabilities.
Collapse
Affiliation(s)
- Josefin Johansson
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Sarah Lidéus
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Carina Frykholm
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Cecilia Gunnarsson
- Department of Clinical Genetics, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Centre for Rare Diseases in South East Region of Sweden, Linköping University, Linköping, Sweden
| | - Filip Mihalic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Sanna Gudmundsson
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Sara Ekvall
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Anna-Maja Molin
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Mai Pham
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22 184, Lund, Sweden
| | - Kristina Lagerstedt-Robinson
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Biomedicine, Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Göran Annerén
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
22
|
Vad OB, Angeli E, Liss M, Ahlberg G, Andreasen L, Christophersen IE, Hansen CC, Møller S, Hellsten Y, Haunsoe S, Tveit A, Svendsen JH, Gotthardt M, Lundegaard PR, Olesen MS. Loss of Cardiac Splicing Regulator RBM20 Is Associated With Early-Onset Atrial Fibrillation. JACC Basic Transl Sci 2024; 9:163-180. [PMID: 38510713 PMCID: PMC10950405 DOI: 10.1016/j.jacbts.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 03/22/2024]
Abstract
We showed an association between atrial fibrillation and rare loss-of-function (LOF) variants in the cardiac splicing regulator RBM20 in 2 independent cohorts. In a rat model with loss of RBM20, we demonstrated altered splicing of sarcomere genes (NEXN, TTN, TPM1, MYOM1, and LDB3), and differential expression in key cardiac genes. We identified altered sarcomere and mitochondrial structure on electron microscopy imaging and found compromised mitochondrial function. Finally, we demonstrated that 3 novel LOF variants in RBM20, identified in patients with atrial fibrillation, lead to significantly reduced splicing activity. Our results implicate alternative splicing as a novel proarrhythmic mechanism in the atria.
Collapse
Affiliation(s)
- Oliver B. Vad
- Department of Cardiology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisavet Angeli
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Liss
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gustav Ahlberg
- Department of Cardiology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura Andreasen
- Department of Cardiology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Ingrid E. Christophersen
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Camilla C. Hansen
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Møller
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Stig Haunsoe
- Department of Cardiology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Arnljot Tveit
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
- Institute of Clinical Medicine, Department of Cardiology, University of Oslo, Oslo, Norway
| | - Jesper H. Svendsen
- Department of Cardiology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Cardiology, Charité Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research, partner site Berlin, Berlin, Germany
| | - Pia R. Lundegaard
- Department of Cardiology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten S. Olesen
- Department of Cardiology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Yu H, Khanshour AM, Ushiki A, Otomo N, Koike Y, Einarsdottir E, Fan Y, Antunes L, Kidane YH, Cornelia R, Sheng RR, Zhang Y, Pei J, Grishin NV, Evers BM, Cheung JPY, Herring JA, Terao C, Song YQ, Gurnett CA, Gerdhem P, Ikegawa S, Rios JJ, Ahituv N, Wise CA. Association of genetic variation in COL11A1 with adolescent idiopathic scoliosis. eLife 2024; 12:RP89762. [PMID: 38277211 PMCID: PMC10945706 DOI: 10.7554/elife.89762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than fivefold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here, we sought to define the roles of PAX1 and newly identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); p=7.07E-11, OR = 1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wild-type. By genetic targeting we found that wild-type Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, the latter suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2 or tamoxifen treatment significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a PAX1-COL11a1-MMP3 signaling axis in spinal chondrocytes.
Collapse
Affiliation(s)
- Hao Yu
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Anas M Khanshour
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Nao Otomo
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
| | - Yoshinao Koike
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Elisabet Einarsdottir
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of TechnologySolnaSweden
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong KongHong Kong SARChina
| | - Lilian Antunes
- Department of Neurology, Washington University in St. LouisSt. LouisUnited States
| | - Yared H Kidane
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Reuel Cornelia
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Rory R Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Yichi Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
- School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Jimin Pei
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Ophthalmology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology LKS Faculty of Medicine, The University of Hong KongHong Kong SARChina
| | - John A Herring
- Department of Orthopedic Surgery, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - You-qiang Song
- School of Biomedical Sciences, The University of Hong KongHong Kong SARChina
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. LouisSt. LouisUnited States
| | - Paul Gerdhem
- Department of Surgical Sciences, Uppsala UniversityUppsalaSweden
- Department of Orthopaedics and Hand Surgery, Uppsala University HospitalUppsalaSweden
- Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Uppsala UniversityUppsalaSweden
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
| | - Jonathan J Rios
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pediatrics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Carol A Wise
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pediatrics, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
24
|
Baliakas P, Munters AR, Kämpe A, Tesi B, Bondeson ML, Ladenvall C, Eriksson D. Integrating a Polygenic Risk Score into a clinical setting would impact risk predictions in familial breast cancer. J Med Genet 2024; 61:150-154. [PMID: 37580114 PMCID: PMC10850617 DOI: 10.1136/jmg-2023-109311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/28/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Low-impact genetic variants identified in population-based genetic studies are not routinely measured as part of clinical genetic testing in familial breast cancer (BC). We studied the consequences of integrating an established Polygenic Risk Score (PRS) (BCAC 313, PRS313) into clinical sequencing of women with familial BC in Sweden. METHODS We developed an add-on sequencing panel to capture 313 risk variants in addition to the clinical screening of hereditary BC genes. Index patients with no pathogenic variant from 87 families, and 1000 population controls, were included in comparative PRS calculations. Including detailed family history, sequencing results and tumour pathology information, we used BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) V.6 to estimate contralateral and lifetime risks without and with PRS313. RESULTS Women with BC but no pathogenic variants in hereditary BC genes have a higher PRS313 compared with population controls (mean+0.78 SD, p<3e-9). Implementing PRS313 in the clinical risk estimation before their BC diagnosis would have changed the recommended follow-up in 24%-45% of women. CONCLUSIONS Our results show the potential impact of incorporating PRS313 directly in the clinical genomic investigation of women with familial BC.
Collapse
Affiliation(s)
- Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Arielle R Munters
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska Institutet, Stockholm, Sweden
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Claes Ladenvall
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Daniel Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Akademiska Sjukhuset, Uppsala, Sweden
| |
Collapse
|
25
|
Vats S, Sundquist K, Sundquist J, Zhang N, Wang X, Acosta S, Gottsäter A, Memon AA. Oxidative stress-related genetic variation and antioxidant vitamin intake in intact and ruptured abdominal aortic aneurysm: a Swedish population-based retrospective cohort study. Eur J Prev Cardiol 2024; 31:61-74. [PMID: 37665957 DOI: 10.1093/eurjpc/zwad271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023]
Abstract
AIMS The aim of this study is to investigate how genetic variations in genes related to oxidative stress, intake of antioxidant vitamins, and any potential interactions between these factors affect the incidence of intact abdominal aortic aneurysm (AAA) and its rupture (rAAA), accounting for sex differences where possible. METHODS AND RESULTS The present retrospective cohort study (n = 25 252) uses baseline single-nucleotide polymorphisms (SNPs) and total antioxidant vitamin intake data from the large population-based, Malmö Diet and Cancer Study. Cumulative incidence of intact AAA was 1.6% and of rAAA 0.3% after a median follow-up of 24.3 years. A variant in NOX3 (rs3749930) was associated with higher rAAA risk in males [adjusted hazard ratio (aHR): 2.49; 95% confidence interval (CI): 1.36-4.35] and the overall population (aHR: 1.88; 95% CI: 1.05-3.37). Higher intakes of antioxidant vitamins, riboflavin, and folate were associated with 20% and 19% reduced intact AAA incidence, respectively. Interestingly, the inverse associations between riboflavin and vitamin D intake with intact AAA incidence were stronger in the individuals carrying the NOX3 variant as compared with the wild-type recessive genotype, i.e. by 60% and 66%, respectively (P for interaction < 0.05). Higher riboflavin intake was associated with a 33% male-specific intact AAA risk reduction, while higher intake of vitamin B12 intake was associated with 55% female-specific intact AAA risk increase; both these associations were significantly modified by sex (P for interaction < 0.05). CONCLUSIONS Our findings highlight the role of oxidative stress genetic variations and antioxidant vitamin intake in AAA. Although a low AAA/rAAA sample size limited some analyses, especially in females, our findings highlight the need for future randomized controlled trials and mechanistic studies, to explore the potential benefits of antioxidant vitamins while accounting for genetic and sex differences.
Collapse
Affiliation(s)
- Sakshi Vats
- Center for Primary Health Care Research, Wallenberg Laboratory, 5th floor, Inga Marie Nilsson's gata 53, 214 28, Malmö, Sweden
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan
| | - Jan Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan
| | - Naiqi Zhang
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Xiao Wang
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Stefan Acosta
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Vascular Centre, Department of Cardiothoracic and Vascular Surgery, Skåne University Hospital, Lund University, Malmö, S-205 02, Sweden
| | - Anders Gottsäter
- Vascular Centre, Department of Cardiothoracic and Vascular Surgery, Skåne University Hospital, Lund University, Malmö, S-205 02, Sweden
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| |
Collapse
|
26
|
Wallenius J, Kafantari E, Jhaveri E, Gorcenco S, Ameur A, Karremo C, Dobloug S, Karrman K, de Koning T, Ilinca A, Landqvist Waldö M, Arvidsson A, Persson S, Englund E, Ehrencrona H, Puschmann A. Exonic trinucleotide repeat expansions in ZFHX3 cause spinocerebellar ataxia type 4: A poly-glycine disease. Am J Hum Genet 2024; 111:82-95. [PMID: 38035881 PMCID: PMC10806739 DOI: 10.1016/j.ajhg.2023.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Autosomal-dominant ataxia with sensory and autonomic neuropathy is a highly specific combined phenotype that we described in two Swedish kindreds in 2014; its genetic cause had remained unknown. Here, we report the discovery of exonic GGC trinucleotide repeat expansions, encoding poly-glycine, in zinc finger homeobox 3 (ZFHX3) in these families. The expansions were identified in whole-genome datasets within genomic segments that all affected family members shared. Non-expanded alleles carried one or more interruptions within the repeat. We also found ZFHX3 repeat expansions in three additional families, all from the region of Skåne in southern Sweden. Individuals with expanded repeats developed balance and gait disturbances at 15 to 60 years of age and had sensory neuropathy and slow saccades. Anticipation was observed in all families and correlated with different repeat lengths determined through long-read sequencing in two family members. The most severely affected individuals had marked autonomic dysfunction, with severe orthostatism as the most disabling clinical feature. Neuropathology revealed p62-positive intracytoplasmic and intranuclear inclusions in neurons of the central and enteric nervous system, as well as alpha-synuclein positivity. ZFHX3 is located within the 16q22 locus, to which spinocerebellar ataxia type 4 (SCA4) repeatedly had been mapped; the clinical phenotype in our families corresponded well with the unique phenotype described in SCA4, and the original SCA4 kindred originated from Sweden. ZFHX3 has known functions in neuronal development and differentiation n both the central and peripheral nervous system. Our findings demonstrate that SCA4 is caused by repeat expansions in ZFHX3.
Collapse
Affiliation(s)
- Joel Wallenius
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Efthymia Kafantari
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Emma Jhaveri
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Sorina Gorcenco
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | - Christin Karremo
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Sigurd Dobloug
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden; Department of Neurology, Helsingborg General Hospital, 252 23 Helsingborg, Sweden
| | - Kristina Karrman
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden; Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 221 85 Lund, Sweden
| | - Tom de Koning
- Pediatrics, Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden
| | - Andreea Ilinca
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Maria Landqvist Waldö
- Division of Clinical Sciences Helsingborg, Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden
| | - Andreas Arvidsson
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Staffan Persson
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Elisabet Englund
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 221 85 Lund, Sweden; Pathology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Hans Ehrencrona
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden; Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 221 85 Lund, Sweden
| | - Andreas Puschmann
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden; SciLifeLab National Research Infrastructure, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
27
|
Gorcenco S, Kafantari E, Wallenius J, Karremo C, Alinder E, Dobloug S, Landqvist Waldö M, Englund E, Ehrencrona H, Wictorin K, Karrman K, Puschmann A. Clinical and genetic analyses of a Swedish patient series diagnosed with ataxia. J Neurol 2024; 271:526-542. [PMID: 37787810 PMCID: PMC10770240 DOI: 10.1007/s00415-023-11990-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023]
Abstract
Hereditary ataxia is a heterogeneous group of complex neurological disorders. Next-generation sequencing methods have become a great help in clinical diagnostics, but it may remain challenging to determine if a genetic variant is the cause of the patient's disease. We compiled a consecutive single-center series of 87 patients from 76 families with progressive ataxia of known or unknown etiology. We investigated them clinically and genetically using whole exome or whole genome sequencing. Test methods were selected depending on family history, clinical phenotype, and availability. Genetic results were interpreted based on the American College of Medical Genetics criteria. For high-suspicion variants of uncertain significance, renewed bioinformatical and clinical evaluation was performed to assess the level of pathogenicity. Thirty (39.5%) of the 76 families had received a genetic diagnosis at the end of our study. We present the predominant etiologies of hereditary ataxia in a Swedish patient series. In two families, we established a clinical diagnosis, although the genetic variant was classified as "of uncertain significance" only, and in an additional three families, results are pending. We found a pathogenic variant in one family, but we suspect that it does not explain the complete clinical picture. We conclude that correctly interpreting genetic variants in complex neurogenetic diseases requires genetics and clinical expertise. The neurologist's careful phenotyping remains essential to confirm or reject a diagnosis, also by reassessing clinical findings after a candidate genetic variant is suggested. Collaboration between neurology and clinical genetics and combining clinical and research approaches optimizes diagnostic yield.
Collapse
Affiliation(s)
- Sorina Gorcenco
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.
| | - Efthymia Kafantari
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Joel Wallenius
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Christin Karremo
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Erik Alinder
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Sigurd Dobloug
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Division of Clinical Sciences Helsingborg, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Maria Landqvist Waldö
- Division of Clinical Sciences Helsingborg, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Elisabet Englund
- Pathology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Hans Ehrencrona
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Klas Wictorin
- Division of Clinical Sciences Helsingborg, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Kristina Karrman
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Andreas Puschmann
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- SciLifeLab National Research Infrastructure, Solna, Sweden
| |
Collapse
|
28
|
Schmitz D, Li Z, Lo Faro V, Rask-Andersen M, Ameur A, Rafati N, Johansson Å. Copy number variations and their effect on the plasma proteome. Genetics 2023; 225:iyad179. [PMID: 37793096 PMCID: PMC10697815 DOI: 10.1093/genetics/iyad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
Structural variations, including copy number variations (CNVs), affect around 20 million bases in the human genome and are common causes of rare conditions. CNVs are rarely investigated in complex disease research because most CNVs are not targeted on the genotyping arrays or the reference panels for genetic imputation. In this study, we characterize CNVs in a Swedish cohort (N = 1,021) using short-read whole-genome sequencing (WGS) and use long-read WGS for validation in a subcohort (N = 15), and explore their effect on 438 plasma proteins. We detected 184,182 polymorphic CNVs and identified 15 CNVs to be associated with 16 proteins (P < 8.22×10-10). Of these, 5 CNVs could be perfectly validated using long-read sequencing, including a CNV which was associated with measurements of the osteoclast-associated immunoglobulin-like receptor (OSCAR) and located upstream of OSCAR, a gene important for bone health. Two other CNVs were identified to be clusters of many short repetitive elements and another represented a complex rearrangement including an inversion. Our findings provide insights into the structure of common CNVs and their effects on the plasma proteome, and highlights the importance of investigating common CNVs, also in relation to complex diseases.
Collapse
Affiliation(s)
- Daniel Schmitz
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Zhiwei Li
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Valeria Lo Faro
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Nima Rafati
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| |
Collapse
|
29
|
Yu H, Khanshour AM, Ushiki A, Otomo N, Koike Y, Einarsdottir E, Fan Y, Antunes L, Kidane YH, Cornelia R, Sheng R, Zhang Y, Pei J, Grishin NV, Evers BM, Cheung JPY, Herring JA, Terao C, Song YQ, Gurnett CA, Gerdhem P, Ikegawa S, Rios JJ, Ahituv N, Wise CA. Association of genetic variation in COL11A1 with adolescent idiopathic scoliosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542293. [PMID: 37292598 PMCID: PMC10245954 DOI: 10.1101/2023.05.26.542293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than five-fold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here we sought to define the roles of PAX1 and newly-identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); P=7.07e-11, OR=1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc (IVD)-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wildtype. By genetic targeting we found that wildtype Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, this suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2, or tamoxifen treatment, significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a Pax1-Col11a1-Mmp3 signaling axis in spinal chondrocytes.
Collapse
Affiliation(s)
- Hao Yu
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Anas M Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Nao Otomo
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
| | - Yoshinao Koike
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, JP
| | - Elisabet Einarsdottir
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, Solna, SE
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, CN
| | - Lilian Antunes
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yared H Kidane
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Reuel Cornelia
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Rory Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yichi Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, CN
| | - Jimin Pei
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, CN
| | - John A Herring
- Department of Orthopedic Surgery, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, JP
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, CN
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Paul Gerdhem
- Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Uppsala University, Uppsala, SE
- Department of Surgical Sciences, Uppsala University and
- Department of Orthopaedics and Hand Surgery, Uppsala University Hospital, Uppsala, SE
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
30
|
Valle L, Katz LH, Latchford A, Mur P, Moreno V, Frayling IM, Heald B, Capellá G. Position statement of the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) on APC I1307K and cancer risk. J Med Genet 2023; 60:1035-1043. [PMID: 37076288 PMCID: PMC10646901 DOI: 10.1136/jmg-2022-108984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/01/2023] [Indexed: 04/21/2023]
Abstract
While constitutional pathogenic variants in the APC gene cause familial adenomatous polyposis, APC c.3920T>A; p.Ile1307Lys (I1307K) has been associated with a moderate increased risk of colorectal cancer (CRC), particularly in individuals of Ashkenazi Jewish descent. However, published data include relatively small sample sizes, generating inconclusive results regarding cancer risk, particularly in non-Ashkenazi populations. This has led to different country/continental-specific guidelines regarding genetic testing, clinical management and surveillance recommendations for I1307K. A multidisciplinary international expert group endorsed by the International Society for Gastrointestinal Hereditary Tumours (InSiGHT), has generated a position statement on the APC I1307K allele and its association with cancer predisposition. Based on a systematic review and meta-analysis of the evidence published, the aim of this document is to summarise the prevalence of the APC I1307K allele and analysed the evidence of the associated cancer risk in different populations. Here we provide recommendations on the laboratory classification of the variant, define the role of predictive testing for I1307K, suggest recommendations for cancer screening in I1307K heterozygous and homozygous individuals and identify knowledge gaps to be addressed in future research studies. Briefly, I1307K, classified as pathogenic, low penetrance, is a risk factor for CRC in individuals of Ashkenazi Jewish origin and should be tested in this population, offering carriers specific clinical surveillance. There is not enough evidence to support an increased risk of cancer in other populations/subpopulations. Therefore, until/unless future evidence indicates otherwise, individuals of non-Ashkenazi Jewish descent harbouring I1307K should be enrolled in national CRC screening programmes for average-risk individuals.
Collapse
Affiliation(s)
- Laura Valle
- Hereditary Cancer Programme, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Lior H Katz
- Department of Gastroenterology and Hepatology, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andrew Latchford
- The Polyposis Registry, St Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
- Department of Surgery and Cancer, Imperial College, London, UK
| | - Pilar Mur
- Hereditary Cancer Programme, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Catalan Cancer Plan, Department of Health of Catalonia, Barcelona, Spain
| | - Victor Moreno
- Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Programme, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex System (UBICS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ian M Frayling
- Inherited Tumour Syndromes Research Group, Cardiff University, Cardiff, Wales, UK
| | - Brandie Heald
- Sanford R. Weiss MD Center for Hereditary Colorectal Neoplasia, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gabriel Capellá
- Hereditary Cancer Programme, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
31
|
Sturk-Andreaggi K, Bodner M, Ring JD, Ameur A, Gyllensten U, Parson W, Marshall C, Allen M. Complete Mitochondrial DNA Genome Variation in the Swedish Population. Genes (Basel) 2023; 14:1989. [PMID: 38002932 PMCID: PMC10671102 DOI: 10.3390/genes14111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
The development of complete mitochondrial genome (mitogenome) reference data for inclusion in publicly available population databases is currently underway, and the generation of more high-quality mitogenomes will only enhance the statistical power of this forensically useful locus. To characterize mitogenome variation in Sweden, the mitochondrial DNA (mtDNA) reads from the SweGen whole genome sequencing (WGS) dataset were analyzed. To overcome the interference from low-frequency nuclear mtDNA segments (NUMTs), a 10% variant frequency threshold was applied for the analysis. In total, 934 forensic-quality mitogenome haplotypes were characterized. Almost 45% of the SweGen haplotypes belonged to haplogroup H. Nearly all mitogenome haplotypes (99.1%) were assigned to European haplogroups, which was expected based on previous mtDNA studies of the Swedish population. There were signature northern Swedish and Finnish haplogroups observed in the dataset (e.g., U5b1, W1a), consistent with the nuclear DNA analyses of the SweGen data. The complete mitogenome analysis resulted in high haplotype diversity (0.9996) with a random match probability of 0.15%. Overall, the SweGen mitogenomes provide a large mtDNA reference dataset for the Swedish population and also contribute to the effort to estimate global mitogenome haplotype frequencies.
Collapse
Affiliation(s)
- Kimberly Sturk-Andreaggi
- Department of Immunology Genetics and Pathology, Uppsala University, 751 08 Uppsala, Sweden; (A.A.); (U.G.)
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE 19902, USA (C.M.)
- SNA International, LLC, Alexandria, VI 22314, USA
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (W.P.)
| | - Joseph D. Ring
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE 19902, USA (C.M.)
- SNA International, LLC, Alexandria, VI 22314, USA
| | - Adam Ameur
- Department of Immunology Genetics and Pathology, Uppsala University, 751 08 Uppsala, Sweden; (A.A.); (U.G.)
| | - Ulf Gyllensten
- Department of Immunology Genetics and Pathology, Uppsala University, 751 08 Uppsala, Sweden; (A.A.); (U.G.)
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (W.P.)
- Forensic Science Program, The Pennsylvania State University, University Park, State College, PA 16801, USA
| | - Charla Marshall
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE 19902, USA (C.M.)
- Forensic Science Program, The Pennsylvania State University, University Park, State College, PA 16801, USA
| | - Marie Allen
- Department of Immunology Genetics and Pathology, Uppsala University, 751 08 Uppsala, Sweden; (A.A.); (U.G.)
| |
Collapse
|
32
|
Thorburn DMJ, Sagonas K, Binzer-Panchal M, Chain FJJ, Feulner PGD, Bornberg-Bauer E, Reusch TBH, Samonte-Padilla IE, Milinski M, Lenz TL, Eizaguirre C. Origin matters: Using a local reference genome improves measures in population genomics. Mol Ecol Resour 2023; 23:1706-1723. [PMID: 37489282 DOI: 10.1111/1755-0998.13838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/10/2023] [Accepted: 06/02/2023] [Indexed: 07/26/2023]
Abstract
Genome sequencing enables answering fundamental questions about the genetic basis of adaptation, population structure and epigenetic mechanisms. Yet, we usually need a suitable reference genome for mapping population-level resequencing data. In some model systems, multiple reference genomes are available, giving the challenging task of determining which reference genome best suits the data. Here, we compared the use of two different reference genomes for the three-spined stickleback (Gasterosteus aculeatus), one novel genome derived from a European gynogenetic individual and the published reference genome of a North American individual. Specifically, we investigated the impact of using a local reference versus one generated from a distinct lineage on several common population genomics analyses. Through mapping genome resequencing data of 60 sticklebacks from across Europe and North America, we demonstrate that genetic distance among samples and the reference genomes impacts downstream analyses. Using a local reference genome increased mapping efficiency and genotyping accuracy, effectively retaining more and better data. Despite comparable distributions of the metrics generated across the genome using SNP data (i.e. π, Tajima's D and FST ), window-based statistics using different references resulted in different outlier genes and enriched gene functions. A marker-based analysis of DNA methylation distributions had a comparably high overlap in outlier genes and functions, yet with distinct differences depending on the reference genome. Overall, our results highlight how using a local reference genome decreases reference bias to increase confidence in downstream analyses of the data. Such results have significant implications in all reference-genome-based population genomic analyses.
Collapse
Affiliation(s)
- Doko-Miles J Thorburn
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Kostas Sagonas
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mahesh Binzer-Panchal
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden (NBIS), Uppsala University, Uppsala, Sweden
| | - Frederic J J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Erich Bornberg-Bauer
- Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Irene E Samonte-Padilla
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Manfred Milinski
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
33
|
Johansson Å, Andreassen OA, Brunak S, Franks PW, Hedman H, Loos RJ, Meder B, Melén E, Wheelock CE, Jacobsson B. Precision medicine in complex diseases-Molecular subgrouping for improved prediction and treatment stratification. J Intern Med 2023; 294:378-396. [PMID: 37093654 PMCID: PMC10523928 DOI: 10.1111/joim.13640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Complex diseases are caused by a combination of genetic, lifestyle, and environmental factors and comprise common noncommunicable diseases, including allergies, cardiovascular disease, and psychiatric and metabolic disorders. More than 25% of Europeans suffer from a complex disease, and together these diseases account for 70% of all deaths. The use of genomic, molecular, or imaging data to develop accurate diagnostic tools for treatment recommendations and preventive strategies, and for disease prognosis and prediction, is an important step toward precision medicine. However, for complex diseases, precision medicine is associated with several challenges. There is a significant heterogeneity between patients of a specific disease-both with regards to symptoms and underlying causal mechanisms-and the number of underlying genetic and nongenetic risk factors is often high. Here, we summarize precision medicine approaches for complex diseases and highlight the current breakthroughs as well as the challenges. We conclude that genomic-based precision medicine has been used mainly for patients with highly penetrant monogenic disease forms, such as cardiomyopathies. However, for most complex diseases-including psychiatric disorders and allergies-available polygenic risk scores are more probabilistic than deterministic and have not yet been validated for clinical utility. However, subclassifying patients of a specific disease into discrete homogenous subtypes based on molecular or phenotypic data is a promising strategy for improving diagnosis, prediction, treatment, prevention, and prognosis. The availability of high-throughput molecular technologies, together with large collections of health data and novel data-driven approaches, offers promise toward improved individual health through precision medicine.
Collapse
Affiliation(s)
- Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala university, Sweden
| | - Ole A. Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopment Research, University of Oslo, Oslo, Norway
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2200 Copenhagen, Denmark
| | - Paul W. Franks
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Sweden
- Novo Nordisk Foundation, Denmark
| | - Harald Hedman
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Ruth J.F. Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Meder
- Precision Digital Health, Cardiogenetics Center Heidelberg, Department of Cardiology, University Of Heidelberg, Germany
| | - Erik Melén
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm
- Sachś Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynaecology, Sahlgrenska University Hospital, Göteborg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| |
Collapse
|
34
|
Almaas R, Atneosen-Åsegg M, Ytre-Arne ME, Melheim M, Sorte HS, Cízková D, Reims HM, Bezrouk A, Harrison SP, Strand J, Hermansen JU, Andersen SS, Eiklid KL, Mokrý J, Sullivan GJ, Stray-Pedersen A. Aagenaes syndrome/lymphedema cholestasis syndrome 1 is caused by a founder variant in the 5'-untranslated region of UNC45A. J Hepatol 2023; 79:945-954. [PMID: 37328071 DOI: 10.1016/j.jhep.2023.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND & AIMS Lymphedema cholestasis syndrome 1 or Aagenaes syndrome is a condition characterized by neonatal cholestasis, lymphedema, and giant cell hepatitis. The genetic background of this autosomal recessive disease was unknown up to now. METHODS A total of 26 patients with Aagenaes syndrome and 17 parents were investigated with whole-genome sequencing and/or Sanger sequencing. PCR and western blot analyses were used to assess levels of mRNA and protein, respectively. CRISPR/Cas9 was used to generate the variant in HEK293T cells. Light microscopy, transmission electron microscopy and immunohistochemistry for biliary transport proteins were performed in liver biopsies. RESULTS One specific variant (c.-98G>T) in the 5'-untranslated region of Unc-45 myosin chaperone A (UNC45A) was identified in all tested patients with Aagenaes syndrome. Nineteen were homozygous for the c.-98G>T variant and seven were compound heterozygous for the variant in the 5'-untranslated region and an exonic loss-of-function variant in UNC45A. Patients with Aagenaes syndrome exhibited lower expression of UNC45A mRNA and protein than controls, and this was reproduced in a CRISPR/Cas9-created cell model. Liver biopsies from the neonatal period demonstrated cholestasis, paucity of bile ducts and pronounced formation of multinucleated giant cells. Immunohistochemistry revealed mislocalization of the hepatobiliary transport proteins BSEP (bile salt export pump) and MRP2 (multidrug resistance-associated protein 2). CONCLUSIONS c.-98G>T in the 5'-untranslated region of UNC45A is the causative genetic variant in Aagenaes syndrome. IMPACT AND IMPLICATIONS The genetic background of Aagenaes syndrome, a disease presenting with cholestasis and lymphedema in childhood, was unknown until now. A variant in the 5'-untranslated region of the Unc-45 myosin chaperone A (UNC45A) was identified in all tested patients with Aagenaes syndrome, providing evidence of the genetic background of the disease. Identification of the genetic background provides a tool for diagnosis of patients with Aagenaes syndrome before lymphedema is evident.
Collapse
Affiliation(s)
- Runar Almaas
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Pb 4950, Nydalen, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Pb 4950, Nydalen, Oslo, Norway; European Reference Network - Rare Liver.
| | | | - Mari Eknes Ytre-Arne
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Maria Melheim
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Pb 4950, Nydalen, Oslo, Norway; European Reference Network - Rare Liver
| | - Hanne Sørmo Sorte
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Dana Cízková
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Henrik Mikael Reims
- European Reference Network - Rare Liver; Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Aleš Bezrouk
- Department of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Sean Philip Harrison
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Pb 4950, Nydalen, Oslo, Norway; European Reference Network - Rare Liver
| | - Janne Strand
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Johanne Uthus Hermansen
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Pb 4950, Nydalen, Oslo, Norway
| | - Sofie Strøm Andersen
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Pb 4950, Nydalen, Oslo, Norway
| | | | - Jaroslav Mokrý
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Gareth John Sullivan
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Pb 4950, Nydalen, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; European Reference Network - Rare Liver
| | - Asbjørg Stray-Pedersen
- European Reference Network - Rare Liver; Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
35
|
Rezayee F, Eisfeldt J, Skaftason A, Öfverholm I, Sayyab S, Syvänen AC, Maqbool K, Lilljebjörn H, Johansson B, Olsson-Arvidsson L, Pietras CO, Staffas A, Palmqvist L, Fioretos T, Cavelier L, Fogelstrand L, Nordlund J, Wirta V, Rosenquist R, Barbany G. Feasibility to use whole-genome sequencing as a sole diagnostic method to detect genomic aberrations in pediatric B-cell acute lymphoblastic leukemia. Front Oncol 2023; 13:1217712. [PMID: 37664045 PMCID: PMC10470829 DOI: 10.3389/fonc.2023.1217712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction The suitability of whole-genome sequencing (WGS) as the sole method to detect clinically relevant genomic aberrations in B-cell acute lymphoblastic leukemia (ALL) was investigated with the aim of replacing current diagnostic methods. Methods For this purpose, we assessed the analytical performance of 150 bp paired-end WGS (90x leukemia/30x germline). A set of 88 retrospective B-cell ALL samples were selected to represent established ALL subgroups as well as ALL lacking stratifying markers by standard-of-care (SoC), so-called B-other ALL. Results Both the analysis of paired leukemia/germline (L/N)(n=64) as well as leukemia-only (L-only)(n=88) detected all types of aberrations mandatory in the current ALLTogether trial protocol, i.e., aneuploidies, structural variants, and focal copy-number aberrations. Moreover, comparison to SoC revealed 100% concordance and that all patients had been assigned to the correct genetic subgroup using both approaches. Notably, WGS could allocate 35 out of 39 B-other ALL samples to one of the emerging genetic subgroups considered in the most recent classifications of ALL. We further investigated the impact of high (90x; n=58) vs low (30x; n=30) coverage on the diagnostic yield and observed an equally perfect concordance with SoC; low coverage detected all relevant lesions. Discussion The filtration of the WGS findings with a short list of genes recurrently rearranged in ALL was instrumental to extract the clinically relevant information efficiently. Nonetheless, the detection of DUX4 rearrangements required an additional customized analysis, due to multiple copies of this gene embedded in the highly repetitive D4Z4 region. We conclude that the diagnostic performance of WGS as the standalone method was remarkable and allowed detection of all clinically relevant genomic events in the diagnostic setting of B-cell ALL.
Collapse
Affiliation(s)
- Fatemah Rezayee
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ingegerd Öfverholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Shumaila Sayyab
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ann Christine Syvänen
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Khurram Maqbool
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bertil Johansson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Linda Olsson-Arvidsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | | | - Anna Staffas
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Palmqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Fogelstrand
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Bilgrav Saether K, Nilsson D, Thonberg H, Tham E, Ameur A, Eisfeldt J, Lindstrand A. Transposable element insertions in 1000 Swedish individuals. PLoS One 2023; 18:e0289346. [PMID: 37506127 PMCID: PMC10381067 DOI: 10.1371/journal.pone.0289346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
The majority of rare diseases are genetic, and regardless of advanced high-throughput genomics-based investigations, 60% of patients remain undiagnosed. A major factor limiting our ability to identify disease-causing alterations is a poor understanding of the morbid and normal human genome. A major genomic contributor of which function and distribution remain largely unstudied are the transposable elements (TE), which constitute 50% of our genome. Here we aim to resolve this knowledge gap and increase the diagnostic yield of rare disease patients investigated with clinical genome sequencing. To this end we characterized TE insertions in 1000 Swedish individuals from the SweGen dataset and 2504 individuals from the 1000 Genomes Project (1KGP), creating seven population-specific TE insertion databases. Of note, 66% of TE insertions in SweGen were present at >1% in the 1KGP databases, proving that most insertions are common across populations. Focusing on the rare TE insertions, we show that even though ~0.7% of those insertions affect protein coding genes, they rarely affect known disease casing genes (<0.1%). Finally, we applied a TE insertion identification workflow on two clinical cases where disease causing TE insertions were suspected and could verify the presence of pathogenic TE insertions in both. Altogether we demonstrate the importance of TE insertion detection and highlight possible clinical implications in rare disease diagnostics.
Collapse
Affiliation(s)
- Kristine Bilgrav Saether
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Håkan Thonberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Ten Berk de Boer E, Bilgrav Saether K, Eisfeldt J. Discovery of non-reference processed pseudogenes in the Swedish population. Front Genet 2023; 14:1176626. [PMID: 37323659 PMCID: PMC10267823 DOI: 10.3389/fgene.2023.1176626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
The vast majority of the human genome is non-coding. There is a diversity of non-coding features, some of which have functional importance. Although the non-coding regions constitute the majority of the genome, they remain understudied, and for a long time, these regions have been referred to as junk DNA. Pseudogenes are one of these features. A pseudogene is a non-functional copy of a protein-coding gene. Pseudogenes may arise through a variety of genetic mechanisms. Processed pseudogenes are formed through reverse transcription of mRNA by LINE elements, after which the cDNA is integrated into the genome. Processed pseudogenes are known to be variable across populations; however, the variability and distribution remains unknown. Herein, we apply a custom-designed processed pseudogene pipeline on the whole genome sequencing data of 3,500 individuals; 2,500 individuals from the thousand genomes dataset, as well as 1,000 Swedish individuals. Through these analyses, we discover over 3,000 pseudogenes missing from the GRCh38 reference. Utilising our pipeline, we position 74% of the detected processed pseudogenes-allowing for analyses of formation. Notably, we find that common structural variant callers, such as Delly, classify the processed pseudogenes as deletion events, which are later predicted to be truncating variants. By compiling lists of non-reference processed pseudogenes and their frequencies, we find a great variability of pseudogenes; indicating that non-reference processed pseudogenes may be useful for DNA testing and as population-specific markers. In summary, our findings highlight a great diversity of processed pseudogenes, that processed pseudogenes are actively formed in the human genome; and that our pipeline may be used to reduce false positive structural variation caused by the misalignment and subsequent misclassification of non-reference processed pseudogenes.
Collapse
Affiliation(s)
- Esmee Ten Berk de Boer
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristine Bilgrav Saether
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
38
|
Staadig A, Hedman J, Tillmar A. Applying Unique Molecular Indices with an Extensive All-in-One Forensic SNP Panel for Improved Genotype Accuracy and Sensitivity. Genes (Basel) 2023; 14:genes14040818. [PMID: 37107576 PMCID: PMC10137749 DOI: 10.3390/genes14040818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
One of the major challenges in forensic genetics is being able to detect very small amounts of DNA. Massively parallel sequencing (MPS) enables sensitive detection; however, genotype errors may exist and could interfere with the interpretation. Common errors in MPS-based analysis are often induced during PCR or sequencing. Unique molecular indices (UMIs) are short random nucleotide sequences ligated to each template molecule prior to amplification. Applying UMIs can improve the limit of detection by enabling accurate counting of initial template molecules and removal of erroneous data. In this study, we applied the FORCE panel, which includes ~5500 SNPs, with a QIAseq Targeted DNA Custom Panel (Qiagen), including UMIs. Our main objective was to investigate whether UMIs can enhance the sensitivity and accuracy of forensic genotyping and to evaluate the overall assay performance. We analyzed the data both with and without the UMI information, and the results showed that both genotype accuracy and sensitivity were improved when applying UMIs. The results showed very high genotype accuracies (>99%) for both reference DNA and challenging samples, down to 125 pg. To conclude, we show successful assay performance for several forensic applications and improvements in forensic genotyping when applying UMIs.
Collapse
|
39
|
Bryant P, Walton Bernstedt S, Thutkawkorapin J, Backman AS, Lindblom A, Lagerstedt-Robinson K. Exome sequencing in a Swedish family with PMS2 mutation with varying penetrance of colorectal cancer: investigating the presence of genetic risk modifiers in colorectal cancer risk. Eur J Cancer Prev 2023; 32:113-118. [PMID: 36134613 DOI: 10.1097/cej.0000000000000769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Lynch syndrome is caused by germline mutations in the mismatch repair (MMR) genes, such as the PMS2 gene, and is characterised by a familial accumulation of colorectal cancer. The penetrance of cancer in PMS2 carriers is still not fully elucidated as a colorectal cancer risk has been shown to vary between PMS2 carriers, suggesting the presence of risk modifiers. METHODS Whole exome sequencing was performed in a Swedish family carrying a PMS2 missense mutation [c.2113G>A, p.(Glu705Lys)]. Thirteen genetic sequence variants were further selected and analysed in a case-control study (724 cases and 711 controls). RESULTS The most interesting variant was an 18 bp deletion in gene BAG1. BAG1 has been linked to colorectal tumour progression with poor prognosis and is thought to promote colorectal tumour cell survival through increased NF-κB activity. CONCLUSIONS We conclude the genetic architecture behind the incomplete penetrance of PMS2 is complicated and must be assessed in a genome wide manner using large families and multifactorial analysis.
Collapse
Affiliation(s)
- Patrick Bryant
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm
- Science for Life Laboratory Department of Biochemistry and Biophysics, Stockholm University
| | - Sophie Walton Bernstedt
- Department of Medicine, Solna, Karolinska Institutet, Stockholm
- Karolinska University Hospital, Division of Gastroenterology, Medical Unit Gastroenterology, Dermatovenereology and Rheumatology, Stockholm, Sweden
| | - Jessada Thutkawkorapin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn 20 University, Bangkok, Thailand
| | - Ann-Sofie Backman
- Department of Medicine, Solna, Karolinska Institutet, Stockholm
- Hereditary Cancer, Medical Unit Breast Endocrine and Sarcoma tumour, Karolinska University Hospital
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm
- Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
40
|
Ballinger ML, Pattnaik S, Mundra PA, Zaheed M, Rath E, Priestley P, Baber J, Ray-Coquard I, Isambert N, Causeret S, van der Graaf WTA, Puri A, Duffaud F, Le Cesne A, Seddon B, Chandrasekar C, Schiffman JD, Brohl AS, James PA, Kurtz JE, Penel N, Myklebost O, Meza-Zepeda LA, Pickett H, Kansara M, Waddell N, Kondrashova O, Pearson JV, Barbour AP, Li S, Nguyen TL, Fatkin D, Graham RM, Giannoulatou E, Green MJ, Kaplan W, Ravishankar S, Copty J, Powell JE, Cuppen E, van Eijk K, Veldink J, Ahn JH, Kim JE, Randall RL, Tucker K, Judson I, Sarin R, Ludwig T, Genin E, Deleuze JF, Haber M, Marshall G, Cairns MJ, Blay JY, Thomas DM, Tattersall M, Neuhaus S, Lewis C, Tucker K, Carey-Smith R, Wood D, Porceddu S, Dickinson I, Thorne H, James P, Ray-Coquard I, Blay JY, Cassier P, Le Cesne A, Duffaud F, Penel N, Isambert N, Kurtz JE, Puri A, Sarin R, Ahn JH, Kim JE, Ward I, Judson I, van der Graaf W, Seddon B, Chandrasekar C, Rickar R, Hennig I, Schiffman J, Randall RL, Silvestri A, Zaratzian A, Tayao M, Walwyn K, Niedermayr E, Mang D, Clark R, Thorpe T, MacDonald J, Riddell K, Mar J, Fennelly V, Wicht A, et alBallinger ML, Pattnaik S, Mundra PA, Zaheed M, Rath E, Priestley P, Baber J, Ray-Coquard I, Isambert N, Causeret S, van der Graaf WTA, Puri A, Duffaud F, Le Cesne A, Seddon B, Chandrasekar C, Schiffman JD, Brohl AS, James PA, Kurtz JE, Penel N, Myklebost O, Meza-Zepeda LA, Pickett H, Kansara M, Waddell N, Kondrashova O, Pearson JV, Barbour AP, Li S, Nguyen TL, Fatkin D, Graham RM, Giannoulatou E, Green MJ, Kaplan W, Ravishankar S, Copty J, Powell JE, Cuppen E, van Eijk K, Veldink J, Ahn JH, Kim JE, Randall RL, Tucker K, Judson I, Sarin R, Ludwig T, Genin E, Deleuze JF, Haber M, Marshall G, Cairns MJ, Blay JY, Thomas DM, Tattersall M, Neuhaus S, Lewis C, Tucker K, Carey-Smith R, Wood D, Porceddu S, Dickinson I, Thorne H, James P, Ray-Coquard I, Blay JY, Cassier P, Le Cesne A, Duffaud F, Penel N, Isambert N, Kurtz JE, Puri A, Sarin R, Ahn JH, Kim JE, Ward I, Judson I, van der Graaf W, Seddon B, Chandrasekar C, Rickar R, Hennig I, Schiffman J, Randall RL, Silvestri A, Zaratzian A, Tayao M, Walwyn K, Niedermayr E, Mang D, Clark R, Thorpe T, MacDonald J, Riddell K, Mar J, Fennelly V, Wicht A, Zielony B, Galligan E, Glavich G, Stoeckert J, Williams L, Djandjgava L, Buettner I, Osinki C, Stephens S, Rogasik M, Bouclier L, Girodet M, Charreton A, Fayet Y, Crasto S, Sandupatla B, Yoon Y, Je N, Thompson L, Fowler T, Johnson B, Petrikova G, Hambridge T, Hutchins A, Bottero D, Scanlon D, Stokes-Denson J, Génin E, Campion D, Dartigues JF, Deleuze JF, Lambert JC, Redon R, Ludwig T, Grenier-Boley B, Letort S, Lindenbaum P, Meyer V, Quenez O, Dina C, Bellenguez C, Le Clézio CC, Giemza J, Chatel S, Férec C, Le Marec H, Letenneur L, Nicolas G, Rouault K. Heritable defects in telomere and mitotic function selectively predispose to sarcomas. Science 2023; 379:253-260. [PMID: 36656928 DOI: 10.1126/science.abj4784] [Show More Authors] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/16/2022] [Indexed: 01/20/2023]
Abstract
Cancer genetics has to date focused on epithelial malignancies, identifying multiple histotype-specific pathways underlying cancer susceptibility. Sarcomas are rare malignancies predominantly derived from embryonic mesoderm. To identify pathways specific to mesenchymal cancers, we performed whole-genome germline sequencing on 1644 sporadic cases and 3205 matched healthy elderly controls. Using an extreme phenotype design, a combined rare-variant burden and ontologic analysis identified two sarcoma-specific pathways involved in mitotic and telomere functions. Variants in centrosome genes are linked to malignant peripheral nerve sheath and gastrointestinal stromal tumors, whereas heritable defects in the shelterin complex link susceptibility to sarcoma, melanoma, and thyroid cancers. These studies indicate a specific role for heritable defects in mitotic and telomere biology in risk of sarcomas.
Collapse
Affiliation(s)
- Mandy L Ballinger
- Garvan Institute of Medical Research, Sydney 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
| | - Swetansu Pattnaik
- Garvan Institute of Medical Research, Sydney 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
| | - Piyushkumar A Mundra
- Garvan Institute of Medical Research, Sydney 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
| | - Milita Zaheed
- Hereditary Cancer Centre, Prince of Wales Hospital, Sydney 2031, Australia
| | - Emma Rath
- Garvan Institute of Medical Research, Sydney 2010, Australia
| | - Peter Priestley
- Hartwig Medical Foundation, 1098 XH Amsterdam, Netherlands
- Hartwig Medical Foundation Australia, Sydney 2000, Australia
| | - Jonathan Baber
- Hartwig Medical Foundation, 1098 XH Amsterdam, Netherlands
- Hartwig Medical Foundation Australia, Sydney 2000, Australia
| | - Isabelle Ray-Coquard
- Department of Adult Medical Oncology, Centre Leon Berard, University Claude Bernard, 69373 Lyon, France
| | | | | | | | - Ajay Puri
- Department of Orthopedic Oncology, Tata Memorial Hospital, Mumbai, Maharashtra 400012, India
| | | | | | - Beatrice Seddon
- Sarcoma Unit, University College Hospital, London NW1 2BU, UK
| | | | - Joshua D Schiffman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Andrew S Brohl
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Paul A James
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne 3000, Australia
| | | | | | - Ola Myklebost
- Western Norway Familial Cancer Centre, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
- Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway
| | | | - Hilda Pickett
- Children's Medical Research Institute, The University of Sydney, Westmead 2145, Australia
| | - Maya Kansara
- Garvan Institute of Medical Research, Sydney 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Andrew P Barbour
- Faculty of Medicine. The University of Queensland, Brisbane 4072, Australia
| | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne 3010, Australia
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton 3800, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3051, Australia
| | - Tuong L Nguyen
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne 3010, Australia
| | - Diane Fatkin
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst 2010, Australia
- Cardiology Department, St Vincent's Hospital, Sydney 2010, Australia
| | - Robert M Graham
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst 2010, Australia
| | - Eleni Giannoulatou
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
- Computational Genomics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Melissa J Green
- School of Psychiatry, University of New South Wales, Sydney 2052, Australia
- Neuorscience Research Australia, Sydney 2031, Australia
| | - Warren Kaplan
- Garvan Institute of Medical Research, Sydney 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
| | | | - Joseph Copty
- Garvan Institute of Medical Research, Sydney 2010, Australia
| | - Joseph E Powell
- Garvan Institute of Medical Research, Sydney 2010, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney 2052, Australia
| | - Edwin Cuppen
- Hartwig Medical Foundation, 1098 XH Amsterdam, Netherlands
| | - Kristel van Eijk
- Department of Neurology, University Medical Centre Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Jan Veldink
- Department of Neurology, University Medical Centre Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Jin-Hee Ahn
- Department of Oncology, Asan Medical Centre, Seoul 05505, South Korea
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Centre, Seoul 05505, South Korea
| | - R Lor Randall
- Department of Orthopaedic Surgery, University of California, Davis Health, Sacramento, CA 95817, USA
| | - Kathy Tucker
- Hereditary Cancer Centre, Prince of Wales Hospital, Sydney 2031, Australia
| | - Ian Judson
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Rajiv Sarin
- Cancer Genetics Unit, ACTREC, Tata Memorial Centre, Mumbai, Maharashtra 410210, India
| | - Thomas Ludwig
- Université de Brest, Inserm, EFS, UMR 1078, GGB, CHU de Brest, 29200 Brest, France
| | - Emmanuelle Genin
- Université de Brest, Inserm, EFS, UMR 1078, GGB, CHU de Brest, 29200 Brest, France
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Génomique, 91057 Evry, France
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Kensington 2033, Australia
| | - Glenn Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Kensington 2033, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan 2308, Australia
- Centre for Brain and Mental Health Research, The Hunter Medical Research Institute, Newcastle 2305, Australia
| | - Jean-Yves Blay
- Department of Adult Medical Oncology, Centre Leon Berard, University Claude Bernard, 69373 Lyon, France
| | - David M Thomas
- Garvan Institute of Medical Research, Sydney 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gallego-Martinez A, Escalera-Balsera A, Trpchevska N, Robles-Bolivar P, Roman-Naranjo P, Frejo L, Perez-Carpena P, Bulla J, Gallus S, Canlon B, Cederroth CR, Lopez-Escamez JA. Using coding and non-coding rare variants to target candidate genes in patients with severe tinnitus. NPJ Genom Med 2022; 7:70. [PMID: 36450758 PMCID: PMC9712652 DOI: 10.1038/s41525-022-00341-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Tinnitus is the phantom percept of an internal non-verbal set of noises and tones. It is reported by 15% of the population and it is usually associated with hearing and/or brain disorders. The role of structural variants (SVs) in coding and non-coding regions has not been investigated in patients with severe tinnitus. In this study, we performed whole-genome sequencing in 97 unrelated Swedish individuals with chronic tinnitus (TIGER cohort). Rare single nucleotide variants (SNV), large structural variants (LSV), and copy number variations (CNV) were retrieved to perform a gene enrichment analysis in TIGER and in a subgroup of patients with severe tinnitus (SEVTIN, n = 34), according to the tinnitus handicap inventory (THI) scores. An independent exome sequencing dataset of 147 Swedish tinnitus patients was used as a replication cohort (JAGUAR cohort) and population-specific datasets from Sweden (SweGen) and Non-Finish Europeans (NFE) from gnomAD were used as control groups. SEVTIN patients showed a higher prevalence of hyperacusis, hearing loss, and anxiety when they were compared to individuals in the TIGER cohort. We found an enrichment of rare missense variants in 6 and 8 high-constraint genes in SEVTIN and TIGER cohorts, respectively. Of note, an enrichment of missense variants was found in the CACNA1E gene in both SEVTIN and TIGER. We replicated the burden of missense variants in 9 high-constrained genes in the JAGUAR cohort, including the gene NAV2, when data were compared with NFE. Moreover, LSVs in constrained regions overlapping CACNA1E, NAV2, and TMEM132D genes were observed in TIGER and SEVTIN.
Collapse
Affiliation(s)
- Alvaro Gallego-Martinez
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| | - Alba Escalera-Balsera
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| | - Natalia Trpchevska
- grid.4714.60000 0004 1937 0626Section of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Paula Robles-Bolivar
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| | - Pablo Roman-Naranjo
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| | - Lidia Frejo
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| | - Patricia Perez-Carpena
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain ,grid.4489.10000000121678994Department of Surgery, Division of Otolaryngology, University of Granada, 18016 Granada, Spain
| | - Jan Bulla
- grid.7914.b0000 0004 1936 7443Department of Mathematics, University of Bergen, 5020 Bergen, Norway ,grid.7727.50000 0001 2190 5763Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Silvano Gallus
- grid.4527.40000000106678902Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Barbara Canlon
- grid.4714.60000 0004 1937 0626Section of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christopher R. Cederroth
- grid.4714.60000 0004 1937 0626Section of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden ,grid.240404.60000 0001 0440 1889National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Ropewalk House, Nottingham, NG1 5DU UK ,grid.4563.40000 0004 1936 8868Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH UK
| | - Jose A. Lopez-Escamez
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain ,grid.4489.10000000121678994Department of Surgery, Division of Otolaryngology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
42
|
Lundtoft C, Sjöwall C, Rantapää‐Dahlqvist S, Bengtsson AA, Jönsen A, Pucholt P, Wu YL, Lundström E, Eloranta M, Gunnarsson I, Baecklund E, Jonsson R, Hammenfors D, Forsblad‐d'Elia H, Eriksson P, Mandl T, Bucher S, Norheim KB, Auglaend Johnsen SJ, Omdal R, Kvarnström M, Wahren‐Herlenius M, Truedsson L, Nilsson B, Kozyrev SV, Bianchi M, Lindblad‐Toh K, Yu C, Nordmark G, Sandling JK, Svenungsson E, Leonard D, Rönnblom L. Strong Association of Combined Genetic Deficiencies in the Classical Complement Pathway With Risk of Systemic Lupus Erythematosus and Primary Sjögren's Syndrome. Arthritis Rheumatol 2022; 74:1842-1850. [PMID: 35729719 PMCID: PMC9828039 DOI: 10.1002/art.42270] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/17/2022] [Accepted: 06/10/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Complete genetic deficiency of the complement component C2 is a strong risk factor for monogenic systemic lupus erythematosus (SLE), but whether heterozygous C2 deficiency adds to the risk of SLE or primary Sjögren's syndrome (SS) has not been studied systematically. This study was undertaken to investigate potential associations of heterozygous C2 deficiency and C4 copy number variation with clinical manifestations in patients with SLE and patients with primary SS. METHODS The presence of the common 28-bp C2 deletion rs9332736 and C4 copy number variation was examined in Scandinavian patients who had received a diagnosis of SLE (n = 958) or primary SS (n = 911) and in 2,262 healthy controls through the use of DNA sequencing. The concentration of complement proteins in plasma and classical complement function were analyzed in a subgroup of SLE patients. RESULTS Heterozygous C2 deficiency-when present in combination with a low C4A copy number-substantially increased the risk of SLE (odds ratio [OR] 10.2 [95% confidence interval (95% CI) 3.5-37.0]) and the risk of primary SS (OR 13.0 [95% CI 4.5-48.4]) when compared to individuals with 2 C4A copies and normal C2. For patients heterozygous for rs9332736 with 1 C4A copy, the median age at diagnosis was 7 years earlier in patients with SLE and 12 years earlier in patients with primary SS when compared to patients with normal C2. Reduced C2 levels in plasma (P = 2 × 10-9 ) and impaired function of the classical complement pathway (P = 0.03) were detected in SLE patients with heterozygous C2 deficiency. Finally, in a primary SS patient homozygous for C2 deficiency, we observed low levels of anti-Scl-70, which suggests a risk of developing systemic sclerosis or potential overlap between primary SS and other systemic autoimmune diseases. CONCLUSION We demonstrate that a genetic pattern involving partial deficiencies of C2 and C4A in the classical complement pathway is a strong risk factor for SLE and for primary SS. Our results emphasize the central role of the complement system in the pathogenesis of both SLE and primary SS.
Collapse
Affiliation(s)
- Christian Lundtoft
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
- Present address:
Olink Proteomics
| | - Christopher Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| | | | - Anders A. Bengtsson
- Department of Clinical Sciences Lund, Rheumatology, Lund University, and Skåne University HospitalLundSweden
| | - Andreas Jönsen
- Department of Clinical Sciences Lund, Rheumatology, Lund University, and Skåne University HospitalLundSweden
| | - Pascal Pucholt
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
| | - Yee Ling Wu
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, and the Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinois
| | - Emeli Lundström
- Division of Rheumatology, Department of Medicine SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | | | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Eva Baecklund
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical ScienceUniversity of BergenBergenNorway
| | | | - Helena Forsblad‐d'Elia
- Department of Rheumatology and Inflammation ResearchSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Per Eriksson
- Division of Inflammation and Infection, Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| | - Thomas Mandl
- Division of Rheumatology, Department of Clinical Sciences MalmöLund University, and NovartisMalmöSweden
| | - Sara Bucher
- Department of Rheumatology, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Katrine B. Norheim
- Department of Rheumatology, Stavanger University Hospital, Stavanger, Norway, and the Institute of Clinical Science, University of BergenBergenNorway
| | | | - Roald Omdal
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway, and the Department of RheumatologyStavanger University HospitalStavangerNorway
| | - Marika Kvarnström
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden, and the Academic Specialist Center, Center for Rheumatology, Stockholm Health ServicesStockholmSweden
| | - Marie Wahren‐Herlenius
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden, and Broegelmann Research Laboratory, Department of Clinical Science, University of BergenBergenNorway
| | - Lennart Truedsson
- Department of Microbiology, Immunology, and GlycobiologyLund University HospitalLundSweden
| | - Bo Nilsson
- Department of Immunology, Genetics, and PathologyUppsala UniversityUppsalaSweden
| | - Sergey V. Kozyrev
- Science for Life Laboratory, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Kerstin Lindblad‐Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, and Broad Institute of MIT and HarvardCambridgeMassachusetts
| | | | - Chack‐Yung Yu
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's HospitalColumbusOhio
| | - Gunnel Nordmark
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
| | | | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Dag Leonard
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
| | - Lars Rönnblom
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
| |
Collapse
|
43
|
Schuy J, Grochowski CM, Carvalho CMB, Lindstrand A. Complex genomic rearrangements: an underestimated cause of rare diseases. Trends Genet 2022; 38:1134-1146. [PMID: 35820967 PMCID: PMC9851044 DOI: 10.1016/j.tig.2022.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 01/24/2023]
Abstract
Complex genomic rearrangements (CGRs) are known contributors to disease but are often missed during routine genetic screening. Identifying CGRs requires (i) identifying copy number variants (CNVs) concurrently with inversions, (ii) phasing multiple breakpoint junctions incis, as well as (iii) detecting and resolving structural variants (SVs) within repeats. We demonstrate how combining cytogenetics and new sequencing methodologies is being successfully applied to gain insights into the genomic architecture of CGRs. In addition, we review CGR patterns and molecular features revealed by studying constitutional genomic disorders. These data offer invaluable lessons to individuals interested in investigating CGRs, evaluating their clinical relevance and frequency, as well as assessing their impact(s) on rare genetic diseases.
Collapse
Affiliation(s)
- Jakob Schuy
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Pacific Northwest Research Institute, Seattle, WA, USA
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
44
|
Katsonis P, Wilhelm K, Williams A, Lichtarge O. Genome interpretation using in silico predictors of variant impact. Hum Genet 2022; 141:1549-1577. [PMID: 35488922 PMCID: PMC9055222 DOI: 10.1007/s00439-022-02457-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/17/2022] [Indexed: 02/06/2023]
Abstract
Estimating the effects of variants found in disease driver genes opens the door to personalized therapeutic opportunities. Clinical associations and laboratory experiments can only characterize a tiny fraction of all the available variants, leaving the majority as variants of unknown significance (VUS). In silico methods bridge this gap by providing instant estimates on a large scale, most often based on the numerous genetic differences between species. Despite concerns that these methods may lack reliability in individual subjects, their numerous practical applications over cohorts suggest they are already helpful and have a role to play in genome interpretation when used at the proper scale and context. In this review, we aim to gain insights into the training and validation of these variant effect predicting methods and illustrate representative types of experimental and clinical applications. Objective performance assessments using various datasets that are not yet published indicate the strengths and limitations of each method. These show that cautious use of in silico variant impact predictors is essential for addressing genome interpretation challenges.
Collapse
Affiliation(s)
- Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Kevin Wilhelm
- Graduate School of Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Williams
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Biochemistry, Human Genetics and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
45
|
Dahlqvist J, Ekman D, Sennblad B, Kozyrev SV, Nordin J, Karlsson Å, Meadows JRS, Hellbacher E, Rantapää-Dahlqvist S, Berglin E, Stegmayr B, Baslund B, Palm Ø, Haukeland H, Gunnarsson I, Bruchfeld A, Segelmark M, Ohlsson S, Mohammad AJ, Svärd A, Pullerits R, Herlitz H, Söderbergh A, Rosengren Pielberg G, Hultin Rosenberg L, Bianchi M, Murén E, Omdal R, Jonsson R, Eloranta ML, Rönnblom L, Söderkvist P, Knight A, Eriksson P, Lindblad-Toh K. Identification and functional characterization of a novel susceptibility locus for small vessel vasculitis with MPO-ANCA. Rheumatology (Oxford) 2022; 61:3461-3470. [PMID: 34888651 PMCID: PMC9348767 DOI: 10.1093/rheumatology/keab912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/01/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To identify and characterize genetic loci associated with the risk of developing ANCA-associated vasculitides (AAV). METHODS Genetic association analyses were performed after Illumina sequencing of 1853 genes and subsequent replication with genotyping of selected single nucleotide polymorphisms in a total cohort of 1110 Scandinavian cases with granulomatosis with polyangiitis or microscopic polyangiitis, and 1589 controls. A novel AAV-associated single nucleotide polymorphism was analysed for allele-specific effects on gene expression using luciferase reporter assay. RESULTS PR3-ANCA+ AAV was significantly associated with two independent loci in the HLA-DPB1/HLA-DPA1 region [rs1042335, P = 6.3 × 10-61, odds ratio (OR) 0.10; rs9277341, P = 1.5 × 10-44, OR 0.22] and with rs28929474 in the SERPINA1 gene (P = 2.7 × 10-10, OR 2.9). MPO-ANCA+ AAV was significantly associated with the HLA-DQB1/HLA-DQA2 locus (rs9274619, P = 5.4 × 10-25, OR 3.7) and with a rare variant in the BACH2 gene (rs78275221, P = 7.9 × 10-7, OR 3.0), the latter a novel susceptibility locus for MPO-ANCA+ granulomatosis with polyangiitis/microscopic polyangiitis. The rs78275221-A risk allele reduced luciferase gene expression in endothelial cells, specifically, as compared with the non-risk allele. CONCLUSION We identified a novel susceptibility locus for MPO-ANCA+ AAV and propose that the associated variant is of mechanistic importance, exerting a regulatory function on gene expression in specific cell types.
Collapse
Affiliation(s)
- Johanna Dahlqvist
- Department of Medical Sciences
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Diana Ekman
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm
| | - Bengt Sennblad
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala
| | - Sergey V Kozyrev
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jessika Nordin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Karlsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Ewa Berglin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bernd Stegmayr
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bo Baslund
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Øyvind Palm
- Department of Rheumatology, Oslo University Hospital
| | - Hilde Haukeland
- Department of Rheumatology, Martina Hansens Hospital, Oslo, Norway
| | - Iva Gunnarsson
- Department of Medicine, Division of Rheumatology, Karolinska Institutet, Stockholm
- Unit of Rheumatology, Karolinska University Hospital, Stockholm
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping
- Department of Renal Medicine, Karolinska University Hospital and CLINTEC Karolinska Institutet, Stockholm
| | - Mårten Segelmark
- Department of Clinical Sciences, Division of Nephrology, Lund University and Skåne University Hospital
| | - Sophie Ohlsson
- Department of Clinical Sciences, Division of Nephrology, Lund University and Skåne University Hospital
| | - Aladdin J Mohammad
- Department of Clinical Sciences Lund, Section of Rheumatology, Skåne University Hospital, Lund University, Lund, Sweden
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Anna Svärd
- Center for Clinical Research Dalarna, Uppsala University, Uppsala
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital
| | - Hans Herlitz
- Department of Molecular and Clinical Medicine/Nephrology, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg
| | - Annika Söderbergh
- Department of Rheumatology, Örebro University Hospital, Örebro, Sweden
| | - Gerli Rosengren Pielberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lina Hultin Rosenberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Eva Murén
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Roald Omdal
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger
- Department of Clinical Science
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Peter Söderkvist
- Department of Biomedical and Clinical Sciences, Division of Cell Biology
| | | | - Per Eriksson
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| |
Collapse
|
46
|
Barilla S, Lindblom A, Helgadottir HT. Unravelling genetic variants of a swedish family with high risk of prostate cancer. Hered Cancer Clin Pract 2022; 20:28. [PMID: 35870994 PMCID: PMC9308349 DOI: 10.1186/s13053-022-00234-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Prostate cancer is the most prevalent cancer in men worldwide. It is a polygenic disease with a substantial proportion of heritability. Identification of novel candidate biomarkers is crucial for clinical cancer prevention and the development of therapeutic strategies. Here, we describe the analysis of rare and common genetic variants that can predispose to the development of prostate cancer. METHODS Whole-genome sequencing was performed on germline DNA of five Swedish siblings which were diagnosed with prostate cancer. The high-risk variants were identified setting the minor allele frequency < 0.01, CADD > 10 and if tested in PRACTICAL, OR > 1.5, while the low-risk variants were identified minor allele frequency > 0.01, CADD > 10 and if tested in PRACTICAL, OR > 1.1. RESULTS We identified 38 candidate high-risk gene variants and 332 candidate low-risk gene variants, where 2 and 14 variants were in coding regions, respectively, that were shared by the brothers with prostate cancer. CONCLUSIONS This study expanded the knowledge of potential risk factor candidates involved in hereditary and familial prostate cancer. Our findings can be beneficial when applying targeted screening in families with a high risk of developing the disease.
Collapse
Affiliation(s)
- Serena Barilla
- Department of Molecular Medicine and Surgery, Karolinska Institute, Solna, Stockholm, Sweden.
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institute, Solna, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Hafdis T Helgadottir
- Department of Molecular Medicine and Surgery, Karolinska Institute, Solna, Stockholm, Sweden.
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden.
| |
Collapse
|
47
|
Muurinen M, Taylan F, Tournis S, Eisfeldt J, Balanika A, Vastardis H, Ala‐Mello S, Mäkitie O, Costantini A. Mosaic deletions of known genes explain skeletal dysplasias with high and low bone mass. JBMR Plus 2022; 6:e10660. [PMID: 35991531 PMCID: PMC9382864 DOI: 10.1002/jbm4.10660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/19/2022] [Accepted: 06/03/2022] [Indexed: 11/27/2022] Open
Abstract
Mosaicism, a state in which an individual has two or more genetically distinct populations of cells in the body, can be difficult to detect because of either mild or atypical clinical presentation and limitations in the commonly used detection methods. Knowledge of the role of mosaicism is limited in many skeletal disorders, including osteopathia striata with cranial sclerosis (OSCS) and cleidocranial dysplasia (CCD). We used whole‐genome sequencing (WGS) with coverage >40× to identify the genetic causes of disease in two clinically diagnosed patients. In a female patient with OSCS, we identified a mosaic 7‐nucleotide frameshift deletion in exon 2 of AMER1, NM_152424.4:c.855_861del:p.(His285Glnfs*7), affecting 8.3% of the WGS reads. In a male patient with CCD, approximately 34% of the WGS reads harbored a 3710‐basepair mosaic deletion, NC_000006.11:g.45514471_45518181del, starting in intron 8 of RUNX2 and terminating in the 3′ untranslated region. Droplet digital polymerase chain reaction was used to validate these deletions and quantify the absolute level of mosaicism in each patient. Although constitutional variants in AMER1 and RUNX2 are a known cause of OSCS and CCD, respectively, the mosaic changes here reported have not been described previously. Our study indicates that mosaicism should be considered in unsolved cases of skeletal dysplasia and should be investigated with comprehensive and sensitive detection methods. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mari Muurinen
- Research Program for Clinical and Molecular Metabolism University of Helsinki Helsinki Finland
- Children's Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland
- Folkhälsan Research Center Helsinki Finland
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine Karolinska Institutet Stockholm Sweden
- Department of Clinical Genetics Karolinska University Hospital Stockholm Sweden
| | - Symeon Tournis
- Laboratory for the Research of Musculoskeletal System "Th. Garofalidis," Medical School National and Kapodistrian University of Athens, KAT Hospital Greece
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine Karolinska Institutet Stockholm Sweden
- Department of Clinical Genetics Karolinska University Hospital Stockholm Sweden
| | - Alexia Balanika
- Department of Computed Tomography Asklepeion Voulas Hospital Athens Greece
| | - Heleni Vastardis
- Department of Orthodontics School of Dentistry, National and Kapodistrian University of Athens Athens Greece
| | - Sirpa Ala‐Mello
- Department of Clinical Genetics Helsinki University Hospital Helsinki Finland
| | - Outi Mäkitie
- Research Program for Clinical and Molecular Metabolism University of Helsinki Helsinki Finland
- Children's Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland
- Folkhälsan Research Center Helsinki Finland
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine Karolinska Institutet Stockholm Sweden
- Department of Clinical Genetics Karolinska University Hospital Stockholm Sweden
| | - Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine Karolinska Institutet Stockholm Sweden
| |
Collapse
|
48
|
Contribution of rare whole-genome sequencing variants to plasma protein levels and the missing heritability. Nat Commun 2022; 13:2532. [PMID: 35534486 PMCID: PMC9085767 DOI: 10.1038/s41467-022-30208-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 04/21/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the success of genome-wide association studies, much of the genetic contribution to complex traits remains unexplained. Here, we analyse high coverage whole-genome sequencing data, to evaluate the contribution of rare genetic variants to 414 plasma proteins. The frequency distribution of genetic variants is skewed towards the rare spectrum, and damaging variants are more often rare. We estimate that less than 4.3% of the narrow-sense heritability is expected to be explained by rare variants in our cohort. Using a gene-based approach, we identify Cis-associations for 237 of the proteins, which is slightly more compared to a GWAS (N = 213), and we identify 34 associated loci in Trans. Several associations are driven by rare variants, which have larger effects, on average. We therefore conclude that rare variants could be of importance for precision medicine applications, but have a more limited contribution to the missing heritability of complex diseases. Despite the success of genome-wide association studies, much of the genetic contribution to complex traits remains unexplained. Here, the authors identify effects by rare variants on plasma proteins, and estimate the contribution of rare variants to the heritability.
Collapse
|
49
|
Whole-Exome Sequencing of Germline Variants in Non- BRCA Families with Hereditary Breast Cancer. Biomedicines 2022; 10:biomedicines10051004. [PMID: 35625741 PMCID: PMC9138793 DOI: 10.3390/biomedicines10051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is the most prevalent malignancy among women worldwide and hereditary breast cancer (HBC) accounts for about 5−10% of the cases. Today, the most recurrent genes known are BRCA1 and BRCA2, accounting for around 25% of familial cases. Although thousands of loss-of-function variants in more than twenty predisposing genes have been found, the majority of familial cases of HBC remain unexplained. The aim of this study was to identify new predisposing genes for HBC in three non-BRCA families with autosomal dominant inheritance pattern using whole-exome sequencing and functional prediction tools. No pathogenic variants in known hereditary cancer-related genes could explain the breast cancer susceptibility in these families. Among 2122 exonic variants with maximum minor allele frequency (MMAF) < 0.1%, between 17−35 variants with combined annotation-dependent depletion (CADD) > 20 segregated with disease in the three analyzed families. Selected candidate genes, i.e., UBASH3A, MYH13, UTP11L, and PAX7, were further evaluated using protein expression analysis but no alterations of cancer-related pathways were observed. In conclusion, identification of new high-risk cancer genes using whole-exome sequencing has been more challenging than initially anticipated, in spite of selected families with pronounced family history of breast cancer. A combination of low- and intermediate-genetic-risk variants may instead contribute the breast cancer susceptibility in these families.
Collapse
|
50
|
Smetana J, Brož P. National Genome Initiatives in Europe and the United Kingdom in the Era of Whole-Genome Sequencing: A Comprehensive Review. Genes (Basel) 2022; 13:556. [PMID: 35328109 PMCID: PMC8953625 DOI: 10.3390/genes13030556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Identification of genomic variability in population plays an important role in the clinical diagnostics of human genetic diseases. Thanks to rapid technological development in the field of massive parallel sequencing technologies, also known as next-generation sequencing (NGS), complex genomic analyses are now easier and cheaper than ever before, which consequently leads to more effective utilization of these techniques in clinical practice. However, interpretation of data from NGS is still challenging due to several issues caused by natural variability of DNA sequences in human populations. Therefore, development and realization of projects focused on description of genetic variability of local population (often called "national or digital genome") with a NGS technique is one of the best approaches to address this problem. The next step of the process is to share such data via publicly available databases. Such databases are important for the interpretation of variants with unknown significance or (likely) pathogenic variants in rare diseases or cancer or generally for identification of pathological variants in a patient's genome. In this paper, we have compiled an overview of published results of local genome sequencing projects from United Kingdom and Europe together with future plans and perspectives for newly announced ones.
Collapse
Affiliation(s)
- Jan Smetana
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Petr Brož
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic;
| |
Collapse
|