1
|
Nandi I, Ji L, Smith HW, Avizonis D, Papavasiliou V, Lavoie C, Pacis A, Attalla S, Sanguin-Gendreau V, Muller WJ. Targeting fatty acid oxidation enhances response to HER2-targeted therapy. Nat Commun 2024; 15:6587. [PMID: 39097623 PMCID: PMC11297952 DOI: 10.1038/s41467-024-50998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Metabolic reprogramming, a hallmark of tumorigenesis, involves alterations in glucose and fatty acid metabolism. Here, we investigate the role of Carnitine palmitoyl transferase 1a (Cpt1a), a key enzyme in long-chain fatty acid (LCFA) oxidation, in ErbB2-driven breast cancers. In ErbB2+ breast cancer models, ablation of Cpt1a delays tumor onset, growth, and metastasis. However, Cpt1a-deficient cells exhibit increased glucose dependency that enables survival and eventual tumor progression. Consequently, these cells exhibit heightened oxidative stress and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Inhibiting Nrf2 or silencing its expression reduces proliferation and glucose consumption in Cpt1a-deficient cells. Combining the ketogenic diet, composed of LCFAs, or an anti-ErbB2 monoclonal antibody (mAb) with Cpt1a deficiency significantly perturbs tumor growth, enhances apoptosis, and reduces lung metastasis. Using an immunocompetent model, we show that Cpt1a inhibition promotes an antitumor immune microenvironment, thereby enhancing the efficacy of anti-ErbB2 mAbs. Our findings underscore the importance of targeting fatty acid oxidation alongside HER2-targeted therapies to combat resistance in HER2+ breast cancer patients.
Collapse
Affiliation(s)
- Ipshita Nandi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Linjia Ji
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Harvey W Smith
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Daina Avizonis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Vasilios Papavasiliou
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Cynthia Lavoie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Alain Pacis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada
| | - Sherif Attalla
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Virginie Sanguin-Gendreau
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Raghuram N, Temel EI, Kawamata T, Kozma KJ, Loch AJ, Wang W, Adams JR, Muller WJ, Egan SE. Elevated expression of wildtype RhoC promotes ErbB2- and Pik3ca-induced mammary tumor formation. Breast Cancer Res 2024; 26:86. [PMID: 38807216 PMCID: PMC11134842 DOI: 10.1186/s13058-024-01842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Copy number gains in genes coding for Rho activating exchange factors as well as losses affecting genes coding for RhoGAP proteins are common in breast cancer (BC), suggesting that elevated Rho signaling may play an important role. Extra copies and overexpression of RHOC also occur, although a role for RhoC overexpression in driving tumor formation has not been assessed in vivo. To this end, we report on the development of a Rosa26 (R26)-targeted Cre-conditional RhoC overexpression mouse (R26RhoC). This mouse was crossed to two models for ERBB2/NEU+ breast cancer: one based on expression of an oncogenic ErbB2/Neu cDNA downstream of the endogenous ErbB2 promoter (FloxNeoNeuNT), the other, a metastatic model that is based on high-level expression from MMTV regulatory elements (NIC). RhoC overexpression dramatically enhanced mammary tumor formation in FloxNeoNeuNT mice but showed a more subtle effect in the NIC line, which forms multiple mammary tumors after a very short latency. RhoC overexpression also enhanced mammary tumor formation in an activated Pik3ca model for breast cancer (Pik3caH1047R). The transforming effect of RhoC was associated with epithelial/mesenchymal transition (EMT) in ErbB2/NeuNT and Pik3caH1047R systems. Thus, our study reveals the importance of elevated wildtype Rho protein expression as a driver of breast tumor formation and highlights the significance of Copy Number Abberations that affect Rho signalling.
Collapse
Affiliation(s)
- Nandini Raghuram
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - E Idil Temel
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Toshihiro Kawamata
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
| | - Katelyn J Kozma
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Amanda J Loch
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
| | - Wei Wang
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
| | - Jessica R Adams
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
| | - William J Muller
- Department of Biochemistry and Department of Medicine, Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Sean E Egan
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Kuang X, Salinger A, Benavides F, Muller WJ, Dent SYR, Koutelou E. USP22 overexpression fails to augment tumor formation in MMTV-ERBB2 mice but loss of function impacts MMTV promoter activity. PLoS One 2024; 19:e0290837. [PMID: 38236941 PMCID: PMC10796002 DOI: 10.1371/journal.pone.0290837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 01/22/2024] Open
Abstract
The Ubiquitin Specific Peptidase 22 (USP22), a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) histone modifying complex, is overexpressed in multiple human cancers, but how USP22 impacts tumorigenesis is not clear. We reported previously that Usp22 loss in mice impacts execution of several signaling pathways driven by growth factor receptors such as erythroblastic oncogene B b2 (ERBB2). To determine whether changes in USP22 expression affects ERBB2-driven tumorigenesis, we introduced conditional overexpression or deletion alleles of Usp22 into mice bearing the Mouse mammary tumor virus-Neu-Ires-Cre (MMTV-NIC) transgene, which drives both rat ERBB2/NEU expression and Cre recombinase activity from the MMTV promoter resulting in mammary tumor formation. We found that USP22 overexpression in mammary glands did not further enhance primary tumorigenesis in MMTV-NIC female mice, but increased lung metastases were observed. However, deletion of Usp22 significantly decreased tumor burden and increased survival of MMTV-NIC mice. These effects were associated with markedly decreased levels of both Erbb2 mRNA and protein, indicating Usp22 loss impacts MMTV promoter activity. Usp22 loss had no impact on ERBB2 expression in other settings, including MCF10A cells bearing a Cytomegalovirus (CMV)-driven ERBB2 transgene or in human epidermal growth factor receptor 2 (HER2)+ human SKBR3 and HCC1953 cells. Decreased activity of the MMTV promoter in MMTV-NIC mice correlated with decreased expression of known regulatory factors, including the glucocorticoid receptor (GR), the progesterone receptor (PR), and the chromatin remodeling factor Brahma-related gene-1 (BRG1). Together our findings indicate that increased expression of USP22 does not augment the activity of an activated ERBB2/NEU transgene but impacts of Usp22 loss on tumorigenesis cannot be assessed in this model due to unexpected effects on MMTV-driven Erbb2/Neu expression.
Collapse
Affiliation(s)
- Xianghong Kuang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Andrew Salinger
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - William J. Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
- Faculty of Medicine, McGill University, Montreal, Canada
| | - Sharon Y. R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center/UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
4
|
Podmore L, Poloz Y, Iorio C, Mouaaz S, Nixon K, Smirnov P, McDonnell B, Lam S, Zhang B, Tharmapalan P, Sarkar S, Vyas F, Ennis M, Dowling R, Stambolic V. Insulin receptor loss impairs mammary tumorigenesis in mice. Cell Rep 2023; 42:113251. [PMID: 37913774 DOI: 10.1016/j.celrep.2023.113251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Breast cancer (BC) prognosis and outcome are adversely affected by obesity. Hyperinsulinemia, common in the obese state, is associated with higher risk of death and recurrence in BC. Up to 80% of BCs overexpress the insulin receptor (INSR), which correlates with worse prognosis. INSR's role in mammary tumorigenesis was tested by generating MMTV-driven polyoma middle T (PyMT) and ErbB2/Her2 BC mouse models, respectively, with coordinate mammary epithelium-restricted deletion of INSR. In both models, deletion of either one or both copies of INSR leads to a marked delay in tumor onset and burden. Longitudinal phenotypic characterization of mouse tumors and cells reveals that INSR deletion affects tumor initiation, not progression and metastasis. INSR upholds a bioenergetic phenotype in non-transformed mammary epithelial cells, independent of its kinase activity. Similarity of phenotypes elicited by deletion of one or both copies of INSR suggest a dose-dependent threshold for INSR impact on mammary tumorigenesis.
Collapse
Affiliation(s)
- Lauren Podmore
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Yekaterina Poloz
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Catherine Iorio
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Samar Mouaaz
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Kevin Nixon
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Petr Smirnov
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Brianna McDonnell
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Sonya Lam
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Bowen Zhang
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Pirashaanthy Tharmapalan
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Soumili Sarkar
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Foram Vyas
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | | | - Ryan Dowling
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Vuk Stambolic
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
5
|
He Y, Goyette MA, Chapelle J, Boufaied N, Al Rahbani J, Schonewolff M, Danek EI, Muller WJ, Labbé DP, Côté JF, Lamarche-Vane N. CdGAP is a talin-binding protein and a target of TGF-β signaling that promotes HER2-positive breast cancer growth and metastasis. Cell Rep 2023; 42:112936. [PMID: 37552602 DOI: 10.1016/j.celrep.2023.112936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/10/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastasis, which is the leading cause of death in breast cancer patients. Here, we show that Cdc42 GTPase-activating protein (CdGAP) promotes tumor formation and metastasis to lungs in the HER2-positive (HER2+) murine breast cancer model. CdGAP facilitates intravasation, extravasation, and growth at metastatic sites. CdGAP depletion in HER2+ murine primary tumors mediates crosstalk with a Dlc1-RhoA pathway and is associated with a transforming growth factor β (TGF-β)-induced EMT transcriptional signature. CdGAP is positively regulated by TGF-β signaling during EMT and interacts with the adaptor talin to modulate focal adhesion dynamics and integrin activation. Moreover, HER2+ breast cancer patients with high CdGAP mRNA expression combined with a high TGF-β-EMT signature are more likely to present lymph node invasion. Our results suggest CdGAP as a candidate therapeutic target for HER2+ metastatic breast cancer by inhibiting TGF-β and integrin/talin signaling pathways.
Collapse
Affiliation(s)
- Yi He
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Marie-Anne Goyette
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, QC H2W 1R7, Canada
| | - Jennifer Chapelle
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Jalal Al Rahbani
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Maribel Schonewolff
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Eric I Danek
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | - David P Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada; Division of Urology, Department of Surgery, McGill University, Montréal, QC H4A 3J1, Canada
| | - Jean-François Côté
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada; Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, QC H2W 1R7, Canada
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada.
| |
Collapse
|
6
|
Liu L, Xiao B, Hirukawa A, Smith HW, Zuo D, Sanguin-Gendreau V, McCaffrey L, Nam AJ, Muller WJ. Ezh2 promotes mammary tumor initiation through epigenetic regulation of the Wnt and mTORC1 signaling pathways. Proc Natl Acad Sci U S A 2023; 120:e2303010120. [PMID: 37549258 PMCID: PMC10438390 DOI: 10.1073/pnas.2303010120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023] Open
Abstract
The regulation of gene expression through histone posttranslational modifications plays a crucial role in breast cancer progression. However, the molecular mechanisms underlying the contribution of histone modification to tumor initiation remain unclear. To gain a deeper understanding of the role of the histone modifier Enhancer of Zeste homology 2 (Ezh2) in the early stages of mammary tumor progression, we employed an inducible mammary organoid system bearing conditional Ezh2 alleles that faithfully recapitulates key events of luminal B breast cancer initiation. We showed that the loss of Ezh2 severely impairs oncogene-induced organoid growth, with Ezh2-deficient organoids maintaining a polarized epithelial phenotype. Transcriptomic profiling showed that Ezh2-deficient mammary epithelial cells up-regulated the expression of negative regulators of Wnt signaling and down-regulated genes involved in mTORC1 (mechanistic target of rapamycin complex 1) signaling. We identified Sfrp1, a Wnt signaling suppressor, as an Ezh2 target gene that is derepressed and expressed in Ezh2-deficient epithelium. Furthermore, an analysis of breast cancer data revealed that Sfrp1 expression was associated with favorable clinical outcomes in luminal B breast cancer patients. Finally, we confirmed that targeting Ezh2 impairs mTORC1 activity through an indirect mechanism that up-regulates the expression of the tumor suppressor Pten. These findings indicate that Ezh2 integrates the mTORC1 and Wnt signaling pathways during early mammary tumor progression, arguing that inhibiting Ezh2 or therapeutically targeting Ezh2-dependent programs could be beneficial for the treatment of early-stage luminal B breast cancer.
Collapse
Affiliation(s)
- Linshan Liu
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - Bin Xiao
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - Alison Hirukawa
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - Harvey W. Smith
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Dongmei Zuo
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - Virginie Sanguin-Gendreau
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Luke McCaffrey
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Medicine, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Oncology, McGill University, Montreal, QCH3A0G4, Canada
| | - Alice Jisoo Nam
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - William J. Muller
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Medicine, McGill University, Montreal, QCH3A 1A3, Canada
| |
Collapse
|
7
|
Hebert JD, Neal JW, Winslow MM. Dissecting metastasis using preclinical models and methods. Nat Rev Cancer 2023; 23:391-407. [PMID: 37138029 DOI: 10.1038/s41568-023-00568-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/05/2023]
Abstract
Metastasis has long been understood to lead to the overwhelming majority of cancer-related deaths. However, our understanding of the metastatic process, and thus our ability to prevent or eliminate metastases, remains frustratingly limited. This is largely due to the complexity of metastasis, which is a multistep process that likely differs across cancer types and is greatly influenced by many aspects of the in vivo microenvironment. In this Review, we discuss the key variables to consider when designing assays to study metastasis: which source of metastatic cancer cells to use and where to introduce them into mice to address different questions of metastasis biology. We also examine methods that are being used to interrogate specific steps of the metastatic cascade in mouse models, as well as emerging techniques that may shed new light on previously inscrutable aspects of metastasis. Finally, we explore approaches for developing and using anti-metastatic therapies, and how mouse models can be used to test them.
Collapse
Affiliation(s)
- Jess D Hebert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joel W Neal
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Chen F, Gurler SB, Novo D, Selli C, Alferez DG, Eroglu S, Pavlou K, Zhang J, Sims AH, Humphreys NE, Adamson A, Campbell A, Sansom OJ, Tournier C, Clarke RB, Brennan K, Streuli CH, Ucar A. RAC1B function is essential for breast cancer stem cell maintenance and chemoresistance of breast tumor cells. Oncogene 2023; 42:679-692. [PMID: 36599922 PMCID: PMC9957727 DOI: 10.1038/s41388-022-02574-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
Breast cancer stem cells (BCSC) are presumed to be responsible for treatment resistance, tumor recurrence and metastasis of breast tumors. However, development of BCSC-targeting therapies has been held back by their heterogeneity and the lack of BCSC-selective molecular targets. Here, we demonstrate that RAC1B, the only known alternatively spliced variant of the small GTPase RAC1, is expressed in a subset of BCSCs in vivo and its function is required for the maintenance of BCSCs and their chemoresistance to doxorubicin. In human breast cancer cell line MCF7, RAC1B is required for BCSC plasticity and chemoresistance to doxorubicin in vitro and for tumor-initiating abilities in vivo. Unlike Rac1, Rac1b function is dispensable for normal mammary gland development and mammary epithelial stem cell (MaSC) activity. In contrast, loss of Rac1b function in a mouse model of breast cancer hampers the BCSC activity and increases their chemosensitivity to doxorubicin treatment. Collectively, our data suggest that RAC1B is a clinically relevant molecular target for the development of BCSC-targeting therapies that may improve the effectiveness of doxorubicin-mediated chemotherapy.
Collapse
Affiliation(s)
- Fuhui Chen
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sevim B Gurler
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David Novo
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cigdem Selli
- Applied Bioinformatics of Cancer, Institute of Genetics and Cancer, University of Edinburgh Cancer Research Centre, Edinburgh, UK
| | - Denis G Alferez
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Secil Eroglu
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kyriaki Pavlou
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jingwei Zhang
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew H Sims
- Applied Bioinformatics of Cancer, Institute of Genetics and Cancer, University of Edinburgh Cancer Research Centre, Edinburgh, UK
| | - Neil E Humphreys
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Antony Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Cathy Tournier
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Keith Brennan
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ahmet Ucar
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
9
|
Abstract
The HER2+ subtype of human breast cancer is associated with the malignant transformation of luminal ductal cells of the mammary epithelium. The sequence analysis of tumor DNA identifies loss of function mutations and deletions of the MAP2K4 and MAP2K7 genes that encode direct activators of the JUN NH2-terminal kinase (JNK). We report that in vitro studies of human mammary epithelial cells with CRISPR-induced mutations in the MAPK and MAP2K components of the JNK pathway caused no change in growth in 2D culture, but these mutations promoted epithelial cell proliferation in 3D culture. Analysis of gene expression signatures in 3D culture demonstrated similar changes caused by HER2 activation and JNK pathway loss. The mechanism of signal transduction cross-talk may be mediated, in part, by JNK-suppressed expression of integrin α6β4 that binds HER2 and amplifies HER2 signaling. These data suggest that HER2 activation and JNK pathway loss may synergize to promote breast cancer. To test this hypothesis, we performed in vivo studies using a mouse model of HER2+ breast cancer with Cre/loxP-mediated ablation of genes encoding JNK (Mapk8 and Mapk9) and the MAP2K (Map2k4 and Map2k7) that activate JNK in mammary epithelial cells. Kaplan-Meier analysis of tumor development demonstrated that JNK pathway deficiency promotes HER2+-driven breast cancer. Collectively, these data identify JNK pathway genes as potential suppressors for HER2+ breast cancer.
Collapse
|
10
|
Labrèche C, Cook DP, Abou-Hamad J, Pascoal J, Pryce BR, Al-Zahrani KN, Sabourin LA. Periostin gene expression in neu-positive breast cancer cells is regulated by a FGFR signaling cross talk with TGFβ/PI3K/AKT pathways. Breast Cancer Res 2021; 23:107. [PMID: 34809697 PMCID: PMC8607680 DOI: 10.1186/s13058-021-01487-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Breast cancer is a highly heterogeneous disease with multiple drivers and complex regulatory networks. Periostin (Postn) is a matricellular protein involved in a plethora of cancer types and other diseases. Postn has been shown to be involved in various processes of tumor development, such as angiogenesis, invasion, cell survival and metastasis. The expression of Postn in breast cancer cells has been correlated with a more aggressive phenotype. Despite extensive research, it remains unclear how epithelial cancer cells regulate Postn expression. METHODS Using murine tumor models and human TMAs, we have assessed the proportion of tumor samples that have acquired Postn expression in tumor cells. Using biochemical approaches and tumor cell lines derived from Neu+ murine primary tumors, we have identified major regulators of Postn gene expression in breast cancer cell lines. RESULTS Here, we show that, while the stromal compartment typically always expresses Postn, about 50% of breast tumors acquire Postn expression in the epithelial tumor cells. Furthermore, using an in vitro model, we show a cross-regulation between FGFR, TGFβ and PI3K/AKT pathways to regulate Postn expression. In HER2-positive murine breast cancer cells, we found that basic FGF can repress Postn expression through a PKC-dependent pathway, while TGFβ can induce Postn expression in a SMAD-independent manner. Postn induction following the removal of the FGF-suppressive signal is dependent on PI3K/AKT signaling. CONCLUSION Overall, these results reveal a novel regulatory mechanism and shed light on how breast tumor cells acquire Postn expression. This complex regulation is likely to be cell type and cancer specific as well as have important therapeutic implications.
Collapse
Affiliation(s)
- Cédrik Labrèche
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - David P Cook
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - John Abou-Hamad
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Julia Pascoal
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
| | - Benjamin R Pryce
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Pediatrics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Khalid N Al-Zahrani
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Lunenfeld-Tanenbaum Research Institute, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Luc A Sabourin
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
11
|
Holloway RW, Marignani PA. Targeting mTOR and Glycolysis in HER2-Positive Breast Cancer. Cancers (Basel) 2021; 13:2922. [PMID: 34208071 PMCID: PMC8230691 DOI: 10.3390/cancers13122922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Up to one third of all breast cancers are classified as the aggressive HER2-positive subtype, which is associated with a higher risk of recurrence compared to HER2-negative breast cancers. The HER2 hyperactivity associated with this subtype drives tumor growth by up-regulation of mechanistic target of rapamycin (mTOR) pathway activity and a metabolic shift to glycolysis. Although inhibitors targeting the HER2 receptor have been successful in treating HER2-positive breast cancer, anti-HER2 therapy is associated with a high risk of recurrence and drug resistance due to stimulation of the PI3K-Akt-mTOR signaling pathway and glycolysis. Combination therapies against HER2 with inhibition of mTOR improve clinical outcomes compared to HER2 inhibition alone. Here, we review the role of the HER2 receptor, mTOR pathway, and glycolysis in HER2-positive breast cancer, along with signaling mechanisms and the efficacy of treatment strategies of HER2-positive breast cancer.
Collapse
Affiliation(s)
| | - Paola A. Marignani
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
12
|
Regua AT, Arrigo A, Doheny D, Wong GL, Lo HW. Transgenic mouse models of breast cancer. Cancer Lett 2021; 516:73-83. [PMID: 34090924 DOI: 10.1016/j.canlet.2021.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
Transgenic breast cancer mouse models are critical tools for preclinical studies of human breast cancer. Genetic editing of the murine mammary gland allows for modeling of abnormal genetic events frequently found in human breast cancers. Genetically engineered mouse models (GEMMs) of breast cancer employ tissue-specific genetic manipulation for tumorigenic induction within the mammary tissue. Under the transcriptional control of mammary-specific promoters, transgenic mouse models can simulate spontaneous mammary tumorigenesis by expressing one or more putative oncogenes, such as MYC, HRAS, and PIK3CA. Alternatively, the Cre-Lox system allows for tissue-specific deletion of tumor suppressors, such as p53, Rb1, and Brca1, or specific knock-in of putative oncogenes. Thus, GEMMs can be designed to implement one or more genetic events to induce mammary tumorigenesis. Features of GEMMs, such as age of transgene expression, breeding quality, tumor latency, histopathological characteristics, and propensity for local and distant metastasis, are variable and strain-dependent. This review aims to summarize currently available transgenic breast cancer mouse models that undergo spontaneous mammary tumorigenesis upon genetic manipulation, their varying characteristics, and their individual genetic manipulations that model aberrant signaling events observed in human breast cancers.
Collapse
Affiliation(s)
- Angelina T Regua
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| | - Austin Arrigo
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| | - Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| | - Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| |
Collapse
|
13
|
STAT1 potentiates oxidative stress revealing a targetable vulnerability that increases phenformin efficacy in breast cancer. Nat Commun 2021; 12:3299. [PMID: 34083537 PMCID: PMC8175605 DOI: 10.1038/s41467-021-23396-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Bioenergetic perturbations driving neoplastic growth increase the production of reactive oxygen species (ROS), requiring a compensatory increase in ROS scavengers to limit oxidative stress. Intervention strategies that simultaneously induce energetic and oxidative stress therefore have therapeutic potential. Phenformin is a mitochondrial complex I inhibitor that induces bioenergetic stress. We now demonstrate that inflammatory mediators, including IFNγ and polyIC, potentiate the cytotoxicity of phenformin by inducing a parallel increase in oxidative stress through STAT1-dependent mechanisms. Indeed, STAT1 signaling downregulates NQO1, a key ROS scavenger, in many breast cancer models. Moreover, genetic ablation or pharmacological inhibition of NQO1 using β-lapachone (an NQO1 bioactivatable drug) increases oxidative stress to selectively sensitize breast cancer models, including patient derived xenografts of HER2+ and triple negative disease, to the tumoricidal effects of phenformin. We provide evidence that therapies targeting ROS scavengers increase the anti-neoplastic efficacy of mitochondrial complex I inhibitors in breast cancer. Complex I inhibition induces oxidative stress leading to cancer cell cytotoxicity. Here, the authors show, in breast cancer models, that inflammatory mediators can potentiate complex I inhibitor phenformin cytotoxicity through STAT1-mediated downregulation of the reactive oxygen species scavenger NQO1.
Collapse
|
14
|
Xiao B, Zuo D, Hirukawa A, Cardiff RD, Lamb R, Sonenberg N, Muller WJ. Rheb1-Independent Activation of mTORC1 in Mammary Tumors Occurs through Activating Mutations in mTOR. Cell Rep 2021; 31:107571. [PMID: 32348753 DOI: 10.1016/j.celrep.2020.107571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/06/2019] [Accepted: 04/02/2020] [Indexed: 11/25/2022] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a master modulator of cellular growth, and its aberrant regulation is recurrently documented within breast cancer. While the small GTPase Rheb1 is the canonical activator of mTORC1, Rheb1-independent mechanisms of mTORC1 activation have also been reported but have not been fully understood. Employing multiple transgenic mouse models of breast cancer, we report that ablation of Rheb1 significantly impedes mammary tumorigenesis. In the absence of Rheb1, a block in tumor initiation can be overcome by multiple independent mutations in Mtor to allow Rheb1-independent reactivation of mTORC1. We further demonstrate that the mTOR kinase is indispensable for tumor initiation as the genetic ablation of mTOR abolishes mammary tumorigenesis. Collectively, our findings demonstrate that mTORC1 activation is indispensable for mammary tumor initiation and that tumors acquire alternative mechanisms of mTORC1 activation.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind & Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Dongmei Zuo
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind & Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Alison Hirukawa
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind & Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Robert D Cardiff
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Faculty of Medicine, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind & Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - William J Muller
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Faculty of Medicine, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind & Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
15
|
Garland B, Delisle S, Al-Zahrani KN, Pryce BR, Sabourin LA. The Ste20-like kinase - a Jack of all trades? J Cell Sci 2021; 134:261804. [PMID: 33961052 DOI: 10.1242/jcs.258269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the past 20 years, the Ste20-like kinase (SLK; also known as STK2) has emerged as a central regulator of cytoskeletal dynamics. Reorganization of the cytoskeleton is necessary for a plethora of biological processes including apoptosis, proliferation, migration, tissue repair and signaling. Several studies have also uncovered a role for SLK in disease progression and cancer. Here, we review the recent findings in the SLK field and summarize the various roles of SLK in different animal models and discuss the biochemical mechanisms regulating SLK activity. Together, these studies have revealed multiple roles for SLK in coupling cytoskeletal dynamics to cell growth, in muscle repair and in negative-feedback loops critical for cancer progression. Furthermore, the ability of SLK to regulate some systems appears to be kinase activity independent, suggesting that it may be an important scaffold for signal transduction pathways. These various findings reveal highly complex functions and regulation patterns of SLK in development and disease, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Brennan Garland
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| | - Samuel Delisle
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| | - Khalid N Al-Zahrani
- Center for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G1X5, Canada
| | - Benjamin R Pryce
- Department of Pediatrics, Hollings Cancer Center, Medical University of South Carolina,Charleston, SC 29425, USA
| | - Luc A Sabourin
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| |
Collapse
|
16
|
Yoshizawa R, Umeki N, Yamamoto A, Murata M, Sako Y. Biphasic spatiotemporal regulation of GRB2 dynamics by p52SHC for transient RAS activation. Biophys Physicobiol 2021; 18:1-12. [PMID: 33665062 PMCID: PMC7902154 DOI: 10.2142/biophysico.bppb-v18.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
RTK-RAS-MAPK systems are major signaling pathways for cell fate decisions. Among the several RTK species, it is known that the transient activation of ERK (MAPK) stimulates cell proliferation, whereas its sustained activation induces cell differentiation. In both instances however, RAS activation is transient, suggesting that the strict temporal regulation of its activity is critical in normal cells. RAS on the cytoplasmic side of the plasma membrane is activated by SOS through the recruitment of GRB2/SOS complex to the RTKs that are phosphorylated after stimulation with growth factors. The adaptor protein GRB2 recognizes phospho-RTKs both directly and indirectly via another adaptor protein, SHC. We here studied the regulation of GRB2 recruitment under the SHC pathway using single-molecule imaging and fluorescence correlation spectroscopy in living cells. We stimulated MCF7 cells with a differentiation factor, heregulin, and observed the translocation, complex formation, and phosphorylation of cell signaling molecules including GRB2 and SHC. Our results suggest a biphasic regulation of the GRB2/SOS-RAS pathway by SHC: At the early stage (<10 min) of stimulation, SHC increased the amplitude of RAS activity by increasing the association sites for the GRB2/SOS complex on the plasma membrane. At the later stage however, SHC suppressed RAS activation and sequestered GRB2 molecules from the membrane through the complex formation in the cytoplasm. The latter mechanism functions additively to other mechanisms of negative feedback regulation of RAS from MEK and/or ERK to complete the transient activation dynamics of RAS.
Collapse
Affiliation(s)
- Ryo Yoshizawa
- Cellular Informatics Lab, RIKEN, Wako, Saitama 351-0198, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Nobuhisa Umeki
- Cellular Informatics Lab, RIKEN, Wako, Saitama 351-0198, Japan
| | | | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Yasushi Sako
- Cellular Informatics Lab, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Attalla S, Taifour T, Bui T, Muller W. Insights from transgenic mouse models of PyMT-induced breast cancer: recapitulating human breast cancer progression in vivo. Oncogene 2021; 40:475-491. [PMID: 33235291 PMCID: PMC7819848 DOI: 10.1038/s41388-020-01560-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023]
Abstract
Breast cancer is associated with the second highest cancer-associated deaths worldwide. Therefore, understanding the key events that determine breast cancer progression, modulation of the tumor-microenvironment and metastasis, which is the main cause of cancer-associated death, are of great importance. The mammary specific polyomavirus middle T antigen overexpression mouse model (MMTV-PyMT), first published in 1992, is the most commonly used genetically engineered mouse model (GEMM) for cancer research. Mammary lesions arising in MMTV-PyMT mice follow similar molecular and histological progression as human breast tumors, making it an invaluable tool for cancer researchers and instrumental in understanding tumor biology. In this review, we will highlight key studies that demonstrate the utility of PyMT derived GEMMs in understanding the molecular basis of breast cancer progression, metastasis and highlight its use as a pre-clinical tool for therapeutic discovery.
Collapse
Affiliation(s)
- Sherif Attalla
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Tarek Taifour
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
- Faculty of Medicine, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Tung Bui
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - William Muller
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada.
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada.
- Faculty of Medicine, McGill University, Montreal, QC, H3A 1A3, Canada.
| |
Collapse
|
18
|
Chen X, Ariss MM, Ramakrishnan G, Nogueira V, Blaha C, Putzbach W, Islam ABMMK, Frolov MV, Hay N. Cell-Autonomous versus Systemic Akt Isoform Deletions Uncovered New Roles for Akt1 and Akt2 in Breast Cancer. Mol Cell 2020; 80:87-101.e5. [PMID: 32931746 DOI: 10.1016/j.molcel.2020.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/26/2020] [Accepted: 08/24/2020] [Indexed: 01/02/2023]
Abstract
Studies in three mouse models of breast cancer identified profound discrepancies between cell-autonomous and systemic Akt1- or Akt2-inducible deletion on breast cancer tumorigenesis and metastasis. Although systemic Akt1 deletion inhibits metastasis, cell-autonomous Akt1 deletion does not. Single-cell mRNA sequencing revealed that systemic Akt1 deletion maintains the pro-metastatic cluster within primary tumors but ablates pro-metastatic neutrophils. Systemic Akt1 deletion inhibits metastasis by impairing survival and mobilization of tumor-associated neutrophils. Importantly, either systemic or neutrophil-specific Akt1 deletion is sufficient to inhibit metastasis of Akt-proficient tumors. Thus, Akt1-specific inhibition could be therapeutic for breast cancer metastasis regardless of primary tumor origin. Systemic Akt2 deletion does not inhibit and exacerbates mammary tumorigenesis and metastasis, but cell-autonomous Akt2 deletion prevents breast cancer tumorigenesis by ErbB2. Elevated circulating insulin level induced by Akt2 systemic deletion hyperactivates tumor Akt, exacerbating ErbB2-mediated tumorigenesis, curbed by pharmacological reduction of the elevated insulin.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Majd M Ariss
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gopalakrishnan Ramakrishnan
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Veronique Nogueira
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Catherine Blaha
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - William Putzbach
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; Research & Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
19
|
Reduction of Global H3K27me 3 Enhances HER2/ErbB2 Targeted Therapy. Cell Rep 2020; 29:249-257.e8. [PMID: 31597089 DOI: 10.1016/j.celrep.2019.08.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/12/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
Abstract
Monoclonal antibodies (mAbs) targeting the oncogenic receptor tyrosine kinase ERBB2/HER2, such as Trastuzumab, are the standard of care therapy for breast cancers driven by ERBB2 overexpression and activation. However, a substantial proportion of patients exhibit de novo resistance. Here, by comparing matched Trastuzumab-naive and post-treatment patient samples from a neoadjuvant trial, we link resistance with elevation of H3K27me3, a repressive histone modification catalyzed by polycomb repressor complex 2 (PRC2). In ErbB2+ breast cancer models, PRC2 silences endogenous retroviruses (ERVs) to suppress anti-tumor type-I interferon (IFN) responses. In patients, elevated H3K27me3 in tumor cells following Trastuzumab treatment correlates with suppression of interferon-driven viral defense gene expression signatures and poor response. Using an immunocompetent model, we provide evidence that EZH2 inhibitors promote interferon-driven immune responses that enhance the efficacy of anti-ErbB2 mAbs, suggesting the potential clinical benefit of epigenomic reprogramming by H3K27me3 depletion in Trastuzumab-resistant disease.
Collapse
|
20
|
Bui T, Rennhack J, Mok S, Ling C, Perez M, Roccamo J, Andrechek ER, Moraes C, Muller WJ. Functional Redundancy between β1 and β3 Integrin in Activating the IR/Akt/mTORC1 Signaling Axis to Promote ErbB2-Driven Breast Cancer. Cell Rep 2020; 29:589-602.e6. [PMID: 31618629 DOI: 10.1016/j.celrep.2019.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/22/2019] [Accepted: 08/30/2019] [Indexed: 01/20/2023] Open
Abstract
Integrin receptors coordinate cell adhesion to the extracellular matrix (ECM) to facilitate many cellular processes during malignant transformation. Despite their pro-tumorigenic roles, therapies targeting integrins remain limited. Here, we provide genetic evidence supporting a functional redundancy between β1 and β3 integrin during breast cancer progression. Although ablation of β1 or β3 integrin alone has limited effects on ErbB2-driven mammary tumorigenesis, deletion of both receptors resulted in a significant delay in tumor onset with a corresponding impairment in lung metastasis. Mechanistically, stiff ECM cooperates with integrin receptors to recruit insulin receptors (IRs) to focal adhesion through the formation of integrin/IR complexes, thereby preventing their lysosomal degradation. β1/β3 integrin-deficient tumors that eventually emerged exhibit impaired Akt/mTORC1 activity. Murine and human breast cancers exhibiting enhanced integrin-dependent activity also display elevated IR/Akt/mTORC1 signaling activity. Together, these observations argue that integrin/IR crosstalk transduces mechanical cues from the tumor microenvironment to promote ErbB2-dependent breast cancer progression.
Collapse
Affiliation(s)
- Tung Bui
- Goodman Cancer Center, McGill University, Montreal, QC, Canada; Biochemistry Department, McGill University, Montreal, QC, Canada
| | - Jonathan Rennhack
- Physiology Department, Michigan State University, East Lansing, MI, USA
| | - Stephanie Mok
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Chen Ling
- Canadian Memorial Chiropractic College, Toronto, ON, Canada
| | - Marco Perez
- Goodman Cancer Center, McGill University, Montreal, QC, Canada
| | - Joshua Roccamo
- Goodman Cancer Center, McGill University, Montreal, QC, Canada
| | - Eran R Andrechek
- Physiology Department, Michigan State University, East Lansing, MI, USA
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - William J Muller
- Goodman Cancer Center, McGill University, Montreal, QC, Canada; Biochemistry Department, McGill University, Montreal, QC, Canada; Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
21
|
Borah S, Bhowmick NA. The adaptor protein SHCA launches cancer invasion. J Biol Chem 2020; 295:10560-10561. [PMID: 32737145 DOI: 10.1074/jbc.h120.014283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/07/2020] [Indexed: 11/06/2022] Open
Abstract
Cancer cell invasion and metastasis rely on invadopodia, important extensions of the cytoskeleton that initiate degradation of the basement membrane that holds a cell in place. Transforming growth factor-β (TGF-β) is well-known to induce breast cancer migration and invasion, but the mechanism by which TGF-β signaling converts into cell motility is not completely understood. A study from Kiepas et al. revealed a new TGF-β-dependent role for Src homology/collagen adaptor protein (SHCA) in the initiation of dynamic adhesion complexes involved in the formation of invadopodia. These results highlight new therapeutic opportunities for cancer patients that are not sensitive to HER2 antagonists.
Collapse
Affiliation(s)
- Supriya Borah
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA .,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
22
|
Simond AM, Muller WJ. In vivo modeling of the EGFR family in breast cancer progression and therapeutic approaches. Adv Cancer Res 2020; 147:189-228. [PMID: 32593401 DOI: 10.1016/bs.acr.2020.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modeling breast cancer through the generation of genetically engineered mouse models (GEMMs) has become the gold standard in the study of human breast cancer. Notably, the in vivo modeling of the epidermal growth factor receptor (EGFR) family has been key to the development of therapeutics and has helped better understand the signaling pathways involved in cancer initiation, progression and metastasis. The HER2/ErbB2 receptor is a member of the EGFR family and 20% of breast cancers are found to belong in the HER2-positive histological subtype. Historical and more recent advances in the field have shaped our understanding of HER2-positive breast cancer signaling and therapeutic approaches.
Collapse
Affiliation(s)
- Alexandra M Simond
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada; Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
23
|
Loss of the Ste20-like kinase induces a basal/stem-like phenotype in HER2-positive breast cancers. Oncogene 2020; 39:4592-4602. [PMID: 32393835 DOI: 10.1038/s41388-020-1315-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/20/2023]
Abstract
HER2 is overexpressed in 20-30% of all breast cancers and is associated with an invasive disease and poor clinical outcome. The Ste20-like kinase (SLK) is activated downstream of HER2/Neu and is required for efficient epithelial-to-mesenchymal transition, cell cycle progression, and migration in the mammary epithelium. Here we show that loss of SLK in a murine model of HER2/Neu-positive breast cancers significantly accelerates tumor onset and decreases overall survival. Transcriptional profiling of SLK knockout HER2/Neu-derived tumor cells revealed a strong induction in the triple-negative breast cancer marker, Sox10, accompanied by an increase in mammary stem/progenitor activity. Similarly, we demonstrate that SLK and Sox10 expression are inversely correlated in patient samples, with the loss of SLK and acquisition of Sox10 marking the triple-negative subtype. Furthermore, pharmacological inhibition of AKT reduces SLK-null tumor growth in vivo and is rescued by ectopic Sox10 expression, suggesting that Sox10 is a critical regulator of tumor growth downstream of SLK/AKT. These findings highlight a role for SLK in negatively regulating HER2-induced mammary tumorigenesis and provide mechanistic insight into the regulation of Sox10 expression in breast cancer.
Collapse
|
24
|
Kiepas A, Voorand E, Senecal J, Ahn R, Annis MG, Jacquet K, Tali G, Bisson N, Ursini-Siegel J, Siegel PM, Brown CM. The SHCA adapter protein cooperates with lipoma-preferred partner in the regulation of adhesion dynamics and invadopodia formation. J Biol Chem 2020; 295:10535-10559. [PMID: 32299913 DOI: 10.1074/jbc.ra119.011903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
SHC adaptor protein (SHCA) and lipoma-preferred partner (LPP) mediate transforming growth factor β (TGFβ)-induced breast cancer cell migration and invasion. Reduced expression of either protein diminishes breast cancer lung metastasis, but the reason for this effect is unclear. Here, using total internal reflection fluorescence (TIRF) microscopy, we found that TGFβ enhanced the assembly and disassembly rates of paxillin-containing adhesions in an SHCA-dependent manner through the phosphorylation of the specific SHCA tyrosine residues Tyr-239, Tyr-240, and Tyr-313. Using a BioID proximity labeling approach, we show that SHCA exists in a complex with a variety of actin cytoskeletal proteins, including paxillin and LPP. Consistent with a functional interaction between SHCA and LPP, TGFβ-induced LPP localization to cellular adhesions depended on SHCA. Once localized to the adhesions, LPP was required for TGFβ-induced increases in cell migration and adhesion dynamics. Mutations that impaired LPP localization to adhesions (mLIM1) or impeded interactions with the actin cytoskeleton via α-actinin (ΔABD) abrogated migratory responses to TGFβ. Live-cell TIRF microscopy revealed that SHCA clustering at the cell membrane preceded LPP recruitment. We therefore hypothesize that, in the presence of TGFβ, SHCA promotes the formation of small, dynamic adhesions by acting as a nucleator of focal complex formation. Finally, we defined a previously unknown function for SHCA in the formation of invadopodia, a process that also required LPP. Our results reveal that SHCA controls the formation and function of adhesions and invadopodia, two key cellular structures required for breast cancer metastasis.
Collapse
Affiliation(s)
- Alex Kiepas
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada.,Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada
| | - Elena Voorand
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Julien Senecal
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Québec, Canada
| | - Ryuhjin Ahn
- Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Québec, Canada.,Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Department of Medicine, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Kévin Jacquet
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, Québec G1R 2J6, Canada
| | - George Tali
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, Québec G1R 2J6, Canada.,PROTEO Network and Cancer Research Centre, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada.,Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada.,Department of Oncology, McGill University, Montréal H4A 3T2, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada .,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada.,Department of Medicine, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada .,Advanced BioImaging Facility (ABIF), McGill University, Montréal H3G 0B1, Québec, Canada
| |
Collapse
|
25
|
Läsche M, Emons G, Gründker C. Shedding New Light on Cancer Metabolism: A Metabolic Tightrope Between Life and Death. Front Oncol 2020; 10:409. [PMID: 32300553 PMCID: PMC7145406 DOI: 10.3389/fonc.2020.00409] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Since the earliest findings of Otto Warburg, who discovered the first metabolic differences between lactate production of cancer cells and non-malignant tissues in the 1920s, much time has passed. He explained the increased lactate levels with dysfunctional mitochondria and aerobic glycolysis despite adequate oxygenation. Meanwhile, we came to know that mitochondria remain instead functional in cancer cells; hence, metabolic drift, rather than being linked to dysfunctional mitochondria, was found to be an active act of direct response of cancer cells to cell proliferation and survival signals. This metabolic drift begins with the use of sugars and the full oxidative phosphorylation via the mitochondrial respiratory chain to form CO2, and it then leads to the formation of lactic acid via partial oxidation. In addition to oncogene-driven metabolic reprogramming, the oncometabolites themselves alter cell signaling and are responsible for differentiation and metastasis of cancer cells. The aberrant metabolism is now considered a major characteristic of cancer within the past 15 years. However, the proliferating anabolic growth of a tumor and its spread to distal sites of the body is not explainable by altered glucose metabolism alone. Since a tumor consists of malignant cells and its tumor microenvironment, it was important for us to understand the bilateral interactions between the primary tumor and its microenvironment and the processes underlying its successful metastasis. We here describe the main metabolic pathways and their implications in tumor progression and metastasis. We also portray that metabolic flexibility determines the fate of the cancer cell and ultimately the patient. This flexibility must be taken into account when deciding on a therapy, since singular cancer therapies only shift the metabolism to a different alternative path and create resistance to the medication used. As with Otto Warburg in his days, we primarily focused on the metabolism of mitochondria when dealing with this scientific question.
Collapse
Affiliation(s)
- Matthias Läsche
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Göttingen, Germany
| | - Günter Emons
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Göttingen, Germany
| | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Morris EJ, Gillespie JA, Maxwell CA, Dedhar S. A Model of Differential Mammary Growth Initiation by Stat3 and Asymmetric Integrin-α6 Inheritance. Cell Rep 2020; 30:3605-3615.e5. [PMID: 32187533 DOI: 10.1016/j.celrep.2020.02.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/13/2020] [Accepted: 02/20/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple cancer-related genes both promote and paradoxically suppress growth initiation, depending on the cell context. We discover an explanation for how this occurs for one such protein, Stat3, based on asymmetric cell division. Here, we show that Stat3, by Stathmin/PLK-1, regulates mitotic spindle orientation, and we use it to create and test a model for differential growth initiation. We demonstrate that Integrin-α6 is polarized and required for mammary growth initiation. Spindles orient relative to polar Integrin-α6, dividing perpendicularly in normal cells and parallel in tumor-derived cells, resulting in asymmetric or symmetric Integrin-α6 inheritance, respectively. Stat3 inhibition randomizes spindle orientation, which promotes normal growth initiation while reducing tumor-derived growth initiation. Lipid raft disruption depolarizes Integrin-α6, inducing spindle-orientation-independent Integrin-α6 inheritance. Stat3 inhibition no longer affects the growth of these cells, suggesting Stat3 acts through the regulation of spindle orientation to control growth initiation.
Collapse
Affiliation(s)
- Edward J Morris
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency, Vancouver, BC, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, BC, Canada.
| | - Jordan A Gillespie
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Christopher A Maxwell
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
27
|
Tracey N, Creedon H, Kemp AJ, Culley J, Muir M, Klinowska T, Brunton VG. HO-1 drives autophagy as a mechanism of resistance against HER2-targeted therapies. Breast Cancer Res Treat 2020; 179:543-555. [PMID: 31705351 PMCID: PMC6997276 DOI: 10.1007/s10549-019-05489-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Targeted therapies have resulted in major advances in the treatment of HER2-positive breast cancers. Despite this, up to 70% of patients will develop resistance to treatment within 2 years and new strategies for targeting resistant disease are needed. METHODS To identify potential resistance mechanisms, we used the mouse MMTV-NIC-PTEN+/- spontaneous model of HER2-positive breast cancer and the pan-HER family kinase inhibitor sapatinib. Vehicle and sapatinib-treated tumors were evaluated by immunohistochemistry and proteomic analysis. In vitro studies were carried out to define the role of heme oxygenase 1 (HO-1) and autophagy in resistance to sapatinib and lapatinib, another pan-HER family kinase inhibitor. RESULTS Treatment of tumor-bearing MMTV-NIC-PTEN+/- mice with sapatinib resulted in delayed tumor progression and increased survival. However, tumors eventually progressed on treatment. Proteomic analysis identified proteins associated with cellular iron homeostasis as being upregulated in the sapatinib-treated tumors. This included HO-1 whose overexpression was confirmed by immunohistochemistry. Overexpression of HO-1 in HER2-expressing SKBR3 breast cancer cells resulted in reduced sensitivity to both pan-HER family kinase inhibitors sapatinib and lapatinib. This was associated with increased autophagy in the HO-1 over-expressing cells. Furthermore, increased autophagy was also seen in the sapatinib-treated tumors. Treatment with autophagy inhibitors was able to increase the sensitivity of the HO-1 over-expressing cells to both lapatinib and sapatinib. CONCLUSION Together these data indicate a role for HO-1-induced autophagy in resistance to pan-HER family kinase inhibitors.
Collapse
Affiliation(s)
- Natasha Tracey
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Helen Creedon
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Alain J Kemp
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Jayne Culley
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Morwenna Muir
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | | | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK.
| |
Collapse
|
28
|
Lewis K, Kiepas A, Hudson J, Senecal J, Ha JR, Voorand E, Annis MG, Sabourin V, Ahn R, La Selva R, Tabariès S, Hsu BE, Siegel MJ, Dankner M, Canedo EC, Lajoie M, Watson IR, Brown CM, Siegel PM, Ursini-Siegel J. p66ShcA functions as a contextual promoter of breast cancer metastasis. Breast Cancer Res 2020; 22:7. [PMID: 31941526 PMCID: PMC6964019 DOI: 10.1186/s13058-020-1245-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 01/05/2020] [Indexed: 01/25/2023] Open
Abstract
Background The p66ShcA redox protein is the longest isoform of the Shc1 gene and is variably expressed in breast cancers. In response to a variety of stress stimuli, p66ShcA becomes phosphorylated on serine 36, which allows it to translocate from the cytoplasm to the mitochondria where it stimulates the formation of reactive oxygen species (ROS). Conflicting studies suggest both pro- and anti-tumorigenic functions for p66ShcA, which prompted us to examine the contribution of tumor cell-intrinsic functions of p66ShcA during breast cancer metastasis. Methods We tested whether p66ShcA impacts the lung-metastatic ability of breast cancer cells. Breast cancer cells characteristic of the ErbB2+/luminal (NIC) or basal (4T1) subtypes were engineered to overexpress p66ShcA. In addition, lung-metastatic 4T1 variants (4T1-537) were engineered to lack endogenous p66ShcA via Crispr/Cas9 genomic editing. p66ShcA null cells were then reconstituted with wild-type p66ShcA or a mutant (S36A) that cannot translocate to the mitochondria, thereby lacking the ability to stimulate mitochondrial-dependent ROS production. These cells were tested for their ability to form spontaneous metastases from the primary site or seed and colonize the lung in experimental (tail vein) metastasis assays. These cells were further characterized with respect to their migration rates, focal adhesion dynamics, and resistance to anoikis in vitro. Finally, their ability to survive in circulation and seed the lungs of mice was assessed in vivo. Results We show that p66ShcA increases the lung-metastatic potential of breast cancer cells by augmenting their ability to navigate each stage of the metastatic cascade. A non-phosphorylatable p66ShcA-S36A mutant, which cannot translocate to the mitochondria, still potentiated breast cancer cell migration, lung colonization, and growth of secondary lung metastases. However, breast cancer cell survival in the circulation uniquely required an intact p66ShcA S36 phosphorylation site. Conclusion This study provides the first evidence that both mitochondrial and non-mitochondrial p66ShcA pools collaborate in breast cancer cells to promote their maximal metastatic fitness.
Collapse
Affiliation(s)
- Kyle Lewis
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada.,Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Alex Kiepas
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.,Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada
| | - Jesse Hudson
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada.,Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Julien Senecal
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada.,Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.,Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H3G 1Y6, Canada
| | - Jacqueline R Ha
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada.,Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Elena Voorand
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.,Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada
| | - Matthew G Annis
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada.,Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H3G 1Y6, Canada
| | - Valerie Sabourin
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada
| | - Ryuhjin Ahn
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada.,Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Rachel La Selva
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada.,Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada.,Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H3G 1Y6, Canada
| | - Brian E Hsu
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada.,Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Matthew J Siegel
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada
| | - Matthew Dankner
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada.,Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.,Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H3G 1Y6, Canada
| | - Eduardo Cepeda Canedo
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada.,Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Mathieu Lajoie
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada
| | - Ian R Watson
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.,Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Peter M Siegel
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada. .,Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada. .,Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H3G 1Y6, Canada.
| | - Josie Ursini-Siegel
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada. .,Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada. .,Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada. .,Gerald Bronfman Department of Oncology, McGill University, 5100 Maisonneuve Blvd West, Montreal, QC, H4A 3T2, Canada.
| |
Collapse
|
29
|
Watson ZL, Bitler BG. Type I Protein Arginine Methyltransferases Overexpression Promotes Transformation and Potentiates Her2/Neu-Driven Tumorigenesis. Cancer Res 2019; 79:3-4. [PMID: 30602621 DOI: 10.1158/0008-5472.can-18-3552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022]
Abstract
Bao and colleagues demonstrate that type I protein arginine methyltransferases (PRMT) are directly involved in mammary gland transformation and tumor progression. Notably, several distinct phenotypes require further investigation such as PRMT1/CARM1-induced transformation, CARM1-mediated delay in tumorigenesis, and PRMTs potentiation of Her2-dependent tumors. The PRMT overexpression transgenic mouse models should encourage and facilitate further mechanistic interrogation and the development of PRMT-directed therapies.See related article by Bao et al., p. 21.
Collapse
Affiliation(s)
- Zachary L Watson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado. .,
| |
Collapse
|
30
|
An ErbB2/c-Src axis links bioenergetics with PRC2 translation to drive epigenetic reprogramming and mammary tumorigenesis. Nat Commun 2019; 10:2901. [PMID: 31263101 PMCID: PMC6603039 DOI: 10.1038/s41467-019-10681-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 05/24/2019] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of histone modifications promotes carcinogenesis by altering transcription. Breast cancers frequently overexpress the histone methyltransferase EZH2, the catalytic subunit of Polycomb Repressor Complex 2 (PRC2). However, the role of EZH2 in this setting is unclear due to the context-dependent functions of PRC2 and the heterogeneity of breast cancer. Moreover, the mechanisms underlying PRC2 overexpression in cancer are obscure. Here, using multiple models of breast cancer driven by the oncogene ErbB2, we show that the tyrosine kinase c-Src links energy sufficiency with PRC2 overexpression via control of mRNA translation. By stimulating mitochondrial ATP production, c-Src suppresses energy stress, permitting sustained activation of the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which increases the translation of mRNAs encoding the PRC2 subunits Ezh2 and Suz12. We show that Ezh2 overexpression and activity are pivotal in ErbB2-mediated mammary tumourigenesis. These results reveal the hitherto unknown c-Src/mTORC1/PRC2 axis, which is essential for ErbB2-driven carcinogenesis. Polycomb Repressor Complex 2 (PRC2) is frequently up-regulated in cancers. Here, the authors show that the tyrosine kinase c-Src stimulates mitochondrial function to signal energy sufficiency to mTORC1, increasing translation of the PRC2 subunits EZH2 and SUZ12 to support ErbB2-dependent tumours.
Collapse
|
31
|
Darini C, Ghaddar N, Chabot C, Assaker G, Sabri S, Wang S, Krishnamoorthy J, Buchanan M, Aguilar-Mahecha A, Abdulkarim B, Deschenes J, Torres J, Ursini-Siegel J, Basik M, Koromilas AE. An integrated stress response via PKR suppresses HER2+ cancers and improves trastuzumab therapy. Nat Commun 2019; 10:2139. [PMID: 31086176 PMCID: PMC6513990 DOI: 10.1038/s41467-019-10138-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Trastuzumab is integral to HER2+ cancer treatment, but its therapeutic index is narrowed by the development of resistance. Phosphorylation of the translation initiation factor eIF2α (eIF2α-P) is the nodal point of the integrated stress response, which promotes survival or death in a context-dependent manner. Here, we show an anti-tumor function of the protein kinase PKR and its substrate eIF2α in a mouse HER2+ breast cancer model. The anti-tumor function depends on the transcription factor ATF4, which upregulates the CDK inhibitor P21CIP1 and activates JNK1/2. The PKR/eIF2α-P arm is induced by Trastuzumab in sensitive but not resistant HER2+ breast tumors. Also, eIF2α-P stimulation by the phosphatase inhibitor SAL003 substantially increases Trastuzumab potency in resistant HER2+ breast and gastric tumors. Increased eIF2α-P prognosticates a better response of HER2+ metastatic breast cancer patients to Trastuzumab therapy. Hence, the PKR/eIF2α-P arm antagonizes HER2 tumorigenesis whereas its pharmacological stimulation improves the efficacy of Trastuzumab therapy. The HER2 monoclonal antibody, Trastuzumab, is the current standard treatment for HER2+ cancers but resistance to therapy occurs. Here, the authors show that activation of the PKR/eIF2α-P pathway exhibits anti-tumor effects in HER2+ cancer and is required for the response to Trastuzumab.
Collapse
Affiliation(s)
- Cedric Darini
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Nour Ghaddar
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.,Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Catherine Chabot
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Gloria Assaker
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, QC, H3A 2B4, Canada.,Research Institute of McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Siham Sabri
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, QC, H3A 2B4, Canada.,Research Institute of McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Shuo Wang
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Jothilatha Krishnamoorthy
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Marguerite Buchanan
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Adriana Aguilar-Mahecha
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Bassam Abdulkarim
- Research Institute of McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.,Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, H4A 3T2, Canada
| | - Jean Deschenes
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Jose Torres
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Josie Ursini-Siegel
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.,Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, H4A 3T2, Canada
| | - Mark Basik
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.,Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, H4A 3T2, Canada
| | - Antonis E Koromilas
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada. .,Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, H4A 3T2, Canada.
| |
Collapse
|
32
|
Jena MK, Jaswal S, Kumar S, Mohanty AK. Molecular mechanism of mammary gland involution: An update. Dev Biol 2019; 445:145-155. [DOI: 10.1016/j.ydbio.2018.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/01/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
|
33
|
Hulea L, Gravel SP, Morita M, Cargnello M, Uchenunu O, Im YK, Lehuédé C, Ma EH, Leibovitch M, McLaughlan S, Blouin MJ, Parisotto M, Papavasiliou V, Lavoie C, Larsson O, Ohh M, Ferreira T, Greenwood C, Bridon G, Avizonis D, Ferbeyre G, Siegel P, Jones RG, Muller W, Ursini-Siegel J, St-Pierre J, Pollak M, Topisirovic I. Translational and HIF-1α-Dependent Metabolic Reprogramming Underpin Metabolic Plasticity and Responses to Kinase Inhibitors and Biguanides. Cell Metab 2018; 28:817-832.e8. [PMID: 30244971 PMCID: PMC7252493 DOI: 10.1016/j.cmet.2018.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 05/18/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
There is increasing interest in therapeutically exploiting metabolic differences between normal and cancer cells. We show that kinase inhibitors (KIs) and biguanides synergistically and selectively target a variety of cancer cells. Synthesis of non-essential amino acids (NEAAs) aspartate, asparagine, and serine, as well as glutamine metabolism, are major determinants of the efficacy of KI/biguanide combinations. The mTORC1/4E-BP axis regulates aspartate, asparagine, and serine synthesis by modulating mRNA translation, while ablation of 4E-BP1/2 substantially decreases sensitivity of breast cancer and melanoma cells to KI/biguanide combinations. Efficacy of the KI/biguanide combinations is also determined by HIF-1α-dependent perturbations in glutamine metabolism, which were observed in VHL-deficient renal cancer cells. This suggests that cancer cells display metabolic plasticity by engaging non-redundant adaptive mechanisms, which allows them to survive therapeutic insults that target cancer metabolism.
Collapse
Affiliation(s)
- Laura Hulea
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3A 1A3, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 1A3, Canada
| | - Simon-Pierre Gravel
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada
| | - Masahiro Morita
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Institute of Resource Developmental and Analysis, Kumamoto University, Kumamoto 860-8111, Japan
| | - Marie Cargnello
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3A 1A3, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 1A3, Canada; Centre de Recherche en Cancérologie de Toulouse, 31100 Toulouse, France
| | - Oro Uchenunu
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3A 1A3, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Young Kyuen Im
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3A 1A3, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Camille Lehuédé
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Eric H Ma
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3A 1A3, Canada
| | - Matthew Leibovitch
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3A 1A3, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 1A3, Canada
| | - Shannon McLaughlan
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3A 1A3, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 1A3, Canada
| | - Marie-José Blouin
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3A 1A3, Canada
| | - Maxime Parisotto
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Cynthia Lavoie
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 171 16 Stockholm, Sweden
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology and Department of Biochemistry, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Tiago Ferreira
- McGill University Centre for Research in Neuroscience, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Celia Greenwood
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3A 1A3, Canada; Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC H3A 1A3, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 1A3, Canada
| | - Gaëlle Bridon
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Daina Avizonis
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Gerardo Ferbeyre
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Peter Siegel
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Russell G Jones
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3A 1A3, Canada
| | - William Muller
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Josie Ursini-Siegel
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3A 1A3, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 1A3, Canada; Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Julie St-Pierre
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Michael Pollak
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3A 1A3, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 1A3, Canada; Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada.
| | - Ivan Topisirovic
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3A 1A3, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
34
|
Bao J, Di Lorenzo A, Lin K, Lu Y, Zhong Y, Sebastian MM, Muller WJ, Yang Y, Bedford MT. Mouse Models of Overexpression Reveal Distinct Oncogenic Roles for Different Type I Protein Arginine Methyltransferases. Cancer Res 2018; 79:21-32. [PMID: 30352814 DOI: 10.1158/0008-5472.can-18-1995] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/03/2018] [Accepted: 10/16/2018] [Indexed: 01/22/2023]
Abstract
Protein arginine methyltransferases (PRMT) are generally not mutated in diseased states, but they are overexpressed in a number of cancers, including breast cancer. To address the possible roles of PRMT overexpression in mammary gland tumorigenesis, we generated Cre-activated PRMT1, CARM1, and PRMT6 overexpression mouse models. These three enzymes are the primary type I PRMTs and are responsible for the majority of the asymmetric arginine methylation deposited in the cells. Using either a keratin 5-Cre recombinase (K5-Cre) cross or an MMTV-NIC mouse, we investigated the impact of PRMT overexpression alone or in the context of a HER2-driven model of breast cancer, respectively. The overexpression of all three PRMTs induced hyper-branching of the mammary glands and increased Ki-67 staining. When combined with the MMTV-NIC model, these in vivo experiments provided the first genetic evidence implicating elevated levels of these three PRMTs in mammary gland tumorigenesis, albeit with variable degrees of tumor promotion and latency. In addition, these mouse models provided valuable tools for exploring the biological roles and molecular mechanisms of PRMT overexpression in the mammary gland. For example, transcriptome analysis of purified mammary epithelial cells isolated from bigenic NIC-PRMT1 Tg and NIC-PRMT6 Tg mice revealed a deregulated PI3K-AKT pathway. In the future, these PRMT Tg lines can be leveraged to investigate the roles of arginine methylation in other tissues and tumor model systems using different tissue-specific Cre crosses, and they can also be used for testing the in vivo efficacy of small molecule inhibitors that target these PRMT. SIGNIFICANCE: These findings establish Cre-activated mouse models of three different arginine methyltransferases, PRMT1, CARM1, and PRMT6, which are overexpressed in human cancers, providing a valuable tool for the study of PRMT function in tumorigenesis.See related commentary by Watson and Bitler, p. 3.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Alessandra Di Lorenzo
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Yi Zhong
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Manu M Sebastian
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - William J Muller
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Yanzhong Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute at City of Hope, Duarte, California
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas.
| |
Collapse
|
35
|
MacLeod JA, Gao Y, Hall C, Muller WJ, Gujral TS, Greer PA. Genetic disruption of calpain-1 and calpain-2 attenuates tumorigenesis in mouse models of HER2+ breast cancer and sensitizes cancer cells to doxorubicin and lapatinib. Oncotarget 2018; 9:33382-33395. [PMID: 30279968 PMCID: PMC6161787 DOI: 10.18632/oncotarget.26078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/23/2018] [Indexed: 12/03/2022] Open
Abstract
Calpains are a family of calcium activated cysteine proteases which participate in a wide range of cellular functions including migration, invasion, autophagy, programmed cell death, and gene expression. Calpain-1 and calpain-2 isoforms are ubiquitously expressed heterodimers composed of isoform specific catalytic subunits coupled with an obligate common regulatory subunit encoded by capns1. Here, we report that conditional deletion of capns1 disrupted calpain-1 and calpain-2 expression and activity, and this was associated with delayed tumorigenesis and altered signaling in a transgenic mouse model of spontaneous HER2+ breast cancer and effectively blocked tumorigenesis in an orthotopic engraftment model. Furthermore, capns1 knockout in a tumor derived cell line correlated with enhanced sensitivity to the chemotherapeutic doxorubicin and the HER2/EGFR tyrosine kinase inhibitor lapatinib. Collectively, these results indicate pro-tumorigenic roles for calpains-1/2 in HER2+ breast cancer and provide evidence that calpain-1/2 inhibitors could have anti-tumor effects if used either alone or in combination with chemotherapeutics and targeted agents.
Collapse
Affiliation(s)
- James A MacLeod
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.,Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Yan Gao
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Christine Hall
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Taranjit S Gujral
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.,Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| |
Collapse
|
36
|
Mancarella C, Scotlandi K. IGF system in sarcomas: a crucial pathway with many unknowns to exploit for therapy. J Mol Endocrinol 2018; 61:T45-T60. [PMID: 29273680 DOI: 10.1530/jme-17-0250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
Abstract
The insulin-like growth factor (IGF) system has gained substantial interest due to its involvement in regulating cell proliferation, differentiation and survival during anoikis and after conventional and targeted therapies. However, results from clinical trials have been largely disappointing, with only a few but notable exceptions, such as trials targeting sarcomas, especially Ewing sarcoma. This review highlights key studies focusing on IGF signaling in sarcomas, specifically studies underscoring the properties that make this system an attractive therapeutic target and identifies new relationships that may be exploited. This review discusses the potential roles of IGF2 mRNA-binding proteins (IGF2BPs), discoidin domain receptors (DDRs) and metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) in regulating the IGF system. Deeper investigation of these novel regulators of the IGF system may help us to further elucidate the spatial and temporal control of the IGF axis, as understanding the control of this axis is essential for future clinical studies.
Collapse
Affiliation(s)
- Caterina Mancarella
- Experimental Oncology Lab, CRS Development of Biomolecular Therapies, Orthopaedic Rizzoli Institute, Bologna, Italy
| | - Katia Scotlandi
- Experimental Oncology Lab, CRS Development of Biomolecular Therapies, Orthopaedic Rizzoli Institute, Bologna, Italy
| |
Collapse
|
37
|
Im YK, Najyb O, Gravel SP, McGuirk S, Ahn R, Avizonis DZ, Chénard V, Sabourin V, Hudson J, Pawson T, Topisirovic I, Pollak M, St-Pierre J, Ursini-Siegel J. Interplay between ShcA Signaling and PGC-1α Triggers Targetable Metabolic Vulnerabilities in Breast Cancer. Cancer Res 2018; 78:4826-4838. [DOI: 10.1158/0008-5472.can-17-3696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/07/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022]
|
38
|
Goyette MA, Duhamel S, Aubert L, Pelletier A, Savage P, Thibault MP, Johnson RM, Carmeliet P, Basik M, Gaboury L, Muller WJ, Park M, Roux PP, Gratton JP, Côté JF. The Receptor Tyrosine Kinase AXL Is Required at Multiple Steps of the Metastatic Cascade during HER2-Positive Breast Cancer Progression. Cell Rep 2018; 23:1476-1490. [PMID: 29719259 DOI: 10.1016/j.celrep.2018.04.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/21/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022] Open
Abstract
AXL is activated by its ligand GAS6 and is expressed in triple-negative breast cancer cells. In the current study, we report AXL expression in HER2-positive (HER2+) breast cancers where it correlates with poor patient survival. Using murine models of HER2+ breast cancer, Axl, but not its ligand Gas6, was found to be essential for metastasis. We determined that AXL is required for intravasation, extravasation, and growth at the metastatic site. We found that AXL is expressed in HER2+ cancers displaying epithelial-to-mesenchymal transition (EMT) signatures where it contributes to sustain EMT. Interfering with AXL in a patient-derived xenograft (PDX) impaired transforming growth factor β (TGF-β)-induced cell invasion. Last, pharmacological inhibition of AXL specifically decreased the metastatic burden of mice developing HER2+ breast cancer. Our data identify AXL as a potential anti-metastatic co-therapeutic target for the treatment of HER2+ breast cancers.
Collapse
Affiliation(s)
- Marie-Anne Goyette
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada; Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Stéphanie Duhamel
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Léo Aubert
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Ariane Pelletier
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Paul Savage
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A1, Canada
| | | | - Radia Marie Johnson
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A1, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Vesalius Research Center, VIB, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven 3000, Belgium
| | - Mark Basik
- Department of Oncology and Surgery, Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
| | - Louis Gaboury
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A1, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A1, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada; Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada.
| |
Collapse
|
39
|
Mori H, Cardiff RD, Borowsky AD. Aging Mouse Models Reveal Complex Tumor-Microenvironment Interactions in Cancer Progression. Front Cell Dev Biol 2018; 6:35. [PMID: 29651417 PMCID: PMC5884881 DOI: 10.3389/fcell.2018.00035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Mouse models and genetically engineered mouse models (GEMM) are essential experimental tools for the understanding molecular mechanisms within complex biological systems. GEMM are especially useful for inferencing phenocopy information to genetic human diseases such as breast cancer. Human breast cancer modeling in mice most commonly employs mammary epithelial-specific promoters to investigate gene function(s) and, in particular, putative oncogenes. Models are specifically useful in the mammary epithelial cell in the context of the complete mammary gland environment. Gene targeted knockout mice including conditional targeting to specific mammary cells can reveal developmental defects in mammary organogenesis and demonstrate the importance of putative tumor suppressor genes. Some of these models demonstrate a non-traditional type of tumor suppression which involves interplay between the tumor susceptible cell and its host/environment. These GEMM help to reveal the processes of cancer progression beyond those intrinsic to cancer cells. Furthermore, the, analysis of mouse models requires appropriate consideration of mouse strain, background, and environmental factors. In this review, we compare aging-related factors in mouse models for breast cancer. We introduce databases of GEMM attributes and colony functional variations.
Collapse
Affiliation(s)
- Hidetoshi Mori
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States
| | - Robert D Cardiff
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States.,Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Alexander D Borowsky
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States.,Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
40
|
Sarvi S, Patel H, Li J, Dodd GL, Creedon H, Muir M, Ward J, Dawson JC, Lee M, Culley J, Salter DM, Sims AH, Byron A, Brunton VG. Kindlin-1 Promotes Pulmonary Breast Cancer Metastasis. Cancer Res 2018; 78:1484-1496. [PMID: 29330144 PMCID: PMC5857359 DOI: 10.1158/0008-5472.can-17-1518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/30/2017] [Accepted: 01/08/2018] [Indexed: 11/16/2022]
Abstract
In breast cancer, increased expression of the cytoskeletal adaptor protein Kindlin-1 has been linked to increased risks of lung metastasis, but the functional basis is unknown. Here, we show that in a mouse model of polyomavirus middle T antigen-induced mammary tumorigenesis, loss of Kindlin-1 reduced early pulmonary arrest and later development of lung metastasis. This phenotype relied on the ability of Kindlin-1 to bind and activate β integrin heterodimers. Kindlin-1 loss reduced α4 integrin-mediated adhesion of mammary tumor cells to the adhesion molecule VCAM-1 on endothelial cells. Treating mice with an anti-VCAM-1 blocking antibody prevented early pulmonary arrest. Kindlin-1 loss also resulted in reduced secretion of several factors linked to metastatic spread, including the lung metastasis regulator tenascin-C, showing that Kindlin-1 regulated metastatic dissemination by an additional mechanism in the tumor microenvironment. Overall, our results show that Kindlin-1 contributes functionally to early pulmonary metastasis of breast cancer.Significance: These findings provide a mechanistic proof in mice that Kindin-1, an integrin-binding adaptor protein, is a critical mediator of early lung metastasis of breast cancer. Cancer Res; 78(6); 1484-96. ©2018 AACR.
Collapse
Affiliation(s)
- Sana Sarvi
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Hitesh Patel
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Jun Li
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Georgia L Dodd
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen Creedon
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Morwenna Muir
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Jocelyn Ward
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - John C Dawson
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin Lee
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Jayne Culley
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Donald M Salter
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew H Sims
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
41
|
Ha JR, Ahn R, Smith HW, Sabourin V, Hébert S, Cepeda Cañedo E, Im YK, Kleinman CL, Muller WJ, Ursini-Siegel J. Integration of Distinct ShcA Signaling Complexes Promotes Breast Tumor Growth and Tyrosine Kinase Inhibitor Resistance. Mol Cancer Res 2018; 16:894-908. [PMID: 29453318 DOI: 10.1158/1541-7786.mcr-17-0623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/20/2017] [Accepted: 01/26/2018] [Indexed: 11/16/2022]
Abstract
The commonality between most phospho-tyrosine signaling networks is their shared use of adaptor proteins to transduce mitogenic signals. ShcA (SHC1) is one such adaptor protein that employs two phospho-tyrosine binding domains (PTB and SH2) and key phospho-tyrosine residues to promote mammary tumorigenesis. Receptor tyrosine kinases (RTK), such as ErbB2, bind the ShcA PTB domain to promote breast tumorigenesis by engaging Grb2 downstream of the ShcA tyrosine phosphorylation sites to activate AKT/mTOR signaling. However, breast tumors also rely on the ShcA PTB domain to bind numerous negative regulators that limit activation of secondary mitogenic signaling networks. This study examines the role of PTB-independent ShcA pools in controlling breast tumor growth and resistance to tyrosine kinase inhibitors. We demonstrate that PTB-independent ShcA complexes predominately rely on the ShcA SH2 domain to activate multiple Src family kinases (SFK), including Src and Fyn, in ErbB2-positive breast cancers. Using genetic and pharmacologic approaches, we show that PTB-independent ShcA complexes augment mammary tumorigenesis by increasing the activity of the Src and Fyn tyrosine kinases in an SH2-dependent manner. This bifurcation of signaling complexes from distinct ShcA pools transduces non-redundant signals that integrate the AKT/mTOR and SFK pathways to cooperatively increase breast tumor growth and resistance to tyrosine kinase inhibitors, including lapatinib and PP2. This study mechanistically dissects how the interplay between diverse intracellular ShcA complexes impacts the tyrosine kinome to affect breast tumorigenesis.Implications: The ShcA adaptor, within distinct signaling complexes, impacts tyrosine kinase signaling, breast tumor growth, and resistance to tyrosine kinase inhibitors. Mol Cancer Res; 16(5); 894-908. ©2018 AACR.
Collapse
Affiliation(s)
- Jacqueline R Ha
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Ryuhjin Ahn
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Harvey W Smith
- Department of Biochemistry, McIntyre Medical Building, McGill University, Montréal, Quebec, Canada
- Goodman Cancer Research Centre, Montréal, Quebec, Canada
| | - Valerie Sabourin
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada
| | - Steven Hébert
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada
| | - Eduardo Cepeda Cañedo
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Young Kyuen Im
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Claudia L Kleinman
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada
- Department of Human Genetics, Strathcona Anatomy & Dentistry Building, McGill University, Montréal, Quebec, Canada
| | - William J Muller
- Department of Biochemistry, McIntyre Medical Building, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, Strathcona Anatomy & Dentistry Building, McGill University, Montréal, Quebec, Canada
| | - Josie Ursini-Siegel
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada.
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, McIntyre Medical Building, McGill University, Montréal, Quebec, Canada
- Goodman Cancer Research Centre, Montréal, Quebec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
42
|
Basak P, Leslie H, Dillon RL, Muller WJ, Raouf A, Mowat MRA. In vivoevidence supporting a metastasis suppressor role forStard13(Dlc2) inErbB2(Neu) oncogene induced mouse mammary tumors. Genes Chromosomes Cancer 2017; 57:182-191. [DOI: 10.1002/gcc.22519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023] Open
Affiliation(s)
- Pratima Basak
- Research Institute of Oncology & Hematology, CancerCare Manitoba; Winnipeg Manitoba R3E 0V9 Canada
- Department of Biochemistry & Medical Genetics; University of Manitoba; Winnipeg Manitoba R3E 0J9 Canada
- Department of Immunology; University of Manitoba; Winnipeg Manitoba R3E 0T5 Canada
| | - Heather Leslie
- Research Institute of Oncology & Hematology, CancerCare Manitoba; Winnipeg Manitoba R3E 0V9 Canada
| | - Rachelle L. Dillon
- Research Institute of Oncology & Hematology, CancerCare Manitoba; Winnipeg Manitoba R3E 0V9 Canada
| | - William J. Muller
- Department of Biochemistry; Rosalind and Morris Goodman Cancer Research Centre, McGill University; Montreal Quebec H3A 1A3 Canada
| | - Afshin Raouf
- Research Institute of Oncology & Hematology, CancerCare Manitoba; Winnipeg Manitoba R3E 0V9 Canada
- Department of Immunology; University of Manitoba; Winnipeg Manitoba R3E 0T5 Canada
| | - Michael R. A. Mowat
- Research Institute of Oncology & Hematology, CancerCare Manitoba; Winnipeg Manitoba R3E 0V9 Canada
- Department of Biochemistry & Medical Genetics; University of Manitoba; Winnipeg Manitoba R3E 0J9 Canada
| |
Collapse
|
43
|
Yao Y, Bian Y, Dong M, Wang Y, Lv J, Chen L, Wang H, Mao J, Dong J, Ye M. SH2 Superbinder Modified Monolithic Capillary Column for the Sensitive Analysis of Protein Tyrosine Phosphorylation. J Proteome Res 2017; 17:243-251. [PMID: 29083189 DOI: 10.1021/acs.jproteome.7b00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we present a method to specifically capture phosphotyrosine (pTyr) peptides from minute amount of sample for the sensitive analysis of protein tyrosine phosphorylation. We immobilized SH2 superbinder on a monolithic capillary column to construct a microreactor to enrich pTyr peptides. It was found that the synthetic pTyr peptide could be specifically enriched by the microreactor from the peptide mixture prepared by spiking of the synthetic pTyr peptide into the tryptic digests of α-casein and β-casein with molar ratios of 1:1000:1000. The microreactor was further applied to enrich pTyr peptides from pervanadate-treated HeLa cell digests for phosphoproteomics analysis, which resulted in the identification of 796 unique pTyr sites. In contrast, the conventional SH2 superbinder-based method identified 41 pTyr sites for the same sample, only 5.2% of the number achieved by the microreactor. Finally, this microreactor was also applied to analyze the pTyr in Shc1 complex, an immunopurified protein complex, which resulted in the identification of 15 pTyr sites. Together, this technique is best fitted to analyze the pTyr in minute amount of sample and will have broad application in fields where only a limited amount of sample is available.
Collapse
Affiliation(s)
- Yating Yao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Bian
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University , Zhengzhou, Henan 450052, China
| | - Mingming Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,Dalian Ocean University, Dalian 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawen Lv
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianfang Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China
| |
Collapse
|
44
|
Andrzejewski S, Klimcakova E, Johnson RM, Tabariès S, Annis MG, McGuirk S, Northey JJ, Chénard V, Sriram U, Papadopoli DJ, Siegel PM, St-Pierre J. PGC-1α Promotes Breast Cancer Metastasis and Confers Bioenergetic Flexibility against Metabolic Drugs. Cell Metab 2017; 26:778-787.e5. [PMID: 28988825 DOI: 10.1016/j.cmet.2017.09.006] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/31/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023]
Abstract
Metabolic adaptations play a key role in fueling tumor growth. However, less is known regarding the metabolic changes that promote cancer progression to metastatic disease. Herein, we reveal that breast cancer cells that preferentially metastasize to the lung or bone display relatively high expression of PGC-1α compared with those that metastasize to the liver. PGC-1α promotes breast cancer cell migration and invasion in vitro and augments lung metastasis in vivo. Pro-metastatic capabilities of PGC-1α are linked to enhanced global bioenergetic capacity, facilitating the ability to cope with bioenergetic disruptors like biguanides. Indeed, biguanides fail to mitigate the PGC-1α-dependent lung metastatic phenotype and PGC-1α confers resistance to stepwise increases in metformin concentration. Overall, our results reveal that PGC-1α stimulates bioenergetic potential, which promotes breast cancer metastasis and facilitates adaptation to metabolic drugs.
Collapse
Affiliation(s)
- Sylvia Andrzejewski
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Eva Klimcakova
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Radia M Johnson
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Shawn McGuirk
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jason J Northey
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Valérie Chénard
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Urshila Sriram
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - David J Papadopoli
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Peter M Siegel
- Department of Medicine, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada.
| | - Julie St-Pierre
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
45
|
ErbB2-positive mammary tumors can escape PI3K-p110α loss through downregulation of the Pten tumor suppressor. Oncogene 2017; 36:6059-6066. [PMID: 28783168 PMCID: PMC5808977 DOI: 10.1038/onc.2017.264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common cancer among women and 30% will be diagnosed with an ErbB2-positive cancer. Forty percent of ErbB2-positive breast tumors have an activating mutation in p110α, a catalytic subunit of phosphoinositide 3-kinase (PI3K). Clinical and experimental data show that breast tumors treated with a p110α-specific inhibitor often circumvent inhibition and resume growth. To understand this mechanism of resistance, we crossed a p110α conditional (p110αflx/flx) mouse model with mice that overexpresses the ErbB2/Neu-IRES-Cre transgene (NIC) specifically in the mammary epithelium. Although mammary-specific deletion of p110α dramatically delays tumor onset, tumors eventually arise and are dependent on p110β. Through biochemical analyses we find that a proportion of p110α-deficient tumors (23%) display downregulation of the Pten tumor suppressor. We further demonstrate that loss of one allele of PTEN is sufficient to shift isoform dependency from p110α to p110β in vivo. These results provide insight into the molecular mechanism by which ErbB2-positive breast cancer escapes p110α inhibition.
Collapse
|
46
|
PI3K-p110α mediates the oncogenic activity induced by loss of the novel tumor suppressor PI3K-p85α. Proc Natl Acad Sci U S A 2017. [PMID: 28630349 DOI: 10.1073/pnas.1704706114] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutation or loss of the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3K) is emerging as a transforming factor in cancer, but the mechanism of transformation has been controversial. Here we find that hemizygous deletion of the PIK3R1 gene encoding p85α is a frequent event in breast cancer, with PIK3R1 expression significantly reduced in breast tumors. PIK3R1 knockdown transforms human mammary epithelial cells, and genetic ablation of Pik3r1 accelerates a mouse model of HER2/neu-driven breast cancer. We demonstrate that partial loss of p85α increases the amount of p110α-p85 heterodimers bound to active receptors, augmenting PI3K signaling and oncogenic transformation. Pan-PI3K and p110α-selective pharmacological inhibition effectively blocks transformation driven by partial p85α loss both in vitro and in vivo. Together, our data suggest that p85α plays a tumor-suppressive role in transformation, and suggest that p110α-selective therapeutics may be effective in the treatment of breast cancer patients with PIK3R1 loss.
Collapse
|
47
|
Abstract
The Shc family of adaptor proteins is a group of proteins that lacks intrinsic enzymatic activity. Instead, Shc proteins possess various domains that allow them to recruit different signalling molecules. Shc proteins help to transduce an extracellular signal into an intracellular signal, which is then translated into a biological response. The Shc family of adaptor proteins share the same structural topography, CH2-PTB-CH1-SH2, which is more than an isoform of Shc family proteins; this structure, which includes multiple domains, allows for the posttranslational modification of Shc proteins and increases the functional diversity of Shc proteins. The deregulation of Shc proteins has been linked to different disease conditions, including cancer and Alzheimer’s, which indicates their key roles in cellular functions. Accordingly, a question might arise as to whether Shc proteins could be targeted therapeutically to correct their disturbance. To answer this question, thorough knowledge must be acquired; herein, we aim to shed light on the Shc family of adaptor proteins to understand their intracellular role in normal and disease states, which later might be applied to connote mechanisms to reverse the disease state.
Collapse
|
48
|
LPP is a Src substrate required for invadopodia formation and efficient breast cancer lung metastasis. Nat Commun 2017; 8:15059. [PMID: 28436416 PMCID: PMC5413977 DOI: 10.1038/ncomms15059] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/24/2017] [Indexed: 01/17/2023] Open
Abstract
We have previously shown that lipoma preferred partner (LPP) mediates TGFβ-induced breast cancer cell migration and invasion. Herein, we demonstrate that diminished LPP expression reduces circulating tumour cell numbers, impairs cancer cell extravasation and diminishes lung metastasis. LPP localizes to invadopodia, along with Tks5/actin, at sites of matrix degradation and at the tips of extravasating breast cancer cells as revealed by intravital imaging of the chick chorioallantoic membrane (CAM). Invadopodia formation, breast cancer cell extravasation and metastasis require an intact LPP LIM domain and the ability of LPP to interact with α-actinin. Finally, we show that Src-mediated LPP phosphorylation at specific tyrosine residues (Y245/301/302) is critical for invadopodia formation, breast cancer cell invasion and metastasis. Together, these data define a previously unknown function for LPP in the formation of invadopodia and reveal a requirement for LPP in mediating the metastatic ability of breast cancer cells.
Collapse
|
49
|
The Shc1 adaptor simultaneously balances Stat1 and Stat3 activity to promote breast cancer immune suppression. Nat Commun 2017; 8:14638. [PMID: 28276425 PMCID: PMC5347092 DOI: 10.1038/ncomms14638] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/18/2017] [Indexed: 02/07/2023] Open
Abstract
Tyrosine kinase signalling within cancer cells is central to the establishment of an immunosuppressive microenvironment. Although tyrosine kinase inhibitors act, in part, to augment adaptive immunity, the increased heterogeneity and functional redundancy of the tyrosine kinome is a hurdle to achieving durable responses to immunotherapies. We previously identified the Shc1 (ShcA) scaffold, a central regulator of tyrosine kinase signalling, as essential for promoting breast cancer immune suppression. Herein we show that the ShcA pathway simultaneously activates STAT3 immunosuppressive signals and impairs STAT1-driven immune surveillance in breast cancer cells. Impaired Y239/Y240-ShcA phosphorylation selectively reduces STAT3 activation in breast tumours, profoundly sensitizing them to immune checkpoint inhibitors and tumour vaccines. Finally, the ability of diminished tyrosine kinase signalling to initiate STAT1-driven immune surveillance can be overcome by compensatory STAT3 hyperactivation in breast tumours. Our data indicate that inhibition of pY239/240-ShcA-dependent STAT3 signalling may represent an attractive therapeutic strategy to sensitize breast tumours to multiple immunotherapies. Tyrosine kinase signalling in cancer cells promotes immune evasion. Here, the authors show that tyrosine kinases engage scaffold protein Shc1 to promote immunosuppression in breast cancer by simultaneously activating STAT3 immunosuppressive signals and impairing STAT1-driven anti-tumour immune responses.
Collapse
|
50
|
Huang FK, Zhang G, Lawlor K, Nazarian A, Philip J, Tempst P, Dephoure N, Neubert TA. Deep Coverage of Global Protein Expression and Phosphorylation in Breast Tumor Cell Lines Using TMT 10-plex Isobaric Labeling. J Proteome Res 2017; 16:1121-1132. [PMID: 28102081 DOI: 10.1021/acs.jproteome.6b00374] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Labeling peptides with isobaric tags is a popular strategy in quantitative bottom-up proteomics. In this study, we labeled six breast tumor cell lysates (1.34 mg proteins per channel) using 10-plex tandem mass tag reagents and analyzed the samples on a Q Exactive HF Quadrupole-Orbitrap mass spectrometer. We identified a total of 8,706 proteins and 28,186 phosphopeptides, including 7,394 proteins and 23,739 phosphosites common to all channels. The majority of technical replicates correlated with a R2 ≥ 0.98, indicating minimum variability was introduced after labeling. Unsupervised hierarchical clustering of phosphopeptide data sets successfully classified the breast tumor samples into Her2 (epidermal growth factor receptor 2) positive and Her2 negative groups, whereas mRNA abundance did not. The tyrosine phosphorylation levels of receptor tyrosine kinases, phosphoinositide-3-kinase, protein kinase C delta, and Src homology 2, among others, were significantly higher in the Her2 positive than the Her2 negative group. Despite ratio compression in MS2-based experiments, we demonstrated the ratios calculated using an MS2 method are highly correlated (R2 > 0.65) with ratios obtained using MS3-based quantitation (using a Thermo Orbitrap Fusion mass spectrometer) with reduced ratio suppression. Given the deep coverage of global and phosphoproteomes, our data show that MS2-based quantitation using TMT can be successfully used for large-scale multiplexed quantitative proteomics.
Collapse
Affiliation(s)
- Fang-Ke Huang
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine , New York, New York 10016, United States
| | - Guoan Zhang
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine , New York, New York 10016, United States
| | - Kevin Lawlor
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Arpi Nazarian
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - John Philip
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Paul Tempst
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Noah Dephoure
- Sandra and Edward Meyer Cancer Center, Department of Biochemistry, Weill Cornell Medical College , New York, New York 10065, United States
| | - Thomas A Neubert
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine , New York, New York 10016, United States
| |
Collapse
|