1
|
Jeong M, Han D, Bhetariya P, Welling DB, Stojkovic M, Stankovic KM. NF2 is Essential for Human Endoderm Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410909. [PMID: 39921490 PMCID: PMC12061267 DOI: 10.1002/advs.202410909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/18/2024] [Indexed: 02/10/2025]
Abstract
Vertebrate embryogenesis requires the precisely timed specification of 3 germ cell layers- ectoderm, mesoderm, and endoderm- which give rise to tissues and organs in the developing organism. The tumor suppressor gene NF2, moesin-ezrin-radixin like (MERLIN) tumor suppressor (Nf2) is expressed in all 3 germ layers during mouse development and its homozygous deletion causes embryonic lethality. People with heterozygous NF2 mutations typically develop Schwann cell tumors, especially vestibular schwannoma, but the specific role of NF2 in human embryonic development is unclear. Here, human induced pluripotent stem cells (hiPSCs) are used to demonstrate that NF2 is essential for endoderm specification and formation in humans. Although endoderm differentiation is not impaired in hiPSCs with heterozygous NF2 mutation, NF2 knockout (NF2-/-) abolished the capacity to form endoderm in vitro, confirmed by loss of expression of endoderm-related genes and proteins, or teratomas in vivo. This defect is mediated by the nuclear translocation of yes-associated protein 1 (YAP1), a transcription co-activator regulating lineage fate via the Hippo pathway and subsequent YAP1-mediated shutdown of Activin/Nodal signaling. Endoderm formation can be rescued via YAP1 knockdown or forced re-expression of NF2 in NF2-/- cells. Taken together, the essential role of NF2 during endoderm specification in human embryogenesis as a regulator of YAP1 is reported.
Collapse
Affiliation(s)
- Minjin Jeong
- Department of Otolaryngology‐Head and Neck SurgeryStanford University School of MedicineStanfordCA94305USA
- Department of Otolaryngology‐Head and Neck SurgeryMassachusetts Eye and Ear and Harvard Medical SchoolBostonMA02114USA
| | - Dongjun Han
- Department of Otolaryngology‐Head and Neck SurgeryStanford University School of MedicineStanfordCA94305USA
- Department of Otolaryngology‐Head and Neck SurgeryMassachusetts Eye and Ear and Harvard Medical SchoolBostonMA02114USA
| | - Preetida Bhetariya
- Bioinformatics CoreHarvard T.H. Chan School of Public HealthBostonMA02115USA
| | - D. Bradley Welling
- Department of Otolaryngology‐Head and Neck SurgeryMassachusetts Eye and Ear and Harvard Medical SchoolBostonMA02114USA
| | - Miodrag Stojkovic
- Department of Otolaryngology‐Head and Neck SurgeryMassachusetts Eye and Ear and Harvard Medical SchoolBostonMA02114USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology‐Head and Neck SurgeryStanford University School of MedicineStanfordCA94305USA
- Department of Otolaryngology‐Head and Neck SurgeryMassachusetts Eye and Ear and Harvard Medical SchoolBostonMA02114USA
- Department of NeurosurgeryStanford University School of MedicineStanfordCA94304USA
- Wu Tsai Neurosciences InstituteStanford UniversityStanfordCA94305USA
| |
Collapse
|
2
|
Nita A, Moroishi T. Hippo pathway in cell-cell communication: emerging roles in development and regeneration. Inflamm Regen 2024; 44:18. [PMID: 38566194 PMCID: PMC10986044 DOI: 10.1186/s41232-024-00331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
The Hippo pathway is a central regulator of tissue growth that has been widely studied in mammalian organ development, regeneration, and cancer biology. Although previous studies have convincingly revealed its cell-autonomous functions in controlling cell fate, such as cell proliferation, survival, and differentiation, accumulating evidence in recent years has revealed its non-cell-autonomous functions. This pathway regulates cell-cell communication through direct interactions, soluble factors, extracellular vesicles, and the extracellular matrix, providing a range of options for controlling diverse biological processes. Consequently, the Hippo pathway not only dictates the fate of individual cells but also triggers multicellular responses involving both tissue-resident cells and infiltrating immune cells. Here, we have highlighted the recent understanding of the molecular mechanisms by which the Hippo pathway controls cell-cell communication and discuss its importance in tissue homeostasis, especially in development and regeneration.
Collapse
Affiliation(s)
- Akihiro Nita
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
3
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
4
|
Kowalczyk AE, Krazinski BE, Piotrowska A, Grzegrzolka J, Godlewski J, Dziegiel P, Kmiec Z. Impaired Expression of the Salvador Homolog-1 Gene Is Associated with the Development and Progression of Colorectal Cancer. Cancers (Basel) 2023; 15:5771. [PMID: 38136317 PMCID: PMC10742029 DOI: 10.3390/cancers15245771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Salvador homolog-1 (SAV1) is a component of the Hippo pathway that regulates tissue growth and homeostasis by affecting diverse cell processes, including apoptosis, cell division, and differentiation. The aberrant expression of Hippo pathway components has been observed in various human cancers. This study aimed to examine the expression level of the SAV1 gene in colorectal cancer (CRC) and its prognostic value and associations with tumor progression. We obtained matched pairs of tumor tissue and non-cancerous mucosa of the large intestine from 94 CRC patients as well as 40 colon biopsies of healthy subjects collected during screening colonoscopy. The tissue samples and CRC cell lines were quantified for SAV1 mRNA levels using the quantitative polymerase chain reaction method, while SAV1 protein expression was estimated in the paired tissues of CRC patients using immunohistochemistry. The average level of SAV1 mRNA was decreased in 93.6% of the tumor tissues compared to the corresponding non-cancerous tissues and biopsies of healthy colon mucosa. A downregulated expression of SAV1 mRNA was also noted in the CRC cell lines. Although the average SAV1 immunoreactivity was increased in the CRC samples compared to the non-cancerous tissues, a decreased immunoreactivity of the SAV1 protein in the tumor specimens was associated with lymph node involvement and higher TNM disease stage and histological grade. The results of our study suggest that the impaired expression of SAV1 is involved in CRC progression.
Collapse
Affiliation(s)
- Anna Ewa Kowalczyk
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (B.E.K.); (J.G.)
| | - Bartlomiej Emil Krazinski
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (B.E.K.); (J.G.)
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (J.G.); (P.D.)
| | - Jedrzej Grzegrzolka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (J.G.); (P.D.)
| | - Janusz Godlewski
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (B.E.K.); (J.G.)
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (J.G.); (P.D.)
| | - Zbigniew Kmiec
- Department of Histology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| |
Collapse
|
5
|
Peng C, Wu DD, Ren JL, Peng ZL, Ma Z, Wu W, Lv Y, Wang Z, Deng C, Jiang K, Parkinson CL, Qi Y, Zhang ZY, Li JT. Large-scale snake genome analyses provide insights into vertebrate development. Cell 2023; 186:2959-2976.e22. [PMID: 37339633 DOI: 10.1016/j.cell.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/06/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023]
Abstract
Snakes are a remarkable squamate lineage with unique morphological adaptations, especially those related to the evolution of vertebrate skeletons, organs, and sensory systems. To clarify the genetic underpinnings of snake phenotypes, we assembled and analyzed 14 de novo genomes from 12 snake families. We also investigated the genetic basis of the morphological characteristics of snakes using functional experiments. We identified genes, regulatory elements, and structural variations that have potentially contributed to the evolution of limb loss, an elongated body plan, asymmetrical lungs, sensory systems, and digestive adaptations in snakes. We identified some of the genes and regulatory elements that might have shaped the evolution of vision, the skeletal system and diet in blind snakes, and thermoreception in infrared-sensitive snakes. Our study provides insights into the evolution and development of snakes and vertebrates.
Collapse
Affiliation(s)
- Changjun Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jin-Long Ren
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | - Zhong-Liang Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifei Ma
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; College of Life Science, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | - Zeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cao Deng
- Departments of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu 610000, China
| | - Ke Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | | | - Yin Qi
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | - Zhi-Yi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar.
| |
Collapse
|
6
|
Gupta SRR, Nagar G, Mittal P, Rana S, Singh H, Singh R, Singh A, Singh IK. Breast Cancer Therapeutics and Hippo Signaling Pathway: Novel MicroRNA-Gene-Protein Interaction Networks. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:273-280. [PMID: 37311160 DOI: 10.1089/omi.2023.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Hippo signaling pathway is a master regulator of development, cell proliferation, and apoptosis in particular, and it plays an important role in tissue regeneration, controlling organ size, and cancer suppression. Dysregulation of the Hippo signaling pathway has been implicated in breast cancer, a highly prevalent cancer affecting 1 out of every 15 women worldwide. While the Hippo signaling pathway inhibitors are available, they are suboptimal, for example, due to chemoresistance, mutation, and signal leakage. Inadequate knowledge about the Hippo pathway connections and their regulators limits our ability to uncover novel molecular targets for drug development. We report here novel microRNA (miRNA)-gene and protein-protein interaction networks in the Hippo signaling pathway. We employed the GSE miRNA dataset for the present study. The GSE57897 dataset was normalized and searched for differentially expressed miRNAs, and their targets were searched using the miRWalk2.0 tool. From the upregulated miRNAs, we observed that the hsa-miR-205-5p forms the biggest cluster and targets four genes involved in the Hippo signaling pathway. Interestingly, we found a novel connection between two Hippo signaling pathway proteins, angiomotin (AMOT) and mothers against decapentaplegic homolog 4 (SMAD4). From the downregulated miRNAs, hsa-miR-16-5p, hsa-miR-7g-5p, hsa-miR-141-3p, hsa-miR-103a-3p, hsa-miR-21-5p, and hsa-miR-200c-3p, target genes were present in the pathway. We found that PTEN, EP300, and BTRC were important cancer-inhibiting proteins, form hubs, and their genes interact with downregulating miRNAs. We suggest that targeting proteins from these newly unraveled networks in the Hippo signaling pathway and further research on the interaction of hub-forming cancer-inhibiting proteins can open up new avenues for next-generation breast cancer therapeutics.
Collapse
Affiliation(s)
- Shradheya R R Gupta
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Garima Nagar
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Pooja Mittal
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Shweta Rana
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| | - Harpreet Singh
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia, New Delhi, India
| | - Archana Singh
- Department of Botany, Hans Raj College, University of Delhi, New Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi, India
| |
Collapse
|
7
|
Zhang H, Mao Z, Yang Z, Nakamura F. Identification of Filamin A Mechanobinding Partner III: SAV1 Specifically Interacts with Filamin A Mechanosensitive Domain 21. Biochemistry 2023; 62:1197-1208. [PMID: 36857526 DOI: 10.1021/acs.biochem.2c00665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Filamin A (FLNA) cross-links actin filaments and mediates mechanotransduction by force-induced conformational changes of its domains. FLNA's mechanosensitive immunoglobulin-like repeats (R) interact with each other to create cryptic binding sites, which can be exposed by physiologically relevant mechanical forces. Using the FLNA mechanosensing domains as an affinity ligand followed by stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics, we recently identified smoothelin and fimbacin as FLNA mechanobinding proteins. Here, using the mechanosensing domain as an affinity ligand and two labeled amino acids, we identify salvador homologue 1 (SAV1), a component of the Hippo pathway kinase cascade, as a new FLNA mechanobinding partner. We demonstrate that SAV1 specifically interacts with the cryptic C-D cleft of FLNA R21 and map the FLNA-binding site on SAV1. We show that point mutations on the R21 C strand block the SAV1 interaction and find that SAV1 contains a FLNA-binding motif in the central region (116Phe-124Val). Point mutations F116A and T118A (FT/AA) disrupt the interaction. A proximity ligation assay reveals that their interaction occurs in the cytosol in an actin polymerization-dependent manner. Although SAV1 is typically found in the cytosol, disrupting the interaction between SAV1 and FLNA causes SAV1 to diffuse to the nucleus and YAP1 to diffuse to the cytosol in an inverse relationship. These results suggest that FLNA mediates regulation of the Hippo pathway through actin polymerization-dependent interaction with SAV1.
Collapse
Affiliation(s)
- Huaguan Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Zhenfeng Mao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Ziwei Yang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
8
|
Khalilimeybodi A, Fraley S, Rangamani P. Mechanisms underlying divergent relationships between Ca 2+ and YAP/TAZ signalling. J Physiol 2023; 601:483-515. [PMID: 36463416 PMCID: PMC10986318 DOI: 10.1113/jp283966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Yes-associated protein (YAP) and its homologue TAZ are transducers of several biochemical and biomechanical signals, integrating multiplexed inputs from the microenvironment into higher level cellular functions such as proliferation, differentiation and migration. Emerging evidence suggests that Ca2+ is a key second messenger that connects microenvironmental input signals and YAP/TAZ regulation. However, studies that directly modulate Ca2+ have reported contradictory YAP/TAZ responses: in some studies, a reduction in Ca2+ influx increases the activity of YAP/TAZ, while in others, an increase in Ca2+ influx activates YAP/TAZ. Importantly, Ca2+ and YAP/TAZ exhibit distinct spatiotemporal dynamics, making it difficult to unravel their connections from a purely experimental approach. In this study, we developed a network model of Ca2+ -mediated YAP/TAZ signalling to investigate how temporal dynamics and crosstalk of signalling pathways interacting with Ca2+ can alter the YAP/TAZ response, as observed in experiments. By including six signalling modules (e.g. GPCR, IP3-Ca2+ , kinases, RhoA, F-actin and Hippo-YAP/TAZ) that interact with Ca2+ , we investigated both transient and steady-state cell response to angiotensin II and thapsigargin stimuli. The model predicts that stimuli, Ca2+ transients and frequency-dependent relationships between Ca2+ and YAP/TAZ are primarily mediated by cPKC, DAG, CaMKII and F-actin. Simulation results illustrate the role of Ca2+ dynamics and CaMKII bistable response in switching the direction of changes in Ca2+ -induced YAP/TAZ activity. A frequency-dependent YAP/TAZ response revealed the competition between upstream regulators of LATS1/2, leading to the YAP/TAZ non-monotonic response to periodic GPCR stimulation. This study provides new insights into underlying mechanisms responsible for the controversial Ca2+ -YAP/TAZ relationship observed in experiments. KEY POINTS: YAP/TAZ integrates biochemical and biomechanical inputs to regulate cellular functions, and Ca2+ acts as a key second messenger linking cellular inputs to YAP/TAZ. Studies have reported contradictory Ca2+ -YAP/TAZ relationships for different cell types and stimuli. A network model of Ca2+ -mediated YAP/TAZ signalling was developed to investigate the underlying mechanisms of divergent Ca2+ -YAP/TAZ relationships. The model predicts context-dependent Ca2+ transient, CaMKII bistable response and frequency-dependent activation of LATS1/2 upstream regulators as mechanisms governing the Ca2+ -YAP/TAZ relationship. This study provides new insights into the underlying mechanisms of the controversial Ca2+ -YAP/TAZ relationship to better understand the dynamics of cellular functions controlled by YAP/TAZ activity.
Collapse
Affiliation(s)
- A. Khalilimeybodi
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093
| | - S.I. Fraley
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093
| | - P. Rangamani
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093
| |
Collapse
|
9
|
Kowalczyk W, Romanelli L, Atkins M, Hillen H, Bravo González-Blas C, Jacobs J, Xie J, Soheily S, Verboven E, Moya IM, Verhulst S, de Waegeneer M, Sansores-Garcia L, van Huffel L, Johnson RL, van Grunsven LA, Aerts S, Halder G. Hippo signaling instructs ectopic but not normal organ growth. Science 2022; 378:eabg3679. [DOI: 10.1126/science.abg3679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Hippo signaling pathway is widely considered a master regulator of organ growth because of the prominent overgrowth phenotypes caused by experimental manipulation of its activity. Contrary to this model, we show here that removing Hippo transcriptional output did not impair the ability of the mouse liver and
Drosophila
eyes to grow to their normal size. Moreover, the transcriptional activity of the Hippo pathway effectors Yap/Taz/Yki did not correlate with cell proliferation, and hyperactivation of these effectors induced gene expression programs that did not recapitulate normal development. Concordantly, a functional screen in
Drosophila
identified several Hippo pathway target genes that were required for ectopic overgrowth but not normal growth. Thus, Hippo signaling does not instruct normal growth, and the Hippo-induced overgrowth phenotypes are caused by the activation of abnormal genetic programs.
Collapse
Affiliation(s)
- W. Kowalczyk
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - L. Romanelli
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - M. Atkins
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - H. Hillen
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - C. Bravo González-Blas
- VIB Center for Brain and Disease Research and KU Leuven Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - J. Jacobs
- VIB Center for Brain and Disease Research and KU Leuven Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - J. Xie
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - S. Soheily
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - E. Verboven
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - I. M. Moya
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - S. Verhulst
- Department for Cell Biology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussel-Jette, Belgium
| | - M. de Waegeneer
- VIB Center for Brain and Disease Research and KU Leuven Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - L. Sansores-Garcia
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - L. van Huffel
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - R. L. Johnson
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L. A. van Grunsven
- Department for Cell Biology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussel-Jette, Belgium
| | - S. Aerts
- VIB Center for Brain and Disease Research and KU Leuven Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - G. Halder
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Faraji F, Ramirez SI, Anguiano Quiroz PY, Mendez-Molina AN, Gutkind JS. Genomic Hippo Pathway Alterations and Persistent YAP/TAZ Activation: New Hallmarks in Head and Neck Cancer. Cells 2022; 11:1370. [PMID: 35456049 PMCID: PMC9028246 DOI: 10.3390/cells11081370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a highly prevalent and deadly malignancy worldwide. The prognosis for locoregionally advanced HNSCC has not appreciably improved over the past 30 years despite advances in surgical, radiation, and targeted therapies and less than 20% of HNSCC patients respond to recently approved immune checkpoint inhibitors. The Hippo signaling pathway, originally discovered as a mechanism regulating tissue growth and organ size, transduces intracellular and extracellular signals to regulate the transcriptional co-activators YAP and TAZ. Alterations in the Hippo pathway resulting in persistent YAP and TAZ activation have emerged as major oncogenic drivers. Our analysis of the human HNSCC oncogenome revealed multiple genomic alterations impairing Hippo signaling and activating YAP and TAZ, which in turn contribute to HNSCC development. This includes mutations and deletions of the FAT1 gene (29%) and amplification of the WWTR1 (encoding TAZ, 14%) and YAP1 genes (8%), together representing one of the most genetically altered signaling mechanisms in this malignancy. Here, we discuss key elements of the mammalian Hippo pathway, detail mechanisms by which perturbations in Hippo signaling promote HNSCC initiation and progression and outline emerging strategies to target Hippo signaling vulnerabilities as part of novel multimodal precision therapies for HNSCC.
Collapse
Affiliation(s)
- Farhoud Faraji
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, University of California San Diego Health, La Jolla, CA 92093, USA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sydney I. Ramirez
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Disease and Global Public Health, Department of Internal Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | | | | | - J. Silvio Gutkind
- Gleiberman Head and Neck Cancer Center, University of California San Diego Health, La Jolla, CA 92093, USA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| |
Collapse
|
11
|
Zuo Y, He J, Liu S, Xu Y, Liu J, Qiao C, Zang L, Sun W, Yuan Y, Zhang H, Chen X, Jin L, Miao Y, Huang F, Ren T, Wang J, Qian F, Zhu C, Zhang W, Liu Y, Xu G, Ma F, Zheng H. LATS1 is a central signal transmitter for achieving full type-I interferon activity. SCIENCE ADVANCES 2022; 8:eabj3887. [PMID: 35394840 PMCID: PMC8993116 DOI: 10.1126/sciadv.abj3887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/19/2022] [Indexed: 05/14/2023]
Abstract
Interferons (IFNs) have broad-spectrum antiviral activity to resist virus epidemic. However, IFN antiviral efficacy needs to be greatly improved. Here, we reveal that LATS1 is a vital signal transmitter governing full type-I IFN (IFN-I) signaling activity. LATS1 constitutively binds with the IFN-I receptor IFNAR2 and is rapidly tyro-phosphorylated by Tyk2 upon IFN-I engagement. Tyro-phosphorylation of LATS1 promotes LATS1 activation and YAP degradation, thereby promoting IFN-mediated antiproliferation activity. Moreover, activated LATS1 translocates into the nucleus and induces CDK8-Ser62 phosphorylation, which in turn phosphorylates STAT1 at Ser727 and induces full IFN-I antiviral activity. LATS1 deficiency restricts in vivo IFN-I signaling and attenuates host antiviral immune response. Our study identifies IFN-I as a previously unidentified extracellular diffusible ligand signal for activation of the Hippo core LATS1 pathway and reveals Tyk2-LATS1-CDK8 as a complete signaling cascade controlling full IFN-I activity.
Collapse
Affiliation(s)
- Yibo Zuo
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jiuyi He
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Siying Liu
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Ying Xu
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jin Liu
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Caixia Qiao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Lichao Zang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Wenhuan Sun
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hongguang Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Xiangjie Chen
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Lincong Jin
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Fan Huang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Tengfei Ren
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jun Wang
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Feng Qian
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chuanwu Zhu
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Guoqiang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Feng Ma
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Pincha N, Marangoni P, Haque A, Klein OD. Parallels in signaling between development and regeneration in ectodermal organs. Curr Top Dev Biol 2022; 149:373-419. [PMID: 35606061 PMCID: PMC10049776 DOI: 10.1016/bs.ctdb.2022.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ectodermal organs originate from the outermost germ layer of the developing embryo and include the skin, hair, tooth, nails, and exocrine glands. These organs develop through tightly regulated, sequential and reciprocal epithelial-mesenchymal crosstalk, and they eventually assume various morphologies and functions while retaining the ability to regenerate. As with many other tissues in the body, the development and morphogenesis of these organs are regulated by a set of common signaling pathways, such as Shh, Wnt, Bmp, Notch, Tgf-β, and Eda. However, subtle differences in the temporal activation, the multiple possible combinations of ligand-receptor activation, the various cofactors, as well as the underlying epigenetic modulation determine how each organ develops into its adult form. Although each organ has been studied separately in considerable detail, the mechanisms underlying the parallels and differences in signaling that regulate their development have rarely been investigated. First, we will use the tooth, the hair follicle, and the mammary gland as representative ectodermal organs to explore how the development of signaling centers and establishment of stem cell populations influence overall growth and morphogenesis. Then we will compare how some of the major signaling pathways (Shh, Wnt, Notch and Yap/Taz) differentially regulate developmental events. Finally, we will discuss how signaling regulates regenerative processes in all three.
Collapse
Affiliation(s)
- Neha Pincha
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Ameera Haque
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, United States.
| |
Collapse
|
13
|
Ramms DJ, Raimondi F, Arang N, Herberg FW, Taylor SS, Gutkind JS. G αs-Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant G αs-PKA Signaling. Pharmacol Rev 2021; 73:155-197. [PMID: 34663687 PMCID: PMC11060502 DOI: 10.1124/pharmrev.120.000269] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many of the fundamental concepts of signal transduction and kinase activity are attributed to the discovery and crystallization of cAMP-dependent protein kinase, or protein kinase A. PKA is one of the best-studied kinases in human biology, with emphasis in biochemistry and biophysics, all the way to metabolism, hormone action, and gene expression regulation. It is surprising, however, that our understanding of PKA's role in disease is largely underappreciated. Although genetic mutations in the PKA holoenzyme are known to cause diseases such as Carney complex, Cushing syndrome, and acrodysostosis, the story largely stops there. With the recent explosion of genomic medicine, we can finally appreciate the broader role of the Gαs-PKA pathway in disease, with contributions from aberrant functioning G proteins and G protein-coupled receptors, as well as multiple alterations in other pathway components and negative regulators. Together, these represent a broad family of diseases we term the Gαs-PKA pathway signalopathies. The Gαs-PKA pathway signalopathies encompass diseases caused by germline, postzygotic, and somatic mutations in the Gαs-PKA pathway, with largely endocrine and neoplastic phenotypes. Here, we present a signaling-centric review of Gαs-PKA-driven pathophysiology and integrate computational and structural analysis to identify mutational themes commonly exploited by the Gαs-PKA pathway signalopathies. Major mutational themes include hotspot activating mutations in Gαs, encoded by GNAS, and mutations that destabilize the PKA holoenzyme. With this review, we hope to incite further study and ultimately the development of new therapeutic strategies in the treatment of a wide range of human diseases. SIGNIFICANCE STATEMENT: Little recognition is given to the causative role of Gαs-PKA pathway dysregulation in disease, with effects ranging from infectious disease, endocrine syndromes, and many cancers, yet these disparate diseases can all be understood by common genetic themes and biochemical signaling connections. By highlighting these common pathogenic mechanisms and bridging multiple disciplines, important progress can be made toward therapeutic advances in treating Gαs-PKA pathway-driven disease.
Collapse
Affiliation(s)
- Dana J Ramms
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Francesco Raimondi
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Nadia Arang
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Friedrich W Herberg
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Susan S Taylor
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - J Silvio Gutkind
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| |
Collapse
|
14
|
Yan HC, Sun Y, Zhang MY, Zhang SE, Sun JD, Dyce PW, Klinger FG, De Felici M, Shen W, Cheng SF. YAP regulates porcine skin-derived stem cells self-renewal partly by repressing Wnt/β-catenin signaling pathway. Histochem Cell Biol 2021; 157:39-50. [PMID: 34586448 DOI: 10.1007/s00418-021-02034-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/02/2023]
Abstract
Skin-derived stem cells (SDSCs) are a class of adult stem cells (ASCs) that have the ability to self-renew and differentiate. The regulation mechanisms involved in the differentiation of SDSCs are a hot topic. In this paper, we explore the link between the transcriptional regulator yes-associated protein (YAP) and the fate of porcine SDSCs (pSDSCs). We found that lysophosphatidylcholine (LPC) activates YAP, promotes pSDSCs pluripotency, and counteracts transdifferentiation of pSDSCs into porcine primordial germ cell-like cells (pPGCLCs). YAP promotes the pluripotent state of pSDSCs by maintaining the high expression of the pluripotency genes Oct4 and Sox2. The overexpression of YAP prevented the differentiation of pSDSCs, and the depletion of YAP by small interfering RNA (siRNAs) suppressed the self-renewal of pSDSCs. In addition, we found that YAP regulates the fate of pSDSCs through a mechanism related to the Wnt/β-catenin signaling pathway. When an activator of the Wnt/β-catenin signaling pathway, CHIR99021, was added to pSDSCs overexpressing YAP, the ability of pSDSCs to differentiate was partially restored. Conversely, when XAV939, an inhibitor of the Wnt/β-catenin signaling pathway, was added to YAP knockdown pSDSCs a higher self-renewal ability resulted. Taken together, our results suggested that YAP and the Wnt/β-catenin signaling pathway interact to regulate the fate of pSDSCs.
Collapse
Affiliation(s)
- Hong-Chen Yan
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ming-Yu Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Jia-Dong Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Francesca Gioia Klinger
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
15
|
Cagdas D, Halacli SO, Tan C, Esenboğa S, Karaatmaca B, Cetinkaya PG, Balcı-Hayta B, Ayhan A, Uner A, Orhan D, Boztug K, Özen S, Topaloğlu R, Sanal O, Tezcan İ. Diversity in STK4 Deficiency and Review of the Literature. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3752-3766.e4. [PMID: 34146746 DOI: 10.1016/j.jaip.2021.05.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Serine-threonine kinase-4 (STK4) deficiency is an autosomal recessive (AR) combined immunodeficiency (CID). OBJECTIVE We aimed to define characteristic clinical and laboratory features to aid the differential diagnosis and determine the most suitable therapy. METHODS In addition to nine patients diagnosed, we reviewed 15 patients from medical literature. We compared B lymphocyte subgroups of our cohort with age-matched healthy controls. RESULTS In our cohort, the median age at symptom onset and age of diagnosis are 6years-8months (mo)(6-248mo) and 7years-5mo (6-260mo), respectively. The main clinical findings were infections (9/9), autoimmune/inflammatory diseases (7/9), and atopy (4/9). CD4 lymphopenia (9/9), lymphopenia (7/9), intermittent eosinophilia (4/9), transient neutropenia (3/9), low immunoglobulin (Ig) M (4/9), and high IgE (4/9) were common. Decreased recent thymic emigrants, naive and central memory T cells, albeit increased effector memory T cells were present. The increase in plasmablasts (p=0.003) and the decrease in switched memory B cells (p=0.022) were significant. Out of a total of 24 patients, cutaneous viral infections (n=20), recurrent pneumonia (n=18), Epstein Barr Virus (EBV)-associated lymphoproliferation (n=11), atopic dermatitis (n=10), autoimmune cytopenia (n=7), and lymphoma (n=6) were frequently seen. Lymphopenia, CD4 lymphopenia, high Ig G, A, and E were the most common laboratory characteristics. CONCLUSION The differential diagnosis with AR-hyperimmunoglobulin E syndrome is crucial as atopy and CD4 lymphopenia are prominent in both diseases. Immunoglobulins and antibacterial/antiviral prophylaxis are the mainstays of treatment. Clinicians may use immunomodulatory therapies during inflammatory/autoimmune complications. However, more data is needed to recommend hematopoietic stem cell transplantation (HSCT) as a safe therapy.
Collapse
Affiliation(s)
- Deniz Cagdas
- Hacettepe University Medical School, Department of Pediatric Immunology; Hacettepe University Medical School, Institute of Child Health, Department of Pediatric Immunology.
| | - Sevil Oskay Halacli
- Hacettepe University Medical School, Institute of Child Health, Department of Pediatric Immunology
| | - Cagman Tan
- Hacettepe University Medical School, Institute of Child Health, Department of Pediatric Immunology
| | - Saliha Esenboğa
- Hacettepe University Medical School, Department of Pediatric Immunology
| | - Betül Karaatmaca
- Hacettepe University Medical School, Department of Pediatric Immunology
| | | | | | - Arzu Ayhan
- Hacettepe University Medical School, Department of Pediatric Pathology
| | - Aysegul Uner
- Hacettepe University Medical School, Department of Pediatric Pathology
| | - Diclehan Orhan
- Hacettepe University Medical School, Department of Pediatric Pathology
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences
| | - Seza Özen
- Hacettepe University Medical School, Department of Pediatric Rheumatology
| | - Rezan Topaloğlu
- Hacettepe University Medical School, Department of Pediatric Nephrology
| | - Ozden Sanal
- Hacettepe University Medical School, Department of Pediatric Immunology; Hacettepe University Medical School, Institute of Child Health, Department of Pediatric Immunology
| | - İlhan Tezcan
- Hacettepe University Medical School, Department of Pediatric Immunology; Hacettepe University Medical School, Institute of Child Health, Department of Pediatric Immunology
| |
Collapse
|
16
|
Mohajan S, Jaiswal PK, Vatanmakarian M, Yousefi H, Sankaralingam S, Alahari SK, Koul S, Koul HK. Hippo pathway: Regulation, deregulation and potential therapeutic targets in cancer. Cancer Lett 2021; 507:112-123. [PMID: 33737002 PMCID: PMC10370464 DOI: 10.1016/j.canlet.2021.03.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023]
Abstract
Hippo pathway is a master regulator of development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size control. Hippo pathway relays signals from different extracellular and intracellular events to regulate cell behavior and functions. Hippo pathway is conserved from Protista to eukaryotes. Deregulation of the Hippo pathway is associated with numerous cancers. Alteration of the Hippo pathway results in cell invasion, migration, disease progression, and therapy resistance in cancers. However, the function of the various components of the mammalian Hippo pathway is yet to be elucidated in detail especially concerning tumor biology. In the present review, we focused on the Hippo pathway in different model organisms, its regulation and deregulation, and possible therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Suman Mohajan
- Department of Biochemistry and Molecular Biology, LSUHSC, Shreveport, USA
| | - Praveen Kumar Jaiswal
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Mousa Vatanmakarian
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA
| | | | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Sweaty Koul
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Hari K Koul
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Urology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA.
| |
Collapse
|
17
|
The Hippo pathway component Wwc2 is a key regulator of embryonic development and angiogenesis in mice. Cell Death Dis 2021; 12:117. [PMID: 33483469 PMCID: PMC7822818 DOI: 10.1038/s41419-021-03409-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/27/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
The WW-and-C2-domain-containing (WWC) protein family is involved in the regulation of cell differentiation, cell proliferation, and organ growth control. As upstream components of the Hippo signaling pathway, WWC proteins activate the Large tumor suppressor (LATS) kinase that in turn phosphorylates Yes-associated protein (YAP) and its paralog Transcriptional coactivator-with-PDZ-binding motif (TAZ) preventing their nuclear import and transcriptional activity. Inhibition of WWC expression leads to downregulation of the Hippo pathway, increased expression of YAP/TAZ target genes and enhanced organ growth. In mice, a ubiquitous Wwc1 knockout (KO) induces a mild neurological phenotype with no impact on embryogenesis or organ growth. In contrast, we could show here that ubiquitous deletion of Wwc2 in mice leads to early embryonic lethality. Wwc2 KO embryos display growth retardation, a disturbed placenta development, impaired vascularization, and finally embryonic death. A whole-transcriptome analysis of embryos lacking Wwc2 revealed a massive deregulation of gene expression with impact on cell fate determination, cell metabolism, and angiogenesis. Consequently, a perinatal, endothelial-specific Wwc2 KO in mice led to disturbed vessel formation and vascular hypersprouting in the retina. In summary, our data elucidate a novel role for Wwc2 as a key regulator in early embryonic development and sprouting angiogenesis in mice.
Collapse
|
18
|
Masliantsev K, Karayan-Tapon L, Guichet PO. Hippo Signaling Pathway in Gliomas. Cells 2021; 10:184. [PMID: 33477668 PMCID: PMC7831924 DOI: 10.3390/cells10010184] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The Hippo signaling pathway is a highly conserved pathway involved in tissue development and regeneration that controls organ size through the regulation of cell proliferation and apoptosis. The core Hippo pathway is composed of a block of kinases, MST1/2 (Mammalian STE20-like protein kinase 1/2) and LATS1/2 (Large tumor suppressor 1/2), which inhibits nuclear translocation of YAP/TAZ (Yes-Associated Protein 1/Transcriptional co-activator with PDZ-binding motif) and its downstream association with the TEAD (TEA domain) family of transcription factors. This pathway was recently shown to be involved in tumorigenesis and metastasis in several cancers such as lung, breast, or colorectal cancers but is still poorly investigated in brain tumors. Gliomas are the most common and the most lethal primary brain tumors representing about 80% of malignant central nervous system neoplasms. Despite intensive clinical protocol, the prognosis for patients remains very poor due to systematic relapse and treatment failure. Growing evidence demonstrating the role of Hippo signaling in cancer biology and the lack of efficient treatments for malignant gliomas support the idea that this pathway could represent a potential target paving the way for alternative therapeutics. Based on recent advances in the Hippo pathway deciphering, the main goal of this review is to highlight the role of this pathway in gliomas by a state-of-the-art synthesis.
Collapse
Affiliation(s)
- Konstantin Masliantsev
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| | - Lucie Karayan-Tapon
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| | - Pierre-Olivier Guichet
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| |
Collapse
|
19
|
Sahu MR, Mondal AC. Neuronal Hippo signaling: From development to diseases. Dev Neurobiol 2020; 81:92-109. [PMID: 33275833 DOI: 10.1002/dneu.22796] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/18/2020] [Accepted: 11/27/2020] [Indexed: 01/12/2023]
Abstract
Hippo signaling pathway is a highly conserved and familiar tissue growth regulator, primarily dealing with cell survival, cell proliferation, and apoptosis. The Yes-associated protein (YAP) is the key transcriptional effector molecule, which is under negative regulation of the Hippo pathway. Wealth of studies have identified crucial roles of Hippo/YAP signaling pathway during the process of development, including the development of neuronal system. We provide here, an overview of the contributions of this signaling pathway at multiple stages of neuronal development including, proliferation of neural stem cells (NSCs), migration of NSCs toward their destined niche, maintaining NSCs in the quiescent state, differentiation of NSCs into neurons, neuritogenesis, synaptogenesis, brain development, and in neuronal apoptosis. Hyperactivation of the neuronal Hippo pathway can also lead to a variety of devastating neurodegenerative diseases. Instances of aberrant Hippo pathway leading to neurodegenerative diseases along with the approaches utilizing this pathway as molecular targets for therapeutics has been highlighted in this review. Recent evidences suggesting neuronal repair and regenerative potential of this pathway has also been pointed out, that will shed light on a novel aspect of Hippo pathway in regenerative medicine. Our review provides a better understanding of the significance of Hippo pathway in the journey of neuronal system from development to diseases as a whole.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
20
|
Brandt ZJ, Echert AE, Bostrom JR, North PN, Link BA. Core Hippo pathway components act as a brake on Yap and Taz in the development and maintenance of the biliary network. Development 2020; 147:dev184242. [PMID: 32439761 PMCID: PMC7328147 DOI: 10.1242/dev.184242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
The development of the biliary system is a complex yet poorly understood process, with relevance to multiple diseases, including biliary atresia, choledochal cysts and gallbladder agenesis. We present here a crucial role for Hippo-Yap/Taz signaling in this context. Analysis of sav1 mutant zebrafish revealed dysplastic morphology and expansion of both intrahepatic and extrahepatic biliary cells, and ultimately larval lethality. Biliary dysgenesis, but not larval lethality, is driven primarily by Yap signaling. Re-expression of Sav1 protein in sav1-/- hepatocytes is able to overcome these initial deficits and allows sav1-/- fish to survive, suggesting cell non-autonomous signaling from hepatocytes. Examination of sav1-/- rescued adults reveals loss of gallbladder and formation of dysplastic cell masses expressing biliary markers, suggesting roles for Hippo signaling in extrahepatic biliary carcinomas. Deletion of stk3 revealed that the phenotypes observed in sav1 mutant fish function primarily through canonical Hippo signaling and supports a role for phosphatase PP2A, but also suggests Sav1 has functions in addition to facilitating Stk3 activity. Overall, this study defines a role for Hippo-Yap signaling in the maintenance of both intra- and extrahepatic biliary ducts.
Collapse
Affiliation(s)
- Zachary J Brandt
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Ashley E Echert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Jonathan R Bostrom
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Paula N North
- Department of Pediatric Pathology, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| |
Collapse
|
21
|
Cao X, Wang C, Liu J, Zhao B. Regulation and functions of the Hippo pathway in stemness and differentiation. Acta Biochim Biophys Sin (Shanghai) 2020; 52:736-748. [DOI: 10.1093/abbs/gmaa048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Abstract
The Hippo pathway plays important roles in organ development, tissue regeneration, and human diseases, such as cancer. In the canonical Hippo pathway, the MST1/2-LATS1/2 kinase cascade phosphorylates and inhibits transcription coactivators Yes-associated protein and transcription coactivator with PDZ-binding motif and thus regulates transcription of genes important for cell proliferation and apoptosis. However, recent studies have depicted a much more complicate picture of the Hippo pathway with many new components and regulatory stimuli involving both chemical and mechanical signals. Furthermore, accumulating evidence indicates that the Hippo pathway also plays important roles in the determination of cell fates, such as self-renewal and differentiation. Here, we review regulations of the Hippo pathway and its functions in stemness and differentiation emphasizing recent discoveries.
Collapse
Affiliation(s)
- Xiaolei Cao
- MOE key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China, and
| | - Chenliang Wang
- MOE key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China, and
| | - Jiyang Liu
- MOE key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China, and
| | - Bin Zhao
- MOE key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China, and
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Biggs LC, Kim CS, Miroshnikova YA, Wickström SA. Mechanical Forces in the Skin: Roles in Tissue Architecture, Stability, and Function. J Invest Dermatol 2020; 140:284-290. [DOI: 10.1016/j.jid.2019.06.137] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 01/08/2023]
|
23
|
Abstract
The Hippo pathway and its downstream effectors, the transcriptional co-activators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), regulate organ growth and cell plasticity during animal development and regeneration. Remarkably, experimental activation of YAP/TAZ in the mouse can promote regeneration in organs with poor or compromised regenerative capacity, such as the adult heart and the liver and intestine of old or diseased mice. However, therapeutic YAP/TAZ activation may cause serious side effects. Most notably, YAP/TAZ are hyperactivated in human cancers, and prolonged activation of YAP/TAZ triggers cancer development in mice. Thus, can the power of YAP/TAZ to promote regeneration be harnessed in a safe way? Here, we review the role of Hippo signalling in animal regeneration, examine the promises and risks of YAP/TAZ activation for regenerative medicine and discuss strategies to activate YAP/TAZ for regenerative therapy while minimizing adverse side effects.
Collapse
|
24
|
Ikeda S, Mizushima W, Sciarretta S, Abdellatif M, Zhai P, Mukai R, Fefelova N, Oka SI, Nakamura M, Del Re DP, Farrance I, Park JY, Tian B, Xie LH, Kumar M, Hsu CP, Sadayappan S, Shimokawa H, Lim DS, Sadoshima J. Hippo Deficiency Leads to Cardiac Dysfunction Accompanied by Cardiomyocyte Dedifferentiation During Pressure Overload. Circ Res 2019; 124:292-305. [PMID: 30582455 DOI: 10.1161/circresaha.118.314048] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE The Hippo pathway plays an important role in determining organ size through regulation of cell proliferation and apoptosis. Hippo inactivation and consequent activation of YAP (Yes-associated protein), a transcription cofactor, have been proposed as a strategy to promote myocardial regeneration after myocardial infarction. However, the long-term effects of Hippo deficiency on cardiac function under stress remain unknown. OBJECTIVE We investigated the long-term effect of Hippo deficiency on cardiac function in the presence of pressure overload (PO). METHODS AND RESULTS We used mice with cardiac-specific homozygous knockout of WW45 (WW45cKO), in which activation of Mst1 (Mammalian sterile 20-like 1) and Lats2 (large tumor suppressor kinase 2), the upstream kinases of the Hippo pathway, is effectively suppressed because of the absence of the scaffolding protein. We used male mice at 3 to 4 month of age in all animal experiments. We subjected WW45cKO mice to transverse aortic constriction for up to 12 weeks. WW45cKO mice exhibited higher levels of nuclear YAP in cardiomyocytes during PO. Unexpectedly, the progression of cardiac dysfunction induced by PO was exacerbated in WW45cKO mice, despite decreased apoptosis and activated cardiomyocyte cell cycle reentry. WW45cKO mice exhibited cardiomyocyte sarcomere disarray and upregulation of TEAD1 (transcriptional enhancer factor) target genes involved in cardiomyocyte dedifferentiation during PO. Genetic and pharmacological inactivation of the YAP-TEAD1 pathway reduced the PO-induced cardiac dysfunction in WW45cKO mice and attenuated cardiomyocyte dedifferentiation. Furthermore, the YAP-TEAD1 pathway upregulated OSM (oncostatin M) and OSM receptors, which played an essential role in mediating cardiomyocyte dedifferentiation. OSM also upregulated YAP and TEAD1 and promoted cardiomyocyte dedifferentiation, indicating the existence of a positive feedback mechanism consisting of YAP, TEAD1, and OSM. CONCLUSIONS Although activation of YAP promotes cardiomyocyte regeneration after cardiac injury, it induces cardiomyocyte dedifferentiation and heart failure in the long-term in the presence of PO through activation of the YAP-TEAD1-OSM positive feedback mechanism.
Collapse
Affiliation(s)
- Shohei Ikeda
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.).,Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.I., H.S.)
| | - Wataru Mizushima
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | - Sebastiano Sciarretta
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.).,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S. Sciarretta).,Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (S. Sciarretta)
| | - Maha Abdellatif
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | - Peiyong Zhai
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | - Risa Mukai
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | - Nadezhda Fefelova
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | - Shin-Ichi Oka
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | - Michinari Nakamura
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | - Dominic P Del Re
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | | | - Ji Yeon Park
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark (J.Y.P., B.T.)
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark (J.Y.P., B.T.)
| | - Lai-Hua Xie
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | - Mohit Kumar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, OH (M.K., S. Sadayappan)
| | - Chiao-Po Hsu
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.)
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, OH (M.K., S. Sadayappan)
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.I., H.S.)
| | - Dae-Sik Lim
- Department of Biological Science, National Creative Research Initiatives Center for Cell Division and Differentiation, Korea Advanced Institute of Science and Technology, Daejeon (D.-S.L.)
| | - Junichi Sadoshima
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| |
Collapse
|
25
|
Abstract
The Hippo signalling pathway and its transcriptional co-activator targets Yorkie/YAP/TAZ first came to attention because of their role in tissue growth control. Over the past 15 years, it has become clear that, like other developmental pathways (e.g. the Wnt, Hedgehog and TGFβ pathways), Hippo signalling is a 'jack of all trades' that is reiteratively used to mediate a range of cellular decision-making processes from proliferation, death and morphogenesis to cell fate determination. Here, and in the accompanying poster, we briefly outline the core pathway and its regulation, and describe the breadth of its roles in animal development.
Collapse
Affiliation(s)
- John Robert Davis
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
26
|
Yang Z, Joyner AL. YAP1 is involved in replenishment of granule cell precursors following injury to the neonatal cerebellum. Dev Biol 2019; 455:458-472. [PMID: 31376393 DOI: 10.1016/j.ydbio.2019.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 01/08/2023]
Abstract
The cerebellum undergoes major rapid growth during the third trimester and early neonatal stage in humans, making it vulnerable to injuries in pre-term babies. Experiments in mice have revealed a remarkable ability of the neonatal cerebellum to recover from injuries around birth. In particular, recovery following irradiation-induced ablation of granule cell precursors (GCPs) involves adaptive reprogramming of Nestin-expressing glial progenitors (NEPs). Sonic hedgehog signaling is required for the initial step in NEP reprogramming; however, the full spectrum of developmental signaling pathways that promote NEP-driven regeneration is not known. Since the growth regulatory Hippo pathway has been implicated in the repair of several tissue types, we tested whether Hippo signaling is involved in regeneration of the cerebellum. Using mouse models, we found that the Hippo pathway transcriptional co-activator YAP1 (Yes-associated protein 1) but not TAZ (transcriptional coactivator with PDZ binding motif, or WWTR1) is required in NEPs for full recovery of cerebellar growth following irradiation one day after birth. Although Yap1 plays only a minor role during normal development in differentiation of NEPs or GCPs, the size of the cerebellum, and in particular the internal granule cell layer produced by GCPs, is significantly reduced in Yap1 mutants after irradiation, and the organization of Purkinje cells and Bergmann glial fibers is disrupted. The initial proliferative response of Yap1 mutant NEPs to irradiation is normal and the cells migrate to the GCP niche, but subsequently there is increased cell death of GCPs and altered migration of granule cells, possibly due to defects in Bergmann glia. Moreover, loss of Taz along with Yap1 in NEPs does not abrogate regeneration or alter development of the cerebellum. Our study provides new insights into the molecular signaling underlying postnatal cerebellar development and regeneration.
Collapse
Affiliation(s)
- Zhaohui Yang
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, United States; Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, United States
| | - Alexandra L Joyner
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, United States; Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, United States.
| |
Collapse
|
27
|
Pocaterra A, Santinon G, Romani P, Brian I, Dimitracopoulos A, Ghisleni A, Carnicer-Lombarte A, Forcato M, Braghetta P, Montagner M, Galuppini F, Aragona M, Pennelli G, Bicciato S, Gauthier N, Franze K, Dupont S. F-actin dynamics regulates mammalian organ growth and cell fate maintenance. J Hepatol 2019; 71:130-142. [PMID: 30878582 DOI: 10.1016/j.jhep.2019.02.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/31/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS In vitro, cell function can be potently regulated by the mechanical properties of cells and of their microenvironment. Cells measure these features by developing forces via their actomyosin cytoskeleton, and respond accordingly by regulating intracellular pathways, including the transcriptional coactivators YAP/TAZ. Whether mechanical cues are relevant for in vivo regulation of adult organ homeostasis, and whether this occurs through YAP/TAZ, remains largely unaddressed. METHODS We developed Capzb conditional knockout mice and obtained primary fibroblasts to characterize the role of CAPZ in vitro. In vivo functional analyses were carried out by inducing Capzb inactivation in adult hepatocytes, manipulating YAP/Hippo activity by hydrodynamic tail vein injections, and treating mice with the ROCK inhibitor, fasudil. RESULTS We found that the F-actin capping protein CAPZ restrains actomyosin contractility: Capzb inactivation alters stress fiber and focal adhesion dynamics leading to enhanced myosin activity, increased traction forces, and increased liver stiffness. In vitro, this rescues YAP from inhibition by a small cellular geometry; in vivo, it induces YAP activation in parallel to the Hippo pathway, causing extensive hepatocyte proliferation and leading to striking organ overgrowth. Moreover, Capzb is required for the maintenance of the differentiated hepatocyte state, for metabolic zonation, and for gluconeogenesis. In keeping with changes in tissue mechanics, inhibition of the contractility regulator ROCK, or deletion of the Yap1 mechanotransducer, reverse the phenotypes emerging in Capzb-null livers. CONCLUSIONS These results indicate a previously unsuspected role for CAPZ in tuning the mechanical properties of cells and tissues, which is required in hepatocytes for the maintenance of the differentiated state and to regulate organ size. More generally, it indicates for the first time that mechanotransduction has a physiological role in maintaining liver homeostasis in mammals. LAY SUMMARY The mechanical properties of cells and tissues (i.e. whether they are soft or stiff) are thought to be important regulators of cell behavior. Herein, we found that inactivation of the protein CAPZ alters the mechanical properties of cells and liver tissues, leading to YAP hyperactivation. In turn, this profoundly alters liver physiology, causing organ overgrowth, defects in liver cell differentiation and metabolism. These results reveal a previously uncharacterized role for mechanical signals in the maintenance of adult liver homeostasis.
Collapse
Affiliation(s)
| | - Giulia Santinon
- Department of Molecular Medicine DMM, University of Padova, Italy
| | - Patrizia Romani
- Department of Molecular Medicine DMM, University of Padova, Italy
| | - Irene Brian
- Department of Molecular Medicine DMM, University of Padova, Italy
| | | | - Andrea Ghisleni
- Institute FIRC (Italian Foundation for Cancer Research) of Molecular Oncology (IFOM Institute FIRC for Molecular Oncology), Milan, Italy
| | | | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Paola Braghetta
- Department of Molecular Medicine DMM, University of Padova, Italy
| | - Marco Montagner
- Department of Molecular Medicine DMM, University of Padova, Italy
| | | | | | | | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Nils Gauthier
- Institute FIRC (Italian Foundation for Cancer Research) of Molecular Oncology (IFOM Institute FIRC for Molecular Oncology), Milan, Italy
| | - Kristian Franze
- Department of Physiology Development and Neuroscience, University of Cambridge, UK
| | - Sirio Dupont
- Department of Molecular Medicine DMM, University of Padova, Italy.
| |
Collapse
|
28
|
Cofre J, Saalfeld K, Abdelhay E. Cancer as an Embryological Phenomenon and Its Developmental Pathways: A Hypothesis regarding the Contribution of the Noncanonical Wnt Pathway. ScientificWorldJournal 2019; 2019:4714781. [PMID: 30940992 PMCID: PMC6421044 DOI: 10.1155/2019/4714781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/18/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
For gastrulation to occur in human embryos, a mechanism that simultaneously regulates many different processes, such as cell differentiation, proliferation, migration, and invasion, is required to consistently and effectively create a human being during embryonic morphogenesis. The striking similarities in the processes of cancer and gastrulation have prompted speculation regarding the developmental pathways involved in their regulation. One of the fundamental requirements for the developmental pathways in gastrulation and cancer is the ability to respond to environmental stimuli, and it has been proposed that the Kaiso and noncanonical Wnt pathways participate in the mechanisms regulating these developmental pathways. In particular, these pathways might also explain the notable differences in invasive capacity between cancers of endodermal and mesodermal origins and cancers of ectodermal origin. Nevertheless, the available information indicates that cancer is an abnormal state of adult human cells in which developmental pathways are reactivated in inappropriate temporal and spatial contexts.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Universidade Federal de Santa Catarina, Sala 313b, 88040-900 Florianópolis, SC, Brazil
| | - Kay Saalfeld
- Laboratório de Filogenia Animal, Universidade Federal de Santa Catarina, Brazil
| | - Eliana Abdelhay
- Divisão de Laboratórios do CEMO, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
The peripheral eye: A neurogenic area with potential to treat retinal pathologies? Prog Retin Eye Res 2018; 68:110-123. [PMID: 30201383 DOI: 10.1016/j.preteyeres.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
Abstract
Numerous degenerative diseases affecting visual function, including glaucoma and retinitis pigmentosa, are produced by the loss of different types of retinal cells. Cell replacement therapy has emerged as a promising strategy for treating these and other retinal diseases. The retinal margin or ciliary body (CB) of mammals has been proposed as a potential source of cells to be used in degenerative conditions affecting the retina because it has been reported it might hold neurogenic potential beyond embryonic development. However, many aspects of the origin and biology of the CB are unknown and more recent experiments have challenged the capacity of CB cells to generate different types of retinal neurons. Here we review the most recent findings about the development of the marginal zone of the retina in different vertebrates and some of the mechanisms underlying the proliferative and neurogenic capacity of this fascinating region of the vertebrates eye. In addition, we performed experiments to isolate CB cells from the mouse retina, generated neurospheres and observed that they can be expanded with a proliferative ratio similar to neural stem cells. When induced to differentiate, cells derived from the CB neurospheres start to express early neural markers but, unlike embryonic stem cells, they are not able to fully differentiate in vitro or generate retinal organoids. Together with previous reports on the neurogenic capacity of CB cells, also reviewed here, our results contribute to the current knowledge about the potentiality of this peripheral region of the eye as a therapeutic source of functional retinal neurons in degenerative diseases.
Collapse
|
30
|
Kim Y, Jho EH. Regulation of the Hippo signaling pathway by ubiquitin modification. BMB Rep 2018; 51:143-150. [PMID: 29366444 PMCID: PMC5882221 DOI: 10.5483/bmbrep.2018.51.3.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Indexed: 12/27/2022] Open
Abstract
The Hippo signaling pathway plays an essential role in adult tissue homeostasis and organ size control. Abnormal regulation of Hippo signaling can be a cause for multiple types of human cancers. Since the awareness of the importance of the Hippo signaling in a wide range of biological fields has been continually grown, it is also understood that a thorough and well-rounded comprehension of the precise dynamics could provide fundamental insights for therapeutic applications. Several components in the Hippo signaling pathway are known to be targeted for proteasomal degradation via ubiquitination by E3 ligases. β-TrCP is a well-known E3 ligase of YAP/TAZ, which leads to the reduction of YAP/TAZ levels. The Hippo signaling pathway can also be inhibited by the E3 ligases (such as ITCH) which target LATS1/2 for degradation. Regulation via ubiquitination involves not only complex network of E3 ligases but also deubiquitinating enzymes (DUBs), which remove ubiquitin from its targets. Interestingly, non-degradative ubiquitin modifications are also known to play important roles in the regulation of Hippo signaling. Although there has been much advanced progress in the investigation of ubiquitin modifications acting as regulators of the Hippo signaling pathway, research done to date still remains inadequate due to the sheer complexity and diversity of the subject. Herein, we review and discuss recent developments that implicate ubiquitin-mediated regulatory mechanisms at multiple steps of the Hippo signaling pathway. [BMB Reports 2018; 51(3): 143-150].
Collapse
Affiliation(s)
- Youngeun Kim
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
31
|
Activation mechanisms of the Hippo kinase signaling cascade. Biosci Rep 2018; 38:BSR20171469. [PMID: 30038061 PMCID: PMC6131212 DOI: 10.1042/bsr20171469] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 11/21/2022] Open
Abstract
First discovered two decades ago through genetic screens in Drosophila, the Hippo pathway has been shown to be conserved in metazoans and controls organ size and tissue homeostasis through regulating the balance between cell proliferation and apoptosis. Dysregulation of the Hippo pathway leads to aberrant tissue growth and tumorigenesis. Extensive studies in Drosophila and mammals have identified the core components of Hippo signaling, which form a central kinase cascade to ultimately control gene expression. Here, we review recent structural, biochemical, and cellular studies that have revealed intricate phosphorylation-dependent mechanisms in regulating the formation and activation of the core kinase complex in the Hippo pathway. These studies have established the dimerization-mediated activation of the Hippo kinase (mammalian Ste20-like 1 and 2 (MST1/2) in mammals), the dynamic scaffolding and allosteric roles of adaptor proteins in downstream kinase activation, and the importance of multisite linker autophosphorylation by Hippo and MST1/2 in fine-tuning the signaling strength and robustness of the Hippo pathway. We highlight the gaps in our knowledge in this field that will require further mechanistic studies.
Collapse
|
32
|
Moon S, Yeon Park S, Woo Park H. Regulation of the Hippo pathway in cancer biology. Cell Mol Life Sci 2018; 75:2303-2319. [PMID: 29602952 PMCID: PMC11105795 DOI: 10.1007/s00018-018-2804-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 01/23/2023]
Abstract
The Hippo tumor suppressor pathway, which is well conserved from Drosophila to humans, has emerged as the master regulator of organ size, as well as major cellular properties, such as cell proliferation, survival, stemness, and tissue homeostasis. The biological significance and deregulation of the Hippo pathway in tumorigenesis have received a surge of interest in the past decade. In the current review, we present the major discoveries that made substantial contributions to our understanding of the Hippo pathway and discuss how Hippo pathway components contribute to cellular signaling, physiology, and their potential implications in anticancer therapeutics.
Collapse
Affiliation(s)
- Sungho Moon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - So Yeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
33
|
Choi W, Kim J, Park J, Lee DH, Hwang D, Kim JH, Ashktorab H, Smoot D, Kim SY, Choi C, Koh GY, Lim DS. YAP/TAZ Initiates Gastric Tumorigenesis via Upregulation of MYC. Cancer Res 2018; 78:3306-3320. [PMID: 29669762 DOI: 10.1158/0008-5472.can-17-3487] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/07/2018] [Accepted: 04/12/2018] [Indexed: 11/16/2022]
Abstract
YAP and TAZ play oncogenic roles in various organs, but the role of YAP/TAZ in gastric cancer remains unclear. Here, we show that YAP/TAZ activation initiates gastric tumorigenesis in vivo and verify its significance in human gastric cancer. In mice, YAP/TAZ activation in the pyloric stem cell led to step-wise tumorigenesis. RNA sequencing identified MYC as a decisive target of YAP, which controls MYC at transcriptional and posttranscriptional levels. These mechanisms tightly regulated MYC in homeostatic conditions, but YAP activation altered this balance by impeding miRNA processing, causing a shift towards MYC upregulation. Pharmacologic inhibition of MYC suppressed YAP-dependent phenotypes in vitro and in vivo, verifying its functional role as a key mediator. Human gastric cancer samples also displayed a significant correlation between YAP and MYC. We reanalyzed human transcriptome data to verify enrichment of YAP signatures in a subpopulation of gastric cancers and found that our model closely reflected the molecular pattern of patients with high YAP activity. Overall, these results provide genetic evidence of YAP/TAZ as oncogenic initiators and drivers for gastric tumors with MYC as the key downstream mediator. These findings are also evident in human gastric cancer, emphasizing the significance of YAP/TAZ signaling in gastric carcinogenesis.Significance: YAP/TAZ activation initiates gastric carcinogenesis with MYC as the key downstream mediator. Cancer Res; 78(12); 3306-20. ©2018 AACR.
Collapse
Affiliation(s)
- Wonyoung Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jeongsik Kim
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Jaeoh Park
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Da-Hye Lee
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Daehee Hwang
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Jeong-Hwan Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hassan Ashktorab
- Department of Medicine and Cancer Research Center, Howard University College of Medicine, Washington DC
| | - Duane Smoot
- Department of Internal Medicine, Meharry Medical College, Nashville, Tennessee
| | - Seon-Young Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Chan Choi
- Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Jeonnam, Republic of Korea
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Dae-Sik Lim
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
34
|
|
35
|
Nguyen TH, Kugler JM. Ubiquitin-Dependent Regulation of the Mammalian Hippo Pathway: Therapeutic Implications for Cancer. Cancers (Basel) 2018; 10:cancers10040121. [PMID: 29673168 PMCID: PMC5923376 DOI: 10.3390/cancers10040121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway serves as a key barrier for oncogenic transformation. It acts by limiting the activity of the proto-oncogenes YAP and TAZ. Reduced Hippo signaling and elevated YAP/TAZ activities are frequently observed in various types of tumors. Emerging evidence suggests that the ubiquitin system plays an important role in regulating Hippo pathway activity. Deregulation of ubiquitin ligases and of deubiquitinating enzymes has been implicated in increased YAP/TAZ activity in cancer. In this article, we review recent insights into the ubiquitin-mediated regulation of the mammalian Hippo pathway, its deregulation in cancer, and possibilities for targeting the Hippo pathway through the ubiquitin system.
Collapse
Affiliation(s)
- Thanh Hung Nguyen
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Jan-Michael Kugler
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| |
Collapse
|
36
|
Wei W, Lotto J, Hoodless PA. Expression patterns of Yes-associated protein 1 in the developing mouse liver. Gene Expr Patterns 2018; 29:10-17. [PMID: 29627454 DOI: 10.1016/j.gep.2018.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/26/2023]
Abstract
The Hippo signaling pathway regulates many cellular processes, but has been specifically associated with control organ size and tumor growth. Yes-associated protein 1 (YAP1) is a transcriptional cofactor, in the Hippo pathway, that regulates gene expression when localized in the nucleus. Elevated expression of YAP1 in adult mouse liver leads to hepatomegaly and can cause hepatocellular carcinoma; while the loss of function studies reveal its importance in regulating cholangiocyte development. Here, we report the expression of YAP1 in mouse embryonic and postnatal hepatic cells, using AFP-GFP transgenic mice to identify the hepatocyte lineage. At embryonic day (E) 8.5, YAP1 is highly expressed in the endoderm, but is not present in the nucleus. Between E9.5-12.5, hepatic cells display low levels of nuclear and non-nuclear YAP1. The nuclear expression of YAP1 is first detected in a small subset of hepatic cells starting at E13.5 when the hepatoblasts begin to differentiate into hepatocytes and cholangiocytes. At E18.5, nuclear YAP1 is nearly undetectable in hepatoblasts and hepatocytes, but enriched within the nuclei of cholangiocytes. These levels remain similar postnatally, consistent with the role of YAP1 in cholangiocyte specification and maintenance.
Collapse
Affiliation(s)
- Wei Wei
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Jeremy Lotto
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada; Cell and Developmental Biology Program, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada; Cell and Developmental Biology Program, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada; Department of Medical Genetics and the School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
37
|
Mastrangelo E, Milani M. Role and inhibition of GLI1 protein in cancer. LUNG CANCER-TARGETS AND THERAPY 2018; 9:35-43. [PMID: 29628779 PMCID: PMC5877502 DOI: 10.2147/lctt.s124483] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GLI1 is a transcriptional regulator involved in the development of different types of cancer. GLI1 transcriptional activity is regulated within the Hedgehog pathway (canonical activity), but can also be controlled independently (non-canonical activity) in the context of other signaling pathways. Experimental evidences show GLI1 involvement in both small- and non–small-cell lung cancers. Direct inhibition of the protein, in combination with other chemotherapeutic agents, represents a promising strategy for the treatment of different malignancies.
Collapse
Affiliation(s)
- Eloise Mastrangelo
- CNR - Biophysics Institute, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Mario Milani
- CNR - Biophysics Institute, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
38
|
Li X, Zhou X, Fan Y, Zhang Y, Zu L, Yao F, Zhou Q. WW45, a Gli1 binding protein, negatively regulated Hedgehog signaling in lung cancer. Oncotarget 2018; 7:68966-68975. [PMID: 27661123 PMCID: PMC5356604 DOI: 10.18632/oncotarget.12155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/26/2016] [Indexed: 02/05/2023] Open
Abstract
Over-expression of Gli1 is very common in lung cancer. However, the underlying molecular mechanism remains largely unknown. Here, using mass spectrum, we have identified WW45 as a binding partner of Gli1. WW45 interacted with Gli1, promoted its ubiquitination and inhibited the expression of its target genes. In the functional studies, WW45 inhibited the growth and migration of lung cancer cells. Knocking down the expression of WW45 promoted the growth and migration of lung cancer cells, which was rescued by down-regulation of Gli1. Moreover, over-expression of WW45 inhibited the tumorigenesis in a de novo lung cancer tumorigenesis mouse model (LKB-Ras) as well as the expression of Gli1. Also over-expression of WW45 improved the survival of these mice. In addition, the expression of WW45 was down-regulated in the clinical lung cancer samples, which was inversely correlated with the expression of Gli1. Taken together, this study demonstrated the suppressive roles of WW45 in lung cancer by inhibiting the Hedgehog/Gli1 signaling.
Collapse
Affiliation(s)
- Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Environment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xuexia Zhou
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Environment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yalong Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Environment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Environment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Environment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Sichuan Lung Cancer Institute, Sichuan Lung Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
39
|
Yang W, Han W, Qin A, Wang Z, Xu J, Qian Y. The emerging role of Hippo signaling pathway in regulating osteoclast formation. J Cell Physiol 2018; 233:4606-4617. [PMID: 29219182 DOI: 10.1002/jcp.26372] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022]
Abstract
A delicate balance between osteoblastic bone formation and osteoclastic bone resorption is crucial for bone homeostasis. This process is regulated by the Hippo signaling pathway including key regulatory molecules RASSF2, NF2, MST1/2, SAV1, LATS1/2, MOB1, YAP, and TAZ. It is well established that the Hippo signaling pathway plays an important part in regulating osteoblast differentiation, but its role in osteoclast formation and activation remains poorly understood. In this review, we discuss the emerging role of Hippo-signaling pathway in osteoclast formation and bone homeostasis. It is revealed that specific molecules of the Hippo-signaling pathway take part in a stage specific regulation in pre-osteoclast proliferation, osteoclast differentiation and osteoclast apoptosis and survival. Upon activation, MST and LAST, transcriptional co-activators YAP and TAZ bind to the members of the TEA domain (TEAD) family transcription factors, and influence osteoclast differentiation via regulating the expression of downstream target genes such as connective tissue growth factor (CTGF/CCN2) and cysteine-rich protein 61 (CYR61/CCN1). In addition, through interacting or cross talking with RANKL-mediated signaling cascades including NF-κB, MAPKs, AP1, and NFATc1, Hippo-signaling molecules such as YAP/TAZ/TEAD complex, RASSF2, MST2, and Ajuba could also potentially modulate osteoclast differentiation and function. Elucidating the roles of the Hippo-signaling pathway in osteoclast development and specific molecules involved is important for understanding the mechanism of bone homeostasis and diseases.
Collapse
Affiliation(s)
- Wanlei Yang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| | - Weiqi Han
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyi Wang
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| |
Collapse
|
40
|
Negrón-Pérez VM, Zhang Y, Hansen PJ. Single-cell gene expression of the bovine blastocyst. Reproduction 2017; 154:627-644. [PMID: 28814615 PMCID: PMC5630521 DOI: 10.1530/rep-17-0345] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022]
Abstract
The first two differentiation events in the embryo result in three cell types - epiblast, trophectoderm (TE) and hypoblast. The purpose here was to identify molecular markers for each cell type in the bovine and evaluate the differences in gene expression among individual cells of each lineage. The cDNA from 67 individual cells of dissociated blastocysts was used to determine transcript abundance for 93 genes implicated as cell lineage markers in other species or potentially involved in developmental processes. Clustering analysis indicated that the cells belonged to two major populations (clades A and B) with two subpopulations of clade A and four of clade B. Use of lineage-specific markers from other species indicated that the two subpopulations of clade A represented epiblast and hypoblast respectively while the four subpopulations of clade B were TE. Among the genes upregulated in epiblast were AJAP1, DNMT3A, FGF4, H2AFZ, KDM2B, NANOG, POU5F1, SAV1 and SLIT2 Genes overexpressed in hypoblast included ALPL, FGFR2, FN1, GATA6, GJA1, HDAC1, MBNL3, PDGFRA and SOX17, while genes overexpressed in all four TE populations were ACTA2, CDX2, CYP11A1, GATA2, GATA3, IFNT, KRT8, RAC1 and SFN The subpopulations of TE varied among each other for multiple genes including the prototypical TE marker IFNT. New markers for each cell type in the bovine blastocyst were identified. Results also indicate heterogeneity in gene expression among TE cells. Further studies are needed to confirm whether subpopulations of TE cells represent different stages in the development of a committed TE phenotype.
Collapse
Affiliation(s)
- Verónica M. Negrón-Pérez
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Yanping Zhang
- Gene Expression and Genotyping Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Peter J. Hansen
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
41
|
Hicks-Berthet J, Varelas X. Integrin-FAK-CDC42-PP1A signaling gnaws at YAP/TAZ activity to control incisor stem cells. Bioessays 2017; 39. [PMID: 28891248 DOI: 10.1002/bies.201700116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
How epithelial tissues are able to self-renew to maintain homeostasis and regenerate in response to injury remains a persistent question. The transcriptional effectors YAP and TAZ are increasingly being recognized as central mediators of epithelial stem cell biology, and a wealth of recent studies have been directed at understanding the control and activity of these factors. Recent work by Hu et al. has added to this knowledge, as they identify an Integrin-FAK-CDC42-PP1A signaling cascade that directs nuclear YAP/TAZ activity in stem cell populations of the mouse incisor, and define convergence on mTORC1 signaling as an important mediator of the proliferation of these cells. Here, we review recent studies on YAP/TAZ function and regulation in epithelial tissue-specific stem cells, merging the Hu et al. study together with our current knowledge of YAP/TAZ.
Collapse
Affiliation(s)
- Julia Hicks-Berthet
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
42
|
Kim J, Kim YH, Kim J, Park DY, Bae H, Lee DH, Kim KH, Hong SP, Jang SP, Kubota Y, Kwon YG, Lim DS, Koh GY. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest 2017; 127:3441-3461. [PMID: 28805663 DOI: 10.1172/jci93825] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/29/2017] [Indexed: 12/28/2022] Open
Abstract
Angiogenesis is a multistep process that requires coordinated migration, proliferation, and junction formation of vascular endothelial cells (ECs) to form new vessel branches in response to growth stimuli. Major intracellular signaling pathways that regulate angiogenesis have been well elucidated, but key transcriptional regulators that mediate these signaling pathways and control EC behaviors are only beginning to be understood. Here, we show that YAP/TAZ, a transcriptional coactivator that acts as an end effector of Hippo signaling, is critical for sprouting angiogenesis and vascular barrier formation and maturation. In mice, endothelial-specific deletion of Yap/Taz led to blunted-end, aneurysm-like tip ECs with fewer and dysmorphic filopodia at the vascular front, a hyper-pruned vascular network, reduced and disarranged distributions of tight and adherens junction proteins, disrupted barrier integrity, subsequent hemorrhage in growing retina and brain vessels, and reduced pathological choroidal neovascularization. Mechanistically, YAP/TAZ activates actin cytoskeleton remodeling, an important component of filopodia formation and junction assembly. Moreover, YAP/TAZ coordinates EC proliferation and metabolic activity by upregulating MYC signaling. Overall, these results show that YAP/TAZ plays multifaceted roles for EC behaviors, proliferation, junction assembly, and metabolism in sprouting angiogenesis and barrier formation and maturation and could be a potential therapeutic target for treating neovascular diseases.
Collapse
Affiliation(s)
- Jongshin Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea
| | - Yoo Hyung Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jaeryung Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Do Young Park
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hosung Bae
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Da-Hye Lee
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Science, KAIST, Daejeon, South Korea
| | - Kyun Hoo Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Seung Pil Jang
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Yoshiaki Kubota
- Department of Vascular Biology, The Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Dae-Sik Lim
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Science, KAIST, Daejeon, South Korea
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
43
|
Affiliation(s)
- Yuyuan Dai
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - David Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
44
|
Abstract
Proper cellular functionality and homeostasis are maintained by the convergent integration of various signaling cascades, which enable cells to respond to internal and external changes. The Dbf2-related kinases LATS1 and LATS2 (LATS) have emerged as central regulators of cell fate, by modulating the functions of numerous oncogenic or tumor suppressive effectors, including the canonical Hippo effectors YAP/TAZ, the Aurora mitotic kinase family, estrogen signaling and the tumor suppressive transcription factor p53. While the basic functions of the LATS kinase module are strongly conserved over evolution, the genomic duplication event leading to the emergence of two closely related kinases in higher organisms has increased the complexity of this signaling network. Here, we review the LATS1 and LATS2 intrinsic features as well as their reported cellular activities, emphasizing unique characteristics of each kinase. While differential activities between the two paralogous kinases have been reported, many converge to similar pathways and outcomes. Interestingly, the regulatory networks controlling the mRNA expression pattern of LATS1 and LATS2 differ strongly, and may contribute to the differences in protein binding partners of each kinase and in the subcellular locations in which each kinase exerts its functions.
Collapse
Affiliation(s)
- Noa Furth
- Department of Molecular Cell Biology, The Weizmann Institute of Science, POB 26, 234 Herzl St., Rehovot 7610001, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, POB 26, 234 Herzl St., Rehovot 7610001, Israel
| |
Collapse
|
45
|
Wang Y, Yu A, Yu FX. The Hippo pathway in tissue homeostasis and regeneration. Protein Cell 2017; 8:349-359. [PMID: 28130761 PMCID: PMC5413598 DOI: 10.1007/s13238-017-0371-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
While several organs in mammals retain partial regenerative capability following tissue damage, the underlying mechanisms remain unclear. Recently, the Hippo signaling pathway, better known for its function in organ size control, has been shown to play a pivotal role in regulating tissue homeostasis and regeneration. Upon tissue injury, the activity of YAP, the major effector of the Hippo pathway, is transiently induced, which in turn promotes expansion of tissue-resident progenitors and facilitates tissue regeneration. In this review, with a general focus on the Hippo pathway, we will discuss its major components, functions in stem cell biology, involvement in tissue regeneration in different organs, and potential strategies for developing Hippo pathway-targeted regenerative medicines.
Collapse
Affiliation(s)
- Yu Wang
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Aijuan Yu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fa-Xing Yu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
46
|
Kim MH, Kim J. Role of YAP/TAZ transcriptional regulators in resistance to anti-cancer therapies. Cell Mol Life Sci 2017; 74:1457-1474. [PMID: 27826640 PMCID: PMC11107740 DOI: 10.1007/s00018-016-2412-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/15/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
A diverse range of drug resistance mechanisms in cancer cells and their microenvironment significantly reduces the effectiveness of anti-cancer therapies. Growing evidence suggests that transcriptional effectors of the Hippo pathway, YAP and TAZ, promote resistance to various anti-cancer therapies, including cytotoxic chemotherapy, molecular targeted therapy, and radiation therapy. Here, we overview the role of YAP and TAZ as drug resistance mediators, and also discuss potential upstream regulators and downstream targets of YAP/TAZ in cancer. The widespread involvement of YAP and TAZ in resistance mechanisms suggests that therapeutic targeting of YAP and TAZ may expedite the development of effective anti-resistance therapies.
Collapse
Affiliation(s)
- Min Hwan Kim
- Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Taejon, 34141, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Taejon, 34141, Republic of Korea.
| |
Collapse
|
47
|
A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells. Nat Commun 2017; 8:14744. [PMID: 28332498 PMCID: PMC5376649 DOI: 10.1038/ncomms14744] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/26/2017] [Indexed: 01/13/2023] Open
Abstract
Individual human epidermal cells differ in their self-renewal ability. To uncover the molecular basis for this heterogeneity, we performed genome-wide pooled RNA interference screens and identified genes conferring a clonal growth advantage on normal and neoplastic (cutaneous squamous cell carcinoma, cSCC) human epidermal cells. The Hippo effector YAP was amongst the top positive growth regulators in both screens. By integrating the Hippo network interactome with our data sets, we identify WW-binding protein 2 (WBP2) as an important co-factor of YAP that enhances YAP/TEAD-mediated gene transcription. YAP and WPB2 are upregulated in actively proliferating cells of mouse and human epidermis and cSCC, and downregulated during terminal differentiation. WBP2 deletion in mouse skin results in reduced proliferation in neonatal and wounded adult epidermis. In reconstituted epidermis YAP/WBP2 activity is controlled by intercellular adhesion rather than canonical Hippo signalling. We propose that defective intercellular adhesion contributes to uncontrolled cSCC growth by preventing inhibition of YAP/WBP2.
Collapse
|
48
|
Andl T, Zhou L, Yang K, Kadekaro AL, Zhang Y. YAP and WWTR1: New targets for skin cancer treatment. Cancer Lett 2017; 396:30-41. [PMID: 28279717 DOI: 10.1016/j.canlet.2017.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/11/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022]
Abstract
The core components of the Hippo signaling pathway are a cascade of kinases that govern the phosphorylation of downstream transcriptional co-activators, namely, YES-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1, also known as TAZ). The Hippo signaling pathway is considered an important tumor-suppressor pathway, and its dysregulation has been noted in a variety of human cancers, in which YAP/WWTR1 enable cancerous cells to overcome contact inhibition, and to grow and spread uncontrollably. Interestingly, however, recent studies have told a somewhat different but perhaps more intriguing YAP/WWTR1 story, as these studies found that YAP/WWTR1 function as a central hub that integrates signals from multiple upstream signaling pathways, cell-cell interactions and mechanical forces and then bind to and activate different downstream transcriptional factors to direct cell social behavior and cell-cell interactions. In this review, we present the latest findings on the role of YAP/WWTR1 in skin physiology, pathology and tumorigenesis and discuss the statuses of newly developed therapeutic interventions that target YAP/WWTR1 in human cancers, as well as their prospects for use as skin cancer treatments.
Collapse
Affiliation(s)
- Thomas Andl
- Burnett School of Biological Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Linli Zhou
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kun Yang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ana Luisa Kadekaro
- Department of Dermatology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
49
|
Nishio M, Maehama T, Goto H, Nakatani K, Kato W, Omori H, Miyachi Y, Togashi H, Shimono Y, Suzuki A. Hippo vs. Crab: tissue-specific functions of the mammalian Hippo pathway. Genes Cells 2017; 22:6-31. [PMID: 28078823 DOI: 10.1111/gtc.12461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/18/2016] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway is a vital suppressor of tumorigenesis that is often inactivated in human cancers. In normal cells, the Hippo pathway is triggered by external forces such as cell crowding, or changes to the extracellular matrix or cell polarity. Once activated, Hippo signaling down-regulates transcription supported by the paralogous cofactors YAP1 and TAZ. The Hippo pathway's functions in normal and cancer biology have been dissected by studies of mutant mice with null or conditional tissue-specific mutations of Hippo signaling elements. In this review, we attempt to systematically summarize results that have been gleaned from detailed in vivo characterizations of these mutants. Our goal is to describe the physiological roles of Hippo signaling in several normal organ systems, as well as to emphasize how disruption of the Hippo pathway, and particularly hyperactivation of YAP1/TAZ, can be oncogenic.
Collapse
Affiliation(s)
- Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Goto
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keisuke Nakatani
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Wakako Kato
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hirofumi Omori
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yosuke Miyachi
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideru Togashi
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yohei Shimono
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
50
|
Kim T, Hwang D, Lee D, Kim JH, Kim SY, Lim DS. MRTF potentiates TEAD-YAP transcriptional activity causing metastasis. EMBO J 2016; 36:520-535. [PMID: 28028053 DOI: 10.15252/embj.201695137] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022] Open
Abstract
Yes-associated protein (YAP) and myocardin-related transcription factor (MRTF) play similar roles and exhibit significant crosstalk in directing transcriptional responses to chemical and physical extracellular cues. The mechanism underlying this crosstalk, however, remains unclear. Here, we show MRTF family proteins bind YAP via a conserved PPXY motif that interacts with the YAP WW domain. This interaction allows MRTF to recruit NcoA3 to the TEAD-YAP transcriptional complex and potentiate its transcriptional activity. We show this interaction of MRTF and YAP is critical for LPA-induced cancer cell invasion in vitro and breast cancer metastasis to the lung in vivo We also demonstrate the significance of MRTF-YAP binding in regulation of YAP activity upon acute actin cytoskeletal damage. Acute actin disruption induces nucleo-cytoplasmic shuttling of MRTF, and this process underlies the LATS-independent regulation of YAP activity. Our results provide clear evidence of crosstalk between MRTF and YAP independent of the LATS kinases that normally act upstream of YAP signaling. Our results also suggest a mechanism by which extracellular stimuli can coordinate physiological events downstream of YAP.
Collapse
Affiliation(s)
- Tackhoon Kim
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Daehee Hwang
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Dahye Lee
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jeong-Hwan Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Seon-Young Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Dae-Sik Lim
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|