1
|
Heider J, Hege D. The aldehyde dehydrogenase superfamilies: correlations and deviations in structure and function. Appl Microbiol Biotechnol 2025; 109:106. [PMID: 40301148 PMCID: PMC12041015 DOI: 10.1007/s00253-025-13467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 05/01/2025]
Abstract
Aldehyde dehydrogenases participate in many biochemical pathways, either by degrading organic substrates via organic acids or by producing reactive aldehyde intermediates in many biosynthetic pathways, and are becoming increasingly important for constructing synthetic metabolic pathways. Although they consist of simple and highly conserved basic structural motifs, they exhibit a surprising variability in the reactions catalyzed. We attempt here to give an overview of the known enzymes of two superfamilies comprising the known aldehyde dehydrogenases, focusing on their structural similarities and the residues involved in the catalytic reactions. The analysis reveals that the enzymes of the two superfamilies share many common traits and probably have a common evolutionary origin. While all enzymes catalyzing irreversible aldehyde oxidation to acids exhibit a universally conserved reaction mechanism with shared catalytic active-site residues, the enzymes capable of reducing activated acids to aldehydes deviate from this mechanism, displaying different active-site modifications required to allow these reactions which apparently evolved independently in different enzyme subfamilies. KEY POINTS: • The two aldehyde dehydrogenase superfamilies share significant similarities. • Catalytic amino acids of irreversibly acting AlDH are universally conserved. • Reductive or reversible reactions are enabled by water exclusion via the loss of conserved residues.
Collapse
Affiliation(s)
- Johann Heider
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany.
- Center for Synthetic Microbiology, Marburg, Germany.
| | - Dominik Hege
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| |
Collapse
|
2
|
Cesaro S, Orlando M, Bettin I, Longo C, Spagnoli G, de Laureto PP, Molla G, Bertoldi M. A crucial active site network of titratable residues guides catalysis and NAD + binding in human succinic semialdehyde dehydrogenase. Protein Sci 2025; 34:e70024. [PMID: 39731543 DOI: 10.1002/pro.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD+-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay. Due to the poor characterization of this enzyme, we carried out evolutionary and kinetic investigations to contribute to its functional behavior, a prerequisite to interpreting pathogenic variants. An in silico analysis shows that succinic semialdehyde dehydrogenases belong to two families, one human-like and the other of bacterial origin, differing in the oligomeric state and in a network of active site residues. This information is coupled to the biophysical-biochemical characterization of the human recombinant enzyme uncovering that (i) catalysis proceeds by an ordered bi-bi mechanism with NAD+ binding before the aldehyde that exerts a partial non-competitive inhibition; (ii) a stabilizing complex between the catalytic Cys340 and NAD+ is observed and interpreted as a protective mechanism; and (iii) a concerted non-covalent network assists the action of the catalytic residues Cys340 and Glu306. Through mutational analyses of Lys214, Glu306, Cys340, and Glu515 associated with pH studies, we showed that NAD+ binding is controlled by the dyad Lys214-Glu515. Moreover, catalysis is assured by proton transfer exerted by the same dyad networked with the catalytic Glu306, involved in catalytic Cys340 deprotonation/reprotonation. The identification of this weak bond network essential for cofactor binding and catalysis represents a first step to tackling the molecular basis for its deficiency.
Collapse
Affiliation(s)
- Samuele Cesaro
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Marco Orlando
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Department of Biotechnology e Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
- Department of Biology, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Carmen Longo
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Giulia Spagnoli
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | | | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Shi F, Xing Y, Niu Y, Cheng L, Xu Y, Li X, Ren L, Zong S, Tao J. Unveiling winter survival strategies: physiological and metabolic responses to cold stress of Monochamus saltuarius larvae during overwintering. PEST MANAGEMENT SCIENCE 2024; 80:5656-5671. [PMID: 38979967 DOI: 10.1002/ps.8282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Monochamus saltuarius is a destructive trunk-borer of pine forest and an effective dispersal vector for pinewood nematode (PWN), a causative agent of pine wilt disease (PWD), which leads to major ecological disasters. Cold winter temperatures determine insect survival and distribution. However, little is known about the cold tolerance and potential physiological mechanisms of M. saltuarius. RESULTS We demonstrated that dead Pinus koraiensis trunks do not provide larvae with insulation. The M. saltuarius larvae are freeze-tolerant species. Unlike most other freeze-tolerant insects, they can actively freeze extracellular fluid at higher subzero temperatures by increasing their supercooling points. The main energy sources for larvae overwintering are glycogen and the mid-late switch to lipid. The water balance showed a decrease in free and an increase in bound water of small magnitude. Cold stress promoted lipid peroxidation, thus activating the antioxidant system to prevent cold-induced oxidative damage. We found eight main pathways linked to cold stress and 39 important metabolites, ten of which are cryoprotectants, including maltose, UDP-glucose, d-fructose 6P, galactinol, dulcitol, inositol, sorbitol, l-methionine, sarcosine, and d-proline. The M. saltuarius larvae engage in a dual respiration process involving both anaerobic and aerobic pathways when their bodily fluids freeze. Cysteine and methionine metabolism, as well as alanine, aspartate, and glutamate metabolism, are the most important pathways linked to antioxidation and energy production. CONCLUSIONS The implications of our findings may help strengthen and supplement the management strategies for monitoring, quarantine, and control of this pest, thereby contributing to controlling the further spread of PWD. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fengming Shi
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yu Xing
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yiming Niu
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Ling Cheng
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yabei Xu
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Xinyu Li
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Lili Ren
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Shixiang Zong
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Piskol F, Lukat P, Kaufhold L, Heger A, Blankenfeldt W, Jahn D, Moser J. Biochemical and structural elucidation of the L-carnitine degradation pathway of the human pathogen Acinetobacter baumannii. Front Microbiol 2024; 15:1446595. [PMID: 39206375 PMCID: PMC11353897 DOI: 10.3389/fmicb.2024.1446595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Acinetobacter baumannii is an opportunistic human pathogen which can use host-derived L-carnitine as sole carbon and energy source. Recently, an L-carnitine transporter (Aci1347) and a specific monooxygense (CntA/CntB) for the intracellular cleavage of L-carnitine have been characterized. Subsequent conversion of the resulting malic semialdehyde into the central metabolite L-malate was hypothesized. Alternatively, L-carnitine degradation via D-malate with subsequent oxidation into pyruvate was proposed. Here we describe the in vitro and in vivo reconstitution of the entire pathway, starting from the as yet uncharacterized gene products of the carnitine degradation gene operon. Using recombinantly purified enzymes, enantiomer-specific formation of D-malate by the NAD(P)+-dependent malic semialdehyde dehydrogenase (MSA-DH) is demonstrated. The solved X-ray crystal structure of tetrameric MSA-DH reveals the key catalytic residues Cys290 and Glu256, accessible through opposing substrate and cofactor funnels. Specific substrate binding is enabled by Arg166, Arg284 and Ser447 while dual cofactor specificity for NAD+ and NADP+ is mediated by Asn184. The subsequent conversion of the unusual D-malate reaction product by an uncharacterized NAD+-dependent malate dehydrogenase (MDH) is shown. Tetrameric MDH is a β-decarboxylating dehydrogenase that synthesizes pyruvate. MDH experiments with alternative substrates showed a high degree of substrate specificity. Finally, the entire A. baumannni pathway was heterologously reconstituted, allowing E. coli to grow on L-carnitine as a carbon and energy source. Overall, the metabolic conversion of L-carnitine via malic semialdehyde and D-malate into pyruvate, CO2 and trimethylamine was demonstrated. Trimethylamine is also an important gut microbiota-dependent metabolite that is associated with an increased risk of cardiovascular disease. The pathway reconstitution experiments allowed us to assess the TMA forming capacity of gut microbes which is related to human cardiovascular health.
Collapse
Affiliation(s)
- Fabian Piskol
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Peer Lukat
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laurin Kaufhold
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Alexander Heger
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Biochemistry, Biotechnology and Bioinformatic, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Centre of Integrated Systems Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jürgen Moser
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
5
|
Thomas JT, Huerlimann R, Schunter C, Watson SA, Munday PL, Ravasi T. Transcriptomic responses in the nervous system and correlated behavioural changes of a cephalopod exposed to ocean acidification. BMC Genomics 2024; 25:635. [PMID: 38918719 PMCID: PMC11202396 DOI: 10.1186/s12864-024-10542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The nervous system is central to coordinating behavioural responses to environmental change, likely including ocean acidification (OA). However, a clear understanding of neurobiological responses to OA is lacking, especially for marine invertebrates. RESULTS We evaluated the transcriptomic response of the central nervous system (CNS) and eyes of the two-toned pygmy squid (Idiosepius pygmaeus) to OA conditions, using a de novo transcriptome assembly created with long read PacBio ISO-sequencing data. We then correlated patterns of gene expression with CO2 treatment levels and OA-affected behaviours in the same individuals. OA induced transcriptomic responses within the nervous system related to various different types of neurotransmission, neuroplasticity, immune function and oxidative stress. These molecular changes may contribute to OA-induced behavioural changes, as suggested by correlations among gene expression profiles, CO2 treatment and OA-affected behaviours. CONCLUSIONS This study provides the first molecular insights into the neurobiological effects of OA on a cephalopod and correlates molecular changes with whole animal behavioural responses, helping to bridge the gaps in our knowledge between environmental change and animal responses.
Collapse
Affiliation(s)
- Jodi T Thomas
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Celia Schunter
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Sue-Ann Watson
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Biodiversity and Geosciences Program, Queensland Museum Tropics, Queensland Museum, Townsville, QLD, 4810, Australia
| | - Philip L Munday
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
6
|
Dong H, Ma X, Chen Z, Zhang H, Song J, Jin Y, Li M, Lu M, He R, Zhang Y, Yang Y. Clinical features and ALDH5A1 gene findings in 13 Chinese cases with succinic semialdehyde dehydrogenase deficiency. BMC Med Genomics 2024; 17:158. [PMID: 38862963 PMCID: PMC11165735 DOI: 10.1186/s12920-024-01925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND AND AIMS To investigate the clinical features, ALDH5A1 gene variations, treatment, and prognosis of patients with succinic semialdehyde dehydrogenase (SSADH) deficiency. MATERIALS AND METHODS This retrospective study evaluated the findings in 13 Chinese patients with SSADH deficiency admitted to the Pediatric Department of Peking University First Hospital from September 2013 to September 2023. RESULTS Thirteen patients (seven male and six female patients; two sibling sisters) had the symptoms aged from 1 month to 1 year. Their urine 4-hydroxybutyrate acid levels were elevated and were accompanied by mildly increased serum lactate levels. Brain magnetic resonance imaging (MRI) showed symmetric abnormal signals in both sides of the globus pallidus and other areas. All 13 patients had psychomotor retardation, with seven showing epileptic seizures. Among the 18 variants of the ALDH5A1 gene identified in these 13 patients, six were previously reported, while 12 were novel variants. Among the 12 novel variants, three (c.85_116del, c.206_222dup, c.762C > G) were pathogenic variants; five (c.427delA, c.515G > A, c.637C > T, c.755G > T, c.1274T > C) were likely pathogenic; and the remaining four (c.454G > C, c.479C > T, c.1480G > A, c.1501G > C) were variants of uncertain significance. The patients received drugs such as L-carnitine, vigabatrin, and taurine, along with symptomatic treatment. Their urine 4-hydroxybutyric acid levels showed variable degrees of reduction. CONCLUSIONS A cohort of 13 cases with early-onset SSADH deficiency was analyzed. Onset of symptoms occurred from 1 month to 1 year of age. Twelve novel variants of the ALDH5A1 gene were identified.
Collapse
Affiliation(s)
- Hui Dong
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Xue Ma
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Zhehui Chen
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Huiting Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Ying Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Mengqiu Li
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Mei Lu
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Ruxuan He
- Department of Respiratory Medicine, Beijing Children's Hospital, National Centre for Children's Health, Capital Medical University, Beijing, 100045, China
| | - Yao Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
7
|
Kim HR, Byun DP, Thakur K, Ritchie J, Xie Y, Holewinski R, Suazo KF, Stevens M, Liechty H, Tagirasa R, Jing Y, Andresson T, Johnson SM, Yoo E. Discovery of a Tunable Heterocyclic Electrophile 4-Chloro-pyrazolopyridine That Defines a Unique Subset of Ligandable Cysteines. ACS Chem Biol 2024; 19:1082-1092. [PMID: 38629450 PMCID: PMC11107811 DOI: 10.1021/acschembio.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
Electrophilic small molecules with novel reactivity are powerful tools that enable activity-based protein profiling and covalent inhibitor discovery. Here, we report a reactive heterocyclic scaffold, 4-chloro-pyrazolopyridine (CPzP) for selective modification of proteins via a nucleophilic aromatic substitution (SNAr) mechanism. Chemoproteomic profiling reveals that CPzPs engage cysteines within functionally diverse protein sites including ribosomal protein S5 (RPS5), inosine monophosphate dehydrogenase 2 (IMPDH2), and heat shock protein 60 (HSP60). Through the optimization of appended recognition elements, we demonstrate the utility of CPzP for covalent inhibition of prolyl endopeptidase (PREP) by targeting a noncatalytic active-site cysteine. This study suggests that the proteome reactivity of CPzPs can be modulated by both electronic and steric features of the ring system, providing a new tunable electrophile for applications in chemoproteomics and covalent inhibitor design.
Collapse
Affiliation(s)
- Hong-Rae Kim
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - David P. Byun
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Kalyani Thakur
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jennifer Ritchie
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yixin Xie
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ronald Holewinski
- Protein
Characterization Laboratory, Frederick National Laboratory for Cancer
Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Kiall F. Suazo
- Protein
Characterization Laboratory, Frederick National Laboratory for Cancer
Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Mckayla Stevens
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Hope Liechty
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Ravichandra Tagirasa
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yihang Jing
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Thorkell Andresson
- Protein
Characterization Laboratory, Frederick National Laboratory for Cancer
Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Steven M. Johnson
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Euna Yoo
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
8
|
Li D, Wang X, Huo L, Zeng W, Li J, Zhou J. Computer-Aided Semi-Rational Design to Enhance the Activity of l-Sorbosone Dehydrogenase from Gluconobacter oxidans WSH-004. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10995-11001. [PMID: 38701424 DOI: 10.1021/acs.jafc.3c08365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The titer of the microbial fermentation products can be increased by enzyme engineering. l-Sorbosone dehydrogenase (SNDH) is a key enzyme in the production of 2-keto-l-gulonic acid (2-KLG), which is the precursor of vitamin C. Enhancing the activity of SNDH may have a positive impact on 2-KLG production. In this study, a computer-aided semirational design of SNDH was conducted. Based on the analysis of SNDH's substrate pocket and multiple sequence alignment, three modification strategies were established: (1) expanding the entrance of SNDH's substrate pocket, (2) engineering the residues within the substrate pocket, and (3) enhancing the electron transfer of SNDH. Finally, mutants S453A, L460V, and E471D were obtained, whose specific activity was increased by 20, 100, and 10%, respectively. In addition, the ability of Gluconobacter oxidans WSH-004 to synthesize 2-KLG was improved by eliminating H2O2. This study provides mutant enzymes and metabolic engineering strategies for the microbial-fermentation-based production of 2-KLG.
Collapse
Affiliation(s)
- Dong Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Lin Huo
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Didiasova M, Cesaro S, Feldhoff S, Bettin I, Tiegel N, Füssgen V, Bertoldi M, Tikkanen R. Functional Characterization of a Spectrum of Genetic Variants in a Family with Succinic Semialdehyde Dehydrogenase Deficiency. Int J Mol Sci 2024; 25:5237. [PMID: 38791277 PMCID: PMC11121183 DOI: 10.3390/ijms25105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Succinic semialdehyde dehydrogenase (SSADH) is a mitochondrial enzyme involved in the catabolism of the neurotransmitter γ-amino butyric acid. Pathogenic variants in the gene encoding this enzyme cause SSADH deficiency, a developmental disease that manifests as hypotonia, autism, and epilepsy. SSADH deficiency patients usually have family-specific gene variants. Here, we describe a family exhibiting four different SSADH variants: Val90Ala, Cys93Phe, and His180Tyr/Asn255Asp (a double variant). We provide a structural and functional characterization of these variants and show that Cys93Phe and Asn255Asp are pathogenic variants that affect the stability of the SSADH protein. Due to the impairment of the cofactor NAD+ binding, these variants show a highly reduced enzyme activity. However, Val90Ala and His180Tyr exhibit normal activity and expression. The His180Tyr/Asn255Asp variant exhibits a highly reduced activity as a recombinant species, is inactive, and shows a very low expression in eukaryotic cells. A treatment with substances that support protein folding by either increasing chaperone protein expression or by chemical means did not increase the expression of the pathogenic variants of the SSADH deficiency patient. However, stabilization of the folding of pathogenic SSADH variants by other substances may provide a treatment option for this disease.
Collapse
Affiliation(s)
- Miroslava Didiasova
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| | - Samuele Cesaro
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (S.C.); (I.B.); (M.B.)
| | - Simon Feldhoff
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (S.C.); (I.B.); (M.B.)
| | - Nana Tiegel
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| | - Vera Füssgen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (S.C.); (I.B.); (M.B.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| |
Collapse
|
10
|
Julia-Palacios NA, Kuseyri Hübschmann O, Olivella M, Pons R, Horvath G, Lücke T, Fung CW, Wong SN, Cortès-Saladelafont E, Rovira-Remisa MM, Yıldız Y, Mercimek-Andrews S, Assmann B, Stevanović G, Manti F, Brennenstuhl H, Jung-Klawitter S, Jeltsch K, Sivri HS, Garbade SF, García-Cazorla À, Opladen T. The continuously evolving phenotype of succinic semialdehyde dehydrogenase deficiency. J Inherit Metab Dis 2024; 47:447-462. [PMID: 38499966 DOI: 10.1002/jimd.12723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
The objective of the study is to evaluate the evolving phenotype and genetic spectrum of patients with succinic semialdehyde dehydrogenase deficiency (SSADHD) in long-term follow-up. Longitudinal clinical and biochemical data of 22 pediatric and 9 adult individuals with SSADHD from the patient registry of the International Working Group on Neurotransmitter related Disorders (iNTD) were studied with in silico analyses, pathogenicity scores and molecular modeling of ALDH5A1 variants. Leading initial symptoms, with onset in infancy, were developmental delay and hypotonia. Year of birth and specific initial symptoms influenced the diagnostic delay. Clinical phenotype of 26 individuals (median 12 years, range 1.8-33.4 years) showed a diversifying course in follow-up: 77% behavioral problems, 76% coordination problems, 73% speech disorders, 58% epileptic seizures and 40% movement disorders. After ataxia, dystonia (19%), chorea (11%) and hypokinesia (15%) were the most frequent movement disorders. Involvement of the dentate nucleus in brain imaging was observed together with movement disorders or coordination problems. Short attention span (78.6%) and distractibility (71.4%) were the most frequently behavior traits mentioned by parents while impulsiveness, problems communicating wishes or needs and compulsive behavior were addressed as strongly interfering with family life. Treatment was mainly aimed to control epileptic seizures and psychiatric symptoms. Four new pathogenic variants were identified. In silico scoring system, protein activity and pathogenicity score revealed a high correlation. A genotype/phenotype correlation was not observed, even in siblings. This study presents the diversifying characteristics of disease phenotype during the disease course, highlighting movement disorders, widens the knowledge on the genotypic spectrum of SSADHD and emphasizes a reliable application of in silico approaches.
Collapse
Affiliation(s)
- Natalia Alexandra Julia-Palacios
- Inborn Errors of Metabolism Unit, Department of Neurology, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
| | - Oya Kuseyri Hübschmann
- Center for Pediatric and Adolescent Medicine Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Mireia Olivella
- Bioinfomatics and Medical Statistics Group, University of Vic-Central University of Catalonia, Vic, Spain
| | - Roser Pons
- First Department of Pediatrics, Aghia Sofia Hospital, University of Athens, Athens, Greece
| | - Gabriella Horvath
- Division of Biochemical Genetics, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas Lücke
- St. Josef-Hospital, University Children's Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Cheuk-Wing Fung
- Department of Pediatrics and Adolescent Medicine, The Hong Kong Children's Hospital, Hong Kong, Hong Kong
| | - Suet-Na Wong
- Department of Pediatrics and Adolescent Medicine, The Hong Kong Children's Hospital, Hong Kong, Hong Kong
| | - Elisenda Cortès-Saladelafont
- Inborn Errors of Metabolism Unit, Department of Neurology, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
- Unit of Inherited Metabolic Diseases and Child Neurology, Department of Pediatrics, Hospital Germans Trias i Pujol, Badalona and Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Mar Rovira-Remisa
- Unit of Inherited Metabolic Diseases and Child Neurology, Department of Pediatrics, Hospital Germans Trias i Pujol, Badalona and Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yılmaz Yıldız
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Saadet Mercimek-Andrews
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Birgit Assmann
- Center for Pediatric and Adolescent Medicine Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Galina Stevanović
- Clinic of Neurology and Psychiatry for Children and Youth, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Filippo Manti
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Heiko Brennenstuhl
- Center for Pediatric and Adolescent Medicine Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Sabine Jung-Klawitter
- Center for Pediatric and Adolescent Medicine Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Kathrin Jeltsch
- Center for Pediatric and Adolescent Medicine Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - H Serap Sivri
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sven F Garbade
- Center for Pediatric and Adolescent Medicine Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Àngels García-Cazorla
- Inborn Errors of Metabolism Unit, Department of Neurology, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
| | - Thomas Opladen
- Center for Pediatric and Adolescent Medicine Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Tokatly Latzer I, Roullet JB, Afshar-Saber W, Lee HHC, Bertoldi M, McGinty GE, DiBacco ML, Arning E, Tsuboyama M, Rotenberg A, Opladen T, Jeltsch K, García-Cazorla À, Juliá-Palacios N, Gibson KM, Sahin M, Pearl PL. Clinical and molecular outcomes from the 5-Year natural history study of SSADH Deficiency, a model metabolic neurodevelopmental disorder. J Neurodev Disord 2024; 16:21. [PMID: 38658850 PMCID: PMC11044349 DOI: 10.1186/s11689-024-09538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Succinic semialdehyde dehydrogenase deficiency (SSADHD) represents a model neurometabolic disease at the fulcrum of translational research within the Boston Children's Hospital Intellectual and Developmental Disabilities Research Centers (IDDRC), including the NIH-sponsored natural history study of clinical, neurophysiological, neuroimaging, and molecular markers, patient-derived induced pluripotent stem cells (iPSC) characterization, and development of a murine model for tightly regulated, cell-specific gene therapy. METHODS SSADHD subjects underwent clinical evaluations, neuropsychological assessments, biochemical quantification of γ-aminobutyrate (GABA) and related metabolites, electroencephalography (standard and high density), magnetoencephalography, transcranial magnetic stimulation, magnetic resonance imaging and spectroscopy, and genetic tests. This was parallel to laboratory molecular investigations of in vitro GABAergic neurons derived from induced human pluripotent stem cells (hiPSCs) of SSADHD subjects and biochemical analyses performed on a versatile murine model that uses an inducible and reversible rescue strategy allowing on-demand and cell-specific gene therapy. RESULTS The 62 SSADHD subjects [53% females, median (IQR) age of 9.6 (5.4-14.5) years] included in the study had a reported symptom onset at ∼ 6 months and were diagnosed at a median age of 4 years. Language developmental delays were more prominent than motor. Autism, epilepsy, movement disorders, sleep disturbances, and various psychiatric behaviors constituted the core of the disorder's clinical phenotype. Lower clinical severity scores, indicating worst severity, coincided with older age (R= -0.302, p = 0.03), as well as age-adjusted lower values of plasma γ-aminobutyrate (GABA) (R = 0.337, p = 0.02) and γ-hydroxybutyrate (GHB) (R = 0.360, p = 0.05). While epilepsy and psychiatric behaviors increase in severity with age, communication abilities and motor function tend to improve. iPSCs, which were differentiated into GABAergic neurons, represent the first in vitro neuronal model of SSADHD and express the neuronal marker microtubule-associated protein 2 (MAP2), as well as GABA. GABA-metabolism in induced GABAergic neurons could be reversed using CRISPR correction of the pathogenic variants or mRNA transfection and SSADHD iPSCs were associated with excessive glutamatergic activity and related synaptic excitation. CONCLUSIONS Findings from the SSADHD Natural History Study converge with iPSC and animal model work focused on a common disorder within our IDDRC, deepening our knowledge of the pathophysiology and longitudinal clinical course of a complex neurodevelopmental disorder. This further enables the identification of biomarkers and changes throughout development that will be essential for upcoming targeted trials of enzyme replacement and gene therapy.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Wardiya Afshar-Saber
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Henry H C Lee
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gabrielle E McGinty
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Melissa L DiBacco
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Erland Arning
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Melissa Tsuboyama
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Thomas Opladen
- Division of Neuropediatrics & Metabolic Medicine, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Kathrin Jeltsch
- Division of Neuropediatrics & Metabolic Medicine, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Àngels García-Cazorla
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Natalia Juliá-Palacios
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Tokatly Latzer I, Roullet JB, Cesaro S, DiBacco ML, Arning E, Rotenberg A, Lee HHC, Opladen T, Jeltsch K, García-Cazorla À, Juliá-Palacios N, Gibson KM, Bertoldi M, Pearl PL. Phenotypic correlates of structural and functional protein impairments resultant from ALDH5A1 variants. Hum Genet 2023; 142:1755-1776. [PMID: 37962671 DOI: 10.1007/s00439-023-02613-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
To investigate the genotype-to-protein-to-phenotype correlations of succinic semialdehyde dehydrogenase deficiency (SSADHD), an inherited metabolic disorder of γ-aminobutyric acid catabolism. Bioinformatics and in silico mutagenesis analyses of ALDH5A1 variants were performed to evaluate their impact on protein stability, active site and co-factor binding domains, splicing, and homotetramer formation. Protein abnormalities were then correlated with a validated disease-specific clinical severity score and neurological, neuropsychological, biochemical, neuroimaging, and neurophysiological metrics. A total of 58 individuals (1:1 male/female ratio) were affected by 32 ALDH5A1 pathogenic variants, eight of which were novel. Compared to individuals with single homotetrameric or multiple homo and heterotetrameric proteins, those predicted not to synthesize any functional enzyme protein had significantly lower expression of ALDH5A1 (p = 0.001), worse overall clinical outcomes (p = 0.008) and specifically more severe cognitive deficits (p = 0.01), epilepsy (p = 0.04) and psychiatric morbidity (p = 0.04). Compared to individuals with predictions of having no protein or a protein impaired in catalytic functions, subjects whose proteins were predicted to be impaired in stability, folding, or oligomerization had a better overall clinical outcome (p = 0.02) and adaptive skills (p = 0.04). The quantity and type of enzyme proteins (no protein, single homotetramers, or multiple homo and heterotetramers), as well as their structural and functional impairments (catalytic or stability, folding, or oligomerization), contribute to phenotype severity in SSADHD. These findings are valuable for assessment of disease prognosis and management, including patient selection for gene replacement therapy. Furthermore, they provide a roadmap to determine genotype-to-protein-to-phenotype relationships in other autosomal recessive disorders.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Samuele Cesaro
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, VR, Italy
| | - Melissa L DiBacco
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Erland Arning
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Henry H C Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Thomas Opladen
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Kathrin Jeltsch
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Àngels García-Cazorla
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Natalia Juliá-Palacios
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, VR, Italy.
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Li J, Sharma M, Meek R, Alhifthi A, Armstrong Z, Soler NM, Lee M, Goddard-Borger ED, Blaza JN, Davies GJ, Williams SJ. Molecular basis of sulfolactate synthesis by sulfolactaldehyde dehydrogenase from Rhizobium leguminosarum. Chem Sci 2023; 14:11429-11440. [PMID: 37886098 PMCID: PMC10599462 DOI: 10.1039/d3sc01594g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/25/2023] [Indexed: 10/28/2023] Open
Abstract
Sulfolactate (SL) is a short-chain organosulfonate that is an important reservoir of sulfur in the biosphere. SL is produced by oxidation of sulfolactaldehyde (SLA), which in turn derives from sulfoglycolysis of the sulfosugar sulfoquinovose, or through oxidation of 2,3-dihydroxypropanesulfonate. Oxidation of SLA is catalyzed by SLA dehydrogenases belonging to the aldehyde dehydrogenase superfamily. We report that SLA dehydrogenase RlGabD from the sulfoglycolytic bacterium Rhizobium leguminsarum SRDI565 can use both NAD+ and NADP+ as cofactor to oxidize SLA, and indicatively operates through a rapid equilibrium ordered mechanism. We report the cryo-EM structure of RlGabD bound to NADH, revealing a tetrameric quaternary structure and supporting proposal of organosulfonate binding residues in the active site, and a catalytic mechanism. Sequence based homology searches identified SLA dehydrogenase homologs in a range of putative sulfoglycolytic gene clusters in bacteria predominantly from the phyla Actinobacteria, Firmicutes, and Proteobacteria. This work provides a structural and biochemical view of SLA dehydrogenases to complement our knowledge of SLA reductases, and provide detailed insights into a critical step in the organosulfur cycle.
Collapse
Affiliation(s)
- Jinling Li
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Parkville Victoria 3010 Australia
| | - Mahima Sharma
- York Structural Biology Laboratory, Department of Chemistry, University of York York YO10 5DD UK
| | - Richard Meek
- York Structural Biology Laboratory, Department of Chemistry, University of York York YO10 5DD UK
| | - Amani Alhifthi
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Parkville Victoria 3010 Australia
- Chemistry Department, Faculty of Science (Female Section), Jazan University Jazan 82621 Saudi Arabia
| | - Zachary Armstrong
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Parkville Victoria 3010 Australia
| | - Niccolay Madiedo Soler
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research Parkville Victoria 3010 Australia
| | - Mihwa Lee
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Parkville Victoria 3010 Australia
| | - Ethan D Goddard-Borger
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research Parkville Victoria 3010 Australia
- Department of Medical Biology, University of Melbourne Parkville Victoria 3010 Australia
| | - James N Blaza
- York Structural Biology Laboratory, Department of Chemistry, University of York York YO10 5DD UK
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York York YO10 5DD UK
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
14
|
Li D, Deng Z, Hou X, Qin Z, Wang X, Yin D, Chen Y, Rao Y, Chen J, Zhou J. Structural Insight into the Catalytic Mechanisms of an L-Sorbosone Dehydrogenase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301955. [PMID: 37679059 PMCID: PMC10602560 DOI: 10.1002/advs.202301955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/29/2023] [Indexed: 09/09/2023]
Abstract
L-Sorbosone dehydrogenase (SNDH) is a key enzyme involved in the biosynthesis of 2-keto-L-gulonic acid , which is a direct precursor for the industrial scale production of vitamin C. Elucidating the structure and the catalytic mechanism is essential for improving SNDH performance. By solving the crystal structures of SNDH from Gluconobacter oxydans WSH-004, a reversible disulfide bond between Cys295 and the catalytic Cys296 residues is discovered. It allowed SNDH to switch between oxidation and reduction states, resulting in opening or closing the substrate pocket. Moreover, the Cys296 is found to affect the NADP+ binding pose with SNDH. Combining the in vitro biochemical and site-directed mutagenesis studies, the redox-based dynamic regulation and the catalytic mechanisms of SNDH are proposed. Moreover, the mutants with enhanced activity are obtained by extending substrate channels. This study not only elucidates the physiological control mechanism of the dehydrogenase, but also provides a theoretical basis for engineering similar enzymes.
Collapse
Affiliation(s)
- Dong Li
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Zhiwei Deng
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Xiaodong Hou
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Zhijie Qin
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Dejing Yin
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Yue Chen
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Yijian Rao
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Jian Chen
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan UniversityWuxi214122China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan UniversityWuxi214122China
| |
Collapse
|
15
|
Ebner JN, Wyss MK, Ritz D, von Fumetti S. Effects of thermal acclimation on the proteome of the planarian Crenobia alpina from an alpine freshwater spring. J Exp Biol 2022; 225:276068. [PMID: 35875852 PMCID: PMC9440759 DOI: 10.1242/jeb.244218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
Species' acclimation capacity and their ability to maintain molecular homeostasis outside ideal temperature ranges will partly predict their success following climate change-induced thermal regime shifts. Theory predicts that ectothermic organisms from thermally stable environments have muted plasticity, and that these species may be particularly vulnerable to temperature increases. Whether such species retained or lost acclimation capacity remains largely unknown. We studied proteome changes in the planarian Crenobia alpina, a prominent member of cold-stable alpine habitats that is considered to be a cold-adapted stenotherm. We found that the species' critical thermal maximum (CTmax) is above its experienced habitat temperatures and that different populations exhibit differential CTmax acclimation capacity, whereby an alpine population showed reduced plasticity. In a separate experiment, we acclimated C. alpina individuals from the alpine population to 8, 11, 14 or 17°C over the course of 168 h and compared their comprehensively annotated proteomes. Network analyses of 3399 proteins and protein set enrichment showed that while the species' proteome is overall stable across these temperatures, protein sets functioning in oxidative stress response, mitochondria, protein synthesis and turnover are lower in abundance following warm acclimation. Proteins associated with an unfolded protein response, ciliogenesis, tissue damage repair, development and the innate immune system were higher in abundance following warm acclimation. Our findings suggest that this species has not suffered DNA decay (e.g. loss of heat-shock proteins) during evolution in a cold-stable environment and has retained plasticity in response to elevated temperatures, challenging the notion that stable environments necessarily result in muted plasticity. Summary: The proteome of an alpine Crenobia alpina population shows plasticity in response to acclimation to warmer temperatures.
Collapse
Affiliation(s)
- Joshua Niklas Ebner
- 1 Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Mirjam Kathrin Wyss
- 1 Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Danilo Ritz
- 2 Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Stefanie von Fumetti
- 1 Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Characterization of Two Dehydrogenases from Gluconobacter oxydans Involved in the Transformation of Patulin to Ascladiol. Toxins (Basel) 2022; 14:toxins14070423. [PMID: 35878161 PMCID: PMC9323132 DOI: 10.3390/toxins14070423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Patulin is a mycotoxin that primarily contaminate apples and apple products. Whole cell or cell-free extracts of Gluconobacter oxydans ATCC 621 were able to transform patulin to E-ascladiol. Proteins from cell-free extracts were separated by anion exchange chromatography and fractions with patulin transformation activity were subjected to peptide mass fingerprinting, enabling the identification of two NADPH dependent short chain dehydrogenases, GOX0525 and GOX1899, with the requisite activity. The genes encoding these enzymes were expressed in E. coli and purified. Kinetic parameters for patulin reduction, as well as pH profiles and thermostability were established to provide further insight on the potential application of these enzymes for patulin detoxification.
Collapse
|
17
|
Characterization of a sorbose oxidase involved in the biosynthesis of 2-keto-L-gulonic acid from Gluconobacter oxydans WSH-004. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Shi Q, Chen Y, Li X, Dong H, Chen C, Zhong Z, Yang C, Liu G, Su D. The tetrameric assembly of 2-aminomuconic 6-semialdehyde dehydrogenase is a functional requirement of cofactor NAD + binding. Environ Microbiol 2021; 24:2994-3012. [PMID: 34806815 DOI: 10.1111/1462-2920.15840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023]
Abstract
The bacterium Pseudomonas sp. AP-3 is able to use the environmental pollutant 2-aminophenol as its sole source of carbon, nitrogen, and energy. Eight genes (amnA, B, C, D, E, F, G, and H) encoding 2-aminophenol metabolizing enzymes are clustered into a single operon. 2-Aminomuconic 6-semialdehyde dehydrogenase (AmnC), a member of the aldehyde dehydrogenase (ALDH) superfamily, is responsible for oxidizing 2-aminomuconic 6-semialdehyde to 2-aminomuconate. In contrast to many other members of the ALDH superfamily, the structural basis of the catalytic activity of AmnC remains elusive. Here, we present the crystal structure of AmnC, which displays a homotetrameric quaternary assembly that is directly involved in its enzymatic activity. The tetrameric state of AmnC in solution was also presented using small-angle X-ray scattering. The tetramerization of AmnC is mediated by the assembly of a protruding hydrophobic beta-strand motif and residues V121 and S123 located in the NAD+ -binding domain of each subunit. Dimeric mutants of AmnC dramatically lose NAD+ binding affinity and failed to oxidize the substrate analogue 2-hydroxymuconate-6-semialdehyde to α-hydroxymuconic acid, indicating that tetrameric assembly of AmnC is functional requirement.
Collapse
Affiliation(s)
- Qiuli Shi
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Yanjuan Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Xinxin Li
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Hui Dong
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Zhihui Zhong
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Cheng Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Guangfeng Liu
- Shanghai Synchrotron Radiation Facility and Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Dan Su
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China.,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| |
Collapse
|
19
|
Pearl PL, DiBacco ML, Papadelis C, Opladen T, Hanson E, Roullet JB, Gibson KM, SSADH Deficiency Investigators Consortium (SDIC). Succinic Semialdehyde Dehydrogenase Deficiency: Review of the Natural History Study. J Child Neurol 2021; 36:1153-1161. [PMID: 33393837 PMCID: PMC8254814 DOI: 10.1177/0883073820981262] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The SSADHD Natural History Study was initiated in 2019 to define the natural course and identify biomarkers correlating with severity. METHODS The study is conducted by 4 institutions: BCH (US clinical), WSU (bioanalytical core), USF (biostatistical core), and Heidelberg (iNTD), with support from the family advocacy group (SSADH Association). Recruitment goals were to study 20 patients on-site at BCH, 10 with iNTD, and 25 as a standard-of care cohort. RESULTS At this half-way point of this longitudinal study, 28 subjects have been recruited (57% female, mean 9 years, range 18 months-40 years). Epilepsy is present in half and increases in incidence and severity, as do psychiatric symptoms, in adolescence and adulthood. The average Full Scale IQ (FSIQ) was 53 (Verbal score of 56, Non Verbal score of 49), and half scored as having ASD. Although there was no correlation between gene variant and phenotypic severity, there were extreme cases of lowest functioning in one individual and highest in another that may have genotype-phenotype correlation. The most common EEG finding was mild background slowing with rare epileptiform activity, whereas high-density EEG and magnetoencephalography showed reduction in the gamma frequency band consistent with GABAergic dysfunction. MR spectroscopy showed elevations in the GABA/NAA ratio in all regions studied with no crossover between subjects and controls. CONCLUSIONS The SSADH Natural History Study is providing a unique opportunity to study the complex pathophysiology longitudinally and derive electrophysiologic, neuroimaging, and laboratory data for correlation and to serve as biomarkers for clinical trials and prognostic assessments in this ultra-rare inherited disorder of GABA metabolism.
Collapse
Affiliation(s)
- Phillip L Pearl
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Melissa L DiBacco
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Christos Papadelis
- Jane and John Justin Neuroscience Center, Cook Children’s Health Care System, 1500 Cooper Street, Fort Worth, TX 76104, USA; Department of Pediatrics, TCU and UNTHSC School of Medicine, Fort Worth, TX, USA; Laboratory of Children’s Brain Dynamics, Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Opladen
- Department of Child Neurology and Metabolic Disorders, University Children’s Hospital, Heidelberg, Germany
| | - Ellen Hanson
- Neurodevelopmental Core, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Jean-Baptiste Roullet
- College of Pharmacy, Department of Pharmacotherapy, Washington State University, Spokane, WA
| | - K. Michael Gibson
- College of Pharmacy, Department of Pharmacotherapy, Washington State University, Spokane, WA
| | | |
Collapse
|
20
|
Alghamdi MA, Alkhamis WH, Jamjoom DZ, Al Khalifah R, Alshammari NR, Alsumaili K, Arold ST. Succinic semialdehyde dehydrogenase deficiency presenting with central hypothyroidism. Clin Case Rep 2021; 9:229-235. [PMID: 33489165 PMCID: PMC7813088 DOI: 10.1002/ccr3.3504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 11/17/2022] Open
Abstract
Central hypothyroidism might be another clinical sign of SSADH deficiency which prompts urinary organic acid screening for GHB in central hypothyroidism patients. Studies on GABA and thyroid hormone interaction might be a concept of a new therapy.
Collapse
Affiliation(s)
- Malak Ali Alghamdi
- Medical Genetics DivisionDepartment of PediatricsCollege of MedicineKing Saud UniversityRiyadhSaudi Arabia
- Medical Genetics DivisionDepartment of PediatricsKing Saud University Medical cityRiyadhSaudi Arabia
| | - Waleed H. Alkhamis
- Department of Obstetrics and GynecologyKing Saud University Medical CityRiyadhSaudi Arabia
| | - Dima Z. Jamjoom
- Department of Radiology and Medical ImagingCollege of MedicineKing Saud UniversityRiyadhSaudi Arabia
| | - Reem Al Khalifah
- Pediatric Endocrinology DivisionDepartment of PediatricsCollege of MedicineKing Saud UniversityRiyadhSaudi Arabia
| | | | - Khalid Alsumaili
- Biochemical Genetic DivisionDepartment of PathologyCollege of MedicineKing Saud UniversityRiyadhSaudi Arabia
| | - Stefan T. Arold
- Division of Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)Computational Bioscience Research Center (CBRC)ThuwalSaudi Arabia
| |
Collapse
|
21
|
Succinic Semialdehyde Dehydrogenase Deficiency: In Vitro and In Silico Characterization of a Novel Pathogenic Missense Variant and Analysis of the Mutational Spectrum of ALDH5A1. Int J Mol Sci 2020; 21:ijms21228578. [PMID: 33203024 PMCID: PMC7696157 DOI: 10.3390/ijms21228578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare, monogenic disorder affecting the degradation of the main inhibitory neurotransmitter γ-amino butyric acid (GABA). Pathogenic variants in the ALDH5A1 gene that cause an enzymatic dysfunction of succinic semialdehyde dehydrogenase (SSADH) lead to an accumulation of potentially toxic metabolites, including γ-hydroxybutyrate (GHB). Here, we present a patient with a severe phenotype of SSADHD caused by a novel genetic variant c.728T > C that leads to an exchange of leucine to proline at residue 243, located within the highly conserved nicotinamide adenine dinucleotide (NAD)+ binding domain of SSADH. Proline harbors a pyrrolidine within its side chain known for its conformational rigidity and disruption of protein secondary structures. We investigate the effect of this novel variant in vivo, in vitro, and in silico. We furthermore examine the mutational spectrum of all previously described disease-causing variants and computationally assess all biologically possible missense variants of ALDH5A1 to identify mutational hotspots.
Collapse
|
22
|
Chen XD, Lin YT, Jiang MY, Li XZ, Li D, Hu H, Liu L. Novel mutations in a Chinese family with two patients with succinic semialdehyde dehydrogenase deficiency. Gynecol Endocrinol 2020; 36:929-933. [PMID: 32223457 DOI: 10.1080/09513590.2020.1744555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Background: A considerable proportion of pediatric disease burden is mainly caused by inborn errors of metabolism. Succinic semi-aldehyde dehydrogenase (SSADH) deficiency is an unusual disorder of the gamma-aminobutyric acid metabolism. Till date, very few cases have been reported in China.Case presentation: Trio-WES was used to characterize the ALDH5A1 gene in two children of a Chinese family, who presented with seizures, psychomotor delay, development regression, borderline cognition, hypotonia, and harbored the compound heterozygotes NM_001080.3: c.1321G > A (p. Gly441Arg) and c.727_735del (p. Leu243_Ser245del). The former has been reported earlier (rs1041467895), whereas the latter is novel. Amino acid coding at highly conserved amino acid residues was observed to be altered by both mutations. This structural impairment influenced the enzyme structure as indicated by the in silico protein modeling. Cerebral magnetic resonance imaging of the proband and her brother showed excessive gap in the cerebrum and abnormal signals in the bilateral frontal lobe, bilateral basal ganglia, and cerebral foot. Elevated levels of Gamma-hydroxybutyric aciduria were found in their patients on urine organic acid analysis.Conclusion: Our findings contribute to the current knowledge of missense and deletion mutations associated with SSADH deficiency.
Collapse
Affiliation(s)
- Xiao-Dan Chen
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, P.R. China
| | - Yun-Ting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, P.R. China
| | - Min-Yan Jiang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, P.R. China
| | - Xiu-Zhen Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, P.R. China
| | - Duan Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, P.R. China
| | - Hao Hu
- Guangzhou Women and Children's Medical Center, Institute of Pediatric Research Center, Guangzhou, P.R. China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, P.R. China
| |
Collapse
|
23
|
Xie C, Li ZM, Bai F, Hu Z, Zhang W, Li Z. Kinetic and structural insights into enzymatic mechanism of succinic semialdehyde dehydrogenase from Cyanothece sp. ATCC51142. PLoS One 2020; 15:e0239372. [PMID: 32966327 PMCID: PMC7510979 DOI: 10.1371/journal.pone.0239372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/06/2020] [Indexed: 11/26/2022] Open
Abstract
As a ubiquitous enzyme, succinic semialdehyde dehydrogenase contributes significantly in many pathways including the tricarboxylic acid cycle and other metabolic processes such as detoxifying the accumulated succinic semialdehyde and surviving in nutrient-limiting conditions. Here the cce4228 gene encoding succinic semialdehyde dehydrogenase from Cyanothece sp. ATCC51142 was cloned and the homogenous recombinant cce4228 protein was obtained by Ni-NTA affinity chromatography. Biochemical characterization revealed that cce4228 protein displayed optimal activity at presence of metal ions in basic condition. Although the binding affinity of cce4228 protein with NAD+ was about 50-fold lower than that of cce4228 with NADP+, the catalytic efficiency of cce4228 protein towards succinic semialdehyde with saturated concentration of NADP+ is same as that with saturated concentration of NAD+ as its cofactors. Meanwhile, the catalytic activity of cce4228 was competitively inhibited by succinic semialdehyde substrate. Kinetic and structural analysis demonstrated that the conserved Cys262 and Glu228 residues were crucial for the catalytic activity of cce4228 protein and the Ser157 and Lys154 residues were determinants of cofactor preference.
Collapse
Affiliation(s)
- Congcong Xie
- College of Bioscience and Bioengineering, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhi-Min Li
- College of Science, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Fumei Bai
- College of Bioscience and Bioengineering, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ziwei Hu
- College of Bioscience and Bioengineering, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wei Zhang
- College of Bioscience and Bioengineering, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhimin Li
- College of Bioscience and Bioengineering, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
24
|
Deng XY, Gan XX, Feng JH, Cai WS, Wang XQ, Shen L, Luo HT, Chen Z, Guo M, Cao J, Shen F, Xu B. ALDH5A1 acts as a tumour promoter and has a prognostic impact in papillary thyroid carcinoma. Cell Biochem Funct 2020; 39:317-325. [PMID: 32881051 DOI: 10.1002/cbf.3584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/12/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Thyroid cancer is the most common endocrine carcinoma, with papillary thyroid carcinoma (PTC) accounting for 80%-90% of thyroid cancers. Accumulating studies reported that mitochondria plays an important role in the regulation of cell proliferation. ALDH5A1, may function as an oncogene or tumour suppressor in various human cancers, and the role of ALDH5A1 in PTC is still unclear. The aim of this study was to investigate the clinical significance of ALDH5A1 expression and its functions in PTC. In this present study, we studied ALDH5A1 expression on primary papillary thyroid carcinoma (PTC) in The Cancer Genome Atlas (TCGA) database. Results showed that the levels of ALDH5A1 were found positively correlated with tumour stage, metastasis, lymph node stage, and higher levels of ALDH5A1 demonstrated poor disease-free survival (DFS). Immunohistochemistry (IHC) revealed that significantly higher expression of ALDH5A1 was found in PTC tissues. On the other hand, knockdown of ALDH5A1 significantly inhibited PTC cell proliferation, migration and invasion detection found the migration and invasion of cells also were hindered when ALDH5A1 level was reduced. The knockdown of ALDH5A1 inhibited the expression of Vimentin and promoted the expression of E-cadherin. In brief, knockdown of ALDH5A1may act as a novel molecular target for the prevention and treatment of PTC. SIGNIFICANCE OF THE STUDY: The present study focused on the role and the potential mechanism of ALDH5A1 in papillary thyroid carcinoma. We demonstrated that reduced expression of ALDH5A1 might inhibit the progression of TC by inhibiting cell proliferation, migration and invasion and reversing epithelial-mesenchymal transition (EMT). The findings ensured the interaction relation between ALDH5A1 and EMT in PTC, providing a novel biological marker for PTC and enriching the potential strategies for TC treatment.
Collapse
Affiliation(s)
- Xing-Yan Deng
- Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, PR China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, PR China
| | - Xiao-Xiong Gan
- Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, PR China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, PR China
| | - Jian-Hua Feng
- Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, PR China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, PR China
| | - Wen-Song Cai
- Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, PR China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, PR China
| | - Xin-Quan Wang
- Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Liang Shen
- Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, PR China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, PR China
| | - Hong-Tu Luo
- Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, PR China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, PR China
| | - Zhen Chen
- Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, PR China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, PR China
| | - Mengli Guo
- Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, PR China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, PR China
| | - Jie Cao
- Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, PR China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, PR China
| | - Fei Shen
- Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, PR China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, PR China
| | - Bo Xu
- Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, PR China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, PR China
| |
Collapse
|
25
|
Fattahi M, Bushehri A, Alavi A, Asghariazar V, Nozari A, Ghasemi Firouzabadi S, Motamedian Dehkordi P, Javid M, Farajzadeh Valiliou S, Karimian J, Behjati F. Bi-allelic Mutations in ALDH5A1 is associated with succinic semialdehyde dehydrogenase deficiency and severe intellectual disability. Gene 2020:144918. [PMID: 32621952 DOI: 10.1016/j.gene.2020.144918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/20/2020] [Indexed: 11/24/2022]
Abstract
Homozygous mutations of ALDH5A1 have been reportedly associated with Succinic semialdehyde dehydrogenase deficiency (SSADHD) that affects gamma-aminobutyric acid (GABA) catabolism and evinces a wide range of clinical phenotype from mild intellectual disability to severe neurodegenerative disorders. We report clinical and molecular data of a Lor family with 2 affected members presenting with severe intellectual disability, developmental delay, and generalized tonic-clonic seizures. A comprehensive genetic study that included whole-exome sequencing identified a homozygous missense substitution (NM_001080:c.G1321A:p.G441R) in ALDH5A1 (Aldehyde Dehydrogenase 5 Family Member A1) gene, consistent with clinical phenotype in the patients and co-segregating with the disease in the family. The non-synonymous mutation, p.G441R, affects a highly conserved amino acid residue, which is expected to cause a severe destabilization of the enzyme. Protein modeling demonstrated an impairment of the succinic semialdehyde (SSA) binding tunnel accessibility, and the anticipation of the protein folding stability and dynamics was a decrease in the free energy by 4.02 kcal/mol. Consistent with these in silico findings, excessive γ -hydroxybutyrate (GHB) could be detected in patients' urine as the byproduct of the GABA pathway. SSADHD, Succinic semialdehyde dehydrogenase deficiency; GABA, gamma-aminobutyric acid; ALDH5A1, Aldehyde Dehydrogenase 5 Family Member A1; GHB, γ -hydroxybutyrate; SSA, succinic semi aldehyde; WISC, Wechsler Intelligence Scale for Children; CNS, central nervous system ; EEG, electroencephalography; EEEF, empirical effective energy functions; ASD, autism spectrum disorder; ADHD, attention deficit hyperactivity disorder; IQ, intelligence quotient; EMG, electromyography; NCV, nerve conduction velocity; CP, cerebral palsy.
Collapse
Affiliation(s)
- Mahshid Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ata Bushehri
- Department of Medical Genetics, Ilam University of Medical Sciences, Pajuhesh street, Ilam, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Vahid Asghariazar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahoura Nozari
- Medical Genetics Lab, Infertility Clinic, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | | - Marzieh Javid
- Department of Genetics, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran Iran IAUPS
| | | | - Javad Karimian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farkhondeh Behjati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Didiasova M, Banning A, Brennenstuhl H, Jung-Klawitter S, Cinquemani C, Opladen T, Tikkanen R. Succinic Semialdehyde Dehydrogenase Deficiency: An Update. Cells 2020; 9:cells9020477. [PMID: 32093054 PMCID: PMC7072817 DOI: 10.3390/cells9020477] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADH-D) is a genetic disorder that results from the aberrant metabolism of the neurotransmitter γ-amino butyric acid (GABA). The disease is caused by impaired activity of the mitochondrial enzyme succinic semialdehyde dehydrogenase. SSADH-D manifests as varying degrees of mental retardation, autism, ataxia, and epileptic seizures, but the clinical picture is highly heterogeneous. So far, there is no approved curative therapy for this disease. In this review, we briefly summarize the molecular genetics of SSADH-D, the past and ongoing clinical trials, and the emerging features of the molecular pathogenesis, including redox imbalance and mitochondrial dysfunction. The main aim of this review is to discuss the potential of further therapy approaches that have so far not been tested in SSADH-D, such as pharmacological chaperones, read-through drugs, and gene therapy. Special attention will also be paid to elucidating the role of patient advocacy organizations in facilitating research and in the communication between researchers and patients.
Collapse
Affiliation(s)
- Miroslava Didiasova
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (M.D.); (A.B.)
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (M.D.); (A.B.)
| | - Heiko Brennenstuhl
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (H.B.); (S.J.-K.); (T.O.)
| | - Sabine Jung-Klawitter
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (H.B.); (S.J.-K.); (T.O.)
| | | | - Thomas Opladen
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (H.B.); (S.J.-K.); (T.O.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (M.D.); (A.B.)
- Correspondence: ; Tel.: +49-641-9947-420
| |
Collapse
|
27
|
Wang Y, Li PY, Zhang Y, Cao HY, Wang YJ, Li CY, Wang P, Su HN, Chen Y, Chen XL, Zhang YZ. 3,6-Anhydro-L-Galactose Dehydrogenase VvAHGD is a Member of a New Aldehyde Dehydrogenase Family and Catalyzes by a Novel Mechanism with Conformational Switch of Two Catalytic Residues Cysteine 282 and Glutamate 248. J Mol Biol 2020; 432:2186-2203. [PMID: 32087198 DOI: 10.1016/j.jmb.2020.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/26/2022]
Abstract
3,6-anhydro-α-L-galactose (L-AHG) is one of the main monosaccharide constituents of red macroalgae. In the recently discovered bacterial L-AHG catabolic pathway, L-AHG is first oxidized by a NAD(P)+-dependent dehydrogenase (AHGD), which is a key step of this pathway. However, the catalytic mechanism(s) of AHGDs is still unclear. Here, we identified and characterized an AHGD from marine bacterium Vibrio variabilis JCM 19239 (VvAHGD). The NADP+-dependent VvAHGD could efficiently oxidize L-AHG. Phylogenetic analysis suggested that VvAHGD and its homologs represent a new aldehyde dehydrogenase (ALDH) family with different substrate preferences from reported ALDH families, named the L-AHGDH family. To explain the catalytic mechanism of VvAHGD, we solved the structures of VvAHGD in the apo form and complex with NADP+ and modeled its structure with L-AHG. Based on structural, mutational, and biochemical analyses, the cofactor channel and the substrate channel of VvAHGD are identified, and the key residues involved in the binding of NADP+ and L-AHG and the catalysis are revealed. VvAHGD performs catalysis by controlling the consecutive connection and interruption of the cofactor channel and the substrate channel via the conformational changes of its two catalytic residues Cys282 and Glu248. Comparative analyses of structures and enzyme kinetics revealed that differences in the substrate channels (in shape, size, electrostatic surface, and residue composition) lead to the different substrate preferences of VvAHGD from other ALDHs. This study on VvAHGD sheds light on the diversified catalytic mechanisms and evolution of NAD(P)+-dependent ALDHs.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yan-Jun Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Chun-Yang Li
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Peng Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yin Chen
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
28
|
Balzarini M, Rovelli V, Paci S, Rigoldi M, Sanna G, Pillai S, Asunis M, Parini R, Ciminelli BM, Malaspina P. Novel mutations in two unrelated Italian patients with SSADH deficiency. Metab Brain Dis 2019; 34:1515-1518. [PMID: 31267348 DOI: 10.1007/s11011-019-00453-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022]
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare autosomal recessive disorder of γ-aminobutyric acid (GABA) catabolism caused by mutations in the gene coding for succinic semialdehyde dehydrogenase (ALDH5A1). The abnormal levels of GHB detected in the brain and in all physiological fluids of SSADHD patients represent a diagnostic biochemical hallmark of the disease. Here we report on the clinical and molecular characterization of two unrelated Italian patients and the identification of two novel mutations: a 22 bp DNA duplication in exon 1, c.114_135dup, p.(C46AfsX97), and a non-sense mutation in exon 10, c.1429C > T, p.(Q477X). The two patients showed very different clinical phenotypes, coherent with their age. These findings enrich the characterization of SSADHD families and contribute to the knowledge on the progression of the disease.
Collapse
Affiliation(s)
- Marta Balzarini
- Pediatric Clinic and Rare Disease Department, Antonio Cao Pediatric Hospital, Cagliari, Italy
| | - Valentina Rovelli
- Pediatric Department, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Sabrina Paci
- Pediatric Department, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Miriam Rigoldi
- Rare Metabolic Disease Unit, San Gerardo University Hospital, Monza, Italy
| | - Giuseppina Sanna
- Neonatal Screening Center, Antonio Cao Pediatric Hospital, Cagliari, Italy
| | - Sara Pillai
- Neonatal Screening Center, Antonio Cao Pediatric Hospital, Cagliari, Italy
| | - Marilisa Asunis
- Pediatric Neurology Department, Antonio Cao Pediatric Hospital, Cagliari, Italy
| | - Rossella Parini
- Rare Metabolic Disease Unit, San Gerardo University Hospital, Monza, Italy
- TIGET Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Bianca Maria Ciminelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133, Rome, Italy
| | - Patrizia Malaspina
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133, Rome, Italy.
| |
Collapse
|
29
|
Verma H, Singh Bahia M, Choudhary S, Kumar Singh P, Silakari O. Drug metabolizing enzymes-associated chemo resistance and strategies to overcome it. Drug Metab Rev 2019; 51:196-223. [DOI: 10.1080/03602532.2019.1632886] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Himanshu Verma
- MolecularModelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Shalki Choudhary
- MolecularModelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Pankaj Kumar Singh
- MolecularModelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Om Silakari
- MolecularModelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
30
|
Wang P, Cai F, Cao L, Wang Y, Zou Q, Zhao P, Wang C, Zhang Y, Cai C, Shu J. Clinical diagnosis and mutation analysis of four Chinese families with succinic semialdehyde dehydrogenase deficiency. BMC MEDICAL GENETICS 2019; 20:88. [PMID: 31117962 PMCID: PMC6532217 DOI: 10.1186/s12881-019-0821-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/07/2019] [Indexed: 11/22/2022]
Abstract
Background Succinic semialdehyde dehydrogenase (SSADH) deficiency is a rare autosomal recessively-inherited defect of γ-aminobutyric acid (GABA) metabolism. The absence of SSADH, which is encoded by aldehyde dehydrogenase family 5 member A1 (ALDH5A1) gene, leads to the accumulation of GABA and γ-hydroxybutyric acid (GHB). Few cases with SSADH deficiency were reported in China. Case presentation In this study, four Chinese patients were diagnosed with SSADH deficiency in Tianjin Children’s Hospital. We conducted a multidimensional analysis with magnetic resonance imaging (MRI) of the head, semi quantitative detection of urine organic acid using gas chromatography-mass spectrometry, and analysis of ALDH5A1 gene mutations. Two of the patients were admitted to the hospital due to convulsions, and all patients were associated with developmental delay. Cerebral MRI showed symmetrical hyperintense signal of bilateral globus pallidus and basal ganglia in patient 1; hyperintensity of bilateral frontal-parietal lobe, widened ventricle and sulci in patient 2; and widened ventricle and sulci in patient 4. Electroencephalogram (EEG) revealed the background activity of epilepsy in patient 1 and the disappearance of sleep spindle in patient 2. Urine organic acid analysis revealed elevated GHB in all the patients. Mutational analysis, which was performed by sequencing the 10 exons and flanking the intronic regions of ALDH5A1 gene for all the patients, revealed mutations at five sites. Two cases had homozygous mutations with c.1529C > T and c.800 T > G respectively, whereas the remaining two had different compound heterozygous mutations including c.527G > A/c.691G > A and c.1344-2delA/c.1529C > T. Although these four mutations have been described previously, the homozygous mutation of c.800 T > G in ALDH5A1 gene is a novel discovery. Conclusion SSADH deficiency is diagnosed based on the elevated GHB and 4, 5DHHA by urinary organic acid analysis. We describe a novel mutation p.V267G (c.800 T > G) located in the NAD binding domain, which is possibly crucial for this disease’s severity. Our study expands the mutation spectrum of ALDH5A1 and highlights the importance of molecular genetic evaluation in patients with SSADH deficiency.
Collapse
Affiliation(s)
- Ping Wang
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, No.238, Longyan Road, Beichen District, Tianjin, 300134, People's Republic of China
| | - Fengying Cai
- Department of Physiology, Tianjin Medical College, Tianjin, 300222, China
| | - Lirong Cao
- Graduate College of Tianjin Medical University, Tianjin, 300070, China
| | - Yizheng Wang
- Graduate College of Tianjin Medical University, Tianjin, 300070, China
| | - Qianqian Zou
- Graduate College of Tianjin Medical University, Tianjin, 300070, China
| | - Peng Zhao
- Department of Rehabilitation, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Chao Wang
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, No.238, Longyan Road, Beichen District, Tianjin, 300134, People's Republic of China
| | - Yuqin Zhang
- Department of Neurology, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Chunquan Cai
- Department of Neurosurgery, Tianjin Children's Hospital, No.238, Longyan Road, Beichen District, Tianjin, 300134, People's Republic of China.
| | - Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, No.238, Longyan Road, Beichen District, Tianjin, 300134, People's Republic of China.
| |
Collapse
|
31
|
Kinetic and structural analysis of human ALDH9A1. Biosci Rep 2019; 39:BSR20190558. [PMID: 30914451 PMCID: PMC6487263 DOI: 10.1042/bsr20190558] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 01/27/2023] Open
Abstract
Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes, which detoxify aldehydes produced in various metabolic pathways to the corresponding carboxylic acids. Among the 19 human ALDHs, the cytosolic ALDH9A1 has so far never been fully enzymatically characterized and its structure is still unknown. Here, we report complete molecular and kinetic properties of human ALDH9A1 as well as three crystal forms at 2.3, 2.9, and 2.5 Å resolution. We show that ALDH9A1 exhibits wide substrate specificity to aminoaldehydes, aliphatic and aromatic aldehydes with a clear preference for γ-trimethylaminobutyraldehyde (TMABAL). The structure of ALDH9A1 reveals that the enzyme assembles as a tetramer. Each ALDH monomer displays a typical ALDHs fold composed of an oligomerization domain, a coenzyme domain, a catalytic domain, and an inter-domain linker highly conserved in amino-acid sequence and folding. Nonetheless, structural comparison reveals a position and a fold of the inter-domain linker of ALDH9A1 never observed in any other ALDH so far. This unique difference is not compatible with the presence of a bound substrate and a large conformational rearrangement of the linker up to 30 Å has to occur to allow the access of the substrate channel. Moreover, the αβE region consisting of an α-helix and a β-strand of the coenzyme domain at the dimer interface are disordered, likely due to the loss of interactions with the inter-domain linker, which leads to incomplete β-nicotinamide adenine dinucleotide (NAD+) binding pocket.
Collapse
|
32
|
Liu LK, Tanner JJ. Crystal Structure of Aldehyde Dehydrogenase 16 Reveals Trans-Hierarchical Structural Similarity and a New Dimer. J Mol Biol 2018; 431:524-541. [PMID: 30529746 DOI: 10.1016/j.jmb.2018.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022]
Abstract
The aldehyde dehydrogenase (ALDH) superfamily is a vast group of enzymes that catalyze the NAD+-dependent oxidation of aldehydes to carboxylic acids. ALDH16 is perhaps the most enigmatic member of the superfamily, owing to its extra C-terminal domain of unknown function and the absence of the essential catalytic cysteine residue in certain non-bacterial ALDH16 sequences. Herein we report the first production of recombinant ALDH16, the first biochemical characterization of ALDH16, and the first crystal structure of ALDH16. Recombinant expression systems were generated for the bacterial ALDH16 from Loktanella sp. and human ALDH16A1. Four high-resolution crystal structures of Loktanella ALDH16 were determined. Loktanella ALDH16 is found to be a bona fide enzyme, exhibiting NAD+-binding, ALDH activity, and esterase activity. In contrast, human ALDH16A1 apparently lacks measurable aldehyde oxidation activity, suggesting that it is a pseudoenzyme, consistent with the absence of the catalytic Cys in its sequence. The fold of ALDH16 comprises three domains: NAD+-binding, catalytic, and C-terminal. The latter is unique to ALDH16 and features a Rossmann fold connected to a protruding β-flap. The tertiary structural interactions of the C-terminal domain mimic the quaternary structural interactions of the classic ALDH superfamily dimer, a phenomenon we call "trans-hierarchical structural similarity." ALDH16 forms a unique dimer in solution, which mimics the classic ALDH superfamily dimer-of-dimer tetramer. Small-angle X-ray scattering shows that human ALDH16A1 has the same dimeric structure and fold as Loktanella ALDH16. We suggest that the Loktanella ALDH16 structure may be considered to be the archetype of the ALDH16 family.
Collapse
Affiliation(s)
- Li-Kai Liu
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
33
|
Korasick DA, White TA, Chakravarthy S, Tanner JJ. NAD + promotes assembly of the active tetramer of aldehyde dehydrogenase 7A1. FEBS Lett 2018; 592:3229-3238. [PMID: 30184263 PMCID: PMC6188814 DOI: 10.1002/1873-3468.13238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 02/04/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is the redox cofactor of many enzymes, including the vast aldehyde dehydrogenase (ALDH) superfamily. Although the function of NAD(H) in hydride transfer is established, its influence on protein structure is less understood. Herein, we show that NAD+ -binding promotes assembly of the ALDH7A1 tetramer. Multiangle light scattering, small-angle X-ray scattering, and sedimentation velocity all show a pronounced shift of the dimer-tetramer equilibrium toward the tetramer when NAD+ is present. Furthermore, electron microscopy shows that cofactor binding enhances tetramer formation even at the low enzyme concentration used in activity assays, suggesting the tetramer is the active species. Altogether, our results suggest that the catalytically active oligomer of ALDH7A1 is assembled on demand in response to cofactor availability.
Collapse
Affiliation(s)
- David A. Korasick
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Tommi A. White
- Department of Biochemistry, University of Missouri, Columbia, Missouri
- Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois
| | - John J. Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri
- Department of Chemistry, University of Missouri, Columbia, Missouri
| |
Collapse
|
34
|
Menduti G, Biamino E, Vittorini R, Vesco S, Puccinelli MP, Porta F, Capo C, Leo S, Ciminelli BM, Iacovelli F, Spada M, Falconi M, Malaspina P, Rossi L. Succinic semialdehyde dehydrogenase deficiency: The combination of a novel ALDH5A1 gene mutation and a missense SNP strongly affects SSADH enzyme activity and stability. Mol Genet Metab 2018; 124:210-215. [PMID: 29895405 DOI: 10.1016/j.ymgme.2018.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare autosomal recessive metabolic disorder of GABA catabolism. SSADH is a mitochondrial homotetrameric enzyme encoded by ALDH5A1 gene. We report the molecular characterization of ALDH5A1 gene in an Italian SSADHD patient, showing heterozygosity for four missense mutations: c.526G>A (p.G176R), c.538C>T (p.H180Y), c.709G>T (p.A237S) and c.1267A>T (p.T423S), the latter never described so far. The patient inherited c.526A in cis with c.538T from the mother and c.709T in cis with c.1267T from the father. To explore the effects of the two allelic arrangements on SSADH activity and protein level, wild type, single or double mutated cDNA constructs were expressed in a cell system. The p.G176R change, alone or in combination with p.H180Y, causes the abolishment of enzyme activity. Western blot analysis showed a strongly reduced amount of the p.176R-p.180Y double mutant protein, suggesting increased degradation. Indeed, in silico analyses confirmed high instability of this mutant homotetramer. Enzyme activity relative to the other p.423S-p.237S double mutant is around 30% of wt. Further in silico analyses on all the possible combinations of mutant monomers suggest the lowest stability for the tetramer constituted by p.176R-p.180Y monomers and the highest stability for that constituted by p.237S-p.423S monomers. The present study shows that when a common SNP, associated with a slight reduction of SSADH activity, is inherited in cis with a mutation showing no consequences on the enzyme function, the activity is strongly affected. In conclusion, the peculiar arrangement of four missense mutations occurring in this patient is responsible for the SSADHD phenotype.
Collapse
Affiliation(s)
| | - Elisa Biamino
- Department of Pediatrics, University of Turin, Italy
| | - Roberta Vittorini
- Department of Pediatric Neurology, Regina Margherita Children Hospital, University of Turin, Italy
| | - Serena Vesco
- Department of Pediatric Neurology, Regina Margherita Children Hospital, University of Turin, Italy
| | - Maria Paola Puccinelli
- Department of Laboratory Medicine, Azienda Ospedaliera Città della Salute e della Scienza, Turin, Italy
| | | | - Concetta Capo
- Department of Biology, University of Rome Tor Vergata, Italy
| | - Sara Leo
- Department of Biology, University of Rome Tor Vergata, Italy
| | | | | | - Marco Spada
- Department of Pediatrics, University of Turin, Italy
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Italy
| | | | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Italy.
| |
Collapse
|
35
|
Phonbuppha J, Maenpuen S, Munkajohnpong P, Chaiyen P, Tinikul R. Selective determination of the catalytic cysteine pK a of two-cysteine succinic semialdehyde dehydrogenase from Acinetobacter baumannii using burst kinetics and enzyme adduct formation. FEBS J 2018; 285:2504-2519. [PMID: 29734522 DOI: 10.1111/febs.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/27/2018] [Accepted: 04/30/2018] [Indexed: 11/27/2022]
Abstract
Succinic semialdehyde dehydrogenase (SSADH) from Acinetobacter baumannii (Ab) catalyzes the oxidation of succinic semialdehyde (SSA). This enzyme has two conserved cysteines (Cys289 and Cys291) and preferentially uses NADP+ over NAD+ as a hydride acceptor. Steady-state kinetic analysis showed that AbSSADH has the highest catalytic turnover (137 s-1 ) and can tolerate SSA inhibition the most (< 500 μm) among all SSADHs reported. Alanine substitutions of the two conserved cysteines indicated that Cys291Ala has ~ 65% activity compared with the wild-type enzyme while Cys289Ala is inactive, suggesting that Cys289 is the active residue participating in catalysis. Pre-steady-state kinetics showed for the first time burst kinetics for NADPH formation in SSADH, indicating that the rate-limiting step is associated with steps that occur after the hydride transfer. As the magnitude of burst kinetics represents the amount of NADPH formed during the first turnover, it is directly dependent on the amount of the deprotonated form of cysteine. The pKa of Cys289 was calculated from a plot of the burst magnitude vs pH as 7.4 ± 0.2. The Cys289 pKa was also measured based on the ability of AbSSADH to form an NADP-cysteine adduct, which can be detected by the increase of absorbance at ~ 330 nm as 7.9 ± 0.2. The lowering of the catalytic cysteine pKa by 0.6-1 unit renders the catalytic thiol more nucleophilic, which facilitates AbSSADH catalysis under physiological conditions. The methods established herein can specifically measure the active site cysteine pKa without interference from other cysteines. These techniques may be useful for studying ionization state of other cysteine-containing aldehyde dehydrogenases. ENZYME Succinic semialdehyde dehydrogenase, EC1.2.1.24.
Collapse
Affiliation(s)
- Jittima Phonbuppha
- Department of Biomolecular Science and Engineering, School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Pobthum Munkajohnpong
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pimchai Chaiyen
- Department of Biomolecular Science and Engineering, School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Mahidol University, Nakhonsawan, Thailand
| |
Collapse
|
36
|
Wang X, Lai C, Lei G, Wang F, Long H, Wu X, Chen J, Huo G, Li Z. Kinetic characterization and structural modeling of an NADP +-dependent succinic semialdehyde dehydrogenase from Anabaena sp. PCC7120. Int J Biol Macromol 2017; 108:615-624. [PMID: 29242124 DOI: 10.1016/j.ijbiomac.2017.12.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022]
Abstract
Succinic semialdehyde dehydrogenases (SSADH) of cyanobacteria played a pivotal role in completing the cyanobacterial tricarboxylic acid cycle. The structural information of cofactor preference and catalysis for SSADH from cyanobacteria is currently available. However, the detailed kinetics of SSADH from cyanobacteria were not characterized yet. In this study, an all3556 gene encoding SSADH from Anabaena sp. PCC7120 (ApSSADH) was amplified and the recombinant ApSSADH was purified homogenously. Kinetic analysis showed that ApSSADH was an NADP+-dependent SSADH, which utilized NADP+ and succinic semialdehyde (SSA) as its preferred substrates and the activity of ApSSADH was inhibited by its substrate of SSA. At the same time, the Ser157 residue was found to function as the determinant of cofactor preference. Further study demonstrated that activity and substrate inhibition of ApSSADH would be greatly reduced by the mutation of the residues at the active site. Bioinformatic analysis indicated that those residues were highly conserved throughout the SSADHs. To our knowledge this is the first report exploring the detailed kinetics of SSADH from cyanobacteria.
Collapse
Affiliation(s)
- Xiaoqin Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chongde Lai
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang 330045, China
| | - Guofeng Lei
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Haozhi Long
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinyin Chen
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang 330045, China
| | - Guanghua Huo
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhimin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
37
|
Park YS, Choi UJ, Nam NH, Choi SJ, Nasir A, Lee SG, Kim KJ, Jung GY, Choi S, Shim JY, Park S, Yoo TH. Engineering an aldehyde dehydrogenase toward its substrates, 3-hydroxypropanal and NAD +, for enhancing the production of 3-hydroxypropionic acid. Sci Rep 2017; 7:17155. [PMID: 29214999 PMCID: PMC5719400 DOI: 10.1038/s41598-017-15400-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/25/2017] [Indexed: 11/09/2022] Open
Abstract
3-Hydroxypropionic acid (3-HP) can be produced via the biological route involving two enzymatic reactions: dehydration of glycerol to 3-hydroxypropanal (3-HPA) and then oxidation to 3-HP. However, commercial production of 3-HP using recombinant microorganisms has been hampered with several problems, some of which are associated with the toxicity of 3-HPA and the efficiency of NAD+ regeneration. We engineered α-ketoglutaric semialdehyde dehydrogenase (KGSADH) from Azospirillum brasilense for the second reaction to address these issues. The residues in the binding sites for the substrates, 3-HPA and NAD+, were randomized, and the resulting libraries were screened for higher activity. Isolated KGSADH variants had significantly lower Km values for both the substrates. The enzymes also showed higher substrate specificities for aldehyde and NAD+, less inhibition by NADH, and greater resistance to inactivation by 3-HPA than the wild-type enzyme. A recombinant Pseudomonas denitrificans strain with one of the engineered KGSADH variants exhibited less accumulation of 3-HPA, decreased levels of inactivation of the enzymes, and higher cell growth than that with the wild-type KGSADH. The flask culture of the P. denitrificans strain with the mutant KGSADH resulted in about 40% increase of 3-HP titer (53 mM) compared with that using the wild-type enzyme (37 mM).
Collapse
Affiliation(s)
- Ye Seop Park
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Korea
| | - Un Jong Choi
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Korea
| | - Nguyen Hoai Nam
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Sang Jin Choi
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Korea
| | - Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Korea
| | - Sun-Gu Lee
- Department of Chemical and Biomolecular Engineering, Pusan National University, Pusan, 46241, Korea
| | - Kyung Jin Kim
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Korea
| | - Jeung Yeop Shim
- Bio R&D Center, Noroo Holdings Co., Ltd, Suwon, 16229, Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea.
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Korea.
| |
Collapse
|
38
|
Leo S, Capo C, Ciminelli BM, Iacovelli F, Menduti G, Funghini S, Donati MA, Falconi M, Rossi L, Malaspina P. SSADH deficiency in an Italian family: a novel ALDH5A1 gene mutation affecting the succinic semialdehyde substrate binding site. Metab Brain Dis 2017; 32:1383-1388. [PMID: 28664505 DOI: 10.1007/s11011-017-0058-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/20/2017] [Indexed: 12/20/2022]
Abstract
SSADH deficiency (SSADHD) is a rare autosomal recessively inherited metabolic disorder. It is associated with mutations of ALDH5A1 gene, coding for the homotetrameric enzyme SSADH. This enzyme is involved in γ-aminobutyric acid (GABA) catabolism, since it oxidizes succinic semialdehyde (SSA) to succinate. Mutations in ALDH5A1 gene result in the abnormal accumulation of γ-hydroxybutyrate (GHB), which is pathognomonic of SSADHD. In the present report, diagnosis of SSADHD in a three-month-old female was achieved by detection of high levels of GHB in urine. Sequence analysis of ALDH5A1 gene showed that the patient was a compound heterozygote for c.1226G > A (p.G409D) and the novel missense mutation, c.1498G > C (p.V500 L). By ALDH5A1 gene expression in transiently transfected HEK293 cells and enzyme activity assays, we demonstrate that the p.V500 L mutation, despite being conservative, produces complete loss of enzyme activity. In silico protein modelling analysis and evaluation of tetramer destabilizing energies suggest that structural impairment and partial occlusion of the access channel to the active site affect enzyme activity. These findings add further knowledge on the missense mutations associated with SSADHD and the molecular mechanisms underlying the loss of the enzyme activity.
Collapse
Affiliation(s)
- Sara Leo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133, Rome, Italy
| | - Concetta Capo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133, Rome, Italy
| | - Bianca Maria Ciminelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133, Rome, Italy
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133, Rome, Italy
| | - Giovanna Menduti
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133, Rome, Italy
| | - Silvia Funghini
- Newborn Screening Biochemistry and Pharmacology Laboratory, A. Meyer Children's Hospital, Florence, Italy
| | | | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133, Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133, Rome, Italy
| | - Patrizia Malaspina
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133, Rome, Italy.
| |
Collapse
|
39
|
Kopečná M, Vigouroux A, Vilím J, Končitíková R, Briozzo P, Hájková E, Jašková L, von Schwartzenberg K, Šebela M, Moréra S, Kopečný D. The ALDH21 gene found in lower plants and some vascular plants codes for a NADP + -dependent succinic semialdehyde dehydrogenase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:229-243. [PMID: 28749584 DOI: 10.1111/tpj.13648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Lower plant species including some green algae, non-vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP+ -dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ-aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol. NAD+ is a very poor coenzyme for ALDH21 unlike for mitochondrial SSALDHs (ALDH5), which are the closest related ALDH members. Structural comparison between the apoform and the coenzyme complex reveal that NADP+ binding induces a conformational change of the loop carrying Arg-228, which seals the NADP+ in the coenzyme cavity via its 2'-phosphate and α-phosphate groups. The crystal structure with the bound product succinate shows that its carboxylate group establishes salt bridges with both Arg-121 and Arg-457, and a hydrogen bond with Tyr-296. While both arginine residues are pre-formed for substrate/product binding, Tyr-296 moves by more than 1 Å. Both R121A and R457A variants are almost inactive, demonstrating a key role of each arginine in catalysis. Our study implies that bryophytes but presumably also some green algae, lycopods and ferns, which carry both ALDH21 and ALDH5 genes, can oxidize SSAL to succinate in both cytosol and mitochondria, indicating a more diverse GABA shunt pathway compared with higher plants carrying only the mitochondrial ALDH5.
Collapse
Affiliation(s)
- Martina Kopečná
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Armelle Vigouroux
- Institute for Integrative Biology of the Cell (I2BC), CNRS-CEA-Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, F-91198, Gif-sur-Yvette, France
| | - Jan Vilím
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Radka Končitíková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Pierre Briozzo
- Institut Jean-Pierre Bourgin, INRA-AgroParisTech, Université Paris-Saclay, Route de Saint-Cyr, F-78026, Versailles, France
| | - Eva Hájková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Lenka Jašková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | | | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Solange Moréra
- Institute for Integrative Biology of the Cell (I2BC), CNRS-CEA-Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, F-91198, Gif-sur-Yvette, France
| | - David Kopečný
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| |
Collapse
|
40
|
El-Habr EA, Dubois LG, Burel-Vandenbos F, Bogeas A, Lipecka J, Turchi L, Lejeune FX, Coehlo PLC, Yamaki T, Wittmann BM, Fareh M, Mahfoudhi E, Janin M, Narayanan A, Morvan-Dubois G, Schmitt C, Verreault M, Oliver L, Sharif A, Pallud J, Devaux B, Puget S, Korkolopoulou P, Varlet P, Ottolenghi C, Plo I, Moura-Neto V, Virolle T, Chneiweiss H, Junier MP. A driver role for GABA metabolism in controlling stem and proliferative cell state through GHB production in glioma. Acta Neuropathol 2017; 133:645-660. [PMID: 28032215 PMCID: PMC5348560 DOI: 10.1007/s00401-016-1659-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022]
Abstract
Cell populations with differing proliferative, stem-like and tumorigenic states co-exist in most tumors and especially malignant gliomas. Whether metabolic variations can drive this heterogeneity by controlling dynamic changes in cell states is unknown. Metabolite profiling of human adult glioblastoma stem-like cells upon loss of their tumorigenicity revealed a switch in the catabolism of the GABA neurotransmitter toward enhanced production and secretion of its by-product GHB (4-hydroxybutyrate). This switch was driven by succinic semialdehyde dehydrogenase (SSADH) downregulation. Enhancing GHB levels via SSADH downregulation or GHB supplementation triggered cell conversion into a less aggressive phenotypic state. GHB affected adult glioblastoma cells with varying molecular profiles, along with cells from pediatric pontine gliomas. In all cell types, GHB acted by inhibiting α-ketoglutarate-dependent Ten–eleven Translocations (TET) activity, resulting in decreased levels of the 5-hydroxymethylcytosine epigenetic mark. In patients, low SSADH expression was correlated with high GHB/α-ketoglutarate ratios, and distinguished weakly proliferative/differentiated glioblastoma territories from proliferative/non-differentiated territories. Our findings support an active participation of metabolic variations in the genesis of tumor heterogeneity.
Collapse
|
41
|
Mechanisms of protection against irreversible oxidation of the catalytic cysteine of ALDH enzymes: Possible role of vicinal cysteines. Chem Biol Interact 2017; 276:52-64. [PMID: 28216341 DOI: 10.1016/j.cbi.2017.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/29/2016] [Accepted: 02/13/2017] [Indexed: 01/22/2023]
Abstract
The catalytic mechanism of the NAD(P)+-dependent aldehyde dehydrogenases (ALDHs) involves the nucleophilic attack of the essential cysteine (Cys302, mature HsALDH2 numbering) on the aldehyde substrate. Although oxidation of Cys302 will inactivate these enzymes, it is not yet well understood how this oxidation is prevented. In this work we explore possible mechanisms of protection by systematically analyzing the reported three-dimensional structures and amino acid sequences of the enzymes of the ALDH superfamily. Specifically, we considered the Cys302 conformational space, the structure and residues conservation of the catalytic loop where Cys302 is located, the observed oxidation states of Cys302, the ability of physiological reductants to revert its oxidation, and the presence of vicinal Cys in the catalytic loop. Our analyses suggested that: 1) In the apo-enzyme, the thiol group of Cys302 is quite resistant to oxidation by ambient O2 or mild oxidative conditions, because the protein environment promotes its high pKa. 2) NAD(P)+ bound in the "hydride transfer" conformation afforded total protection against Cys302 oxidation by an unknown mechanism. 3) If formed, the Cys302-sulfenic acid is protected against irreversible oxidation. 4) Of the physiological reductant agents, the dithiol lipoic acid could reduce a sulfenic or a disulfide bond in the ALDHs active site; glutathione cannot because its thiol group cannot reach Cys302, and other physiological monothiols may be ineffective in those ALDHs where their active site cannot sterically accommodate two molecules of the monothiols. 5) Formation of the disulfides Cys301-Cys302, Cys302-Cys304, Cys302-Cys305 and Cys-302-Cys306 in those ALDHs that have these Cys residues is not probable, because of the permitted Cys conformers as well as the conserved structure and low flexibility of the catalytic loop. 6) Only in some ALDH2, ALDH9, ALDH16 and ALDH23 enzymes, Cys303, alone or in conjunction with Cys301, allows disulfide formation. Interestingly, several of these enzymes are mitochondrial.
Collapse
|
42
|
Vogel KR, Ainslie GR, Jansen EEW, Salomons GS, Gibson KM. Therapeutic relevance of mTOR inhibition in murine succinate semialdehyde dehydrogenase deficiency (SSADHD), a disorder of GABA metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:33-42. [PMID: 27760377 PMCID: PMC5154833 DOI: 10.1016/j.bbadis.2016.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/24/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023]
Abstract
Aldehyde dehydrogenase 5a1-deficient (aldh5a1-/-) mice, the murine orthologue of human succinic semialdehyde dehydrogenase deficiency (SSADHD), manifest increased GABA (4-aminobutyric acid) that disrupts autophagy, increases mitochondria number, and induces oxidative stress, all mitigated with the mTOR (mechanistic target of rapamycin) inhibitor rapamycin [1]. Because GABA regulates mTOR, we tested the hypothesis that aldh5a1-/- mice would show altered levels of mRNA for genes associated with mTOR signaling and oxidative stress that could be mitigated by inhibiting mTOR. We observed that multiple metabolites associated with GABA metabolism (γ-hydroxybutyrate, succinic semialdehyde, D-2-hydroxyglutarate, 4,5-dihydrohexanoate) and oxidative stress were significantly increased in multiple tissues derived from aldh5a1-/- mice. These metabolic perturbations were associated with decreased levels of reduced glutathione (GSH) in brain and liver of aldh5a1-/- mice, as well as increased levels of adducts of the lipid peroxidation by-product, 4-hydroxy-2-nonenal (4-HNE). Decreased liver mRNA levels for multiple genes associated with mTOR signaling and oxidative stress parameters were detected in aldh5a1-/- mice, and several were significantly improved with the administration of mTOR inhibitors (Torin 1/Torin 2). Western blot analysis of selected proteins corresponding to oxidative stress transcripts (glutathione transferase, superoxide dismutase, peroxiredoxin 1) confirmed gene expression findings. Our data provide additional preclinical evidence for the potential therapeutic efficacy of mTOR inhibitors in SSADHD.
Collapse
Affiliation(s)
- K R Vogel
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - G R Ainslie
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - E E W Jansen
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands
| | - G S Salomons
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands
| | - K M Gibson
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA.
| |
Collapse
|
43
|
Plasma metabolic profile delineates roles for neurodegeneration, pro-inflammatory damage and mitochondrial dysfunction in the FMR1 premutation. Biochem J 2016; 473:3871-3888. [PMID: 27555610 DOI: 10.1042/bcj20160585] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/23/2016] [Indexed: 12/19/2022]
Abstract
Carriers of premutation CGG expansions in the fragile X mental retardation 1 (FMR1) gene are at higher risk of developing a late-onset neurodegenerative disorder named Fragile X-associated tremor ataxia syndrome (FXTAS). Given that mitochondrial dysfunction has been identified in fibroblasts, PBMC and brain samples from carriers as well as in animal models of the premutation and that mitochondria are at the center of intermediary metabolism, the aim of the present study was to provide a complete view of the metabolic pattern by uncovering plasma metabolic perturbations in premutation carriers. To this end, metabolic profiles were evaluated in plasma from 23 premutation individuals and 16 age- and sex-matched controls. Among the affected pathways, mitochondrial dysfunction was associated with a Warburg-like shift with increases in lactate levels and altered Krebs' intermediates, neurotransmitters, markers of neurodegeneration and increases in oxidative stress-mediated damage to biomolecules. The number of CGG repeats correlated with a subset of plasma metabolites, which are implicated not only in mitochondrial disorders but also in other neurological diseases, such as Parkinson's, Alzheimer's and Huntington's diseases. For the first time, the identified pathways shed light on disease mechanisms contributing to morbidity of the premutation, with the potential of assessing metabolites in longitudinal studies as indicators of morbidity or disease progression, especially at the early preclinical stages.
Collapse
|
44
|
Malaspina P, Roullet JB, Pearl PL, Ainslie GR, Vogel KR, Gibson KM. Succinic semialdehyde dehydrogenase deficiency (SSADHD): Pathophysiological complexity and multifactorial trait associations in a rare monogenic disorder of GABA metabolism. Neurochem Int 2016; 99:72-84. [PMID: 27311541 DOI: 10.1016/j.neuint.2016.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022]
Abstract
Discovered some 35 years ago, succinic semialdehyde dehydrogenase deficiency (SSADHD) represents a rare, autosomal recessively-inherited defect in the second step of the GABA degradative pathway. Some 200 patients have been reported, with broad phenotypic and genotypic heterogeneity. SSADHD represents an unusual neurometabolic disorder in which two neuromodulatory agents, GABA (and the GABA analogue, 4-hydroxybutyrate), accumulate to supraphysiological levels. The unexpected occurrence of epilepsy in several patients is counterintuitive in view of the hyperGABAergic state, in which sedation might be expected. However, the epileptic status of some patients is most likely represented by broader imbalances of GABAergic and glutamatergic neurotransmission. Cumulative research encompassing decades of basic and clinical study of SSADHD reveal a monogenic disease with broad pathophysiological and clinical phenotypes. Numerous metabolic perturbations unmasked in SSADHD include alterations in oxidative stress parameters, dysregulation of autophagy and mitophagy, dysregulation of both inhibitory and excitatory neurotransmitters and gene expression, and unique subsets of SNP alterations of the SSADH gene (so-called ALDH5A1, or aldehyde dehydrogenase 5A1 gene) on the 6p22 chromosomal arm. While seemingly difficult to collate and interpret, these anomalies have continued to open novel pathways for pharmacotherapeutic considerations. Here, we present an update on selected aspects of SSADHD, the ALDH5A1 gene, and future avenues for research on this rare disorder of GABA metabolism.
Collapse
Affiliation(s)
- P Malaspina
- Department of Biology, University "Tor Vergata", Rome, Italy
| | - J-B Roullet
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - P L Pearl
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - G R Ainslie
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - K R Vogel
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - K M Gibson
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA.
| |
Collapse
|
45
|
Salminen A, Jouhten P, Sarajärvi T, Haapasalo A, Hiltunen M. Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer's disease. Neurochem Int 2015; 92:13-24. [PMID: 26617286 DOI: 10.1016/j.neuint.2015.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022]
Abstract
We have previously observed that the conversion of mild cognitive impairment to definitive Alzheimer's disease (AD) is associated with a significant increase in the serum level of 2,4-dihydroxybutyrate (2,4-DHBA). The metabolic generation of 2,4-DHBA is linked to the activation of the γ-aminobutyric acid (GABA) shunt, an alternative energy production pathway activated during cellular stress, when the function of Krebs cycle is compromised. The GABA shunt can be triggered by local hypoperfusion and subsequent hypoxia in AD brains caused by cerebral amyloid angiopathy. Succinic semialdehyde dehydrogenase (SSADH) is a key enzyme in the GABA shunt, converting succinic semialdehyde (SSA) into succinate, a Krebs cycle intermediate. A deficiency of SSADH activity stimulates the conversion of SSA into γ-hydroxybutyrate (GHB), an alternative route from the GABA shunt. GHB can exert not only acute neuroprotective activities but unfortunately also chronic detrimental effects which may lead to cognitive impairment. Subsequently, GHB can be metabolized to 2,4-DHBA and secreted from the brain. Thus, the activation of the GABA shunt and the generation of GHB and 2,4-DHBA can have an important role in the early phase of AD pathogenesis.
Collapse
Affiliation(s)
- Antero Salminen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | - Paula Jouhten
- VTT Technical Research Centre of Finland, FIN-00014 Helsinki, Finland; EMBL European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Timo Sarajärvi
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland; Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
46
|
Tamazian G, Ho Chang J, Knyazev S, Stepanov E, Kim KJ, Porozov Y. Modeling conformational redox-switch modulation of human succinic semialdehyde dehydrogenase. Proteins 2015; 83:2217-29. [DOI: 10.1002/prot.24937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Gaik Tamazian
- Department of Biology; Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University; St. Petersburg Russia
| | - Jeong Ho Chang
- Department of Biology; Teachers College, Kyungpook National University; Daegu Korea
| | - Sergey Knyazev
- Laboratory of Bioinformatics; ITMO University; St. Petersburg Russia
| | - Eugene Stepanov
- Laboratory of Representation Theory and Dynamical Systems; St. Petersburg Branch of the Steklov Mathematical Institute of the Russian Academy of Sciences; St. Petersburg Russia
- Department of Mathematical Physics Faculty of Mathematics and Mechanics; St. Petersburg State University; St. Petersburg Russia
- Laboratory of Bioinformatics; ITMO University; St. Petersburg Russia
| | - Kyung-Jin Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences; KNU Creative BioResearch Group (BK21 Plus Program), Kyungpook National University; Daegu Korea
| | - Yuri Porozov
- Laboratory of Bioinformatics; ITMO University; St. Petersburg Russia
| |
Collapse
|
47
|
Kim S, Jang YS, Ha SC, Ahn JW, Kim EJ, Lim JH, Cho C, Ryu YS, Lee SK, Lee SY, Kim KJ. Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum. Nat Commun 2015; 6:8410. [PMID: 26391388 DOI: 10.1038/ncomms9410%255cn/pmc/articles/pmc4595758/%3freport%3dabstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/19/2015] [Indexed: 05/27/2023] Open
Abstract
Thiolase is the first enzyme catalysing the condensation of two acetyl-coenzyme A (CoA) molecules to form acetoacetyl-CoA in a dedicated pathway towards the biosynthesis of n-butanol, an important solvent and biofuel. Here we elucidate the crystal structure of Clostridium acetobutylicum thiolase (CaTHL) in its reduced/oxidized states. CaTHL, unlike those from other aerobic bacteria such as Escherichia coli and Zoogloea ramegera, is regulated by the redox-switch modulation through reversible disulfide bond formation between two catalytic cysteine residues, Cys88 and Cys378. When CaTHL is overexpressed in wild-type C. acetobutylicum, butanol production is reduced due to the disturbance of acidogenic to solventogenic shift. The CaTHL(V77Q/N153Y/A286K) mutant, which is not able to form disulfide bonds, exhibits higher activity than wild-type CaTHL, and enhances butanol production upon overexpression. On the basis of these results, we suggest that CaTHL functions as a key enzyme in the regulation of the main metabolism of C. acetobutylicum through a redox-switch regulatory mechanism.
Collapse
Affiliation(s)
- Sangwoo Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Korea
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Korea
| | - Yu-Sin Jang
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program) and BioProcess Engineering Research Center, KAIST, Daejeon 305-701, Korea
| | - Sung-Chul Ha
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Korea
| | - Jae-Woo Ahn
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Korea
| | - Eun-Jung Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Korea
| | - Jae Hong Lim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Korea
| | - Changhee Cho
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program) and BioProcess Engineering Research Center, KAIST, Daejeon 305-701, Korea
| | - Yong Shin Ryu
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Korea
| | - Sung Kuk Lee
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program) and BioProcess Engineering Research Center, KAIST, Daejeon 305-701, Korea
- Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, and Bioinformatics Research Center, KAIST, Daejeon 305-701, Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
48
|
Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum. Nat Commun 2015; 6:8410. [PMID: 26391388 PMCID: PMC4595758 DOI: 10.1038/ncomms9410] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/19/2015] [Indexed: 01/02/2023] Open
Abstract
Thiolase is the first enzyme catalysing the condensation of two acetyl-coenzyme A (CoA) molecules to form acetoacetyl-CoA in a dedicated pathway towards the biosynthesis of n-butanol, an important solvent and biofuel. Here we elucidate the crystal structure of Clostridium acetobutylicum thiolase (CaTHL) in its reduced/oxidized states. CaTHL, unlike those from other aerobic bacteria such as Escherichia coli and Zoogloea ramegera, is regulated by the redox-switch modulation through reversible disulfide bond formation between two catalytic cysteine residues, Cys88 and Cys378. When CaTHL is overexpressed in wild-type C. acetobutylicum, butanol production is reduced due to the disturbance of acidogenic to solventogenic shift. The CaTHL(V77Q/N153Y/A286K) mutant, which is not able to form disulfide bonds, exhibits higher activity than wild-type CaTHL, and enhances butanol production upon overexpression. On the basis of these results, we suggest that CaTHL functions as a key enzyme in the regulation of the main metabolism of C. acetobutylicum through a redox-switch regulatory mechanism.
Collapse
|
49
|
Parviz M, Vogel K, Gibson KM, Pearl PL. Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies. JOURNAL OF PEDIATRIC EPILEPSY 2015; 3:217-227. [PMID: 25485164 DOI: 10.3233/pep-14097] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Clinical disorders known to affect inherited gamma-amino butyric acid (GABA) metabolism are autosomal recessively inherited succinic semialdehyde dehydrogenase and GABA-transaminase deficiency. The clinical presentation of succinic semialdehyde dehydrogenase deficiency includes intellectual disability, ataxia, obsessive-compulsive disorder and epilepsy with a nonprogressive course in typical cases, although a progressive form in early childhood as well as deterioration in adulthood with worsening epilepsy are reported. GABA-transaminase deficiency is associated with a severe neonatal-infantile epileptic encephalopathy.
Collapse
Affiliation(s)
- Mahsa Parviz
- Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kara Vogel
- Biological Pharmacology, Washington State University, Pullman, Washington, USA
| | - K Michael Gibson
- Biological Pharmacology, Washington State University, Pullman, Washington, USA
| | - Phillip L Pearl
- Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Pearl PL, Parviz M, Vogel K, Schreiber J, Theodore WH, Gibson KM. Inherited disorders of gamma-aminobutyric acid metabolism and advances in ALDH5A1 mutation identification. Dev Med Child Neurol 2015; 57:611-617. [PMID: 25558043 PMCID: PMC4485983 DOI: 10.1111/dmcn.12668] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2014] [Indexed: 02/01/2023]
Abstract
Inherited disorders of gamma-aminobutyric acid (GABA) metabolism include succinic semialdehyde dehydrogenase (SSADH) and gamma-aminobutyric acid transaminase (GABA-T) deficiencies. The clinical features, pathophysiology, diagnosis, and management of both, and an updated list of mutations in the ALDH5A1 gene, which cause SSADH deficiency, are discussed. A database of 112 individuals (71 children and adolescents, and 41 adults) indicates that developmental delay and hypotonia are the most common symptoms arising from SSADH deficiency. Furthermore, epilepsy is present in two-thirds of SSADH-deficient individuals by adulthood. Research with murine genetic models and human participants, using [11 C] flumazenil positron emission tomography (FMZ-PET) and transcranial magnetic stimulation, have led to therapeutic trials, and the identification of additional disruptions to GABA metabolism. Suggestions for new therapies have arisen from findings of GABAergic effects on autophagy, with enhanced activation of the mammalian target of rapamycin (mTOR) pathway. Details of known pathogenic mutations in the ALDH5A1 gene, three of which have not previously been reported, are summarized here. Investigations into disorders of GABA metabolism provide fundamental insights into the mechanisms underlying epilepsy, and support the importance of developing biomarkers and clinical trials. Comprehensive definition of phenotypes arising as a result of deficiencies in both SSADH and GABA-T may increase our understanding of the neurophysiological consequences of a hyper-GABAergic state.
Collapse
Affiliation(s)
- Phillip L. Pearl
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston MA
| | - Mahsa Parviz
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston MA
| | - Kara Vogel
- Department of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane WA
| | - John Schreiber
- Department of Neurology, Children’s National Medical Center, Washington, DC
| | | | - K. Michael Gibson
- Department of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane WA
| |
Collapse
|