1
|
Chen L, He Y, Jiang X, Kow ASF, Lee YZ, Tham CL, Yusof R, Lee MT. Regulation of elevated expression of Mcl-1 in hepatocellular carcinoma - a review. J Recept Signal Transduct Res 2025:1-11. [PMID: 40366802 DOI: 10.1080/10799893.2025.2503393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/16/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors worldwide. Mcl-1 (myeloid cell leukemia-1) is highly expressed in HCC cells and plays a critical role in chemotherapy resistance and is a major contributor to chemotherapy failure in HCC. The purpose of this study is to review the recent research progress that explores the key factors in regulating Mcl-1 overexpression in HCC cells, contributing to chemotherapy resistance. The related studies from the past decade on agents targeting Mcl-1 to inhibit HCC were also reviewed to provide insights into overcoming chemotherapy resistance in HCC. Mcl-1 overexpression in HCC is mainly regulated by transcription factors (such as STAT3, p53), non-coding RNAs (such as miRNA, lncRNA), cell cycle proteins, mitochondrial dynamics, and the hypoxic microenvironment. Targeting Mcl-1, alongside multi-target combination therapies, may overcome HCC chemotherapy resistance and improve outcomes. Future research should focus on strategies addressing multiple pathways to minimize monotherapy resistance risks and offer enhanced treatment options for the betterment of human health.
Collapse
Affiliation(s)
- Li Chen
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- Department of Pharmacology, College of Medicine, Guangxi University of Science and Technology, Liuzhou, PR China
| | - Yuwei He
- Department of Pharmacology, College of Medicine, Guangxi University of Science and Technology, Liuzhou, PR China
| | - Xudong Jiang
- Department of Pharmacology, College of Medicine, Guangxi University of Science and Technology, Liuzhou, PR China
| | | | - Yu Zhao Lee
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- Office of Postgraduate Studies, UCSI University, Kuala Lumpur, Malaysia
- UCSI Wellbeing Research Centre, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Lee JH, Seo SH, Shim J, Kim YN, Yoon K. Narciclasine enhances cisplatin-induced apoptotic cell death by inducing unfolded protein response-mediated regulation of NOXA and MCL1. Cell Mol Biol Lett 2025; 30:59. [PMID: 40369444 PMCID: PMC12076939 DOI: 10.1186/s11658-025-00735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Platinum-based chemotherapy is commonly used to treat non-small cell lung cancer (NSCLC); however, innate and acquired resistance is clinically seen in many patients. Hence, a combinatorial approach with novel therapeutic agents to overcome chemoresistance is a promising option for improving patient outcomes. We investigated the combinational anticancer efficacy of cisplatin and narciclasine in three-dimensional NSCLC tumor spheroids. METHODS To assess the efficacy of cisplatin and narciclasine, cell viability assays, live/dead cell staining, cell death enzyme-linked immunosorbent assay (ELISA), western blot analysis for proteins related to apoptosis, and in vivo xenograft experiments were performed. The synergistic effects of cisplatin and narciclasine were elucidated through transcriptomic analysis and subsequent validation of candidate molecules by regulating their expression. To clarify the underlying molecular mechanisms, the activation of unfolded protein responses and kinetics of a candidate protein were assessed. RESULTS Narciclasine inhibited viability of NSCLC tumor spheroids and augmented the sensitivity of cisplatin-resistant tumor spheroids to cisplatin by inducing apoptosis. After conducting bioinformatic analysis using RNA sequencing data and functional validation experiments, we identified NOXA as a key gene responsible for the enhanced apoptosis observed with the combination of cisplatin and narciclasine. This treatment dramatically increased NOXA while downregulating anti-apoptotic MCL1 levels. Silencing NOXA reversed the enhanced apoptosis and restored MCL1 levels, while MCL1 overexpression protected tumor spheroids from combination treatment-induced apoptosis. Interestingly, narciclasine alone and in combination with cisplatin induced unfolded protein response and inhibited general protein synthesis. Furthermore, the combination treatment increased NOXA expression through the IRE1α-JNK/p38 axis and the activation of p53. Cisplatin alone and in combination with narciclasine destabilized MCL1 via NOXA-mediated proteasomal degradation. CONCLUSIONS We identified a natural product, narciclasine, that synergizes with cisplatin. The combination of cisplatin and narciclasine induced NOXA expression, downregulated MCL1, and ultimately induced apoptosis in NSCLC tumor spheroids. Our findings suggest that narciclasine is a potential natural product for combination with cisplatin for treatment of NSCLC.
Collapse
Affiliation(s)
- Ji Hae Lee
- Cancer Metastasis Branch, Research Institute, National Cancer Center, Goyang, 10408, South Korea
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Seung Hee Seo
- Cancer Metastasis Branch, Research Institute, National Cancer Center, Goyang, 10408, South Korea
| | - Jaegal Shim
- Cancer Metastasis Branch, Research Institute, National Cancer Center, Goyang, 10408, South Korea
| | - Yong-Nyun Kim
- Cancer Metastasis Branch, Research Institute, National Cancer Center, Goyang, 10408, South Korea
| | - Kyungsil Yoon
- Cancer Metastasis Branch, Research Institute, National Cancer Center, Goyang, 10408, South Korea.
| |
Collapse
|
3
|
Cani L, Gupta VA, Kaufman JL. BCL2 inhibition for multiple myeloma and AL amyloidosis. Br J Haematol 2025; 206:1285-1296. [PMID: 40090369 DOI: 10.1111/bjh.20046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/28/2025] [Indexed: 03/18/2025]
Abstract
Despite the development of novel treatments, multiple myeloma (MM) and light-chain (AL) amyloidosis remain incurable diseases. BCL2 inhibitors are a class of drugs under development for plasma cell disorders, with strong data supporting their use, particularly in patients with MM and AL amyloidosis harbouring the t(11;14). Venetoclax, the most extensively studied BCL2-specific inhibitor, was initially designed and evaluated for other malignant blood disorders. However, it has since shown promising efficacy in both randomized and real-world studies for MM and AL amyloidosis, either as a monotherapy or in combination with other agents. Nonetheless, toxicity concerns have been raised, underscoring the need for careful patient selection and precise dose optimization. Additionally, other BCL2-targeting drugs are under investigation in preclinical and clinical studies. This review focuses on the current role of BCL2 inhibitors in the treatment landscape of MM and AL amyloidosis.
Collapse
Affiliation(s)
- Lorenzo Cani
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
- Division of Hematology, University of Torino, Torino, Italy
| | - Vikas A Gupta
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jonathan L Kaufman
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Marshall T, Dysert K, Young M, DuMont T. Pathophysiology of Sepsis. Crit Care Nurs Q 2025; 48:88-92. [PMID: 40009855 DOI: 10.1097/cnq.0000000000000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Sepsis is a condition of life-threatening organ dysfunction caused by a dysregulated host response to infection. It is the result of a series of exaggerated physiologic responses that lead to simultaneous hyper- and hypoinflammatory states. In the hyperinflammatory phase, there is an exuberant release of cytokines, commonly referred to as a cytokine storm. The immune-suppressive phase is characterized by counterregulatory attempts to achieve homeostasis that sometimes "overshoot", leaving the host in a state of immunosuppression, thus predisposing to recurrent nosocomial and secondary infections. The aging population with comorbidities faces higher risks of immune dysfunction and inflammation. Thus, the number of sepsis survivors that develop subsequent infections is predicted to rise substantially in the next few decades. Understanding sepsis-induced immune dysregulation may enhance surveillance and outcomes. This review is intended to describe the pathophysiology of sepsis and its effects on the immune system.
Collapse
Affiliation(s)
- Tanya Marshall
- Pulmonary Critical Care Division, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
5
|
Wu LF, Ren CH, Xu JC, Zhang YF, Liu YB, Zhou PH, Zhang YQ. NUC7738 Induces Apoptosis Through Modulating Stability of P53 in Esophageal Cancer Cells. J Biochem Mol Toxicol 2025; 39:e70175. [PMID: 39967332 DOI: 10.1002/jbt.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 12/09/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Esophageal cancer is an aggressive malignancy with a poor prognosis. NUC7738, a cordycepin derivative, has shown promise in overcoming the limited in vivo efficacy of its parent compound. This study compares the anticancer effects of NUC7738 and cordycepin in esophageal cancer and explores the molecular mechanisms of NUC7738 action. In vitro, NUC7738 and cordycepin were tested on normal (Het1A) and esophageal cancer cell lines (ECA109, KYSE510) using Cell Counting Kit-8 (CCK-8) and colony formation assays. Apoptosis was confirmed by inhibitors and flow cytometry. Western blot was performed to detect apoptosis-related protein. KEGG analysis identified potential downstream signaling pathways, while qPCR, western blot, and immunofluorescence staining were applied to assess p53 expression and stability. In vivo, ECA109 cells were xenografted into nude mice, and tumor tissues were analyzed for p53 expression using Immunohistochemical staining. Finally, CCK-8, colony formation, and subcutaneous tumor xenograft assays in nude mice were employed to assess the synergistic effects of NUC7738 and cisplatin. The results revealed that NUC7738, although less effective than cordycepin in vitro, demonstrated superior anticancer activity in vivo. NUC7738 induced apoptosis by stabilizing p53 via ubiquitination, inhibiting tumor growth. Additionally, NUC7738 combined with cisplatin showed enhanced anticancer effects both in vitro and in vivo. These findings highlight greater potential of NUC7738 for clinical application, particularly in improving p53 stability and augmenting chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Lin-Feng Wu
- Department of Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endoscopy, Shanghai Collaborative Innovation Center, Shanghai, China
| | - Chang-Hao Ren
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Cheng Xu
- Department of Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endoscopy, Shanghai Collaborative Innovation Center, Shanghai, China
| | - Yi-Fei Zhang
- Department of Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endoscopy, Shanghai Collaborative Innovation Center, Shanghai, China
| | - Yan-Bo Liu
- Department of Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endoscopy, Shanghai Collaborative Innovation Center, Shanghai, China
| | - Ping-Hong Zhou
- Department of Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endoscopy, Shanghai Collaborative Innovation Center, Shanghai, China
| | - Yi-Qun Zhang
- Department of Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endoscopy, Shanghai Collaborative Innovation Center, Shanghai, China
| |
Collapse
|
6
|
Markouli M, Pagoni MN, Diamantopoulos P. BCL-2 inhibitors in hematological malignancies: biomarkers that predict response and management strategies. Front Oncol 2025; 14:1501950. [PMID: 39906657 PMCID: PMC11790632 DOI: 10.3389/fonc.2024.1501950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
Apoptosis is an essential characteristic of cancer and its dysregular promotes tumor growth, clonal evolution, and treatment resistance. B-cell lymphoma-2 (BCL-2) protein family members are key to the intrinsic, mitochondrial apoptotic pathway. The inhibition of the BCL-2 family pro-survival proteins, which are frequently overexpressed in B-cell malignancies and pose a fundamental carcinogenic mechanism has been proposed as a promising therapeutic option, with venetoclax (ABT-199) being the first FDA-approved BCL-2 inhibitor. Unfortunately, although BCL-2 inhibition has shown remarkable results in a range of B-cell lymphoid cancers as well as acute myeloid leukemia (AML), the development of resistance significantly reduces response rates in specific tumor subtypes. In this article, we explain the role of BCL-2 family proteins in apoptosis and their mechanism of action that justifies their inhibition as a potential treatment target in B-cell malignancies, including chronic lymphocytic leukemia, multiple myeloma, B-cell lymphomas, but also AML. We further analyze the tumor characteristics that result in the development of intrinsic or inherited resistance to BCL-2 inhibitors. Finally, we focus on the biomarkers that can be used to predict responses to treatment in the name of personalized medicine, with the goal of exploring alternative strategies to overcome resistance.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Internal Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
| | - Maria N. Pagoni
- Department of Hematology-Lymphomas and BMT Unit, Evangelismos Hospital, Athens, Greece
| | - Panagiotis Diamantopoulos
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Paul S, Chatterjee A, Das K, Ray A, Basu A, Mukhopadhyay S, Sen P. Thrombin confers chemotherapeutic resistance by promoting transcriptional induction and post-translational stabilization of pro-survival MCL1 in TNBC. J Biol Chem 2025; 301:108025. [PMID: 39608719 PMCID: PMC11728981 DOI: 10.1016/j.jbc.2024.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
The association between idiopathic venous thrombosis and occult cancer is widely recognized. However, the comprehensive understanding of how thrombin, generated during the process of thrombosis, possesses the potential to augment the malignant phenotype is still not well understood. The coagulation protease thrombin mediates its effects by cleaving protease-activated receptor 1 (PAR1), a receptor abundantly expressed on the surface of triple-negative breast cancer (TNBC) cells. While emerging evidence implicates coagulation proteases in facilitating cancer progression, the precise molecular pathways underlying thrombin-mediated induction of chemoresistance remain poorly defined. Here, we demonstrate that thrombin-induced PAR1 activation in TNBC cells promotes the development of a multidrug-resistant phenotype, mechanistically linked to the upregulation of the pro-survival protein MCL1. Genetic ablation of MCL1 sensitizes TNBC cells to cytotoxic drugs despite thrombin exposure, affirming MCL1's functional importance. Chromatin immunoprecipitation analyses reveal thrombin triggers protein kinase A-dependent phosphorylation of serine 133 residues of cAMP-responsive element-binding protein (CREB), enhancing CREB's affinity for the co-activators CBP and p300. Furthermore, thrombin treatment induces the nuclear translocation of CREB-regulated transcription coactivator 2 (CRTC2) in a calcium-dependent manner, which collectively interacts with CREB/CBP-P300. The coordinated action of these transcriptional co-activators facilitates the transcriptional induction of MCL1. We further report that PAR1 activation augments MCL1 binding to the deubiquitinase USP9X, reducing MCL1 turnover. Our pre-clinical breast cancer murine model also shows that genetic deletion of PAR1 sensitizes breast cancer cells to chemotherapeutic drugs in vivo. Collectively, these findings emphasize the thrombin-PAR1 axis as a novel driver of chemoresistance. Utilizing FDA-approved oral anticoagulants for selective blocking of thrombin action may serve as a potential therapeutic adjunct for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Akash Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Kaushik Das
- National Institute of Biomedical Genomics, Kalyani, India
| | - Anushka Ray
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | | | | | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
8
|
Mosadegh M, Noori Goodarzi N, Erfani Y. A Comprehensive Insight into Apoptosis: Molecular Mechanisms, Signaling Pathways, and Modulating Therapeutics. Cancer Invest 2025; 43:33-58. [PMID: 39760426 DOI: 10.1080/07357907.2024.2445528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/15/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Apoptosis, or programmed cell death, is a fundamental biological process essential for maintaining tissue homeostasis. Dysregulation of apoptosis is implicated in a variety of diseases, including cancer, neurodegenerative disorders, and autoimmune conditions. This review provides an in-depth insight into the molecular mechanisms and signaling pathways that regulate apoptosis, highlighting both intrinsic and extrinsic pathways. Additionally, the review explains the tumor microenvironment's influence on apoptosis and its implications for cancer therapy resistance. Understanding the complex interplay between apoptotic signaling and cellular responses is crucial for developing targeted therapies that can effectively manage diseases associated with apoptosis dysregulation. The effects of conventional therapeutics and alternative substances with natural sources such as herbal compounds, alongside vitamins, minerals, and trace elements on cellular homeostasis and disease pathogenesis have been thoroughly investigated. Moreover, recent advances in therapeutic strategies aimed at modulating apoptosis are discussed, with a focus on novel interventions such as nutrition bio shield dietary supplement. These emerging approaches offer potential benefits beyond conventional treatments by selectively targeting apoptotic pathways to inhibit cancer progression and metastasis. By integrating insights from recent studies, this review aims to enhance our understanding of apoptosis and guide future research in developing innovative therapeutic approaches.
Collapse
Affiliation(s)
- Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Erfani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Boroujeni AF, Ates-Alagoz Z. Pioneering the Battle Against Breast Cancer: The Promise of New Bcl-2 Family. Anticancer Agents Med Chem 2025; 25:164-178. [PMID: 39313901 DOI: 10.2174/0118715206320224240910054728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Currently, breast cancer is the most common cancer type, accounting for 1 in every 4 cancer cases. Leading both in mortality and incidence, breast cancer causes 1 in 4 cancer deaths. To decrease the burden of breast cancer, novel therapeutic agents which target the key hallmarks of cancer, are being explored. The Bcl-2 family of proteins has a crucial role in governing cell death, making them an attractive target for cancer therapy. As cancer chemotherapies lead to oncogenic stress, cancer cells upregulate the Bcl-2 family to overcome apoptosis, leading to failure of treatment. To fix this issue, Bcl-2 family inhibitors, which can cause cell death, have been introduced as novel therapeutic agents. Members of this group have shown promising results in in-vitro studies, and some are currently in clinical trials. In this review, we will investigate Bcl-2 family inhibitors, which are already in trials as monotherapy or combination therapy for breast cancer, and we will also highlight the result of in vitro studies of novel Bcl-2 family inhibitors on breast cancer cells. The findings of these studies have yielded encouraging outcomes regarding the identification of novel Bcl-2 family inhibitors. These compounds hold significant potential as efficacious agents for employment in both monotherapy and combination therapy settings.
Collapse
Affiliation(s)
- Ali Farhang Boroujeni
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
10
|
Loos B, Salas-Bastos A, Nordin A, Debbache J, Stierli S, Cheng PF, Rufli S, Wyss C, Levesque MP, Dummer R, Wong WWL, Pascolo S, Cantù C, Sommer L. TGFβ signaling sensitizes MEKi-resistant human melanoma to targeted therapy-induced apoptosis. Cell Death Dis 2024; 15:925. [PMID: 39709491 DOI: 10.1038/s41419-024-07305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
The TGFβ signaling pathway is known for its pleiotropic functions in a plethora of biological processes. In melanoma, TGFβ signaling promotes invasiveness and metastasis formation. However, its involvement in the response to therapy is controversial. While several studies have linked TGFβ signaling to elevated resistance to targeted therapy in melanoma, separate findings have indicated a favorable treatment response through TGFβ-mediated increase of cell death. We now found that the outcome of TGFβ signaling in the context of targeted therapy is dose dependent. Unlike low doses, high levels of TGFβ signal activation induce apoptosis upon simultaneous MAPK pathway inhibition, even in targeted therapy resistant melanoma cell lines. Using transcriptomic analyses, combined with genomic target identification of the critical TGFβ signaling effector SMAD4, we demonstrate that parallel activation of TGFβ signaling and MAPK pathway inhibition causes a complete switch of TGFβ target genes from promoting pro-invasive processes to fueling pro-apoptotic pathways. Investigations of underlying mechanisms identified a novel apoptosis-inducing gene signature. Functional validation of signature members highlighted a central role of the pro-apoptotic BCL2 family member BCL2L11 (BIM) in mediating apoptosis in this condition. Using a modified, synthetic version of the TGFB1 mRNA for intra-tumoral injections, we additionally showcase a potential therapeutic application of this treatment combination.
Collapse
Affiliation(s)
- Benjamin Loos
- University of Zürich, Institute of Anatomy, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Adrian Salas-Bastos
- University of Zürich, Institute of Anatomy, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Anna Nordin
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences, Linköping University, 58185, Linköping, Sweden
| | - Julien Debbache
- University of Zürich, Institute of Anatomy, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Salome Stierli
- University of Zürich, Institute of Anatomy, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Phil F Cheng
- University of Zürich Hospital, University of Zürich, Department of Dermatology, Raemistrasse 100, 8091, Zürich, Switzerland
| | - Stefanie Rufli
- University of Zurich, Institute of Experimental Immunology, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Conrad Wyss
- University of Zürich Hospital, University of Zürich, Department of Dermatology, Raemistrasse 100, 8091, Zürich, Switzerland
| | - Mitchell P Levesque
- University of Zürich Hospital, University of Zürich, Department of Dermatology, Raemistrasse 100, 8091, Zürich, Switzerland
| | - Reinhard Dummer
- University of Zürich Hospital, University of Zürich, Department of Dermatology, Raemistrasse 100, 8091, Zürich, Switzerland
| | - Wendy Wei-Lynn Wong
- University of Zurich, Institute of Experimental Immunology, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Steve Pascolo
- University of Zürich Hospital, University of Zürich, Department of Dermatology, Raemistrasse 100, 8091, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences, Linköping University, 58185, Linköping, Sweden
| | - Lukas Sommer
- University of Zürich, Institute of Anatomy, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| |
Collapse
|
11
|
Pattoo TS, Kim SA, Khanday FA. BAG3 Mediated Down-regulation in Expression of p66shc has Ramifications on Cellular Proliferation, Apoptosis and Metastasis. Cell Biochem Biophys 2024; 82:3727-3740. [PMID: 39127862 DOI: 10.1007/s12013-024-01460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Redundancy of cancer cells towards ROS-mediated apoptosis despite expressing proline-rich p66shc abundantly needs to be investigated properly. P66shc, an adapter protein, is indispensable both for initiating ROS-mediated apoptosis and subsequent ROS generation through Rac-1 activation. P66shc gets phosphorylated at Ser-36 that triggers its translocation to the mitochondria and subsequent release of Cytochrome c in response to oxidative stress. It also aids in Rac-1 dependent NADPH oxidase activation, leading to the generation of cytosolic ROS that can perform diverse functions depending on its concentration. This study has identified the multi-faceted anti-apoptotic protein BAG3 as an interacting partner of p66shc. BAG3 utilizes its WW domain to bind to the proline-rich motifs of p66shc. BAG3, through its WW domain, antagonizes p66shc mediated apoptosis, by inhibiting both the expression and phosphorylation of p66shc under normal and oxidative stress conditions. This results in significant protection against ROS-mediated apoptosis. BAG3-mediated reduction in p66shc expression increases cell proliferation and metastasis. The increase in cell proliferation is attributed to the impact of BAG3 on Rac-1 activation and ROS production under normal conditions. This study has unraveled an interactor of p66shc that enhances pro-survival role while simultaneously suppressing its apoptotic role.
Collapse
Affiliation(s)
| | - Soo-A Kim
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju, Republic of Korea
| | - Firdous A Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India.
| |
Collapse
|
12
|
Chien KS, Rodriguez-Sevilla JJ, Alvarado Y, Montalban-Bravo G, Hammond DE, Swaminathan M, Bazinet A, Kimberley J, Bodden K, Schneider H, Dong XQ, Pierce SA, Huang X, Jabbour EJ, Kantarjian HM, Garcia-Manero G. A phase I study of the myeloid cell leukemia 1 (MCL1) inhibitor tapotoclax (AMG 176) in patients with myelodysplastic syndromes after hypomethylating agent failure. Leuk Res 2024; 147:107602. [PMID: 39461095 DOI: 10.1016/j.leukres.2024.107602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Affiliation(s)
- Kelly S Chien
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX, USA.
| | | | - Yesid Alvarado
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| | | | - Danielle E Hammond
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| | - Mahesh Swaminathan
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| | - Alexandre Bazinet
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| | - Jacqueline Kimberley
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| | - Kristy Bodden
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| | - Heather Schneider
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| | - Xiao Qin Dong
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| | - Sherry A Pierce
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| | - Xuelin Huang
- The University of Texas MD Anderson Cancer Center, Department of Biostatistics, Houston, TX, USA
| | - Elias J Jabbour
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| | - Hagop M Kantarjian
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| | | |
Collapse
|
13
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024; 53:11557-11589. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
14
|
Parrilla GE, Vander Wall R, Chitranshi N, Basavarajappa D, Gupta V, Graham SL, You Y. RXR agonist, 9-cis-13,14-dihydroretinoic acid (9CDHRA), reduces damage and protects from demyelination in transsynaptic degeneration model. Neuroscience 2024; 559:91-104. [PMID: 39173871 DOI: 10.1016/j.neuroscience.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative and demyelinating disease, such as multiple sclerosis (MS) are at the forefront of medical research and the discovery of new drugs and therapeutics. One phenomenon of degeneration seen in these diseases is transsynaptic degeneration (TSD), where damage from one axon spreads to the other axons that are connected to it synaptically. It has previously been found that demyelination occurs prior to neuronal loss in an experimental form of induced TSD. Retinoid-x receptor (RXR) agonists have been shown to promote remyelination. Therefore, this study aimed to reveal the effects of a novel endogenous RXR-γ agonist, 9-cis-13,14-dihydroretinoic acid (9CDHRA), on preventing or restoring the effects of TSD. 9CDHRA was administered to mice following optic nerve crush (ONC) procedures, and electrophysiology (visual evoked potential, VEP) and histological (immunofluorescent) assessments were performed. It was found that 9CDHRA treatment effectively delayed glial activation and reduced the presence of apoptosis at the site of injury and further anterogradely in the visual system, including the lateral geniculate nucleus (LGN) and primary visual cortex (V1). Most notably, 9CDHRA was able to maintain myelin levels following ONC, and effectively protected from demyelination. This was corroborated by VEP recordings with improved P1 latency. The promising findings regarding the injury attenuating and myelin protecting properties of 9CDHRA necessitates further investigations into the potential therapeutic uses of this compound.
Collapse
Affiliation(s)
- Gabriella E Parrilla
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia.
| | - Roshana Vander Wall
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Nitin Chitranshi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Devaraj Basavarajappa
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia; Save Sight Institute, University of Sydney, 8 Macquarie St, Sydney, NSW 2000, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia; Save Sight Institute, University of Sydney, 8 Macquarie St, Sydney, NSW 2000, Australia
| |
Collapse
|
15
|
Venkatachalam A, Correia C, Peterson KL, Hou X, Schneider PA, Strathman AR, Flatten KS, Sine CC, Balczewski EA, McGehee CD, Larson MC, Duffield LN, Meng XW, Vincelette ND, Ding H, Oberg AL, Couch FJ, Swisher EM, Li H, Weroha SJ, Kaufmann SH. Proapoptotic activity of JNK-sensitive BH3-only proteins underpins ovarian cancer response to replication checkpoint inhibitors. Mol Cancer 2024; 23:224. [PMID: 39375715 PMCID: PMC11457406 DOI: 10.1186/s12943-024-02125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
Recent studies indicate that replication checkpoint modulators (RCMs) such as inhibitors of CHK1, ATR, and WEE1 have promising monotherapy activity in solid tumors, including platinum-resistant high grade serous ovarian cancer (HGSOC). However, clinical response rates are generally below 30%. While RCM-induced DNA damage has been extensively examined in preclinical and clinical studies, the link between replication checkpoint interruption and tumor shrinkage remains incompletely understood. Here we utilized HGSOC cell lines and patient-derived xenografts (PDXs) to study events leading from RCM treatment to ovarian cancer cell death. These studies show that RCMs increase CDC25A levels and CDK2 signaling in vitro, leading to dysregulated cell cycle progression and increased replication stress in HGSOC cell lines independent of homologous recombination status. These events lead to sequential activation of JNK and multiple BH3-only proteins, including BCL2L11/BIM, BBC3/PUMA and the BMF, all of which are required to fully initiate RCM-induced apoptosis. Activation of the same signaling pathway occurs in HGSOC PDXs that are resistant to poly(ADP-ribose) polymerase inhibitors but respond to RCMs ex vivo with a decrease in cell number in 3-dimensional culture and in vivo with xenograft shrinkage or a significantly diminished growth rate. These findings identify key cell death-initiating events that link replication checkpoint inhibition to antitumor response in ovarian cancer.
Collapse
Affiliation(s)
- Annapoorna Venkatachalam
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Cristina Correia
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Kevin L Peterson
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Xianon Hou
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Paula A Schneider
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Annabella R Strathman
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Karen S Flatten
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Chance C Sine
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Emily A Balczewski
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
- Present Address: Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Cordelia D McGehee
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Melissa C Larson
- Division of Clinical Trials and Biostatistics, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Laura N Duffield
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - X Wei Meng
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Nicole D Vincelette
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
- Present Address: H. Lee Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Husheng Ding
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Ann L Oberg
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Fergus J Couch
- Division of Experimental Pathology, Department of Laboratory Medicine, and Pathology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Elizabeth M Swisher
- Department of Obstetrics and Gynecology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - S John Weroha
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Scott H Kaufmann
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA.
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA.
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
16
|
Lin Q, Ma W, Xu M, Xu Z, Wang J, Liang Z, Zhu L, Wu M, Luo J, Liu H, Liu J, Jin Y. A clinical prognostic model related to T cells based on machine learning for predicting the prognosis and immune response of ovarian cancer. Heliyon 2024; 10:e36898. [PMID: 39296051 PMCID: PMC11409031 DOI: 10.1016/j.heliyon.2024.e36898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Background Ovarian cancer (OV) is regarded as one of the most lethal malignancies affecting the female reproductive system, with individuals diagnosed with OV often facing a dismal prognosis due to resistance to chemotherapy and the presence of an immunosuppressive environment. T cells serve as a crucial mediator for immune surveillance and cancer elimination. This study aims to analyze the mechanism of T cell-associated markers in OV and create a prognostic model for clinical use in enhancing outcomes for OV patients. Methods Based on the single-cell dataset GSE184880, this study used single-cell data analysis to identify characteristic T cell subsets. Analysis of high dimensional weighted gene co-expression network analysis (hdWGCNA) is utilized to identify crucial gene modules along with their corresponding hub genes. A grand total of 113 predictive models were formed utilizing ten distinct machine learning algorithms along with the combination of the cancer genome atlas (TCGA)-OV dataset and the GSE140082 dataset. The most dependable clinical prognostic model was created utilizing the leave one out cross validation (LOOCV) framework. The validation process for the models was achieved by conducting survival curve analysis and receiver operating characteristic (ROC) analysis. The relationship between risk scores and immune cells was explored through the utilization of the Cibersort algorithm. Additionally, an analysis of drug sensitivity was carried out to anticipate chemotherapy responses across various risk groups. The genes implicated in the model were authenticated utilizing qRT-PCR, cell viability experiments, and EdU assay. Results This study developed a clinical prognostic model that includes ten risk genes. The results obtained from the training set of the study indicate that patients classified in the low-risk group experience a significant survival advantage compared to those in the high-risk group. The ROC analysis demonstrates that the model holds significant clinical utility. These results were verified using an independent dataset, strengthening the model's precision and dependability. The risk assessment provided by the model also serves as an independent prognostic factor for OV patients. The study also unveiled a noteworthy relationship between the risk scores calculated by the model and various immune cells, suggesting that the model may potentially serve as a valuable tool in forecasting responses to both immune therapy and chemotherapy in ovarian cancer patients. Notably, experimental evidence suggests that PFN1, one of the genes included in the model, is upregulated in human OV cell lines and has the capacity to promote cancer progression in in vitro models. Conclusion We have created an accurate and dependable clinical prognostic model for OV capable of predicting clinical outcomes and categorizing patients. This model effectively forecasts responses to both immune therapy and chemotherapy. By regulating the immune microenvironment and targeting the key gene PFN1, it may improve the prognosis for high-risk patients.
Collapse
Affiliation(s)
- Qiwang Lin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Weixu Ma
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Mengchang Xu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial First-class Applied Discipline (pharmacy), Changsha, China
| | - Zijin Xu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhu Liang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lin Zhu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Menglu Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiejun Luo
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haiying Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yunfeng Jin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Matei E, Ionescu AC, Enciu M, Popovici V, Mitroi AF, Aschie M, Deacu M, Băltățescu GI, Nicolau AA, Roșu MC, Cristian M, Dobrin N, Ștefanov C, Pundiche Butcaru M, Cozaru GC. Cell death and DNA damage via ROS mechanisms after applied antibiotics and antioxidants doses in prostate hyperplasia primary cell cultures. Medicine (Baltimore) 2024; 103:e39450. [PMID: 39287312 PMCID: PMC11404886 DOI: 10.1097/md.0000000000039450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Tumor heterogeneity results in aggressive cancer phenotypes with acquired resistance. However, combining chemical treatment with adjuvant therapies that cause cellular structure and function perturbations may diminish the ability of cancer cells to resist at chemical treatment and lead to a less aggressive cancer phenotype. Applied treatments on prostate hyperplasia primary cell cultures exerted their antitumor activities through mechanisms including cell cycle blockage, oxidative stress, and cell death induction by flow cytometry methods. A 5.37 mM Chloramphenicol dose acts on prostate hyperplasia cells by increasing the pro-oxidant status, inducing apoptosis, autophagy, and DNA damage, but without ROS changes. Adding 6.30 mM vitamin C or 622 µM vitamin E as a supplement to 859.33 µM Chloramphenicol dose in prostate hyperplasia cells determines a significant increase of ROS level for a part of cells. However, other cells remain refractory to initial ROS, with significant changes in apoptosis, autophagy, and cell cycle arrest in G0/G1 or G2/M. When the dose of Chloramphenicol was increased to 5.37 mM for 6.30 mM of vitamin C, prostate hyperplasia cells reacted by ROS level drastically decreased, cell cycle arrest in G2/M, active apoptosis, and autophagy. The pro-oxidant action of 1.51 mM Erythromycin dose in prostate hyperplasia cell cultures induces changes in the apoptosis mechanisms and cell cycle arrest in G0/G1. Addition of 6.30 mM vitamin C to 1.51 mM Erythromycin dose in hyperplasia cell cultures, the pro-oxidant status determines diminished caspase 3/7 mechanism activation, but ROS level presents similar changes as Chloramphenicol dose and cell cycle arrest in G2/M. Flow cytometric analysis of cell death, oxidative stress, and cell cycle are recommended as laboratory techniques in therapeutic and diagnostic fields.
Collapse
Affiliation(s)
- Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, Constanta, Romania
| | - Anita Cristina Ionescu
- Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, Bucharest, Romania
- Medicine Faculty, “Ovidius” University of Constanta, Constanta, Romania
| | - Manuela Enciu
- Medicine Faculty, “Ovidius” University of Constanta, Constanta, Romania
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Violeta Popovici
- Laboratory of Bacteriology, Microbiology and Pharmacology, Center for Mountain Economics (INCE-CE-MONT), National Institute of Economic Research “Costin C. Kiritescu”, Suceava County, Romania
| | - Anca Florentina Mitroi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, Constanta, Romania
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Mariana Aschie
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, Constanta, Romania
- Medicine Faculty, “Ovidius” University of Constanta, Constanta, Romania
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
- Romanian Academy of Scientists, Bucharest, Romania
| | - Mariana Deacu
- Medicine Faculty, “Ovidius” University of Constanta, Constanta, Romania
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Gabriela Isabela Băltățescu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, Constanta, Romania
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Antonela-Anca Nicolau
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, Constanta, Romania
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Mihai Cătălin Roșu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, Constanta, Romania
| | - Miruna Cristian
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, Constanta, Romania
| | - Nicolae Dobrin
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, Constanta, Romania
| | - Constanța Ștefanov
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, Constanta, Romania
| | | | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, Constanta, Romania
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| |
Collapse
|
18
|
Di T, Luo QY, Song JT, Yan XL, Zhang L, Pan WT, Guo Y, Lu FT, Sun YT, Xia ZF, Yang LQ, Qiu MZ, Yang DJ, Sun J. APG-1252 combined with Cabozantinib inhibits hepatocellular carcinoma by suppressing MEK/ERK and CREB/Bcl-xl pathways. Int Immunopharmacol 2024; 139:112615. [PMID: 39032475 DOI: 10.1016/j.intimp.2024.112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND AND PURPOSE Liver cancer is the fourth leading cause of cancer-related death worldwide, with hepatocellular carcinoma (HCC) being the most common type of primary liver cancer. APG-1252 is a small molecule inhibitor targeting Bcl-2 and Bcl-xl. However, its anti-tumor effects in HCC, alone or in combination with Cabozantinib, have not been extensively studied. EXPERIMENTAL Approach: TCGA database analysis was used to analysis the gene expression levels of Bcl-2 and Bcl-xl in HCC tissues. Western blot was employed to detect the protein expression levels. And the inhibitory effects of APG-1252 and Cabozantinib on the proliferation of HCC cell lines was detected by CCK-8. The effect on the migration and invasion of HCC cells was verified by transwell assay. Huh7 xenograft model in nude mice was used to investigate the combination antitumor effect in vivo. KEY RESULTS Our study demonstrated that APG-1252 monotherapy inhibited the proliferation and migration ability of HCC cells, and induced HCC cells apoptosis. The combination of APG-1252 and Cabozantinib showed significant synergistic antitumor effects. Furthermore, the in vivo experiment demonstrated that the combination therapy exerted a synergistic effect in delaying tumor growth, notably downregulating MEK/ERK phosphorylation levels. In terms of mechanism, Cabozantinib treatment caused an increase in the phosphorylation levels of CREB and Bcl-xl proteins, while the combination with APG-1252 mitigated this effect, thereby enhanced the antitumor effect of Cabozantinib. CONCLUSION AND IMPLICATIONS Our findings suggest that APG-1252 in combination with Cabozantinib offers a more effective treatment strategy for HCC patients, warranting further clinical investigation.
Collapse
Affiliation(s)
- Tian Di
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Qiu-Yun Luo
- Department of Clinical Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiang-Tao Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiang-Lei Yan
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Stockholm, Sweden
| | - Lin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wen-Tao Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yu Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fei-Teng Lu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yu-Ting Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zeng-Fei Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Qiong Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Miao-Zhen Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China; Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Da-Jun Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Jian Sun
- Department of Clinical Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
19
|
Zaninović L, Bašković M, Ježek D, Habek D, Pogorelić Z, Katušić Bojanac A, Elveđi Gašparović V, Škrgatić L. Enhancement of Vascularization and Ovarian Follicle Survival Using Stem Cells in Cryopreserved Ovarian Tissue Transplantation-A Systematic Review. BIOLOGY 2024; 13:342. [PMID: 38785824 PMCID: PMC11117700 DOI: 10.3390/biology13050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The increase in cancer survival rates has put a focus on ensuring fertility preservation procedures for cancer patients. Ovarian tissue cryopreservation presents the only option for prepubertal girls and patients who require immediate start of treatment and, therefore, cannot undergo controlled ovarian stimulation. We aimed to provide an assessment of stem cells' impact on cryopreserved ovarian tissue grafts in regard to the expression of growth factors, angiogenesis promotion, tissue oxygenation, ovarian follicle survival and restoration of endocrine function. For this systematic review, we searched the Scopus and PubMed databases and included reports of trials using murine and/or human cryopreserved ovarian tissue for transplantation or in vitro culture in combination with mesenchymal stem cell administration to the grafting site. Of the 1201 articles identified, 10 met the criteria. The application of stem cells to the grafting site has been proven to support vascular promotion and thereby shorten the period of tissue hypoxia, which is reflected in the increased number of remaining viable follicles and faster recovery of ovarian endocrine function. Further research is needed before implementing the use of stem cells in OT cryopreservation and transplantation procedures in clinical practice. Complex ethical dilemmas make this process more difficult.
Collapse
Affiliation(s)
- Luca Zaninović
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, Petrova ulica 13, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Marko Bašković
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Pediatric Surgery, Children’s Hospital Zagreb, Ulica Vjekoslava Klaića 16, 10 000 Zagreb, Croatia
- Croatian Academy of Medical Sciences, Kaptol 15, 10 000 Zagreb, Croatia
| | - Davor Ježek
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Kišpatićeva ulica 12, 10 000 Zagreb, Croatia
| | - Dubravko Habek
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Croatian Academy of Medical Sciences, Kaptol 15, 10 000 Zagreb, Croatia
- Department of Obstetrics and Gynecology, Clinical Hospital Merkur, Zajčeva ulica 19, 10 000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10 000 Zagreb, Croatia
| | - Zenon Pogorelić
- Department of Pediatric Surgery, University Hospital of Split, Spinčićeva ulica 1, 21 000 Split, Croatia;
- School of Medicine, University of Split, Šoltanska ulica 2a, 21 000 Split, Croatia
| | - Ana Katušić Bojanac
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Vesna Elveđi Gašparović
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, Petrova ulica 13, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Lana Škrgatić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, Petrova ulica 13, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
20
|
Hu Z, Liu C, Mei Z, Wang X, Ma Y, Liu X, Xu H, Fang G, Liu X, Li R, Wang J, Shi Z, Han C. A-to-I edited miR-154-p13-5p inhibited cell proliferation and migration and induced apoptosis by targeting LIX1L in the bladder cancer. J Cancer 2024; 15:3708-3723. [PMID: 38911375 PMCID: PMC11190776 DOI: 10.7150/jca.93388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/14/2024] [Indexed: 06/25/2024] Open
Abstract
With the advancement of RNA sequencing technology, there has been a drive to uncover and elucidate the pivotal role of A-to-I RNA editing events in tumorigenesis. However, A-to-I miRNA editing events have been clearly identified in bladder cancer, the molecular mechanisms underlying their role in bladder cancer remain unclear. In our investigation, we observed a notable under-expression of edited miR-154-p13-5p in bladder cancer (BC) tissues, in contrast to normal counterparts. Remarkably, heightened expression levels of edited miR-154-p13-5p correlated with improved survival outcomes. To assess the impact of modified miR-154-p13-5p, we conducted a string of cell phenotype assays through transfection of the corresponding miRNAs or siRNAs. The results unequivocally demonstrate that edited miR-154-p13-5p exerts a substantial inhibitory influence on proliferation, migration, and induces apoptosis by specifically targeting LIX1L in bladder cancer. Moreover, we observed that the editing of miR-154-p13-5p or LIX1L-siRNAs inhibits the expression of LIX1L, thereby suppressing EMT-related proteins and cell cycle protein CDK2. Simultaneously, an upregulation in the expression levels of Caspase-3 and Cleaved Caspase-3 were also detected. Our research findings suggest that the upregulation of edited miR-154-p13-5p could potentially enhance the prognosis of bladder cancer, thereby presenting molecular biology-based therapeutic strategies.
Collapse
Affiliation(s)
- Zhengxiang Hu
- Postgraduate Training Base of Jinzhou Medical University in The Central Hospital of Xuzhou, Jinzhou, Liaoning 121013, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221006, China
| | - Chunhui Liu
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221004, China
| | - Zujun Mei
- Department of Emergency, Jingzhou Central Hospital, Jingzhou, Hubei 434000, China
| | - Xinlei Wang
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221004, China
| | - Yuyang Ma
- Graduate School of Bengbu Medical College, Bengbu, Anhui 233060, China
| | - Xing Liu
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Xu
- Graduate School of Bengbu Medical College, Bengbu, Anhui 233060, China
| | - Gaochuan Fang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xinyu Liu
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221004, China
| | - Rui Li
- Central Laboratory, Xuzhou Central Hospital, Jiangsu 221006, China
| | - Jie Wang
- Central Laboratory, Xuzhou Central Hospital, Jiangsu 221006, China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221006, China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221006, China
| |
Collapse
|
21
|
Li T, Li Y, Zeng Y, Zhou X, Zhang S, Ren Y. Construction of preclinical evidence for propofol in the treatment of reperfusion injury after acute myocardial infarction: A systematic review and meta-analysis. Biomed Pharmacother 2024; 174:116629. [PMID: 38640712 DOI: 10.1016/j.biopha.2024.116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Propofol, a commonly used intravenous anesthetic, has demonstrated potential in protecting against myocardial ischemia/reperfusion injury (MIRI) based on preclinical animal studies. However, the clinical benefits of propofol in this context are subject to debate. We conducted a systematic search across eight databases to identify all relevant animal studies investigating the preventive effects of propofol on MIRI until October 30, 2023. We assessed the methodological quality of the included studies using SYRCLE's bias risk tool. Statistical analysis was performed using STATA 15.1. The primary outcome measures analyzed in this study were myocardial infarct size (IS) and myocardial injury biomarkers. This study presents a comprehensive analysis of 48 relevant animal studies investigating propofol's preventive effects on MIRI. Propofol administration demonstrated a reduction in myocardial IS and decreased levels of myocardial injury biomarkers (CK-MB, LDH, cTnI). Moreover, propofol improved myocardial function parameters (+dp/dtmax, -dP/dtmax, LVEF, LVFS), exhibited favorable effects on inflammatory markers (IL-6, TNF-α) and oxidative stress markers (SOD, MDA), and reduced myocardial cell apoptotic index (AI). These findings suggest propofol exerts cardioprotective effects by reducing myocardial injury, decreasing infarct size, and improving heart function. However, the absence of animal models that accurately represent comorbidities such as aging and hypertension, as well as inconsistent administration methods that align with clinical practice, may hinder its clinical translation. Further robust investigations are required to validate these findings, elucidate the underlying mechanisms of propofol, and facilitate its potential translation into clinical practice.
Collapse
Affiliation(s)
- Tao Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanwei Li
- Cardiology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiwei Zeng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Su Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulan Ren
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
22
|
Zheng R, Xu Q, Wang Y, Zhong Y, Zhu R. Cordyceps cicadae polysaccharides attenuate diabetic nephropathy via the miR-30a-3p/TRIM16 axis. J Diabetes Investig 2024; 15:300-314. [PMID: 38149724 PMCID: PMC10906025 DOI: 10.1111/jdi.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/13/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
OBJECTIVE The molecular mechanism of the protective effect of Cordyceps cicadae polysaccharides (CCPs) on renal tubulointerstitial fibrosis in diabetic nephropathy (DN) is still unclear. This study aims to further understand the molecular mechanisms behind the therapeutic benefits of CCP on diabetic nephropathy. METHODS Mice were randomly assigned into six groups (n = 8). Cordyceps cicadae polysaccharide dissolved in 5% dimethyl sulfoxide was administered by gavage for 12 consecutive weeks. The CCP doses were divided into low, medium, and high, 75, 150, and 300 mg/kg/day, respectively. The efficacy of CCP was determined by assessing the renal function and histological alterations in diabetic db/db mice. The degree of glomerular mesangial dilatation and sclerosis was evaluated using semiquantitative markers. Cell viability, apoptosis, epithelial-mesenchymal transition (EMT), inflammation, oxidative stress, and mitochondrial reactive oxygen species (ROS) in high glucose (HG)-cultured MPC5 podocytes were determined. The interaction of miR-30a-3p and tripartite motif-containing protein 16 (TRIM16) was examined by luciferase reporter assay. Western blotting, reverse transcription-polymerase chain reaction, and immunofluorescence were used to analyze gene and protein expressions. RESULTS The in vivo findings illustrated that CCP may protect mice with type 2 diabetes from inflammation and oxidative damage (P < 0.05). Furthermore, CCP has a therapeutic value in protecting renal function and morphology in diabetic nephropathy by reversing podocyte EMT. The in vitro results indicated that CCP dose-dependently inhibited HG-induced apoptosis, EMT, inflammation, oxidative stress, and mitochondrial ROS levels in MPC5 podocytes (P < 0.05). Luciferase reporter assay confirmed the interaction between miR-30a-3p and TRIM16 in MPC5 podocytes cultured in high glucose (P < 0.05). CONCLUSION The protective effect of CCP on HG-induced MPC5 can be achieved by miR-30a-3p/TRIM16 axis.
Collapse
Affiliation(s)
- Rong Zheng
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qin Xu
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yiwen Wang
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yifei Zhong
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Rong Zhu
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
23
|
Peng ML, Zhang LJ, Luo Y, Xu SY, Long XM, Ao JL, Liao SG, Zhu QF, He X, Xu GB. Phomopsterone B Alleviates Liver Fibrosis through mTOR-Mediated Autophagy and Apoptosis Pathway. Molecules 2024; 29:417. [PMID: 38257331 PMCID: PMC10820960 DOI: 10.3390/molecules29020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Liver fibrosis is the initial pathological process of many chronic liver diseases. Targeting hepatic stellate cell (HSC) activation is an available strategy for the therapy of liver fibrosis. We aimed to explore the anti-liver fibrosis activity and potential mechanism of phomopsterone B (PB) in human HSCs. The results showed that PB effectively attenuated the proliferation of TGF-β1-stimulated LX-2 cells in a concentration-dependent manner at doses of 1, 2, and 4 μM. Quantitative real-time PCR and Western blot assays displayed that PB significantly reduced the expression levels of α-SMA and collagen I/III. AO/EB and Hoechst33342 staining and flow cytometry assays exhibited that PB promoted the cells' apoptosis. Meanwhile, PB diminished the number of autophagic vesicles and vacuolated structures, and the LC3B fluorescent spots indicated that PB could effectively inhibit the accretion of autophagosomes in LX-2 cells. Moreover, rapamycin and MHY1485 were utilized to further investigate the effect of mTOR in autophagy and apoptosis. The results demonstrated that PB regulated autophagy and apoptosis via the mTOR-dependent pathway in LX-2 cells. In summary, this is the first evidence that PB effectively alleviates liver fibrosis in TGF-β1-stimulated LX-2 cells, and PB may be a promising candidate for the prevention of liver fibrosis.
Collapse
Affiliation(s)
- Mei-Lin Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Guian New District, Guiyang 550025, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, China
| | - Li-Jie Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
| | - Yan Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
| | - Shi-Ying Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
| | - Xing-Mei Long
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
| | - Jun-Li Ao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, China
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Guian New District, Guiyang 550025, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, China
| | - Qin-Feng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Guian New District, Guiyang 550025, China
| | - Xun He
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Guian New District, Guiyang 550025, China
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Guian New District, Guiyang 550025, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, China
| |
Collapse
|
24
|
Zhang X, Zeng Z, Liu Y, Liu D. Emerging Relevance of Ghrelin in Programmed Cell Death and Its Application in Diseases. Int J Mol Sci 2023; 24:17254. [PMID: 38139082 PMCID: PMC10743592 DOI: 10.3390/ijms242417254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Ghrelin, comprising 28 amino acids, was initially discovered as a hormone that promotes growth hormones. The original focus was on the effects of ghrelin on controlling hunger and satiation. As the research further develops, the research scope of ghrelin has expanded to a wide range of systems and diseases. Nevertheless, the specific mechanisms remain incompletely understood. In recent years, substantial studies have demonstrated that ghrelin has anti-inflammatory, antioxidant, antiapoptotic, and other effects, which could affect the signaling pathways of various kinds of programmed cell death (PCD) in treating diseases. However, the regulatory mechanisms underlying the function of ghrelin in different kinds of PCD have not been thoroughly illuminated. This review describes the relationship between ghrelin and four kinds of PCD (apoptosis, necroptosis, autophagy, and pyroptosis) and then introduces the clinical applications based on the different features of ghrelin.
Collapse
Affiliation(s)
- Xue Zhang
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Zihan Zeng
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Yaning Liu
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Dan Liu
- School of Pharmacy, Nanchang University, Nanchang 330006, China
| |
Collapse
|
25
|
Vijayalakshmi P, Indu S, Ireen C, Manjunathan R, Rajalakshmi M. Octyl Gallate and Gallic Acid Isolated from Terminalia bellirica Circumvent Breast Cancer Progression by Enhancing the Intrinsic Apoptotic Signaling Pathway and Elevating the Levels of Anti-oxidant Enzymes. Appl Biochem Biotechnol 2023; 195:7214-7235. [PMID: 36988844 DOI: 10.1007/s12010-023-04450-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Exploration of new strategies and identification of less expensive novel chemoprevention agents against breast cancer progression have become the need of the hour. Thus, the present study aimed at evaluating the anti-cancer efficacies of octyl gallate (OG) and gallic acid (GA) isolated from Terminalia bellirica (T. bellirica) in breast cancer cell lines and DMBA-induced Sprague-Dawley animal model. The results of western blot analysis show significant (p < 0.05) downregulation of anti-apoptotic protein (Bcl-2 and Bcl-xL) expression and up-regulation of pro-apoptotic protein (Bak and Bax) expression in both MCF-7 and MDA-MB-231 cell lines. Our findings also show that DMBA-induced Sprague-Dawley rats (50-55 days old) orally administered with OG (20 mg/kg body wt.) and GA (20 mg/kg body wt.) for a treatment period of 14 weeks were observed for normalized body weight changes and hematological indices and significant reduction of tumor markers carcinoembryonic antigen (CEA), cancer antigen 15.3 (CA 15.3), and oxidative stress (TBARS) in serum, while the activity of anti-oxidant enzyme (SOD, CAT, and GPx) levels estimated in the mammary tissue was found restored back to normal. Computational molecular interaction study was also performed to substantiate the in vitro obtained results. The tissue histology reveals the therapeutic role of OG and GA. The study conducted brings to limelight of the molecular mechanisms of intrinsic apoptotic signaling pathway through which OG and GA exert their chemopreventive action. Both OG and GA can be explored further as chemotherapeutic natural drugs for their ability to prevent breast cancer progression.
Collapse
Affiliation(s)
- Periyasamy Vijayalakshmi
- DBT-BIF Centre, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
- Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Sabapathy Indu
- DBT-BIF Centre, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
- Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Christopher Ireen
- DBT-BIF Centre, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
- Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Reji Manjunathan
- Multi-Disciplinary Research Unit, Chengalpattu Government Medical College, Chengalpattu, 603001, Tamil Nadu, India
| | - Manikkam Rajalakshmi
- DBT-BIF Centre, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India.
- Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India.
- Department of Zoology, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
26
|
Pemmaraju N, Garcia JS, Perkins A, Harb JG, Souers AJ, Werner ME, Brown CM, Passamonti F. New era for myelofibrosis treatment with novel agents beyond Janus kinase-inhibitor monotherapy: Focus on clinical development of BCL-X L /BCL-2 inhibition with navitoclax. Cancer 2023; 129:3535-3545. [PMID: 37584267 DOI: 10.1002/cncr.34986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023]
Abstract
Myelofibrosis is a heterogeneous myeloproliferative neoplasm characterized by chronic inflammation, progressive bone marrow failure, and hepatosplenic extramedullary hematopoiesis. Treatments like Janus kinase inhibitor monotherapy (e.g., ruxolitinib) provide significant spleen and symptom relief but demonstrate limited ability to lead to a durable disease modification. There is an urgent unmet medical need for treatments with a novel mechanism of action that can modify the underlying pathophysiology and affect the disease course of myelofibrosis. This review highlights the role of B-cell lymphoma (BCL) protein BCL-extra large (BCL-XL ) in disease pathogenesis and the potential role that navitoclax, a BCL-extra large/BCL-2 inhibitor, may have in myelofibrosis treatment.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Andrew Perkins
- Australian Centre for Blood Diseases, Monash University, and the Alfred Hospital, Melbourne, Victoria, Australia
| | | | | | | | | | - Francesco Passamonti
- Department of Oncology and Onco-Hematology, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
27
|
Ebrahimi N, Hakimzadeh A, Bozorgmand F, Speed S, Manavi MS, Khorram R, Farahani K, Rezaei-Tazangi F, Mansouri A, Hamblin MR, Aref AR. Role of non-coding RNAs as new therapeutic targets in regulating the EMT and apoptosis in metastatic gastric and colorectal cancers. Cell Cycle 2023; 22:2302-2323. [PMID: 38009668 PMCID: PMC10730205 DOI: 10.1080/15384101.2023.2286804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 05/11/2023] [Accepted: 08/01/2023] [Indexed: 11/29/2023] Open
Abstract
Colorectal cancer (CRC) and gastric cancer (GC), are the two most common cancers of the gastrointestinal tract, and are serious health concerns worldwide. The discovery of more effective biomarkers for early diagnosis, and improved patient prognosis is important. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), can regulate cellular processes such as apoptosis and the epithelial-mesenchymal transition (EMT) leading to progression and resistance of GC and CRC tumors. Moreover these pathways (apoptosis and EMT) may serve as therapeutic targets, to prevent metastasis, and to overcome drug resistance. A subgroup of ncRNAs is common to both GC and CRC tumors, suggesting that they might be used as biomarkers or therapeutic targets. In this review, we highlight some ncRNAs that can regulate EMT and apoptosis as two opposite mechanisms in cancer progression and metastasis in GC and CRC. A better understanding of the biological role of ncRNAs could open up new avenues for the development of personalized treatment plans for GC and CRC patients.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Hakimzadeh
- Department of Medical Biotechnologies, University of Siena, Tuscany, Italy
| | - Farima Bozorgmand
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Sepehr Speed
- Medical Campus, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | | | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kobra Farahani
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine group, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Zhao L, Xie WJ, Du YX, Xia YX, Liu KL, Ku CF, Ou Z, Wang MZ, Zhang HJ. Isolation and Anticancer Progression Evaluation of the Chemical Constituents from Bridelia balansae Tutcher. Molecules 2023; 28:6165. [PMID: 37630417 PMCID: PMC10457964 DOI: 10.3390/molecules28166165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The dichloromethane extract of the roots of Bridelia balansae Tutcher (Phyllanthaceae) was found to show potential anticancer activity against HCT116 colorectal cancer cell. Our bioassay-guided phytochemical investigation of the roots of B. balansae led to the identification of 14 compounds including seven lignans (1-7), three phenylbenzene derivatives (8-10), two flavanone (11-12), and two triterpenoids (13-14). Among them, 4'-demethyl-4-deoxypodophyllotoxin (1) is the first aryltetralin lignan compound identified from this plant species. In addition, the stereochemistry of 1 was validated by X-ray crystallography for the first time, and its distinguished cytotoxic effect on HCT116 cells with an IC50 value at 20 nM was induced via an apoptosis induction mechanism. Compound 1 could also significantly decrease the migration rate of HCT116 cells, indicating its potential application against cancer metastasis. The western blot analysis showed that 1 has the potential to inhibit cell proliferation and metastasis. Treatment of 1 resulted in the downregulation of matrix metalloproteinases 2 (MMP2) and p-Akt, while p21 was upregulated. Collectively, the present study on the phytochemical and biological profile of B. balansae has determined the plant as a useful source to produce promising anticancer lead compounds.
Collapse
Affiliation(s)
- Lihan Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China (K.-L.L.)
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Wen-Jian Xie
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China (K.-L.L.)
| | - Yin-Xiao Du
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China (K.-L.L.)
| | - Yi-Xuan Xia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China (K.-L.L.)
| | - Kang-Lun Liu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China (K.-L.L.)
| | - Chuen Fai Ku
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China (K.-L.L.)
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ming-Zhong Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China (K.-L.L.)
| |
Collapse
|
29
|
Mazumder MAR, Tolaema A, Chaikhemarat P, Rawdkuen S. Antioxidant and Anti-Cytotoxicity Effect of Phenolic Extracts from Psidium guajava Linn. Leaves by Novel Assisted Extraction Techniques. Foods 2023; 12:2336. [PMID: 37372547 DOI: 10.3390/foods12122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochemicals (PCs) are gaining popularity due to their antioxidant effects and potential protection against infection, cardiovascular disease, and cellular metabolic activity. These PCs must be retained as much as possible during extraction. This research focused on the extraction of PC from Psidium guajava Linn. leaves due to higher antioxidant potential. Solvent extraction (SE), microwave-assisted extraction (MAE), and ultrasound-assisted extraction (UAE) using distilled water (DW) or 60% (v/v) ethanol/water (ET) were used for the extraction of PC. ET shows higher total phenolic (TPC) and total flavonoid content (TFC) as well as higher antioxidant activity than DW. Phytochemical screening demonstrated that all of the screening showed positive results in all extraction methods, except glycoside. There were no significant differences (p > 0.05) in TPC and TFC during MAE/ET, SE/ET, and UAE/ET. Antioxidant analysis shows that MAE and SE resulted in high (p < 0.05) DPPH and FRAP values for ET and DW, respectively. MAE/ET showed the highest inhibitory activity (IC50 = 16.67 µg/mL). HPLC and TLC analysis reveal the fingerprint of morin, which might function as an anticancer agent with other bioactives. Increasing the extract content increased the inhibitory activity of SW480 cells via MTT assay. In conclusion, MAE/ET is the most efficient among the extraction techniques in terms of anti-cytotoxicity effects.
Collapse
Affiliation(s)
- Md Anisur Rahman Mazumder
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Arif Tolaema
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Pongpasin Chaikhemarat
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Saroat Rawdkuen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
30
|
Yarreiphang H, Vidyadhara DJ, Nambisan AK, Raju TR, Sagar BKC, Alladi PA. Apoptotic Factors and Mitochondrial Complexes Assist Determination of Strain-Specific Susceptibility of Mice to Parkinsonian Neurotoxin MPTP. Mol Neurobiol 2023:10.1007/s12035-023-03372-1. [PMID: 37162724 DOI: 10.1007/s12035-023-03372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Identification of genetic mutations in Parkinson's disease (PD) promulgates the genetic nature of disease susceptibility. Resilience-associated genes being unknown till date, the normal genetic makeup of an individual may be determinative too. Our earlier studies comparing the substantia nigra (SN) and striatum of C57BL/6J, CD-1 mice, and their F1-crossbreds demonstrated the neuroprotective role of admixing against the neurotoxin MPTP. Furthermore, the differences in levels of mitochondrial fission/fusion proteins in the SN of parent strains imply effects on mitochondrial biogenesis. Our present investigations suggest that the baseline levels of apoptotic factors Bcl-2, Bax, and AIF differ across the three strains and are differentially altered in SN following MPTP administration. The reduction in complex-I levels exclusively in MPTP-injected C57BL/6J reiterates mitochondrial involvement in PD pathogenesis. The MPTP-induced increase in complex-IV, in the nigra of both parent strains, may be compensatory in nature. The ultrastructural evaluation showed fairly preserved mitochondria in the dopaminergic neurons of CD-1 and F1-crossbreds. However, in CD-1, the endoplasmic reticulum demonstrated distinct luminal enlargement, bordering onto ballooning, suggesting proteinopathy as a possible initial trigger.The increase in α-synuclein in the pars reticulata of crossbreds suggests a supportive role for this output nucleus in compensating for the lost function of pars compacta. Alternatively, since α-synuclein over-expression occurs in different brain regions in PD, the α-synuclein increase here may suggest a similar pathogenic outcome. Further understanding is required to resolve this biological contraption. Nevertheless, admixing reduces the risk to MPTP by favoring anti-apoptotic consequences. Similar neuroprotection may be envisaged in the admixed populace of Anglo-Indians.
Collapse
Affiliation(s)
- Haorei Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
- Present address: Zoology Department, Hansraj College, University of Delhi, Delhi, 110007, India
| | - D J Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
- Present address: Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Anand Krishnan Nambisan
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
| | - Trichur R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
| | - B K Chandrashekar Sagar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India.
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
| |
Collapse
|
31
|
Moawadh MS, Mir R, Tayeb FJ, Asim O, Ullah MF. Molecular Evaluation of the Impact of Polymorphic Variants in Apoptotic ( Bcl-2/Bax) and Proinflammatory Cytokine ( TNF-α/IL-8) Genes on the Susceptibility and Progression of Myeloproliferative Neoplasms: A Case-Control Biomarker Study. Curr Issues Mol Biol 2023; 45:3933-3952. [PMID: 37232720 DOI: 10.3390/cimb45050251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
The regulation of apoptosis (the programmed cell death) is dependent on the crucial involvement of BCL2 and BAX. The Bax-248G>A and Bcl-2-938 C>A polymorphic variations in the promoter sequences of the Bax and Bcl-2 gene have been recently associated with low Bax expression, progression to advanced stages, treatment resistance, and shortened overall survival rate in some hematological malignancies, including chronic myeloid leukemia (CML) and other myeloproliferative neoplasms. Chronic inflammation has been linked to various stages of carcinogenesis wherein pro-inflammatory cytokines play diverse roles in influencing cancer microenvironment leading to cell invasion and cancer progression. Cytokines such as TNF-α and IL-8 have been implicated in cancer growth in both solid and hematological malignancies with studies showing their elevated levels in patients. Genomic approaches have in recent years provided significant knowledge with the regard to the association of certain SNPs (single nucleotide polymerphisms) either in a gene or its promoter that can influence its expression, with the risk and susceptibility to human diseases including cancer. This study has investigated the consequences of promoter SNPs in apoptosis genes Bax-248G>A (rs4645878)/Bcl-2-938C>A (rs2279115) and pro-inflammatory cytokines TNF-α rs1800629 G>A/IL-8 rs4073 T>A on the risk and susceptibility towards hematological cancers. The study design has 235 individuals both male and female enrolled as subjects that had 113 cases of MPDs (myeloproliferative disorders) and 122 healthy individuals as controls. The genotyping studies were conducted through ARMS PCR (amplification-refractory mutation system PCR). The Bcl-2-938 C>A polymorphism showed up in 22% of patients in the study, while it was observed in only 10% of normal controls. This difference in genotype and allele frequency between the two groups was significant (p = 0.025). Similarly, the Bax-248G>A polymorphism was detected in 6.48% of the patients and 4.54% of the normal controls, with a significant difference in genotype and allele frequency between the groups (p = 0.048). The results suggest that the Bcl-2-938 C>A variant is linked to an elevated risk of MPDs in the codominant, dominant, and recessive inheritance models. Moreover, the study indicated allele A as risk allele which can significantly increase the risk of MPDs unlike the C allele. In case of Bax gene covariants, these were associated with an increased risk of MPDs in the codominant inheritance model and dominant inheritance model. It was found that the allele A significantly enhanced the risk of MPDs unlike the G allele. The frequencies of IL-8 rs4073 T>A in patients was found to be TT (16.39%), AT (36.88%) and AA (46.72%), compared to controls who were more likely to have frequencies of TT (39.34%), AT (37.70%) and AA (22.95%) as such, respectively. There was a notable overrepresentation of the AA genotype and GG homozygotes among patients compared to controls in TNF-α polymorphic variants, with 6.55% of patients having the AA genotype and 84% of patients being GG homozygotes, compared to 1.63% and 69%, respectively in controls. The data from the current study provide partial but important evidence that polymorphisms in apoptotic genes Bcl-2-938C>A and Bax-248G>A and pro-inflammatory cytokines IL-8 rs4073 T>A and TNF-α G>A may help predict the clinical outcomes of patients and determine the significance of such polymorphic variations in the risk of myeloproliferative diseases and their role as prognostic markers in disease management using a case-control study approach.
Collapse
Affiliation(s)
- Mamdoh S Moawadh
- Department of Medical Laboratory Technology (FAMS), University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rashid Mir
- Department of Medical Laboratory Technology (FAMS), University of Tabuk, Tabuk 71491, Saudi Arabia
- Division of Molecular Biology, Prince Fahd Chair for Biomedical Research, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Faris J Tayeb
- Department of Medical Laboratory Technology (FAMS), University of Tabuk, Tabuk 71491, Saudi Arabia
- Community College, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Orooba Asim
- Division of Molecular Biology, Prince Fahd Chair for Biomedical Research, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammad Fahad Ullah
- Department of Medical Laboratory Technology (FAMS), University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
32
|
Lee TH, Maruthai Y, Abd Aziz NH, Chua KH, Hamdan N, Lee CH, Azmi NA. Chemopreventive and immunoadjuvant properties of standardised edible bird’s nest extract on human breast cancer cell line. INTERNATIONAL FOOD RESEARCH JOURNAL 2023; 30:472-486. [DOI: 10.47836/ifrj.30.2.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The present work investigated the chemopreventive and immunoadjuvant properties of edible bird’s nest (EBN) extract on breast cancer cell line (MCF-7). Specifically, the cytotoxicity level of EBN extracts (HMG, EHMG, pHMG) against MCF-7, human immune cells of cytotoxic T cells, and monocytes (CD8+ and CD14+) were evaluated by measuring the production of pro-apoptotic and anti-apoptotic molecules released in single and co-culture of MCF-7, CD8+, and CD14+ cells, before and after EBN treatment. The highest cytotoxic effect towards MCF-7 using IC50 of 15 µg/mL was demonstrated by HMG but no effects on CD8+ and CD14+, with cell viability of more than 90%. At the mRNA level, activated CD8+ and CD14+ depicted increased pro-apoptotic gene expression after HMG treatment in co-culture. Additionally, HMG treatment increased apoptosis by down-regulating the regulation of anti-apoptotic genes and up-regulating the pro-apoptotic genes in MCF-7. ELISA and multiplex assay reflected increased pro-apoptotic factors, and decreased anti-apoptotic soluble factors, by non-activated and activated CD8+ and CD14+, in a single or co-culture with MCF-7 after HMG treatment. In conclusion, HMG extract possesses immunoadjuvant properties that can be a potential anticancer agent without causing any deleterious effects on the human immune cells.
Collapse
|
33
|
Kshetrimayum V, Heisnam R, Keithellakpam OS, Radhakrishnanand P, Akula SJ, Mukherjee PK, Sharma N. Paris polyphylla Sm. Induces Reactive Oxygen Species and Caspase 3-Mediated Apoptosis in Colorectal Cancer Cells In Vitro and Potentiates the Therapeutic Significance of Fluorouracil and Cisplatin. PLANTS (BASEL, SWITZERLAND) 2023; 12:1446. [PMID: 37050072 PMCID: PMC10097216 DOI: 10.3390/plants12071446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
Paris polyphylla Sm. (Melanthiaceae) is an essential, vulnerable herb with a wide range of traditional applications ranging from fever to cancer in various communities. The use of P. polyphylla in India is limited to traditional healers. Here, we demonstrated that P. polyphylla extract (PPE) has good phenol, flavonoid, saponin, and steroidal saponin content and anti-oxidant activity with IC50 35.12 ± 6.1 μg/mL in DPPH and 19.69 ± 6.7 μg/mL in ABTS. Furthermore, PPE induces cytotoxicity in HCT-116 with IC50 8.72 ± 0.71 μg/mL without significant cytotoxicity inthe normal human colon epithelial cell line, CCD 841 CoN. PPE inhibits the metastatic property and induces apoptosis in HCT-116, as measured by Annexin V/PI, by increasing the production of reactive oxygen species (ROS) and caspase 3 activation. PPE acts synergistically with 5FU and cisplatin in HCT-116 and potentiates their therapeutic significance. Steroidal saponins with anticancer activities were detected in PPE by HR-LCMS. The present study demonstrated that PPE induces apoptosis by increasing ROS and activating caspase 3, which was attributed to steroidal saponins. PPE can be used as a potential natural remedy for colon cancer.
Collapse
Affiliation(s)
- Vimi Kshetrimayum
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
- School of Biotechnology Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneshwar 751024, India
| | - Rameshwari Heisnam
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
- School of Biotechnology Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneshwar 751024, India
| | - Ojit Singh Keithellakpam
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
| | - Pullapanthula Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Sai Jyothi Akula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Pulok K. Mukherjee
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
| | - Nanaocha Sharma
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
| |
Collapse
|
34
|
Dai H, Peterson KL, Flatten KS, Meng XW, Venkatachalam A, Correia C, Ramirez-Alvarado M, Pang YP, Kaufmann SH. A BAK subdomain that binds mitochondrial lipids selectively and releases cytochrome C. Cell Death Differ 2023; 30:794-808. [PMID: 36376382 PMCID: PMC9984382 DOI: 10.1038/s41418-022-01083-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
How BAK and BAX induce mitochondrial outer membrane (MOM) permeabilization (MOMP) during apoptosis is incompletely understood. Here we have used molecular dynamics simulations, surface plasmon resonance, and assays for membrane permeabilization in vitro and in vivo to assess the structure and function of selected BAK subdomains and their derivatives. Results of these studies demonstrate that BAK helical regions α5 and α6 bind the MOM lipid cardiolipin. While individual peptides corresponding to these helical regions lack the full biological activity of BAK, tandem peptides corresponding to α4-α5, α5-α6, or α6-α7/8 can localize exogenous proteins to mitochondria, permeabilize liposomes composed of MOM lipids, and cause MOMP in the absence of the remainder of the BAK protein. Importantly, the ability of these tandem helices to induce MOMP under cell-free conditions is diminished by mutations that disrupt the U-shaped helix-turn-helix structure of the tandem peptides or decrease their lipid binding. Likewise, BAK-induced apoptosis in intact cells is diminished by CLS1 gene interruption, which decreases mitochondrial cardiolipin content, or by BAK mutations that disrupt the U-shaped tandem peptide structure or diminish lipid binding. Collectively, these results suggest that BAK structural rearrangements during apoptosis might mobilize helices involved in specific protein-lipid interactions that are critical for MOMP.
Collapse
Affiliation(s)
- Haiming Dai
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Kevin L Peterson
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Karen S Flatten
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - X Wei Meng
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Cristina Correia
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Yuan-Ping Pang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott H Kaufmann
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
35
|
MNT suppresses T cell apoptosis via BIM and is critical for T lymphomagenesis. Cell Death Differ 2023; 30:1018-1032. [PMID: 36755068 PMCID: PMC10070419 DOI: 10.1038/s41418-023-01119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
The importance of c-MYC in regulating lymphopoiesis and promoting lymphomagenesis is well-established. Far less appreciated is the vital supporting role of MYC's relative MNT. Using Rag1Cre-mediated Mnt deletion in lymphoid progenitor cells, we show here that, during normal T cell development, MNT loss enhances apoptosis, at least in part by elevating expression of the pro-apoptotic BH3-only protein BIM. Moreover, using T lymphoma-prone VavP-MYC transgenic mice, we show that Mnt deletion reduces the pool of pre-malignant MYC-driven T lymphoid cells and abrogates thymic T lymphomagenesis. In addition, we establish that Mnt deletion prevents T lymphoma development in γ-irradiated mice, most likely by enhancing apoptosis of T lymphoid cells repopulating the depleted thymus. Taken together with our recent demonstration that MNT is vital for the survival of MYC-driven pre-malignant and malignant B lymphoid cells, these results suggest that MNT represents an important new drug target for both T and B lymphoid malignancies.
Collapse
|
36
|
The lytic phase of Epstein-Barr virus plays an important role in tumorigenesis. Virus Genes 2023; 59:1-12. [PMID: 36242711 DOI: 10.1007/s11262-022-01940-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/02/2022] [Indexed: 01/13/2023]
Abstract
Epstein-Barr virus (EBV) is a recognized oncogenic virus that is related to the occurrence of lymphoma, nasopharyngeal carcinoma (NPC), and approximately 10% of gastric cancer (GC). EBV is a herpesvirus, and like other herpesviruses, EBV has a biphasic infection mode made up of latent and lytic infections. It has been established that latent infection promotes tumorigenesis in previous research, but in recent years, there has been new evidence that suggests that the lytic infection mode could also promote tumorigenesis. In this review, we mainly discuss the contribution of the EBV lytic phase to tumorigenesis, and graphically illustrate their relationship in detail. In addition, we described the relationship between the lytic cycle of EBV and autophagy. Finally, we also preliminarily explored the influence of the tumorigenesis effect of the EBV lytic phase on the future treatment of EBV-associated tumors.
Collapse
|
37
|
Kyrychenko A, Ladokhin AS. Membrane interactions of apoptotic inhibitor Bcl-xL: What can be learned using fluorescence spectroscopy. BBA ADVANCES 2023; 3:100076. [PMID: 37082264 PMCID: PMC10074936 DOI: 10.1016/j.bbadva.2023.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Permeabilization of the mitochondrial outer membrane-a point of no return in apoptotic regulation-is tightly controlled by proteins of the Bcl-2 family. Apoptotic inhibitor Bcl-xL is an important member of this family, responsible for blocking the permeabilization, and is also a promising target for anti-cancer drugs. Bcl-xL exists in the following conformations, each believed to play a role in the inhibition of apoptosis: (i) a soluble folded conformation, (ii) a membrane-anchored (by its C-terminal α8 helix) form, which retains the same fold as in solution and (iii) refolded membrane-inserted conformations, for which no structural data are available. In this review, we present the summary of the application of various methods of fluorescence spectroscopy for studying membrane interaction of Bcl-xL, and specifically the formation of the refolded inserted conformation. We discuss the application of environment-sensitive probes, Förster resonance energy transfer, fluorescence correlation spectroscopy, and fluorescent quenching for structural, thermodynamic, and functional characterization of protein-lipid interactions, which can benefit studies of other members of Bcl-2 (e.g., Bax, BAK, Bid). The conformational switching between various conformations of Bcl-xL depends on the presence of divalent cations, pH and lipid composition. This insertion-refolding transition also results in the release of the BH4 regulatory domain from the folded structure of Bcl-xL, which is relevant to the lipid-regulated conversion between canonical and non-canonical modes of apoptotic inhibition.
Collapse
Affiliation(s)
- Alexander Kyrychenko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, Kharkiv 61022, Ukraine
| | - Alexey S. Ladokhin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160-7421, United States
| |
Collapse
|
38
|
Wu G, Yang F, Cheng X, Mai Z, Wang X, Chen T. Live-cell imaging analysis on the anti-apoptotic function of the Bcl-xL transmembrane carboxyl terminal domain. Biochem Biophys Res Commun 2023; 639:91-99. [PMID: 36476951 DOI: 10.1016/j.bbrc.2022.11.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
The Transmembrane Carboxyl Terminal Domain (TMD) of some Bcl-2 family proteins has been demonstrated to play a key role in modulating apoptosis. We here ustilzed live-cell fluorescence imaging to evaluate how the Bcl-xL TMD (XT) regulate apoptosis. Cell viability assay revealed that XT had strong anti-apoptotic ability similarly to the full-length Bcl-xL. Fluorescence images of living cells co-expressing CFP-XT and Bad-YFP or YFP-Bax revealed that XT recruited Bad to mitochondria but prevented Bax translocation to mitochondria, and also significantly suppressed Bad/Bax-mediated apoptosis, indicating that XT prevents the pro-apoptotic function of Bad and Bax. Fluorescence Resonance Energy Transfer (FRET) analyses determined that XT directly interacted with Bad and Bax, and deletion of XT completely eliminated the mitochondrial localization and homo-oligomerization of Bcl-xL. Fluorescence images of living cells co-expressing CFP-XT and YFP-Bax revealed that XT significantly prevented mitochondrial Bax oligomerization, resulting in cytosolic Bax distribution. Collectively, XT is necessary for the mitochondrial localization and anti-apoptotic capacity of Bcl-xL, and XT, similarly to the full-length Bcl-xL, forms homo-oligomers on mitochondria to directly interact with Bad and Bax to inhibit their apoptotic functions.
Collapse
Affiliation(s)
- Ge Wu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Fangfang Yang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Xuecheng Cheng
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Zihao Mai
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital, Jinan University, Guangzhou, 5610632, China.
| | - Tongsheng Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511517, China.
| |
Collapse
|
39
|
Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2023; 28:20-38. [PMID: 36342579 PMCID: PMC9950219 DOI: 10.1007/s10495-022-01780-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Acquired resistance to cell death is a hallmark of cancer. The BCL-2 protein family members play important roles in controlling apoptotic cell death. Abnormal over-expression of pro-survival BCL-2 family members or abnormal reduction of pro-apoptotic BCL-2 family proteins, both resulting in the inhibition of apoptosis, are frequently detected in diverse malignancies. The critical role of the pro-survival and pro-apoptotic BCL-2 family proteins in the regulation of apoptosis makes them attractive targets for the development of agents for the treatment of cancer. This review describes the roles of the various pro-survival and pro-apoptotic members of the BCL-2 protein family in normal development and organismal function and how defects in the control of apoptosis promote the development and therapy resistance of cancer. Finally, we discuss the development of inhibitors of pro-survival BCL-2 proteins, termed BH3-mimetic drugs, as novel agents for cancer therapy.
Collapse
Affiliation(s)
- Deeksha Kaloni
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah T Diepstraten
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Andreas Strasser
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Gemma L Kelly
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
40
|
Xu J, Xiong Y, Xu Z, Xing H, Zhou L, Zhang X. From targeted therapy to a novel way: Immunogenic cell death in lung cancer. Front Med (Lausanne) 2022; 9:1102550. [PMID: 36619616 PMCID: PMC9816397 DOI: 10.3389/fmed.2022.1102550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer (LC) is one of the most incident malignancies and a leading cause of cancer mortality worldwide. Common tumorigenic drivers of LC mainly include genetic alterations of EGFR, ALK, KRAS, BRAF, ROS1, and MET. Small inhibitory molecules and antibodies selectively targeting these alterations or/and their downstream signaling pathways have been approved for treatment of LC. Unfortunately, following initial positive responses to these targeted therapies, a large number of patients show dismal prognosis due to the occurrence of resistance mechanisms, such as novel mutations of these genes and activation of alternative signaling pathways. Over the past decade, it has become clear that there is no possible cure for LC unless potent antitumor immune responses are induced by therapeutic intervention. Immunogenic cell death (ICD) is a newly emerged concept, a form of regulated cell death that is sufficient to activate adaptive immune responses against tumor cells. It transforms dying cancer cells into a therapeutic vaccine and stimulates long-lasting protective antitumor immunity. In this review, we discuss the key targetable genetic aberrations and the underlying mechanism of ICD in LC. Various agents inducing ICD are summarized and the possibility of harnessing ICD in LC immunotherapy is further explored.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China,The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiyi Xiong
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zhou Xu
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Hongquan Xing
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China,The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Lingyun Zhou
- International Education College, Jiangxi University of Chinese Medicine, Nanchang, China,*Correspondence: Lingyun Zhou,
| | - Xinyi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China,The Second Clinical Medical College of Nanchang University, Nanchang, China,Xinyi Zhang,
| |
Collapse
|
41
|
Nisin delivery by nanosponges increases its anticancer activity against in-vivo melanoma model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Thomalla D, Beckmann L, Grimm C, Oliverio M, Meder L, Herling C, Nieper P, Feldmann T, Merkel O, Lorsy E, da Palma Guerreiro A, von Jan J, Kisis I, Wasserburger E, Claasen J, Faitschuk-Meyer E, Altmüller J, Nürnberg P, Yang TP, Lienhard M, Herwig R, Kreuzer KA, Pallasch C, Büttner R, Schäfer S, Hartley J, Abken H, Peifer M, Kashkar H, Knittel G, Eichhorst B, Ullrich R, Herling M, Reinhardt H, Hallek M, Schweiger M, Frenzel L. Deregulation and epigenetic modification of BCL2-family genes cause resistance to venetoclax in hematologic malignancies. Blood 2022; 140:2113-2126. [PMID: 35704690 PMCID: PMC10653032 DOI: 10.1182/blood.2021014304] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/01/2022] [Indexed: 11/20/2022] Open
Abstract
The BCL2 inhibitor venetoclax has been approved to treat different hematological malignancies. Because there is no common genetic alteration causing resistance to venetoclax in chronic lymphocytic leukemia (CLL) and B-cell lymphoma, we asked if epigenetic events might be involved in venetoclax resistance. Therefore, we employed whole-exome sequencing, methylated DNA immunoprecipitation sequencing, and genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 screening to investigate venetoclax resistance in aggressive lymphoma and high-risk CLL patients. We identified a regulatory CpG island within the PUMA promoter that is methylated upon venetoclax treatment, mediating PUMA downregulation on transcript and protein level. PUMA expression and sensitivity toward venetoclax can be restored by inhibition of methyltransferases. We can demonstrate that loss of PUMA results in metabolic reprogramming with higher oxidative phosphorylation and adenosine triphosphate production, resembling the metabolic phenotype that is seen upon venetoclax resistance. Although PUMA loss is specific for acquired venetoclax resistance but not for acquired MCL1 resistance and is not seen in CLL patients after chemotherapy-resistance, BAX is essential for sensitivity toward both venetoclax and MCL1 inhibition. As we found loss of BAX in Richter's syndrome patients after venetoclax failure, we defined BAX-mediated apoptosis to be critical for drug resistance but not for disease progression of CLL into aggressive diffuse large B-cell lymphoma in vivo. A compound screen revealed TRAIL-mediated apoptosis as a target to overcome BAX deficiency. Furthermore, antibody or CAR T cells eliminated venetoclax resistant lymphoma cells, paving a clinically applicable way to overcome venetoclax resistance.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- bcl-2-Associated X Protein/metabolism
- Drug Resistance, Neoplasm/genetics
- Apoptosis Regulatory Proteins/genetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Lymphoma, Large B-Cell, Diffuse/pathology
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/genetics
- Epigenesis, Genetic
Collapse
Affiliation(s)
- D. Thomalla
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - L. Beckmann
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - C. Grimm
- Institute for Translational Epigenetics, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - M. Oliverio
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - L. Meder
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - C.D. Herling
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Clinic of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, Leipzig, Germany
| | - P. Nieper
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - T. Feldmann
- Institute for Translational Epigenetics, Medical Faculty, University of Cologne, Cologne, Germany
| | - O. Merkel
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - E. Lorsy
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - A. da Palma Guerreiro
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - J. von Jan
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - I. Kisis
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - E. Wasserburger
- Institute for Translational Epigenetics, Medical Faculty, University of Cologne, Cologne, Germany
| | - J. Claasen
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - J. Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - P. Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - T.-P. Yang
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Center of Integrated Oncology Cologne-Bonn, Medical Faculty, Department of Translational Genomics, University of Cologne, Cologne, Germany
| | - M. Lienhard
- Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - R. Herwig
- Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - K.-A. Kreuzer
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - C.P. Pallasch
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - R. Büttner
- Department of Pathology, University of Cologne, Cologne, Germany
| | - S.C. Schäfer
- Department of Pathology, University of Cologne, Cologne, Germany
- Institut für Pathologie im Medizin Campus Bodensee, Friedrichshafen, Germany
| | - J. Hartley
- RCI, Regensburg Center for Interventional Immunology, University Hospital of Regensburg, Regensburg, Germany
| | - H. Abken
- RCI, Regensburg Center for Interventional Immunology, University Hospital of Regensburg, Regensburg, Germany
| | - M. Peifer
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Center of Integrated Oncology Cologne-Bonn, Medical Faculty, Department of Translational Genomics, University of Cologne, Cologne, Germany
| | - H. Kashkar
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Molecular Immunologie, University of Cologne, Cologne, Germany
| | - G. Knittel
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK Partner Site Essen), Essen, Germany
| | - B. Eichhorst
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - R.T. Ullrich
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - M. Herling
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Clinic of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, Leipzig, Germany
| | - H.C. Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK Partner Site Essen), Essen, Germany
| | - M. Hallek
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - M.R. Schweiger
- Institute for Translational Epigenetics, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - L.P. Frenzel
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
43
|
Huda MN, Deaguero IG, Borrego EA, Kumar R, Islam T, Afrin H, Varela-Ramirez A, Aguilera RJ, Tanner EEL, Nurunnabi M. Ionic liquid-mediated delivery of a BCL-2 inhibitor for topical treatment of skin melanoma. J Control Release 2022; 349:783-795. [PMID: 35908622 PMCID: PMC9991868 DOI: 10.1016/j.jconrel.2022.07.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/04/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Skin melanoma is one of the most common cancer types in the United States and worldwide, and its incidence continues to grow. Primary skin melanoma can be removed surgically when feasible and if detected at an early stage. Anti-cancer drugs can be applied topically to treat skin cancer lesions and used as an adjunct to surgery to prevent the recurrence of tumor growth. We developed a topical formulation composed of Navitoclax (NAVI), a BCL-2 inhibitor that results in apoptosis, and an ionic liquid of choline octanoate (COA) to treat early-stage melanoma. NAVI is a small hydrophobic molecule that solubilizes at 20% (w/v) when dissolved in 50% COA. Although NAVI is a highly effective chemotherapeutic, it is equally thrombocytopenic. We found that COA-mediated topical delivery of NAVI enhanced its penetration into the skin and held the drug in the deeper skin layers for an extended period. Topical delivery of NAVI produced a higher cancer-cell killing efficacy than orally administrated NAVI. In vivo experiments in a mouse model of human melanoma-induced skin cancer confirmed the formulation's effectiveness via an apoptotic mechanism without any significant skin irritation or systemic absorption of NAVI. Overall, this topical approach may provide a safe and effective option for better managing skin cancer in the clinic.
Collapse
Affiliation(s)
- Md Nurul Huda
- Environmental Science & Engineering, University of Texas at El Paso, TX 79956, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, United States
| | - Isaac G Deaguero
- Biomedical Engineering, University of Texas at El Paso, TX 79956, United States
| | - Edgar A Borrego
- Department of Biological Science, Border Biomedical Research Center, University of Texas at El Paso, TX 79956, United States
| | - Raj Kumar
- Environmental Science & Engineering, University of Texas at El Paso, TX 79956, United States
| | - Tamanna Islam
- Environmental Science & Engineering, University of Texas at El Paso, TX 79956, United States
| | - Humayra Afrin
- Environmental Science & Engineering, University of Texas at El Paso, TX 79956, United States
| | - Armando Varela-Ramirez
- Department of Biological Science, Border Biomedical Research Center, University of Texas at El Paso, TX 79956, United States
| | - Renato J Aguilera
- Department of Biological Science, Border Biomedical Research Center, University of Texas at El Paso, TX 79956, United States
| | - Eden E L Tanner
- Department of Chemistry & Biochemistry, The University of Mississippi, University, MS 38677, United States
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, TX 79956, United States; Biomedical Engineering, University of Texas at El Paso, TX 79956, United States; Department of Biological Science, Border Biomedical Research Center, University of Texas at El Paso, TX 79956, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, United States.
| |
Collapse
|
44
|
Vasquez‐Montes V, Tyagi V, Sikorski E, Kyrychenko A, Freites JA, Thévenin D, Tobias DJ, Ladokhin AS. Ca 2+ -dependent interactions between lipids and the tumor-targeting peptide pHLIP. Protein Sci 2022; 31:e4385. [PMID: 36040255 PMCID: PMC9366937 DOI: 10.1002/pro.4385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Cancerous tissues undergo extensive changes to their cellular environments that differentiate them from healthy tissues. These changes include changes in extracellular pH and Ca2+ concentrations, and the exposure of phosphatidylserine (PS) to the extracellular environment, which can modulate the interaction of peptides and proteins with the plasma membrane. Deciphering the molecular mechanisms of such interactions is critical for advancing the knowledge-based design of cancer-targeting molecular tools, such as pH-low insertion peptide (pHLIP). Here, we explore the effects of PS, Ca2+ , and peptide protonation state on the interactions of pHLIP with lipid membranes. Cellular studies demonstrate that exposed PS on the plasma membrane promotes pHLIP targeting. The magnitude of this effect is dependent on extracellular Ca2+ concentration, indicating that divalent cations play an important role in pHLIP targeting in vivo. The targeting mechanism is further explored with a combination of fluorescence and circular dichroism experiments in model membranes and microsecond-timescale all-atom molecular dynamics simulations. Our results demonstrate that Ca2+ is engaged in coupling peptide-lipid interactions in the unprotonated transmembrane conformation of pHLIP. The simulations reveal that while the pH-induced insertion leads to a strong depletion of PS around pHLIP, the Ca2+ -induced insertion has the opposite effect. Thus, extracellular levels of Ca2+ are crucial to linking cellular changes in membrane lipid composition with the selective targeting and insertion of pHLIP. The characterized Ca2+ -dependent coupling between pHLIP sidechains and PS provides atomistic insights into the general mechanism for lipid-coupled regulation of protein-membrane insertion by divalent cations.
Collapse
Affiliation(s)
- Victor Vasquez‐Montes
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Vivek Tyagi
- Department of ChemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Eden Sikorski
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - Alexander Kyrychenko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National UniversityKharkivUkraine
| | | | - Damien Thévenin
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | | | - Alexey S. Ladokhin
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
45
|
Tazi N, Semlali A, Loubaki L, Alamri A, Rouabhia M. Cannabis smoke condensate induces human gingival epithelial cell damage through apoptosis, autophagy, and oxidative stress. Arch Oral Biol 2022; 141:105498. [PMID: 35810494 DOI: 10.1016/j.archoralbio.2022.105498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES This study aims to investigate the effects of cannabis smoke condensate (CSC) on the adhesion, growth, and signaling pathways of human gingival epithelial cells. DESIGN The effects of CSC on cell shape and adhesion, and viability were evaluated after 30 min, 60 min, 2 h, and 24 h of exposure using microscopic observation, cell metabolic activity, and lactate dehydrogenase activity assays. The effects of CSC on cell apoptosis, necrosis, autophagy, and oxidative stress were determined through flow cytometry, while apoptotic and autophagic gene expression were identified via an RT2-PCR array. Phosphorylated signaling pathway proteins were measured using flow cytometry. RESULTS CSC deregulated gingival epithelial cell shape and adhesion, decreased cell viability, and increased lactate dehydrogenase release. Its toxic effects included apoptosis, autophagy, and oxidative stress. Moreover, it modulated seven specific apoptotic and six autophagic genes. Furthermore, it decreased phosphorylation in signaling proteins, such as STAT5, ERK12, P38, and nuclear factor κB. CONCLUSIONS CSC has notable adverse effects on gingival epithelial cells. This finding indicates that cannabis smoke could impair gingival epithelial cell innate immune function, leading to gingivitis and periodontitis. Oral health professionals may need to document observed modifications in the oral cavity of patients who smoke cannabis and consider these potential changes during clinical care.
Collapse
Affiliation(s)
- Neftaha Tazi
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Canada
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Canada
| | - Lionel Loubaki
- Medical Affairs and Innovation, Héma-Québec, 1070 Avenue des Sciences-de-la-Vie, Québec, Canada
| | - Abdullah Alamri
- Genome Research Chair, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Canada.
| |
Collapse
|
46
|
Swetha M, Keerthana CK, Rayginia TP, Nath LR, Haritha NH, Shabna A, Kalimuthu K, Thangarasu AK, Aiswarya SU, Jannet S, Pillai S, Harikumar KB, Sundaram S, Anto NP, Wu DH, Lankalapalli RS, Towner R, Isakov N, Deepa SS, Anto RJ. Augmented Efficacy of Uttroside B over Sorafenib in a Murine Model of Human Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2022; 15:636. [PMID: 35631464 PMCID: PMC9143354 DOI: 10.3390/ph15050636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/21/2022] [Accepted: 04/30/2022] [Indexed: 12/03/2022] Open
Abstract
We previously reported the remarkable potency of uttroside B (Utt-B), saponin-isolated and characterized in our lab from Solanum nigrum Linn, against HCC. Recently, the U.S. FDA approved Utt-B as an 'orphan drug' against HCC. The current study validates the superior anti-HCC efficacy of Utt-B over sorafenib, the first-line treatment option against HCC. The therapeutic efficacies of Utt-B vs. sorafenib against HCC were compared in vitro, using various liver cancer cell lines and in vivo, utilizing NOD.CB17-Prkdcscid/J mice bearing human HCC xenografts. Our data indicate that Utt-B holds an augmented anti-HCC efficacy over sorafenib. Our previous report demonstrated the pharmacological safety of Utt-B in Chang Liver, the normal immortalized hepatocytes, and in the acute and chronic toxicity murine models even at elevated Utt-B concentrations. Here, we show that higher concentrations of sorafenib induce severe toxicity, in Chang Liver, as well as in acute and chronic in vivo models, indicating that, apart from the superior therapeutic benefit over sorafenib, Utt-B is a pharmacologically safer molecule, and the drug-induced undesirable effects can, thus, be substantially alleviated in the context of HCC chemotherapy. Clinical studies in HCC patients utilizing Utt-B, is a contiguous key step to promote this drug to the clinic.
Collapse
Affiliation(s)
- Mundanattu Swetha
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
- Department of Biotechnology, University of Kerala, Thiruvananthapuram 695011, Kerala, India
| | - Chenicheri K. Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
- Department of Biotechnology, University of Kerala, Thiruvananthapuram 695011, Kerala, India
| | - Tennyson P. Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
- Department of Biotechnology, University of Kerala, Thiruvananthapuram 695011, Kerala, India
| | - Lekshmi R. Nath
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Nair Hariprasad Haritha
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
| | - Anwar Shabna
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
| | - Kalishwaralal Kalimuthu
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
| | - Arun K. Thangarasu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; (A.K.T.); (R.S.L.)
| | - Sreekumar U. Aiswarya
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
| | - Somaraj Jannet
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
| | - Sreekumar Pillai
- Department of Surgical Oncology, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India;
| | - Kuzhuvelil B. Harikumar
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
| | - Sankar Sundaram
- Department of Pathology, Government Medical College, Kottayam 686008, Kerala, India;
| | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel; (N.P.A.); (N.I.)
| | - Dee H. Wu
- Section of Medical Physics, Department of Radiological Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- School of Computer Science, Gallogly College of Engineering, University of Oklahoma, Norman, OK 731019, USA
- School of Electrical and Computer Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, OK 731019, USA
| | - Ravi S. Lankalapalli
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; (A.K.T.); (R.S.L.)
| | - Rheal Towner
- Departments of Pathology and Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel; (N.P.A.); (N.I.)
| | - Sathyaseelan S. Deepa
- Department of Biochemistry and Molecular Biology, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
| |
Collapse
|
47
|
Wang X, Hua P, He C, Chen M. Non-apoptotic cell death-based cancer therapy: Molecular mechanism, pharmacological modulators, and nanomedicine. Acta Pharm Sin B 2022; 12:3567-3593. [PMID: 36176912 PMCID: PMC9513500 DOI: 10.1016/j.apsb.2022.03.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
As an emerging cancer therapeutic target, non-apoptotic cell death such as ferroptosis, necroptosis and pyroptosis, etc., has revealed significant potential in cancer treatment for bypassing apoptosis to enhance the undermined therapeutic efficacy triggered by apoptosis resistance. A variety of anticancer drugs, synthesized compounds and natural products have been proven recently to induce non-apoptotic cell death and exhibit excellent anti-tumor effects. Moreover, the convergence of nanotechnology with functional materials and biomedicine science has provided tremendous opportunities to construct non-apoptotic cell death-based nanomedicine for innovative cancer therapy. Nanocarriers are not only employed in targeted delivery of non-apoptotic inducers, but also used as therapeutic components to induce non-apoptotic cell death to achieve efficient tumor treatment. This review first introduces the main characteristics, the mechanism and various pharmacological modulators of different non-apoptotic cell death forms, including ferroptosis, necroptosis, pyroptosis, autophagy, paraptosis, lysosomal-dependent cell death, and oncosis. Second, we comprehensively review the latest progresses of nanomedicine that induces various forms of non-apoptotic cell death and focus on the nanomedicine targeting different pathways and components. Furthermore, the combination therapies of non-apoptotic cell death with photothermal therapy, photodynamic therapy, immunotherapy and other modalities are summarized. Finally, the challenges and future perspectives in this regard are also discussed.
Collapse
|
48
|
Teh CE, Preston SP, Robbins AK, Stutz MD, Cooney J, Clark MP, Policheni AN, Allison CC, Mackiewicz L, Arandjelovic P, Ebert G, Doerflinger M, Tan T, Rankin LC, Teh PP, Belz GT, Kallies A, Strasser A, Pellegrini M, Gray DHD. Caspase-8 has dual roles in regulatory T cell homeostasis balancing immunity to infection and collateral inflammatory damage. Sci Immunol 2022; 7:eabn8041. [PMID: 35333545 DOI: 10.1126/sciimmunol.abn8041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeting the potent immunosuppressive properties of FOXP3+ regulatory T cells (Tregs) has substantial therapeutic potential for treating autoimmune and inflammatory diseases. Yet, the molecular mechanisms controlling Treg homeostasis, particularly during inflammation, remain unclear. We report that caspase-8 is a central regulator of Treg homeostasis in a context-specific manner that is decisive during immune responses. In mouse genetic models, targeting caspase-8 in Tregs led to accumulation of effector Tregs resistant to apoptotic cell death. Conversely, inflammation induced the MLKL-dependent necroptosis of caspase-8-deficient lymphoid and tissue Tregs, which enhanced immunity to a variety of chronic infections to promote clearance of viral or parasitic pathogens. However, improved immunity came at the risk of lethal inflammation in overwhelming infections. Caspase-8 inhibition using a clinical-stage compound revealed that human Tregs have heightened sensitivity to necroptosis compared with conventional T cells. These findings reveal a fundamental mechanism in Tregs that could be targeted to manipulate the balance between immune tolerance versus response for therapeutic benefit.
Collapse
Affiliation(s)
- Charis E Teh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Simon P Preston
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Alissa K Robbins
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Michael D Stutz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - James Cooney
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle P Clark
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Antonia N Policheni
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Cody C Allison
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Liana Mackiewicz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Philip Arandjelovic
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Gregor Ebert
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Tania Tan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Lucille C Rankin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Peggy P Teh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Department of Renal Medicine, Alfred Health, Melbourne, VIC, Australia.,Department of Nephrology, Western Health, Melbourne, VIC, Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Axel Kallies
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel H D Gray
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
49
|
Kong Q, Yan X, Cheng M, Jiang X, Xu L, Shen L, Yu H, Sun L. p62 Promotes the Mitochondrial Localization of p53 through Its UBA Domain and Participates in Regulating the Sensitivity of Ovarian Cancer Cells to Cisplatin. Int J Mol Sci 2022; 23:ijms23063290. [PMID: 35328718 PMCID: PMC8949157 DOI: 10.3390/ijms23063290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Chemotherapeutic drug-induced p53-dependent crosstalk among tumor cells affects the sensitivity of tumor cells to chemotherapeutic drugs, contributing to chemoresistance. Therefore, pharmacological targeting of p53 may contribute to overcoming drug resistance. The localization of p53 is closely related to its function. Thus, we assessed the effect of p62 on the coordination of p53 mitochondrial localization under chemotherapeutic drug treatment in ovarian cancer cells. We found that the combined use of the proteasome inhibitor epoxomicin and cisplatin led to the accumulation of p53 and sequestosome1(p62) in the mitochondria, downregulated mitochondrial DNA (mtDNA) transcription, inhibited mitochondrial functions, and ultimately promoted apoptosis by enhancing cisplatin sensitivity in ovarian cancer cells. Moreover, the ubiquitin-associated (UBA) domain of p62 was involved in regulating the mitochondrial localization of p53. Our findings suggest that the interaction between p62 and p53 may be a mechanism that determines the fate of tumor cells. In conclusion, p62 coordinated the mitochondrial localization of p53 through its UBA domain, inhibited mtDNA transcription, downregulated mitochondrial function, and promoted ovarian cancer cell death. Our study demonstrates the important role of p53 localization in tumor cell survival and apoptosis, and provides new insights into understanding the anti-tumor mechanism of targeting the ubiquitin–proteasome system in tumor cells.
Collapse
Affiliation(s)
- Qinghuan Kong
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
| | - Xiaoyu Yan
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
| | - Meiyu Cheng
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
| | - Xin Jiang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Long Xu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
| | - Luyan Shen
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
| | - Huimei Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
- Correspondence: (H.Y.); (L.S.); Tel.: +86-0-431-8561-9485 or +86-0-431-8561-9110 (H.Y. & L.S.)
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
- Correspondence: (H.Y.); (L.S.); Tel.: +86-0-431-8561-9485 or +86-0-431-8561-9110 (H.Y. & L.S.)
| |
Collapse
|
50
|
NOXA expression drives synthetic lethality to RUNX1 inhibition in pancreatic cancer. Proc Natl Acad Sci U S A 2022; 119:2105691119. [PMID: 35197278 PMCID: PMC8892327 DOI: 10.1073/pnas.2105691119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 01/18/2023] Open
Abstract
Recent evidence demonstrated the existence of molecular subtypes in pancreatic ductal adenocarcinoma (PDAC), which resist all current therapies. The paucity of therapeutic options, including a complete lack of targeted therapies, underscores the urgent and unmet medical need for the identification of targets and novel treatment strategies for PDAC. Our study unravels a function of the transcription factor RUNX1 in apoptosis regulation in PDAC. We show that pharmacological RUNX1 inhibition in PDAC is feasible and leads to NOXA-dependent apoptosis. The development of targeted therapies that influence the transcriptional landscape of PDAC might have great benefits for patients who are resistant to conventional therapies. RUNX1 inhibition as a new therapeutic intervention offers an attractive strategy for future therapies. Evasion from drug-induced apoptosis is a crucial mechanism of cancer treatment resistance. The proapoptotic protein NOXA marks an aggressive pancreatic ductal adenocarcinoma (PDAC) subtype. To identify drugs that unleash the death-inducing potential of NOXA, we performed an unbiased drug screening experiment. In NOXA-deficient isogenic cellular models, we identified an inhibitor of the transcription factor heterodimer CBFβ/RUNX1. By genetic gain and loss of function experiments, we validated that the mode of action depends on RUNX1 and NOXA. Of note is that RUNX1 expression is significantly higher in PDACs compared to normal pancreas. We show that pharmacological RUNX1 inhibition significantly blocks tumor growth in vivo and in primary patient-derived PDAC organoids. Through genome-wide analysis, we detected that RUNX1-loss reshapes the epigenetic landscape, which gains H3K27ac enrichment at the NOXA promoter. Our study demonstrates a previously unknown mechanism of NOXA-dependent cell death, which can be triggered pharmaceutically. Therefore, our data show a way to target a therapy-resistant PDAC, an unmet clinical need.
Collapse
|