1
|
Tao Y, Tian C, Qi S, Jia Z, Xu Z, Meng J, Xu G, Hu H, Wang X, Zhang T, You H, Lan X, Lin X, Yu G, Zhou H, Liu J, Zheng H. Targeting both death and paracaspase domains of MALT1 with antisense oligonucleotides overcomes resistance to immune-checkpoint inhibitors. NATURE CANCER 2025; 6:702-717. [PMID: 40075237 DOI: 10.1038/s43018-025-00930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025]
Abstract
Targeting MALT1's paracaspase activity has been explored for B cell lymphoma and solid tumors. While the role of MALT1 in promoting cancer cell proliferation has been investigated, its involvement in immune evasion is unclear. Here we report that MALT1 promotes immune evasion through its paracaspase and death domain. In a paracaspase-dependent manner, MALT1 protects CD274 mRNA from degradation by its cleavage of ROQUIN1 and ROQUIN2. In a death-domain-dependent manner, MALT1 promotes the proliferation and polarization of tumor-associated macrophages to generate an immunosuppressive tumor microenvironment. Targeting MALT1 with antisense oligonucleotides inhibits PD-L1 expression in patient-derived tumor cells and suppresses the proliferation and M2-like polarization of tumor-associated macrophages isolated from patients with cancer. In preclinical models of solid tumors in female mice, treatment with MALT1 antisense oligonucleotides overcomes resistance to immune-checkpoint inhibitors. Together, our study demonstrates that targeting MALT1 is a potential strategy to overcome immune-checkpoint inhibitor resistance.
Collapse
Affiliation(s)
- Yuwei Tao
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Chen Tian
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Ziqi Jia
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Xu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Meng
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Guoyuan Xu
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Haitian Hu
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Xuxiang Wang
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Tengjiang Zhang
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Huiwen You
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Xun Lan
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Xin Lin
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Haitao Zhou
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaqi Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanqiu Zheng
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
2
|
Zhang RY, Wang ZX, Zhang MY, Wang YF, Zhou SL, Xu JL, Lin WX, Ji TR, Chen YD, Lu T, Li NG, Shi ZH. MALT1 Inhibitors and Degraders: Strategies for NF-κB-Driven Malignancies. J Med Chem 2025; 68:5075-5096. [PMID: 39999563 DOI: 10.1021/acs.jmedchem.4c02873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Mucosa-associated lymphoid tissue protein 1 (MALT1), a cysteine protease and the sole paracaspase in humans, plays a pivotal role in the survival and proliferation of NF-κB-dependent malignant cancers, particularly MALT lymphoma and diffuse large B-cell lymphoma (DLBCL). Dysregulated MALT1 activity is implicated in various malignancies, highlighting its importance as a therapeutic target. This Perspective provides an overview of MALT1's structural and functional characteristics, summarizes recent advancements in small-molecule inhibitors and degraders targeting this protein, and discusses compound structures, structure-activity relationship (SAR) analyses, and biological activities. We aim to inform future research efforts to enhance the activity, selectivity, and pharmacological properties of MALT1-targeting compounds, establishing a foundational framework for drug development in this critical area of cancer therapy.
Collapse
Affiliation(s)
- Ru-Yue Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yu-Fan Wang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Si-Li Zhou
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Jia-Lu Xu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Wen-Xuan Lin
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Tian-Rui Ji
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Ya-Dong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| |
Collapse
|
3
|
Liu H, Wang J, Zhang W, Zhao X, Jin H. AjMALT1 promotes Vibrio splendidus-induced inflammation through the NF-κB pathway in Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 165:105346. [PMID: 39984065 DOI: 10.1016/j.dci.2025.105346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), an intracellular signaling molecule, is widely expressed during inflammatory responses. To investigate the immune function of AjMALT1 in Apostichopus japonicus, the full length of AjMALT1 gene was cloned using transcriptome data and RACE technology. The results showed that AjMALT1 was distributed in all tissues, with higher expression found in coelomocytes and intestine. The expression of AjMALT1 was significantly upregulated in Vibrio splendidus-challenged sea cucumbers, as well as in coelomocytes exposed to inactive V. splendidus, and was positively correlated with the expression of the pro-inflammatory cytokine AjIL17 and the inflammasome component AjNLRP3. Further investigation using specific siRNA to silence AjMALT1 for 48 h revealed that the expression of AjIL17 and AjNLRP3 was reduced under V. splendidus stimulation. Additionally, histological observations showed a decrease in intestinal inflammation. Interference with AjMALT1 also led to downregulation of AjTRAF6 and AjRel expression, as well as inhibited nuclear translocation of AjRel. These findings suggest AjMALT1 exacerbates intestinal and coelomic inflammation by activating the AjTRAF6-dependent NF-κB pathway in A. japonicus.
Collapse
Affiliation(s)
- Haiping Liu
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315800, PR China
| | - Jiping Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315800, PR China
| | - Weiwei Zhang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315800, PR China
| | - Xuelin Zhao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315800, PR China.
| | - Heng Jin
- School of Mechatronics and Energy Engineering, NingboTech University, Ningbo, 315000, PR China
| |
Collapse
|
4
|
Lu LQ, Li MR, Liu XY, Peng D, Liu HR, Zhang XJ, Luo XJ, Peng J. CARD11-BCL10-MALT1 Complex-Dependent MALT1 Activation Facilitates Myocardial Oxidative Stress in Doxorubicin-Treated Mice via Enhancing k48-Linked Ubiquitination of Nrf2. Antioxid Redox Signal 2025; 42:115-132. [PMID: 38814831 DOI: 10.1089/ars.2023.0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Aims: Downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) contributes to doxorubicin (DOX)-induced myocardial oxidative stress, and inhibition of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) increased Nrf2 protein level in rat heart suffering ischemia/reperfusion, indicating a connection between MALT1 and Nrf2. This study aims to explore the role of MALT1 in DOX-induced myocardial oxidative stress and the underlying mechanisms. Results: The mice received a single injection of DOX (15 mg/kg, i.p.) to induce myocardial oxidative stress, evidenced by increases in the levels of reactive oxidative species as well as decreases in the activities of antioxidative enzymes, concomitant with a downregulation of Nrf2; these phenomena were reversed by MALT1 inhibitor. Similar phenomena were observed in DOX-induced oxidative stress in cardiomyocytes. Mechanistically, knockdown or inhibition of MALT1 notably attenuated the interaction between Nrf2 and MALT1 and decreased the k48-linked ubiquitination of Nrf2. Furthermore, inhibition or knockdown of calcium/calmodulin-dependent protein kinase II (CaMKII-δ) reduced the phosphorylation of caspase recruitment domain-containing protein 11 (CARD11), subsequently disrupted the assembly of CARD11, B cell lymphoma 10 (BCL10), and MALT1 (CBM) complex, and reduced the MALT1-dependent k48-linked ubiquitination of Nrf2 in DOX-treated mice or cardiomyocytes. Innovation and Conclusion: The E3 ubiquitin ligase function of MALT1 accounts for the downregulation of Nrf2 and aggravation of myocardial oxidative stress in DOX-treated mice, and CaMKII-δ-dependent phosphorylation of CARD11 triggered the assembly of CBM complex and the subsequent activation of MALT1. Antioxid. Redox Signal. 42, 115-132.
Collapse
Affiliation(s)
- Li-Qun Lu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Ming-Rui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xu-Yan Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Dan Peng
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hong-Rui Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Jie Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
5
|
Gu H, Qiu H, Yang H, Deng Z, Zhang S, Du L, He F. PRRSV utilizes MALT1-regulated autophagy flux to switch virus spread and reserve. Autophagy 2024; 20:2697-2718. [PMID: 39081059 PMCID: PMC11587858 DOI: 10.1080/15548627.2024.2386195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major swine pathogen, which can survive host antiviral immunity with various mechanisms. PRRSV infection induces macroautophagy/autophagy, facilitating virus replication. MALT1, a central immune regulator, was manipulated by PRRSV to optimize viral infection at different stages of the virus cycle. In this study, the key role of MALT1 in autophagy regulation during PRRSV infection was characterized, enlightening the role of autophagy flux in favor of virus spread and persistent infection. PRRSV-induced autophagy was confirmed to facilitate virus proliferation. Furthermore, autophagic fusion was dynamically regulated during PRRSV infection. Importantly, PRRSV-induced MALT1 facilitated autophagosome-lysosome fusion and autolysosome formation, thus contributing to autophagy flux and virus proliferation. Mechanically, MALT1 regulated autophagy via mediating MTOR-ULK1 and -TFEB signaling and affecting lysosomal homeostasis. MALT1 inhibition by inhibitor Mi-2 or RNAi induced lysosomal membrane permeabilization (LMP), leading to the block of autophagic fusion. Further, MALT1 overexpression alleviated PRRSV-induced LMP via inhibiting ROS generation. In addition, blocking autophagy flux suppressed virus release significantly, indicating that MALT1-maintained complete autophagy flux during PRRSV infection favors successful virus spread and its proliferation. In contrast, autophagosome accumulation upon MALT1 inhibition promoted PRRSV reserve for future virus proliferation once the autophagy flux recovers. Taken together, for the first time, these findings elucidate that MALT1 was utilized by PRRSV to regulate host autophagy flux, to determine the fate of virus for either proliferation or reserve.Abbreviations: 3-MA: 3-methyladenine; BafA1: bafilomycin A1; BFP/mBFP: monomeric blue fluorescent protein; CQ: chloroquine; DMSO: dimethyl sulfoxide; dsRNA: double-stranded RNA; GFP: green fluorescent protein; hpi: hours post infection; IFA: indirect immunofluorescence assay; LAMP1: lysosomal associated membrane protein 1; LGALS3: galectin 3; LLOMe: L-leucyl-L-leucine-methyl ester; LMP: lysosomal membrane permeabilization; mAb: monoclonal antibody; MALT1: MALT1 paracaspase; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-κB: nuclear factor kappa B; nsp: nonstructural protein; ORF: open reading frame; pAb: polyclonal antibody; PRRSV: porcine reproductive and respiratory syndrome virus; PRRSV-N: PRRSV nucleocapsid protein; Rapa: rapamycin; RFP: red fluorescent protein; ROS: reactive oxygen species; SBI: SBI-0206965; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TCID50: 50% tissue culture infective dose; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Han Gu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - He Qiu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - Haotian Yang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - Zhuofan Deng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - Shengkun Zhang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - Liuyang Du
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fang He
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| |
Collapse
|
6
|
Wu C, Ge W, Wu Y. Mucosa‑associated lymphoid tissue lymphoma translocation protein 1 inhibitor, MI‑2, attenuates non‑small cell lung cancer cell proliferation, migration and invasion, and promotes apoptosis by suppressing the JNK/c‑JUN pathway. Oncol Lett 2024; 28:465. [PMID: 39119234 PMCID: PMC11306989 DOI: 10.3892/ol.2024.14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/15/2024] [Indexed: 08/10/2024] Open
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) inhibitors are effective in attenuating the progression of several types of cancer. However, their role in lung cancer requires further investigation. Therefore, the present study aimed to explore the effect of the MALT1 inhibitor, MI-2, on the behavior of non-small cell lung cancer (NSCLC) cells and to uncover their possible underlying mechanism of action. The mRNA and protein expression levels of MALT1 were detected in the human normal lung epithelial cell line BEAS-2B, and the NSCLC cell lines, NCI-H1299, NCI-H1650, HCC827, A549 and NCI-H23. Subsequently, NCI-H1650 and A549 cells were treated with MI-2. Additionally, NCI-H1650 and A549 cells were co-treated with anisomycin, a c-JUN N-terminal kinase (JNK) pathway activator, with or without MI-2. The results illustrated that the mRNA and protein expression levels of MALT1 were significantly increased in NCI-H1299, NCI-H1650, A549 and NCI-H23 cells compared with those in BEAS-2B cells. Treatment of NCI-H1650 and A549 cells with MI-2 for 72 h reduced the optical density value as determined using the Cell Counting Kit-8 assay. Consistently, the 5-ethynyl-2'-deoxyuridine assay also showed that proliferation was reduced in MI-2-treated NSCLC cells. In addition, MI-2 downregulated B-cell lymphoma 2 (BCL2), and enhanced BCL2-associated X-protein expression and apoptotic rate in NCI-H1650 and A549 cells. These findings indicated that MI-2 could inhibit NCI-H1650 and A549 cell proliferation and promote apoptosis. Furthermore, treatment of cells with MI-2 only attenuated the migration and invasion of NCI-H1650 cells. Notably, MI-2 decreased the expression levels of phosphorylated (p)-JNK and p-c-JUN in NCI-H1650 and A549 cells, thus suggesting that MI-2 could suppress the JNK/c-JUN signaling pathway. However, NSCLC cell co-treatment with anisomycin (JNK pathway activator) reversed the effect of MI-2 on the proliferation, apoptosis and activation of the JNK/c-JUN pathway in NCI-H1650 and A549 cells. In conclusion, the present study demonstrated that the MALT1 inhibitor, MI-2, could suppress NSCLC cell proliferation, migration and invasion, and induce apoptosis via inactivating the JNK/c-JUN pathway.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Oncology, Baotou Central Hospital, Baotou, Inner Mongolia Autonomous Region 014040, P.R. China
| | - Wei Ge
- Department of Oncology, Baotou Central Hospital, Baotou, Inner Mongolia Autonomous Region 014040, P.R. China
| | - Yun Wu
- Department of Oncology, Baotou Central Hospital, Baotou, Inner Mongolia Autonomous Region 014040, P.R. China
| |
Collapse
|
7
|
Vogel K, Isono E. Erasing marks: Functions of plant deubiquitylating enzymes in modulating the ubiquitin code. THE PLANT CELL 2024; 36:3057-3073. [PMID: 38656977 PMCID: PMC11371157 DOI: 10.1093/plcell/koae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Plant cells need to respond to environmental stimuli and developmental signals accurately and promptly. Ubiquitylation is a reversible posttranslational modification that enables the adaptation of cellular proteostasis to internal or external factors. The different topologies of ubiquitin linkages serve as the structural basis for the ubiquitin code, which can be interpreted by ubiquitin-binding proteins or readers in specific processes. The ubiquitylation status of target proteins is regulated by ubiquitylating enzymes or writers, as well as deubiquitylating enzymes (DUBs) or erasers. DUBs can remove ubiquitin molecules from target proteins. Arabidopsis (A. thaliana) DUBs belong to 7 protein families and exhibit a wide range of functions and play an important role in regulating selective protein degradation processes, including proteasomal, endocytic, and autophagic protein degradation. DUBs also shape the epigenetic landscape and modulate DNA damage repair processes. In this review, we summarize the current knowledge on DUBs in plants, their cellular functions, and the molecular mechanisms involved in the regulation of plant DUBs.
Collapse
Affiliation(s)
- Karin Vogel
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Erika Isono
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
- Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki 444-8585 Aichi, Japan
| |
Collapse
|
8
|
Ruan Z, Li Y, Chen Y. HECTD3 promotes NLRP3 inflammasome and pyroptosis to exacerbate diabetes-related cognitive impairment by stabilising MALT1 to regulate JNK pathway. Arch Physiol Biochem 2024; 130:373-384. [PMID: 35913790 DOI: 10.1080/13813455.2022.2093377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND HECTD3 (HECT domain E3 ubiquitin protein ligase 3) exerts biological activities in neuroinflammation of distinct diseases, such as autoimmune encephalomyelitis and donations after heart death. However, the effect of HECTD3 on diabetes-associated cognitive decline (DACD) remains unclear. METHODS Wild-type or HECTD3-knockout rats were administered with streptozotocin to establish diabetic model. Pathological changes in the hippocampus were assessed by NISSL and haematoxylin and eosin staining. Morris water maze test was used to assess cognitive function. Neuronal survival and inflammation were investigated by immunofluorescence staining and ELISA assay. NLRP3 inflammasome and pyroptosis were assessed by western blot, immunofluorescence and flow cytometry assays. RESULTS HECTD3 was up-regulated in hippocampus of streptozotocin-induced diabetic rats and high glucose-induced PC12 cells. Knockout of HECTD3 increased the number of neurons and improved the learning and memory function. Moreover, knockout of HECTD3 promoted in vivo neuronal survival, and reduced levels of IL-1β, TNF-α, and IL-6 in the hippocampus. Silencing of HECTD3 increased cell viability, and reduced IL-1β, TNF-α, and IL-6 in high glucose-induced PC12 cells. Fluorescence intensities of NLRP3, GSDMD-N and caspase-1 were reduced in HECTD3-knockout diabetic rats, and knockdown of HECTD3 down-regulated protein expression of NLRP3, GSDMD-N, caspase-1, IL-1β, and IL-18 in high glucose-induced PC12 cells to suppress the pyroptosis. HECTD3 promoted the stability of mucosa-associated lymphoid tissue 1 (MALT1) through up-regulation of c-JUN and phospho (p)-JNK in high glucose-induced PC12 cells. Over-expression of MALT1 attenuated neuroprotective effects of HECTD3 silencing on high glucose-induced PC12 cells. CONCLUSION HECTD3 silencing exerted neuroprotective effect against DACD through MALT1-mediated JNK signalling.HighlightsHECTD3 was up-regulated in hippocampus of streptozotocin-induced diabetic rats and high glucose-induced PC12.Knockout of HECTD3 promoted in vivo neuronal survival, reduced inflammation and pyroptosis, and improved the learning and memory function in diabetic rats.Knockout of HECTD3 suppressed the activation of NLRP3 inflammasome in diabetic rats.Silencing of HECTD3 exerted neuroprotective effects through MALT1-mediated JNK signalling.
Collapse
Affiliation(s)
- Zhongfan Ruan
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yan Li
- Department of Anesthesiology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yanfang Chen
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
9
|
Chargui A. Lysine-63-linked polyubiquitination: a principal target of cadmium carcinogenesis. Toxicol Res 2024; 40:349-360. [PMID: 38911543 PMCID: PMC11187039 DOI: 10.1007/s43188-024-00236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 06/25/2024] Open
Abstract
Cadmium is an environmental pollutant that constitutes a major danger to human health. It is considered a definite human carcinogen. The lung and kidney are the most sensitive organs for cancer development, and we recently provided the first evidence of direct upregulation of lysine-63-linked polyubiquitination by cadmium, particularly in response to environmentally relevant concentrations. Investigations of K63 polyubiquitination have greatly progressed, and various strategies have been reported for studying this molecular process in different biological systems under both physiological and stress conditions. Furthermore, the mechanisms underlying cadmium-induced accumulation of K63-polyubiquitinated proteins in lung and renal cells continue to be of interest given the unknown mechanism involved in the carcinogenesis of this metal. Cadmium is persistent within the cytosol and induces oxidative stress, which continuously damages proteins and causes K63 polyubiquitination, leading to the regulation/activation of different cellular signaling pathways. The aim of this review was to perform a critical analysis of the knowledge about K63 polyubiquitination induced by cadmium and its effect on selective autophagy, CYLD, the NF-KB pathway and Hif-1α. We also report data obtained in different experimental studies using cadmium, highlighting similarities in the induction of the ubiquitination system. A more detailed discussion will concern the role of K63 polyubiquitination in cadmium-exposed renal proximal convoluted tubules and lung cells since they are suitable model systems that are extremely sensitive to environmental stress, and cadmium is one of the most carcinogenic metals to which humans are exposed. We ultimately concluded that K63 polyubiquitination may be the origin of cadmium carcinogenesis in the lung and kidney. Graphical Abstract Pathways of cadmium carcinogenesis: Cadmium mimics zinc and induces Lysine-63-linked polyubiquitination, which promotes three intracellular processes: (1) accumulation of ubiquitinated proteins, (2) stabilization of hypoxic inducible factor-1α and (3) activation of the nuclear factor-kappaB pathway, which results in the blockade of selective autophagy, angiogenesis, inflammation and cell proliferation.
Collapse
Affiliation(s)
- Abderrahmen Chargui
- Université de Jendouba, Ecole Supérieure d’Agriculture du Kef (ESAK), LR: Appui à la Durabilité des Systèmes de Production Agricoles du Nord-Ouest, 7119 Le Kef, Tunisie
| |
Collapse
|
10
|
Moud BN, Ober F, O’Neill TJ, Krappmann D. MALT1 substrate cleavage: what is it good for? Front Immunol 2024; 15:1412347. [PMID: 38863711 PMCID: PMC11165066 DOI: 10.3389/fimmu.2024.1412347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
CARD-BCL10-MALT1 (CBM) signalosomes connect distal signaling of innate and adaptive immune receptors to proximal signaling pathways and immune activation. Four CARD scaffold proteins (CARD9, 10, 11, 14) can form seeds that nucleate the assembly of BCL10-MALT1 filaments in a cell- and stimulus-specific manner. MALT1 (also known as PCASP1) serves a dual function within the assembled CBM complexes. By recruiting TRAF6, MALT1 acts as a molecular scaffold that initiates IκB kinase (IKK)/NF-κB and c-Jun N-terminal kinase (JNK)/AP-1 signaling. In parallel, proximity-induced dimerization of the paracaspase domain activates the MALT1 protease which exerts its function by cleaving a set of specific substrates. While complete MALT1 ablation leads to immune deficiency, selective destruction of either scaffolding or protease function provokes autoimmune inflammation. Thus, balanced MALT1-TRAF6 recruitment and MALT1 substrate cleavage are critical to maintain immune homeostasis and to promote optimal immune activation. Further, MALT1 protease activity drives the survival of aggressive lymphomas and other non-hematologic solid cancers. However, little is known about the relevance of the cleavage of individual substrates for the pathophysiological functions of MALT1. Unbiased serendipity, screening and computational predictions have identified and validated ~20 substrates, indicating that MALT1 targets a quite distinct set of proteins. Known substrates are involved in CBM auto-regulation (MALT1, BCL10 and CARD10), regulation of signaling and adhesion (A20, CYLD, HOIL-1 and Tensin-3), or transcription (RelB) and mRNA stability/translation (Regnase-1, Roquin-1/2 and N4BP1), indicating that MALT1 often targets multiple proteins involved in similar cellular processes. Here, we will summarize what is known about the fate and functions of individual MALT1 substrates and how their cleavage contributes to the biological functions of the MALT1 protease. We will outline what is needed to better connect critical pathophysiological roles of the MALT1 protease with the cleavage of distinct substrates.
Collapse
Affiliation(s)
| | | | | | - Daniel Krappmann
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
11
|
Kerzeli IK, Nasi A, Fletcher E, Chourlia A, Kallin A, Finnberg N, Ersmark K, Lampinen M, Albertella M, Öberg F, Mangsbo SM. MALT1 inhibition suppresses antigen-specific T cell responses. Cell Immunol 2024; 397-398:104814. [PMID: 38422979 DOI: 10.1016/j.cellimm.2024.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
The aim of this study was to assess the potential use of a selective small molecule MALT1 inhibitor in solid tumor treatment as an immunotherapy targeting regulatory T-cells (Tregs). In vitro, MALT1 inhibition suppressed the proteolytic cleavage of the MALT1-substrate HOIL1 and blocked IL-2 secretion in Jurkat cells. It selectively suppressed the proliferation of PBMC-derived Tregs, with no effect on conventional CD4+T-cells. In vivo, however, no evident anti-tumor effect was achieved by MALT1 inhibition monotherapy or in combination with anti-CTLA4 in the MB49 cancer model. Despite decreased Treg-frequencies in lymph nodes of tumor-bearing animals, intratumoral Treg depletion was not observed. We also showed that MALT1-inhibition caused a reduction of antigen-specific CD8+T-cells in an adoptive T-cell transfer model. Thus, selective targeting of Tregs would be required to improve the immunotherapeutic effect of MALT1-inhibition. Also, various dosing schedules and combination therapy strategies should be carefully designed and evaluated further.
Collapse
Affiliation(s)
- Iliana K Kerzeli
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aikaterini Nasi
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erika Fletcher
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aikaterini Chourlia
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | - Maria Lampinen
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | - Sara M Mangsbo
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Juilland M, Alouche N, Ubezzi I, Gonzalez M, Rashid HO, Scarpellino L, Erdmann T, Grau M, Lenz G, Luther SA, Thome M. Identification of Tensin-3 as a MALT1 substrate that controls B cell adhesion and lymphoma dissemination. Proc Natl Acad Sci U S A 2023; 120:e2301155120. [PMID: 38109544 PMCID: PMC10756297 DOI: 10.1073/pnas.2301155120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/24/2023] [Indexed: 12/20/2023] Open
Abstract
The protease MALT1 promotes lymphocyte activation and lymphomagenesis by cleaving a limited set of cellular substrates, most of which control gene expression. Here, we identified the integrin-binding scaffold protein Tensin-3 as a MALT1 substrate in activated human B cells. Activated B cells lacking Tensin-3 showed decreased integrin-dependent adhesion but exhibited comparable NF-κB1 and Jun N-terminal kinase transcriptional responses. Cells expressing a noncleavable form of Tensin-3, on the other hand, showed increased adhesion. To test the role of Tensin-3 cleavage in vivo, mice expressing a noncleavable version of Tensin-3 were generated, which showed a partial reduction in the T cell-dependent B cell response. Interestingly, human diffuse large B cell lymphomas and mantle cell lymphomas with constitutive MALT1 activity showed strong constitutive Tensin-3 cleavage and a decrease in uncleaved Tensin-3 levels. Moreover, silencing of Tensin-3 expression in MALT1-driven lymphoma promoted dissemination of xenografted lymphoma cells to the bone marrow and spleen. Thus, MALT1-dependent Tensin-3 cleavage reveals a unique aspect of the function of MALT1, which negatively regulates integrin-dependent B cell adhesion and facilitates metastatic spread of B cell lymphomas.
Collapse
Affiliation(s)
- Mélanie Juilland
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Nagham Alouche
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Ivana Ubezzi
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Montserrat Gonzalez
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Harun-Or Rashid
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Leonardo Scarpellino
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Tabea Erdmann
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Münster, MünsterD-48149, Germany
| | - Michael Grau
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Münster, MünsterD-48149, Germany
| | - Georg Lenz
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Münster, MünsterD-48149, Germany
| | - Sanjiv A. Luther
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Margot Thome
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| |
Collapse
|
13
|
Yan B, Belke D, Gui Y, Chen YX, Jiang ZS, Zheng XL. Pharmacological inhibition of MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) induces ferroptosis in vascular smooth muscle cells. Cell Death Discov 2023; 9:456. [PMID: 38097554 PMCID: PMC10721807 DOI: 10.1038/s41420-023-01748-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) is a human paracaspase protein with proteolytic activity via its caspase-like domain. The pharmacological inhibition of MALT1 by MI-2, a specific chemical inhibitor, diminishes the response of endothelial cells to inflammatory stimuli. However, it is largely unknown how MALT1 regulates the functions of vascular smooth muscle cells (SMCs). This study aims to investigate the impact of MALT1 inhibition by MI-2 on the functions of vascular SMCs, both in vitro and in vivo. MI-2 treatment led to concentration- and time-dependent cell death of cultured aortic SMCs, which was rescued by the iron chelator deferoxamine (DFO) or ferrostatin-1 (Fer-1), a specific inhibitor of ferroptosis, but not by inhibitors of apoptosis (Z-VAD-fmk), pyroptosis (Z-YVAD-fmk), or necrosis (Necrostatin-1, Nec-1). MI-2 treatment downregulated the expression of glutathione peroxidase 4 (GPX4) and ferritin heavy polypeptide 1 (FTH1), which was prevented by pre-treatment with DFO or Fer-1. MI-2 treatment also activated autophagy, which was inhibited by Atg7 deficiency or bafilomycin A1 preventing MI-2-induced ferroptosis. MI-2 treatment reduced the cleavage of cylindromatosis (CYLD), a specific substrate of MALT1. Notably, MI-2 treatment led to a rapid loss of contractility in mouse aortas, which was prevented by co-incubation with Fer-1. Moreover, local application of MI-2 significantly reduced carotid neointima lesions and atherosclerosis in C57BL/6J mice and apolipoprotein-E knockout (ApoE-/-) mice, respectively, which were both ameliorated by co-treatment with Fer-1. In conclusion, the present study demonstrated that MALT1 inhibition induces ferroptosis of vascular SMCs, likely contributing to its amelioration of proliferative vascular diseases.
Collapse
Affiliation(s)
- Binjie Yan
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Darrell Belke
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yu Gui
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Yong-Xiang Chen
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
14
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
15
|
Li J, Liu S, Li S. Mechanisms underlying linear ubiquitination and implications in tumorigenesis and drug discovery. Cell Commun Signal 2023; 21:340. [PMID: 38017534 PMCID: PMC10685518 DOI: 10.1186/s12964-023-01239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 11/30/2023] Open
Abstract
Linear ubiquitination is a distinct type of ubiquitination that involves attaching a head-to-tail polyubiquitin chain to a substrate protein. Early studies found that linear ubiquitin chains are essential for the TNFα- and IL-1-mediated NF-κB signaling pathways. However, recent studies have discovered at least sixteen linear ubiquitination substrates, which exhibit a broader activity than expected and mediate many other signaling pathways beyond NF-κB signaling. Dysregulation of linear ubiquitination in these pathways has been linked to many types of cancers, such as lymphoma, liver cancer, and breast cancer. Since the discovery of linear ubiquitin, extensive effort has been made to delineate the molecular mechanisms of how dysregulation of linear ubiquitination causes tumorigenesis and cancer development. In this review, we highlight newly discovered linear ubiquitination-mediated signaling pathways, recent advances in the role of linear ubiquitin in different types of cancers, and the development of linear ubiquitin inhibitors. Video Abstract.
Collapse
Affiliation(s)
- Jack Li
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Sijin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
16
|
Verhelst SHL, Prothiwa M. Chemical Probes for Profiling of MALT1 Protease Activity. Chembiochem 2023; 24:e202300444. [PMID: 37607867 DOI: 10.1002/cbic.202300444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
The paracaspase MALT1 is a key regulator of the human immune response. It is implicated in a variety of human diseases. For example, deregulated protease activity drives the survival of malignant lymphomas and is involved in the pathophysiology of autoimmune/inflammatory diseases. Thus, MALT1 has attracted attention as promising drug target. Although many MALT1 inhibitors have been identified, molecular tools to study MALT1 activity, target engagement and inhibition in complex biological samples, such as living cells and patient material, are still scarce. Such tools are valuable to validate MALT1 as a drug target in vivo and to assess yet unknown biological roles of MALT1. In this review, we discuss the recent literature on the development and biological application of molecular tools to study MALT1 activity and inhibition.
Collapse
Affiliation(s)
- Steven H L Verhelst
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn Strasse 6b, 44227, Dortmund, Germany
| | - Michaela Prothiwa
- Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
17
|
Mazi FA, Cakiroglu E, Uysal M, Kalyoncu M, Demirci D, Sozeri PYG, Yilmaz GO, Ozhan SE, Senturk S. The paracaspase MALT1 is a downstream target of Smad3 and potentiates the crosstalk between TGF-β and NF-kB signaling pathways in cancer cells. Cell Signal 2023; 105:110611. [PMID: 36708753 DOI: 10.1016/j.cellsig.2023.110611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
TGF-β signaling mediates its biological effects by engaging canonical Smad proteins and crosstalking extensively with other signaling networks, including the NF-kB pathway. The paracaspase MALT1 is an intracellular signaling molecule essential for NF-kB activation downstream of several key cell surface receptors. Despite intensive research on TGF-β and NF-kB interactions, the significance of MALT1 in this context remains undecoded. Here we provide experimental evidence supporting that MALT1 functions to converge these pathways. Using A549 and Huh7 cancer cell line models, we report that TGF-β stimulation enhances MALT1 protein and transcript levels in a time- and dose-dependent manner. Systematic and selective perturbation of TGF-β signaling components identifies MALT1 as a downstream target of Smad3. Rescue experiments in SMAD3 knockout cells confirm that C-terminal phosphorylation of Smad3 is central to MALT1 induction. Corroborating these data, we document that the expression of SMAD3 and MALT1 genes are positively correlated in TCGA cohorts, and we trace the molecular basis of MALT1 elevation to promoter activation. Functional studies in parental as well as NF-kB p65 signaling reporter engineered cells conclusively reveal that MALT1 is paramount for TGF-β-stimulated nuclear translocation and transcriptional activation of NF-kB p65. Furthermore, we find that BCL10 is also implicated in TGF-β activation of NF-kB target genes, potentially coupling the TGF-β-MALT1-NF-kB signaling axis to the CARMA-BCL10-MALT1 (CBM) signalosome. The novel findings of this study indicate that MALT1 is a downstream target of the canonical TGF-β/Smad3 pathway and plays a critical role in modulating TGF-β and NF-kB crosstalk in cancer.
Collapse
Affiliation(s)
- Fatma Aybuke Mazi
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ece Cakiroglu
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Merve Uysal
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | | | - Perihan Yagmur Guneri Sozeri
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | | | - Serif Senturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
18
|
O'Neill TJ, Tofaute MJ, Krappmann D. Function and targeting of MALT1 paracaspase in cancer. Cancer Treat Rev 2023; 117:102568. [PMID: 37126937 DOI: 10.1016/j.ctrv.2023.102568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
The paracaspase MALT1 has emerged as a key regulator of immune signaling, which also promotes tumor development by both cancer cell-intrinsic and -extrinsic mechanisms. As an integral subunit of the CARD11-BCL10-MALT1 (CBM) signaling complex, MALT1 has an intriguing dual function in lymphocytes. MALT1 acts as a scaffolding protein to drive activation of NF-κB transcription factors and as a protease to modulate signaling and immune activation by cleavage of distinct substrates. Aberrant MALT1 activity is critical for NF-κB-dependent survival and proliferation of malignant cancer cells, which is fostered by paracaspase-catalyzed inactivation of negative regulators of the canonical NF-κB pathway like A20, CYLD and RelB. Specifically, B cell receptor-addicted lymphomas rely strongly on this cancer cell-intrinsic MALT1 protease function, but also survival, proliferation and metastasis of certain solid cancers is sensitive to MALT1 inhibition. Beyond this, MALT1 protease exercises a cancer cell-extrinsic role by maintaining the immune-suppressive function of regulatory T (Treg) cells in the tumor microenvironment (TME). MALT1 inhibition is able to convert immune-suppressive to pro-inflammatory Treg cells in the TME of solid cancers, thereby eliciting a robust anti-tumor immunity that can augment the effects of checkpoint inhibitors. Therefore, the cancer cell-intrinsic and -extrinsic tumor promoting MALT1 protease functions offer unique therapeutic opportunities, which has motivated the development of potent and selective MALT1 inhibitors currently under pre-clinical and clinical evaluation.
Collapse
Affiliation(s)
- Thomas J O'Neill
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Marie J Tofaute
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
19
|
Minderman M, Lantermans HC, Grüneberg LJ, Cillessen SAGM, Bende RJ, van Noesel CJM, Kersten MJ, Pals ST, Spaargaren M. MALT1-dependent cleavage of CYLD promotes NF-κB signaling and growth of aggressive B-cell receptor-dependent lymphomas. Blood Cancer J 2023; 13:37. [PMID: 36922488 PMCID: PMC10017792 DOI: 10.1038/s41408-023-00809-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
The paracaspase mucosa-associated lymphoid tissue 1 (MALT1) is a protease and scaffold protein essential in propagating B-cell receptor (BCR) signaling to NF-κB. The deubiquitinating enzyme cylindromatosis (CYLD) is a recently discovered MALT1 target that can negatively regulate NF-κB activation. Here, we show that low expression of CYLD is associated with inferior prognosis of diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) patients, and that chronic BCR signaling propagates MALT1-mediated cleavage and, consequently, inactivation and rapid proteasomal degradation of CYLD. Ectopic overexpression of WT CYLD or a MALT1-cleavage resistant mutant of CYLD reduced phosphorylation of IκBα, repressed transcription of canonical NF-κB target genes and impaired growth of BCR-dependent lymphoma cell lines. Furthermore, silencing of CYLD expression rendered BCR-dependent lymphoma cell lines less sensitive to inhibition of NF-κΒ signaling and cell proliferation by BCR pathway inhibitors, e.g., the BTK inhibitor ibrutinib, indicating that these effects are partially mediated by CYLD. Taken together, our findings identify an important role for MALT1-mediated CYLD cleavage in BCR signaling, NF-κB activation and cell proliferation, which provides novel insights into the underlying molecular mechanisms and clinical potential of inhibitors of MALT1 and ubiquitination enzymes as promising therapeutics for DLBCL, MCL and potentially other B-cell malignancies.
Collapse
Affiliation(s)
- Marthe Minderman
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Hildo C Lantermans
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Leonie J Grüneberg
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Saskia A G M Cillessen
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, location VU University, Amsterdam, Netherlands
| | - Richard J Bende
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Marie José Kersten
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Steven T Pals
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands.
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands.
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Jiang VC, Liu Y, Lian J, Huang S, Jordan A, Cai Q, Lin R, Yan F, McIntosh J, Li Y, Che Y, Chen Z, Vargas J, Badillo M, Bigcal JN, Lee HH, Wang W, Yao Y, Nie L, Flowers CR, Wang M. Cotargeting of BTK and MALT1 overcomes resistance to BTK inhibitors in mantle cell lymphoma. J Clin Invest 2023; 133:e165694. [PMID: 36719376 PMCID: PMC9888382 DOI: 10.1172/jci165694] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/07/2022] [Indexed: 02/01/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) is a proven target in mantle cell lymphoma (MCL), an aggressive subtype of non-Hodgkin lymphoma. However, resistance to BTK inhibitors is a major clinical challenge. We here report that MALT1 is one of the top overexpressed genes in ibrutinib-resistant MCL cells, while expression of CARD11, which is upstream of MALT1, is decreased. MALT1 genetic knockout or inhibition produced dramatic defects in MCL cell growth regardless of ibrutinib sensitivity. Conversely, CARD11-knockout cells showed antitumor effects only in ibrutinib-sensitive cells, suggesting that MALT1 overexpression could drive ibrutinib resistance via bypassing BTK/CARD11 signaling. Additionally, BTK knockdown and MALT1 knockout markedly impaired MCL tumor migration and dissemination, and MALT1 pharmacological inhibition decreased MCL cell viability, adhesion, and migration by suppressing NF-κB, PI3K/AKT/mTOR, and integrin signaling. Importantly, cotargeting MALT1 with safimaltib and BTK with pirtobrutinib induced potent anti-MCL activity in ibrutinib-resistant MCL cell lines and patient-derived xenografts. Therefore, we conclude that MALT1 overexpression associates with resistance to BTK inhibitors in MCL, targeting abnormal MALT1 activity could be a promising therapeutic strategy to overcome BTK inhibitor resistance, and cotargeting of MALT1 and BTK should improve MCL treatment efficacy and durability as well as patient outcomes.
Collapse
Affiliation(s)
| | - Yang Liu
- Department of Lymphoma and Myeloma and
| | | | | | | | | | - Ruitao Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fangfang Yan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Yijing Li
- Department of Lymphoma and Myeloma and
| | | | | | | | | | | | | | - Wei Wang
- Department of Lymphoma and Myeloma and
| | - Yixin Yao
- Department of Lymphoma and Myeloma and
| | - Lei Nie
- Department of Lymphoma and Myeloma and
| | | | - Michael Wang
- Department of Lymphoma and Myeloma and
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
21
|
Peng ZM, Zhang YY, Wei D, Zhang XJ, Liu B, Peng J, Luo XJ. MALT1 promotes necroptosis in stroke rat brain via targeting the A20/RIPK3 pathway. Arch Biochem Biophys 2023; 735:109502. [PMID: 36603698 DOI: 10.1016/j.abb.2023.109502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Necroptosis has been demonstrated to contribute to brain injury in ischemic stroke, whereas A20 can exert anti-necroptosis effect via deubiquitinating receptor-interacting protein kinase (RIPK3) at k63 and it can be cleaved by MALT1. This study aims to explore whether MALT1 is upregulated in the brain during ischemic stroke and promotes brain cell necroptosis through enhancing the degradation of A20. Ischemic stroke model was established in Sprague Dawley rats by occlusion of the middle cerebral artery (MCA) for 2 h, followed by 24 h reperfusion, which showed brain injury (increase in neurological deficit score and infarct volume) concomitant with an upregulation of MALT1, a decrease in A20 level, and increases in necroptosis-associated protein levels [RIPK3, mixed lineage kinase domain-like protein (MLKL) and p-MLKL] and k63-ubiquitination of RIPK3 in brain tissues. Administration of MALT1 inhibitor (Ml-2) at 8 or 15 mg/kg (i.p.) at 1 h after ischemia significantly improved neurological function and reduced infarct volume together with a downregulation of MALT1, an increase in A20 level and decreases in necroptosis-associated protein levels and k63-ubiquitination of RIPK3. Similarly, knockdown of MALT1 could also reduce oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in the cultured HT22 cells coincident with an increase in A20 level and decreases in necroptosis-associated protein levels and k63-ubiquitination of RIPK3. Based on these observations, we conclude that MALT1 promotes necroptosis in stroke rat brain via enhancing the degradation of A20, which leads to a decrease in the capability of A20 to deubiquitinate RIPK3 at k63 and a subsequent compromise in counteraction against the brain cell necroptosis.
Collapse
Affiliation(s)
- Zi-Mei Peng
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Dan Wei
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xiao-Jie Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, China
| | - Bin Liu
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
22
|
Ciaston I, Dobosz E, Potempa J, Koziel J. The subversion of toll-like receptor signaling by bacterial and viral proteases during the development of infectious diseases. Mol Aspects Med 2022; 88:101143. [PMID: 36152458 PMCID: PMC9924004 DOI: 10.1016/j.mam.2022.101143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 02/05/2023]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that respond to pathogen-associated molecular patterns (PAMPs). The recognition of specific microbial ligands by TLRs triggers an innate immune response and also promotes adaptive immunity, which is necessary for the efficient elimination of invading pathogens. Successful pathogens have therefore evolved strategies to subvert and/or manipulate TLR signaling. Both the impairment and uncontrolled activation of TLR signaling can harm the host, causing tissue destruction and allowing pathogens to proliferate, thus favoring disease progression. In this context, microbial proteases are key virulence factors that modify components of the TLR signaling pathway. In this review, we discuss the role of bacterial and viral proteases in the manipulation of TLR signaling, highlighting the importance of these enzymes during the development of infectious diseases.
Collapse
Affiliation(s)
- Izabela Ciaston
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Health and Systemic Disease, University of Louisville School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Joanna Koziel
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
23
|
Vanneste D, Staal J, Haegman M, Driege Y, Carels M, Van Nuffel E, De Bleser P, Saeys Y, Beyaert R, Afonina IS. CARD14 Signalling Ensures Cell Survival and Cancer Associated Gene Expression in Prostate Cancer Cells. Biomedicines 2022; 10:biomedicines10082008. [PMID: 36009554 PMCID: PMC9405774 DOI: 10.3390/biomedicines10082008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancer types in men and represents an increasing global problem due to the modern Western lifestyle. The signalling adapter protein CARD14 is specifically expressed in epithelial cells, where it has been shown to mediate NF-κB signalling, but a role for CARD14 in carcinoma has not yet been described. By analysing existing cancer databases, we found that CARD14 overexpression strongly correlates with aggressive PCa in human patients. Moreover, we showed that CARD14 is overexpressed in the LNCaP PCa cell line and that knockdown of CARD14 severely reduces LNCaP cell survival. Similarly, knockdown of BCL10 and MALT1, which are known to form a signalling complex with CARD14, also induced LNCaP cell death. MALT1 is a paracaspase that mediates downstream signalling by acting as a scaffold, as well as a protease. Recent studies have already indicated a role for the scaffold function of MALT1 in PCa cell growth. Here, we also demonstrated constitutive MALT1 proteolytic activity in several PCa cell lines, leading to cleavage of A20 and CYLD. Inhibition of MALT1 protease activity did not affect PCa cell survival nor activation of NF-κB and JNK signalling, but reduced expression of cancer-associated genes, including the cytokine IL-6. Taken together, our results revealed a novel role for CARD14-induced signalling in regulating PCa cell survival and gene expression. The epithelial cell type-specific expression of CARD14 may offer novel opportunities for more specific therapeutic targeting approaches in PCa.
Collapse
Affiliation(s)
- Domien Vanneste
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Mira Haegman
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Yasmine Driege
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Marieke Carels
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Elien Van Nuffel
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Pieter De Bleser
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Unit of Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
| | - Yvan Saeys
- Unit of Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| | - Inna S. Afonina
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
24
|
Gu H, Zheng S, Han G, Yang H, Deng Z, Liu Z, He F. Porcine Reproductive and Respiratory Syndrome Virus Adapts Antiviral Innate Immunity via Manipulating MALT1. mBio 2022; 13:e0066422. [PMID: 35467421 PMCID: PMC9239189 DOI: 10.1128/mbio.00664-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 11/20/2022] Open
Abstract
To fulfill virus replication and persistent infection in hosts, viruses have to find ways to compromise innate immunity, including timely impedance on antiviral RNases and inflammatory responses. Porcine reproductive and respiratory syndrome virus (PRRSV) is a major swine pathogen causing immune suppression. MALT1 is a central immune regulator in both innate and adaptive immunity. In this study, MALT1 was confirmed to be induced rapidly upon PRRSV infection and mediate the degradation of two anti-PRRSV RNases, MCPIP1 and N4BP1, relying on its proteolytic activity, consequently facilitating PRRSV replication. Multiple PRRSV nsps, including nsp11, nsp7β, and nsp4, contributed to MALT1 elicitation. Interestingly, the elevated expression of MALT1 began to decrease once intracellular viral expression reached a high enough level. Higher infection dose brought earlier MALT1 inflection. Further, PRRSV nsp6 mediated significant MALT1 degradation via ubiquitination-proteasome pathway. Downregulation of MALT1 suppressed NF-κB signals, leading to the decrease in proinflammatory cytokine expression. In conclusion, MALT1 expression was manipulated by PRRSV in an elaborate manner to antagonize precisely the antiviral effects of host RNases without excessive and continuous activation of inflammatory responses. These findings throw light on the machinery of PRRSV to build homeostasis in infected immune system for viral settlement. IMPORTANCE PRRSV is a major swine pathogen, suppresses innate immunity, and causes persistent infection and coinfection with other pathogens. As a central immune mediator, MALT1 plays essential roles in regulating immunity and inflammation. Here, PRRSV was confirmed to manipulate MALT1 expression in an accurate way to moderate the antiviral immunity. Briefly, multiple PRRSV nsps induced MALT1 protease to antagonize anti-PRRSV RNases N4BP1 and MCPIP1 upon infection, thereby facilitating viral replication. In contrast, PRRSV nsp6 downregulated MALT1 expression via ubiquitination-proteasome pathway to suppress the inflammatory responses upon infection aggravation, contributing to immune defense alleviation and virus survival. These findings revealed the precise expression control on MALT1 by PRRSV for antagonizing antiviral RNases, along with recovering immune homeostasis. For the first time, this study enlightens a new mechanism of PRRSV adapting antiviral innate immunity by modulating MALT1 expression.
Collapse
Affiliation(s)
- Han Gu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Suya Zheng
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Guangwei Han
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Haotian Yang
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Zhuofan Deng
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Zehui Liu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Fang He
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
25
|
Zhang YY, Peng J, Luo XJ. Post-translational modification of MALT1 and its role in B cell- and T cell-related diseases. Biochem Pharmacol 2022; 198:114977. [PMID: 35218741 DOI: 10.1016/j.bcp.2022.114977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a multifunctional protein. MALT1 functions as an adaptor protein to assemble and recruit proteins such as B-cell lymphoma 10 (BCL10) and caspase-recruitment domain (CARD)-containing coiled-coil protein 11 (CARD11). Conversely it also acts as a paracaspase to cleave specified substrates. Because of its involvement in immunity, inflammation and cancer through its dual functions of scaffolding and catalytic activity, MALT1 is becoming a promising therapeutic target in B cell- and T cell-related diseases. There is growing evidence that the function of MALT1 is subtly modulated via post-translational modifications. This review summarized recent progress in relevant studies regarding the physiological and pathophysiological functions of MALT1, post-translational modifications of MALT1 and its role in B cell- and T cell- related diseases. In addition, the current available MALT1 inhibitors were also discussed.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
26
|
Maier J, Lechel A, Marienfeld R, Barth TFE, Möller P, Mellert K. CARD9 Forms an Alternative CBM Complex in Richter Syndrome. Cancers (Basel) 2022; 14:cancers14030531. [PMID: 35158799 PMCID: PMC8833648 DOI: 10.3390/cancers14030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary The transformation process of chronic lymphocytic leukemia into an aggressive lymphoma, called Richter syndrome (RS), is incompletely understood, and therapeutic options are limited. Here, we report CARD9 to be expressed in a subset of RS tissue specimen and in the first and only available RS cell line, U-RT1. In U-RT1, CARD9 attaches to BCL10 and MALT1, and knockdown of CARD9 leads to a significant reduction in cell viability. We hypothesized that CARD9 plays an oncogenic role in RS through the activation of NF-κB signaling. Our findings may help to extend the current knowledge about the pathogenesis of RS and promote the development of targeted therapies for this aggressive disease. Abstract Richter syndrome (RS) is defined as the transformation of chronic lymphocytic leukemia (CLL) into an aggressive lymphoma, mostly diffuse large B-cell lymphoma (DLBCL). Despite intensive therapy, patients with RS have an unfavorable clinical outcome. The detailed pathobiology of Richter transformation still needs to be elucidated. Here, we report high mRNA and protein levels of CARD9 in the RS cell line U-RT1. Co-immunoprecipitation revealed the assembly of a CBM complex using CARD9 instead of CARD11. CARD9 is known to be an activator of NF-кB signaling in myeloid cells. U-RT1 Western blot analyses showed phosphorylation of IκB as well as IKK, indicating a constitutively active canonical NF-кB pathway. This was further supported by the significant reduction in cell viability and CYLD cleavage products after CARD9 siRNA knockdown. We also showed immunostaining for CARD9 in 53% of cases analyzed in a series of RS tissue specimens, whereas other lymphomas rarely show CARD9 expression. This is the first report on ectopic expression and function of CARD9 in an aggressive B-cell lymphoma. Our findings suggest that CARD9 may contribute to the pathogenesis of RS.
Collapse
Affiliation(s)
- Julia Maier
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany; (J.M.); (R.M.); (T.F.E.B.); (K.M.)
| | - André Lechel
- Department of Internal Medicine I, University of Ulm, 89081 Ulm, Germany;
| | - Ralf Marienfeld
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany; (J.M.); (R.M.); (T.F.E.B.); (K.M.)
| | - Thomas F. E. Barth
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany; (J.M.); (R.M.); (T.F.E.B.); (K.M.)
| | - Peter Möller
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany; (J.M.); (R.M.); (T.F.E.B.); (K.M.)
- Correspondence:
| | - Kevin Mellert
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany; (J.M.); (R.M.); (T.F.E.B.); (K.M.)
| |
Collapse
|
27
|
Ang RL, Chan M, Legarda D, Sundberg JP, Sun SC, Gillespie VL, Chun N, Heeger PS, Xiong H, Lira SA, Ting AT. Immune dysregulation in SHARPIN-deficient mice is dependent on CYLD-mediated cell death. Proc Natl Acad Sci U S A 2021; 118:e2001602118. [PMID: 34887354 PMCID: PMC8685717 DOI: 10.1073/pnas.2001602118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/31/2022] Open
Abstract
SHARPIN, together with RNF31/HOIP and RBCK1/HOIL1, form the linear ubiquitin chain assembly complex (LUBAC) E3 ligase that catalyzes M1-linked polyubiquitination. Mutations in RNF31/HOIP and RBCK/HOIL1 in humans and Sharpin in mice lead to autoinflammation and immunodeficiency, but the mechanism underlying the immune dysregulation remains unclear. We now show that the phenotype of the Sharpincpdm/cpdm mice is dependent on CYLD, a deubiquitinase previously shown to mediate removal of K63-linked polyubiquitin chains. Dermatitis, disrupted splenic architecture, and loss of Peyer's patches in the Sharpincpdm/cpdm mice were fully reversed in Sharpincpdm/cpdm Cyld-/- mice. We observed enhanced association of RIPK1 with the death-signaling Complex II following TNF stimulation in Sharpincpdm/cpdm cells, a finding dependent on CYLD since we observed reversal in Sharpincpdm/cpdm Cyld-/- cells. Enhanced RIPK1 recruitment to Complex II in Sharpincpdm/cpdm cells correlated with impaired phosphorylation of CYLD at serine 418, a modification reported to inhibit its enzymatic activity. The dermatitis in the Sharpincpdm/cpdm mice was also ameliorated by the conditional deletion of Cyld using LysM-cre or Cx3cr1-cre indicating that CYLD-dependent death of myeloid cells is inflammatory. Our studies reveal that under physiological conditions, TNF- and RIPK1-dependent cell death is suppressed by the linear ubiquitin-dependent inhibition of CYLD. The Sharpincpdm/cpdm phenotype illustrates the pathological consequences when CYLD inhibition fails.
Collapse
Affiliation(s)
- Rosalind L Ang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| | - Mark Chan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | - Diana Legarda
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Shao-Cong Sun
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030
| | - Virginia L Gillespie
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nicholas Chun
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter S Heeger
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Huabao Xiong
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adrian T Ting
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
- Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
28
|
Lu HY, Sharma M, Sharma AA, Lacson A, Szpurko A, Luider J, Dharmani-Khan P, Shameli A, Bell PA, Guilcher GMT, Lewis VA, Vasquez MR, Desai S, McGonigle L, Murguia-Favela L, Wright NAM, Sergi C, Wine E, Overall CM, Suresh S, Turvey SE. Mechanistic understanding of the combined immunodeficiency in complete human CARD11 deficiency. J Allergy Clin Immunol 2021; 148:1559-1574.e13. [PMID: 33872653 DOI: 10.1016/j.jaci.2021.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Germline pathogenic variants impairing the caspase recruitment domain family member 11 (CARD11)-B cell chronic lymphocytic leukemia/lymphoma 10 (BCL10)-MALT1 paracaspase (MALT1) (CBM) complex are associated with diverse human diseases including combined immunodeficiency (CID), atopy, and lymphoproliferation. However, the impact of CARD11 deficiency on human B-cell development, signaling, and function is incompletely understood. OBJECTIVES This study sought to determine the cellular, immunological, and biochemical basis of disease for 2 unrelated patients who presented with profound CID associated with viral and fungal respiratory infections, interstitial lung disease, and severe colitis. METHODS Patients underwent next-generation sequencing, immunophenotyping by flow cytometry, signaling assays by immunoblot, and transcriptome profiling by RNA-sequencing. RESULTS Both patients carried identical novel pathogenic biallelic loss-of-function variants in CARD11 (c.2509C>T; p.Arg837∗) leading to undetectable protein expression. This variant prevented CBM complex formation, severely impairing the activation of nuclear factor-κB, c-Jun N-terminal kinase, and MALT1 paracaspase activity in B and T cells. This functional defect resulted in a developmental block in B cells at the naive and type 1 transitional B-cell stage and impaired circulating T follicular helper cell (cTFH) development, which was associated with impaired antibody responses and absent germinal center structures on lymph node histology. Transcriptomics indicated that CARD11-dependent signaling is essential for immune signaling pathways involved in the development of these cells. Both patients underwent hematopoietic stem cell transplantations, which led to functional normalization. CONCLUSIONS Complete human CARD11 deficiency causes profound CID by impairing naive/type 1 B-cell and cTFH cell development and abolishing activation of MALT1 paracaspase, NF-κB, and JNK activity. Hematopoietic stem cell transplantation functionally restores impaired signaling pathways.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mehul Sharma
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ashish A Sharma
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, Emory University, Atlanta, Ga
| | - Atilano Lacson
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Ashley Szpurko
- Section of Oncology/Bone Marrow Therapy, Departments of Oncology and Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Joanne Luider
- Department of Pathology and Laboratory Medicine, University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Poonam Dharmani-Khan
- Department of Pathology and Laboratory Medicine, University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Afshin Shameli
- Department of Pathology and Laboratory Medicine, University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Peter A Bell
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregory M T Guilcher
- Section of Oncology/Bone Marrow Therapy, Departments of Oncology and Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Victor A Lewis
- Section of Oncology/Bone Marrow Therapy, Departments of Oncology and Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Marta Rojas Vasquez
- Department of Pediatrics, Division of Immunology, Hematology, Oncology and Palliative Care (iHOPE), University of Alberta, Edmonton, Alberta, Canada
| | - Sunil Desai
- Department of Pediatrics, Division of Immunology, Hematology, Oncology and Palliative Care (iHOPE), University of Alberta, Edmonton, Alberta, Canada
| | - Lyle McGonigle
- Department of Pediatrics, Division of General and Community Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Luis Murguia-Favela
- Section of Pediatric Hematology-Immunology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Nicola A M Wright
- Section of Pediatric Hematology-Immunology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher M Overall
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sneha Suresh
- Department of Pediatrics, Division of Immunology, Hematology, Oncology and Palliative Care (iHOPE), University of Alberta, Edmonton, Alberta, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
29
|
Abstract
The activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) has an aggressive course and is associated with poor prognosis in the relapsed or refractory setting. ABC-DLBCL is characterized by chronic active signaling of NF-κB, which is dependent on the CARD11-BCL10-MALT1 (CBM) complex. MALT1 is a key effector of the CBM complex and activates canonical NF-κB and AP-1 among other transcription factors via distinct protease and scaffold functions. There is therefore growing interest in therapeutic targeting of MALT1 for B-cell malignancies. Here, we review recent advances in therapeutic targeting of MALT1 for ABC-DLBCL. Covalent and allosteric MALT1 protease inhibitors have been developed which inhibit growth of ABC-DLBCL in preclinical models, and two clinical MALT1 protease inhibitors are being developed in phase I clinical trials. Importantly, these compounds can overcome resistance to BTK inhibitors in preclinical models. Alternative compounds blocking the scaffold effect of MALT1 are also in early preclinical development. Blockade of MALT1 protease activity may have important implications for anti-lymphoma immunity by increasing immunogenicity of ABC-DLBCL cells and also by potentiating anti-lymphoma activity of other immune cells in the lymphoma microenvironment. Together, early data suggest that MALT1 is a promising target for ABC-DLBCL and possibly other B-cell malignancies, and can have lymphoma cell-intrinsic as well as immune-mediated therapeutic effects.
Collapse
Affiliation(s)
- Madhav R Seshadri
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ari M Melnick
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
30
|
O'Neill TJ, Seeholzer T, Gewies A, Gehring T, Giesert F, Hamp I, Graß C, Schmidt H, Kriegsmann K, Tofaute MJ, Demski K, Poth T, Rosenbaum M, Schnalzger T, Ruland J, Göttlicher M, Kriegsmann M, Naumann R, Heissmeyer V, Plettenburg O, Wurst W, Krappmann D. TRAF6 prevents fatal inflammation by homeostatic suppression of MALT1 protease. Sci Immunol 2021; 6:eabh2095. [PMID: 34767456 DOI: 10.1126/sciimmunol.abh2095] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Thomas J O'Neill
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Thomas Seeholzer
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Andreas Gewies
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Torben Gehring
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Florian Giesert
- Institute for Developmental Genetics, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Isabel Hamp
- Institute for Medicinal Chemistry, Helmholtz Zentrum München-German Research Center for Environmental Health, 30167 Hannover, Germany.,Centre of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Carina Graß
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Henrik Schmidt
- Institute for Immunology, Biomedical Center Munich, LMU Munich, 82152 Martinsried, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Marie J Tofaute
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Katrin Demski
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Tanja Poth
- Center for Model System and Comparative Pathology (CMCP), Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Marc Rosenbaum
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany
| | - Theresa Schnalzger
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany.,German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Martin Göttlicher
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany.,School of Medicine, Technical University of Munich, Munich, Germany
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Transgenic Core Facility, 01307 Dresden, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center Munich, LMU Munich, 82152 Martinsried, Germany.,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München-German Research Center for Environmental Health, 81377 München, Germany
| | - Oliver Plettenburg
- Institute for Medicinal Chemistry, Helmholtz Zentrum München-German Research Center for Environmental Health, 30167 Hannover, Germany.,Centre of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Wolfgang Wurst
- Institute for Developmental Genetics, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Technische Universität München, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
31
|
Pieters T, T’Sas S, Vanhee S, Almeida A, Driege Y, Roels J, Van Loocke W, Daneels W, Baens M, Marchand A, Van Trimpont M, Matthijssens F, Morscio J, Lemeire K, Lintermans B, Reunes L, Chaltin P, Offner F, Van Dorpe J, Hochepied T, Berx G, Beyaert R, Staal J, Van Vlierberghe P, Goossens S. Cyclin D2 overexpression drives B1a-derived MCL-like lymphoma in mice. J Exp Med 2021; 218:e20202280. [PMID: 34406363 PMCID: PMC8377631 DOI: 10.1084/jem.20202280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B cell lymphoma with poor long-term overall survival. Currently, MCL research and development of potential cures is hampered by the lack of good in vivo models. MCL is characterized by recurrent translocations of CCND1 or CCND2, resulting in overexpression of the cell cycle regulators cyclin D1 or D2, respectively. Here, we show, for the first time, that hematopoiesis-specific activation of cyclin D2 is sufficient to drive murine MCL-like lymphoma development. Furthermore, we demonstrate that cyclin D2 overexpression can synergize with loss of p53 to form aggressive and transplantable MCL-like lymphomas. Strikingly, cyclin D2-driven lymphomas display transcriptional, immunophenotypic, and functional similarities with B1a B cells. These MCL-like lymphomas have B1a-specific B cell receptors (BCRs), show elevated BCR and NF-κB pathway activation, and display increased MALT1 protease activity. Finally, we provide preclinical evidence that inhibition of MALT1 protease activity, which is essential for the development of early life-derived B1a cells, can be an effective therapeutic strategy to treat MCL.
Collapse
MESH Headings
- Allografts
- Animals
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cyclin D2/genetics
- Cyclin D2/metabolism
- Gene Expression Regulation, Neoplastic
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/pathology
- Mice, Inbred C57BL
- Mice, Transgenic
- Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors
- Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Neoplastic Cells, Circulating
- Tumor Suppressor Protein p53/genetics
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Sara T’Sas
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Stijn Vanhee
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - André Almeida
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Yasmine Driege
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Juliette Roels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Willem Daneels
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Mathijs Baens
- Center for Innovation and Stimulation of Drug Discovery Leuven, Leuven, Belgium
| | - Arnaud Marchand
- Center for Innovation and Stimulation of Drug Discovery Leuven, Leuven, Belgium
| | - Maaike Van Trimpont
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Filip Matthijssens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Julie Morscio
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Kelly Lemeire
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Béatrice Lintermans
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Lindy Reunes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Patrick Chaltin
- Center for Innovation and Stimulation of Drug Discovery Leuven, Leuven, Belgium
- Center for Drug Design and Discovery, Catholic University of Leuven, Leuven, Belgium
| | - Fritz Offner
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Tino Hochepied
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Geert Berx
- Cancer Research Institute Ghent, Ghent, Belgium
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jens Staal
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Hamp I, O'Neill TJ, Plettenburg O, Krappmann D. A patent review of MALT1 inhibitors (2013-present). Expert Opin Ther Pat 2021; 31:1079-1096. [PMID: 34214002 DOI: 10.1080/13543776.2021.1951703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION MALT1 is the only human paracaspase, a protease with unique cleavage activity and substrate specificity. As a key regulator of immune responses, MALT1 has attracted attention as an immune modulatory target for the treatment of autoimmune/inflammatory diseases. Further, chronic MALT1 protease activation drives survival of lymphomas, suggesting that MALT1 is a suitable drug target for lymphoid malignancies. Recent studies have indicated that MALT1 inhibition impairs immune suppressive function of regulatory T cells in the tumor microenvironment, suggesting that MALT1 inhibitors may boost anti-tumor immunity in the treatment of solid cancers. AREAS COVERED This review summarizes the literature on MALT1 patents and applications. We discuss the potential therapeutic uses for MALT1 inhibitors based on patents and scientific literature. EXPERT OPINION There has been a steep increase in MALT1 inhibitor patents. Compounds with high selectivity and good bioavailability have been developed. An allosteric binding pocket is the preferred site for potent and selective MALT1 targeting. MALT1 inhibitors have moved to early clinical trials, but toxicological studies indicate that long-term MALT1 inhibition can disrupt immune homeostasis and lead to autoimmunity. Even though this poses risks, preventing immune suppression may favor the use of MALT1 inhibitors in cancer immunotherapies.
Collapse
Affiliation(s)
- Isabel Hamp
- Institute for Medicinal Chemistry, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Centre of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Thomas J O'Neill
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Oliver Plettenburg
- Institute for Medicinal Chemistry, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Centre of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
33
|
Liang X, Sun C, Li C, Yu H, Wei X, Liu X, Bao W, Shi Y, Sun X, Khamrakulov M, Yang C, Liu H. Identification of Novel Fused Heteroaromatics-Based MALT1 Inhibitors by High-Throughput Screening to Treat B Cell Lymphoma. J Med Chem 2021; 64:9217-9237. [PMID: 34181850 DOI: 10.1021/acs.jmedchem.1c00466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Development of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) inhibitors is of great value and significance in the treatment of neoplastic disorders and inflammatory and autoimmune diseases. However, there is a lack of effective MALT1 inhibitors in clinic. Herein, a novel class of potent 5-oxo-1-thioxo-4,5-dihydro-1H-thiazolo[3,4-a]quinazoline-based MALT1 inhibitors and their covalent derivatives were first identified and designed through high-throughput screening. We demonstrated that compounds 15c, 15e, and 20c effectively inhibited the MALT1 protease and displayed selective cytotoxicity to activated B cell-like diffuse large B cell lymphoma with low single-digit micromolar potency. Furthermore, compound 20c specifically repressed NF-κB signaling and induced cell apoptosis in MALT1-dependent TMD8 cells in a dose-dependent manner. More importantly, 20c showed good pharmacokinetic properties and antitumor efficacy with no significant toxicity in the TMD8 xenograft tumor model. Collectively, this study provides valuable lead compounds of MALT1 inhibitors for further structural optimization and antitumor mechanism study.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxia Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haolan Yu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xiaohui Wei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyi Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Bao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yuqiang Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochen Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Mirzadavlat Khamrakulov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
34
|
Yan B, Guo Y, Gui Y, Jiang ZS, Zheng XL. Multifunctional RNase MCPIP1 and its Role in Cardiovascular Diseases. Curr Med Chem 2021; 28:3385-3405. [PMID: 33191882 DOI: 10.2174/0929867327999201113100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/20/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022]
Abstract
Monocyte chemoattractant protein-1 induced protein 1 (MCPIP1), one of the MCPIP family members, is characterized by the presence of both C-x8-C-x5-C-x3-H (CCCH)- type zinc finger and PilT-N-terminal domains. As a potent regulator of innate immunity, MCPIP1 exerts anti-inflammatory effects through its ribonuclease (RNase) and deubiquitinating enzyme activities to degrade cytokine mRNAs and inhibit nuclear factor- kappa B (NF-κB), respectively. MCPIP1 is expressed not only in immune cells but also in many other cell types, including cardiomyocytes, vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Increasing evidence indicates that MCPIP1 plays a role in the regulation of cardiac functions and is involved in the processes of vascular diseases, such as ischemia-reperfusion (I/R) and atherosclerosis. To better understand the emerging roles of MCPIP1 in the cardiovascular system, we reviewed the current literature with respect to MCPIP1 functions and discussed its association with the pathogenesis of cardiovascular diseases and the implication as a therapeutic target.
Collapse
Affiliation(s)
- Binjie Yan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Yanan Guo
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| | - Yu Gui
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| |
Collapse
|
35
|
Chargui A, Belaid A, Ndiaye PD, Imbert V, Samson M, Guigonis JM, Tauc M, Peyron JF, Poujeol P, Brest P, Hofman P, Mograbi B. The Carcinogen Cadmium Activates Lysine 63 (K63)-Linked Ubiquitin-Dependent Signaling and Inhibits Selective Autophagy. Cancers (Basel) 2021; 13:2490. [PMID: 34065348 PMCID: PMC8161291 DOI: 10.3390/cancers13102490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/11/2021] [Indexed: 01/18/2023] Open
Abstract
Signaling, proliferation, and inflammation are dependent on K63-linked ubiquitination-conjugation of a chain of ubiquitin molecules linked via lysine 63. However, very little information is currently available about how K63-linked ubiquitination is subverted in cancer. The present study provides, for the first time, evidence that cadmium (Cd), a widespread environmental carcinogen, is a potent activator of K63-linked ubiquitination, independently of oxidative damage, activation of ubiquitin ligase, or proteasome impairment. We show that Cd induces the formation of protein aggregates that sequester and inactivate cylindromatosis (CYLD) and selective autophagy, two tumor suppressors that deubiquitinate and degrade K63-ubiquitinated proteins, respectively. The aggregates are constituted of substrates of selective autophagy-SQSTM1, K63-ubiquitinated proteins, and mitochondria. These protein aggregates also cluster double-membrane remnants, which suggests an impairment in autophagosome maturation. However, failure to eliminate these selective cargos is not due to alterations in the general autophagy process, as degradation of long-lived proteins occurs normally. We propose that the simultaneous disruption of CYLD and selective autophagy by Cd feeds a vicious cycle that further amplifies K63-linked ubiquitination and downstream activation of the NF-κB pathway, processes that support cancer progression. These novel findings link together impairment of selective autophagy, K63-linked ubiquitination, and carcinogenesis.
Collapse
Affiliation(s)
- Abderrahman Chargui
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
- Higher School of Agriculture of Kef, University Jendouba, Le Kef and Laboratory of Histology, Embryology and Cell Biology, Faculty of Medicine Tunis, 7110 Le Kef, Tunisia
| | - Amine Belaid
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
| | - Papa Diogop Ndiaye
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
| | - Véronique Imbert
- Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Institut National de la Santé et de la Recherche Médicale (INSERM), F-06204 Nice, France; (V.I.); (J.-F.P.)
| | - Michel Samson
- Université Côte d’Azur, Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l’Energie Atomique et aux énergies alternatives (CEA), F-06107 Nice, France; (M.S.); (J.-M.G.)
| | - Jean-Marie Guigonis
- Université Côte d’Azur, Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l’Energie Atomique et aux énergies alternatives (CEA), F-06107 Nice, France; (M.S.); (J.-M.G.)
| | - Michel Tauc
- Université Côte d’Azur, Laboratoire de Physiomédecine Moléculaire, LP2M, Labex ICST, Centre National de la Recherche Scientifique (CNRS), F-06107 Nice, France; (M.T.); (P.P.)
| | - Jean-François Peyron
- Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Institut National de la Santé et de la Recherche Médicale (INSERM), F-06204 Nice, France; (V.I.); (J.-F.P.)
| | - Philippe Poujeol
- Université Côte d’Azur, Laboratoire de Physiomédecine Moléculaire, LP2M, Labex ICST, Centre National de la Recherche Scientifique (CNRS), F-06107 Nice, France; (M.T.); (P.P.)
| | - Patrick Brest
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
| | - Paul Hofman
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
- Université Côte d’Azur, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Centre Hospitalier Universitaire (CHU) de Nice, F-06001 Nice, France
| | - Baharia Mograbi
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
| |
Collapse
|
36
|
CARD10 cleavage by MALT1 restricts lung carcinoma growth in vivo. Oncogenesis 2021; 10:32. [PMID: 33824280 PMCID: PMC8024357 DOI: 10.1038/s41389-021-00321-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
CARD-CC complexes involving BCL10 and MALT1 are major cellular signaling hubs. They govern NF-κB activation through their scaffolding properties as well as MALT1 paracaspase function, which cleaves substrates involved in NF-κB regulation. In human lymphocytes, gain-of-function defects in this pathway lead to lymphoproliferative disorders. CARD10, the prototypical CARD-CC protein in non-hematopoietic cells, is overexpressed in several cancers and has been associated with poor prognosis. However, regulation of CARD10 remains poorly understood. Here, we identified CARD10 as the first MALT1 substrate in non-hematopoietic cells and showed that CARD10 cleavage by MALT1 at R587 dampens its capacity to activate NF-κB. Preventing CARD10 cleavage in the lung tumor A549 cell line increased basal levels of IL-6 and extracellular matrix components in vitro, and led to increased tumor growth in a mouse xenograft model, suggesting that CARD10 cleavage by MALT1 might be a built-in mechanism controlling tumorigenicity.
Collapse
|
37
|
Liang X, Cao Y, Li C, Yu H, Yang C, Liu H. MALT1 as a promising target to treat lymphoma and other diseases related to MALT1 anomalies. Med Res Rev 2021; 41:2388-2422. [PMID: 33763890 DOI: 10.1002/med.21799] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a key adaptor protein that regulates the NF-κB pathway, in which MALT1 functions as a scaffold protein and protease to trigger downstream signals. The abnormal expression of MALT1 is closely associated with lymphomagenesis and other diseases, including solid tumors and autoimmune diseases. MALT1 is the only protease in the underlying pathogenesis of these diseases, and its proteolytic activity can be pharmacologically regulated. Therefore, MALT1 is a potential and promising target for anti-lymphoma and other MALT1-related disease treatments. Currently, the development of MALT1 inhibitors is still in its early stages. This review presents an overview of MALT1, particularly its X-ray structures and biological functions, and elaborates on the pathogenesis of diseases associated with its dysregulation. We then summarize previously reported MALT1 inhibitors, focusing on their molecular structure, biological activity, structure-activity relationship, and limitations. Finally, we propose future research directions to accelerate the discovery of novel MALT1 inhibitors with clinical applications. Overall, this review provides a comprehensive and systematic overview of MALT1-related research advances and serves as a theoretical basis for drug discovery and research.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - YiChun Cao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haolan Yu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
38
|
Lu HY, Turvey SE. Human MALT1 deficiency and predisposition to infections. Curr Opin Immunol 2021; 72:1-12. [PMID: 33714841 DOI: 10.1016/j.coi.2021.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
Human germline MALT1 deficiency is an inborn error of immunity characterized by recurrent bacterial, viral, and fungal infections, periodontal disease, enteropathy, dermatitis, and failure to thrive. The number of identified MALT1-deficient patients have greatly increased in the past two years, which has significantly improved our understanding of the clinical features of this disorder. Patients frequently experience infections affecting the respiratory, skin, gastrointestinal, and blood systems. The most frequently detected pathogens are Staphylococcus aureus, Candida albicans, and cytomegalovirus. Enhanced susceptibility to S. aureus and C. albicans is likely due to impaired Th17 immunity, similar to STAT3 and IL-17 pathway deficiencies.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
39
|
Tsui KH, Chang KS, Sung HC, Hsu SY, Lin YH, Hou CP, Yang PS, Chen CL, Feng TH, Juang HH. Mucosa-Associated Lymphoid Tissue 1 Is an Oncogene Inducing Cell Proliferation, Invasion, and Tumor Growth via the Upregulation of NF-κB Activity in Human Prostate Carcinoma Cells. Biomedicines 2021; 9:biomedicines9030250. [PMID: 33802402 PMCID: PMC8000469 DOI: 10.3390/biomedicines9030250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is one of the most common seen malignancies and the leading cause of cancer-related death among men. Given the importance of early diagnosis and treatment, it is worth to identify a potential novel therapeutic target for prostate cancer. Mucosa-associated lymphoid tissue 1 (MALT1) is a novel gene involved in nuclear factor κB (NF-κB) signal transduction by acting as an adaptor protein and paracaspase, with an essential role in inflammation and tumorigenesis in many cancers. This study investigated the functions and the potential regulatory mechanisms of MALT1 in the human prostate cancer cells. We found that MALT1 is abundant in prostate cancer tissues. MALT1 facilitated NF-κB subunits (p50 and p65) nuclear translocation to induce gene expression of interleukin 6 (IL-6) and C-X-C motif chemokine 5 (CXCL5) in prostate carcinoma cells. MALT1 promoted cell proliferation, invasion, and tumor growth in vitro and in vivo. MALT1 enhanced NF-κB activity in prostate carcinoma cells; moreover, NF-κB induced MALT1 expression determined by reporter and immunoblot assays, implying there is a positive feedback loop between MALT1 and NF-κB. In conclusion, MALT1 is a NF-κB-induced oncogene in the human prostate carcinoma cells.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Pei-Shan Yang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Chien-Lun Chen
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan;
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118112
| |
Collapse
|
40
|
Oikawa D, Hatanaka N, Suzuki T, Tokunaga F. Cellular and Mathematical Analyses of LUBAC Involvement in T Cell Receptor-Mediated NF-κB Activation Pathway. Front Immunol 2020; 11:601926. [PMID: 33329596 PMCID: PMC7732508 DOI: 10.3389/fimmu.2020.601926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/26/2020] [Indexed: 02/02/2023] Open
Abstract
The LUBAC ubiquitin ligase complex, composed of the HOIP, HOIL-1L, and SHARPIN subunits, stimulates the canonical nuclear factor-κB (NF-κB) activation pathways through its Met1-linked linear ubiquitination activity. Here we performed cellular and mathematical modeling analyses of the LUBAC involvement in the T cell receptor (TCR)-mediated NF-κB activation pathway, using the Jurkat human T cell line. LUBAC is indispensable for TCR-induced NF-κB and T cell activation, and transiently associates with and linearly ubiquitinates the CARMA1-BCL10-MALT1 (CBM) complex, through the catalytic HOIP subunit. In contrast, the linear ubiquitination of NEMO, a substrate of the TNF-α-induced canonical NF-κB activation pathway, was limited during the TCR pathway. Among deubiquitinases, OTULIN, but not CYLD, plays a major role in downregulating LUBAC-mediated TCR signaling. Mathematical modeling indicated that linear ubiquitination of the CBM complex accelerates the activation of IκB kinase (IKK), as compared with the activity induced by linear ubiquitination of NEMO alone. Moreover, simulations of the sequential linear ubiquitination of the CBM complex suggested that the allosteric regulation of linear (de)ubiquitination of CBM subunits is controlled by the ubiquitin-linkage lengths. These results indicated that, unlike the TNF-α-induced NF-κB activation pathway, the TCR-mediated NF-κB activation in T lymphocytes has a characteristic mechanism to induce LUBAC-mediated NF-κB activation.
Collapse
Affiliation(s)
- Daisuke Oikawa
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Naoya Hatanaka
- Division of Mathematical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Takashi Suzuki
- Center for Mathematical Modeling and Data Science, Osaka University, Osaka, Japan
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
41
|
Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Inhibitor as a Novel Therapeutic Tool for Lung Injury. Int J Mol Sci 2020; 21:ijms21207761. [PMID: 33092214 PMCID: PMC7589767 DOI: 10.3390/ijms21207761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a progressive disease characterized by lung remodeling due to excessive deposition of extracellular matrix. In this study, the bleomycin experimental model of pulmonary fibrosis was employed to investigate the anti-fibrotic and immunomodulatory activity of the inhibition of MALT1 protease activity. Mice received a single intra-tracheal administration of bleomycin (1 mg/kg) in the presence or absence of MI-2, a selective MALT1 inhibitor, (a dose of 30 mg/kg administered intra-peritoneally 1 h after bleomycin and daily until the end of the experiment). Seven days after bleomycin instillation mice were sacrificed and bronchoalveolar lavage fluid analysis, measurement of collagen content in the lung, histology, molecular analysis and immunohistochemistry were performed. To evaluate mortality and body weight gain a subset of mice was administered daily with MI-2 for 21 days. Mice that received MI-2 showed decreased weight loss and mortality, inflammatory cells infiltration, cytokines overexpression and tissue injury. Moreover, biochemical and immunohistochemical analysis displayed that MI-2 was able to modulate the excessive production of reactive oxygen species and the inflammatory mediator upregulation induced by bleomycin instillation. Additionally, MI-2 demonstrated anti-fibrotic activity by reducing transforming growth factor-β (TGF-β), α-smooth muscle actin (α-SMA) and receptor associated factor 6 (TRAF6) expression. The underlying mechanisms for the protective effect of MI-2 bleomycin induced pulmonary fibrosis may be attributed to its inhibition on NF-κB pathway. This is the first report showing the therapeutic role of MALT1 inhibition in a bleomycin model of pulmonary fibrosis, thus supporting further preclinical and clinical studies.
Collapse
|
42
|
Gehring T, Erdmann T, Rahm M, Graß C, Flatley A, O'Neill TJ, Woods S, Meininger I, Karayel O, Kutzner K, Grau M, Shinohara H, Lammens K, Feederle R, Hauck SM, Lenz G, Krappmann D. MALT1 Phosphorylation Controls Activation of T Lymphocytes and Survival of ABC-DLBCL Tumor Cells. Cell Rep 2020; 29:873-888.e10. [PMID: 31644910 DOI: 10.1016/j.celrep.2019.09.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/24/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
The CARMA1/CARD11-BCL10-MALT1 (CBM) complex bridges T and B cell antigen receptor (TCR/BCR) ligation to MALT1 protease activation and canonical nuclear factor κB (NF-κB) signaling. Using unbiased mass spectrometry, we discover multiple serine phosphorylation sites in the MALT1 C terminus after T cell activation. Phospho-specific antibodies reveal that CBM-associated MALT1 is transiently hyper-phosphorylated upon TCR/CD28 co-stimulation. We identify a dual role for CK1α as a kinase that is essential for CBM signalosome assembly as well as MALT1 phosphorylation. Although MALT1 phosphorylation is largely dispensable for protease activity, it fosters canonical NF-κB signaling in Jurkat and murine CD4 T cells. Moreover, constitutive MALT1 phosphorylation promotes survival of activated B cell-type diffuse large B cell lymphoma (ABC-DLBCL) cells addicted to chronic BCR signaling. Thus, MALT1 phosphorylation triggers optimal NF-κB activation in lymphocytes and survival of lymphoma cells.
Collapse
Affiliation(s)
- Torben Gehring
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Tabea Erdmann
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Marco Rahm
- Research Unit Protein Science, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Carina Graß
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH) Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Thomas J O'Neill
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Simone Woods
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Isabel Meininger
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Kerstin Kutzner
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Michael Grau
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Hisaaki Shinohara
- Laboratory for Systems Immunology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University.1-1-1, Daigakudori, Sanyo-onoda City, Yamaguchi 756-0884, Japan
| | - Katja Lammens
- Gene Center, Ludwig-Maximilians University, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH) Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
43
|
Cheng J, Klei LR, Hubel NE, Zhang M, Schairer R, Maurer LM, Klei HB, Kang H, Concel VJ, Delekta PC, Dang EV, Mintz MA, Baens M, Cyster JG, Parameswaran N, Thome M, Lucas PC, McAllister-Lucas LM. GRK2 suppresses lymphomagenesis by inhibiting the MALT1 proto-oncoprotein. J Clin Invest 2020; 130:1036-1051. [PMID: 31961340 DOI: 10.1172/jci97040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Antigen receptor-dependent (AgR-dependent) stimulation of the NF-κB transcription factor in lymphocytes is a required event during adaptive immune response, but dysregulated activation of this signaling pathway can lead to lymphoma. AgR stimulation promotes assembly of the CARMA1-BCL10-MALT1 complex, wherein MALT1 acts as (a) a scaffold to recruit components of the canonical NF-κB machinery and (b) a protease to cleave and inactivate specific substrates, including negative regulators of NF-κB. In multiple lymphoma subtypes, malignant B cells hijack AgR signaling pathways to promote their own growth and survival, and inhibiting MALT1 reduces the viability and growth of these tumors. As such, MALT1 has emerged as a potential pharmaceutical target. Here, we identified G protein-coupled receptor kinase 2 (GRK2) as a new MALT1-interacting protein. We demonstrated that GRK2 binds the death domain of MALT1 and inhibits MALT1 scaffolding and proteolytic activities. We found that lower GRK2 levels in activated B cell-type diffuse large B cell lymphoma (ABC-DLBCL) are associated with reduced survival, and that GRK2 knockdown enhances ABC-DLBCL tumor growth in vitro and in vivo. Together, our findings suggest that GRK2 can function as a tumor suppressor by inhibiting MALT1 and provide a roadmap for developing new strategies to inhibit MALT1-dependent lymphomagenesis.
Collapse
Affiliation(s)
| | | | - Nathaniel E Hubel
- Department of Pediatrics and.,Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Ming Zhang
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | - Rebekka Schairer
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | | | | | - Heejae Kang
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | - Phillip C Delekta
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Eric V Dang
- Department of Biophysics and Biochemistry, UCSF, San Francisco, California, USA
| | - Michelle A Mintz
- Department of Biophysics and Biochemistry, UCSF, San Francisco, California, USA
| | - Mathijs Baens
- Human Genome Laboratory, VIB Center for the Biology of Disease, and.,Center for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jason G Cyster
- Department of Biophysics and Biochemistry, UCSF, San Francisco, California, USA.,Howard Hughes Medical Institute and.,Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | | | - Margot Thome
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
44
|
Demeyer A, Driege Y, Skordos I, Coudenys J, Lemeire K, Elewaut D, Staal J, Beyaert R. Long-Term MALT1 Inhibition in Adult Mice Without Severe Systemic Autoimmunity. iScience 2020; 23:101557. [PMID: 33083726 PMCID: PMC7522757 DOI: 10.1016/j.isci.2020.101557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
The protease MALT1 is a key regulator of NF-κB signaling and a novel therapeutic target in autoimmunity and cancer. Initial enthusiasm supported by preclinical results with MALT1 inhibitors was tempered by studies showing that germline MALT1 protease inactivation in mice results in reduced regulatory T cells and lethal multi-organ inflammation due to expansion of IFN-γ-producing T cells. However, we show that long-term MALT1 inactivation, starting in adulthood, is not associated with severe systemic inflammation, despite reduced regulatory T cells. In contrast, IL-2-, TNF-, and IFN-γ-producing CD4+ T cells were strongly reduced. Limited formation of tertiary lymphoid structures was detectable in lungs and stomach, which did not affect overall health. Our data illustrate that MALT1 inhibition in prenatal or adult life has a different outcome and that long-term MALT1 inhibition in adulthood is not associated with severe side effects. Inducible MALT1 inactivation for up to 6 months in the absence of severe toxicity MALT1 inactivation in adult mice decreases Tregs without effector T cell activation Long-term MALT1 inactivation results in tertiary lymphoid structure formation MALT1 inhibition in prenatal or adult life has a different outcome
Collapse
Affiliation(s)
- Annelies Demeyer
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Yasmine Driege
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Ioannis Skordos
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Julie Coudenys
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Kelly Lemeire
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Dirk Elewaut
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Jens Staal
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| |
Collapse
|
45
|
Dumont C, Sivars U, Andreasson T, Odqvist L, Mattsson J, DeMicco A, Pardali K, Johansson G, Yrlid L, Cox RJ, Seeliger F, Larsson M, Gehrmann U, Davis AM, Vaarala O. A MALT1 inhibitor suppresses human myeloid DC, effector T-cell and B-cell responses and retains Th1/regulatory T-cell homeostasis. PLoS One 2020; 15:e0222548. [PMID: 32870913 PMCID: PMC7462277 DOI: 10.1371/journal.pone.0222548] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/22/2020] [Indexed: 01/11/2023] Open
Abstract
The paracaspase mucosa-associated lymphoid tissue lymphoma translocation protein-1 (MALT1) regulates nuclear-factor-kappa-B (NF-κB) activation downstream of surface receptors with immunoreceptor tyrosine-based activation motifs (ITAMs), such as the B-cell or T-cell receptor and has thus emerged as a therapeutic target for autoimmune diseases. However, recent reports demonstrate the development of lethal autoimmune inflammation due to the excessive production of interferon gamma (IFN-ɣ) and defective differentiation of regulatory T-cells in genetically modified mice deficient in MALT1 paracaspase activity. To address this issue, we explored the effects of pharmacological MALT1 inhibition on the balance between T-effector and regulatory T-cells. Here we demonstrate that allosteric inhibition of MALT1 suppressed Th1, Th17 and Th1/Th17 effector responses, and inhibited T-cell dependent B-cell proliferation and antibody production. Allosteric MALT1 inhibition did not interfere with the suppressive function of human T-regulatory cells, although it impaired de novo differentiation of regulatory T-cells from naïve T-cells. Treatment with an allosteric MALT1 inhibitor alleviated the cytokine storm, including IFN-ɣ, in a mouse model of acute T-cell activation, and long-term treatment did not lead to an increase in IFN-ɣ producing CD4 cells or tissue inflammation. Together, our data demonstrate that the effects of allosteric inhibition of MALT1 differ from those seen in mice with proteolytically inactive MALT1, and thus we believe that MALT1 is a viable target for B and T-cell driven autoimmune diseases.
Collapse
Affiliation(s)
- Celine Dumont
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Ulf Sivars
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Theresa Andreasson
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Lina Odqvist
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Johan Mattsson
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Amy DeMicco
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Katerina Pardali
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Gustav Johansson
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Linda Yrlid
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Rhona J. Cox
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Frank Seeliger
- Clinical Pharmacology & Safety Sciences, R&D BioPharmaceuticals Gothenburg, Sweden
| | - Marie Larsson
- Clinical Pharmacology & Safety Sciences, R&D BioPharmaceuticals Gothenburg, Sweden
| | - Ulf Gehrmann
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
- * E-mail: (AD); (UG)
| | - Andrew M. Davis
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
- * E-mail: (AD); (UG)
| | - Outi Vaarala
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
46
|
Mellett M. Regulation and dysregulation of CARD14 signalling and its physiological consequences in inflammatory skin disease. Cell Immunol 2020; 354:104147. [DOI: 10.1016/j.cellimm.2020.104147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/17/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
|
47
|
Hughes N, Erbel P, Bornancin F, Wiesmann C, Schiering N, Villard F, Decock A, Rubi B, Melkko S, Spanka C, Buschmann N, Pissot‐Soldermann C, Simic O, Beerli R, Sorge M, Tintelnot‐Blomley M, Beltz K, Régnier CH, Quancard J, Schlapbach A, Langlois J, Renatus M. Stabilizing Inactive Conformations of MALT1 as an Effective Approach to Inhibit Its Protease Activity. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nicola Hughes
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Paul Erbel
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Frédéric Bornancin
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Christian Wiesmann
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Nikolaus Schiering
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Frédéric Villard
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Arnaud Decock
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Bertran Rubi
- Laboratorium für Organische Chemie Zürich CH‐8093 Switzerland
| | - Samu Melkko
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Carsten Spanka
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Nicole Buschmann
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | | | - Oliver Simic
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - René Beerli
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Mickael Sorge
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | | | - Karen Beltz
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Catherine H. Régnier
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Jean Quancard
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Achim Schlapbach
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Jean‐Baptiste Langlois
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Martin Renatus
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| |
Collapse
|
48
|
Damianou A, Burge RJ, Catta-Preta CMC, Geoghegan V, Nievas YR, Newling K, Brown E, Burchmore R, Rodenko B, Mottram JC. Essential roles for deubiquitination in Leishmania life cycle progression. PLoS Pathog 2020; 16:e1008455. [PMID: 32544189 PMCID: PMC7319358 DOI: 10.1371/journal.ppat.1008455] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/26/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
The parasitic protozoan Leishmania requires proteasomal, autophagic and lysosomal proteolytic pathways to enact the extensive cellular remodelling that occurs during its life cycle. The proteasome is essential for parasite proliferation, yet little is known about the requirement for ubiquitination/deubiquitination processes in growth and differentiation. Activity-based protein profiling of L. mexicana C12, C19 and C65 deubiquitinating cysteine peptidases (DUBs) revealed DUB activity remains relatively constant during differentiation of procyclic promastigote to amastigote. However, when life cycle phenotyping (bar-seq) was performed on a pool including 15 barcoded DUB null mutants created in promastigotes using CRISPR-Cas9, significant loss of fitness was observed during differentiation and intracellular infection. DUBs 4, 7, and 13 are required for successful transformation from metacyclic promastigote to amastigote and DUBs 3, 5, 6, 8, 10, 11 and 14 are required for normal amastigote proliferation in mice. DUBs 1, 2, 12 and 16 are essential for promastigote viability and the essential role of DUB2 in establishing infection was demonstrated using DiCre inducible gene deletion in vitro and in vivo. DUB2 is found in the nucleus and interacts with nuclear proteins associated with transcription/chromatin dynamics, mRNA splicing and mRNA capping. DUB2 has broad linkage specificity, cleaving all the di-ubiquitin chains except for Lys27 and Met1. Our study demonstrates the crucial role that DUBs play in differentiation and intracellular survival of Leishmania and that amastigotes are exquisitely sensitive to disruption of ubiquitination homeostasis.
Collapse
Affiliation(s)
- Andreas Damianou
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rebecca J. Burge
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | | | - Vincent Geoghegan
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Y. Romina Nievas
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Katherine Newling
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Elaine Brown
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Richard Burchmore
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Boris Rodenko
- UbiQ Bio BV, Amsterdam Science Park, The Netherlands
| | - Jeremy C. Mottram
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| |
Collapse
|
49
|
Alfano DN, Klei LR, Klei HB, Trotta M, Gough PJ, Foley KP, Bertin J, Sumpter TL, Lucas PC, McAllister-Lucas LM. MALT1 Protease Plays a Dual Role in the Allergic Response by Acting in Both Mast Cells and Endothelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2337-2348. [PMID: 32213560 DOI: 10.4049/jimmunol.1900281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 02/21/2020] [Indexed: 01/26/2023]
Abstract
The signaling protein MALT1 plays a key role in promoting NF-κB activation in Ag-stimulated lymphocytes. In this capacity, MALT1 has two functions, acting as a scaffolding protein and as a substrate-specific protease. MALT1 is also required for NF-κB-dependent induction of proinflammatory cytokines after FcεR1 stimulation in mast cells, implicating a role in allergy. Because MALT1 remains understudied in this context, we sought to investigate how MALT1 proteolytic activity contributes to the overall allergic response. We compared bone marrow-derived mast cells from MALT1 knockout (MALT1-/-) and MALT1 protease-deficient (MALTPD/PD) mice to wild-type cells. We found that MALT1-/- and MALT1PD/PD mast cells are equally impaired in cytokine production following FcεRI stimulation, indicating that MALT1 scaffolding activity is insufficient to drive the cytokine response and that MALT1 protease activity is essential. In addition to cytokine production, acute mast cell degranulation is a critical component of allergic response. Intriguingly, whereas degranulation is MALT1-independent, MALT1PD/PD mice are protected from vascular edema induced by either passive cutaneous anaphylaxis or direct challenge with histamine, a major granule component. This suggests a role for MALT1 protease activity in endothelial cells targeted by mast cell-derived vasoactive substances. Indeed, we find that in human endothelial cells, MALT1 protease is activated following histamine treatment and is required for histamine-induced permeability. We thus propose a dual role for MALT1 protease in allergic response, mediating 1) IgE-dependent mast cell cytokine production, and 2) histamine-induced endothelial permeability. This dual role indicates that therapeutic inhibitors of MALT1 protease could work synergistically to control IgE-mediated allergic disease.
Collapse
Affiliation(s)
- Danielle N Alfano
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Linda R Klei
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Hanna B Klei
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Matthew Trotta
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, GlaxoSmithKline, Collegeville, PA 19406
| | - Kevin P Foley
- Pattern Recognition Receptor Discovery Performance Unit, GlaxoSmithKline, Collegeville, PA 19406
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, GlaxoSmithKline, Collegeville, PA 19406
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224; and .,Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Linda M McAllister-Lucas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224; .,Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
50
|
Flynn SM, Chen C, Artan M, Barratt S, Crisp A, Nelson GM, Peak-Chew SY, Begum F, Skehel M, de Bono M. MALT-1 mediates IL-17 neural signaling to regulate C. elegans behavior, immunity and longevity. Nat Commun 2020; 11:2099. [PMID: 32350248 PMCID: PMC7190641 DOI: 10.1038/s41467-020-15872-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 03/26/2020] [Indexed: 12/27/2022] Open
Abstract
Besides pro-inflammatory roles, the ancient cytokine interleukin-17 (IL-17) modulates neural circuit function. We investigate IL-17 signaling in neurons, and the extent it can alter organismal phenotypes. We combine immunoprecipitation and mass spectrometry to biochemically characterize endogenous signaling complexes that function downstream of IL-17 receptors in C. elegans neurons. We identify the paracaspase MALT-1 as a critical output of the pathway. MALT1 mediates signaling from many immune receptors in mammals, but was not previously implicated in IL-17 signaling or nervous system function. C. elegans MALT-1 forms a complex with homologs of Act1 and IRAK and appears to function both as a scaffold and a protease. MALT-1 is expressed broadly in the C. elegans nervous system, and neuronal IL-17-MALT-1 signaling regulates multiple phenotypes, including escape behavior, associative learning, immunity and longevity. Our data suggest MALT1 has an ancient role modulating neural circuit function downstream of IL-17 to remodel physiology and behavior.
Collapse
Affiliation(s)
- Sean M Flynn
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Changchun Chen
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
- Umeå Center for Molecular Medicine, Wallenberg Center for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Murat Artan
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Stephen Barratt
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Alastair Crisp
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Geoffrey M Nelson
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sew-Yeu Peak-Chew
- Biological Mass Spectrometry and Proteomics, Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Farida Begum
- Biological Mass Spectrometry and Proteomics, Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Mark Skehel
- Biological Mass Spectrometry and Proteomics, Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Mario de Bono
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|