1
|
Barros-Medina I, Robles-Ramos MÁ, Sobrinos-Sanguino M, Luque-Ortega JR, Alfonso C, Margolin W, Rivas G, Monterroso B, Zorrilla S. Evidence for biomolecular condensates formed by the Escherichia coli MatP protein in spatiotemporal regulation of the bacterial cell division cycle. Int J Biol Macromol 2025; 309:142691. [PMID: 40174834 DOI: 10.1016/j.ijbiomac.2025.142691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
An increasing number of proteins involved in bacterial cell cycle events have been recently shown to form biomolecular condensates important for their functions that may play a role in development of antibiotic-tolerant persister cells. Here we report that the E. coli chromosomal Ter macrodomain organizer MatP, a division site selection protein coordinating chromosome segregation with cell division, formed biomolecular condensates in crowding cytomimetic systems preferentially localized at the membrane of microfluidics droplets. Condensates were antagonized and partially dislodged from the membrane by DNA sequences recognized by MatP (matS), which partitioned into them. FtsZ, a core component of the division machinery previously described to phase-separate, unexpectedly enhanced MatP condensation. Our biophysical analyses uncovered direct interaction between both proteins, disrupted by matS. This may have potential implications for midcell FtsZ ring positioning by the Ter-linkage, which comprises MatP and two other proteins bridging the canonical MatP-FtsZ interaction. FtsZ/MatP condensates interconverted with GTP-triggered bundles, suggesting that local fluctuations of GTP concentrations may regulate FtsZ/MatP phase separation. Consistent with discrete MatP foci previously reported in cells, phase separation might influence MatP-dependent chromosome organization, spatiotemporal coordination of cytokinesis and DNA segregation, which is potentially relevant for cell entry into dormant states that can resist antibiotic treatments.
Collapse
Affiliation(s)
- Inés Barros-Medina
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - Miguel Ángel Robles-Ramos
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - Marta Sobrinos-Sanguino
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - Carlos Alfonso
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, TX 77030, USA.
| | - Germán Rivas
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - Begoña Monterroso
- Department of Crystallography and Structural Biology, Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain.
| | - Silvia Zorrilla
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| |
Collapse
|
2
|
Royzenblat SK, Freddolino L. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. EcoSal Plus 2024; 12:eesp00012022. [PMID: 38864557 PMCID: PMC11636183 DOI: 10.1128/ecosalplus.esp-0001-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.
Collapse
Affiliation(s)
- Sonya K. Royzenblat
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Espinosa E, Challita J, Desfontaines JM, Possoz C, Val ME, Mazel D, Marbouty M, Koszul R, Galli E, Barre FX. MatP local enrichment delays segregation independently of tetramer formation and septal anchoring in Vibrio cholerae. Nat Commun 2024; 15:9893. [PMID: 39543102 PMCID: PMC11564523 DOI: 10.1038/s41467-024-54195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Vibrio cholerae harbours a primary chromosome derived from the monochromosomal ancestor of the Vibrionales (ChrI) and a secondary chromosome derived from a megaplasmid (ChrII). The coordinated segregation of the replication terminus of both chromosomes (TerI and TerII) determines when and where cell division occurs. ChrI encodes a homologue of Escherichia coli MatP, a protein that binds to a DNA motif (matS) that is overrepresented in replication termini. Here, we use a combination of deep sequencing and fluorescence microscopy techniques to show that V. cholerae MatP structures TerI and TerII into macrodomains, targets them to mid-cell during replication, and delays their segregation, thus supporting that ChrII behaves as a bona fide chromosome. We further show that the extent of the segregation delay mediated by MatP depends on the number and local density of matS sites, and is independent of its assembly into tetramers and any interaction with the divisome, in contrast to what has been previously observed in E. coli.
Collapse
Affiliation(s)
- Elena Espinosa
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Jihane Challita
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Jean-Michel Desfontaines
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Christophe Possoz
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Marie-Eve Val
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Martial Marbouty
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Spatial Regulation of Genomes, Paris, France
| | - Romain Koszul
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Spatial Regulation of Genomes, Paris, France
| | - Elisa Galli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, Gif-sur-Yvette, France.
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Ng Kwan Lim E, Grüll M, Larabi N, Lalaouna D, Massé E. Coordination of cell division and chromosome segregation by iron and a sRNA in Escherichia coli. Front Microbiol 2024; 15:1493811. [PMID: 39583544 PMCID: PMC11584013 DOI: 10.3389/fmicb.2024.1493811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/26/2024] Open
Abstract
Iron is a vital metal ion frequently present as a cofactor in metabolic enzymes involved in central carbon metabolism, respiratory chain, and DNA synthesis. Notably, iron starvation was previously shown to inhibit cell division, although the mechanism underlying this observation remained obscure. In bacteria, the sRNA RyhB has been intensively characterized to regulate genes involved in iron metabolism during iron starvation. While using the screening tool MAPS for new RyhB targets, we found that the mRNA zapB, a factor coordinating chromosome segregation and cell division (cytokinesis), was significantly enriched in association with RyhB. To confirm the interaction between RyhB and zapB mRNA, we conducted both in vitro and in vivo experiments, which showed that RyhB represses zapB translation by binding at two distinct sites. Microscopy and flow cytometry assays revealed that, in the absence of RyhB, cells become shorter and display impaired chromosome segregation during iron starvation. We hypothesized that RyhB might suppress ZapB expression and reduce cell division during iron starvation. Moreover, we observed that deleting zapB gene completely rescued the slow growth phenotype observed in ryhB mutant during strict iron starvation. Altogether, these results suggest that during growth in the absence of iron, RyhB sRNA downregulates zapB mRNA, which leads to longer cells containing extra chromosomes, potentially to optimize survival. Thus, the RyhB-zapB interaction demonstrates intricate regulatory mechanisms between cell division and chromosome segregation depending on iron availability in E. coli.
Collapse
Affiliation(s)
| | | | | | | | - Eric Massé
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
5
|
Barros-Medina I, Robles-Ramos MÁ, Sobrinos-Sanguino M, Luque-Ortega JR, Alfonso C, Margolin W, Rivas G, Monterroso B, Zorrilla S. Evidence for biomolecular condensates of MatP in spatiotemporal regulation of the bacterial cell division cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604758. [PMID: 39211257 PMCID: PMC11361077 DOI: 10.1101/2024.07.23.604758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An increasing number of proteins involved in bacterial cell cycle events have been recently shown to undergo phase separation. The resulting biomolecular condensates play an important role in cell cycle protein function and may be involved in development of persister cells tolerant to antibiotics. Here we report that the E. coli chromosomal Ter macrodomain organizer MatP, a division site selection protein implicated in the coordination of chromosome segregation with cell division, forms biomolecular condensates in cytomimetic systems. These condensates are favored by crowding and preferentially localize at the membrane of microfluidics droplets, a behavior probably mediated by MatP-lipid binding. Condensates are negatively regulated and partially dislodged from the membrane by DNA sequences recognized by MatP ( matS ), which partition into them. Unexpectedly, MatP condensation is enhanced by FtsZ, a core component of the division machinery previously described to undergo phase separation. Our biophysical analyses uncover a direct interaction between the two proteins, disrupted by matS sequences. This binding might have implications for FtsZ ring positioning at mid-cell by the Ter linkage, which comprises MatP and two other proteins that bridge the canonical MatP/FtsZ interaction. FtsZ/MatP condensates interconvert with bundles in response to GTP addition, providing additional levels of regulation. Consistent with discrete foci reported in cells, MatP biomolecular condensates may facilitate MatP's role in chromosome organization and spatiotemporal regulation of cytokinesis and DNA segregation. Moreover, sequestration of MatP in these membraneless compartments, with or without FtsZ, could promote cell entry into dormant states that are able to survive antibiotic treatments.
Collapse
|
6
|
Gong H, Yan D, Cui Y, Li Y, Yang J, Yang W, Zhan R, Wan Q, Wang X, He H, Chen X, Lutkenhaus J, Yang X, Du S. The divisome is a self-enhancing machine in Escherichia coli and Caulobacter crescentus. Nat Commun 2024; 15:8198. [PMID: 39294118 PMCID: PMC11410940 DOI: 10.1038/s41467-024-52217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
During bacterial cytokinesis, polymers of the bacterial tubulin FtsZ coalesce into the Z ring to orchestrate divisome assembly and septal cell wall synthesis. Previous studies have found that Z ring condensation and stability is critical for successful cell division. However, how FtsZ filaments condense into a Z ring remains enigmatic and whether septal cell wall synthesis can feedback to the Z ring has not been investigated. Here, we show that FtsZ-associated proteins (Zaps) play important roles in Z ring condensation and stability, and discover septal cell wall synthesis as a novel player for Z ring condensation and stabilization in Escherichia coli and Caulobacter crescentus. Moreover, we find that the interaction between the Z ring membrane anchor, FtsA, and components of the septal cell wall synthetic complex are critical for septal cell wall synthesis-mediated Z ring condensation. Altogether, these findings suggest that the divisome is a self-enhancing machine in these two gram-negative bacteria, where the Z ring and the septal cell wall synthetic complex communicate with and reinforce each other to ensure robustness of cell division.
Collapse
Affiliation(s)
- Han Gong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Key Laboratory of Polar Environment Monitoring and Public Governance (Ministry of Education), Wuhan University, Wuhan, China
| | - Di Yan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanyuan Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ying Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jize Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenjie Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Rui Zhan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qianqian Wan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xinci Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Haofeng He
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xinxing Yang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Shishen Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
- Key Laboratory of Polar Environment Monitoring and Public Governance (Ministry of Education), Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Gras K, Fange D, Elf J. The Escherichia coli chromosome moves to the replisome. Nat Commun 2024; 15:6018. [PMID: 39019870 PMCID: PMC11255300 DOI: 10.1038/s41467-024-50047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
In Escherichia coli, it is debated whether the two replisomes move independently along the two chromosome arms during replication or if they remain spatially confined. Here, we use high-throughput fluorescence microscopy to simultaneously determine the location and short-time-scale (1 s) movement of the replisome and a chromosomal locus throughout the cell cycle. The assay is performed for several loci. We find that (i) the two replisomes are confined to a region of ~250 nm and ~120 nm along the cell's long and short axis, respectively, (ii) the chromosomal loci move to and through this region sequentially based on their distance from the origin of replication, and (iii) when a locus is being replicated, its short time-scale movement slows down. This behavior is the same at different growth rates. In conclusion, our data supports a model with DNA moving towards spatially confined replisomes at replication.
Collapse
Affiliation(s)
- Konrad Gras
- Dept. of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - David Fange
- Dept. of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Johan Elf
- Dept. of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Pham P, Wood EA, Dunbar EL, Cox M, Goodman M. Controlling genome topology with sequences that trigger post-replication gap formation during replisome passage: the E. coli RRS elements. Nucleic Acids Res 2024; 52:6392-6405. [PMID: 38676944 PMCID: PMC11194060 DOI: 10.1093/nar/gkae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
We report that the Escherichia coli chromosome includes novel GC-rich genomic structural elements that trigger formation of post-replication gaps upon replisome passage. The two nearly perfect 222 bp repeats, designated Replication Risk Sequences or RRS, are each 650 kb from the terminus sequence dif and flank the Ter macrodomain. RRS sequence and positioning is highly conserved in enterobacteria. At least one RRS appears to be essential unless a 200 kb region encompassing one of them is amplified. The RRS contain a G-quadruplex on the lagging strand which impedes DNA polymerase extension producing lagging strand ssDNA gaps, $ \le$2000 bp long, upon replisome passage. Deletion of both RRS elements has substantial effects on global genome structure and topology. We hypothesize that RRS elements serve as topological relief valves during chromosome replication and segregation. There have been no screens for genomic sequences that trigger transient gap formation. Functional analogs of RRS could be widespread, possibly including some enigmatic G-quadruplexes in eukaryotes.
Collapse
Affiliation(s)
- Phuong Pham
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | - Emma L Dunbar
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | - Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910, USA
| |
Collapse
|
9
|
Pham P, Wood EA, Dunbar EL, Cox MM, Goodman MF. Controlling Genome Topology with Sequences that Trigger Post-replication Gap Formation During Replisome Passage: The E. coli RRS Elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.01.560376. [PMID: 37873128 PMCID: PMC10592627 DOI: 10.1101/2023.10.01.560376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
We report that the Escherichia coli chromosome includes novel GC-rich genomic structural elements that trigger formation of post-replication gaps upon replisome passage. The two nearly perfect 222 bp repeats, designated Replication Risk Sequences or RRS, are each 650 kb from the terminus sequence dif and flank the Ter macrodomain. RRS sequence and positioning is highly conserved in enterobacteria. At least one RRS appears to be essential unless a 200 kb region encompassing one of them is amplified. The RRS contain a G-quadruplex on the lagging strand which impedes DNA polymerase extension producing lagging strand ssDNA gaps, ≤2000 bp long, upon replisome passage. Deletion of both RRS elements has substantial effects on global genome structure and topology. We hypothesize that RRS elements serve as topological relief valves during chromosome replication and segregation. There have been no screens for genomic sequences that trigger transient gap formation. Functional analogs of RRS could be widespread, possibly including some enigmatic G-quadruplexes in eukaryotes.
Collapse
Affiliation(s)
- Phuong Pham
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910
| | - Elizabeth A. Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544
| | - Emma L. Dunbar
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544
| | - Myron F. Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910
| |
Collapse
|
10
|
Zhang H, Shao C, Wang J, Chu Y, Xiao J, Kang Y, Zhang Z. Combined Study of Gene Expression and Chromosome Three-Dimensional Structure in Escherichia coli During Growth Process. Curr Microbiol 2024; 81:122. [PMID: 38530471 DOI: 10.1007/s00284-024-03640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/13/2024] [Indexed: 03/28/2024]
Abstract
The chromosome structure of different bacteria has its unique organization pattern, which plays an important role in maintaining the spatial location relationship between genes and regulating gene expression. Conversely, transcription also plays a global role in regulating the three-dimensional structure of bacterial chromosomes. Therefore, we combine RNA-Seq and Hi-C technology to explore the relationship between chromosome structure changes and transcriptional regulation in E. coli at different growth stages. Transcriptome analysis indicates that E. coli synthesizes many ribosomes and peptidoglycan in the exponential phase. In contrast, E. coli undergoes more transcriptional regulation and catabolism during the stationary phase, reflecting its adaptability to changes in environmental conditions during growth. Analyzing the Hi-C data shows that E. coli has a higher frequency of global chromosomal interaction in the exponential phase and more defined chromosomal interaction domains (CIDs). Still, the long-distance interactions at the replication termination region are lower than in the stationary phase. Combining transcriptome and Hi-C data analysis, we conclude that highly expressed genes are more likely to be distributed in CID boundary regions during the exponential phase. At the same time, most high-expression genes distributed in the CID boundary regions are ribosomal gene clusters, forming clearer CID boundaries during the exponential phase. The three-dimensional structure of chromosome and expression pattern is altered during the growth of E. coli from the exponential phase to the stationary phase, clarifying the synergy between the two regulatory aspects.
Collapse
Affiliation(s)
- Hao Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changjun Shao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yanan Chu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jingfa Xiao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Zhewen Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| |
Collapse
|
11
|
Santiago-Collazo G, Brown PJB, Randich AM. The divergent early divisome: is there a functional core? Trends Microbiol 2024; 32:231-240. [PMID: 37741788 DOI: 10.1016/j.tim.2023.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
The bacterial divisome is a complex nanomachine that drives cell division and separation. The essentiality of these processes leads to the assumption that proteins with core roles will be strictly conserved across all bacterial genomes. However, recent studies in diverse proteobacteria have revealed considerable variation in the early divisome compared with Escherichia coli. While some proteins are highly conserved, their specific functions and interacting partners vary. Meanwhile, different subphyla use clade-specific proteins with analogous functions. Thus, instead of focusing on gene conservation, we must also explore how key functions are maintained during early division by diverging protein networks. An enhanced awareness of these complex genetic networks will clarify the physical and evolutionary constraints of bacterial division.
Collapse
Affiliation(s)
- Gustavo Santiago-Collazo
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Pamela J B Brown
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Amelia M Randich
- Department of Biology, College of Arts and Sciences, University of Scranton, Scranton, PA, USA.
| |
Collapse
|
12
|
Morrison JJ, Camberg JL. Building the Bacterial Divisome at the Septum. Subcell Biochem 2024; 104:49-71. [PMID: 38963483 DOI: 10.1007/978-3-031-58843-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Across living organisms, division is necessary for cell survival and passing heritable information to the next generation. For this reason, cell division is highly conserved among eukaryotes and prokaryotes. Among the most highly conserved cell division proteins in eukaryotes are tubulin and actin. Tubulin polymerizes to form microtubules, which assemble into cytoskeletal structures in eukaryotes, such as the mitotic spindle that pulls chromatids apart during mitosis. Actin polymerizes to form a morphological framework for the eukaryotic cell, or cytoskeleton, that undergoes reorganization during mitosis. In prokaryotes, two of the most highly conserved cell division proteins are the tubulin homolog FtsZ and the actin homolog FtsA. In this chapter, the functions of the essential bacterial cell division proteins FtsZ and FtsA and their roles in assembly of the divisome at the septum, the site of cell division, will be discussed. In most bacteria, including Escherichia coli, the tubulin homolog FtsZ polymerizes at midcell, and this step is crucial for recruitment of many other proteins to the division site. For this reason, both FtsZ abundance and polymerization are tightly regulated by a variety of proteins. The actin-like FtsA protein polymerizes and tethers FtsZ polymers to the cytoplasmic membrane. Additionally, FtsA interacts with later stage cell division proteins, which are essential for division and for building the new cell wall at the septum. Recent studies have investigated how actin-like polymerization of FtsA on the lipid membrane may impact division, and we will discuss this and other ways that division in bacteria is regulated through FtsZ and FtsA.
Collapse
Affiliation(s)
- Josiah J Morrison
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
13
|
Cameron TA, Margolin W. Insights into the assembly and regulation of the bacterial divisome. Nat Rev Microbiol 2024; 22:33-45. [PMID: 37524757 PMCID: PMC11102604 DOI: 10.1038/s41579-023-00942-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/02/2023]
Abstract
The ability to split one cell into two is fundamental to all life, and many bacteria can accomplish this feat several times per hour with high accuracy. Most bacteria call on an ancient homologue of tubulin, called FtsZ, to localize and organize the cell division machinery, the divisome, into a ring-like structure at the cell midpoint. The divisome includes numerous other proteins, often including an actin homologue (FtsA), that interact with each other at the cytoplasmic membrane. Once assembled, the protein complexes that comprise the dynamic divisome coordinate membrane constriction with synthesis of a division septum, but only after overcoming checkpoints mediated by specialized protein-protein interactions. In this Review, we summarize the most recent evidence showing how the divisome proteins of Escherichia coli assemble at the cell midpoint, interact with each other and regulate activation of septum synthesis. We also briefly discuss the potential of divisome proteins as novel antibiotic targets.
Collapse
Affiliation(s)
- Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
14
|
Kaufmann A, Vigogne M, Neuendorf TA, Reverte-López M, Rivas G, Thiele J. Studying Nucleoid-Associated Protein-DNA Interactions Using Polymer Microgels as Synthetic Mimics. ACS Synth Biol 2023; 12:3695-3703. [PMID: 37965889 DOI: 10.1021/acssynbio.3c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Microfluidically fabricated polymer microgels are used as an experimental platform to analyze protein-DNA interactions regulating bacterial cell division. In particular, we focused on the nucleoid-associated protein SlmA, which forms a nucleoprotein complex with short DNA binding sequences (SBS) that acts as a negative regulator of the division ring stability in Escherichia coli. To mimic the bacterial nucleoid as a dense DNA region of a bacterial cell and investigate the influence of charge and permeability on protein binding and diffusion in there, we have chosen nonionic polyethylene glycol and anionic hyaluronic acid as precursor materials for hydrogel formation, previously functionalized with SBS. SlmA binds specifically to the coupled SBS for both types of microgels while preferentially accumulating at the microgels' surface. We could control the binding specificity by adjusting the buffer composition of the DNA-functionalized microgels. The microgel charge did not impact protein binding; however, hyaluronic acid-based microgels exhibit a higher permeability, promoting protein diffusion; thus, they were the preferred choice for preparing nucleoid mimics. The approaches described here provide attractive tools for bottom-up reconstitution of essential cellular processes in media that more faithfully reproduce intracellular environments.
Collapse
Affiliation(s)
- Anika Kaufmann
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Michelle Vigogne
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Talika A Neuendorf
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - María Reverte-López
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
- Institute of Chemistry, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
15
|
Cornet F, Blanchais C, Dusfour-Castan R, Meunier A, Quebre V, Sekkouri Alaoui H, Boudsoq F, Campos M, Crozat E, Guynet C, Pasta F, Rousseau P, Ton Hoang B, Bouet JY. DNA Segregation in Enterobacteria. EcoSal Plus 2023; 11:eesp00382020. [PMID: 37220081 PMCID: PMC10729935 DOI: 10.1128/ecosalplus.esp-0038-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/13/2023] [Indexed: 01/28/2024]
Abstract
DNA segregation ensures that cell offspring receive at least one copy of each DNA molecule, or replicon, after their replication. This important cellular process includes different phases leading to the physical separation of the replicons and their movement toward the future daughter cells. Here, we review these phases and processes in enterobacteria with emphasis on the molecular mechanisms at play and their controls.
Collapse
Affiliation(s)
- François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Corentin Blanchais
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Romane Dusfour-Castan
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Alix Meunier
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Valentin Quebre
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Hicham Sekkouri Alaoui
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - François Boudsoq
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Manuel Campos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Estelle Crozat
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Franck Pasta
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Bao Ton Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
16
|
Niault T, Czarnecki J, Lambérioux M, Mazel D, Val ME. Cell cycle-coordinated maintenance of the Vibrio bipartite genome. EcoSal Plus 2023; 11:eesp00082022. [PMID: 38277776 PMCID: PMC10729929 DOI: 10.1128/ecosalplus.esp-0008-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
To preserve the integrity of their genome, bacteria rely on several genome maintenance mechanisms that are co-ordinated with the cell cycle. All members of the Vibrio family have a bipartite genome consisting of a primary chromosome (Chr1) homologous to the single chromosome of other bacteria such as Escherichia coli and a secondary chromosome (Chr2) acquired by a common ancestor as a plasmid. In this review, we present our current understanding of genome maintenance in Vibrio cholerae, which is the best-studied model for bacteria with multi-partite genomes. After a brief overview on the diversity of Vibrio genomic architecture, we describe the specific, common, and co-ordinated mechanisms that control the replication and segregation of the two chromosomes of V. cholerae. Particular attention is given to the unique checkpoint mechanism that synchronizes Chr1 and Chr2 replication.
Collapse
Affiliation(s)
- Théophile Niault
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Jakub Czarnecki
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| | - Morgan Lambérioux
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Didier Mazel
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| | - Marie-Eve Val
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
17
|
Sadhir I, Murray SM. Mid-cell migration of the chromosomal terminus is coupled to origin segregation in Escherichia coli. Nat Commun 2023; 14:7489. [PMID: 37980336 PMCID: PMC10657355 DOI: 10.1038/s41467-023-43351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Bacterial chromosomes are dynamically and spatially organised within cells. In slow-growing Escherichia coli, the chromosomal terminus is initially located at the new pole and must therefore migrate to midcell during replication to reproduce the same pattern in the daughter cells. Here, we use high-throughput time-lapse microscopy to quantify this transition, its timing and its relationship to chromosome segregation. We find that terminus centralisation is a rapid discrete event that occurs ~25 min after initial separation of duplicated origins and ~50 min before the onset of bulk nucleoid segregation but with substantial variation between cells. Despite this variation, its movement is tightly coincident with the completion of origin segregation, even in the absence of its linkage to the divisome, suggesting a coupling between these two events. Indeed, we find that terminus centralisation does not occur if origin segregation away from mid-cell is disrupted, which results in daughter cells having an inverted chromosome organisation. Overall, our study quantifies the choreography of origin-terminus positioning and identifies an unexplored connection between these loci, furthering our understanding of chromosome segregation in this bacterium.
Collapse
Affiliation(s)
- Ismath Sadhir
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Microcosm Earth Center, Max Planck Institute for Terrestrial Microbiology and Philipps-Universität Marburg, Marburg, Germany
| | - Seán M Murray
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
18
|
Mortier J, Govers SK, Cambré A, Van Eyken R, Verheul J, den Blaauwen T, Aertsen A. Protein aggregates act as a deterministic disruptor during bacterial cell size homeostasis. Cell Mol Life Sci 2023; 80:360. [PMID: 37971522 PMCID: PMC11072981 DOI: 10.1007/s00018-023-05002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Mechanisms underlying deviant cell size fluctuations among clonal bacterial siblings are generally considered to be cryptic and stochastic in nature. However, by scrutinizing heat-stressed populations of the model bacterium Escherichia coli, we uncovered the existence of a deterministic asymmetry in cell division that is caused by the presence of intracellular protein aggregates (PAs). While these structures typically locate at the cell pole and segregate asymmetrically among daughter cells, we now show that the presence of a polar PA consistently causes a more distal off-center positioning of the FtsZ division septum. The resulting increased length of PA-inheriting siblings persists over multiple generations and could be observed in both E. coli and Bacillus subtilis populations. Closer investigation suggests that a PA can physically perturb the nucleoid structure, which subsequently leads to asymmetric septation.
Collapse
Affiliation(s)
- Julien Mortier
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Sander K Govers
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Alexander Cambré
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Ronald Van Eyken
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Jolanda Verheul
- Swammerdam Institute for Life Sciences, Bacterial Cell Biology and Physiology, University of Amsterdam, Amsterdam, The Netherlands
| | - Tanneke den Blaauwen
- Swammerdam Institute for Life Sciences, Bacterial Cell Biology and Physiology, University of Amsterdam, Amsterdam, The Netherlands
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
Goudin A, Ferat JL, Possoz C, Barre FX, Galli E. Recovery of Vibrio cholerae polarized cellular organization after exit from a non-proliferating spheroplast state. PLoS One 2023; 18:e0293276. [PMID: 37883451 PMCID: PMC10602287 DOI: 10.1371/journal.pone.0293276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Vibrio cholerae, the causative agent of cholera epidemics, is a rod-shaped bacterium with a highly polarized cellular organization. It can survive harmful growth conditions by entering a non-proliferating spheroplast state, which involves loss of the cell envelope and polarity. How polarized rod organization cells are formed when the spheroplasts exit the non-proliferating state remains largely uncharacterized. To address this question, we investigated how L-arabinose-induced V. cholerae spheroplasts return to growth. We found that de novo morphogenesis started with the elimination of an excess of periplasm, which was immediately followed by cell elongation and the formation of cell branches with a diameter similar to that of normal V. cholerae cells. Periplasm elimination was driven by bifunctional peptidoglycan synthases involved in cell-wall maintenance, the aPBPs. Elongation and branching relied on the MreB-associated monofunctional peptidoglycan synthase PBP2. The cell division monofunctional peptidoglycan synthase FtsI was not involved in any of these processes. However, the FtsK cell division protein specifically targeted the sites of vesicle extrusion. Genetic material was amplified by synchronous waves of DNA replication as periplasmic elimination began. The HubP polarity factor targeted the tip of the branches as they began to form. However, HubP-mediated polarization was not involved in the efficiency of the recovery process. Finally, our results suggest that the positioning of HubP and the activities of the replication terminus organizer of the two V. cholerae chromosomes, MatP, are independent of cell division. Taken together, these results confirm the interest of L-arabinose-induced V. cholerae spheroplasts to study how cell shape is generated and shed light on the de novo establishment of the intracellular organization and cell polarization in V. cholerae.
Collapse
Affiliation(s)
- Anthony Goudin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jean-Luc Ferat
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Christophe Possoz
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Elisa Galli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
20
|
Harpring M, Cox JV. Plasticity in the cell division processes of obligate intracellular bacteria. Front Cell Infect Microbiol 2023; 13:1205488. [PMID: 37876871 PMCID: PMC10591338 DOI: 10.3389/fcimb.2023.1205488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/07/2023] [Indexed: 10/26/2023] Open
Abstract
Most bacteria divide through a highly conserved process called binary fission, in which there is symmetric growth of daughter cells and the synthesis of peptidoglycan at the mid-cell to enable cytokinesis. During this process, the parental cell replicates its chromosomal DNA and segregates replicated chromosomes into the daughter cells. The mechanisms that regulate binary fission have been extensively studied in several model organisms, including Eschericia coli, Bacillus subtilis, and Caulobacter crescentus. These analyses have revealed that a multi-protein complex called the divisome forms at the mid-cell to enable peptidoglycan synthesis and septation during division. In addition, rod-shaped bacteria form a multi-protein complex called the elongasome that drives sidewall peptidoglycan synthesis necessary for the maintenance of rod shape and the lengthening of the cell prior to division. In adapting to their intracellular niche, the obligate intracellular bacteria discussed here have eliminated one to several of the divisome gene products essential for binary fission in E. coli. In addition, genes that encode components of the elongasome, which were mostly lost as rod-shaped bacteria evolved into coccoid organisms, have been retained during the reductive evolutionary process that some coccoid obligate intracellular bacteria have undergone. Although the precise molecular mechanisms that regulate the division of obligate intracellular bacteria remain undefined, the studies summarized here indicate that obligate intracellular bacteria exhibit remarkable plasticity in their cell division processes.
Collapse
Affiliation(s)
| | - John V. Cox
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
21
|
Kaljević J, Tesseur C, Le TBK, Laloux G. Cell cycle-dependent organization of a bacterial centromere through multi-layered regulation of the ParABS system. PLoS Genet 2023; 19:e1010951. [PMID: 37733798 PMCID: PMC10547168 DOI: 10.1371/journal.pgen.1010951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/03/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
The accurate distribution of genetic material is crucial for all organisms. In most bacteria, chromosome segregation is achieved by the ParABS system, in which the ParB-bound parS sequence is actively partitioned by ParA. While this system is highly conserved, its adaptation in organisms with unique lifestyles and its regulation between developmental stages remain largely unexplored. Bdellovibrio bacteriovorus is a predatory bacterium proliferating through polyploid replication and non-binary division inside other bacteria. Our study reveals the subcellular dynamics and multi-layered regulation of the ParABS system, coupled to the cell cycle of B. bacteriovorus. We found that ParA:ParB ratios fluctuate between predation stages, their balance being critical for cell cycle progression. Moreover, the parS chromosomal context in non-replicative cells, combined with ParB depletion at cell division, critically contribute to the unique cell cycle-dependent organization of the centromere in this bacterium, highlighting new levels of complexity in chromosome segregation and cell cycle control.
Collapse
Affiliation(s)
| | | | - Tung B. K. Le
- John Innes Centre, Department of Molecular Microbiology, Norwich, United Kingdom
| | | |
Collapse
|
22
|
Japaridze A, van Wee R, Gogou C, Kerssemakers JWJ, van den Berg DF, Dekker C. MukBEF-dependent chromosomal organization in widened Escherichia coli. Front Microbiol 2023; 14:1107093. [PMID: 36937278 PMCID: PMC10020239 DOI: 10.3389/fmicb.2023.1107093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
The bacterial chromosome is spatially organized through protein-mediated compaction, supercoiling, and cell-boundary confinement. Structural Maintenance of Chromosomes (SMC) complexes are a major class of chromosome-organizing proteins present throughout all domains of life. Here, we study the role of the Escherichia coli SMC complex MukBEF in chromosome architecture and segregation. Using quantitative live-cell imaging of shape-manipulated cells, we show that MukBEF is crucial to preserve the toroidal topology of the Escherichia coli chromosome and that it is non-uniformly distributed along the chromosome: it prefers locations toward the origin and away from the terminus of replication, and it is unevenly distributed over the origin of replication along the two chromosome arms. Using an ATP hydrolysis-deficient MukB mutant, we confirm that MukBEF translocation along the chromosome is ATP-dependent, in contrast to its loading onto DNA. MukBEF and MatP are furthermore found to be essential for sister chromosome decatenation. We propose a model that explains how MukBEF, MatP, and their interacting partners organize the chromosome and contribute to sister segregation. The combination of bacterial cell-shape modification and quantitative fluorescence microscopy paves way to investigating chromosome-organization factors in vivo.
Collapse
|
23
|
Prostova M, Shilkin E, Kulikova AA, Makarova A, Ryazansky S, Kulbachinskiy A. Noncanonical prokaryotic X family DNA polymerases lack polymerase activity and act as exonucleases. Nucleic Acids Res 2022; 50:6398-6413. [PMID: 35657103 PMCID: PMC9226535 DOI: 10.1093/nar/gkac461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022] Open
Abstract
The X family polymerases (PolXs) are specialized DNA polymerases that are found in all domains of life. While the main representatives of eukaryotic PolXs, which have dedicated functions in DNA repair, were studied in much detail, the functions and diversity of prokaryotic PolXs have remained largely unexplored. Here, by combining a comprehensive bioinformatic analysis of prokaryotic PolXs and biochemical experiments involving selected recombinant enzymes, we reveal a previously unrecognized group of PolXs that seem to be lacking DNA polymerase activity. The noncanonical PolXs contain substitutions of the key catalytic residues and deletions in their polymerase and dNTP binding sites in the palm and fingers domains, but contain functional nuclease domains, similar to canonical PolXs. We demonstrate that representative noncanonical PolXs from the Deinococcus genus are indeed inactive as DNA polymerases but are highly efficient as 3'-5' exonucleases. We show that both canonical and noncanonical PolXs are often encoded together with the components of the non-homologous end joining pathway and may therefore participate in double-strand break repair, suggesting an evolutionary conservation of this PolX function. This is a remarkable example of polymerases that have lost their main polymerase activity, but retain accessory functions in DNA processing and repair.
Collapse
Affiliation(s)
| | - Evgeniy Shilkin
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Alexandra A Kulikova
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Alena Makarova
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Sergei Ryazansky
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 4991960015; Fax: +7 4991960015;
| |
Collapse
|
24
|
Coupling between DNA replication, segregation, and the onset of constriction in Escherichia coli. Cell Rep 2022; 38:110539. [PMID: 35320717 PMCID: PMC9003928 DOI: 10.1016/j.celrep.2022.110539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/01/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Escherichia coli cell cycle features two critical cell-cycle checkpoints: initiation of replication and the onset of constriction. While the initiation of DNA replication has been extensively studied, it is less clear what triggers the onset of constriction and when exactly it occurs during the cell cycle. Here, using high-throughput fluorescence microscopy in microfluidic devices, we determine the timing for the onset of constriction relative to the replication cycle in different growth rates. Our single-cell data and modeling indicate that the initiation of constriction is coupled to replication-related processes in slow growth conditions. Furthermore, our data suggest that this coupling involves the mid-cell chromosome blocking the onset of constriction via some form of nucleoid occlusion occurring independently of SlmA and the Ter linkage proteins. This work highlights the coupling between replication and division cycles and brings up a new nucleoid mediated control mechanism in E. coli. Using high-throughput microscopy, Tiruvadi-Krishnan et al. determine timings for critical cell-cycle checkpoints related to division and replication in Escherichia coli. The data, combined with cell-cycle modeling, show that the onset of constriction is blocked by the mid-cell nucleoid. In slow-growth conditions, the blockage is limiting for cell division.
Collapse
|
25
|
Conin B, Billault-Chaumartin I, El Sayyed H, Quenech'Du N, Cockram C, Koszul R, Espéli O. Extended sister-chromosome catenation leads to massive reorganization of the E. coli genome. Nucleic Acids Res 2022; 50:2635-2650. [PMID: 35212387 PMCID: PMC8934667 DOI: 10.1093/nar/gkac105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/07/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
In bacteria, chromosome segregation occurs progressively from the origin to terminus within minutes of replication of each locus. Between replication and segregation, sister loci are held in an apparent cohesive state by topological links. The decatenation activity of topoisomerase IV (Topo IV) is required for segregation of replicated loci, yet little is known about the structuring of the chromosome maintained in a cohesive state. In this work, we investigated chromosome folding in cells with altered decatenation activities. Within minutes after Topo IV inactivation, massive chromosome reorganization occurs, associated with increased in contacts between nearby loci, likely trans-contacts between sister chromatids, and in long-range contacts between the terminus and distant loci. We deciphered the respective roles of Topo III, MatP and MukB when TopoIV activity becomes limiting. Topo III reduces short-range inter-sister contacts suggesting its activity near replication forks. MatP, the terminus macrodomain organizing system, and MukB, the Escherichia coli SMC, promote long-range contacts with the terminus. We propose that the large-scale conformational changes observed under these conditions reveal defective decatenation attempts involving the terminus area. Our results support a model of spatial and temporal partitioning of the tasks required for sister chromosome segregation.
Collapse
Affiliation(s)
- Brenna Conin
- Center for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS, INSERM, Université PSL, Paris, France.,Institut Pasteur, Université de Paris, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015Paris, France.,Collège Doctoral, Sorbonne Université, F-75005 Paris, France
| | - Ingrid Billault-Chaumartin
- Center for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS, INSERM, Université PSL, Paris, France
| | - Hafez El Sayyed
- Center for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS, INSERM, Université PSL, Paris, France
| | - Nicole Quenech'Du
- Center for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS, INSERM, Université PSL, Paris, France
| | - Charlotte Cockram
- Institut Pasteur, Université de Paris, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015Paris, France
| | - Romain Koszul
- Institut Pasteur, Université de Paris, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015Paris, France
| | - Olivier Espéli
- Center for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
26
|
Levin PA, Janakiraman A. Localization, Assembly, and Activation of the Escherichia coli Cell Division Machinery. EcoSal Plus 2021; 9:eESP00222021. [PMID: 34910577 PMCID: PMC8919703 DOI: 10.1128/ecosalplus.esp-0022-2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/14/2021] [Indexed: 01/01/2023]
Abstract
Decades of research, much of it in Escherichia coli, have yielded a wealth of insight into bacterial cell division. Here, we provide an overview of the E. coli division machinery with an emphasis on recent findings. We begin with a short historical perspective into the discovery of FtsZ, the tubulin homolog that is essential for division in bacteria and archaea. We then discuss assembly of the divisome, an FtsZ-dependent multiprotein platform, at the midcell septal site. Not simply a scaffold, the dynamic properties of polymeric FtsZ ensure the efficient and uniform synthesis of septal peptidoglycan. Next, we describe the remodeling of the cell wall, invagination of the cell envelope, and disassembly of the division apparatus culminating in scission of the mother cell into two daughter cells. We conclude this review by highlighting some of the open questions in the cell division field, emphasizing that much remains to be discovered, even in an organism as extensively studied as E. coli.
Collapse
Affiliation(s)
- Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Science & Engineering of Living Systems (CSELS), McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Anuradha Janakiraman
- Department of Biology, The City College of New York, New York, New York, USA
- Programs in Biology and Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA
| |
Collapse
|
27
|
Fisher GL, Bolla JR, Rajasekar KV, Mäkelä J, Baker R, Zhou M, Prince JP, Stracy M, Robinson CV, Arciszewska LK, Sherratt DJ. Competitive binding of MatP and topoisomerase IV to the MukB hinge domain. eLife 2021; 10:70444. [PMID: 34585666 PMCID: PMC8523169 DOI: 10.7554/elife.70444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes have ubiquitous roles in compacting DNA linearly, thereby promoting chromosome organization-segregation. Interaction between the Escherichia coli SMC complex, MukBEF, and matS-bound MatP in the chromosome replication termination region, ter, results in depletion of MukBEF from ter, a process essential for efficient daughter chromosome individualization and for preferential association of MukBEF with the replication origin region. Chromosome-associated MukBEF complexes also interact with topoisomerase IV (ParC2E2), so that their chromosome distribution mirrors that of MukBEF. We demonstrate that MatP and ParC have an overlapping binding interface on the MukB hinge, leading to their mutually exclusive binding, which occurs with the same dimer to dimer stoichiometry. Furthermore, we show that matS DNA competes with the MukB hinge for MatP binding. Cells expressing MukBEF complexes that are mutated at the ParC/MatP binding interface are impaired in ParC binding and have a mild defect in MukBEF function. These data highlight competitive binding as a means of globally regulating MukBEF-topoisomerase IV activity in space and time.
Collapse
Affiliation(s)
- Gemma Lm Fisher
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jani R Bolla
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom.,The Kavli Institute for Nanoscience Discovery, Oxford, United Kingdom
| | | | - Jarno Mäkelä
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Rachel Baker
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Man Zhou
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Josh P Prince
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom.,The Kavli Institute for Nanoscience Discovery, Oxford, United Kingdom
| | | | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Gallagher KA, Brun YV. Bacterial chromosome segregation: New insights into non-binary replication and division. Curr Biol 2021; 31:R1044-R1046. [PMID: 34520714 DOI: 10.1016/j.cub.2021.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bdellovibrio bacteriovorus divides in a non-binary manner resulting in an even or odd number of progeny. A new study tracks the spatiotemporal dynamics of chromosome segregation in this species and shows that the process is dependent on the conserved ParA-ParB-parS system.
Collapse
Affiliation(s)
- Kelley A Gallagher
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal H3C 3J7, Canada
| | - Yves V Brun
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal H3C 3J7, Canada.
| |
Collapse
|
29
|
Mäkelä J, Uphoff S, Sherratt DJ. Nonrandom segregation of sister chromosomes by Escherichia coli MukBEF. Proc Natl Acad Sci U S A 2021; 118:e2022078118. [PMID: 34385314 PMCID: PMC8379921 DOI: 10.1073/pnas.2022078118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes contribute to chromosome organization in all domains of life. In Escherichia coli, MukBEF, the functional SMC homolog, promotes spatiotemporal chromosome organization and faithful chromosome segregation. Here, we address the relative contributions of MukBEF and the replication terminus (ter) binding protein, MatP, to chromosome organization-segregation. We show that MukBEF, but not MatP, is required for the normal localization of the origin of replication to midcell and for the establishment of translational symmetry between newly replicated sister chromosomes. Overall, chromosome orientation is normally maintained through division from one generation to the next. Analysis of loci flanking the replication termination region (ter), which demark the ends of the linearly organized portion of the nucleoid, demonstrates that MatP is required for maintenance of chromosome orientation. We show that DNA-bound β2-processivity clamps, which mark the lagging strands at DNA replication forks, localize to the cell center, independent of replisome location but dependent on MukBEF action, and consistent with translational symmetry of sister chromosomes. Finally, we directly show that the older ("immortal") template DNA strand, propagated from previous generations, is preferentially inherited by the cell forming at the old pole, dependent on MukBEF and MatP. The work further implicates MukBEF and MatP as central players in chromosome organization, segregation, and nonrandom inheritance of genetic material and suggests a general framework for understanding how chromosome conformation and dynamics shape subcellular organization.
Collapse
Affiliation(s)
- Jarno Mäkelä
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
30
|
Abstract
Since the nucleoid was isolated from bacteria in the 1970s, two fundamental questions emerged and are still in the spotlight: how bacteria organize their chromosomes to fit inside the cell and how nucleoid organization enables essential biological processes. During the last decades, knowledge of bacterial chromosome organization has advanced considerably, and today, such chromosomes are considered to be highly organized and dynamic structures that are shaped by multiple factors in a multiscale manner. Here we review not only the classical well-known factors involved in chromosome organization but also novel components that have recently been shown to dynamically shape the 3D structuring of the bacterial genome. We focus on the different functional elements that control short-range organization and describe how they collaborate in the establishment of the higher-order folding and disposition of the chromosome. Recent advances have opened new avenues for a deeper understanding of the principles and mechanisms of chromosome organization in bacteria. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| | - Ivan Junier
- Université Grenoble Alpes, CNRS, TIMC-IMAG, 38000 Grenoble, France
| | - Frédéric Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| |
Collapse
|
31
|
Amemiya HM, Schroeder J, Freddolino PL. Nucleoid-associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom. Transcription 2021; 12:182-218. [PMID: 34499567 PMCID: PMC8632127 DOI: 10.1080/21541264.2021.1973865] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
Genome architecture has proven to be critical in determining gene regulation across almost all domains of life. While many of the key components and mechanisms of eukaryotic genome organization have been described, the interplay between bacterial DNA organization and gene regulation is only now being fully appreciated. An increasing pool of evidence has demonstrated that the bacterial chromosome can reasonably be thought of as chromatin, and that bacterial chromosomes contain transcriptionally silent and transcriptionally active regions analogous to heterochromatin and euchromatin, respectively. The roles played by histones in eukaryotic systems appear to be shared across a range of nucleoid-associated proteins (NAPs) in bacteria, which function to compact, structure, and regulate large portions of bacterial chromosomes. The broad range of extant NAPs, and the extent to which they differ from species to species, has raised additional challenges in identifying and characterizing their roles in all but a handful of model bacteria. Here we review the regulatory roles played by NAPs in several well-studied bacteria and use the resulting state of knowledge to provide a working definition for NAPs, based on their function, binding pattern, and expression levels. We present a screening procedure which can be applied to any species for which transcriptomic data are available. Finally, we note that NAPs tend to play two major regulatory roles - xenogeneic silencers and developmental regulators - and that many unrecognized potential NAPs exist in each bacterial species examined.
Collapse
Affiliation(s)
- Haley M. Amemiya
- University of Michigan Medical School, Ann Arbor, MI, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeremy Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L. Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Kaljević J, Saaki TNV, Govers SK, Remy O, van Raaphorst R, Lamot T, Laloux G. Chromosome choreography during the non-binary cell cycle of a predatory bacterium. Curr Biol 2021; 31:3707-3720.e5. [PMID: 34256020 PMCID: PMC8445325 DOI: 10.1016/j.cub.2021.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/13/2021] [Accepted: 06/09/2021] [Indexed: 12/03/2022]
Abstract
In bacteria, the dynamics of chromosome replication and segregation are tightly coordinated with cell-cycle progression and largely rely on specific spatiotemporal arrangement of the chromosome. Whereas these key processes are mostly investigated in species that divide by binary fission, they remain mysterious in bacteria producing larger number of descendants. Here, we establish the predatory bacterium Bdellovibrio bacteriovorus as a model to investigate the non-binary processing of a circular chromosome. We found that its single chromosome is highly compacted in a polarized nucleoid that excludes freely diffusing proteins during the non-proliferative stage of the cell cycle. A binary-like cycle of DNA replication and asymmetric segregation is followed by multiple asynchronous rounds of replication and progressive ParABS-dependent partitioning, uncoupled from cell division. Finally, we provide the first evidence for an on-off behavior of the ParB protein, which localizes at the centromere in a cell-cycle-regulated manner. Altogether, our findings support a model of complex chromosome choreography leading to the generation of variable, odd, or even numbers of offspring and highlight the adaptation of conserved mechanisms to achieve non-binary reproduction. The Bdellovibrio chromosome is polarized, with ori located near the invasive pole The highly compacted nucleoid excludes cytosolic proteins in non-replicative cells Replication and segregation of chromosomes are uncoupled from cell division The centromeric protein ParB localizes at parS in a cell-cycle-dependent manner
Collapse
Affiliation(s)
- Jovana Kaljević
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Terrens N V Saaki
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Sander K Govers
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ophélie Remy
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | | | - Thomas Lamot
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium.
| |
Collapse
|
33
|
Gogou C, Japaridze A, Dekker C. Mechanisms for Chromosome Segregation in Bacteria. Front Microbiol 2021; 12:685687. [PMID: 34220773 PMCID: PMC8242196 DOI: 10.3389/fmicb.2021.685687] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
The process of DNA segregation, the redistribution of newly replicated genomic material to daughter cells, is a crucial step in the life cycle of all living systems. Here, we review DNA segregation in bacteria which evolved a variety of mechanisms for partitioning newly replicated DNA. Bacterial species such as Caulobacter crescentus and Bacillus subtilis contain pushing and pulling mechanisms that exert forces and directionality to mediate the moving of newly synthesized chromosomes to the bacterial poles. Other bacteria such as Escherichia coli lack such active segregation systems, yet exhibit a spontaneous de-mixing of chromosomes due to entropic forces as DNA is being replicated under the confinement of the cell wall. Furthermore, we present a synopsis of the main players that contribute to prokaryotic genome segregation. We finish with emphasizing the importance of bottom-up approaches for the investigation of the various factors that contribute to genome segregation.
Collapse
Affiliation(s)
- Christos Gogou
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
34
|
Z-Ring-Associated Proteins Regulate Clustering of the Replication Terminus-Binding Protein ZapT in Caulobacter crescentus. mBio 2021; 12:mBio.02196-20. [PMID: 33500340 PMCID: PMC7858052 DOI: 10.1128/mbio.02196-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rapidly growing bacteria experience dynamic changes in chromosome architecture during chromosome replication and segregation, reflecting the importance of mechanisms that organize the chromosome globally and locally within a cell to maintain faithful transmission of genetic material across generations. During cell division in the model bacterium Caulobacter crescentus, the replication terminus of the chromosome is physically linked to the cytokinetic Z-ring at midcell. Regulated organization of the chromosome is essential for faithful propagation of genetic information. In the model bacterium Caulobacter crescentus, the replication terminus of the chromosome is spatially arranged in close proximity to the cytokinetic Z-ring during the cell cycle. Although the Z-ring-associated proteins ZapA and ZauP interact with the terminus recognition protein ZapT, the molecular functions of the complex that physically links the terminus and the Z-ring remain obscure. In this study, we found that the physical linkage helps to organize the terminus DNA into a clustered structure. Neither ZapA nor ZauP was required for ZapT binding to the terminus DNA, but clustering of the ZapT-DNA complexes over the Z-ring was severely compromised in cells lacking ZapA or ZauP. Biochemical characterization revealed that ZapT, ZauP, and ZapA interacted directly to form a highly ordered ternary complex. Moreover, multiple ZapT molecules were sequestered by each ZauP oligomer. Investigation of the functional structure of ZapT revealed that the C terminus of ZapT specifically interacted with ZauP and was essential for timely positioning of the Z-ring in vivo. Based on these findings, we propose that ZauP-dependent oligomerization of ZapT-DNA complexes plays a distinct role in organizing the replication terminus and the Z-ring. The C termini of ZapT homologs share similar chemical properties, implying a common mechanism for the physical linkage between the terminus and the Z-ring in bacteria.
Collapse
|
35
|
Chaudhary R, Mishra S, Kota S, Misra H. Molecular interactions and their predictive roles in cell pole determination in bacteria. Crit Rev Microbiol 2021; 47:141-161. [PMID: 33423591 DOI: 10.1080/1040841x.2020.1857686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacterial cell cycle is divided into well-coordinated phases; chromosome duplication and segregation, cell elongation, septum formation, and cytokinesis. The temporal separation of these phases depends upon the growth rates and doubling time in different bacteria. The entire process of cell division starts with the assembly of divisome complex at mid-cell position followed by constriction of the cell wall and septum formation. In the mapping of mid-cell position for septum formation, the gradient of oscillating Min proteins across the poles plays a pivotal role in several bacteria genus. The cues in the cell that defines the poles and plane of cell division are not fully characterized in cocci. Recent studies have shed some lights on molecular interactions at the poles and the underlying mechanisms involved in pole determination in non-cocci. In this review, we have brought forth recent findings on these aspects together, which would suggest a model to explain the mechanisms of pole determination in rod shaped bacteria and could be extrapolated as a working model in cocci.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Hari Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
36
|
Meunier A, Cornet F, Campos M. Bacterial cell proliferation: from molecules to cells. FEMS Microbiol Rev 2021; 45:fuaa046. [PMID: 32990752 PMCID: PMC7794046 DOI: 10.1093/femsre/fuaa046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Bacterial cell proliferation is highly efficient, both because bacteria grow fast and multiply with a low failure rate. This efficiency is underpinned by the robustness of the cell cycle and its synchronization with cell growth and cytokinesis. Recent advances in bacterial cell biology brought about by single-cell physiology in microfluidic chambers suggest a series of simple phenomenological models at the cellular scale, coupling cell size and growth with the cell cycle. We contrast the apparent simplicity of these mechanisms based on the addition of a constant size between cell cycle events (e.g. two consecutive initiation of DNA replication or cell division) with the complexity of the underlying regulatory networks. Beyond the paradigm of cell cycle checkpoints, the coordination between the DNA and division cycles and cell growth is largely mediated by a wealth of other mechanisms. We propose our perspective on these mechanisms, through the prism of the known crosstalk between DNA replication and segregation, cell division and cell growth or size. We argue that the precise knowledge of these molecular mechanisms is critical to integrate the diverse layers of controls at different time and space scales into synthetic and verifiable models.
Collapse
Affiliation(s)
- Alix Meunier
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| | - François Cornet
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| | - Manuel Campos
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| |
Collapse
|
37
|
Raghunathan S, Chimthanawala A, Krishna S, Vecchiarelli AG, Badrinarayanan A. Asymmetric chromosome segregation and cell division in DNA damage-induced bacterial filaments. Mol Biol Cell 2020; 31:2920-2931. [PMID: 33112716 PMCID: PMC7927188 DOI: 10.1091/mbc.e20-08-0547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Faithful propagation of life requires coordination of DNA replication and segregation with cell growth and division. In bacteria, this results in cell size homeostasis and periodicity in replication and division. The situation is perturbed under stress such as DNA damage, which induces filamentation as cell cycle progression is blocked to allow for repair. Mechanisms that release this morphological state for reentry into wild-type growth are unclear. Here we show that damage-induced Escherichia coli filaments divide asymmetrically, producing short daughter cells that tend to be devoid of damage and have wild-type size and growth dynamics. The Min-system primarily determines division site location in the filament, with additional regulation of division completion by chromosome segregation. Collectively, we propose that coordination between chromosome (and specifically terminus) segregation and cell division may result in asymmetric division in damage-induced filaments and facilitate recovery from a stressed state.
Collapse
Affiliation(s)
- Suchitha Raghunathan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore 560064, India
| | - Afroze Chimthanawala
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and.,SASTRA University, Thanjavur, Tamil Nadu 613401, India
| | - Sandeep Krishna
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and.,Simons Centre for the Study of Living Machines, Bangalore 560065, India
| | - Anthony G Vecchiarelli
- Molecular, Cellular, and Developmental Biology Department, Biological Sciences Building, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
38
|
Wlodarski M, Mancini L, Raciti B, Sclavi B, Lagomarsino MC, Cicuta P. Cytosolic Crowding Drives the Dynamics of Both Genome and Cytosol in Escherichia coli Challenged with Sub-lethal Antibiotic Treatments. iScience 2020; 23:101560. [PMID: 33083729 PMCID: PMC7522891 DOI: 10.1016/j.isci.2020.101560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/22/2020] [Accepted: 09/10/2020] [Indexed: 11/28/2022] Open
Abstract
In contrast to their molecular mode of action, the system-level effect of antibiotics on cells is only beginning to be quantified. Molecular crowding is expected to be a relevant global regulator, which we explore here through the dynamic response phenotypes in Escherichia coli, at single-cell resolution, under sub-lethal regimes of different classes of clinically relevant antibiotics, acting at very different levels in the cell. We measure chromosomal mobility through tracking of fast (<15 s timescale) fluctuations of fluorescently tagged chromosomal loci, and we probe the fluidity of the cytoplasm by tracking cytosolic aggregates. Measuring cellular density, we show how the overall levels of macromolecular crowding affect both quantities, regardless of antibiotic-specific effects. The dominant trend is a strong correlation between the effects in different parts of the chromosome and between the chromosome and cytosol, supporting the concept of an overall global role of molecular crowding in cellular physiology.
Collapse
Affiliation(s)
- Michal Wlodarski
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Dipartimento di Fisica and I.N.F.N., Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Leonardo Mancini
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Bianca Raciti
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Bianca Sclavi
- Laboratory of Biology and Applied Pharmacology (UMR 8113 CNRS), École Normale Supérieure, Paris-Saclay, France
| | | | - Pietro Cicuta
- IFOM Foundation FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| |
Collapse
|
39
|
Post-replicative pairing of sister ter regions in Escherichia coli involves multiple activities of MatP. Nat Commun 2020; 11:3796. [PMID: 32732900 PMCID: PMC7394560 DOI: 10.1038/s41467-020-17606-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
The ter region of the bacterial chromosome, where replication terminates, is the last to be segregated before cell division in Escherichia coli. Delayed segregation is controlled by the MatP protein, which binds to specific sites (matS) within ter, and interacts with other proteins such as ZapB. Here, we investigate the role of MatP by combining short-time mobility analyses of the ter locus with biochemical approaches. We find that ter mobility is similar to that of a non ter locus, except when sister ter loci are paired after replication. This effect depends on MatP, the persistence of catenanes, and ZapB. We characterise MatP/DNA complexes and conclude that MatP binds DNA as a tetramer, but bridging matS sites in a DNA-rich environment remains infrequent. We propose that tetramerisation of MatP links matS sites with ZapB and/or with non-specific DNA to promote optimal pairing of sister ter regions until cell division. Protein, MatP, binds to and delays segregation of the ter region of the bacterial chromosome before cell division. Here, the authors show that MatP displays multiple activities to promote optimal pairing of sister ter regions until cell division.
Collapse
|
40
|
Japaridze A, Gogou C, Kerssemakers JWJ, Nguyen HM, Dekker C. Direct observation of independently moving replisomes in Escherichia coli. Nat Commun 2020; 11:3109. [PMID: 32561741 PMCID: PMC7305307 DOI: 10.1038/s41467-020-16946-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
The replication and transfer of genomic material from a cell to its progeny are vital processes in all living systems. Here we visualize the process of chromosome replication in widened E. coli cells. Monitoring the replication of single chromosomes yields clear examples of replication bubbles that reveal that the two replisomes move independently from the origin to the terminus of replication along each of the two arms of the circular chromosome, providing direct support for the so-called train-track model, and against a factory model for replisomes. The origin of replication duplicates near midcell, initially splitting to random directions and subsequently towards the poles. The probability of successful segregation of chromosomes significantly decreases with increasing cell width, indicating that chromosome confinement by the cell boundary is an important driver of DNA segregation. Our findings resolve long standing questions in bacterial chromosome organization.
Collapse
Affiliation(s)
- Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Christos Gogou
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jacob W J Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Huyen My Nguyen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
41
|
Abstract
The FtsZ protein is a highly conserved bacterial tubulin homolog. In vivo, the functional form of FtsZ is the polymeric, ring-like structure (Z-ring) assembled at the future division site during cell division. While it is clear that the Z-ring plays an essential role in orchestrating cytokinesis, precisely what its functions are and how these functions are achieved remain elusive. In this article, we review what we have learned during the past decade about the Z-ring's structure, function, and dynamics, with a particular focus on insights generated by recent high-resolution imaging and single-molecule analyses. We suggest that the major function of the Z-ring is to govern nascent cell pole morphogenesis by directing the spatiotemporal distribution of septal cell wall remodeling enzymes through the Z-ring's GTP hydrolysis-dependent treadmilling dynamics. In this role, FtsZ functions in cell division as the counterpart of the cell shape-determining actin homolog MreB in cell elongation.
Collapse
Affiliation(s)
- Ryan McQuillen
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| | - Jie Xiao
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| |
Collapse
|
42
|
Meiresonne NY, den Blaauwen T. The In Vitro Non-Tetramerizing ZapA I83E Mutant Is Unable to Recruit ZapB to the Division Plane In Vivo in Escherichia coli. Int J Mol Sci 2020; 21:E3130. [PMID: 32365468 PMCID: PMC7246612 DOI: 10.3390/ijms21093130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/14/2023] Open
Abstract
Bacterial cell division is guided by filamenting temperature-sensitive Z (FtsZ) treadmilling at midcell. FtsZ itself is regulated by FtsZ-associated proteins (Zaps) that couple it to different cellular processes. Z-associated protein A (ZapA) is known to enhance FtsZ bundling but also forms a synchronizing link with chromosome segregation through Z-associated protein B (ZapB) and matS-bound MatP. ZapA likely exists as dimers and tetramers in the cell. Using a ZapA mutant that is only able to form dimers in vitro (ZapAI83E), this paper investigates the effects of ZapA multimerization state on its interaction partners and cell division. By employing fluorescence microscopy and Förster resonance energy transfer in vivo it was shown that ZapAI83E is unable to complement a zapA deletion strain and localizes diffusely through the cell but still interacts with FtsZ that is not part of the cell division machinery. The diffusely-localized ZapAI83E is unable to recruit ZapB, which in its presence localizes unipolarly. Interestingly, the localization profiles of the chromosome and unipolar ZapB anticorrelate. The work presented here confirms previously reported in vitro effects of ZapA multimerization in vivo and places it in a broader context by revealing the strong implications for ZapB and chromosome localization and ter linkage.
Collapse
Affiliation(s)
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| |
Collapse
|
43
|
Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus. mBio 2020; 11:mBio.00487-20. [PMID: 32345642 PMCID: PMC7188993 DOI: 10.1128/mbio.00487-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growing bacteria require careful tuning of cell division processes with dynamic organization of replicating chromosomes. In enteric bacteria, ZapA associates with the cytoskeletal Z-ring and establishes a physical linkage to the chromosomal replication terminus through its interaction with ZapB-MatP-DNA complexes. However, because ZapB and MatP are found only in enteric bacteria, it remains unclear how the Z-ring and the terminus are coordinated in the vast majority of bacteria. Here, we provide evidence that a novel conserved protein, termed ZapT, mediates colocalization of the Z-ring with the terminus in Caulobacter crescentus, a model organism that is phylogenetically distant from enteric bacteria. Given that ZapT facilitates cell division processes in C. crescentus, this study highlights the universal importance of the physical linkage between the Z-ring and the terminus in maintaining cell integrity. Cell division requires proper spatial coordination with the chromosome, which undergoes dynamic changes during chromosome replication and segregation. FtsZ is a bacterial cytoskeletal protein that assembles into the Z-ring, providing a platform to build the cell division apparatus. In the model bacterium Caulobacter crescentus, the cellular localization of the Z-ring is controlled during the cell cycle in a chromosome replication-coupled manner. Although dynamic localization of the Z-ring at midcell is driven primarily by the replication origin-associated FtsZ inhibitor MipZ, the mechanism ensuring accurate positioning of the Z-ring remains unclear. In this study, we showed that the Z-ring colocalizes with the replication terminus region, located opposite the origin, throughout most of the C. crescentus cell cycle. Spatial organization of the two is mediated by ZapT, a previously uncharacterized protein that interacts with the terminus region and associates with ZapA and ZauP, both of which are part of the incipient division apparatus. While the Z-ring and the terminus region coincided with the presence of ZapT, colocalization of the two was perturbed in cells lacking zapT, which is accompanied by delayed midcellular positioning of the Z-ring. Moreover, cells overexpressing ZapT showed compromised positioning of the Z-ring and MipZ. These findings underscore the important role of ZapT in controlling cell division processes. We propose that ZapT acts as a molecular bridge that physically links the terminus region to the Z-ring, thereby ensuring accurate site selection for the Z-ring. Because ZapT is conserved in proteobacteria, these findings may define a general mechanism coordinating cell division with chromosome organization.
Collapse
|
44
|
SMC complexes organize the bacterial chromosome by lengthwise compaction. Curr Genet 2020; 66:895-899. [PMID: 32300862 PMCID: PMC7497336 DOI: 10.1007/s00294-020-01076-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/13/2022]
Abstract
Structural maintenance of chromosomes (SMC) complexes are ancient and conserved molecular machines that organize chromosomes in all domains of life. We propose that the principles of chromosome folding needed to accommodate DNA inside a cell in an accessible form will follow similar principles in prokaryotes and eukaryotes. However, the exact contributions of SMC complexes to bacterial chromosome organization have been elusive. Recently, it was shown that the SMC homolog, MukBEF, organizes and individualizes the Escherichia coli chromosome by forming a filamentous axial core from which DNA loops emanate, similar to the action of condensin in mitotic chromosome formation. MukBEF action, along with its interaction with the partner protein, MatP, also facilitates chromosome individualization by directing opposite chromosome arms (replichores) to different cell halves. This contrasts with the situation in many other bacteria, where SMC complexes organise chromosomes in a way that the opposite replichores are aligned along the long axis of the cell. We highlight the similarities and differences of SMC complex contributions to chromosome organization in bacteria and eukaryotes, and summarize the current mechanistic understanding of the processes.
Collapse
|
45
|
Pióro M, Jakimowicz D. Chromosome Segregation Proteins as Coordinators of Cell Cycle in Response to Environmental Conditions. Front Microbiol 2020; 11:588. [PMID: 32351468 PMCID: PMC7174722 DOI: 10.3389/fmicb.2020.00588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation is a crucial stage of the cell cycle. In general, proteins involved in this process are DNA-binding proteins, and in most bacteria, ParA and ParB are the main players; however, some bacteria manage this process by employing other proteins, such as condensins. The dynamic interaction between ParA and ParB drives movement and exerts positioning of the chromosomal origin of replication (oriC) within the cell. In addition, both ParA and ParB were shown to interact with the other proteins, including those involved in cell division or cell elongation. The significance of these interactions for the progression of the cell cycle is currently under investigation. Remarkably, DNA binding by ParA and ParB as well as their interactions with protein partners conceivably may be modulated by intra- and extracellular conditions. This notion provokes the question of whether chromosome segregation can be regarded as a regulatory stage of the cell cycle. To address this question, we discuss how environmental conditions affect chromosome segregation and how segregation proteins influence other cell cycle processes.
Collapse
Affiliation(s)
- Monika Pióro
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dagmara Jakimowicz
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
46
|
Yang D, Männik J, Retterer ST, Männik J. The effects of polydisperse crowders on the compaction of the Escherichia coli nucleoid. Mol Microbiol 2020; 113:1022-1037. [PMID: 31961016 DOI: 10.1111/mmi.14467] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 01/10/2023]
Abstract
DNA binding proteins, supercoiling, macromolecular crowders, and transient DNA attachments to the cell membrane have all been implicated in the organization of the bacterial chromosome. However, it is unclear what role these factors play in compacting the bacterial DNA into a distinct organelle-like entity, the nucleoid. By analyzing the effects of osmotic shock and mechanical squeezing on Escherichia coli, we show that macromolecular crowders play a dominant role in the compaction of the DNA into the nucleoid. We find that a 30% increase in the crowder concentration from physiological levels leads to a three-fold decrease in the nucleoid's volume. The compaction is anisotropic, being higher along the long axes of the cell at low crowding levels. At higher crowding levels, the nucleoid becomes spherical, and its compressibility decreases significantly. Furthermore, we find that the compressibility of the nucleoid is not significantly affected by cell growth rates and by prior treatment with rifampicin. The latter results point out that in addition to poly ribosomes, soluble cytoplasmic proteins have a significant contribution in determining the size of the nucleoid. The contribution of poly ribosomes dominates at faster and soluble proteins at slower growth rates.
Collapse
Affiliation(s)
- Da Yang
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, USA
| | - Jaana Männik
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, USA.,Department of Biochemistry, and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Scott T Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jaan Männik
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
47
|
Abstract
How genomes are organized within cells and how the 3D architecture of a genome influences cellular functions are significant questions in biology. A bacterial genomic DNA resides inside cells in a highly condensed and functionally organized form called nucleoid (nucleus-like structure without a nuclear membrane). The Escherichia coli chromosome or nucleoid is composed of the genomic DNA, RNA, and protein. The nucleoid forms by condensation and functional arrangement of a single chromosomal DNA with the help of chromosomal architectural proteins and RNA molecules as well as DNA supercoiling. Although a high-resolution structure of a bacterial nucleoid is yet to come, five decades of research has established the following salient features of the E. coli nucleoid elaborated below: 1) The chromosomal DNA is on the average a negatively supercoiled molecule that is folded as plectonemic loops, which are confined into many independent topological domains due to supercoiling diffusion barriers; 2) The loops spatially organize into megabase size regions called macrodomains, which are defined by more frequent physical interactions among DNA sites within the same macrodomain than between different macrodomains; 3) The condensed and spatially organized DNA takes the form of a helical ellipsoid radially confined in the cell; and 4) The DNA in the chromosome appears to have a condition-dependent 3-D structure that is linked to gene expression so that the nucleoid architecture and gene transcription are tightly interdependent, influencing each other reciprocally. Current advents of high-resolution microscopy, single-molecule analysis and molecular structure determination of the components are expected to reveal the total structure and function of the bacterial nucleoid.
Collapse
Affiliation(s)
- Subhash C. Verma
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SCV); (SLA)
| | - Zhong Qian
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sankar L. Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SCV); (SLA)
| |
Collapse
|
48
|
Chromosome organization in bacteria: mechanistic insights into genome structure and function. Nat Rev Genet 2019; 21:227-242. [DOI: 10.1038/s41576-019-0185-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/28/2022]
|
49
|
Kisner JR, Kuwada NJ. Nucleoid-mediated positioning and transport in bacteria. Curr Genet 2019; 66:279-291. [PMID: 31691024 DOI: 10.1007/s00294-019-01041-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022]
Abstract
Precise management of the spatiotemporal position of subcellular components is critical to a number of essential processes in the bacterial cell. The bacterial nucleoid is a highly structured yet dynamic object that undergoes significant reorganization during the relatively short cell cycle, e.g. during gene expression, chromosome replication, and segregation. Although the nucleoid takes up a large fraction of the volume of the cell, the mobility of macromolecules within these dense regions is relatively high and recent results suggest that the nucleoid plays an integral role of dynamic localization in a host of seemingly disparate cellular processes. Here, we review a number of recent reports of nucleoid-mediated positioning and transport in the model bacteria Escherichia coli. These results viewed as a whole suggest that the dynamic, cellular-scale structure of the nucleoid may be a key driver of positioning and transport within the cell. This model of a global, default positioning and transport system may help resolve many unanswered questions about the mechanisms of partitioning and segregation in bacteria.
Collapse
Affiliation(s)
- Jessica R Kisner
- Department of Physics, Central Washington University, Ellensburg, WA, 98926, USA
| | - Nathan J Kuwada
- Department of Physics, Central Washington University, Ellensburg, WA, 98926, USA.
| |
Collapse
|
50
|
Adaptive Responses of Shewanella decolorationis to Toxic Organic Extracellular Electron Acceptor Azo Dyes in Anaerobic Respiration. Appl Environ Microbiol 2019; 85:AEM.00550-19. [PMID: 31175185 DOI: 10.1128/aem.00550-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022] Open
Abstract
Bacterial anaerobic respiration using an extracellular electron acceptor plays a predominant role in global biogeochemical cycles. However, the mechanisms of bacterial adaptation to the toxic organic pollutant as the extracellular electron acceptor during anaerobic respiration are not clear, which limits our ability to optimize the strategies for the bioremediation of a contaminated environment. Here, we report the physiological characteristics and the global gene expression of an ecologically successful bacterium, Shewanella decolorationis S12, when using a typical toxic organic pollutant, amaranth, as the extracellular electron acceptor. Our results revealed that filamentous shift (the cells stretched to fiber-like shapes as long as 18 μm) occurred under amaranth stress. Persistent stress led to a higher filamentous cell rate and decolorization ability in subcultural cells compared to parental strains. In addition, the expression of genes involved in cell division, the chemotaxis system, energy conservation, damage repair, and material transport in filamentous cells was significantly stimulated. The detailed roles of some genes with significantly elevated expressions in filamentous cells, such as the outer membrane porin genes ompA and ompW, the cytochrome c genes arpC and arpD, the global regulatory factor gene rpoS, and the methyl-accepting chemotaxis proteins genes SHD_2793 and SHD_0015, were identified by site-directed mutagenesis. Finally, a conceptual model was proposed to help deepen our insights into both the bacterial survival strategy when toxic organics were present and the mechanisms by which these toxic organics were biodegraded as the extracellular electron acceptors.IMPORTANCE Keeping toxic organic pollutants (TOPs) in tolerable levels is a huge challenge for bacteria in extremely unfavorable environments since TOPs could serve as energy substitutes but also as survival stresses when they are beyond some thresholds. This study focused on the underlying adaptive mechanisms of ecologically successful bacterium Shewanella decolorationis S12 when exposed to amaranth, a typical toxic organic pollutant, as the extracellular electron acceptor. Our results suggest that filamentous shift is a flexible and valid way to solve the dilemma between the energy resource and toxic stress. Filamentous cells regulate gene expression to enhance their degradation and detoxification capabilities, resulting in a strong viability. These novel adaptive responses to TOPs are believed to be an evolutionary achievement to succeed in harsh habitats and thus have great potential to be applied to environment engineering or synthetic biology if we could picture every unknown node in this pathway.
Collapse
|