1
|
Lin Z, Wang K, Feng J. Identification and analysis of VOCs released by Rhodococcus ruber GXMZU2400 to promote plant growth and inhibit pathogen growth. BMC PLANT BIOLOGY 2025; 25:559. [PMID: 40301703 PMCID: PMC12042462 DOI: 10.1186/s12870-025-06582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/18/2025] [Indexed: 05/01/2025]
Abstract
A strain of Rhodococcus ruber was isolated from the rhizosphere of Spartina alterniflora. The VOCs released by this strain effectively promote the growth of Arabidopsis thaliana and inhibit several plant pathogenic fungi, including Bipolaris sorokiniana, Cryphonectria parasitica, Fusarium oxysporum, Fusarium pseudograminearum, and Plectosphaerella cucumerina. SPME/GC-MS analysis revealed that the strain produces dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS), with DMDS being the predominant component of the volatile organic compounds (VOCs). It was observed that the growth of A. thaliana was enhanced under fumigation with DMDS and DMTS. Furthermore, these compounds effectively inhibited the aforementioned plant pathogenic fungi, with DMTS demonstrating a lethal effect on plant pathogenic fungi. Previous studies have confirmed that DMDS and DMTS promote the growth of A. thaliana. In this study, we found that DMTS could significantly enhance plant growth and inhibit plant pathogenic fungi even at low dosages. Transcriptome analysis indicated that the growth-related genes of A. thaliana were significantly upregulated in response to treatment with VOCs from R. ruber. Additionally, VOCs induced changes in multiple plant defense response genes and promoted the C4 pathway.
Collapse
Affiliation(s)
- Ziyan Lin
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, China
| | - Kun Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, China
| | - Jing Feng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, China.
| |
Collapse
|
2
|
Chakraborty R, Rehman RU, Siddiqui MW, Liu H, Seth CS. Phytohormones: Heart of plants' signaling network under biotic, abiotic, and climate change stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109839. [PMID: 40194506 DOI: 10.1016/j.plaphy.2025.109839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
Industrialization has made the world increasingly unstable, subjecting plants to various constraints. As a consequence, plants are constantly experiencing biological, environmental, and climatic constraints, necessitating defense mechanisms to ensure their survival. Plants are vulnerable to various biotic factors, including insects, pathogens (bacterial, fungal, viral, and nematodes), weeds, and herbivores. They also face different abiotic and climate change challenges such as drought (regulated by genes like GH3, DREB, ZIFL1;3, etc), salinity, heavy metals, metalloids, ultraviolet radiations (UV), ozone (O3), low and high temperature (chilling/cold/freezing/heat), carbon dioxide (CO2), chlorofluorocarbons (CFCs), and flooding/hypoxia/anoxia. Different transcriptional factors, such as KNOX1, PYK10, and NRP1, regulate these abiotic and climate change stresses. Different phytohormones such as auxin (regulated by components AUX/IAA3, PIN, indole-glucosinolate, indole-3-acetaldoxine), gibberellin (key elements involved in the synthesis and signaling such as DELLA, GA3ox, RhHB1), cytokinin (signaling through ARR5), ethylene (involved transcription factors like AP2/ERF), abscisic acid (signaling regulated through SnRK2), salicylic acid, jasmonic acid (regulated by JAZ1/TIFYIOA), brassinosteroids, nitric oxide, and strigolactones (synthetic precursor being GR24) control plants' maturation in normal and stressed conditions by regulating various metabolic and physiological plant activities. Phytohormonal interactions and their synergy are often assessed by different techniques and assays such as CRISPR/Cas9, ELISA, RIA, luciferase, GAL4, and mEmerald GFP. Their synthesis and signaling are regulated by various genes (such as YUCCA1, YUCCA5, GA3ox, etc), transporters (PIN, such as PIN, ABCB, NPF, etc), and receptors (such as PLY4, PLY5, BZR1/BES1, MYC2, etc) and have different precursors such as L-arginine, L-tryptophan, phenylalanine, linolenic acid, S-adenosylmethionine, geranylgeranyl diphosphate. This review comprehensively analyses the breakthrough in phytohormones and their signaling in regulating plants' growth and maturation. Their significance in combating the biotic, abiotic, and climate change stresses, improving stress adaptation to identify novel strategies enhancing plant resilience, sustainable agriculture, and ensuring food security.
Collapse
Affiliation(s)
- Ritika Chakraborty
- Department of Botany, University of Delhi, New Delhi, 110007, Delhi, India.
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Post-Harvest Technology, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India.
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China.
| | | |
Collapse
|
3
|
Fu Y, Zhang S, Yang L, Zong Y, Li Y, Qi X, Chen W, Liao F, Guo W. Comprehensive Analysis of Hormonal Signaling Pathways and Gene Expression in Flesh Segment Development of Chinese Bayberry ( Myrica rubra). PLANTS (BASEL, SWITZERLAND) 2025; 14:571. [PMID: 40006830 PMCID: PMC11858897 DOI: 10.3390/plants14040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
Chinese bayberry (Myrica rubra or Morella rubra) is a valuable fruit, yet the mechanism of its flesh segment development is not well understood. Using paraffin sectioning, we investigated the flower buds of the 'Biqi' and 'Zaojia' varieties, revealing that the flesh segment development in these Chinese bayberry varieties involved the formation of a primordium outside the ovary wall, the establishment of a simple columnar structure, and the formation of the primary flesh segment. Assessment of endogenous hormone levels indicated the significant reductions in jasmonic acid (JA) and indole-3-acetic acid (IAA) levels at the critical stages of flesh segment development. Correlation analysis highlighted the essential roles of IAA, JA, abscisic acid (ABA), and gibberellins in the flesh segment developmental process, underscoring the complex interactions driven primarily by the IAA, JA, and ABA networks. Gene modules positively correlated with flesh segment development were identified using transcriptome-based weighted gene co-expression network analysis (WGCNA). Differentially expressed genes (DEGs) were enriched in plant hormone signal transduction pathways, particularly for upregulated genes associated with auxin and JA signaling. Key genes predicted to be involved in flesh segment development included LAX2 and LAX3 (auxin transport), JAZ6 (JA signaling repression), and KAN1 and KAN4 (regulating multiple hormonal signaling pathways). Quantitative real-time polymerase chain reaction (qRT-PCR) validation confirmed that the expression trends for these genes were consistent across both varieties, particularly for CRC, SEP1, SEP3, IAA7, and JAZ6. Immunofluorescence localization studies revealed that auxin was primarily distributed in the central vascular bundle and outer cells of the flesh segment. This uneven auxin distribution might contribute to the unique morphology of flesh segments. Overall, this study provides insights into the hormonal regulation and genetic factors involved in the development of Chinese bayberry flesh segments.
Collapse
Affiliation(s)
- Yihan Fu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.F.); (L.Y.); (Y.Z.); (Y.L.); (W.C.)
| | - Shuwen Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (S.Z.); (X.Q.)
| | - Li Yang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.F.); (L.Y.); (Y.Z.); (Y.L.); (W.C.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Yu Zong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.F.); (L.Y.); (Y.Z.); (Y.L.); (W.C.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Yongqiang Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.F.); (L.Y.); (Y.Z.); (Y.L.); (W.C.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (S.Z.); (X.Q.)
| | - Wenrong Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.F.); (L.Y.); (Y.Z.); (Y.L.); (W.C.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Fanglei Liao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.F.); (L.Y.); (Y.Z.); (Y.L.); (W.C.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Weidong Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.F.); (L.Y.); (Y.Z.); (Y.L.); (W.C.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
4
|
Datta S, Mandal D, Mitra S, Chakraborty S, Nag Chaudhuri R. ABI3 regulates ABI1 function to control cell length in primary root elongation zone. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2437-2455. [PMID: 39495594 DOI: 10.1111/tpj.17121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024]
Abstract
Post-embryonic primary root growth is effectively an interplay of several hormone signalling pathways. Here, we show that the ABA-responsive transcription factor ABI3 controls primary root growth through the regulation of JA signalling molecule JAZ1 along with ABA-responsive factor ABI1. In the absence of ABI3, the primary root elongation zone is shortened with significantly reduced cell length. Expression analyses and ChIP-based assays indicate that ABI3 negatively regulates JAZ1 expression by occupying its upstream regulatory sequence and enriching repressive histone modification mark H3K27 trimethylation, thereby occluding RNAPII occupancy. Previous studies have shown that JAZ1 interacts with ABI1, the protein phosphatase 2C, that works during ABA signalling. Our results indicate that in the absence of ABI3, when JAZ1 expression levels are high, the ABI1 protein shows increased stability, compared to when JAZ1 is absent, or ABI3 is overexpressed. Consequently, in the abi3-6 mutant, due to the higher stability of ABI1, reduced phosphorylation of plasma membrane H+-ATPase (AHA2) occurs. HPTS staining further indicated that abi3-6 root cell apoplasts show reduced protonation, compared to wild-type and ABI3 overexpressing seedlings. Such impeded proton extrusion negatively affects cell length in the primary root elongation zone. ABI3 therefore controls cell elongation in the primary root by affecting the ABI1-dependent protonation of root cell apoplasts. In summary, ABI3 controls the expression of JAZ1 and in turn modulates the function of ABI1 to regulate cell length in the elongation zone during primary root growth.
Collapse
Affiliation(s)
- Saptarshi Datta
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Drishti Mandal
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Sicon Mitra
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Swarnavo Chakraborty
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| |
Collapse
|
5
|
Ma R, Zhang Y, Zhao J, Zheng Y, Xue L, Lei J. A systematic regulatory network related to bulbil formation in Lilium lancifolium based on metabolome and transcriptome analyses. BMC PLANT BIOLOGY 2024; 24:969. [PMID: 39407139 PMCID: PMC11481762 DOI: 10.1186/s12870-024-05654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Lilium lancifolium is a special wild triploid species native to China and can produce abundant bulbils on its stem under natural conditions, which is very valuable to study bulbil organogenesis in plants. Although similar to the lateral and tillering principles, the molecular mechanism underlying bulbil formation has remained incompletely understood. RESULTS The metabolome and transcriptome of L. lancifolium bulbils across four development stages were analyzed. The pairwise comparison of metabolomes across the four stages identified 17 differential hormones, predominantly auxin (IAA), cytokinin (CK), and jasmonic acid (JA). Short Time-series Expression Miner (STEM) trend analysis of differential genes revealed four significant trends across these stages. The KEGG enrichment analysis of the four clusters highlighted pathways, such as plant hormone signal transduction, which were speculated to play a crucial role in development stages. these pathways were speculated to play a crucial role in development stages. To explore the key differential expressed genes and transcription factors associated with bulbil occurrence, two periods were focused on: Ll_UN and Ll_DN, which represented the stages with and without bulbils, respectively. Through correlation analysis and qRT-PCR analysis, 11 candidate differentially expressed genes and 27 candidate transcription factors were selected. By spraying exogenous hormones to validate these candidates, LlbHLH128, LlTIFY10A, LlbHLH93, and LlMYB108, were identified as the key genes for L. lancifolium bulbils. CONCLUSION A regulatory network of L. lancifolium bulbil development was predicted. LlTIFY10A and LlbHLH93 might be involved in the JA and auxin signal transduction pathways, which jointly formed a regulatory network to affect the occurrence of L. lancifolium bulbil. This study not only provided more information about the differentially expressed genes and metabolites through transcriptome and metabolomics analyses, but also provided a clearer understanding of the effect of hormones on bulbil formation in lily.
Collapse
Affiliation(s)
- Ruiyi Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jun Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Zheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Li Xue
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jiajun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
6
|
Lian C, Zhang B, Li J, Yang H, Liu X, Ma R, Zhang F, Liu J, Yang J, Lan J, Chen S. Genome-wide identification, characterization and expression pattern analysis of TIFY family members in Artemisia argyi. BMC Genomics 2024; 25:925. [PMID: 39363209 PMCID: PMC11451024 DOI: 10.1186/s12864-024-10856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Plant-specific TIFY proteins play crucial roles in regulating plant growth, development, and various stress responses. However, there is no information available about this family in Artemisia argyi, a well-known traditional medicinal plant with great economic value. RESULTS A total of 34 AaTIFY genes were identified, including 4 TIFY, 22 JAZ, 5 PPD, and 3 ZML genes. Structural, motif scanning, and phylogenetic relationships analysis of these genes revealed that members within the same group or subgroup exhibit similar exon-intron structures and conserved motif compositions. The TIFY genes were unevenly distributed across the 15 chromosomes. Tandem duplication events and segmental duplication events have been identified in the TIFY family in A. argyi. These events have played a crucial role in the gene multiplication and compression of different subfamilies within the TIFY family. Promoter analysis revealed that most AaTIFY genes contain multiple cis-elements associated with stress response, phytohormone signal transduction, and plant growth and development. Expression analysis of roots and leaves using RNA-seq data revealed that certain AaTIFY genes showed tissue-specific expression patterns, and some AaTIFY genes, such as AaTIFY19/29, were found to be involved in regulating salt and saline-alkali stresses. In addition, RT-qPCR analysis showed that TIFY genes, especially AaTIFY19/23/27/29, respond to a variety of hormonal treatments, such as MeJA, ABA, SA, and IAA. This suggested that TIFY genes in A. argyi regulate plant growth and respond to different stresses by following different hormone signaling pathways. CONCLUSION Taken together, our study conducted a comprehensive identification and analysis of the TIFY gene family in A. argyi. These findings suggested that TIFY might play an important role in plant development and stress responses, which laid a valuable foundation for further understanding the function of TIFY genes in multiple stress responses and phytohormone crosstalk in A. argyi.
Collapse
Affiliation(s)
- Conglong Lian
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan Province, 450046, PR China
| | - Bao Zhang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
| | - Jingjing Li
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
| | - Hao Yang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
| | - Xiuyu Liu
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
| | - Rui Ma
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
| | - Fei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
| | - Jun Liu
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
| | - Jingfan Yang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
| | - Jinxu Lan
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China.
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China.
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan Province, 450046, PR China.
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China.
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China.
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan Province, 450046, PR China.
- Co-Construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of China, Zhengzhou, 450046, PR China.
| |
Collapse
|
7
|
Xiong J, Huang B, Peng D, Shen Q, Wu D, Zhang G. JAZ2 Negatively Regulates Drought Tolerance in Barley by Modulating PLT2 Expression. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39323024 DOI: 10.1111/pce.15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Drought is an important abiotic factor constricting crop production globally. Although the roles of JAZ proteins in regulating jasmonic acid signalling and plant responses to environmental stress are well documented, their specific functions and underlying mechanisms remain little known. In this study, JAZ proteins in barley were thoroughly analyzed, revealing a total of 11 members classified into three phylogenetic subgroups. HvJAZ2, based on its distinct expression patterns, is considered a key candidate gene for regulating drought tolerance in barley. Using the HvJAZ2 knockout mutants, we revealed that the gene negatively regulates drought tolerance by inhibiting barley root growth. Notably, the jaz2 mutants upregulated the expression of root development genes, including SHR1, PLT1, PLT2 and PLT6. plt2 and plt1/plt2 mutants exhibited suppressed root development and reduced drought tolerance. Analysis of interactions between HvJAZ2 and other proteins showed that HvJAZ2 does not directly interact with HvPLT1/2/6, but interacts with some other proteins. BIFC and LCA assays further confirmed the nuclear interaction between HvJAZ2 and HvMYC2. Y1H and Dual-Luciferase experiments demonstrated that HvMYC2 can bind to and activate the HvPLT2 promoter. In summary, HvJAZ2 negatively regulates root development and drought tolerance in barley by suppressing HvPLT2 expression through interacting with HvMYC2.
Collapse
Affiliation(s)
- Jiangyan Xiong
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Binbin Huang
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Di Peng
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Qiufang Shen
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - DeZhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Guoping Zhang
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, P.R. China
| |
Collapse
|
8
|
Álvarez-Rodríguez S, Senizza B, Araniti F, Lucini L, Lucchini G, Sánchez-Moreiras AM. Evaluating the effects of azelaic acid in the metabolism of Arabidopsis thaliana seedlings through untargeted metabolomics and ionomics approaches. PHYSIOLOGIA PLANTARUM 2024; 176:e14550. [PMID: 39327690 DOI: 10.1111/ppl.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
The present study demonstrates that low concentrations of azelaic acid (AZA) significantly impact the metabolism of Arabidopsis thaliana seedlings, leading to imbalances in numerous minerals and metabolites due to AZA-induced stress. Untargeted metabolomic analyses were conducted on untreated and AZA-treated seedlings at two time points: 7 and 14 days after treatment initiation. The results revealed a general accumulation of sugars (e.g., glucose, mannose, xylose), amino acids (e.g., lysine, GABA, threonine, glutamine), and organic acids (e.g., glutaric acid, shikimic acid, succinic acid) in AZA treated-seedlings, suggesting that AZA triggers stress responses in Arabidopsis. Ionomic analysis revealed that AZA induces phosphorus deficiency, which plants compensate by increasing malate content in the roots. Additionally, AZA treatment induced putrescine accumulation within the root, a metabolic biomarker of potassium deficiency and plant stress. The metabolomic profile showed elevated levels of different specialized metabolites, such as nitrogen- and sulphur-containing compounds, and altered levels of various phytohormones, including jasmonates and brassinosteroids, implicated in plant protection under biotic and/or abiotic stresses. These findings support the hypothesis that AZA's mode of action is associated with an auxin imbalance, suggesting its function as an auxinic herbicide. The observed increases in starch and jasmonates, coupled with the disruptions in potassium homeostasis, are linked to the previously reported alterations in the auxin transport, root architecture and gravitropic root response. Statistical analyses were applied, including Kruskal-Wallis tests for ionomic data, as well as multifactor analysis, Principal Component Analysis, Orthogonal Partial Least Squares-Discriminant Analysis, and enrichment pathway analysis for metabolomic data, ensuring the robustness and validity of these findings.
Collapse
Affiliation(s)
- Sara Álvarez-Rodríguez
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, Ourense, Spain
| | - Biancamaria Senizza
- Department for Sustainable Food Process, CRAST Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Milano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, CRAST Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giorgio Lucchini
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Milano, Italy
| | - Adela M Sánchez-Moreiras
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, Ourense, Spain
| |
Collapse
|
9
|
Zou J, Kyndt T, Yu J, Zhou J. Plant-nematode battle: engagement of complex signaling network. Trends Parasitol 2024; 40:846-857. [PMID: 39142937 DOI: 10.1016/j.pt.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
Plant-parasitic nematodes (PPNs) are widely distributed and highly adaptable. To evade the invasion and infection of PPNs, plants initiate a series of defense responses. In turn, PPNs secrete effectors into the host tissues to suppress plant defense. In this ongoing battle between PPNs and plants, complex signal transduction processes are typically involved. This article aims to review the plant signaling network involved in host perception by the nematode, nematode perception, and downstream activation of plant defense signaling and how nematodes attempt to interfere with this network. Our goal is to establish a foundation for elucidating the signaling and regulatory mechanisms of plant-nematode interactions, and to provide insights and tools for developing PPN-resistant crops and technologies.
Collapse
Affiliation(s)
- Jinping Zou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, Hangzhou 310058, China
| | - Tina Kyndt
- Department Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, Hangzhou 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, Hangzhou 310058, China.
| |
Collapse
|
10
|
Huang D, Li J, Chen J, Yao S, Li L, Huang R, Tan Y, Ming R, Huang Y. Genome-wide identification and characterization of the JAZ gene family in Gynostemma pentaphyllum reveals the COI1/JAZ/MYC2 complex potential involved in the regulation of the MeJA-induced gypenoside biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108952. [PMID: 39043058 DOI: 10.1016/j.plaphy.2024.108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
The Jasmonate ZIM domain (JAZ) proteins, functioning as critical suppressors for jasmonic acid (JA) signal transduction in plants, occupy crucial roles in multiple biological processes, particularly in the orchestration of secondary metabolic pathways. However, the mechanism underlying the JA-induced gypenosides accumulation in Gynostemma pentaphyllum remains poorly elucidated. Our research led to the identification of 11 distinct JAZ members in G. pentaphyllum (GpJAZs). According to the classification approach of AtJAZ, we allocated these members into five subgroups that shared similar conserved motif compositions. Subsequently, we identified the presence of various cis-acting elements associated with light stimuli, hormone responses, and stress signals within the promoter regions of the GpJAZ gene family. The expression levels of GpJAZ genes in different tissues were quite different, and the majority of GpJAZ genes exhibited varying degrees of response to methyl jasmonate (MeJA) induction. Yeast two-hybrid (Y2H) assays revealed interactions between GpJAZ1/2/4/5/7/9/10 and GpMYC2, whereas GpCOI1 protein was found to interact with GpJAZ1/2/4/5, thereby forming the COI1/JAZ/MYC2 complex. Furthermore, as an activator of gypenoside metabolic pathway, GpMYC2 could activate the promoter activity of the gypenoside metabolism-related genes to varying degrees by binding to their promoters, indicating that the COI1/JAZ/MYC2 module involved in the MeJA-induced regulation of gypenosides. In summary, our findings present an exhaustive examination of the JAZ gene family, furnishing a significant lead for delving deeper into the molecular mechanisms that drive the MeJA-induced enhancement of gypenosides accumulation in G. pentaphyllum.
Collapse
Affiliation(s)
- Ding Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jinmei Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jianhua Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Shaochang Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yong Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Ruhong Ming
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Yue Huang
- School of Horticulture, Anhui Agricultural University, Anhui, 230036, China.
| |
Collapse
|
11
|
Yin X, Liu Y, Gong Y, Ding G, Zhao C, Li Y. Genomic characterization of bZIP gene family and patterns of gene regulation on Cercospora beticola Sacc resistance in sugar beet ( Beta vulgaris L.). Front Genet 2024; 15:1430589. [PMID: 39139817 PMCID: PMC11319121 DOI: 10.3389/fgene.2024.1430589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Sugar beet (Beta vulgaris L.) is one of the most important sugar crops, accounting for nearly 30% of the world's annual sugar production. And it is mainly distributed in the northwestern, northern, and northeastern regions of China. However, Cercospora leaf spot (CLS) is the most serious and destructive foliar disease during the cultivation of sugar beet. In plants, the bZIP gene family is one of important family of transcription factors that regulate many biological processes, including cell and tissue differentiation, pathogen defense, light response, and abiotic stress signaling. Although the bZIP gene family has been mentioned in previous studies as playing a crucial role in plant defense against diseases, there has been no comprehensive study or functional analysis of the bZIP gene family in sugar beet with respect to biotic stresses. In this study, we performed a genome-wide analysis of bZIP family genes (BvbZIPs) in sugar beet to investigate their phylogenetic relationships, gene structure and chromosomal localization. At the same time, we observed the stomatal and cell ultrastructure of sugar beet leaf surface during the period of infestation by Cercospora beticola Sacc (C. beticola). And identified the genes with significant differential expression in the bZIP gene family of sugar beet by qRT-PCR. Finally we determined the concentrations of SA and JA and verified the associated genes by qRT-PCR. The results showed that 48 genes were identified and gene expression analysis indicated that 6 BvbZIPs were significantly differential expressed in C. beticola infection. It is speculated that these BvbZIPs are candidate genes for regulating the response of sugar beet to CLS infection. Meanwhile, the observation stomata of sugar beet leaves infected with C. beticola revealed that there were also differences in the surface stomata of the leaves at different periods of infection. In addition, we further confirmed that the protein encoded by the SA signaling pathway-related gene BVRB_9g222570 in high-resistant varieties was PR1, which is closely related to systemic acquired resistance. One of the protein interaction modes of JA signal transduction pathway is the response of MYC2 transcription factor caused by JAZ protein degradation, and there is a molecular interaction between JA signal transduction pathway and auxin. Despite previous reports on abiotic stresses in sugar beet, this study provides very useful information for further research on the role of the sugar beet bZIP gene family in sugar beet through experiments. The above research findings can promote the development of sugar beet disease resistance breeding.
Collapse
Affiliation(s)
- Xiao Yin
- College of Modern Agriculture and Ecologcial Environment, Heilongjiang University, Harbin, China
| | - Yu Liu
- College of Modern Agriculture and Ecologcial Environment, Heilongjiang University, Harbin, China
| | - Yunhe Gong
- College of Modern Agriculture and Ecologcial Environment, Heilongjiang University, Harbin, China
| | - Guangzhou Ding
- College of Modern Agriculture and Ecologcial Environment, Heilongjiang University, Harbin, China
- Sugar Beet Engineering Research Center of Heilongjiang, Harbin, China
| | - Chunlei Zhao
- College of Modern Agriculture and Ecologcial Environment, Heilongjiang University, Harbin, China
| | - Yanli Li
- College of Modern Agriculture and Ecologcial Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
12
|
Huai J, Gao N, Yao Y, Du Y, Guo Q, Lin R. JASMONATE ZIM-domain protein 3 regulates photomorphogenesis and thermomorphogenesis through inhibiting PIF4 in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:2274-2288. [PMID: 38487893 DOI: 10.1093/plphys/kiae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 06/30/2024]
Abstract
Light and temperature are 2 major environmental factors that affect the growth and development of plants during their life cycle. Plants have evolved complex mechanisms to adapt to varying external environments. Here, we show that JASMONATE ZIM-domain protein 3 (JAZ3), a jasmonic acid signaling component, acts as a factor to integrate light and temperature in regulating seedling morphogenesis. JAZ3 overexpression transgenic lines display short hypocotyls under red, far-red, and blue light and warm temperature (28 °C) conditions compared to the wild type in Arabidopsis (Arabidopsis thaliana). We show that JAZ3 interacts with the transcription factor PHYTOCHROME-INTERACTING FACTOR4 (PIF4). Interestingly, JAZ3 spontaneously undergoes liquid-liquid phase separation (LLPS) in vitro and in vivo and promotes LLPS formation of PIF4. Moreover, transcriptomic analyses indicate that JAZ3 regulates the expression of genes involved in many biological processes, such as response to auxin, auxin-activated signaling pathway, regulation of growth, and response to red light. Finally, JAZ3 inhibits the transcriptional activation activity and binding ability of PIF4. Collectively, our study reveals a function and molecular mechanism of JAZ3 in regulating plant growth in response to environmental factors such as light and temperature.
Collapse
Affiliation(s)
- Junling Huai
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
| | - Nan Gao
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Yao
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Du
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Guo
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Zhao Y, Sun T, Liu J, Zhang R, Yu Y, Zhou G, Liu J, Gao B. The Key Role of Plant Hormone Signaling Transduction and Flavonoid Biosynthesis Pathways in the Response of Chinese Pine ( Pinus tabuliformis) to Feeding Stimulation by Pine Caterpillar ( Dendrolimus tabulaeformis). Int J Mol Sci 2024; 25:6354. [PMID: 38928063 PMCID: PMC11203464 DOI: 10.3390/ijms25126354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In nature, plants have developed a series of resistance mechanisms to face various external stresses. As understanding of the molecular mechanisms underlying plant resistance continues to deepen, exploring endogenous resistance in plants has become a hot topic in this field. Despite the multitude of studies on plant-induced resistance, how plants respond to stress under natural conditions remains relatively unclear. To address this gap, we investigated Chinese pine (Pinus tabuliformis) using pine caterpillar (Dendrolimus tabulaeformis) under natural conditions. Healthy Chinese pine trees, approximately 10 years old, were selected for studying induced resistance in Huangtuliangzi Forestry, Pingquan City, Chengde City, Hebei Province, China. Pine needles were collected at 2 h and 8 h after feeding stimulation (FS) via 10 pine caterpillars and leaf clipping control (LCC), to simulate mechanical damage caused by insect chewing for the quantification of plant hormones and transcriptome and metabolome assays. The results show that the different modes of treatments significantly influence the contents of JA and SA in time following treatment. Three types of differentially accumulated metabolites (DAMs) were found to be involved in the initial response, namely phenolic acids, lipids, and flavonoids. Weighted gene co-expression network analysis indicated that 722 differentially expressed genes (DEGs) are positively related to feeding stimulation and the specific enriched pathways are plant hormone signal transduction and flavonoid biosynthesis, among others. Two TIFY transcription factors (PtTIFY54 and PtTIFY22) and a MYB transcription factor (PtMYB26) were found to be involved in the interaction between plant hormones, mainly in the context of JA signal transduction and flavonoid biosynthesis. The results of this study provide an insight into how JA activates, serving as a reference for understanding the molecular mechanisms of resistance formation in conifers responding to mandibulate insects.
Collapse
Affiliation(s)
- Yanan Zhao
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Tianhua Sun
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Jie Liu
- College of Agronomy, Hebei Agricultural University, Baoding 071000, China;
| | - Ruibo Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Yongjie Yu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Guona Zhou
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Junxia Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Baojia Gao
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| |
Collapse
|
14
|
Wang W, Ouyang J, Li Y, Zhai C, He B, Si H, Chen K, Rose JKC, Jia W. A signaling cascade mediating fruit trait development via phosphorylation-modulated nuclear accumulation of JAZ repressor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1106-1125. [PMID: 38558522 DOI: 10.1111/jipb.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
It is generally accepted that jasmonate-ZIM domain (JAZ) repressors act to mediate jasmonate (JA) signaling via CORONATINE-INSENSITIVE1 (COI1)-mediated degradation. Here, we report a cryptic signaling cascade where a JAZ repressor, FvJAZ12, mediates multiple signaling inputs via phosphorylation-modulated subcellular translocation rather than the COI1-mediated degradation mechanism in strawberry (Fragaria vesca). FvJAZ12 acts to regulate flavor metabolism and defense response, and was found to be the target of FvMPK6, a mitogen-activated protein kinase that is capable of responding to multiple signal stimuli. FvMPK6 phosphorylates FvJAZ12 at the amino acid residues S179 and T183 adjacent to the PY residues, thereby attenuating its nuclear accumulation and relieving its repression for FvMYC2, which acts to control the expression of lipoxygenase 3 (FvLOX3), an important gene involved in JA biosynthesis and a diverse array of cellular metabolisms. Our data reveal a previously unreported mechanism for JA signaling and decipher a signaling cascade that links multiple signaling inputs with fruit trait development.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jinyao Ouyang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yating Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Changsheng Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bing He
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Huahan Si
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, NY, USA
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830000, China
| |
Collapse
|
15
|
Xu T, Zheng X, Yang Y, Yang S, Yi X, Yu C, Luo L, Wang J, Cheng T, Zhang Q, Pan H. Indole-3 acetic acid negatively regulates rose black spot disease resistance through antagonizing the salicylic acid signaling pathway via jasmonic acid. PLANTA 2024; 259:129. [PMID: 38639804 DOI: 10.1007/s00425-024-04406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
MAIN CONCLUSION IAA cooperates with JA to inhibit SA and negatively regulates rose black spot disease resistance. Black spot disease caused by the fungus Marssonina rosae is the most prevalent and severe ailment in rose cultivation, leading to the appearance of black spots on leaves and eventual leaf fall, significantly impacting the utilization of roses in gardens. Salicylic acid (SA) and jasmonic acid (JA) are pivotal hormones that collaborate with indole-3 acetic acid (IAA) in regulating plant defense responses; however, the detailed mechanisms underlying the induction of black spot disease resistance by IAA, JA, and SA remain unclear. In this study, transcript analysis was conducted on resistant (R13-54) and susceptible (R12-26) lines following M. rosae infection. In addition, the impact of exogenous interference with IAA on SA- and JA-mediated disease resistance was examined. The continuous accumulation of JA, in synergy with IAA, inhibited activation of the SA signaling pathway in the early infection stage, thereby negatively regulating the induction of effective resistance to black spot disease. IAA administration alleviated the inhibition of SA on JA to negatively regulate the resistance of susceptible strains by further enhancing the synthesis and accumulation of JA. However, IAA did not contribute to the negative regulation of black spot resistance when high levels of JA were inhibited. Virus-induced gene silencing of RcTIFY10A, an inhibitor of the JA signaling pathway, further suggested that IAA upregulation led to a decrease in disease resistance, a phenomenon not observed when the JA signal was inhibited. Collectively, these findings indicate that the IAA-mediated negative regulation of black spot disease resistance relies on activation of the JA signaling pathway.
Collapse
Affiliation(s)
- Tingliang Xu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Qinghai Province for Landscape Plants Research, Plateau Flower Research Centre, Qinghai University, Xining, 810016, China
| | - Xiaowen Zheng
- Key Laboratory of Qinghai Province for Landscape Plants Research, Plateau Flower Research Centre, Qinghai University, Xining, 810016, China
| | - Yi Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Shumin Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Xingwan Yi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chao Yu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Le Luo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
16
|
Chen L, Liu L, Yang G, Li X, Dai X, Xue L, Yin T. Expression Quantitative Trait Locus of Wood Formation-Related Genes in Salix suchowensis. Int J Mol Sci 2023; 25:247. [PMID: 38203430 PMCID: PMC10778782 DOI: 10.3390/ijms25010247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Shrub willows are widely planted for landscaping, soil remediation, and biomass production, due to their rapid growth rates. Identification of regulatory genes in wood formation would provide clues for genetic engineering of willows for improved growth traits on marginal lands. Here, we conducted an expression quantitative trait locus (eQTL) analysis, using a full sibling F1 population of Salix suchowensis, to explore the genetic mechanisms underlying wood formation. Based on variants identified from simplified genome sequencing and gene expression data from RNA sequencing, 16,487 eQTL blocks controlling 5505 genes were identified, including 2148 cis-eQTLs and 16,480 trans-eQTLs. eQTL hotspots were identified, based on eQTL frequency in genomic windows, revealing one hotspot controlling genes involved in wood formation regulation. Regulatory networks were further constructed, resulting in the identification of key regulatory genes, including three transcription factors (JAZ1, HAT22, MYB36) and CLV1, BAM1, CYCB2;4, CDKB2;1, associated with the proliferation and differentiation activity of cambium cells. The enrichment of genes in plant hormone pathways indicates their critical roles in the regulation of wood formation. Our analyses provide a significant groundwork for a comprehensive understanding of the regulatory network of wood formation in S. suchowensis.
Collapse
Affiliation(s)
| | | | | | | | | | - Liangjiao Xue
- State Key Laboratory of Tree Genetics and Breeding, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- State Key Laboratory of Tree Genetics and Breeding, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
17
|
Vӧlz R, Kim KT, Alazem M, Harris W, Hwang S, Lee YH. Lyso-phosphatidylethanolamine triggers immunity against necrotrophs by promoting JA-signaling and ROS-homeostasis. PLANT MOLECULAR BIOLOGY 2023; 113:237-247. [PMID: 38085407 PMCID: PMC10721665 DOI: 10.1007/s11103-023-01385-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/06/2023] [Indexed: 12/17/2023]
Abstract
Modulation of the plant defense response by bioactive molecules is of increasing interest. However, despite plant cell lipids being one of the major cellular components, their role in plant immunity remains elusive. We found that the exogenous application of the cell-membrane localized phospholipid lyso-phosphatidylethanolamine (LPE) reprograms the plant transcript profile in favor of defense-associated genes thereby priming the plant immune system. Exogenous LPE application to different Arabidopsis accessions increases resistance against the necrotrophic pathogens, Botrytis cinerea and Cochliobolus heterostrophus. We found that the immunity-promoting effect of LPE is repealed in the jasmonic acid (JA) receptor mutant coi1, but multiplied in the JA-hypersensitive mutant feronia (fer-4). The JA-signaling repressor JAZ1 is degraded following LPE administration, suggesting that JA-signaling is promoted by LPE. Following LPE-treatment, reactive oxygen species (ROS) accumulation is affected in coi1 and fer-4. Moreover, FER signaling inhibitors of the RALF family are strongly expressed after LPE application, and RALF23 is internalized in stress granules, suggesting the LPE-mediated repression of FER-signaling by promoting RALF function. The in-situ increase of LPE-abundance in the LPE-catabolic mutants lpeat1 and lpeat2 elevates plant resistance to B. cinerea, in contrast to the endogenous LPE-deficient mutant pla2-alpha. We show that LPE increases plant resistance against necrotrophs by promoting JA-signaling and ROS-homeostasis, thereby paving the way for the LPE-targeted genomic engineering of crops to raise their ability to resist biotic threats.
Collapse
Affiliation(s)
- Ronny Vӧlz
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon, 57922, Korea
| | - Mazen Alazem
- Donald Danforth Plant Science Center, St Louis, Missouri, USA
| | - William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | | | - Yong-Hwan Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.
- Center for Fungal Genetic Resources, Seoul National University, Seoul, 08826, Korea.
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.
- Center for Plant Microbiome Research, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
18
|
López-Bucio J, Ortiz-Castro R, Magaña-Dueñas V, García-Cárdenas E, Jiménez-Vázquez KR, Raya-González J, Pelagio-Flores R, Ibarra-Laclette E, Herrera-Estrella L. Pseudomonas aeruginosa LasI-dependent plant growth promotion requires the host nitrate transceptor AtNRT1.1/CHL1 and the nitrate reductases NIA1 and NIA2. PLANTA 2023; 258:80. [PMID: 37715847 DOI: 10.1007/s00425-023-04236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
MAIN CONCLUSION In P. aeruginosa, mutation of the gene encoding N-acyl-L-homoserine lactone synthase LasI drives defense and plant growth promotion, and this latter trait requires adequate nitrate nutrition. Cross-kingdom communication with bacteria is crucial for plant growth and productivity. Here, we show a strong induction of genes for nitrate uptake and assimilation in Arabidopsis seedlings co-cultivated with P. aeruginosa WT (PAO1) or ΔlasI mutants defective on the synthesis of the quorum-sensing signaling molecule N-(3-oxododecanoyl)-L-homoserine lactone. Along with differential induction of defense-related genes, the change from plant growth repression to growth promotion upon bacterial QS disruption, correlated with upregulation of the dual-affinity nitrate transceptor CHL1/AtNRT1/NPF6.3 and the nitrate reductases NIA1 and NIA2. CHL1-GUS was induced in Arabidopsis primary root tips after transfer onto P. aeruginosa ΔlasI streaks at low and high N availability, whereas this bacterium required high concentrations of nitrogen to potentiate root and shoot biomass production and to improve root branching. Arabidopsis chl1-5 and chl1-12 mutants and double mutants in NIA1 and NIA2 nitrate reductases showed compromised growth under low nitrogen availability and failed to mount an effective growth promotion and root branching response even at high NH4NO3. WT P. aeruginosa PAO1 and P. aeruginosa ΔlasI mutant promoted the accumulation of nitric oxide (NO) in roots of both the WT and nia1nia2 double mutants, whereas NO donors SNP or SNAP did not improve growth or root branching in nia1nia2 double mutants with or without bacterial cocultivation. Thus, inoculation of Arabidopsis roots with P. aeruginosa drives gene expression for improved nitrogen acquisition and this macronutrient is critical for the plant growth-promoting effects upon disruption of the LasI quorum-sensing system.
Collapse
Affiliation(s)
- José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
| | - Randy Ortiz-Castro
- Red de estudios moleculares avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, Veracruz, Mexico
| | - Viridiana Magaña-Dueñas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Elizabeth García-Cárdenas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Kirán Rubí Jiménez-Vázquez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Javier Raya-González
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Tzintzunzan 173, Col. Matamoros, 58240, Morelia, Michoacán, Mexico
| | - Ramón Pelagio-Flores
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Tzintzunzan 173, Col. Matamoros, 58240, Morelia, Michoacán, Mexico
| | - Enrique Ibarra-Laclette
- Red de estudios moleculares avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, Veracruz, Mexico
| | - Luis Herrera-Estrella
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Campus Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| |
Collapse
|
19
|
Silva RM, Peres ANA, Peres LEP, Olivares FL, Sangi S, Canellas NA, Spaccini R, Cangemi S, Canellas LP. Humic Substances Isolated from Recycled Biomass Trigger Jasmonic Acid Biosynthesis and Signalling. PLANTS (BASEL, SWITZERLAND) 2023; 12:3148. [PMID: 37687394 PMCID: PMC10490330 DOI: 10.3390/plants12173148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Intensive agriculture maintains high crop yields through chemical inputs, which are well known for their adverse effects on environmental quality and human health. Innovative technologies are required to reduce the risk generated by the extensive and harmful use of pesticides. The plant biostimulants made from humic substances isolated from recyclable biomass offer an alternative approach to address the need for replacing conventional agrochemicals without compromising the crop yield. The stimulatory effects of humic substances are commonly associated with plant hormones, particularly auxins. However, jasmonic acid (JA) is crucial metabolite in mediating the defence responses and governing plant growth and development. This work aimed to evaluate the changes in the biosynthesis and signalling pathway of JA in tomato seedlings treated with humic acids (HA) isolated from vermicompost. We use the tomato model system cultivar Micro-Tom (MT) harbouring a reporter gene fused to a synthetic promoter that responds to jasmonic acid (JERE::GUS). The transcript levels of genes involved in JA generation and activity were also determined using qRT-PCR. The application of HA promoted plant growth and altered the JA status, as revealed by both GUS and qRT-PCR assays. Both JA enzymatic synthesis (LOX, OPR3) and JA signalling genes (JAZ and JAR) were found in higher transcription levels in plants treated with HA. In addition, ethylene (ETR4) and auxin (ARF6) signalling components were positively modulated by HA, revealing a hormonal cross-talk. Our results prove that the plant defence system linked to JA can be emulated by HA application without growth inhibition.
Collapse
Affiliation(s)
- Rakiely M. Silva
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| | - Alice N. A. Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 05508-090, Brazil
| | - Lázaro E. P. Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 05508-090, Brazil
| | - Fábio L. Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| | - Sara Sangi
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| | - Natália A. Canellas
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| | - Riccardo Spaccini
- Centro Interdipartimentale di Ricerca CERMANU, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Silvana Cangemi
- Centro Interdipartimentale di Ricerca CERMANU, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Luciano P. Canellas
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| |
Collapse
|
20
|
Zhao Y, Huang S, Wei L, Li M, Cai T, Ma X, Shuai P. ClNAC100 Is a NAC Transcription Factor of Chinese Fir in Response to Phosphate Starvation. Int J Mol Sci 2023; 24:10486. [PMID: 37445664 DOI: 10.3390/ijms241310486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Phosphate (Pi) deficiency is one of the most limiting factors for Chinese fir growth and production. Moreover, continuous cultivation of Chinese fir for multiple generations led to the reduction of soil nutrients, which hindered the yield of Chinese fir in southern China. Although NAC (NAM, ATAF, and CUC) transcription factors (TFs) play critical roles in plant development and abiotic stress resistance, it is still unclear how they regulate the response of Chinese fir to phosphate (Pi) starvation. Based on Pi-deficient transcriptome data of Chinses fir root, we identified a NAC transcription factor with increased expression under Pi deficiency, which was obtained by PCR and named ClNAC100. RT-qPCR confirmed that the expression of ClNAC100 in the root of Chinese fir was induced by phosphate deficiency and showed a dynamic change with time. It was positively regulated by ABA and negatively regulated by JA, and ClNAC100 was highly expressed in the roots and leaves of Chinese fir. Transcriptional activation assay confirmed that ClNAC100 was a transcriptional activator. The promoter of ClNAC100 was obtained by genome walking, which was predicted to contain a large number of stress, hormone, and growth-related cis-elements. Tobacco infection was used to verify the activity of the promoter, and the core promoter was located between -1519 bp and -589 bp. We identified 18 proteins bound to the ClNAC100 promoter and 5 ClNAC100 interacting proteins by yeast one-hybrid and yeast two-hybrid, respectively. We speculated that AHL and TIFY family transcription factors, calmodulin, and E3 ubiquitin ligase in these proteins might be important phosphorus-related proteins. These results provide a basis for the further study of the regulatory mechanism and pathways of ClNAC100 under Pi starvation.
Collapse
Affiliation(s)
- Yuxuan Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Shuotian Huang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Lihui Wei
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Meng Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Tingting Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Peng Shuai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| |
Collapse
|
21
|
Visser EA, Kampmann TP, Wegrzyn JL, Naidoo S. Multispecies comparison of host responses to Fusarium circinatum challenge in tropical pines show consistency in resistance mechanisms. PLANT, CELL & ENVIRONMENT 2023; 46:1705-1725. [PMID: 36541367 DOI: 10.1111/pce.14522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Fusarium circinatum poses a threat to both commercial and natural pine forests. Large variation in host resistance exists between species, with many economically important species being susceptible. Development of resistant genotypes could be expedited and optimised by investigating the molecular mechanisms underlying host resistance and susceptibility as well as increasing the available genetic resources. RNA-seq data, from F. circinatum inoculated and mock-inoculated ca. 6-month-old shoot tissue at 3- and 7-days postinoculation, was generated for three commercially important tropical pines, Pinus oocarpa, Pinus maximinoi and Pinus greggii. De novo transcriptomes were assembled and used to investigate the NLR and PR gene content within available pine references. Host responses to F. circinatum challenge were investigated in P. oocarpa (resistant) and P. greggii (susceptible), in comparison to previously generated expression profiles from Pinus tecunumanii (resistant) and Pinus patula (susceptible). Expression results indicated crosstalk between induced salicylate, jasmonate and ethylene signalling is involved in host resistance and compromised in susceptible hosts. Additionally, higher constitutive expression of sulfur metabolism and flavonoid biosynthesis in resistant hosts suggest involvement of these metabolites in resistance.
Collapse
Affiliation(s)
- Erik A Visser
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tamanique P Kampmann
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
22
|
Si C, Zhan D, Wang L, Sun X, Zhong Q, Yang S. Systematic Investigation of TCP Gene Family: Genome-Wide Identification and Light-Regulated Gene Expression Analysis in Pepino (Solanum Muricatum). Cells 2023; 12:cells12071015. [PMID: 37048089 PMCID: PMC10093338 DOI: 10.3390/cells12071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Plant-specific transcription factors such as the TCP family play crucial roles in light responses and lateral branching. The commercial development of S. muricatum has been influenced by the ease with which its lateral branches can be germinated, especially under greenhouse cultivation during the winter with supplemented LED light. The present study examined the TCP family genes in S. muricatum using bioinformatics analysis (whole-genome sequencing and RNA-seq) to explore the response of this family to different light treatments. Forty-one TCP genes were identified through a genome-wide search; phylogenetic analysis revealed that the CYC/TB1, CIN and Class I subclusters contained 16 SmTCP, 11 SmTCP and 14 SmTCP proteins, respectively. Structural and conserved sequence analysis of SmTCPs indicated that the motifs in the same subcluster were highly similar in structure and the gene structure of SmTCPs was simpler than that in Arabidopsis thaliana; 40 of the 41 SmTCPs were localized to 12 chromosomes. In S. muricatum, 17 tandem repeat sequences and 17 pairs of SmTCP genes were found. We identified eight TCPs that were significantly differentially expressed (DETCPs) under blue light (B) and red light (R), using RNA-seq. The regulatory network of eight DETCPs was preliminarily constructed. All three subclusters responded to red and blue light treatment. To explore the implications of regulatory TCPs in different light treatments for each species, the TCP regulatory gene networks and GO annotations for A. thaliana and S. muricatum were compared. The regulatory mechanisms suggest that the signaling pathways downstream of the TCPs may be partially conserved between the two species. In addition to the response to light, functional regulation was mostly enriched with auxin response, hypocotyl elongation, and lateral branch genesis. In summary, our findings provide a basis for further analysis of the TCP gene family in other crops and broaden the functional insights into TCP genes regarding light responses.
Collapse
Affiliation(s)
- Cheng Si
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Deli Zhan
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Lihui Wang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
| | - Xuemei Sun
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
| | - Qiwen Zhong
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- Correspondence: (Q.Z.); (S.Y.)
| | - Shipeng Yang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Correspondence: (Q.Z.); (S.Y.)
| |
Collapse
|
23
|
Rosas-Diaz T, Cana-Quijada P, Wu M, Hui D, Fernandez-Barbero G, Macho AP, Solano R, Castillo AG, Wang XW, Lozano-Duran R, Bejarano ER. The transcriptional regulator JAZ8 interacts with the C2 protein from geminiviruses and limits the geminiviral infection in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36946519 DOI: 10.1111/jipb.13482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/17/2023] [Indexed: 05/06/2023]
Abstract
Jasmonates (JAs) are phytohormones that finely regulate critical biological processes, including plant development and defense. JASMONATE ZIM-DOMAIN (JAZ) proteins are crucial transcriptional regulators that keep JA-responsive genes in a repressed state. In the presence of JA-Ile, JAZ repressors are ubiquitinated and targeted for degradation by the ubiquitin/proteasome system, allowing the activation of downstream transcription factors and, consequently, the induction of JA-responsive genes. A growing body of evidence has shown that JA signaling is crucial in defending against plant viruses and their insect vectors. Here, we describe the interaction of C2 proteins from two tomato-infecting geminiviruses from the genus Begomovirus, tomato yellow leaf curl virus (TYLCV) and tomato yellow curl Sardinia virus (TYLCSaV), with the transcriptional repressor JAZ8 from Arabidopsis thaliana and its closest orthologue in tomato, SlJAZ9. Both JAZ and C2 proteins colocalize in the nucleus, forming discrete nuclear speckles. Overexpression of JAZ8 did not lead to altered responses to TYLCV infection in Arabidopsis; however, knock-down of JAZ8 favors geminiviral infection. Low levels of JAZ8 likely affect the viral infection specifically, since JAZ8-silenced plants neither display obvious developmental phenotypes nor present differences in their interaction with the viral insect vector. In summary, our results show that the geminivirus-encoded C2 interacts with JAZ8 in the nucleus, and suggest that this plant protein exerts an anti-geminiviral effect.
Collapse
Affiliation(s)
- Tabata Rosas-Diaz
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Pepe Cana-Quijada
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Mengshi Wu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Du Hui
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gemma Fernandez-Barbero
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Araceli G Castillo
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Xiao-Wei Wang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, Tübingen, D-72076, Germany
| | - Eduardo R Bejarano
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| |
Collapse
|
24
|
Han X, Kui M, He K, Yang M, Du J, Jiang Y, Hu Y. Jasmonate-regulated root growth inhibition and root hair elongation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1176-1185. [PMID: 36346644 PMCID: PMC9923215 DOI: 10.1093/jxb/erac441] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/05/2022] [Indexed: 06/01/2023]
Abstract
The phytohormone jasmonate is an essential endogenous signal in the regulation of multiple plant processes for environmental adaptation, such as primary root growth inhibition and root hair elongation. Perception of environmental stresses promotes the accumulation of jasmonate, which is sensed by the CORONATINE INSENSITIVE1 (COI1)-JASMONATE ZIM-DOMAIN (JAZ) co-receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming. The basic helix-loop-helix (bHLH) subgroup IIIe transcription factors MYC2, MYC3, and MYC4 are the most extensively characterized JAZ-binding factors and together stimulate jasmonate-signaled primary root growth inhibition. Conversely, the bHLH subgroup IIId transcription factors (i.e. bHLH3 and bHLH17) physically associate with JAZ proteins and suppress jasmonate-induced root growth inhibition. For root hair development, JAZ proteins interact with and inhibit ROOT HAIR DEFECTIVE 6 (RHD6) and RHD6 LIKE1 (RSL1) transcription factors to modulate jasmonate-enhanced root hair elongation. Moreover, jasmonate also interacts with other signaling pathways (such as ethylene and auxin) to regulate primary root growth and/or root hair elongation. Here, we review recent progress into jasmonate-mediated primary root growth and root hair development.
Collapse
Affiliation(s)
- Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | | |
Collapse
|
25
|
Zhu J, Wang WS, Yan DW, Hong LW, Li TT, Gao X, Yang YH, Ren F, Lu YT, Yuan TT. CK2 promotes jasmonic acid signaling response by phosphorylating MYC2 in Arabidopsis. Nucleic Acids Res 2022; 51:619-630. [PMID: 36546827 PMCID: PMC9881174 DOI: 10.1093/nar/gkac1213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Jasmonic acid (JA) signaling plays a pivotal role in plant development and defense. MYC2 is a master transcription factor in JA signaling, and was found to be phosphorylated and negatively regulated by MAP kinase and receptor-like kinase. However, the kinases that positively regulate MYC2 through phosphorylation and promote MYC2-mediated activation of JA response have not been identified. Here, we identified CK2 as a kinase that phosphorylates MYC2 and thus regulates the JA signaling. CK2 holoenzyme can interact with MYC2 using its regulatory subunits and phosphorylate MYC2 at multiple sites with its catalytic subunits. Inhibition of CK2 activity in a dominant-negative plant line, CK2mut, repressed JA response. On the other hand, increasing CK2 activity by overexpression of CKB4, a regulatory subunit gene of CK2, enhanced JA response in a MYC2-dependent manner. Substitution of the Ser and Thr residues at phosphorylation sites of MYC2 by CK2 with Ala impaired MYC2 function in activating JA response. Further investigations evidenced that CK2 facilitated the JA-induced increase of MYC2 binding to the promoters of JA-responsive genes in vivo. Our study demonstrated that CK2 plays a positive role in JA signaling, and reveals a previously undiscovered mechanism that regulates MYC2 function.
Collapse
Affiliation(s)
| | | | - Da-Wei Yan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Li-Wei Hong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yun-Huang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ying-Tang Lu
- Correspondence may also be addressed to Ying-Tang Lu. Tel: +86 27 68752619; Fax: +86 27 68753551;
| | - Ting-Ting Yuan
- To whom correspondence should be addressed. Tel: +86 27 68752619; Fax: +86 27 68753551;
| |
Collapse
|
26
|
The Core Jasmonic Acid-Signalling Module CoCOI1/CoJAZ1/CoMYC2 Are Involved in Jas Mediated Growth of the Pollen Tube in Camellia oleifera. Curr Issues Mol Biol 2022; 44:5405-5415. [PMID: 36354678 PMCID: PMC9689390 DOI: 10.3390/cimb44110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Camellia oleifera is a woody edible oil species with late self-incompatibility characteristics. Previous transcriptome analysis showed that genes involved in jasmonic acid signal transduction were significantly different in self-and cross-pollinated pistils of Camellia oleifera. To investigate the relationship between jasmonate signal and self-incompatibility by studying the core genes of jasmonate signal transduction. The results showed that exogenous JA and MeJA at 1.0 mM significantly inhibited pollen tube germination and pollen tube elongation. and JA up-regulated CoCOI1, CoJAZ1, and CoMYC, the core genes of jasmonate signal transduction. Subcellular localization indicated that CoCOI1 and CoJAZ1 were located in the nucleus and CoMYC2 in the endoplasmic reticulum. The three genes exhibited tissue-specific expression pattern. CoCOI1 was significantly expressed in pollen, CoJAZ1 was significantly expressed in ovary, CoMYC2 was significantly expressed in filaments, but not in pollen. Furthermore, CoJAZ1 and CoMYC2 were highly expressing at 24 h in self-pollinated styles. These results suggested that JA signal transduction of C. oleifera was involved in the process of self-pollination, and thus in the process of plant defense. When pollen tubes grew slowly in the style, ovary may receive JA signal, which initiates the molecular mechanism of inhibiting the growth of self-pollinating pollen tubes.
Collapse
|
27
|
García-Valle KM, Ruíz-Herrera LF, Ravelo-Ortega G, López-Bucio JS, Guevara-García ÁA, López-Bucio J. MITOGEN-ACTIVATED PROTEIN KINASE PHOSPHATASE 1 mediates root sensing of serotonin through jasmonic acid signaling and modulating reactive oxygen species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111396. [PMID: 35878696 DOI: 10.1016/j.plantsci.2022.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Serotonin (5-hydroxytryptamine) acts as a neurotransmitter in mammals and is widely distributed in the plant kingdom, where it influences root growth and defense. Mitogen-Activated Protein Kinases (MAPKs) and MAPK phosphatases (MKPs) play critical functions in decoding hormonal signalling, but their possible roles in mediating serotonin responses await investigation. In this report, we unveiled positive roles for the MITOGEN-ACTIVATED PROTEIN KINASE PHOSPHATASE1 (MKP1) in the inhibition of the primary root growth, cell division, meristem structure, and differentiation events in Arabidopsis seedlings. mkp1 mutants were less sensitive to jasmonic acid applications that halted primary root growth in wild-type (WT) plants, and consistently, the neurotransmitter activated the expression of the JASMONATE ZIM-domain (JAZ) proteins JAZ1 and JAZ10, two critical proteins orchestrating jasmonic acid signalling. This effect correlated with exacerbated production of endogenous reactive oxygen species (ROS) in the WT, a process constitutively manifested in mkp1 mutants. These data help to clarify the relationship between serotonin and growth/defense trade-offs, and reveal the importance of the MAPK pathway in root development through ROS production.
Collapse
Affiliation(s)
- Karen Monserrat García-Valle
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030 Morelia, Michoacán, Mexico.
| | - León Francisco Ruíz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030 Morelia, Michoacán, Mexico.
| | - Gustavo Ravelo-Ortega
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030 Morelia, Michoacán, Mexico.
| | - Jesús Salvador López-Bucio
- Investigador de Cátedras CONACYT, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, Mexico.
| | - Ángel Arturo Guevara-García
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, Mexico.
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030 Morelia, Michoacán, Mexico.
| |
Collapse
|
28
|
Wang Y, Li N, Zhan J, Wang X, Zhou XR, Shi J, Wang H. Genome-wide analysis of the JAZ subfamily of transcription factors and functional verification of BnC08.JAZ1-1 in Brassica napus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:93. [PMID: 36096884 PMCID: PMC9469596 DOI: 10.1186/s13068-022-02192-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/30/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND JAZ subfamily plays crucial roles in growth and development, stress, and hormone responses in various plant species. Despite its importance, the structural and functional analyses of the JAZ subfamily in Brassica napus are still limited. RESULTS Comparing to the existence of 12 JAZ genes (AtJAZ1-AtJAZ12) in Arabidopsis, there are 28, 31, and 56 JAZ orthologues in the reference genome of B. rapa, B. oleracea, and B. napus, respectively, in accordance with the proven triplication events during the evolution of Brassicaceae. The phylogenetic analysis showed that 127 JAZ proteins from A. thaliana, B. rapa, B. oleracea, and B. napus could fall into five groups. The structure analysis of all 127 JAZs showed that these proteins have the common motifs of TIFY and Jas, indicating their conservation in Brassicaceae species. In addition, the cis-element analysis showed that the main motif types are related to phytohormones, biotic and abiotic stresses. The qRT-PCR of the representative 11 JAZ genes in B. napus demonstrated that different groups of BnJAZ individuals have distinct patterns of expression under normal conditions or treatments with distinctive abiotic stresses and phytohormones. Especially, the expression of BnJAZ52 (BnC08.JAZ1-1) was significantly repressed by abscisic acid (ABA), gibberellin (GA), indoleacetic acid (IAA), polyethylene glycol (PEG), and NaCl treatments, while induced by methyl jasmonate (MeJA), cold and waterlogging. Expression pattern analysis showed that BnC08.JAZ1-1 was mainly expressed in the vascular bundle and young flower including petal, pistil, stamen, and developing ovule, but not in the stem, leaf, and mature silique and seed. Subcellular localization showed that the protein was localized in the nucleus, in line with its orthologues in Arabidopsis. Overexpression of BnC08.JAZ1-1 in Arabidopsis resulted in enhanced seed weight, likely through regulating the expression of the downstream response genes involved in the ubiquitin-proteasome pathway and phospholipid metabolism pathway. CONCLUSIONS The systematic identification, phylogenetic, syntenic, and expression analyses of BnJAZs subfamily improve our understanding of their roles in responses to stress and phytohormone in B. napus. In addition, the preliminary functional validation of BnC08.JAZ1-1 in Arabidopsis demonstrated that this subfamily might also play a role in regulating seed weight.
Collapse
Affiliation(s)
- Ying Wang
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Na Li
- grid.464499.2The Laboratory of Melon Crops, Zhengzhou Fruit Research Institute of the Chinese Academy of Agricultural Sciences, Zhengzhou, Henan Province China
| | - Jiepeng Zhan
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xinfa Wang
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Xue-Rong Zhou
- grid.1016.60000 0001 2173 2719Commonwealth Scientific & Industrial Research Organisation (CSIRO) Agriculture &Food, Canberra, ACT Australia
| | - Jiaqin Shi
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hanzhong Wang
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
29
|
Zhu J, Yan X, Liu S, Xia X, An Y, Xu Q, Zhao S, Liu L, Guo R, Zhang Z, Xie DY, Wei C. Alternative splicing of CsJAZ1 negatively regulates flavan-3-ol biosynthesis in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:243-261. [PMID: 35043493 DOI: 10.1111/tpj.15670] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/19/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Flavan-3-ols are abundant in the tea plant (Camellia sinensis) and confer tea with flavor and health benefits. We recently found that alternative splicing of genes is likely involved in the regulation of flavan-3-ol biosynthesis; however, the underlying regulatory mechanisms remain unknown. Here, we integrated metabolomics and transcriptomics to construct metabolite-gene networks in tea leaves, collected over five different months and from five spatial positions, and found positive correlations between endogenous jasmonic acid (JA), flavan-3-ols, and numerous transcripts. Transcriptome mining further identified CsJAZ1, which is negatively associated with flavan-3-ols formation and has three CsJAZ1 transcripts, one full-length (CsJAZ1-1), and two splice variants (CsJAZ1-2 and -3) that lacked 3' coding sequences, with CsJAZ1-3 also lacking the coding region for the Jas domain. Confocal microscopy showed that CsJAZ1-1 was localized to the nucleus, while CsJAZ1-2 and CsJAZ1-3 were present in both the nucleus and the cytosol. In the absence of JA, CsJAZ1-1 was bound to CsMYC2, a positive regulator of flavan-3-ol biosynthesis; CsJAZ1-2 functioned as an alternative enhancer of CsJAZ1-1 and an antagonist of CsJAZ1-1 in binding to CsMYC2; and CsJAZ1-3 did not interact with CsMYC2. In the presence of JA, CsJAZ1-3 interacted with CsJAZ1-1 and CsJAZ1-2 to form heterodimers that stabilized the CsJAZ1-1-CsMYC2 and CsJAZ1-2-CsMYC2 complexes, thereby repressing the transcription of four genes that act late in the flavan-3-ol biosynthetic pathway. These data indicate that the alternative splicing variants of CsJAZ1 coordinately regulate flavan-3-ol biosynthesis in the tea plant and improve our understanding of JA-mediated flavan-3-ol biosynthesis.
Collapse
Affiliation(s)
- Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Xiaomei Yan
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Qingshan Xu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Shiqi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| |
Collapse
|
30
|
Wieghaus A, Roelfs KU, Twyman RM, Prüfer D, Schulze Gronover C. Comparative Transcriptome Analysis in Taraxacum koksaghyz to Identify Genes that Determine Root Volume and Root Length. Front Genet 2022; 12:784883. [PMID: 35140739 PMCID: PMC8819189 DOI: 10.3389/fgene.2021.784883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
The Russian dandelion (Taraxacum koksaghyz, family Asteraceae) produces large amounts of natural rubber in the laticifers of its roots. This species has been proposed as an alternative source of natural rubber to augment or partly replace the rubber tree (Hevea brasiliensis) but domestication would require genetic improvement to increase rubber yields and agronomic optimization to facilitate harvesting and processing. Optimization has focused thus far on the size and shape of the roots, the primary storage organ for natural rubber and inulin. However, the corresponding genetic factors are poorly understood. Here we describe the comparative transcriptomic analysis of root tissues from T. koksaghyz plant sets featuring different root sizes and shapes, aiming to identify differentially expressed genes correlating with root length or root diameter in the upper root and root tip. The resulting datasets revealed multiple candidate genes for each trait and root part, including a glucan endo-1,3-β-d-glucosidase, an allene oxide synthase 3, and a TIFY10A/JAZ1 homolog. These three genes were tested by qRT-PCR in outdoor-grown plants with diverse root morphology, and the expression of two genes correlated with the appropriate root morphotype, confirming the effectiveness of our method. We evaluated the candidate genes to gain insight into their potential functions in root development. Such candidate genes could be suitable for marker-assisted breeding programs in the future.
Collapse
Affiliation(s)
- Annika Wieghaus
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Kai-Uwe Roelfs
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | | | - Dirk Prüfer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | - Christian Schulze Gronover
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
- *Correspondence: Christian Schulze Gronover,
| |
Collapse
|
31
|
Syed‐Ab‐Rahman SF, Arkhipov A, Wass TJ, Xiao Y, Carvalhais LC, Schenk PM. Rhizosphere bacteria induce programmed cell death defence genes and signalling in chilli pepper. J Appl Microbiol 2022; 132:3111-3124. [DOI: 10.1111/jam.15456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Sharifah Farhana Syed‐Ab‐Rahman
- Plant‐Microbe Interactions Laboratory School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland 4072 Australia
| | - Alexander Arkhipov
- Plant‐Microbe Interactions Laboratory School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland 4072 Australia
| | - Taylor J. Wass
- Plant‐Microbe Interactions Laboratory School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland 4072 Australia
| | - Yawen Xiao
- Plant‐Microbe Interactions Laboratory School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland 4072 Australia
| | - Lilia C. Carvalhais
- Queensland Alliance for Agriculture and Food Innovation The University of Queensland Ecosciences Precinct GPO Box 267 Queensland 4001 Australia
| | - Peer M. Schenk
- Plant‐Microbe Interactions Laboratory School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
32
|
He W, Xie R, Wang Y, Chen Q, Wang H, Yang S, Luo Y, Zhang Y, Tang H, Gmitter FG, Wang X. Comparative transcriptomic analysis on compatible/incompatible grafts in citrus. HORTICULTURE RESEARCH 2022; 9:uhab072. [PMID: 35043167 PMCID: PMC8931943 DOI: 10.1093/hr/uhab072] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Grafting is a useful cultivation technology to resist abiotic and biotic stresses and is an integral part of citrus production. However, some widely utilized rootstocks may still exhibit graft incompatibility in the orchard. "Hongmian miyou" (Citrus maxima (Burm.) Merrill) is mutated from "Guanxi miyou", but these two scions showed different compatibility with available Poncirus trifoliata rootstock. Foliage etiolation is an observed symptom of graft incompatibility, but its mechanism remains poorly understood. This study is the first to investigate the morphological, physiological, and anatomical differences between the compatible/incompatible grafts, and perform transcriptome profiling at crucial stages of the foliage etiolation process. Based on the comprehensive analyses, hormonal balance was disordered, and two rate-limiting genes, NCED3 (9-cis-epoxycarotenoid dioxygenases 3) and NCED5, being responsible for ABA (abscisic acid) accumulation, were highlighted. Further correlation analysis indicated that IAA (indole-3-acetic acid) and ABA were the most likely inducers of the expression of stresses-related genes. In addition, excessive starch accumulation was observed in lamina and midribs of incompatible grafts leaves. These results provided a new insight into the role of the hormonal balance and abscisic acid biosynthesis genes in regulation and contribution to the graft incompatibility, and will further define and deploy candidate genes to explore the mechanisms underlying citrus rootstock- scion interactions.
Collapse
Affiliation(s)
- Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Rui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shaofeng Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Frederick G Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred 33850, FL, USA
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
33
|
Xu DB, Ma YN, Qin TF, Tang WL, Qi XW, Wang X, Liu RC, Fang HL, Chen ZQ, Liang CY, Wu W. Transcriptome-Wide Identification and Characterization of the JAZ Gene Family in Mentha canadensis L. Int J Mol Sci 2021; 22:ijms22168859. [PMID: 34445565 PMCID: PMC8396335 DOI: 10.3390/ijms22168859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022] Open
Abstract
Jasmonate ZIM-domain (JAZ) proteins are the crucial transcriptional repressors in the jasmonic acid (JA) signaling process, and they play pervasive roles in plant development, defense, and plant specialized metabolism. Although numerous JAZ gene families have been discovered across several plants, our knowledge about the JAZ gene family remains limited in the economically and medicinally important Chinese herb Mentha canadensis L. Here, seven non-redundant JAZ genes named McJAZ1–McJAZ7 were identified from our reported M. canadensis transcriptome data. Structural, amino acid composition, and phylogenetic analysis showed that seven McJAZ proteins contained the typical zinc-finger inflorescence meristem (ZIM) domain and JA-associated (Jas) domain as conserved as those in other plants, and they were clustered into four groups (A-D) and distributed into five subgroups (A1, A2, B1, B2, and D). Quantitative real-time PCR (qRT-PCR) analysis showed that seven McJAZ genes displayed differential expression patterns in M. canadensis tissues, and preferentially expressed in flowers. Furthermore, the McJAZ genes expression was differentially induced after Methyl jasmonate (MeJA) treatment, and their transcripts were variable and up- or down-regulated under abscisic acid (ABA), drought, and salt treatments. Subcellular localization analysis revealed that McJAZ proteins are localized in the nucleus or cytoplasm. Yeast two-hybrid (Y2H) assays demonstrated that McJAZ1-5 interacted with McCOI1a, a homolog of Arabidopsis JA receptor AtCOI1, in a coronatine-dependent manner, and most of McJAZ proteins could also form homo- or heterodimers. This present study provides valuable basis for functional analysis and exploitation of the potential candidate McJAZ genes for developing efficient strategies for genetic improvement of M. canadensis.
Collapse
Affiliation(s)
- Dong-Bei Xu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.-L.T.); (X.W.); (R.-C.L.)
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
- Correspondence: (D.-B.X.); (C.-Y.L.); (W.W.)
| | - Ya-Nan Ma
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
| | - Teng-Fei Qin
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China;
| | - Wei-Lin Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.-L.T.); (X.W.); (R.-C.L.)
| | - Xi-Wu Qi
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
| | - Xia Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.-L.T.); (X.W.); (R.-C.L.)
| | - Rui-Cen Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.-L.T.); (X.W.); (R.-C.L.)
| | - Hai-Ling Fang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
| | - Ze-Qun Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
| | - Cheng-Yuan Liang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
- Correspondence: (D.-B.X.); (C.-Y.L.); (W.W.)
| | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.-L.T.); (X.W.); (R.-C.L.)
- Correspondence: (D.-B.X.); (C.-Y.L.); (W.W.)
| |
Collapse
|
34
|
Wang Y, Mostafa S, Zeng W, Jin B. Function and Mechanism of Jasmonic Acid in Plant Responses to Abiotic and Biotic Stresses. Int J Mol Sci 2021; 22:8568. [PMID: 34445272 PMCID: PMC8395333 DOI: 10.3390/ijms22168568] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 01/16/2023] Open
Abstract
As sessile organisms, plants must tolerate various environmental stresses. Plant hormones play vital roles in plant responses to biotic and abiotic stresses. Among these hormones, jasmonic acid (JA) and its precursors and derivatives (jasmonates, JAs) play important roles in the mediation of plant responses and defenses to biotic and abiotic stresses and have received extensive research attention. Although some reviews of JAs are available, this review focuses on JAs in the regulation of plant stress responses, as well as JA synthesis, metabolism, and signaling pathways. We summarize recent progress in clarifying the functions and mechanisms of JAs in plant responses to abiotic stresses (drought, cold, salt, heat, and heavy metal toxicity) and biotic stresses (pathogen, insect, and herbivore). Meanwhile, the crosstalk of JA with various other plant hormones regulates the balance between plant growth and defense. Therefore, we review the crosstalk of JAs with other phytohormones, including auxin, gibberellic acid, salicylic acid, brassinosteroid, ethylene, and abscisic acid. Finally, we discuss current issues and future opportunities in research into JAs in plant stress responses.
Collapse
Affiliation(s)
| | | | | | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.W.); (S.M.); (W.Z.)
| |
Collapse
|
35
|
Ghorbel M, Brini F, Sharma A, Landi M. Role of jasmonic acid in plants: the molecular point of view. PLANT CELL REPORTS 2021; 40:1471-1494. [PMID: 33821356 DOI: 10.1007/s00299-021-02687-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/23/2021] [Indexed: 05/12/2023]
Abstract
Recent updates in JA biosynthesis, signaling pathways and the crosstalk between JA and others phytohormones in relation with plant responses to different stresses. In plants, the roles of phytohormone jasmonic acid (JA), amino acid conjugate (e.g., JA-Ile) and their derivative emerged in last decades as crucial signaling compounds implicated in stress defense and development in plants. JA has raised a great interest, and the number of researches on JA has increased rapidly highlighting the importance of this phytohormone in plant life. First, JA was considered as a stress hormone implicated in plant response to biotic stress (pathogens and herbivores) which confers resistance to biotrophic and hemibiotrophic pathogens contrarily to salicylic acid (SA) which is implicated in plant response to necrotrophic pathogens. JA is also implicated in plant responses to abiotic stress (such as soil salinity, wounding and UV). Moreover, some researchers have recently revealed that JA controls several physiological processes like root growth, growth of reproductive organs and, finally, plant senescence. JA is also involved in the biosynthesis of various metabolites (e.g., phytoalexins and terpenoids). In plants, JA signaling pathways are well studied in few plants essentially Arabidopsis thaliana, Nicotiana benthamiana, and Oryza sativa L. confirming the crucial role of this hormone in plants. In this review, we highlight the last foundlings about JA biosynthesis, JA signaling pathways and its implication in plant maturation and response to environmental constraints.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Biology Department, Faculty of Science, University of Ha'il, P.O. box, Ha'il, 2440, Saudi Arabia
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Marco Landi
- Department of Agriculture, Food and Environment - University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
36
|
Raza A, Charagh S, Zahid Z, Mubarik MS, Javed R, Siddiqui MH, Hasanuzzaman M. Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. PLANT CELL REPORTS 2021; 40:1513-1541. [PMID: 33034676 DOI: 10.1007/s00299-020-02614-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 05/18/2023]
Abstract
Abiotic stresses are the primary sources of crop losses globally. The identification of key mechanisms deployed and established by plants in response to abiotic stresses is necessary for the maintenance of their growth and persistence. Recent discoveries have revealed that phytohormones or plant growth regulators (PGRs), mainly jasmonic acid (JA), have increased our knowledge of hormonal signaling of plants under stressful environments. Jasmonic acid is involved in various physiological and biochemical processes associated with plant growth and development as well as plant defense mechanism against wounding by pathogen and insect attacks. Recent findings suggest that JA can mediate the effect of abiotic stresses and help plants to acclimatize under unfavorable conditions. As a vital PGR, JA contributes in many signal transduction pathways, i.e., gene network, regulatory protein, signaling intermediates and enzymes, proteins, and other molecules that act to defend cells from the harmful effects of various environmental stresses. However, JA does not work as an independent regulator, but acts in a complex signaling pathway along other PGRs. Further, JA can protect and maintain the integrity of plant cells under several stresses by up-regulating the antioxidant defense. In this review, we have documented the biosynthesis and metabolism of JA and its protective role against different abiotic stresses. Further, JA-mediated antioxidant potential and its crosstalk with other PGRs have also been discussed.
Collapse
Affiliation(s)
- Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China.
| | - Sidra Charagh
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zainab Zahid
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Salman Mubarik
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Rida Javed
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh.
| |
Collapse
|
37
|
Vázquez-Chimalhua E, Valencia-Cantero E, López-Bucio J, Ruiz-Herrera LF. N,N-dimethyl-hexadecylamine modulates Arabidopsis root growth through modifying the balance between stem cell niche and jasmonic acid-dependent gene expression. Gene Expr Patterns 2021; 41:119201. [PMID: 34329770 DOI: 10.1016/j.gep.2021.119201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/28/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022]
Abstract
N,N-dimethyl-hexadecylamine (DMHDA) is released as part of volatile blends emitted by plant probiotic bacteria and affects root architecture, defense and nutrition of plants. Here, we investigated the changes in gene expression of transcription factors responsible of maintenance of the root stem cell niche and jasmonic acid signaling in Arabidopsis seedlings in response to this volatile. Concentrations of DMHDA that repress primary root growth were found to alter cell size and division augmenting cell tissue layers in the meristem and causing root widening. DMHDA triggered the division of quiescent center cells, which correlated with repression of SHORT ROOT (SHR), SCARECROW (SCR), and PLETHORA 1 (PLT1) proteins and induction of WUSCHEL-RELATED HOMEOBOX 5 (WOX5) transcription factor. Interestingly, an activation of the expression of the jasmonic acid-related reporter genes JAZ1/TIFY10A-GFP and JAZ10pro::JAZ10-GFP suggests that the halted growth of the primary root inversely correlated with expression patterns underlying the defense reaction, which may be of adaptive importance to protect roots against biotic stress. Our data help to unravel the gene expression signatures upon sensing of a highly active bacterial volatile in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Ernesto Vázquez-Chimalhua
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, Morelia, Michoacán, Mexico.
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, Morelia, Michoacán, Mexico.
| |
Collapse
|
38
|
Wang Z, Yuan C, Zhang S, Tian S, Tang Q, Wei D, Niu Y. Screening and Interaction Analysis Identify Genes Related to Anther Dehiscence in Solanum melongena L. FRONTIERS IN PLANT SCIENCE 2021; 12:648193. [PMID: 34367196 PMCID: PMC8341306 DOI: 10.3389/fpls.2021.648193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Anther indehiscence is an important form of functional male sterility that can facilitate the production of hybrid seeds. However, the molecular mechanisms of anther indehiscence-based male sterility in eggplant (Solanum melongena L.) have not been thoroughly explored. We performed transcriptome sequencing and real-time quantitative reverse transcription-PCR (qRT-PCR) assays to compare the fertile line (F142) and male sterile line (S12) eggplant. We identified 2,670 differentially expressed genes (DEGs) between lines. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified 31 DEGs related to hormone biosynthesis. We, therefore, measured phytohormone contents, such as jasmonic acid (JA), auxin (IAA), gibberellin (GA), and abscisic acid (ABA) in S12 and F142. There were differences in IAA, GA3, and ABA levels between S12 and F142, while JA levels were significantly lower in S12 than in F142. Five key genes in the JA signaling pathway were differentially expressed in S12 vs. F142. Of these, SmJAZ1 and SmJAR1 were significantly upregulated and SmDAD1, SmLOX, and SmCOI1 were downregulated in S12 vs. F142. Protein-protein interaction studies identified a direct interaction between SmDAD1 and SmLOX, while SmDAD1 failed to interact with SmJAR1, SmCOI1, and SmJAZ1. The data represent a valuable resource for further exploration of regulatory mechanisms underlying anther dehiscence in eggplant.
Collapse
Affiliation(s)
- Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
| | - Chao Yuan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
| | - Shaowei Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
| | - Shibing Tian
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
| | - Yi Niu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
| |
Collapse
|
39
|
The Non-Pathogenic Fusarium oxysporum Fo47 Induces Distinct Responses in Two Closely Related Solanaceae Plants against the Pathogen Verticillium dahliae. J Fungi (Basel) 2021; 7:jof7050344. [PMID: 33925134 PMCID: PMC8146752 DOI: 10.3390/jof7050344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
The non-pathogenic Fusarium oxysporum Fo47 is able to protect Capsicum annuum (pepper) but not in Solanum lycopersicum (tomato) against the pathogen Verticillium dahliae. Transcriptomics of the plant during the interaction with Fo47 shows the induction of distinct set of genes in pepper and tomato. The number of differentially expressed (DE) genes in pepper (231 DE genes) is greater than the number of DE genes in tomato (39 DE genes) at 2 days after the treatment with Fo47. Ethylene related genes were present among the DE genes in both plants, and the up-regulation of ethylene biosynthetic genes was observed to be triggered during the interaction of both plants with Fo47. The treatment with MCP (1-Methylcyclopropene, an ethylene-competitive inhibitor) reduced the Fo47 protection in pepper against Verticillium dahliae. Intriguingly, Fo47 was able to protect the ethylene-insensitive tomato mutant Never-ripe (Nr) against Verticillium dahliae, but not the tomato wilt type cv Pearson. Overall, ethylene is shown to be an important player in the response to Fo47, but its role depends on the host species.
Collapse
|
40
|
Mouden S, Leiss KA, Uthe H, Klinkhamer PG. Water Dipping of Auxin Coated Chrysanthemum Cuttings Confers Protection against Insect Herbivores. INSECTS 2020; 11:insects11110790. [PMID: 33198105 PMCID: PMC7697673 DOI: 10.3390/insects11110790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 01/23/2023]
Abstract
Simple Summary Cultivated chrysanthemums are one of the most economically important ornamental greenhouse crops worldwide. Classical breeding programs have mainly focused on improving aesthetic characteristics to meet the continuous increasing customer demands for new flower varieties. Consequently, commercial cultivars often lack insect resistance traits. Among the most important production constraints are biotic foes, in particular thrips and leaf miner infestations form a prominent hazard during its vegetative state. To maintain the desired aesthetic characteristics, clonal commercial propagation is aided by the use of auxin hormones for root promotion. This study aims to evaluate the potential of root promoting auxins in antiherbivore defenses. We demonstrate that water dipping of unrooted basal cut ends, coated with the commercial rooting hormone indole-3-butyric acid (IBA), conferred protection in chrysanthemum against thrips and leaf miner. Our findings add an interesting twist to the traditional role of auxins. We advocate a new twist of auxins beyond its traditional role in rooting in order to maximize plant yield by reducing herbivory through feasible, cost-effective water dipping treatments. Abstract Auxins are commonly used for commercial propagation of chrysanthemums by stem cuttings. Recent studies imply that these root-promoting hormones also affect plant defense responses. The underlying motive of this study stems from the serendipitous observation that water dipping of auxin-coated cuttings beneficially affected thrips herbivory. Therefore, the primary objective of this investigation was to explore the role of indole-3-butyric acid (IBA) in relation to herbivore susceptibility in chrysanthemum. We observed contrasting findings concerning the physical presence of IBA and it’s role in promoting susceptibility of cuttings to thrips, which may in part be explained by the phenotypical variations of cuttings generated from mother plants. Nonetheless, we repeatedly demonstrated considerable protection, in some experiments up to 37%, against thrips and leaf miner upon water dipping of IBA-coated cuttings. Assessment of polyphenol oxidase activity (PPO), 14 days after dipping treatment, suggests that neither direct induction nor priming of plant defenses are involved. Future experiments aimed at understanding the early signaling events may help to explain the underlying mechanisms involved in conferring herbivore protection. We propose a dual role for auxins in early integrated pest management strategies to maximize plant development and minimize herbivory through feasible, cost-effective water dipping treatments.
Collapse
Affiliation(s)
- Sanae Mouden
- Plant Sciences and Natural Products, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands;
- Business Unit Greenhouse Horticulture, Wageningen University & Research, Violierenweg 1, 2665 MV Bleiswijk, The Netherlands;
- Correspondence: ; Tel.: +31-(0)6-2012-4634
| | - Kirsten A. Leiss
- Business Unit Greenhouse Horticulture, Wageningen University & Research, Violierenweg 1, 2665 MV Bleiswijk, The Netherlands;
| | - Henriette Uthe
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Halle-Gena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany;
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Peter G.L. Klinkhamer
- Plant Sciences and Natural Products, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands;
| |
Collapse
|
41
|
Villalobos-Escobedo JM, Esparza-Reynoso S, Pelagio-Flores R, López-Ramírez F, Ruiz-Herrera LF, López-Bucio J, Herrera-Estrella A. The fungal NADPH oxidase is an essential element for the molecular dialog between Trichoderma and Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2178-2192. [PMID: 32578269 DOI: 10.1111/tpj.14891] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Members of the fungal genus Trichoderma stimulate growth and reinforce plant immunity. Nevertheless, how fungal signaling elements mediate the establishment of a successful Trichoderma-plant interaction is largely unknown. In this work, we analyzed growth, root architecture and defense in an Arabidopsis-Trichoderma co-cultivation system, including the wild-type (WT) strain of the fungus and mutants affected in NADPH oxidase. Global gene expression profiles were assessed in both the plant and the fungus during the establishment of the interaction. Trichoderma atroviride WT improved root branching and growth of seedling as previously reported. This effect diminished in co-cultivation with the ∆nox1, ∆nox2 and ∆noxR null mutants. The data gathered of the Arabidopsis interaction with the ∆noxR strain showed that the seedlings had a heightened immune response linked to jasmonic acid in roots and shoots. In the fungus, we observed repression of genes involved in complex carbohydrate degradation in the presence of the plant before contact. However, in the absence of NoxR, such repression was lost, apparently due to a poor ability to adequately utilize simple carbon sources such as sucrose, a typical plant exudate. Our results unveiled the critical role played by the Trichoderma NoxR in the establishment of a fine-tuned communication between the plant and the fungus even before physical contact. In this dialog, the fungus appears to respond to the plant by adjusting its metabolism, while in the plant, fungal perception determines a delicate growth-defense balance.
Collapse
Affiliation(s)
- José M Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
| | - Saraí Esparza-Reynoso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, C. P. 58030, México
| | - Ramón Pelagio-Flores
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, C. P. 58240, México
| | - Fabiola López-Ramírez
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
| | - León F Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, C. P. 58030, México
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, C. P. 58030, México
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
| |
Collapse
|
42
|
Schluttenhofer C. Origin and evolution of jasmonate signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110542. [PMID: 32771155 DOI: 10.1016/j.plantsci.2020.110542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 05/15/2023]
Abstract
Jasmonate (JA) signaling is a key mediator of plant development and defense which arose during plants transition from an aqueous to terrestrial environment. Elucidating the evolution of JA signaling is important for understanding plant development, defense, and production of specialized metabolites. The lineage of key protein domains characterizing JA signaling factors was traced to identify the origins of CORONITINE INSENSITIVE 1 (COI1), JASMONATE ZIM-DOMAIN (JAZ), NOVEL INTERACTOR OF JAZ, MYC2, TOPLESS, and MEDIATOR SUBUNIT 25. Charophytes do not possess genes encoding key JA signaling components, including COI1, JAZ, MYC2, and the JAZ-interacting bHLH factors, yet their orthologs are present in bryophytes. TIFY family genes were found in charophyta and chlorophya algae. JAZs evolved from ZIM genes of the TIFY family through changes to several key amino acids. Dating placed the origin of JA signaling 515 to 473 million years ago during the middle Cambrian to early Ordovician periods. This time is known for rapid biodiversification and mass extinction events. An increased predation from the diversifying and changing fauna may have driven evolution of JA signaling and plant defense.
Collapse
Affiliation(s)
- Craig Schluttenhofer
- Agriculture Research and Development Program, 1400 Brush Row Road, Wilberforce OH, 45384, USA.
| |
Collapse
|
43
|
Oña Chuquimarca S, Ayala-Ruano S, Goossens J, Pauwels L, Goossens A, Leon-Reyes A, Ángel Méndez M. The Molecular Basis of JAZ-MYC Coupling, a Protein-Protein Interface Essential for Plant Response to Stressors. FRONTIERS IN PLANT SCIENCE 2020; 11:1139. [PMID: 32973821 PMCID: PMC7468482 DOI: 10.3389/fpls.2020.01139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 05/29/2023]
Abstract
The jasmonic acid (JA) signaling pathway is one of the primary mechanisms that allow plants to respond to a variety of biotic and abiotic stressors. Within this pathway, the JAZ repressor proteins and the basic helix-loop-helix (bHLH) transcription factor MYC3 play a critical role. JA is a volatile organic compound with an essential role in plant immunity. The increase in the concentration of JA leads to the decoupling of the JAZ repressor proteins and the bHLH transcription factor MYC3 causing the induction of genes of interest. The primary goal of this study was to identify the molecular basis of JAZ-MYC coupling. For this purpose, we modeled and validated 12 JAZ-MYC3 3D in silico structures and developed a molecular dynamics/machine learning pipeline to obtain two outcomes. First, we calculated the average free binding energy of JAZ-MYC3 complexes, which was predicted to be -10.94 +/-2.67 kJ/mol. Second, we predicted which ones should be the interface residues that make the predominant contribution to the free energy of binding (molecular hotspots). The predicted protein hotspots matched a conserved linear motif SL••FL•••R, which may have a crucial role during MYC3 recognition of JAZ proteins. As a proof of concept, we tested, both in silico and in vitro, the importance of this motif on PEAPOD (PPD) proteins, which also belong to the TIFY protein family, like the JAZ proteins, but cannot bind to MYC3. By mutating these proteins to match the SL••FL•••R motif, we could force PPDs to bind the MYC3 transcription factor. Taken together, modeling protein-protein interactions and using machine learning will help to find essential motifs and molecular mechanisms in the JA pathway.
Collapse
Affiliation(s)
- Samara Oña Chuquimarca
- Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sebastián Ayala-Ruano
- Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Jonas Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Antonio Leon-Reyes
- Laboratorio de Biotecnología Agrícola y de Alimentos, Ingeniería en Agronomía, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Campus Cumbayá, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Investigaciones Biológicas y Ambientales BIÓSFERA, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Miguel Ángel Méndez
- Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito USFQ, Quito, Ecuador
| |
Collapse
|
44
|
Kuo HY, Kang FC, Wang YY. Glucosinolate Transporter1 involves in salt-induced jasmonate signaling and alleviates the repression of lateral root growth by salt in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110487. [PMID: 32563451 DOI: 10.1016/j.plantsci.2020.110487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 05/15/2023]
Abstract
Salt stress has negative impact on plant development and growth. Jasmonic acid (JA), a phytohormone, has been shown to involve in salt-induced inhibition of primary root growth. The Arabidopsis Glucosinolate transporter1 (GTR1/NPF2.10) is characterized as a JA-Ile, a bioactive form of JA, transporter. However, whether GTR1 participates in salt responses is not clear. In this study, we confirmed that GTR1 is induced by both JA and salinity. Salt-induced JA signaling is affected in gtr1 mutant. The JA responsive genes, JAZ1, JAZ5, MYC2, LOX3, are down-regulated in gtr1 mutant. Phenotypic analyses showed that the salinity-induced lateral root growth inhibition is enhanced in gtr1 mutant, suggesting that GTR1 plays a positive role in lateral root development under salt stress. Interestingly, the expression of a Na+ transporter, HKT1, is upregulated in gtr1. Since HKT1 is a negative regulator for lateral root development under salt stress, we proposed that GTR1 alleviates the repression of lateral root development by salt stress by mediating JA signaling and repressing HKT1 expression. This study demonstrates that GTR1 is the molecular link between salt stress, JA signaling, and lateral root development.
Collapse
Affiliation(s)
- Hsin-Yi Kuo
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Feng-Chih Kang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Yun Wang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
45
|
Garrido-Bigotes A, Valenzuela-Riffo F, Torrejón M, Solano R, Morales-Quintana L, Figueroa CR. A new functional JAZ degron sequence in strawberry JAZ1 revealed by structural and interaction studies on the COI1-JA-Ile/COR-JAZs complexes. Sci Rep 2020; 10:11310. [PMID: 32647129 PMCID: PMC7347570 DOI: 10.1038/s41598-020-68213-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/22/2020] [Indexed: 11/09/2022] Open
Abstract
The phytohormone jasmonoyl-isoleucine (JA-Ile) regulates fundamental plant processes as developmental and defense responses. JA-Ile mediates the interaction between the F-box protein COI1 (part of the SCFCOI1 E3 ubiquitin ligase) and a JAZ repressor leading to early jasmonate responses. The Arabidopsis JAZ1 protein contains the canonical LPIARR degron sequence, which is responsible for the stabilization of the AtCOI1-JA-Ile-AtJAZ1 complex. In strawberry (Fragaria × ananassa) JAZ family was described at the transcriptional level during fruit development but the information about the interaction mode of this complex is still scarce at the molecular level. To gain insight into the strawberry JA-Ile receptor complex, we evaluated the interaction at the structural level, and protein models were built and analyzed for FaCOI1 and FaJAZ1, FaJAZ8.1, and FaJAZ10. The interaction between FaCOI1 and FaJAZ1, FaJAZ8.1 and FaJAZ10 were explored using several ligands, through molecular docking and molecular dynamics (MD) simulations, finding the strongest interaction with (+)-7-iso-JA-Ile than other ligands. Additionally, we tested interactions between FaCOI1 and FaJAZs by yeast two-hybrid assays in the presence of coronatine (COR, a JA-Ile mimic). We detected strong COR-dependent interactions between FaCOI1 and FaJAZ1. Interestingly, FaJAZ1 contains a new non-canonical (IPMQRK) functional degron sequence, in which Arg and Lys are the key residues for maintaining the interaction of the FaCOI1–COR–FaJAZ1 complex as we observed in mutated versions of the FaJAZ1 degron. Phylogenetic analysis showed that the IPMQRK degron is only present in orthologs belonging to the Rosoideae but not in other Rosaceae subfamilies. Together, this study uncovers a new degron sequence in plants, which could be required to make an alternative and functional JA-Ile perception complex in strawberry.
Collapse
Affiliation(s)
- Adrián Garrido-Bigotes
- Laboratory of Plant Epigenetics, Faculty of Forest Sciences, Universidad de Concepción, Concepción, Chile
| | | | - Marcela Torrejón
- Laboratory of Signaling and Development, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Roberto Solano
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC (CNB-CSIC), Madrid, Spain
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Carlos R Figueroa
- Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile.
| |
Collapse
|
46
|
Zhao J, Li H, Yin Y, An W, Qin X, Wang Y, Fan Y, Li Y, Cao Y. Fruit ripening in Lycium barbarum and Lycium ruthenicum is associated with distinct gene expression patterns. FEBS Open Bio 2020; 10:1550-1567. [PMID: 32533890 PMCID: PMC7396440 DOI: 10.1002/2211-5463.12910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 11/06/2022] Open
Abstract
Goji berries have been used as food and medicine for millennia. Due to their high morphological similarity, fruits of two distinct species belonging to the family Solanaceae, Lycium barbarum (LB) and Lycium chinense (Chinese boxthorn), are usually marketed together as goji berries, but nearly 90% of all commercially available goji berries belong to the former species. A third closely related species, a wild perennial thorny shrub native to north‐western China, Lycium ruthenicum (LR; known as Russian box thorn, and its fruit as black wolfberry), has become a popular choice for combating soil desertification and for alleviating soil salinity/alkalinity due to its high resistance to the harsh environment of saline deserts. Despite the phylogenetic closeness of LB and LR, their fruits are very different. To identify the genes involved in these distinct phenotypes, here we studied expression patterns of 22 transcriptional regulators that may be crucial drivers of these differences during five developmental stages. BAM1 may contribute to higher sugar content in LB. High expression of BFRUCT in ripe LR is likely to be an evolutionary adaptation to fruit ripening in an arid environment. Two arogenate dehydratase paralogues, CHS and LDOX, are probably crucial elements of the mechanism by which LR accumulates much higher levels of anthocyanin. DXS2 (carotenoid accumulation in LB) and CCD4 (carotenoid degradation in ripe LR fruit) may be crucial drivers behind the much higher content of carotenoids in LB. EIL3 and ERF5 are two transcription factors that may contribute to the higher abiotic stress resilience of LR. GATA22‐like appears to have more important roles in growth than ripening in LB fruit and vice versa in LR. HAT5‐like exhibited opposite temporal patterns in two fruits: high in the 1st stage in LB and high in the 5th stage in LR. PED1 was expressed at a much lower level in LR. Finally, we hypothesise that the poorly functionally characterised SCL32 gene may play a part in the increased resistance to environmental stress of LR. We suggest that BAM1, BFRUCT, EIL3, ERF5, ADT paralogues (for functional redundancy), PED1, GATA22‐like, HAT5‐like and SCL32 warrant further functional studies.
Collapse
Affiliation(s)
- Jianhua Zhao
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yue Yin
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Wei An
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Xiaoya Qin
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Yajun Wang
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Yunfang Fan
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Yanlong Li
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Youlong Cao
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| |
Collapse
|
47
|
Zhang SW, Yuan C, An LY, Niu Y, Song M, Tang QL, Wei DY, Tian SB, Wang YQ, Yang Y, Wang ZM. SmCOI1 affects anther dehiscence in a male-sterile Solanum melongena line. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:1-8. [PMID: 32362742 PMCID: PMC7193836 DOI: 10.5511/plantbiotechnology.19.1107a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Anther indehiscence is an important form of functional male sterility that can facilitate the production of hybrid seed; however, the molecular mechanisms of anther indehiscence-based male sterility have not been thoroughly explored in eggplant (Solanum melongena L.). Here, we used two-dimensional gel electrophoresis to compare the protein profiles in the anthers of normally developing (F142) and anther indehiscent (S16) S. melongena plants. Four differentially expressed proteins were identified using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Of these proteins, the transcript accumulation of the eggplant CORONATINE INSENSITIVE1 (SmCOI1) was significantly downregulated in S16 relative to F142. Phylogenetic analysis showed that SmCOI1 has high amino acid sequence similarity and clustered into the same subgroup as its homologs in other members of the Solanaceae. Subcellular localization analysis showed that SmCOI1 localized to the nucleus. Moreover, reverse-transcription quantitative PCR revealed that the jasmonic acid pathway genes SmJAZ1 and SmOPR3 are upregulated in F142 relative to S16. Protein-protein interaction studies identified a direct interaction between SmCOI1 and SmOPR3, but SmCOI1 failed to interact with SmJAZ1. These findings shed light on the regulatory mechanisms of anther dehiscence in eggplant.
Collapse
Affiliation(s)
- Shao-Wei Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Chao Yuan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Li-Yu An
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Yi Niu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Ming Song
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Qing-Lin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Da-Yong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Shi-Bing Tian
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing 400055, China
| | - Yong-Qing Wang
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing 400055, China
| | - Yang Yang
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing 400055, China
- E-mail: Tel: +86-23-6825-0974 Fax: +86-6825-1274
| | - Zhi-Ming Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
- E-mail: Tel: +86-23-6825-0974 Fax: +86-6825-1274
| |
Collapse
|
48
|
Wang P, Yu S, Han X, Xu J, He Q, Xu S, Wang R. Identification, molecular characterization and expression of JAZ genes in Lycoris aurea. PLoS One 2020; 15:e0230177. [PMID: 32182273 PMCID: PMC7077819 DOI: 10.1371/journal.pone.0230177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/24/2020] [Indexed: 11/18/2022] Open
Abstract
Jasmonates (JAs) are key phytohormones involved in regulation of plant growth and development, stress responses, and secondary metabolism. It has been reported that treatments with JAs could increase the contents of Amaryllidaceae alkaloids in Amaryllidaceae plants. Jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) proteins are key components in JA signal processes. However, JAZ proteins have not been characterized in genus Lycoris. In this study, we identified and cloned seven differentially expressed JAZ genes (namely LaJAZ1–LaJAZ7) from Lycoris aurea. Bioinformatic analyses revealed that these seven LaJAZ proteins contain the ZIM domain and JA-associated (Jas, also named CCT_2) motif. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed that these LaJAZ genes display different expression patterns in L. aurea tissues, and most of them are inducible when treated with methyl jasmonate (MeJA) treatment. Subcellular localization assay demonstrated that LaJAZ proteins are localized in the cell nucleus or cytoplasm. In addition, LaJAZ proteins could interact with each other to form homodimer and/or heterodimer. The findings in this study may facilitate further functional research of the LaJAZ genes, especially the potential regulatory mechanism of plant secondary metabolites including Amaryllidaceae alkaloids in L. aurea.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Shuojun Yu
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Xiaokang Han
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Junya Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Qingyuan He
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- * E-mail: (SX); (RW)
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- * E-mail: (SX); (RW)
| |
Collapse
|
49
|
Zhao G, Song Y, Wang Q, Yao D, Li D, Qin W, Ge X, Yang Z, Xu W, Su Z, Zhang X, Li F, Wu J. Gossypium hirsutum Salt Tolerance Is Enhanced by Overexpression of G. arboreum JAZ1. Front Bioeng Biotechnol 2020; 8:157. [PMID: 32211392 PMCID: PMC7076078 DOI: 10.3389/fbioe.2020.00157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Gossypium arboreum possesses many favorable traits including robust defense against biotic and abiotic stress although it has been withdrawn from the market because of lower yield and fiber quality compared to G. hirsutum (upland cotton). It is therefore important to explore and utilize the beneficial genes of G. arboretum for G. hirsutum cultivar breeding. Here, the function of G. arboreum JAZ1 in tolerance to salt stress was determined through loss-of-function analysis. GaJAZ1can interact with GaMYC2 to repress expression of downstream genes whose promoters contain a G-box cis element, affecting plant tolerance to salinity stress. The experimental data from NaCl treatments and a 2 year continuous field trial with natural saline-alkaline soil showed that the ectopically overexpressed GaJAZ1 significantly increased salt tolerance in upland cotton compared to the wild type, showing higher growth vigor with taller plants, increased fresh weight, and more bolls, which is due to reprogrammed expression of tolerance-related genes and promotion of root development. High-throughput RNA sequencing of GaJAZ1 transgenic and wild-type plants showed many differentially expressed genes involved in JA signaling and biosynthesis, salt stress-related genes, and hormone-related genes, suggesting that overexpressing GaJAZ1 can reprogram the expression of defense-related genes in G. hirsutum plants to increase tolerance to salt stress. The research provides a foundation to explore and utilize favorable genes from Gossypium species for upland cotton cultivar breeding.
Collapse
Affiliation(s)
- Ge Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yun Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qianhua Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dongxia Yao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dongliang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wenqiang Qin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyan Zhang
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jiahe Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Plant Genomics, Institute of Microbiology Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Fu J, Liu L, Liu Q, Shen Q, Wang C, Yang P, Zhu C, Wang Q. ZmMYC2 exhibits diverse functions and enhances JA signaling in transgenic Arabidopsis. PLANT CELL REPORTS 2020; 39:273-288. [PMID: 31741037 DOI: 10.1007/s00299-019-02490-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
ZmMYC2 was identified as the key regulator of JA signaling in maize and exhibited diverse functions through binding to many gene promoters as well as enhanced JA signaling in transgenic Arabidopsis. The plant hormone jasmonate (JA) extensively coordinates plant growth, development and defensive responses. MYC2 is the master regulator of JA signaling and has been widely studied in many plant species. However, little is known about this transcription factor in maize. Here, we identified one maize transcription factor with amino acid identity of 47% to the well-studied Arabidopsis AtMYC2, named as ZmMYC2. Gene expression analysis demonstrated inducible expression patterns of ZmMYC2 in response to multiple plant hormone treatments, as well as biotic and abiotic stresses. The yeast two-hybrid assay indicated physical interaction among ZmMYC2 and JA signal repressors ZmJAZ14, ZmJAZ17, AtJAZ1 and AtJAZ9. ZmMYC2 overexpression in Arabidopsis myc2myc3myc4 restored the sensitivity to JA treatment, resulting in shorter root growth and inducible anthocyanin accumulation. Furthermore, overexpression of ZmMYC2 in Arabidopsis elevated resistance to Botrytis cinerea. Further ChIP-Seq analysis revealed diverse regulatory roles of ZmMYC2 in maize, especially in the signaling crosstalk between JA and auxin. Hence, we identified ZmMYC2 and characterized its roles in regulating JA-mediated growth, development and defense responses.
Collapse
Affiliation(s)
- Jingye Fu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijun Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qin Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinqin Shen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Panpan Yang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chenying Zhu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|