1
|
Sirek T, Sirek A, Zmarzły N, Opławski M, Król-Jatręga K, Boroń D, Chalcarz M, Ossowski P, Dziobek K, Strojny D, Szymańska J, Gajdeczka J, Borawski P, Boroń K, Grabarek BO. Impact of MiRNAs on Wnt-related gene activity in breast cancer. Sci Rep 2025; 15:16211. [PMID: 40346182 PMCID: PMC12064741 DOI: 10.1038/s41598-025-00343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women. The Wnt pathway is involved in the regulation of cell proliferation, differentiation, survival, and migration. Its disruption may promote the induction of breast cancer and its further development. The aim of the study was to identify micro RNA (miRNAs) that could potentially influence the activity of Wnt-related genes in five types of breast cancer in Polish women. Study included patients with five breast cancer subtypes: 130 luminal A, 96 HER2-positive luminal B, 100 HER2-negative luminal B, 36 non-luminal HER2-positive, 43 triple negative breast cancer (TNBC). Tumor tissue was removed during surgery along with a margin of healthy tissue (control group). Expression profile of Wnt-related genes was assessed with mRNA microarrays and reverse transcription quantitative polymerase chain reaction (RT-qPCR). Protein expression was conducted with enzyme-linked immunosorbent assay (ELISA). miRNA profiling was carried out with miRNAs microarrays and the miRDB database. Reduced activity of miR-130a could be related to overexpression of CCND1 and GSK3B. Similarly for miR-199a and GSK3B. High activity of miR-2115 could be associated with downregulation of TCF7L2. WNT5 A overexpression may be linked to low levels of miR-497. In addition, study revealed increased levels of APC, DVL3, LEF1 with reduced activity of FZD4 and TCF7L1 in all five subtypes of breast cancer.
Collapse
Affiliation(s)
- Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, 40-555, Poland.
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biala, 43-316, Poland.
| | - Agata Sirek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa, Górnicza, Poland
| | - Nikola Zmarzły
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa, Górnicza, Poland
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, 31-826, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Kraków, Kraków, 30-705, Poland
| | - Katarzyna Król-Jatręga
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, 40-555, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biala, 43-316, Poland
| | - Dariusz Boroń
- Uczelnia Medyczna im. Marii Skłodowskiej-Curie, Warszawa, 00-136, Poland
| | - Michał Chalcarz
- Chalcarz Clinic-Aesthetic Surgery, Aesthetic Medicine, Poznan, 60-001, Poland
- Bieńkowski Medical Center-Plastic Surgery, Bydgoszcz, 85-020, Poland
| | - Piotr Ossowski
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa, Górnicza, Poland
| | - Konrad Dziobek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, 31-826, Poland
| | - Damian Strojny
- Institute of Health Care, National Academy of Applied Sciences in Przemyśl, Przemyśl, 37-700, Poland
- New Medical Techniques Specjalist Hospital of St. Family in Rudna Mała, Rzeszów, 36-060, Poland
| | - Joanna Szymańska
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa, Górnicza, Poland
| | - Julia Gajdeczka
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa, Górnicza, Poland
| | | | - Kacper Boroń
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, 40-555, Poland
| | - Beniamin Oskar Grabarek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa, Górnicza, Poland
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, 40-055, Poland
| |
Collapse
|
2
|
Peng J, Liu W, Tian J, Shu Y, Zhao R, Wang Y. Non-coding RNAs as key regulators of epithelial-mesenchymal transition in breast cancer. Front Cell Dev Biol 2025; 13:1544310. [PMID: 40201201 PMCID: PMC11975958 DOI: 10.3389/fcell.2025.1544310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/06/2025] [Indexed: 04/10/2025] Open
Abstract
This study examines the critical role of non-coding RNAs (ncRNAs) in regulating epithelial-mesenchymal transition (EMT) in breast cancer, a prevalent malignancy with significant metastatic potential. EMT, wherein cancer cells acquire mesenchymal traits, is fundamental to metastasis. ncRNAs-such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs)-modulate EMT by influencing gene expression and signaling pathways, affecting cancer cell migration and invasion. This review consolidates recent findings on ncRNA-mediated EMT regulation and explores their diagnostic and therapeutic potential. Specifically, miRNAs inhibit EMT-related transcription factors, while lncRNAs and circRNAs regulate gene expression through interactions with miRNAs, impacting EMT progression. Given the influence of ncRNAs on metastasis and therapeutic resistance, advancing ncRNA-based biomarkers and treatments holds promise for improving breast cancer outcomes.
Collapse
Affiliation(s)
- Jing Peng
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wenhui Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jiaju Tian
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuncong Shu
- School of life science, Lanzhou University, Lanzhou, China
| | - Rui Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Pommier A, Bleuse S, Deletang K, Varilh J, Nadaud M, Boisguerin P, Bourdin A, Taulan-Cadars M. The RNA-Binding Protein Tristetraprolin Contributes to CFTR mRNA Stability in Cystic Fibrosis. Am J Respir Cell Mol Biol 2025; 72:320-331. [PMID: 39417720 DOI: 10.1165/rcmb.2023-0209oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
Cystic fibrosis (CF) is the most common inherited disorder and is characterized by an inflammatory phenotype. We found that in bronchial epithelium reconstituted form lung tissue biopsies from patients with CF, the RNA-binding protein tristetraprolin (TTP), a key regulator of inflammation, is dysregulated in cells that strongly express cytokines and ILs. TTP activity is regulated by extensive posttranslational modifications, particularly phosphorylation. We found that, in addition to mRNA downregulation, phosphorylated TTP (which cannot bind to mRNA) accumulated in CF cultures, suggesting that the imbalance in TTP phosphorylation status could contribute to the inflammatory phenotype in CF. We confirmed TTP's destabilizing role on IL8 mRNA through its 3' UTR sequence in CF cells. We next demonstrated that TTP phosphorylation is mainly regulated by MK2 through the activation of ERK, which also was hyperphosphorylated. TTP is considered a mRNA decay factor with some exception, and we present a new positive role of TTP in CF cultures. We determined that TTP binds to specific adenylate-uridylate-rich element motifs on the 3' UTR of mRNA sequences and also, for the first time to our knowledge, to the 3' UTR of the cystic fibrosis transmembrane conductance regulator (CFTR), where TTP binding stabilizes the mRNA level. This study identified new partners that can be targeted in CF and proposes a new way to control CFTR gene expression.
Collapse
Affiliation(s)
| | - Solenne Bleuse
- Université de Montpellier, and
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| | - Karine Deletang
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| | - Jessica Varilh
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| | - Marion Nadaud
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| | - Prisca Boisguerin
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| | - Arnaud Bourdin
- Université de Montpellier, and
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
- Department of Respiratory Diseases, CHU Arnaud de Villeneuve, Montpellier, France
| | - Magali Taulan-Cadars
- Université de Montpellier, and
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| |
Collapse
|
4
|
Feng JN, Chen PR, Yuan SF, Dai Q, Zheng WE, Lin HL. Pingxiao pian attenuate invasiveness and proliferation of lung adenocarcinoma through regulating miR-29b-3p/TGF-β1/Smad/EMT pathway. Discov Oncol 2025; 16:232. [PMID: 39992570 PMCID: PMC11850683 DOI: 10.1007/s12672-025-01959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
INTRODUCTION Lung cancer is a highly prevalent and deadly disease worldwide, causing over 1.2 million deaths each year. Pingxiao Pian (PXP) tablets, a Chinese traditional medicine, have been widely applied in the treatment of lung cancer. However, the mechanism underlying therapeutic effects of PXP tablets remains undisclosed. METHODS A549 human LUAD cell line was utilized for in vitro experiments. Transfection of miR-29b mimic was performed using Lipofectamine 3000. PXP was purchased and dissolved into PBS and drinking water after carefully removing the outer coating. Dual-luciferase reporter assay was conducted to assess the regulatory effect of miR-29b on TGF-β1. The protein levels of epithelial-mesenchymal transition (EMT) markers and activation of TGF-β1 pathway were characterized using immunoblotting analysis. RESULTS PXP reduced the invasiveness and proliferation of LUAD cells by increasing miR-29b-3p expression in vitro. Overexpression of miR-29b-3p resulted in decreased cell proliferation and invasiveness, while silencing of miR-29b-3p in the A549 cells displayed the opposite effect. Moreover, PXP treatment reversed the increased cell proliferating rate triggered by miR-29b-3p silencing. Additionally, PXP was found to hamper EMT occurrence in A549 cells by regulating miR-29b-3p and reduce expression of N-cad and vimentin. Overexpression of miR-29b-3p blocked the phosphorylation of Smad2/3 and decreased TGF-β1 expression. Luciferase assay results indicated that miR-29b-3p directly regulated TGF-β1 expression. In vivo tumor formation experiments confirmed the tumor-reducing effects of PXP and the role of miR-29b in tumor progression. PXP treatment decreased tumor size and weight via regulating miR-29b-3p. CONCLUSION Our study suggests that PXP exerts anti-tumor effects in LUAD through the regulation of miR-29b and the inhibition of EMT via the TGF-β1/Smad2/3 pathway.
Collapse
Affiliation(s)
- Jie-Ni Feng
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Pei-Rui Chen
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Shao-Fei Yuan
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Qiang Dai
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Wei-E Zheng
- Department of Chemoradiation and Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Hua-Long Lin
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| |
Collapse
|
5
|
Kesheh MM, Bayat M, Kobravi S, Lotfalizadeh MH, Heydari A, Memar MY, Baghi HB, Kermanshahi AZ, Ravaei F, Taghavi SP, Zarepour F, Nahand JS, Hashemian SMR, Mirzaei H. MicroRNAs and human viral diseases: A focus on the role of microRNA-29. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167500. [PMID: 39260679 DOI: 10.1016/j.bbadis.2024.167500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
The viral replication can impress through cellular miRNAs. Indeed, either the antiviral responses or the viral infection changes through cellular miRNAs resulting in affecting many regulatory signaling pathways. One of the microRNA families that is effective in human cancers, diseases, and viral infections is the miR-29 family. Members of miR-29 family are effective in different viral infections as their roles have appeared in regulation of immunity pathways either in innate immunity including interferon and inflammatory pathways or in adaptive immunity including activation of T-cells and antibodies production. Although miR-29a affects viral replication by suppressing antiviral responses, it can inhibit the expression of viral mRNAs via binding to their 3'UTR. In the present work, we discuss the evidence related to miR-29a and viral infection through host immunity regulation. We also review roles of other miR-29 family members by focusing on their role as biomarkers for diagnosing and targets for viral diseases management.
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | | | - Azhdar Heydari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Zamani Kermanshahi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Chrysovergis A, Papanikolaou V, Roukas D, Spyropoulou D, Mastronikoli S, Papouliakos S, Tsiambas E, Pantos P, Fotiades P, Peschos D, Ragos V, Mastronikolis N, Kyrodimos E, Niotis A. Micro-Epigenetic Markers in Viral Genome: SARS-CoV-2 Infection Impact on Host Cell MicroRNA Landscape. MAEDICA 2024; 19:842-847. [PMID: 39974441 PMCID: PMC11834827 DOI: 10.26574/maedica.2024.19.4.842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
INTRODUCTION MicroRNAs (miRs) are crucial micro-genetic markers that significantly manipulate gene expression in neoplastic/malignant and non-neoplastic diseases, as viral infections. Different expression patterns of miRs seem to partially influence the response rates to specific chemo-targeted therapeutic regimens and prognosis in cancer patients. Concerning their nature, miRs are short non-coding RNAs including 20-25 nucleotides hosted in intra- or intergenic regions. Their most important function is the positive regulation of post-transcriptional gene silencing levels. Based on this activity, they enhance normal cell functions, including proliferation, apoptosis and tissue differentiation. Their deregulation in cancerous cells due to epigenetic and transcriptional imbalances is correlated with an excessive production of target mRNA. OBJECTIVE In the current paper, our aim was to generally describe the role of MiRs in cancer genome and we mainly focused on specific host target-cell miRs that are affected by SARS-CoV-2 in the COVID-19 pandemic. MATERIAL AND METHOD A systematic review of the literature was carried out based on the international database PubMed focused on miR nature, origin, structure and function in cancer genome and more recently on the influence of SARS-CoV-2 on affected cells. The following keywords were used: microRNA, SARS-CoV-2, COVID-19, infection, cancer, virus. A pool of 52 important articles were selected for the present review at the basis of exploring the SARS-CoV-2 efficacy in miRs. RESULTS A broad set of miRs, including miR-122, miR-16-2-3p, miR-3605-3p, miR-15b-5p, miR-486-3p, miR-486-5p, miR-447b, miR-3672, miR-325, miR-447b and miR-222, has been identified to be deregulated by SARS-CoV-2 infection. CONCLUSIONS miRs represent significant micro-epigenetic markers frequently deregulated in SARS-CoV-2 mediated infection (COVID-19). Interactions between miRs and SARS-CoV-2 RNA genome are under investigation. miR overexpression/expression loss in SARS-CoV-2 affected epithelia is correlated with specific genetic and by epigenetic signatures in the corresponding patients.
Collapse
Affiliation(s)
| | | | - Dimitrios Roukas
- Department of Psychiatry, 417 Veterans Army Hospital (NIMTS), Athens, Greece
| | - Despoina Spyropoulou
- Department of Radiation Oncology, Medical School, University of Patras, Patras, Greece
| | | | | | - Evangelos Tsiambas
- Department of Cytology, Molecular Unit, 417 Veterans Army Hospital (NIMTS), Athens,Greece
| | - Pavlos Pantos
- Department of Otorhinolaryngology, "HIPPOKRATEION" Hospital, Medical School,National and Kapodistrian University, Athens, Greece
| | | | - Dimitrios Peschos
- Department of Physiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Vasileios Ragos
- Dept of Maxillofacial, Medical School, University of Ioannina, Ioannina, Greece
| | | | - Efthymios Kyrodimos
- Department of Otorhinolaryngology, "HIPPOKRATEION" Hospital, Medical School,National and Kapodistrian University, Athens, Greece
| | - Athanasios Niotis
- Department of Surgery, 417 Veterans Army Hospital (NIMTS), Athens, Greece
| |
Collapse
|
7
|
Prasad M, Sekar R, Priya MDL, Varma SR, Karobari MI. A new perspective on diagnostic strategies concerning the potential of saliva-based miRNA signatures in oral cancer. Diagn Pathol 2024; 19:147. [PMID: 39548527 PMCID: PMC11568613 DOI: 10.1186/s13000-024-01575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024] Open
Abstract
Oral cancer, the most prevalent cancer worldwide, is far more likely to occur after the age of forty-five, according to the World Health Organization. Although many biomarkers have been discovered over the years using non-invasive saliva samples, biopsies, and human blood, these biomarkers have not been incorporated into standard clinical practice. Investigating the function of microRNAs (miRNAs) in the diagnosis, aetiology, prognosis, and treatment of oral cancer has drawn more attention in recent years. Though salivary microRNA can act as a window into the molecular environment of the tumour, there are challenges due to the heterogeneity of oral squamous cell carcinoma (OSCC), diversity in sample collection, processing techniques, and storage conditions. The up and downregulation of miRNAs has been found to have a profound role in OSCC as it regulates tumour stages by targeting many genes. As a result, the regulatory functions of miRNAs in OSCC underscore their significance in the field of cancer biology. Salivary miRNAs are useful diagnostic and prognostic indicators because their abnormal expression profiles shed light on tumour behaviour and patient prognosis. In addition to their diagnostic and prognostic value, miRNAs hold promise as therapeutic targets for oral cancer intervention. The current review sheds light on the challenges and potentials of microRNA studies that could lead to a better understanding of oral cancer prognosis, diagnosis, and therapeutic intervention. Furthermore, the clinical translation of OSCC biomarkers requires cooperation between investigators, physicians, regulatory bodies, and business partners. There is much potential for improving early identification, tracking therapy response, and forecasting outcomes in OSCC patients by including saliva-based miRNAs as biomarkers.
Collapse
Affiliation(s)
- Monisha Prasad
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, Tamil Nadu, 602105, India
| | - Ramya Sekar
- Department of Oral and Maxillofacial Pathology & Oral Microbiology, Meenakshi Ammal Dental College and Hospital, MAHER, Alapakkam Main Road, Maduravoyal, Chennai, Tamil Nadu, 600095, India
| | | | - Sudhir Rama Varma
- Department of Clinical Sciences, College of Dentistry, Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman University, Ajman - 346, Ajman, UAE
| | - Mohmed Isaqali Karobari
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.
- Department of Restorative Dentistry & Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh, 12211, Cambodia.
| |
Collapse
|
8
|
Shah Hosseini R, Nouri SM, Bansal P, Hjazi A, Kaur H, Hussein Kareem A, Kumar A, Al Zuhairi RAH, Al-Shaheri NA, Mahdavi P. The p53/miRNA Axis in Breast Cancer. DNA Cell Biol 2024; 43:549-558. [PMID: 39423159 DOI: 10.1089/dna.2024.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024] Open
Abstract
One of the main health issues in the modern world is cancer, with breast cancer (BC) as one of the most common types of malignancies. Different environmental and genetic risk factors are involved in the development of BC. One of the primary genes implicated in cancer development is the p53 gene, which is also known as the "gatekeeper" gene. p53 is involved in cancer development by interacting with numerous pathways and signaling factors, including microRNAs (miRNAs). miRNAs are small noncoding RNA molecules that regulate gene expression by binding to the 3' untranslated region of target mRNAs, resulting in their translational inhibition or degradation. If the p53 gene is mutated or degraded, it can contribute to the risk of BC by disrupting the expression of miRNAs. Similarly, the disruption of miRNAs causes the negative regulation of p53. Therefore, the p53/miRNA axis is a crucial pathway in the progression or prevention of BC, and understanding the regulation and function of this pathway may contribute to the development of new therapeutic strategies to help treat BC.
Collapse
Affiliation(s)
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | | | | | - Parya Mahdavi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Saranya I, Dharshini VS, Akshaya RL, Subhashini PS, Selvamurugan N. Regulatory and therapeutic implications of competing endogenous RNA network in breast cancer progression and metastasis: A review. Int J Biol Macromol 2024; 266:131075. [PMID: 38531528 DOI: 10.1016/j.ijbiomac.2024.131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Breast cancer (BC) is a global health concern, and development of diagnostic tools and targeted treatments for BC remains challenging. Therapeutic approaches for BC often involve a combination of surgery, radiation therapy, chemotherapy, targeted therapy, and hormone therapy. In recent years, there has been a growing interest in the role of noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and microRNAs (miRNAs), in BC and their therapeutic implications. Various biological processes such as cell proliferation, migration, and apoptosis rely on the activities of these ncRNAs, and their dysregulation has been implicated in BC progression. The regulatory function of the competitive endogenous RNA (ceRNA) network, which comprises lncRNAs, miRNAs, and mRNAs, has been the subject of extensive pathophysiological research. Most lncRNAs serve as molecular sponges for miRNAs and sequester their activities, thereby regulating the expression of target mRNAs and contributing to the promotion or inhibition of BC progression. This review summarizes recent findings on the role of ceRNA networks in BC progression, metastasis, and therapeutic resistance, and highlights the association of ceRNA networks with transcription factors and signaling pathways. Understanding the ceRNA network can lead to the discovery of biomarkers and targeted treatment methods to prevent the spread and metastasis of BC.
Collapse
Affiliation(s)
- I Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - V Sowfika Dharshini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - P Sakthi Subhashini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
10
|
Essongo FE, Mvogo A, Ben-Bolie GH. Dynamics of a diffusive model for cancer stem cells with time delay in microRNA-differentiated cancer cell interactions and radiotherapy effects. Sci Rep 2024; 14:5295. [PMID: 38438408 PMCID: PMC10912232 DOI: 10.1038/s41598-024-55212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Understand the dynamics of cancer stem cells (CSCs), prevent the non-recurrence of cancers and develop therapeutic strategies to destroy both cancer cells and CSCs remain a challenge topic. In this paper, we study both analytically and numerically the dynamics of CSCs under radiotherapy effects. The dynamical model takes into account the diffusion of cells, the de-differentiation (or plasticity) mechanism of differentiated cancer cells (DCs) and the time delay on the interaction between microRNAs molecules (microRNAs) with DCs. The stability of the model system is studied by using a Hopf bifurcation analysis. We mainly investigate on the critical time delay τ c , that represents the time for DCs to transform into CSCs after the interaction of microRNAs with DCs. Using the system parameters, we calculate the value of τ c for prostate, lung and breast cancers. To confirm the analytical predictions, the numerical simulations are performed and show the formation of spatiotemporal circular patterns. Such patterns have been found as promising diagnostic and therapeutic value in management of cancer and various diseases. The radiotherapy is applied in the particular case of prostate model. We calculate the optimum dose of radiation and determine the probability of avoiding local cancer recurrence after radiotherapy treatment. We find numerically a complete eradication of patterns when the radiotherapy is applied before a time t < τ c . This scenario induces microRNAs to act as suppressors as experimentally observed in prostate cancer. The results obtained in this paper will provide a better concept for the clinicians and oncologists to understand the complex dynamics of CSCs and to design more efficacious therapeutic strategies to prevent the non-recurrence of cancers.
Collapse
Affiliation(s)
- Frank Eric Essongo
- Laboratory of Nuclear Physics, Dosimetry and Radiation Protection, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Alain Mvogo
- Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon.
| | - Germain Hubert Ben-Bolie
- Laboratory of Nuclear Physics, Dosimetry and Radiation Protection, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| |
Collapse
|
11
|
Mukerjee N, Nag S, Bhattacharya B, Alexiou A, Mirgh D, Mukherjee D, Adhikari MD, Anand K, Muthusamy R, Gorai S, Thorat N. Clinical impact of epithelial–mesenchymal transition for cancer therapy. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe epithelial–mesenchymal transition (EMT) represents a pivotal frontier in oncology, playing a central role in the metastatic cascade of cancer—a leading global health challenge. This comprehensive review delves into the complexities of EMT, a process where cancer cells gain exceptional mobility, facilitating their invasion into distant organs and the establishment of secondary malignancies. We thoroughly examine the myriad of factors influencing EMT, encompassing transcription factors, signalling pathways, metabolic alterations, microRNAs, long non‐coding RNAs, epigenetic changes, exosomal interactions and the intricate dynamics of the tumour microenvironment. Particularly, the review emphasises the advanced stages of EMT, crucial for the development of highly aggressive cancer phenotypes. During this phase, cancer cells penetrate the vascular barrier and exploit the bloodstream to propagate life‐threatening metastases through the mesenchymal–epithelial transition. We also explore EMT's significant role in fostering tumour dormancy, senescence, the emergence of cancer stem cells and the formidable challenge of therapeutic resistance. Our review transcends a mere inventory of EMT‐inducing elements; it critically assesses the current state of EMT‐focused clinical trials, revealing both the hurdles and significant breakthroughs. Highlighting the potential of EMT research, we project its transformative impact on the future of cancer therapy. This exploration is aimed at paving the way towards an era of effectively managing this relentless disease, positioning EMT at the forefront of innovative cancer research strategies.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Department of Microbiology West Bengal State University, Barasat Kolkata India
| | - Sagnik Nag
- Department of Bio‐Sciences School of Biosciences & Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Bikramjit Bhattacharya
- Department of Applied Microbiology School of Biosciences and Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Athanasios Alexiou
- Department of Science and Engineering Novel Global Community Educational Foundation Hebersham New South Wales Australia
| | - Divya Mirgh
- Vaccine and Immunotherapy Canter Massachusetts General Hospital Boston Massachusetts USA
| | | | - Manab Deb Adhikari
- Department of Biotechnology University of North Bengal Darjeeling West Bengal India
| | - Krishnan Anand
- Department of Chemical Pathology School of Pathology Faculty of Health Sciences University of the Free State Bloemfontein South Africa
| | - Raman Muthusamy
- Center for Global Health Research Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| | | | - Nanasaheb Thorat
- Limerick Digital Cancer Research Centre and Department of Physics Bernal Institute University of Limerick, Castletroy Limerick Ireland
| |
Collapse
|
12
|
Chiou JT, Lee YC, Chang LS. Hydroquinone-selected chronic myelogenous leukemia cells are sensitive to chloroquine-induced cytotoxicity via MCL1 suppression and glycolysis inhibition. Biochem Pharmacol 2023; 218:115934. [PMID: 37989415 DOI: 10.1016/j.bcp.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Previous studies have provided evidence that repeated exposure to the benzene metabolite hydroquinone (HQ) induces malignant transformation and increases basal autophagy in the chronic myeloid leukemia (CML) cell line K562. This study explored the cytotoxicity of the autophagy inhibitor chloroquine (CQ) on parental and HQ-selected K562 (K562/HQ) cells. CQ triggered apoptosis in these cells independently of inhibiting autophagic flux; however, in K562/HQ cells, CQ-induced cytotoxicity was higher than in K562 cells. Mechanistically, CQ-induced NOXA upregulation led to MCL1 downregulation and mitochondrial depolarization in K562/HQ cells. MCL1 overexpression or NOXA silencing attenuated CQ-mediated cytotoxicity in K562/HQ cells. CQ triggered ERK inactivation to increase Sp1, NFκB, and p300 expression, and co-assembly of Sp1, NFκB, and p300 in the miR-29a promoter region coordinately upregulated miR-29a transcription. CQ-induced miR-29a expression destabilized tristetraprolin (TTP) mRNA, which in turn reduced TTP-mediated NOXA mRNA decay, thereby increasing NOXA protein expression. A similar mechanism explained the CQ-induced downregulation of MCL1 in K562 cells. K562/HQ cells relied more on glycolysis for ATP production than K562 cells, whereas inhibition of glycolysis by CQ was greater in K562/HQ cells than in K562 cells. Likewise, CQ-induced MCL1 suppression and glycolysis inhibition resulted in higher cytotoxicity in CML KU812/HQ cells than in KU812 cells. Taken together, our data confirm that CQ inhibits MCL1 expression through the ERK/miR-29a/TTP/NOXA pathway, and that inhibition of glycolysis is positively correlated to higher cytotoxicity of CQ on HQ-selected CML cells.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
13
|
Farsi NR, Naghipour B, Shahabi P, Safaralizadeh R, Hajiasgharzadeh K, Dastmalchi N, Alipour MR. The role of microRNAs in hepatocellular carcinoma: Therapeutic targeting of tumor suppressor and oncogenic genes. Clin Exp Hepatol 2023; 9:307-319. [PMID: 38774201 PMCID: PMC11103798 DOI: 10.5114/ceh.2023.131669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/31/2023] [Indexed: 05/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a severe malignant liver cancer with a poor prognosis and a high mortality rate. This carcinoma is a multistage process that begins with chronic hepatitis and progresses to cirrhosis, dysplastic nodules, and eventually HCC. However, the exact molecular etiology remains unclear. MicroRNAs (miRs) are small non-coding RNAs that modulate the expression of numerous genes. These molecules have become significant participants in several functions, including cell proliferation, differentiation, development, and tumorrelated properties. They have a pivotal role in carcinogenesis as oncogenes or tumor suppressor genes. Furthermore, some investigations have shown that particular miRs might be used as predictive or diagnostic markers and therapeutic targets in HCC therapy. This review study summarizes the current level of knowledge on the role of miRs in the initiation and progression of HCC.
Collapse
Affiliation(s)
- Nasim Rahimi Farsi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Bahman Naghipour
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Mohammad Reza Alipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Babadag S, Çelebi-Saltik B. A cellular regulator of the niche: telocyte. Tissue Barriers 2023; 11:2131955. [PMID: 36218299 PMCID: PMC10606812 DOI: 10.1080/21688370.2022.2131955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022] Open
Abstract
Interstitial cells are present in the environment of stem cells in order to increase stem cell proliferation and differentiation and they are important to increase the efficiency of their transplantation. Telocytes (TCs) play an important role both in the preservation of tissue organ integrity and in the pathophysiology of many diseases, especially cancer. They make homo- or heterocellular contacts to form the structure of 3D network through their telopodes and deliver signaling molecules via a juxtacrine and/or paracrine association by budding shed vesicles into the vascular, nervous and endocrine systems. During this interaction, along with organelles, mRNA, microRNA, long non-coding RNA, and genomic DNA are transferred. This review article not only specifies the properties of TCs and their roles in the tissue organ microenvironment but also gives information about the factors that play a role in the transport of epigenetic information by TCs.
Collapse
Affiliation(s)
- Sena Babadag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| |
Collapse
|
15
|
Belliveau J, Papoutsakis ET. The microRNomes of Chinese hamster ovary (CHO) cells and their extracellular vesicles, and how they respond to osmotic and ammonia stress. Biotechnol Bioeng 2023; 120:2700-2716. [PMID: 36788116 DOI: 10.1002/bit.28356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
A new area of focus in Chinese hamster ovary (CHO) biotechnology is the role of small (exosomes) and large (microvesicles or microparticles) extracellular vesicles (EVs). CHO cells in culture exchange large quantities of proteins and RNA through these EVs, yet the content and role of these EVs remain elusive. MicroRNAs (miRs or miRNA) are central to adaptive responses to stress and more broadly to changes in culture conditions. Given that EVs are highly enriched in miRs, and that EVs release large quantities of miRs both in vivo and in vitro, EVs and their miR content likely play an important role in adaptive responses. Here we report the miRNA landscape of CHO cells and their EVs under normal culture conditions and under ammonia and osmotic stress. We show that both cells and EVs are highly enriched in five miRs (among over 600 miRs) that make up about half of their total miR content, and that these highly enriched miRs differ significantly between normal and stress culture conditions. Notable is the high enrichment in miR-92a and miR-23a under normal culture conditions, in contrast to the high enrichment in let-7 family miRs (let-7c, let-7b, and let-7a) under both stress conditions. The latter suggests a preserved stress-responsive function of the let-7 miR family, one of the most highly preserved miR families across species, where among other functions, let-7 miRs regulate core oncogenes, which, depending on the biological context, may tip the balance between cell cycle arrest and apoptosis. While the expected-based on their profound enrichment-important role of these highly enriched miRs remains to be dissected, our data and analysis constitute an important resource for exploring the role of miRs in cell adaptation as well as for synthetic applications.
Collapse
Affiliation(s)
- Jessica Belliveau
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
16
|
Chen J, Patial S, Saini Y. Silencing of RNA binding protein, ZFP36L1, promotes epithelial-mesenchymal transition in liver cancer cells by regulating transcription factor ZEB2. Cell Signal 2022; 100:110462. [PMID: 36100056 DOI: 10.1016/j.cellsig.2022.110462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/13/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
RNA binding proteins (RBPs) of the zinc finger protein 36 family including zinc finger protein 36 like 1 (ZFP36L1) are implicated in cancer, however, the underlying molecular mechanisms have remained unclear. These proteins function by regulating post-transcriptional gene expression upon binding to the AU-rich elements (ARE's) within the 3'untranslated regions (3'UTRs) of specific mRNAs and increasing their mRNA turnover. Here, we tested the role of ZFP36L1 in hepatocellular carcinoma (HCC) cell lines. ZFP36L1 was under-expressed among the three RBPs in a majority of the HCC cell lines. Silencing of ZFP36L1 in two of the seven HCC cell lines resulted in epithelial-mesenchymal transition (EMT) like morphological changes, which were characterized by the transition of epithelial morphology to elongated mesenchymal morphology and increased migration and invasion potential. Conversely, overexpression of ZFP36L1 abolished these changes. RNA-seq analysis of ZFP36L1-depleted HCC cells revealed a significant upregulation of an EMT-inducing transcription factor, ZEB2 (zinc-finger E-box-binding homeobox 2), and enrichment of pathways associated with mesenchymal cell development and differentiation. ZEB2 mRNA contains AREs within its 3'UTR and its stability was increased following ZFP36L1 knockdown. Conversely, ZEB2 was significantly downregulated following ZFP36L1 overexpression and ZEB2 3'UTR was regulated by ZFP36L1 in luciferase reporter assays. These data identify ZEB2 mRNA as a ZFP36L1 target in HCC cells and demonstrate that ZFP36L1 regulates EMT possibly through direct regulation of ZEB2 mRNA. In summary, our results demonstrate that ZFP36L1 suppresses EMT inliver cancer cells by down-regulating the expression of EMT-inducing transcription factor, ZEB2. These data suggest an important role of ZFP36L1 in the development, progression, and metastasis of hepatocellular cancer.
Collapse
Affiliation(s)
- Jian Chen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States of America.
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States of America.
| |
Collapse
|
17
|
METAXAS GEORGIOSI, TSIAMBAS EVANGELOS, MARINOPOULOS SPYRIDON, SPYROPOULOU DESPOINA, MANAIOS LOUKAS, ADAMOPOULOU MARIA, FALIDAS EVANGELOS, PESCHOS DIMITRIOS, KALKANI HELEN, DIMITRAKAKIS CONSTANTINE. Epigenetic Mechanisms in Breast Adenocarcinoma: Novel DNA Methylation Patterns. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:603-608. [PMID: 36340455 PMCID: PMC9628153 DOI: 10.21873/cdp.10149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/08/2022] [Indexed: 11/11/2022]
Abstract
Breast adenocarcinoma is a leading cause of death in females worldwide. A broad spectrum of genetic and epigenetic alterations has been already identified and reported in millions of examined cancerous substrates, evidence of a high-level genomic heterogeneity that characterizes these malignancies. Concerning epigenetic changes and imbalances that critically affect progression and prognosis in the corresponding patients, DNA methylation, histone modifications (acetylation), micro-RNAs (miRs) alterations and chromatin re-organization represent the main mechanisms. Referring to DNA methylation, promoter hyper-hypo methylation in critical tumour suppressor and oncogenes is implicated in normal epithelia transformation to their neoplastic and finally malignant cyto-phenotypes. The current review is focused on the different methylation patterns and mechanisms detected in breast adenocarcinoma and their impact on the corresponding groups of patient response to specific chemotherapeutic regimens and life span prognosis.
Collapse
Affiliation(s)
- GEORGIOS I. METAXAS
- Breast Unit, 1st Department of Obstetrics and Gynecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - SPYRIDON MARINOPOULOS
- Breast Unit, 1st Department of Obstetrics and Gynecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - DESPOINA SPYROPOULOU
- Department of Radiation Oncology, Medical School, University of Patras, Patras, Greece
| | - LOUKAS MANAIOS
- Department of Surgery, Bioclinic Medical Center, Athens, Greece
| | - MARIA ADAMOPOULOU
- Laboratory of Molecular Microbiology and Immunology, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, Athens, Greece
| | | | - DIMITRIOS PESCHOS
- Department of Physiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - HELEN KALKANI
- Leucippus Technology Park, NCSR Demokritos, Athens, Greece
| | - CONSTANTINE DIMITRAKAKIS
- Breast Unit, 1st Department of Obstetrics and Gynecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Snyder BL, Blackshear PJ. Clinical implications of tristetraprolin (TTP) modulation in the treatment of inflammatory diseases. Pharmacol Ther 2022; 239:108198. [PMID: 35525391 PMCID: PMC9636069 DOI: 10.1016/j.pharmthera.2022.108198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
Abnormal regulation of pro-inflammatory cytokine and chemokine mediators can contribute to the excess inflammation characteristic of many autoimmune diseases, such as rheumatoid arthritis, psoriasis, Crohn's disease, type 1 diabetes, and many others. The tristetraprolin (TTP) family consists of a small group of related RNA-binding proteins that bind to preferred AU-rich binding sites within the 3'-untranslated regions of specific mRNAs to promote mRNA deadenylation and decay. TTP deficient mice develop a severe systemic inflammatory syndrome consisting of arthritis, myeloid hyperplasia, dermatitis, autoimmunity and cachexia, due at least in part to the excess accumulation of proinflammatory chemokine and cytokine mRNAs and their encoded proteins. To investigate the possibility that increased TTP expression or activity might have a beneficial effect on inflammatory diseases, at least two mouse models have been developed that provide proof of principle that increasing TTP activity can promote the decay of pro-inflammatory and other relevant transcripts, and decrease the severity of mouse models of inflammatory disease. Animal studies of this type are summarized here, and we briefly review the prospects for harnessing these insights for the development of TTP-based anti-inflammatory treatments in humans.
Collapse
Affiliation(s)
- Brittany L Snyder
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States of America; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States of America; Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States of America.
| |
Collapse
|
19
|
The Role of miR-29 Family in TGF-β Driven Fibrosis in Glaucomatous Optic Neuropathy. Int J Mol Sci 2022; 23:ijms231810216. [PMID: 36142127 PMCID: PMC9499597 DOI: 10.3390/ijms231810216] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Primary open angle glaucoma (POAG), a chronic optic neuropathy, remains the leading cause of irreversible blindness worldwide. It is driven in part by the pro-fibrotic cytokine transforming growth factor beta (TGF-β) and leads to extracellular matrix remodelling at the lamina cribrosa of the optic nerve head. Despite an array of medical and surgical treatments targeting the only known modifiable risk factor, raised intraocular pressure, many patients still progress and develop significant visual field loss and eventual blindness. The search for alternative treatment strategies targeting the underlying fibrotic transformation in the optic nerve head and trabecular meshwork in glaucoma is ongoing. MicroRNAs are small non-coding RNAs known to regulate post-transcriptional gene expression. Extensive research has been undertaken to uncover the complex role of miRNAs in gene expression and miRNA dysregulation in fibrotic disease. MiR-29 is a family of miRNAs which are strongly anti-fibrotic in their effects on the TGF-β signalling pathway and the regulation of extracellular matrix production and deposition. In this review, we discuss the anti-fibrotic effects of miR-29 and the role of miR-29 in ocular pathology and in the development of glaucomatous optic neuropathy. A better understanding of the role of miR-29 in POAG may aid in developing diagnostic and therapeutic strategies in glaucoma.
Collapse
|
20
|
Khajah MA, Al-Ateyah A, Luqmani YA. MicroRNA expression profiling of endocrine sensitive and resistant breast cancer cell lines. Biochem Biophys Rep 2022; 31:101316. [PMID: 35879960 PMCID: PMC9307586 DOI: 10.1016/j.bbrep.2022.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022] Open
Abstract
Background Methods Results Conclusions Around 50–60% of microRNAs were significantly differentially expressed between ER- and ER + breast cancer cell lines. Transfection of miR-200c-3p mimic into ER -ve cells induced MET and reduced cell motility. Transfecting of miR-449a inhibitor into ER -ve cells reduced cell invasion but did not induce EMT.
Collapse
|
21
|
Carboxyl Group-Modified Myoglobin Induces TNF-α-Mediated Apoptosis in Leukemia Cells. Pharmaceuticals (Basel) 2022; 15:ph15091066. [PMID: 36145287 PMCID: PMC9501283 DOI: 10.3390/ph15091066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Previous studies have shown that chemical modification may increase the activity of proteins or confer novel activity to proteins. Some studies have indicated that myoglobin (Mb) is cytotoxic; however, the underlying mechanisms remain unclear. In this study, we investigated whether chemical modification of the carboxyl group by semicarbazide could promote the Mb cytotoxicity in human leukemia U937 cells and the underlying mechanism of semicarbazide-modified myoglobin (SEM-Mb)-induced U937 cell death. The semicarbazide-modified Mb (SEM-Mb) induced U937 cell apoptosis via the production of cleaved caspase-8 and t-Bid, while silencing of FADD abolished this effect. These findings suggest that SEM-Mb can induce U937 cell death by activating the death receptor-mediated pathway. The SEM-Mb inhibited miR-99a expression, leading to increased NOX4 mRNA and protein expression, which promoted SIRT3 degradation, and, in turn, induced ROS-mediated p38 MAPK phosphorylation. Activated p38 MAPK stimulated miR-29a-dependent tristetraprolin (TTP) mRNA decay. Downregulation of TTP slowed TNF-α mRNA turnover, thereby increasing TNF-α protein expression. The SEM-Mb-induced decrease in cell viability and TNF-α upregulation were alleviated by abrogating the NOX4/SIRT3/ROS/p38 MAPK axis or ectopic expression of TTP. Taken together, our results demonstrated that the NOX4/SIRT3/p38 MAPK/TTP axis induces TNF-α-mediated apoptosis in U937 cells following SEM-Mb treatment. A pathway regulating p38 MAPK-mediated TNF-α expression also explains the cytotoxicity of SEM-Mb in the human leukemia cell lines HL-60, THP-1, K562, Jurkat, and ABT-199-resistant U937. Furthermore, these findings suggest that the carboxyl group-modified Mb is a potential structural template for the generation of tumoricidal proteins.
Collapse
|
22
|
Potential therapeutic applications of microRNAs in cancer diagnosis and treatment: Sharpening a double-edged sword? Eur J Pharmacol 2022; 932:175210. [PMID: 35981607 DOI: 10.1016/j.ejphar.2022.175210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Cancer is a leading cause of increased morbidity and mortality worldwide despite advancements in diagnosis and treatment. Lack of early detection and diagnosis of different cancers and adverse effects and toxicity associated with conventional cancer treatments, such as chemotherapy and radiation, remains a problem. MicroRNAs can act as oncogenes or tumour suppressors in different types of cancers. Their distinct gene expression in various stages and types of cancerous cells make them attractive targets for cancer diagnosis and therapy. The growing research and clinical interests in gene therapy and nano-drug delivery systems have led to the development of potential miRNA-targeted treatments encompassing miRNA mimics, antagonists, and their use in cancer chemotherapy sensitization. In this review, we discuss the recent advancements in understanding the role of miRNAs in cancer development and their potential use as biomarkers in clinical diagnostics and as targets in chemotherapy of cancer.
Collapse
|
23
|
Shao C, Wang R, Kong D, Gao Q, Xu C. Identification of potential core genes in gastric cancer using bioinformatics analysis. J Gastrointest Oncol 2021; 12:2109-2122. [PMID: 34790378 DOI: 10.21037/jgo-21-628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
Background Gastric cancer is the third leading cause of cancer-related mortality in China. Most patients with gastric cancer have no obvious early symptoms; thus, many of them are in the middle and late stages of gastric cancer at first diagnosis and miss the best treatment opportunity. Molecular targeted therapy is particularly important in changing this status quo. Methods Three microarray datasets (GSE29272, GSE33651, and GSE54129) were selected from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened using GEO2R. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to analyze the functional features of these DEGs and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The protein-protein interaction (PPI) of these DEGs was visualized by Cytoscape software. The expressions of hub genes were evaluated based on Gene Expression Profiling Interactive Analysis (GEPIA). Moreover, we used the online Kaplan-Meier plotter survival analysis tool to evaluate the prognostic values of hub genes. The Target Scan database was used to predict microRNAs that could regulate the target gene, collagen type IV alpha 1 chain (COL4A1). The OncomiR database was used to analyze the expression levels of three microRNAs, as well as the relationships with tumor stage, grade, and prognosis. Results We identified 78 DEGs, including 53 upregulated genes and 25 downregulated genes. The DEGs were mainly enriched in extracellular matrix organization, extracellular structure organization, and response to wounding. Moreover, three KEGG pathways were markedly enriched, including focal adhesion, complement and coagulation cascades, and extracellular matrix (ECM)-receptor interaction. Among these 78 genes, we selected 10 hub genes. The overexpression levels of these hub genes were closely related to poor prognosis and the development of gastric cancer (except for COL3A1, LOX, and CXCL8). Moreover, we found that microRNA-29a-3p, miR-29b-3p, and miR-29c-3p were the potential microRNAs that could regulate the target gene, COL4A1. Conclusions Our results showed that FN1, COL1A1, TIMP1, COL1A2, SPARC, COL4A1, and SERPINE1 could contribute to the development of novel molecular targets and biomarker-driven treatments for gastric cancer.
Collapse
Affiliation(s)
- Changjiang Shao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Gastroenterology, The Second People's Hospital of Lianyungang City, Lianyungang, China
| | - Rong Wang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dandan Kong
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian Gao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Yin Z, Shen H, Gu CM, Zhang MQ, Liu Z, Huang J, Zhu Y, Zhong Q, Huang Y, Wu F, Ou R, Zhang Q, Liu S. MiRNA-142-3P and FUS can be Sponged by Long Noncoding RNA DUBR to Promote Cell Proliferation in Acute Myeloid Leukemia. Front Mol Biosci 2021; 8:754936. [PMID: 34746238 PMCID: PMC8570042 DOI: 10.3389/fmolb.2021.754936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Acute myeloid leukemia (AML) represents a frequently occurring adulthood acute leukemia (AL). Great progresses have been achieved in the treatment of AML, but its pathogenic mechanism remains unclear. This study reported the biological functions of lncRNA DUBR in AML pathogenic mechanism. As a result, lncRNA DUBR showed high expression level within AML, resulting in poor prognosis, especially in M4 AML. In vitro studies elucidated that knockdown of DUBR with small interfering RNA (siRNA) resulted in the suppression of survival and colony formation ability, as well as induction of apoptosis, in AML cells. RNA pull-down assay and computational revealed that DUBR could sponge with miRNA-142-3P and interact with FUS protein. MiRNA-142-3P have a negative correlation with DUBR and overexpression of miRNA-142-3P inhibited cell growth in AML. Meanwhile, DUBR promoted the expression of FUS protein, targeting inhibition of FUS significantly promoted cell apoptosis in AML cell lines. In conclusion, these results revealed new mechanism of lncRNA DUBR in AML malignant behavior, and suggested that the manipulation of DUBR expression could serve as a potential strategy in AML therapy.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - HuiJuan Shen
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chun Ming Gu
- Clinical Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ming Qi Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Zhi Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jing Huang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yangmin Zhu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qi Zhong
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yizhen Huang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Feima Wu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ruiming Ou
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
25
|
MiR-29b-1-5p regulates the proliferation and differentiation of chicken primary myoblasts and analysis of its effective targets. Poult Sci 2021; 101:101557. [PMID: 34852967 PMCID: PMC8639469 DOI: 10.1016/j.psj.2021.101557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/05/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
Several recent studies investigated the role of the miR-29 family in muscle development. However, only a few studies focused on chicken skeletal muscle. In the present study, cell cycle, 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8), and other assays indicated that miR-29b-1-5p can inhibit the proliferation of chicken primary myoblasts (CPMs); the western blot assay and immunofluorescence detection of MYHC demonstrated that miR-29b-1-5p can promote the differentiation of myoblasts. The functional enrichment analysis revealed that the target genes of miR-29b-1-5p may be involved in muscle tissue development, muscle organ development, and striated muscle tissue development, which are biological processes related to muscle development. The correlation analysis showed that these 6 genes, that is, ankyrin repeat domain 9 (ANKRD9), lactate dehydrogenase A (LDHA), transcription factor 12 (TCF12), FAT atypical cadherin 1 (FAT1), lin-9 homolog (LIN9), and integrin beta 3 binding protein (ITGB3BP), can be used as effective candidate target genes of miR-29b-1-5p. Moreover, miR-29b-1-5p inhibits the expression of ANKRD9 by directly binding the 3'UTR of ANKRD9. Overall, these data indicate that miR-29b-1-5p inhibits the proliferation of primary chicken myoblasts, stimulates their differentiation, and is involved in the process of muscle development and that its effective target gene is ANKRD9. This study identified the molecular mechanism of miR-29b-1-5p in chicken muscle development.
Collapse
|
26
|
Mahmoudian M, Razmara E, Mahmud Hussen B, Simiyari M, Lotfizadeh N, Motaghed H, Khazraei Monfared A, Montazeri M, Babashah S. Identification of a six-microRNA signature as a potential diagnostic biomarker in breast cancer tissues. J Clin Lab Anal 2021; 35:e24010. [PMID: 34528314 PMCID: PMC8605139 DOI: 10.1002/jcla.24010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is by far the most common malignancy among women. Epigenetic modulators, microRNAs in particular, may set stages for BC development and its progression. Herein, we aimed to assess the diagnostic potentiality of a signature of six miRNAs (i.e., hsa-miR-25-3p, -29a-5p, -105-3p, -181b1-5p, -335-5p, and -339-5p) in BC and adjacent non-tumor tissues. METHODS A pair of 50 tumor and adjacent non-tumor samples were taken from BC patients. The expression of each candidate miRNA was measured using quantitative reverse transcription PCR. To investigate the possible roles of each miRNA and their impressions on BC prognosis, in silico tools were used. Receiver operating characteristic (ROC) curves were performed to determine the diagnostic accuracy of each miRNA and the possible association of their expression with clinicopathological characteristics was analyzed. RESULTS Our findings showed the upregulation of hsa-miR-25-3p, -29a-5p, -105-3p, and -181b1-5p, and the downregulation of hsa-miR-335-5p and -339-5p in BC tumor compared to corresponding adjacent tissues. Except for hsa-miR-339-5p, the up-/down-regulation of the candidate miRNAs was associated with TNM stages. Except for hsa-miR-105-3p, each candidate miRNA was correlated with HER-2 status. ROC curve analysis showed that the signature of six-miRNA is a potential biomarker distinguishing between tumor and non-tumor breast tissue samples. CONCLUSION We showed that the dysregulation of a novel signature of six-miRNA can be used as a potential biomarker for BC diagnosis.
Collapse
Affiliation(s)
- Mojdeh Mahmoudian
- Department of GeneticsFaculty of SciencesScience and Research BranchIslamic Azad UniversityTehranIran
| | - Ehsan Razmara
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Bashdar Mahmud Hussen
- Department of PharmacognosyCollege of PharmacyHawler Medical UniversityKurdistan RegionIraq
| | - Mandana Simiyari
- Department of Veterinary MedicineFaculty of Veterinary MedicineTabriz BranchIslamic Azad UniversityTabrizIran
| | - Nazanin Lotfizadeh
- Department of BiologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Hoda Motaghed
- Department of BiologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Arefeh Khazraei Monfared
- Department of BiologyFaculty of Biological SciencesIslamic Azad University‐Tehran North BranchTehranIran
| | - Maryam Montazeri
- Department of Medical BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
27
|
Identification of potential genes related to breast cancer brain metastasis in breast cancer patients. Biosci Rep 2021; 41:229807. [PMID: 34541602 PMCID: PMC8521534 DOI: 10.1042/bsr20211615] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 01/04/2023] Open
Abstract
Brain metastases (BMs) usually develop in breast cancer (BC) patients. Thus, the molecular mechanisms of breast cancer brain metastasis (BCBM) are of great importance in designing therapeutic strategies to treat or prevent BCBM. The present study attempted to identify novel diagnostic and prognostic biomarkers of BCBM. Two datasets (GSE125989 and GSE100534) were obtained from the Gene Expression Omnibus (GEO) database to find differentially expressed genes (DEGs) in cases of BC with and without brain metastasis (BM). A total of 146 overlapping DEGs, including 103 up-regulated and 43 down-regulated genes, were identified. Functional enrichment analysis showed that these DEGs were mainly enriched for functions including extracellular matrix (ECM) organization and collagen catabolic fibril organization. Using protein-protein interaction (PPI) and principal component analysis (PCA) analysis, we identified ten key genes, including LAMA4, COL1A1, COL5A2, COL3A1, COL4A1, COL5A1, COL5A3, COL6A3, COL6A2, and COL6A1. Additionally, COL5A1, COL4A1, COL1A1, COL6A1, COL6A2, and COL6A3 were significantly associated with the overall survival of BC patients. Furthermore, COL6A3, COL5A1, and COL4A1 were potentially correlated with BCBM in human epidermal growth factor 2 (HER2) expression. Additionally, the miR-29 family might participate in the process of metastasis by modulating the cancer microenvironment. Based on datasets in the GEO database, several DEGs have been identified as playing potentially important roles in BCBM in BC patients.
Collapse
|
28
|
Alsadi N, Mallet JF, Matar C. miRNA-200b Signature in the Prevention of Skin Cancer Stem Cells by Polyphenol-enriched Blueberry Preparation. J Cancer Prev 2021; 26:162-173. [PMID: 34703819 PMCID: PMC8511576 DOI: 10.15430/jcp.2021.26.3.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Exposure of the skin to solar UV radiation leads to inflammation, DNA damage, and dysregulation of cellular signaling pathways, which may cause skin cancer. Photochemoprevention with natural products is an effective strategy for the control of cutaneous neoplasia. Polyphenols have been proven to help prevent skin cancer and to inhibit the growth of cancer stem cells (CSCs) through epigenetic mechanisms, including modulation of microRNAs expression. Thus, the current study aimed to assess the effect of polyphenol enriched blueberry preparation (PEBP) or non-fermented blueberry juice (NBJ) on expression of miRNAs and target proteins associated with different clinicopathological characteristics of skin cancer such as stemness, motility, and invasiveness. We observed that PEBP significantly inhibited the proliferation of skin CSCs derived from different melanoma cell lines, HS 294T and B16F10. Moreover, PEBP was able to reduce the formation of melanophores. We also showed that the expression of the CD133+ stem cell marker in B16F10 and HS294T cell lines was significantly decreased after treating the cells with PEBP in comparison to the NBJ and control groups. Importantly, tumor suppressors' miR-200s, involved in the regulation of the epithelial-to-mesenchymal transition and metastasis, were strikingly upregulated. In addition, we have shown that a protein target of the tumor suppressor miR200b, ZEB1, was also significantly modulated. Thus, the results demonstrates that PEBP possesses potent anticancer and anti-metastatic potentials and may represent a novel chemopreventative agent against skin cancer.
Collapse
Affiliation(s)
- Nawal Alsadi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| | - Jean-François Mallet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| | - Chantal Matar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada.,Department of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
29
|
Jin H, Wang H, Jin X, Wang W. Long non‑coding RNA H19 regulates LASP1 expression in osteosarcoma by competitively binding to miR‑29a‑3p. Oncol Rep 2021; 46:207. [PMID: 34328197 PMCID: PMC8329914 DOI: 10.3892/or.2021.8158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/17/2021] [Indexed: 11/06/2022] Open
Abstract
A prevalent type of bone tumor, osteosarcoma (OS) is prone to pulmonary metastasis, which results in a high relapse risk and poor prognosis for patients. The progression of OS is significantly associated with the expression of long non‑coding (lnc)RNA H19. To the best of our knowledge, however, the exact molecular mechanism of this lncRNA has not been fully investigated. The present study verified the effect of H19 on the proliferation and invasion of osteosarcoma cells via in vivo and in vitro experiments, including Cell Counting Kit‑8, western blot, reverse transcription‑quantitative PCR, wound healing and Transwell assays. H19 was found to be overexpressed in OS compared with corresponding normal adjacent tissue. In addition, H19 served as a competing endogenous ncRNA targeting microRNA‑29a‑3p and activating LIM and SH3 domain protein 1 and modulating the OS cell phenotype. The results of the present study may improve understanding of OS pathogenesis.
Collapse
Affiliation(s)
- Hao Jin
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Huan Wang
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenbo Wang
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
30
|
The Role of miRNA in the Pathophysiology of Neuroendocrine Tumors. Int J Mol Sci 2021; 22:ijms22168569. [PMID: 34445276 PMCID: PMC8395312 DOI: 10.3390/ijms22168569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine tumors (NETs) represent a tumor group that is both rare and heterogeneous. Prognosis is largely determined by the tumor grading and the site of the primary tumor and metastases. Despite intensive research efforts, only modest advances in diagnostic and therapeutic approaches have been achieved in recent years. For patients with non-respectable tumor stages, prognosis is poor. In this context, the development of novel diagnostic tools for early detection of NETs and prediction of tumor response to therapy as well as estimation of the overall prognosis would greatly improve the clinical management of NETs. However, identification of novel diagnostic molecules is hampered by an inadequate understanding of the pathophysiology of neuroendocrine malignancies. It has recently been demonstrated that microRNA (miRNA), a family of small RNA molecules with an established role in the pathophysiology of quite different cancer entities, may also play a role as a biomarker. Here, we summarize the available knowledge on the role of miRNAs in the development of NET and highlight their potential use as serum-based biomarkers in the context of this disease. We discuss important challenges currently preventing their use in clinical routine and give an outlook on future directions of miRNA research in NET.
Collapse
|
31
|
Jayachandran J, Srinivasan H, Mani KP. Molecular mechanism involved in epithelial to mesenchymal transition. Arch Biochem Biophys 2021; 710:108984. [PMID: 34252392 DOI: 10.1016/j.abb.2021.108984] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/07/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a biological process that plays an important role during embryonic development. During this process, the epithelial cells lose their polarity and acquire mesenchymal properties. In addition to embryonic development, EMT is also well-known to participate in tissue repair, inflammation, fibrosis, and tumor metastasis. In the present review, we address the basics of epithelial to mesenchymal transition during both development and disease conditions and emphasize the role of various transcription factors and miRNAs involved in the process.
Collapse
Affiliation(s)
| | - Harini Srinivasan
- ASK-II, 212, Vascular Research Lab, SASTRA Deemed University, Thanjavur, India
| | - Krishna Priya Mani
- ASK-II, 212, Vascular Research Lab, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
32
|
Eirin A, Lerman LO. Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles for Chronic Kidney Disease: Are We There Yet? Hypertension 2021; 78:261-269. [PMID: 34176287 DOI: 10.1161/hypertensionaha.121.14596] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) are the most utilized cell type for cellular therapy, partly due to their important proliferative potential and ability to differentiate into various cell types. MSCs produce large amounts of extracellular vesicles (EVs), which carry genetic and protein cargo to mediate MSC paracrine function. Recently, MSC-derived EVs have been successfully used in several preclinical models of chronic kidney disease. However, uncertainty remains regarding EV fate, safety, and long-term effects, which might impose important limitations on their path to clinical translation. This review discusses the therapeutic application of MSC-derived EV therapy for renal disease, with particular emphasis on potential mechanisms of kidney repair and major translational barriers. Emerging evidence indicates that the cargo of MSC-derived EVs is capable of modulating several pathways responsible for renal injury, including inflammation, oxidative stress, apoptosis, fibrosis, and microvascular remodeling. EV-induced modulation of these pathways has been associated with important renoprotective effects in experimental studies. However, scarce clinical data are available, and several challenges need to be addressed as we move toward clinical translation, including standardization of methods for EV isolation and characterization, EV fate, duration of EV effects, and effects of cardiovascular risk factors. MSC-derived EVs have the potential to preserve renal structure and function, but further experimental and clinical evidence is needed to confirm their protective effects in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| |
Collapse
|
33
|
Yang X, Han B, Zhang R, Su Y, Hosseini DK, Wu H, Yang M, Sun H. Development and validation of a RNA binding protein-associated prognostic model for head and neck squamous cell carcinoma. Aging (Albany NY) 2021; 13:7975-7997. [PMID: 33758106 PMCID: PMC8034976 DOI: 10.18632/aging.202848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/13/2021] [Indexed: 12/13/2022]
Abstract
Evidence shows that defects in RNA-binding proteins (RBPs) are closely related to the occurrence and development of HNSCC. We obtained 502 tumors and 44 normal samples from the TCGA database, among which 190 differentially expressed RBPs were screened. Finally, a prognostic model containing nine RBPs (CELF2, CPEB1, DDX39B, EIF3L, EZH2, KHDRBS3, RNASE10, RNASE3 and SIDT1) was produced. Further analysis showed that the overall survival rate in the high-risk group was lower than that in the low-risk group. The area under the ROC curve (AUC) in the training and testing groups was significant (3-year AUC, 0.735 vs 0.796; 5-year AUC, 0.821 vs 0.804). In addition, a comprehensive analysis of nine identified RBPs showed that most of them were related to the OS of HNSCC patients, and three of them (CELF2, EZH2, and SIDT1) were differentially expressed in HNSCC and control tissues at the protein level. In addition, our data revealed that the identified RBPs are highly interconnected, with high frequency copy number changes in HNSCC samples. GSEA indicated that the abnormal biological processes related to RNA and the activation of some classical tumor signaling pathways were important driving forces for the development of HNSCC. Our results provide novel insights into the pathogenesis of HNSCC, among which nine RBP markers have potential application value in clinical decision-making and individualized treatment of HNSCC.
Collapse
Affiliation(s)
- Xiuping Yang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Baoai Han
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Runshi Zhang
- Department of Clinical Laboratory, Xi'an No. 1 Hospital, Xi'an 710000, China
| | - Yuan Su
- Department of Clinical Laboratory, Xi'an Labor Union Hospital, Xi'an 710000, China
| | - Davood K Hosseini
- Department of Internal Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Han Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Minlan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Haiying Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
34
|
Singh M, Kumar V, Sehrawat N, Yadav M, Chaudhary M, Upadhyay SK, Kumar S, Sharma V, Kumar S, Dilbaghi N, Sharma AK. Current paradigms in epigenetic anticancer therapeutics and future challenges. Semin Cancer Biol 2021; 83:422-440. [PMID: 33766649 DOI: 10.1016/j.semcancer.2021.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Any alteration at the genetic or epigenetic level, may result in multiplex of diseases including tumorigenesis which ultimately results in the cancer development. Restoration of the normal epigenome by reversing the epigenetic alterations have been reported in tumors paving the way for development of an effective epigenetic treatment in cancer. However, delineating various epigenetic events has been a challenging task so far despite substantial progress in understanding DNA methylation and histone modifications during transcription of genes. Many inhibitors in the form of epigenetic drugs mostly targeting chromatin and histone modifying enzymes including DNA methyltransferase (DNMT) enzyme inhibitors and a histone deacetylases (HDACs) inhibitor, have been in use subsequent to the approval by FDA for cancer treatment. Similarly, other inhibitory drugs, such as FK228, suberoylanilide hydroxamic acid (SAHA) and MS-275, have been successfully tested in clinical studies. Despite all these advancements, still we see a hazy view as far as a promising epigenetic anticancer therapy is concerned. The challenges are to have more specific and effective inhibitors with negligible side effects. Moreover, the alterations seen in tumors are not well understood for which one has to gain deeper insight into the tumor pathology as well. Current review focusses on such epigenetic alterations occurring in cancer and the effective strategies to utilize such alterations for potential therapeutic use and treatment in cancer.
Collapse
Affiliation(s)
- Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mayank Chaudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sushil K Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College Sector-26, Chandigarh, UT, 160019, India
| | - Sandeep Kumar
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| |
Collapse
|
35
|
Dostal Z, Sebera M, Srovnal J, Staffova K, Modriansky M. Dual Effect of Taxifolin on ZEB2 Cancer Signaling in HepG2 Cells. Molecules 2021; 26:1476. [PMID: 33803107 PMCID: PMC7963166 DOI: 10.3390/molecules26051476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Polyphenols, secondary metabolites of plants, exhibit different anti-cancer and cytoprotective properties such as anti-radical, anti-angiogenic, anti-inflammation, or cardioprotective. Some of these activities could be linked to modulation of miRNAs expression. MiRNAs play an important role in posttranscriptional regulation of their target genes that could be important within cell signalling or preservation of cell homeostasis, e.g., cell survival/apoptosis. We evaluated the influence of a non-toxic concentration of taxifolin and quercetin on the expression of majority human miRNAs via Affymetrix GeneChip™ miRNA 3.0 Array. For the evaluation we used two cell models corresponding to liver tissue, Hep G2 and primary human hepatocytes. The array analysis identified four miRNAs, miR-153, miR-204, miR-211, and miR-377-3p, with reduced expression after taxifolin treatment. All of these miRNAs are linked to modulation of ZEB2 expression in various models. Indeed, ZEB2 protein displayed upregulation after taxifolin treatment in a dose dependent manner. However, the modulation did not lead to epithelial mesenchymal transition. Our data show that taxifolin inhibits Akt phosphorylation, thereby diminishing ZEB2 signalling that could trigger carcinogenesis. We conclude that biological activity of taxifolin may have ambiguous or even contradictory outcomes because of non-specific effect on the cell.
Collapse
Affiliation(s)
- Zdenek Dostal
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, 77515 Olomouc, Czech Republic;
| | - Martin Sebera
- Faculty of Sport Studies, Masaryk University, 60177 Brno, Czech Republic;
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77515 Olomouc, Czech Republic; (J.S.); (K.S.)
| | - Katerina Staffova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77515 Olomouc, Czech Republic; (J.S.); (K.S.)
| | - Martin Modriansky
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, 77515 Olomouc, Czech Republic;
| |
Collapse
|
36
|
Assabban A, Dubois-Vedrenne I, Van Maele L, Salcedo R, Snyder BL, Zhou L, Azouz A, de Toeuf B, Lapouge G, La C, Melchior M, Nguyen M, Thomas S, Wu SF, Hu W, Kruys V, Blanpain C, Trinchieri G, Gueydan C, Blackshear PJ, Goriely S. Tristetraprolin expression by keratinocytes protects against skin carcinogenesis. JCI Insight 2021; 6:140669. [PMID: 33497366 PMCID: PMC8021119 DOI: 10.1172/jci.insight.140669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/20/2021] [Indexed: 01/27/2023] Open
Abstract
Cancer is caused primarily by genomic alterations resulting in deregulation of gene regulatory circuits in key growth, apoptosis, or DNA repair pathways. Multiple genes associated with the initiation and development of tumors are also regulated at the level of mRNA decay, through the recruitment of RNA-binding proteins to AU-rich elements (AREs) located in their 3'-untranslated regions. One of these ARE-binding proteins, tristetraprolin (TTP; encoded by Zfp36), is consistently dysregulated in many human malignancies. Herein, using regulated overexpression or conditional ablation in the context of cutaneous chemical carcinogenesis, we show that TTP represents a critical regulator of skin tumorigenesis. We provide evidence that TTP controlled both tumor-associated inflammation and key oncogenic pathways in neoplastic epidermal cells. We identify Areg as a direct target of TTP in keratinocytes and show that EGFR signaling potentially contributed to exacerbated tumor formation. Finally, single-cell RNA-Seq analysis indicated that ZFP36 was downregulated in human malignant keratinocytes. We conclude that TTP expression by epidermal cells played a major role in the control of skin tumorigenesis.
Collapse
Affiliation(s)
- Assiya Assabban
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Ingrid Dubois-Vedrenne
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Laurye Van Maele
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Rosalba Salcedo
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | - Lecong Zhou
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Abdulkader Azouz
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Bérengère de Toeuf
- Laboratoire de Biologie Moléculaire du Gène, ULB Center for Research in Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Gaëlle Lapouge
- Laboratory of Stem Cells and Cancer, WELBIO, and ULB Cancer Research Center, Université Libre de Bruxelles, Brussels, Belgium
| | - Caroline La
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Maxime Melchior
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Muriel Nguyen
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Séverine Thomas
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Si Fan Wu
- Laboratoire de Biologie Moléculaire du Gène, ULB Center for Research in Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Wenqian Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, New York, USA
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du Gène, ULB Center for Research in Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, WELBIO, and ULB Cancer Research Center, Université Libre de Bruxelles, Brussels, Belgium
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Cyril Gueydan
- Laboratoire de Biologie Moléculaire du Gène, ULB Center for Research in Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Perry J. Blackshear
- Signal Transduction Laboratory and
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Stanislas Goriely
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
37
|
Hu X, Tan S, Yin H, Khoso PA, Xu Z, Li S. Selenium-mediated gga-miR-29a-3p regulates LMH cell proliferation, invasion, and migration by targeting COL4A2. Metallomics 2021; 12:449-459. [PMID: 32039426 DOI: 10.1039/c9mt00266a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selenium (Se) is an essential trace element that has several functions in cellular processes related to cancer prevention. While the cancericidal effect of Se has been reported in liver cancer, the mechanism has not been clarified. MiR-29a has widely been reported as a tumor suppressor; however, it also acts as a carcinogenic agent by increasing cell invasion in human epithelial cancer cells and hepatoma cells. In a previous study, we found that miR-29a-3p is a Se-sensitive miRNA. However, its effect in the chicken hepatocellular carcinoma cell line (LMH) is still unknown. In the present study, we found that the expression of miR-29a-3p in LMH cells was decreased by Se supplementation and increased under Se-deficient conditions. Flow cytometry and CCK-8 results suggested that Se decreased LMH cell proliferation induced by miR-29a-3p overexpression. Transwell and gap-closure assays implied that Se mediated LMH cell invasion and migration by downregulating miR-29a-3p. Quantitative real-time polymerase chain reaction and Western blotting results suggested that Se mitigated miR-29a-3p overexpression-induced LMH cell proliferation by downregulating CDK2, cyclin-D1, CDK6, and cyclin-E1. We further demonstrated that collagen type IV alpha 2 (COL4A2) is a target gene of miR-29a-3p. COL4A2 activates the RhoA/ROCK pathway to promote LMH cell invasion and migration. In conclusion, Se mediated miR-29a-3p overexpression induced LMH cell invasion and migration by targeting COL4A2 to inactivate the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Siran Tan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Pervez Ahmed Khoso
- Shaheed Benazir Bhutto, University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Zhe Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
38
|
Bozkurt SB, Ozturk B, Kocak N, Unlu A. Differences of time-dependent microRNA expressions in breast cancer cells. Noncoding RNA Res 2021; 6:15-22. [PMID: 33385103 PMCID: PMC7770513 DOI: 10.1016/j.ncrna.2020.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
MicroRNA (miRNA) expression is a dynamic process in the cell, and the proper time period for post-transcriptional regulation might be critical due to the gene-on/-off expression times of the cell. Here, we investigated the effect of different time-points on proliferation, invasion and miRNA expression profiles of human breast cancer cell lines MCF-7 (non-metastatic, epithelium-like breast cancer cell line with oestrogen receptor (ER) positive (+) and human breast cancer cell lines MDA-MB-435 (metastatic, invasive, ER negative (-). For this purpose, MCF-7 and MDA-MB-435 cells were seeded different number in E-plate 16 for proliferation experiment using an electrical impedance-based real-time cell analyzer system (RTCA) for 168 h. Similarly, invasion potential of MCF-7 and MDA-MB-435 were determined by RTCA for 90 h. Total RNAs including miRNAs were isolated at 2, 4, 6, 12, 24, 48 h from the MCF-7 and MDA-MB-435 cells. Afterward, the quantitative 84 miRNA expressions of MCF-7 and MDA-MB-435 were analyzed by Fluidigm Microfluidic 96.96 Dynamic Array. The results of these study demonstrated that both proliferation potential and invasion capacity of MDA-MB-435 is higher than MCF-7 as time-dependent manner. Furthermore, we detected that up/down expressions of 32 miRNAs at all time points in MDA-MB-435 compared to MCF-7 (at least ten-fold increased). Because of the high number of miRNAs, we more closely evaluated the expression of six of them (miR-100-5p, miR-29a-3p, miR-130a-3p, miR-10a-5p, miR-10b-5p, miR-203a), and determined that their levels were dramatically changed by at least 50-fold at different time points of the experiment (p < 0.01). The expression levels of five of these miRNAs (miR-100-5p, miR-10a-5p, miR-10b-5p, miR-130a-3p, and miR-29a-3p) started to increase from the fourth hour and continued to increase until the 48th hour in MDA-MB-435 cells compared to MCF-7 cells (p < 0.01). Simultaneously, the expression of one of these miRNAs (miR-203a) decreased from the sixth hour to the 48th hour in MDA-MB-435 as compared to MCF-7. We determined pathways associated with target genes using mirPath - DIANA TOOLS. Small RNAs including miRNA are essential regulatory molecules for gene expressions. In the literature, gene expressions have been published as burst and pulse in the form of discontinuous transcription. The data of the research suggested that time-dependent changes of miRNA expressions can be affected target gene transcriptional fluctuations in breast cancer cell and can be base for the further studies.
Collapse
Affiliation(s)
- Serife Buket Bozkurt
- University of Selcuk, Faculty of Medicine, Department of Medical Biochemistry, Konya, Turkey.,Hacettepe University, Research Center of Dental Faculty, Ankara, Turkey
| | - Bahadir Ozturk
- University of Selcuk, Faculty of Medicine, Department of Medical Biochemistry, Konya, Turkey
| | - Nadir Kocak
- University of Selcuk, Faculty of Medicine, Department of Genetic, Konya, Turkey
| | - Ali Unlu
- University of Selcuk, Faculty of Medicine, Department of Medical Biochemistry, Konya, Turkey
| |
Collapse
|
39
|
Dolicka D, Sobolewski C, Gjorgjieva M, Correia de Sousa M, Berthou F, De Vito C, Colin DJ, Bejuy O, Fournier M, Maeder C, Blackshear PJ, Rubbia-Brandt L, Foti M. Tristetraprolin Promotes Hepatic Inflammation and Tumor Initiation but Restrains Cancer Progression to Malignancy. Cell Mol Gastroenterol Hepatol 2020; 11:597-621. [PMID: 32987153 PMCID: PMC7806869 DOI: 10.1016/j.jcmgh.2020.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Tristetraprolin (TTP) is a key post-transcriptional regulator of inflammatory and oncogenic transcripts. Accordingly, TTP was reported to act as a tumor suppressor in specific cancers. Herein, we investigated how TTP contributes to the development of liver inflammation and fibrosis, which are key drivers of hepatocarcinogenesis, as well as to the onset and progression of hepatocellular carcinoma (HCC). METHODS TTP expression was investigated in mouse/human models of hepatic metabolic diseases and cancer. The role of TTP in nonalcoholic steatohepatitis and HCC development was further examined through in vivo/vitro approaches using liver-specific TTP knockout mice and a panel of hepatic cancer cells. RESULTS Our data demonstrate that TTP loss in vivo strongly restrains development of hepatic steatosis and inflammation/fibrosis in mice fed a methionine/choline-deficient diet, as well as HCC development induced by the carcinogen diethylnitrosamine. In contrast, low TTP expression fostered migration and invasion capacities of in vitro transformed hepatic cancer cells likely by unleashing expression of key oncogenes previously associated with these cancerous features. Consistent with these data, TTP was significantly down-regulated in high-grade human HCC, a feature further correlating with poor clinical prognosis. Finally, we uncover hepatocyte nuclear factor 4 alpha and early growth response 1, two key transcription factors lost with hepatocyte dedifferentiation, as key regulators of TTP expression. CONCLUSIONS Although TTP importantly contributes to hepatic inflammation and cancer initiation, its loss with hepatocyte dedifferentiation fosters cancer cells migration and invasion. Loss of TTP may represent a clinically relevant biomarker of high-grade HCC associated with poor prognosis.
Collapse
MESH Headings
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/immunology
- Carcinogenesis/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Datasets as Topic
- Diethylnitrosamine/administration & dosage
- Diethylnitrosamine/toxicity
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Hepatocytes
- Humans
- Liver/immunology
- Liver/pathology
- Liver Cirrhosis/genetics
- Liver Cirrhosis/immunology
- Liver Cirrhosis/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/chemistry
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Non-alcoholic Fatty Liver Disease
- Primary Cell Culture
- Prognosis
- RNA-Seq
- Survival Analysis
- Tristetraprolin/genetics
- Tristetraprolin/metabolism
Collapse
Affiliation(s)
- Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Flavien Berthou
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claudio De Vito
- Division of Clinical Pathology, University Hospitals, Geneva, Switzerland
| | - Didier J Colin
- Centre for Biomedical Imaging and Preclinical Imaging Platform, University of Geneva, Geneva, Switzerland
| | - Olivia Bejuy
- Centre for Biomedical Imaging and Preclinical Imaging Platform, University of Geneva, Geneva, Switzerland
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Perry J Blackshear
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
40
|
Tavano F, Fontana A, Mazza T, Gioffreda D, Biagini T, Palumbo O, Carella M, Andriulli A. Early-Onset Diabetes as Risk Factor for Pancreatic Cancer: miRNA Expression Profiling in Plasma Uncovers a Role for miR-20b-5p, miR-29a, and miR-18a-5p in Diabetes of Recent Diagnosis. Front Oncol 2020; 10:1567. [PMID: 33072549 PMCID: PMC7533599 DOI: 10.3389/fonc.2020.01567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
The high prevalence of early-diabetes in patients with pancreatic cancer (PanC) implies that its recognition could help identify people at high risk of developing PanC. Candidate microRNAs (miRNAs) associated with recent diabetes were screened from our previous miRNA expression profiling on 10 pools of plasma from PanC patients and non-PanC controls, both including also subjects with early- and late-diabetes. The droplet digital PCR (ddPCR) was used to re-test candidate miRNAs in a new independent cohort of 69 subjects (40 PanC, 29 non-PanC) with early- (17 PanC, 13 non-PanC) or late-diabetes (23 PanC, 16 non-PanC), and in 100 non-diabetic healthy subjects (HS). miRNA levels were evaluated for differences between subjects enrolled into the study and for their diagnostic performance, also compared to the CA 19-9 determinations. MiR-20b-5p, miR-29a, and miR-18a-5p were selected from the previous miRNA expression profiling. The ddPCR confirmed the increase of miR-20b-5p and miR-29a levels in PanC with early- compared to those with late-diabetes. Conversely, miR-20b-5p, miR-29a, and miR-18a-5p were over-expressed in both PanC and non-PanC with recent diabetes compared to HS, and each miRNA achieved a similar diagnostic performance in distinguishing either PanC or non-PanC with early-diabetes from HS (miR-20b-5p: AUC = 0.877 vs. AUC = 0.873; miR-29a: AUC = 0.838 vs. AUC = 0.810; miR-18a-5p: AUC = 0.824 vs. AUC = 0.875). Despite miR-20b-5p and miR-29a expressions were also higher both in PanC and non-PanC with late-diabetes with respect to HS, the diagnostic accuracy in PanC with late-diabetes vs. HS reached by each miRNA (miR-20b-5p: AUC = 0.760; miR-29a: AUC = 0.630) was lower than the ones achieved in PanC with early-diabetes vs. HS. Furthermore, miR-20b-5p achieved a higher diagnostic accuracy to discriminate non-PanC with early-diabetes from HS (AUC = 0.868; SP = 81%; PPV = 32.1%) compared to the CA 19-9 (AUC = 0.700; SP = 40.0%; PPV = 15.5%), and the joint (miR-20b-5p and CA 19-9) discrimination ability was higher than the one achieved by the CA 19-9 tested alone (AUC = 0.900, p = 0.003). Our data highlighted the association between miR-18a-5p and early-diabetes, and suggested for miR-20b-5p and miR-29 a role in identifying early diabetes in PanC, albeit not as an early manifestation of cancer. MiR-20b-5p as more informative marker than CA 19-9 in distinguishing non-PanC with recent diabetes from HS was also uncovered.
Collapse
Affiliation(s)
- Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Andrea Fontana
- Unit of Biostatistics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Domenica Gioffreda
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Tommaso Biagini
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Angelo Andriulli
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| |
Collapse
|
41
|
The Tristetraprolin Family of RNA-Binding Proteins in Cancer: Progress and Future Prospects. Cancers (Basel) 2020; 12:cancers12061539. [PMID: 32545247 PMCID: PMC7352335 DOI: 10.3390/cancers12061539] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Post-transcriptional regulation of gene expression plays a key role in cellular proliferation, differentiation, migration, and apoptosis. Increasing evidence suggests dysregulated post-transcriptional gene expression as an important mechanism in the pathogenesis of cancer. The tristetraprolin family of RNA-binding proteins (RBPs), which include Zinc Finger Protein 36 (ZFP36; commonly referred to as tristetraprolin (TTP)), Zinc Finger Protein 36 like 1 (ZFP36L1), and Zinc Finger Protein 36 like 2 (ZFP36L2), play key roles in the post-transcriptional regulation of gene expression. Mechanistically, these proteins function by binding to the AU-rich elements within the 3′-untranslated regions of their target mRNAs and, in turn, increasing mRNA turnover. The TTP family RBPs are emerging as key regulators of multiple biological processes relevant to cancer and are aberrantly expressed in numerous human cancers. The TTP family RBPs have tumor-suppressive properties and are also associated with cancer prognosis, metastasis, and resistance to chemotherapy. Herein, we summarize the various hallmark molecular traits of cancers that are reported to be regulated by the TTP family RBPs. We emphasize the role of the TTP family RBPs in the regulation of trait-associated mRNA targets in relevant cancer types/cell lines. Finally, we highlight the potential of the TTP family RBPs as prognostic indicators and discuss the possibility of targeting these TTP family RBPs for therapeutic benefits.
Collapse
|
42
|
Ang L, Guo L, Wang J, Huang J, Lou X, Zhao M. Oncolytic virotherapy armed with an engineered interfering lncRNA exhibits antitumor activity by blocking the epithelial mesenchymal transition in triple-negative breast cancer. Cancer Lett 2020; 479:42-53. [PMID: 32200038 DOI: 10.1016/j.canlet.2020.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/23/2020] [Accepted: 03/14/2020] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) has special characteristics of significant aggressiveness, and strong potential for metastasis and recurrence; currently there are no targeted drugs for TNBC. Abnormal activation of epithelial-mesenchymal transition (EMT) plays an important role in these malignant behaviors of TNBC. In the crosstalk among the multiple EMT-associated signaling pathways, many miRNAs participate in regulating pathway activity, where they act as "traffic lights" at the intersection of these pathways. In this study, we used miRNA microarray technology to detect differentially expressed miRNAs related to EMT in TNBC, and we identified and verified 9 highly expressed oncogenic miRNAs (OncomiRs). High expression of these OncomiRs in clinical breast cancer tissues affected the prognosis of patients, and inhibition of their expression blocked EMT in TNBC cell lines and suppressed cancer cell proliferation and migration. We constructed an oncolytic adenovirus (AdSVP-lncRNAi9) armed with an artificially-designed interfering lncRNA (lncRNAi9), which exhibited an activity to block EMT in TNBC cells by disrupting the functions of multiple OncomiRs; the efficacy of such a treatment for TNBC was demonstrated in cytology and animal experiments. This research provides a new candidate oncolytic virotherapy for treating highly malignant refractory TNBC.
Collapse
Affiliation(s)
- Lin Ang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, 230011, Anhui, China
| | - Lingli Guo
- Department of Reconstructive Surgery, PLA General Hospital, Beijing, 100853, China
| | - Jin Wang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, 230011, Anhui, China
| | - Jin Huang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, 230011, Anhui, China
| | - Xiaoli Lou
- Department of Reconstructive Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, 200433, China.
| | - Min Zhao
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, 230011, Anhui, China.
| |
Collapse
|
43
|
Wang Y, Zhang L, Pang Y, Song L, Shang H, Li Z, Liu Q, Zhang Y, Wang X, Li Q, Zhang Q, Liu C, Li F. MicroRNA-29 family inhibits rhabdomyosarcoma formation and progression by regulating GEFT function. Am J Transl Res 2020; 12:1136-1154. [PMID: 32269740 PMCID: PMC7137044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
The microRNA-29 family, which contains mir-29a, mir-29b, and mir-29c, can promote or resist the development of several types of tumors. However, its role in rhabdomyosarcoma (RMS) has not been determined. In this work, we detected the expression of mir-29a/b/c in RMS. Results showed that the tissues and cell lines in RMS were significantly lower than those in muscle and human skeletal muscle cells, and that these cell lines could also inhibit the proliferation, migration, and invasion and induce apoptosis of RMS cells. Dual-luciferase reporter assay and RNA immunoprecipitation verified the direct binding site between mir-29a/b/c and GEFT. Under the combined actions of mir-29a/b/c and GEFT, the former weakened the promoting effect of GEFT on RMS cells. Finally, mir-29a inhibited the tumorigenesis of subcutaneous xenografts in nude mice and inhibited the mRNA and protein expression levels of GEFT in transplanted tumors. These findings proved that mir-29 inhibits the occurrence of RMS and may be a potential molecular target.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Liang Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, China
| | - Yuweng Pang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Lingxie Song
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing 100020, China
| | - Hao Shang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Zhenzhen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Qianqian Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Yangyang Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Xiaomeng Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Qianru Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Qiaochu Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing 100020, China
| |
Collapse
|
44
|
Hasham K, Ahmed N, Zeshan B. Circulating microRNAs in oncogenic viral infections: potential diagnostic biomarkers. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2251-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
45
|
HUI P, WANG Y, CHEN B, WANG Z, QIN S. Mir-29c Expression in Glioma and Its Effects on Tumor Cell Proliferation and Apoptosis. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:304-311. [PMID: 32461938 PMCID: PMC7231707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND To investigate the expression of microRNA-29c (miR-29c) in glioma and its effects on cell proliferation and apoptosis. METHODS A retrospective analysis was performed on 76 glioma patients in People's Hospital of Weifang, Weifang, Shandong, China from May 2013 to June 2017 (experimental group) and 63 healthy subjects in the same period (control group). qRT-PCR was used to detect the miR-29c expression. Changes of serum miR-29c expression level and the correlation of miR-29c of glioma patients with the degree of tumor differentiation and pathological type were observed. Cells were grouped before transfection into blank group (no transfection), negative control group (transfected with miRNA NC) and experimental group (transfected with miR-29c mimics). CCK-8 assay was used to detect cell proliferation, flow cytometry to detect apoptosis. RESULTS Expression of miR-29c in serum was significantly lower in experimental group than that in control group (P<0.05). The expression level of miR-29c of glioma patients increased with the degree of tumor differentiation (P<0.05). miR-29c in serum was not significantly correlated with the pathological type. CONCLUSION miR-29c could inhibit the proliferation of glioma cells and promote apoptosis. miR-29c is lowly expressed in glioma, and the overexpression of which in glioma cells can inhibit tumor cells proliferation and promote apoptosis. It may be a tumor suppressor miRNA of glioma, and the expression level of which can be used as reference for evaluating the grade of glioma. It is indicated that the abnormal expression of miR-29c may be a key factor in the occurrence and development of glioma.
Collapse
Affiliation(s)
- Peiquan HUI
- Department of Neurosurgery, People's Hospital of Weifang, Weifang, Shandong, China
| | - Yuling WANG
- Department of Ultrasonography, People's Hospital of Weifang, Weifang, Shandong, China
| | - Bing CHEN
- Department of Neurosurgery, People's Hospital of Weifang, Weifang, Shandong, China
| | - Zengwu WANG
- Department of Neurosurgery, People's Hospital of Weifang, Weifang, Shandong, China
| | - Shiqiang QIN
- Department of Neurosurgery, People's Hospital of Weifang, Weifang, Shandong, China,Corresponding Author:
| |
Collapse
|
46
|
Pérez-Linares FJ, Pérezpeña-Diazconti M, García-Quintana J, Baay-Guzmán G, Cabrera-Muñoz L, Sadowinski-Pine S, Serrano-Bello C, Murillo-Maldonado M, Contreras-Ramos A, Eguía-Aguilar P. MicroRNA Profiling in Wilms Tumor: Identification of Potential Biomarkers. Front Pediatr 2020; 8:337. [PMID: 32766179 PMCID: PMC7378594 DOI: 10.3389/fped.2020.00337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/21/2020] [Indexed: 01/21/2023] Open
Abstract
Wilms tumor (WT) is the most frequently diagnosed malignant renal tumor in children. With current treatments, ~90% of children diagnosed with WT survive and generally present with tumors characterized by favorable histology (FHWT), whereas prognosis is poor for the remaining 10% of cases where the tumors are characterized by cellular diffuse anaplasia (DAWT). Relatively few studies have investigated microRNA-related epigenetic regulation and its relationship with altered gene expression in WT. Here, we aim to identify microRNAs differentially expressed in WT and describe their expression in terms of cellular anaplasia, metastasis, and association with the main genetic alterations in WT to identify potential prognostic biomarkers. Expression profiling using TaqMan low-density array was performed in a discovery cohort consisting of four DAWT and eight FHWT samples. Relative quantification resulted in the identification of 109 (48.7%) microRNAs differentially expressed in both WT types. Of these, miR-10a-5p, miR-29a-3p, miR-181a-5p, miR-200b-3p, and miR-218-5p were selected and tested by RT-qPCR on a validation cohort of 53 patient samples. MiR-29a and miR-218 showed significant differences in FHWT with low (P = 0.0018) and high (P = 0.0131) expression, respectively. To discriminate between miRNA expression FHWTs and healthy controls, the receiver operating characteristic (ROC) curves were obtained; miR-29a AUC was 0.7843. Furthermore, low expression levels of miR-29a and miR-200b (P = 0.0027 and P = 0.0248) were observed in metastatic tumors. ROC curves for miR-29a discriminated metastatic patients (AUC = 0.8529) and miR-200b (AUC = 0.7757). To confirm the differences between cases with poor prognosis, we performed in situ hybridization for three microRNAs in five DAWT and 17 FHWT samples, and only significant differences between adjacent tissues and FHWT tumors were found for miR-181a, miR-200b, and miR-218, in both total pixels and nuclear analyses. Analysis of copy number variation in genes showed that the most prevalent alterations were WTX (47%), IGF2 (21%), 1q (36%) gain, 1p36 (16%), and WTX deletion/1q duplicate (26%). The five microRNAs evaluated are involved in the Hippo signaling pathway and participate in Wilms tumor development through their effects on differentiation, proliferation, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Fabiola Jimena Pérez-Linares
- Laboratorio de Biología Molecular, Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico.,Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Jorge García-Quintana
- Laboratorio de Biología Molecular, Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Guillermina Baay-Guzmán
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Lourdes Cabrera-Muñoz
- Laboratorio de Biología Molecular, Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Stanislaw Sadowinski-Pine
- Laboratorio de Biología Molecular, Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Carlos Serrano-Bello
- Laboratorio de Biología Molecular, Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Marco Murillo-Maldonado
- Servicio de Onco-Hematología Pediátrica, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Alejandra Contreras-Ramos
- Laboratorio de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Pilar Eguía-Aguilar
- Laboratorio de Biología Molecular, Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| |
Collapse
|
47
|
Gong HL, Tao Y, Mao XZ, Song DY, You D, Ni JD. MicroRNA-29a suppresses the invasion and migration of osteosarcoma cells by regulating the SOCS1/NF-κB signalling pathway through negatively targeting DNMT3B. Int J Mol Med 2019; 44:1219-1232. [PMID: 31364725 PMCID: PMC6713425 DOI: 10.3892/ijmm.2019.4287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate the roles of the microRNA‑29a/DNA methyltransferase 3B/suppressor of cytokine signalling 1 (miR‑29a/DNMT3B/SOCS1) axis in the invasion and the migration of osteosarcoma (OS). The expression levels of miR‑29a, DNMT3B and SOCS1 were determined in tissue samples and OS cell lines by reverse transcription‑quantitative polymerase chain reaction (PCR). Apoptosis was measured using flow cytometry analysis. Transwell and wound healing assays were conducted to measure the invasion and migration abilities of OS cells, respectively. A dual‑luciferase reporter assay was also conducted to determine the interaction between DNMT3B and miR‑29a, while methylation‑specific PCR was used to detect the methylation of SOCS1. Western blotting was performed to determine the protein levels of DNMT3B and SOCS1, as well as the levels of proteins associated with epithelial‑mesenchymal transition (EMT), apoptosis and the nuclear factor (NF)‑κB signalling pathway. The results demonstrated that miR‑29a and SOCS1 were downregulated, and DNMT3B was upregulated in both OS tissues and cell lines. The expression of miR‑29a and SOCS1 was found to be associated with advanced clinical stage and distant metastasis. In addition, the dual‑luciferase reporter assay revealed that DNMT3B was a direct target of miR‑29a. Overexpression using miR‑29a mimics decreased DNMT3B expression and the methylation level of SOCS1, which resulted in the upregulation of SOCS1 in U2OS and MG‑63 cells, while miR‑29a inhibition led to the opposite results. Transfection with miR‑29a mimics also promoted the apoptosis, and inhibited the invasion, migration and EMT process of OS cells, while it markedly reduced the nuclear translocation of p65 and IκB‑α degradation. Treatment with 5‑aza‑2'‑deoxycytidine worked together with miR‑29a mimics to synergistically enhance the aforementioned effects. By contrast, the effects induced by miR‑29a were partly reversed upon co‑transfection with SOCS1 siRNA. In conclusion, miR‑29a promoted the apoptosis, and inhibited the invasion, migration and EMT process of OS cells via inhibition of the SOCS1/NF‑κB signalling pathway by directly targeting DNMT3B.
Collapse
Affiliation(s)
- Hao-Li Gong
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ye Tao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xin-Zhan Mao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - De-Ye Song
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Di You
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jiang-Dong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
48
|
Bruno S, Chiabotto G, Favaro E, Deregibus MC, Camussi G. Role of extracellular vesicles in stem cell biology. Am J Physiol Cell Physiol 2019; 317:C303-C313. [PMID: 31091143 DOI: 10.1152/ajpcell.00129.2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The extracellular vesicles (EVs) are membrane vesicles carrying proteins, nucleic acids, and bioactive lipids of the cell of origin. These vesicles released within the extracellular space and entering into the circulation may transfer their cargo to neighboring or distant cells and induce phenotypical and functional changes that may be relevant in several physiopathological conditions. In an attempt to define the biological properties of EVs, several investigations have focused on their cargo and on the effects elicited in recipient cells. EVs have been involved in modulation of tumor microenvironment and behavior, as well as in the immune and inflammatory response. In the present review, we address the paracrine action of EVs released by stem cells and their potential involvement in the activation of regenerative programs in injured cells.
Collapse
Affiliation(s)
- Stefania Bruno
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Enrica Favaro
- Department of Medical Sciences, University of Torino, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Turin, Italy
| |
Collapse
|
49
|
Grange C, Brossa A, Bussolati B. Extracellular Vesicles and Carried miRNAs in the Progression of Renal Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20081832. [PMID: 31013896 PMCID: PMC6514717 DOI: 10.3390/ijms20081832] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
The formation and maintenance of renal cell carcinomas (RCC) involve many cell types, such as cancer stem and differentiated cells, endothelial cells, fibroblasts and immune cells. These all contribute to the creation of a favorable tumor microenvironment to promote tumor growth and metastasis. Extracellular vesicles (EVs) are considered to be efficient messengers that facilitate the exchange of information within the different tumor cell types. Indeed, tumor EVs display features of their originating cells and force recipient cells towards a pro-tumorigenic phenotype. This review summarizes the recent knowledge related to the biological role of EVs, shed by renal tumor cells and renal cancer stem cells in different aspects of RCC progression, such as angiogenesis, immune escape and tumor growth. Moreover, a specific role for renal cancer stem cell derived EVs is described in the formation of the pre-metastatic niche. We also highlight the tumor EV cargo, especially the oncogenic miRNAs, which are involved in these processes. Finally, the circulating miRNAs appear to be a promising source of biomarkers in RCC.
Collapse
Affiliation(s)
- Cristina Grange
- Department of Medical Sciences, University of Turin, via Nizza 52, 10126 Turin, Italy.
- Molecular Biotechnology Centre, University of Turin, via Nizza 52, 10126 Turin, Italy.
| | - Alessia Brossa
- Molecular Biotechnology Centre, University of Turin, via Nizza 52, 10126 Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, via Nizza 52, 10126 Turin, Italy.
| | - Benedetta Bussolati
- Molecular Biotechnology Centre, University of Turin, via Nizza 52, 10126 Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, via Nizza 52, 10126 Turin, Italy.
| |
Collapse
|
50
|
Alizadeh M, Safarzadeh A, Beyranvand F, Ahmadpour F, Hajiasgharzadeh K, Baghbanzadeh A, Baradaran B. The potential role of miR‐29 in health and cancer diagnosis, prognosis, and therapy. J Cell Physiol 2019; 234:19280-19297. [DOI: 10.1002/jcp.28607] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Mohsen Alizadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Safarzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Fatemeh Beyranvand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Lorestan University of Medical Sciences Khorramabad Iran
| | - Fatemeh Ahmadpour
- Department of Biochemistry, Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|