1
|
Bakleh MZ, Al Haj Zen A. The Distinct Role of HIF-1α and HIF-2α in Hypoxia and Angiogenesis. Cells 2025; 14:673. [PMID: 40358197 PMCID: PMC12071368 DOI: 10.3390/cells14090673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Hypoxia results in a wide range of adaptive physiological responses, including metabolic reprogramming, erythropoiesis, and angiogenesis. The response to hypoxia at the cellular level is mainly regulated by hypoxia-inducible factors (HIFs): HIF1α and HIF2α isoforms. Although structurally similar and overlapping gene targets, both isoforms can exhibit distinct expression patterns and functions in some conditions of hypoxia. The interaction between these isoforms, known as the "HIF switch", determines their coordinated function under varying oxygen levels and exposure time. In angiogenesis, HIF-1α is rapidly stabilized under acute hypoxia, prompting a metabolic shift from oxidative phosphorylation to glycolysis and initiating angiogenesis by activating endothelial cells and extracellular matrix remodeling. Conversely, HIF-2α regulates cell responses to chronic hypoxia by sustaining genes critical for vascular remodeling and maturation. The current review highlights the different roles and regulatory mechanisms of HIF-1α and HIF-2α isoforms, focusing on their involvement in cell metabolism and the multi-step process of angiogenesis. Tuning the specific targeting of HIF isoforms and finding the right therapeutic window is essential to obtaining the best therapeutic effect in diseases such as cancer and vascular ischemic diseases.
Collapse
Affiliation(s)
| | - Ayman Al Haj Zen
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| |
Collapse
|
2
|
Matsuda S, Nakashima M, Fukumoto A, Suga N. N6-Methyladenosine Modification in the Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2025; 17:1158. [PMID: 40218916 PMCID: PMC11990428 DOI: 10.3390/nu17071158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Epigenetics of N6-methyladenine (m6A) modification may play a key role during the regulation of various diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). The m6A modification has been shown to be accomplished via the exploitation of several players such as methyltransferases, demethylases, and/or methylation-binding molecules. Significantly, the m6A methylation can regulate the key eukaryotic transcriptome by affecting the subcellular localization, splicing, export, stability, translation, and decay of those RNAs. An increasing amount of data has designated that the m6A modification of RNAs can also modulate the expression of autophagy-related genes, which could also control the autophagy in hepatocytes. Oxidative stress with reactive oxygen species (ROS) can induce m6A RNA methylation, which might be associated with the regulation of mitochondrial autophagy (mitophagy) and/or the development of MASLD. Therefore, both autophagy and the m6A modification could play important roles in regulating the pathogenesis of MASLD. Comprehending the relationship between m6A and mitophagy may be helpful for the development of future therapeutic strategies against MASLD. This review would advance the understanding of the regulatory mechanisms of m6A RNA modification, focusing on the impact of mitochondrial dysregulation and mitophagy in the liver with MASLD.
Collapse
Affiliation(s)
- Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | | | | | | |
Collapse
|
3
|
Gong X, Yang SY, Wang ZY, Tang M. The role of hypoxic microenvironment in autoimmune diseases. Front Immunol 2024; 15:1435306. [PMID: 39575238 PMCID: PMC11578973 DOI: 10.3389/fimmu.2024.1435306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
The hypoxic microenvironment, characterized by significantly reduced oxygen levels within tissues, has emerged as a critical factor in the pathogenesis and progression of various autoimmune diseases (AIDs). Central to this process is the hypoxia-inducible factor-1 (HIF-1), which orchestrates a wide array of cellular responses under low oxygen conditions. This review delves into the multifaceted roles of the hypoxic microenvironment in modulating immune cell function, particularly highlighting its impact on immune activation, metabolic reprogramming, and angiogenesis. Specific focus is given to the mechanisms by which hypoxia contributes to the development and exacerbation of diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), and dermatomyositis (DM). In these conditions, the hypoxic microenvironment not only disrupts immune tolerance but also enhances inflammatory responses and promotes tissue damage. The review also discusses emerging therapeutic strategies aimed at targeting the hypoxic pathways, including the application of HIF-1α inhibitors, mTOR inhibitors, and other modulators of the hypoxic response. By providing a comprehensive overview of the interplay between hypoxia and immune dysfunction in AIDs, this review offers new perspectives on the underlying mechanisms of these diseases and highlights potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Su-Yin Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen-Yu Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Peters K, Staehlke S, Rebl H, Jonitz-Heincke A, Hahn O. Impact of Metal Ions on Cellular Functions: A Focus on Mesenchymal Stem/Stromal Cell Differentiation. Int J Mol Sci 2024; 25:10127. [PMID: 39337612 PMCID: PMC11432215 DOI: 10.3390/ijms251810127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Metals play a crucial role in the human body, especially as ions in metalloproteins. Essential metals, such as calcium, iron, and zinc are crucial for various physiological functions, but their interactions within biological networks are complex and not fully understood. Mesenchymal stem/stromal cells (MSCs) are essential for tissue regeneration due to their ability to differentiate into various cell types. This review article addresses the effects of physiological and unphysiological, but not directly toxic, metal ion concentrations, particularly concerning MSCs. Overloading or unbalancing of metal ion concentrations can significantly impair the function and differentiation capacity of MSCs. In addition, excessive or unbalanced metal ion concentrations can lead to oxidative stress, which can affect viability or inflammation. Data on the effects of metal ions on MSC differentiation are limited and often contradictory. Future research should, therefore, aim to clarify the mechanisms by which metal ions affect MSC differentiation, focusing on aspects such as metal ion interactions, ion concentrations, exposure duration, and other environmental conditions. Understanding these interactions could ultimately improve the design of biomaterials and implants to promote MSC-mediated tissue regeneration. It could also lead to the development of innovative therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Kirsten Peters
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Susanne Staehlke
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Strasse 142, 18057 Rostock, Germany;
| | - Olga Hahn
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| |
Collapse
|
5
|
Ting KKY. Revisiting the role of hypoxia-inducible factors and nuclear factor erythroid 2-related factor 2 in regulating macrophage inflammation and metabolism. Front Cell Infect Microbiol 2024; 14:1403915. [PMID: 39119289 PMCID: PMC11306205 DOI: 10.3389/fcimb.2024.1403915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
The recent birth of the immunometabolism field has comprehensively demonstrated how the rewiring of intracellular metabolism is critical for supporting the effector functions of many immune cell types, such as myeloid cells. Among all, the transcriptional regulation mediated by Hypoxia-Inducible Factors (HIFs) and Nuclear factor erythroid 2-related factor 2 (NRF2) have been consistently shown to play critical roles in regulating the glycolytic metabolism, redox homeostasis and inflammatory responses of macrophages (Mφs). Although both of these transcription factors were first discovered back in the 1990s, new advances in understanding their function and regulations have been continuously made in the context of immunometabolism. Therefore, this review attempts to summarize the traditionally and newly identified functions of these transcription factors, including their roles in orchestrating the key events that take place during glycolytic reprogramming in activated myeloid cells, as well as their roles in mediating Mφ inflammatory responses in various bacterial infection models.
Collapse
Affiliation(s)
- Kenneth K. Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
6
|
Musleh Ud Din S, Streit SG, Huynh BT, Hana C, Abraham AN, Hussein A. Therapeutic Targeting of Hypoxia-Inducible Factors in Cancer. Int J Mol Sci 2024; 25:2060. [PMID: 38396737 PMCID: PMC10888675 DOI: 10.3390/ijms25042060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
In the realm of cancer therapeutics, targeting the hypoxia-inducible factor (HIF) pathway has emerged as a promising strategy. This study delves into the intricate web of HIF-associated mechanisms, exploring avenues for future anticancer therapies. Framing the investigation within the broader context of cancer progression and hypoxia response, this article aims to decipher the pivotal role played by HIF in regulating genes influencing angiogenesis, cell proliferation, and glucose metabolism. Employing diverse approaches such as HIF inhibitors, anti-angiogenic therapies, and hypoxia-activated prodrugs, the research methodologically intervenes at different nodes of the HIF pathway. Findings showcase the efficacy of agents like EZN-2968, Minnelide, and Acriflavine in modulating HIF-1α protein synthesis and destabilizing HIF-1, providing preliminary proof of HIF-1α mRNA modulation and antitumor activity. However, challenges, including toxicity, necessitate continued exploration and development, as exemplified by ongoing clinical trials. This article concludes by emphasizing the potential of targeted HIF therapies in disrupting cancer-related signaling pathways.
Collapse
Affiliation(s)
- Saba Musleh Ud Din
- Department of Internal Medicine, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA
| | - Spencer G. Streit
- Department of Hematology and Oncology, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA; (S.G.S.); (C.H.); (A.-N.A.); (A.H.)
| | - Bao Tran Huynh
- Department of Pharmacy, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA
| | - Caroline Hana
- Department of Hematology and Oncology, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA; (S.G.S.); (C.H.); (A.-N.A.); (A.H.)
| | - Anna-Ninny Abraham
- Department of Hematology and Oncology, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA; (S.G.S.); (C.H.); (A.-N.A.); (A.H.)
| | - Atif Hussein
- Department of Hematology and Oncology, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA; (S.G.S.); (C.H.); (A.-N.A.); (A.H.)
| |
Collapse
|
7
|
Han A, Peng T, Xie Y, Zhang W, Sun W, Xie Y, Ma Y, Wang C, Xie N. Mitochondrial-regulated Tregs: potential therapeutic targets for autoimmune diseases of the central nervous system. Front Immunol 2023; 14:1301074. [PMID: 38149252 PMCID: PMC10749924 DOI: 10.3389/fimmu.2023.1301074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Regulatory T cells (Tregs) can eliminate autoreactive lymphocytes, induce self-tolerance, and suppress the inflammatory response. Mitochondria, as the energy factories of cells, are essential for regulating the survival, differentiation, and function of Tregs. Studies have shown that patients with autoimmune diseases of the central nervous system, such as multiple sclerosis, neuromyelitis optica spectrum disorder, and autoimmune encephalitis, have aberrant Tregs and mitochondrial damage. However, the role of mitochondrial-regulated Tregs in autoimmune diseases of the central nervous system remains inconclusive. Therefore, this study reviews the mitochondrial regulation of Tregs in autoimmune diseases of the central nervous system and investigates the possible mitochondrial therapeutic targets.
Collapse
Affiliation(s)
- Aoya Han
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingting Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wanwan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenlin Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunqing Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Ting KK, Yu P, Dow R, Floro E, Ibrahim H, Scipione CA, Hyduk SJ, Polenz CK, Zaslaver O, Karmaus PW, Fessler MB, Rӧst HL, Ohh M, Tsai S, Winer DA, Woo M, Rocheleau J, Jongstra-Bilen J, Cybulsky MI. Oxidized Low-Density Lipoprotein Accumulation Suppresses Glycolysis and Attenuates the Macrophage Inflammatory Response by Diverting Transcription from the HIF-1α to the Nrf2 Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1561-1577. [PMID: 37756544 PMCID: PMC10873122 DOI: 10.4049/jimmunol.2300293] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Lipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis, yet how lipid accumulation affects inflammatory responses through rewiring of Mφ metabolism is poorly understood. We modeled lipid accumulation in cultured wild-type mouse thioglycolate-elicited peritoneal Mφs and bone marrow-derived Mφs with conditional (Lyz2-Cre) or complete genetic deficiency of Vhl, Hif1a, Nos2, and Nfe2l2. Transfection studies employed RAW264.7 cells. Mφs were cultured for 24 h with oxidized low-density lipoprotein (oxLDL) or cholesterol and then were stimulated with LPS. Transcriptomics revealed that oxLDL accumulation in Mφs downregulated inflammatory, hypoxia, and cholesterol metabolism pathways, whereas the antioxidant pathway, fatty acid oxidation, and ABC family proteins were upregulated. Metabolomics and extracellular metabolic flux assays showed that oxLDL accumulation suppressed LPS-induced glycolysis. Intracellular lipid accumulation in Mφs impaired LPS-induced inflammation by reducing both hypoxia-inducible factor 1-α (HIF-1α) stability and transactivation capacity; thus, the phenotype was not rescued in Vhl-/- Mφs. Intracellular lipid accumulation in Mφs also enhanced LPS-induced NF erythroid 2-related factor 2 (Nrf2)-mediated antioxidative defense that destabilizes HIF-1α, and Nrf2-deficient Mφs resisted the inhibitory effects of lipid accumulation on glycolysis and inflammatory gene expression. Furthermore, oxLDL shifted NADPH consumption from HIF-1α- to Nrf2-regulated apoenzymes. Thus, we postulate that repurposing NADPH consumption from HIF-1α to Nrf2 transcriptional pathways is critical in modulating inflammatory responses in Mφs with accumulated intracellular lipid. The relevance of our in vitro models was established by comparative transcriptomic analyses, which revealed that Mφs cultured with oxLDL and stimulated with LPS shared similar inflammatory and metabolic profiles with foamy Mφs derived from the atherosclerotic mouse and human aorta.
Collapse
Affiliation(s)
- Kenneth K.Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Pei Yu
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Riley Dow
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Eric Floro
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hisham Ibrahim
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Corey A. Scipione
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sharon J. Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Chanele K. Polenz
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Olga Zaslaver
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1
| | - Peer W.F. Karmaus
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Michael B. Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Hannes L. Rӧst
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2RS, Canada
| | - Daniel A. Winer
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Minna Woo
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, University of Toronto, Toronto, ON M5S 1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Jonathan Rocheleau
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Jenny Jongstra-Bilen
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Myron I. Cybulsky
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| |
Collapse
|
9
|
Corner TP, Teo RZR, Wu Y, Salah E, Nakashima Y, Fiorini G, Tumber A, Brasnett A, Holt-Martyn JP, Figg WD, Zhang X, Brewitz L, Schofield CJ. Structure-guided optimisation of N-hydroxythiazole-derived inhibitors of factor inhibiting hypoxia-inducible factor-α. Chem Sci 2023; 14:12098-12120. [PMID: 37969593 PMCID: PMC10631261 DOI: 10.1039/d3sc04253g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
The human 2-oxoglutarate (2OG)- and Fe(ii)-dependent oxygenases factor inhibiting hypoxia-inducible factor-α (FIH) and HIF-α prolyl residue hydroxylases 1-3 (PHD1-3) regulate the response to hypoxia in humans via catalysing hydroxylation of the α-subunits of the hypoxia-inducible factors (HIFs). Small-molecule PHD inhibitors are used for anaemia treatment; by contrast, few selective inhibitors of FIH have been reported, despite their potential to regulate the hypoxic response, either alone or in combination with PHD inhibition. We report molecular, biophysical, and cellular evidence that the N-hydroxythiazole scaffold, reported to inhibit PHD2, is a useful broad spectrum 2OG oxygenase inhibitor scaffold, the inhibition potential of which can be tuned to achieve selective FIH inhibition. Structure-guided optimisation resulted in the discovery of N-hydroxythiazole derivatives that manifest substantially improved selectivity for FIH inhibition over PHD2 and other 2OG oxygenases, including Jumonji-C domain-containing protein 5 (∼25-fold), aspartate/asparagine-β-hydroxylase (>100-fold) and histone Nε-lysine demethylase 4A (>300-fold). The optimised N-hydroxythiazole-based FIH inhibitors modulate the expression of FIH-dependent HIF target genes and, consistent with reports that FIH regulates cellular metabolism, suppressed lipid accumulation in adipocytes. Crystallographic studies reveal that the N-hydroxythiazole derivatives compete with both 2OG and the substrate for binding to the FIH active site. Derivatisation of the N-hydroxythiazole scaffold has the potential to afford selective inhibitors for 2OG oxygenases other than FIH.
Collapse
Affiliation(s)
- Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Ryan Z R Teo
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Yue Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization and Department of Chemistry, China Pharmaceutical University Nanjing 211198 China
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Yu Nakashima
- Institute of Natural Medicine, University of Toyama 2630-Sugitani 930-0194 Toyama Japan
| | - Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Amelia Brasnett
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - James P Holt-Martyn
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - William D Figg
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization and Department of Chemistry, China Pharmaceutical University Nanjing 211198 China
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| |
Collapse
|
10
|
Liu W, Wang B, Zhou M, Liu D, Chen F, Zhao X, Lu Y. Redox Dysregulation in the Tumor Microenvironment Contributes to Cancer Metastasis. Antioxid Redox Signal 2023; 39:472-490. [PMID: 37002890 DOI: 10.1089/ars.2023.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Significance: Redox dysregulation under pathological conditions results in excessive reactive oxygen species (ROS) accumulation, leading to oxidative stress and cellular oxidative damage. ROS function as a double-edged sword to modulate various types of cancer development and survival. Recent Advances: Emerging evidence has underlined that ROS impact the behavior of both cancer cells and tumor-associated stromal cells in the tumor microenvironment (TME), and these cells have developed complex systems to adapt to high ROS environments during cancer progression. Critical Issues: In this review, we integrated current progress regarding the impact of ROS on cancer cells and tumor-associated stromal cells in the TME and summarized how ROS production influences cancer cell behaviors. Then, we summarized the distinct effects of ROS during different stages of tumor metastasis. Finally, we discussed potential therapeutic strategies for modulating ROS for the treatment of cancer metastasis. Future Directions: Targeting the ROS regulation during cancer metastasis will provide important insights into the design of effective single or combinatorial cancer therapeutic strategies. Well-designed preclinical studies and clinical trials are urgently needed to understand the complex regulatory systems of ROS in the TME. Antioxid. Redox Signal. 39, 472-490.
Collapse
Affiliation(s)
- Wanning Liu
- College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Boda Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mingzhen Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Dan Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Burtscher J, Hohenauer E, Burtscher M, Millet GP, Egg M. Environmental and behavioral regulation of HIF-mitochondria crosstalk. Free Radic Biol Med 2023; 206:63-73. [PMID: 37385566 DOI: 10.1016/j.freeradbiomed.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Reduced oxygen availability (hypoxia) can lead to cell and organ damage. Therefore, aerobic species depend on efficient mechanisms to counteract detrimental consequences of hypoxia. Hypoxia inducible factors (HIFs) and mitochondria are integral components of the cellular response to hypoxia and coordinate both distinct and highly intertwined adaptations. This leads to reduced dependence on oxygen, improved oxygen supply, maintained energy provision by metabolic remodeling and tapping into alternative pathways and increased resilience to hypoxic injuries. On one hand, many pathologies are associated with hypoxia and hypoxia can drive disease progression, for example in many cancer and neurological diseases. But on the other hand, controlled induction of hypoxia responses via HIFs and mitochondria can elicit profound health benefits and increase resilience. To tackle pathological hypoxia conditions or to apply health-promoting hypoxia exposures efficiently, cellular and systemic responses to hypoxia need to be well understood. Here we first summarize the well-established link between HIFs and mitochondria in orchestrating hypoxia-induced adaptations and then outline major environmental and behavioral modulators of their interaction that remain poorly understood.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; International University of Applied Sciences THIM, Landquart, Switzerland; Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland; Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Geng Y, Hu Y, Zhang F, Tuo Y, Ge R, Bai Z. Mitochondria in hypoxic pulmonary hypertension, roles and the potential targets. Front Physiol 2023; 14:1239643. [PMID: 37645564 PMCID: PMC10461481 DOI: 10.3389/fphys.2023.1239643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
Mitochondria are the centrol hub for cellular energy metabolisms. They regulate fuel metabolism by oxygen levels, participate in physiological signaling pathways, and act as oxygen sensors. Once oxygen deprived, the fuel utilizations can be switched from mitochondrial oxidative phosphorylation to glycolysis for ATP production. Notably, mitochondria can also adapt to hypoxia by making various functional and phenotypes changes to meet the demanding of oxygen levels. Hypoxic pulmonary hypertension is a life-threatening disease, but its exact pathgenesis mechanism is still unclear and there is no effective treatment available until now. Ample of evidence indicated that mitochondria play key factor in the development of hypoxic pulmonary hypertension. By hypoxia-inducible factors, multiple cells sense and transmit hypoxia signals, which then control the expression of various metabolic genes. This activation of hypoxia-inducible factors considered associations with crosstalk between hypoxia and altered mitochondrial metabolism, which plays an important role in the development of hypoxic pulmonary hypertension. Here, we review the molecular mechanisms of how hypoxia affects mitochondrial function, including mitochondrial biosynthesis, reactive oxygen homeostasis, and mitochondrial dynamics, to explore the potential of improving mitochondrial function as a strategy for treating hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Yumei Geng
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Yu Hu
- Department of Pharmacy, Qinghai Provincial Traffic Hospital, Xining, China
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Yajun Tuo
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Rili Ge
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Zhenzhong Bai
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|
13
|
Barrera JCA, Ondo-Mendez A, Giera M, Kostidis S. Metabolomic and Lipidomic Analysis of the Colorectal Adenocarcinoma Cell Line HT29 in Hypoxia and Reoxygenation. Metabolites 2023; 13:875. [PMID: 37512582 PMCID: PMC10384744 DOI: 10.3390/metabo13070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The poor availability of oxygen and nutrients in malignant tumors drives the activation of various molecular responses and metabolic reprogramming in cancer cells. Hypoxic tumor regions often exhibit resistance to chemotherapy and radiotherapy. One approach to enhance cancer therapy is to indirectly increase tumor oxygen availability through targeted metabolic reprogramming. Thus, understanding the underlying metabolic changes occurring during hypoxia and reoxygenation is crucial for improving therapy efficacy. In this study, we utilized the HT29 colorectal adenocarcinoma cell line as a hypoxia-reoxygenation model to investigate central carbon and lipid metabolism. Through quantitative NMR spectroscopy and flow injection analysis - differential mobility spectroscopy-tandem mass spectrometry (FIA-DMS-MS/MS) analysis, we observed alterations in components of mitochondrial metabolism, redox status, specific lipid classes, and structural characteristics of lipids during hypoxia and up to 24 h of reoxygenation. These findings contribute to our understanding of the metabolic changes occurring during reoxygenation and provide the basis for functional studies aimed at metabolic pathways in cancer cells.
Collapse
Affiliation(s)
| | - Alejandro Ondo-Mendez
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
14
|
Luo Z, Yao J, Wang Z, Xu J. Mitochondria in endothelial cells angiogenesis and function: current understanding and future perspectives. J Transl Med 2023; 21:441. [PMID: 37407961 DOI: 10.1186/s12967-023-04286-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Endothelial cells (ECs) angiogenesis is the process of sprouting new vessels from the existing ones, playing critical roles in physiological and pathological processes such as wound healing, placentation, ischemia/reperfusion, cardiovascular diseases and cancer metastasis. Although mitochondria are not the major sites of energy source in ECs, they function as important biosynthetic and signaling hubs to regulate ECs metabolism and adaptations to local environment, thus affecting ECs migration, proliferation and angiogenic process. The understanding of the importance and potential mechanisms of mitochondria in regulating ECs metabolism, function and the process of angiogenesis has developed in the past decades. Thus, in this review, we discuss the current understanding of mitochondrial proteins and signaling molecules in ECs metabolism, function and angiogeneic signaling, to provide new and therapeutic targets for treatment of diverse cardiovascular and angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Zhen Luo
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Zhe Wang
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianxiong Xu
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China.
| |
Collapse
|
15
|
Sabharwal SS, Dudley VJ, Landwerlin C, Schumacker PT. H 2O 2 transit through the mitochondrial intermembrane space promotes tumor cell growth in vitro and in vivo. J Biol Chem 2023; 299:104624. [PMID: 36935009 PMCID: PMC10127139 DOI: 10.1016/j.jbc.2023.104624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Cancer cells experience increased levels of oxidant stress as a consequence of oncogene activation, nucleotide biosynthesis, and growth factor receptor signaling. Mitochondria contribute to this redox stress by generating reactive oxygen species (ROS) along the electron transport chain, which are released to the matrix and the intermembrane space (IMS). Assessing the contribution of mitochondrial ROS in cancer cells is technically difficult, as electron transport chain inhibitors can increase or decrease ROS generation, while they also block oxidative phosphorylation and ATP synthesis. Mitochondria-targeted antioxidant compounds can scavenge ROS in the matrix compartment but do not act on ROS released to the IMS. We assessed the importance of mitochondrial ROS for tumor cell proliferation, survival, and for tumor xenograft growth by stably expressing a hydrogen peroxide (H2O2) scavenger, peroxiredoxin-5, in the mitochondrial IMS (IMS-Prdx5) in 143B osteosarcoma and HCT116 colorectal cancer cell lines. IMS-Prdx5 attenuates hypoxia-induced ROS signaling as assessed independently in cytosol and IMS, HIF-1α stabilization and activity, and cellular proliferation under normoxic and hypoxic culture conditions. It also suppressed tumor growth in vivo. Stable expression of nondegradable HIF-1α only partially rescued proliferation in IMS-Prdx5-expressing cells, indicating that mitochondrial H2O2 signaling contributes to tumor cell proliferation and survival through HIF-dependent and HIF-independent mechanisms.
Collapse
Affiliation(s)
- Simran S Sabharwal
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Stanley Manne Children's Research Institute of the Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - V Joseph Dudley
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Stanley Manne Children's Research Institute of the Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Charlène Landwerlin
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Stanley Manne Children's Research Institute of the Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Paul T Schumacker
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Stanley Manne Children's Research Institute of the Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
16
|
Aschner M, Skalny AV, Lu R, Santamaria A, Zhou JC, Ke T, Karganov MY, Tsatsakis A, Golokhvast KS, Bowman AB, Tinkov AA. The role of hypoxia-inducible factor 1 alpha (HIF-1α) modulation in heavy metal toxicity. Arch Toxicol 2023; 97:1299-1318. [PMID: 36933023 DOI: 10.1007/s00204-023-03483-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is an oxygen-sensing transcriptional regulator orchestrating a complex of adaptive cellular responses to hypoxia. Several studies have demonstrated that toxic metal exposure may also modulate HIF-1α signal transduction pathway, although the existing data are scarce. Therefore, the present review aims to summarize the existing data on the effects of toxic metals on HIF-1 signaling and the potential underlying mechanisms with a special focus on prooxidant effect of the metals. The particular effect of metals was shown to be dependent on cell type, varying from down- to up-regulation of HIF-1 pathway. Inhibition of HIF-1 signaling may contribute to impaired hypoxic tolerance and adaptation, thus promoting hypoxic damage in the cells. In contrast, its metal-induced activation may result in increased tolerance to hypoxia through increased angiogenesis, thus promoting tumor growth and contributing to carcinogenic effect of heavy metals. Up-regulation of HIF-1 signaling is mainly observed upon Cr, As, and Ni exposure, whereas Cd and Hg may both stimulate and inhibit HIF-1 pathway. The mechanisms underlying the influence of toxic metal exposure on HIF-1 signaling involve modulation of prolyl hydroxylases (PHD2) activity, as well as interference with other tightly related pathways including Nrf2, PI3K/Akt, NF-κB, and MAPK signaling. These effects are at least partially mediated by metal-induced ROS generation. Hypothetically, maintenance of adequate HIF-1 signaling upon toxic metal exposure through direct (PHD2 modulation) or indirect (antioxidant) mechanisms may provide an additional strategy for prevention of adverse effects of metal toxicity.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518100, China
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Aristides Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.,Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Crete, Greece
| | - Kirill S Golokhvast
- Siberian Federal Scientific Centre of Agrobiotechnologies of the Russian Academy of Sciences, Krasnoobsk, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, USA
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia. .,Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia.
| |
Collapse
|
17
|
Abstract
High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.
Collapse
Affiliation(s)
- Alexandria V Harrison
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
| | - Felipe Ramos Lorenzo
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| | - Donald A McClain
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| |
Collapse
|
18
|
Tang YY, Wang DC, Wang YQ, Huang AF, Xu WD. Emerging role of hypoxia-inducible factor-1α in inflammatory autoimmune diseases: A comprehensive review. Front Immunol 2023; 13:1073971. [PMID: 36761171 PMCID: PMC9905447 DOI: 10.3389/fimmu.2022.1073971] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a primary metabolic sensor, and is expressed in different immune cells, such as macrophage, dendritic cell, neutrophil, T cell, and non-immune cells, for instance, synovial fibroblast, and islet β cell. HIF-1α signaling regulates cellular metabolism, triggering the release of inflammatory cytokines and inflammatory cells proliferation. It is known that microenvironment hypoxia, vascular proliferation, and impaired immunological balance are present in autoimmune diseases. To date, HIF-1α is recognized to be overexpressed in several inflammatory autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis, and function of HIF-1α is dysregulated in these diseases. In this review, we narrate the signaling pathway of HIF-1α and the possible immunopathological roles of HIF-1α in autoimmune diseases. The collected information will provide a theoretical basis for the familiarization and development of new clinical trials and treatment based on HIF-1α and inflammatory autoimmune disorders in the future.
Collapse
Affiliation(s)
- Yang-Yang Tang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - You-Qiang Wang
- Department of Laboratory Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China,*Correspondence: Wang-Dong Xu,
| |
Collapse
|
19
|
Wang Y, Liu X, Huang W, Liang J, Chen Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther 2022; 240:108303. [PMID: 36328089 DOI: 10.1016/j.pharmthera.2022.108303] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alterations in protein ubiquitination and hypoxia-inducible factor (HIF) signaling both contribute to tumorigenesis and tumor progression. Ubiquitination is a dynamic process that is coordinately regulated by E3 ligases and deubiquitinases (DUBs), which have emerged as attractive therapeutic targets. HIF expression and transcriptional activity are usually increased in tumors, leading to poor clinical outcomes. Reactive oxygen species (ROS) are upregulated in tumors and have multiple effects on HIF signaling and the ubiquitin system. A growing body of evidence has shown that multiple E3 ligases and UBDs function synergistically to control the expression and activity of HIF, thereby allowing cancer cells to cope with the hypoxic microenvironment. Conversely, several E3 ligases and DUBs are regulated by hypoxia and/or HIF signaling. Hypoxia also induces ROS production, which in turn modulates the stability or activity of HIF, E3 ligases, and DUBs. Understanding the complex networks between E3 ligase, DUBs, ROS, and HIF will provide insights into the fundamental mechanism of the cellular response to hypoxia and help identify novel molecular targets for cancer treatment. We review the current knowledge on the comprehensive relationship between E3 ligase, DUBs, ROS, and HIF signaling, with a particular focus on the use of E3 ligase or DUB inhibitors in cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Yan Chen
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
20
|
Drzał A, Delalande A, Dziurman G, Fournié M, Pichon C, Elas M. Increasing oxygen tension in tumor tissue using ultrasound sensitive O 2 microbubbles. Free Radic Biol Med 2022; 193:567-578. [PMID: 36356713 DOI: 10.1016/j.freeradbiomed.2022.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Low tissue oxygenation significantly impairs the effectiveness of cancer therapy and promotes a more aggressive phenotype. Many strategies to improve tissue oxygenation have been proposed throughout the years, but only a few showed significant effects in clinical settings. We investigated stability and ultrasound pulse (UP) triggered oxygen release from phospholipid coated oxygen microbubbles (OMB) in vitro and in murine tumors in vivo using EPR oximetry. In solution, the investigated microbubbles are stable and responsive to ultrasound pulse. The addition of the OMB solution alone resulted in an increase in pO2 of approximately 70 mmHg which was further increased for an additional 80 mmHg after the application of UP. The in vivo kinetic study revealed a substantial, up to 120 mmHg, increase in tumor pO2 after UP application and then pO2 was decreasing for 20 min for intravenous injection and 15 min for intratumoral injection. A significant increase was also observed in groups that received microbubbles filled with nitrogen and ultrasound pulse and OMB without UP, but the effect was much lower. Oxygen microbubbles lead to a decrease in HIF-1a and VEGF-A both at the level of mRNA and protein. Toxicity analysis showed that intravenous injection of OMB does not cause oxidative damage to the heart, liver, or kidneys. However, elevated levels of oxidative damage to lipids and proteins were observed short-term in tumor tissue. In conclusion, we have demonstrated the feasibility of oxygen microbubbles in delivering oxygen effectively and safely to the tumor in living animals. Such treatment might enhance the effectiveness of other anticancer therapies.
Collapse
Affiliation(s)
- Agnieszka Drzał
- Jagiellonian University, Department of Biophysics and Cancer Biology, Kraków, Poland
| | - Anthony Delalande
- University of Orleans, 45067, Orleans, France; Center for Molecular Biophysics, CNRS Orleans, 45071, Orleans, France
| | - Gabriela Dziurman
- Jagiellonian University, Department of Biophysics and Cancer Biology, Kraków, Poland
| | - Mylene Fournié
- University of Orleans, 45067, Orleans, France; Center for Molecular Biophysics, CNRS Orleans, 45071, Orleans, France
| | - Chantal Pichon
- University of Orleans, 45067, Orleans, France; Institut Universitaire de France, 75231, Paris, France; Center for Molecular Biophysics, CNRS Orleans, 45071, Orleans, France
| | - Martyna Elas
- Jagiellonian University, Department of Biophysics and Cancer Biology, Kraków, Poland.
| |
Collapse
|
21
|
Volkova YL, Pickel C, Jucht AE, Wenger RH, Scholz CC. The Asparagine Hydroxylase FIH: A Unique Oxygen Sensor. Antioxid Redox Signal 2022; 37:913-935. [PMID: 35166119 DOI: 10.1089/ars.2022.0003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Limited oxygen availability (hypoxia) commonly occurs in a range of physiological and pathophysiological conditions, including embryonic development, physical exercise, inflammation, and ischemia. It is thus vital for cells and tissues to monitor their local oxygen availability to be able to adjust in case the oxygen supply is decreased. The cellular oxygen sensor factor inhibiting hypoxia-inducible factor (FIH) is the only known asparagine hydroxylase with hypoxia sensitivity. FIH uniquely combines oxygen and peroxide sensitivity, serving as an oxygen and oxidant sensor. Recent Advances: FIH was first discovered in the hypoxia-inducible factor (HIF) pathway as a modulator of HIF transactivation activity. Several other FIH substrates have now been identified outside the HIF pathway. Moreover, FIH enzymatic activity is highly promiscuous and not limited to asparagine hydroxylation. This includes the FIH-mediated catalysis of an oxygen-dependent stable (likely covalent) bond formation between FIH and selected substrate proteins (called oxomers [oxygen-dependent stable protein oligomers]). Critical Issues: The (patho-)physiological function of FIH is only beginning to be understood and appears to be complex. Selective pharmacologic inhibition of FIH over other oxygen sensors is possible, opening new avenues for therapeutic targeting of hypoxia-associated diseases, increasing the interest in its (patho-)physiological relevance. Future Directions: The contribution of FIH enzymatic activity to disease development and progression should be analyzed in more detail, including the assessment of underlying molecular mechanisms and relevant FIH substrate proteins. Also, the molecular mechanism(s) involved in the physiological functions of FIH remain(s) to be determined. Furthermore, the therapeutic potential of recently developed FIH-selective pharmacologic inhibitors will need detailed assessment. Antioxid. Redox Signal. 37, 913-935.
Collapse
Affiliation(s)
- Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Burtscher J, Mallet RT, Pialoux V, Millet GP, Burtscher M. Adaptive Responses to Hypoxia and/or Hyperoxia in Humans. Antioxid Redox Signal 2022; 37:887-912. [PMID: 35102747 DOI: 10.1089/ars.2021.0280] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Significance: Oxygen is indispensable for aerobic life, but its utilization exposes cells and tissues to oxidative stress; thus, tight regulation of cellular, tissue, and systemic oxygen concentrations is crucial. Here, we review the current understanding of how the human organism (mal-)adapts to low (hypoxia) and high (hyperoxia) oxygen levels and how these adaptations may be harnessed as therapeutic or performance enhancing strategies at the systemic level. Recent Advances: Hyperbaric oxygen therapy is already a cornerstone of modern medicine, and the application of mild hypoxia, that is, hypoxia conditioning (HC), to strengthen the resilience of organs or the whole body to severe hypoxic insults is an important preparation for high-altitude sojourns or to protect the cardiovascular system from hypoxic/ischemic damage. Many other applications of adaptations to hypo- and/or hyperoxia are only just emerging. HC-sometimes in combination with hyperoxic interventions-is gaining traction for the treatment of chronic diseases, including numerous neurological disorders, and for performance enhancement. Critical Issues: The dose- and intensity-dependent effects of varying oxygen concentrations render hypoxia- and/or hyperoxia-based interventions potentially highly beneficial, yet hazardous, although the risks versus benefits are as yet ill-defined. Future Directions: The field of low and high oxygen conditioning is expanding rapidly, and novel applications are increasingly recognized, for example, the modulation of aging processes, mood disorders, or metabolic diseases. To advance hypoxia/hyperoxia conditioning to clinical applications, more research on the effects of the intensity, duration, and frequency of altered oxygen concentrations, as well as on individual vulnerabilities to such interventions, is paramount. Antioxid. Redox Signal. 37, 887-912.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.,Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Vincent Pialoux
- Inter-University Laboratory of Human Movement Biology EA7424, University Claude Bernard Lyon 1, University of Lyon, Lyon, France
| | - Grégoire P Millet
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.,Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
M 6A RNA Methylation Mediates NOD1/NF-kB Signaling Activation in the Liver of Piglets Challenged with Lipopolysaccharide. Antioxidants (Basel) 2022; 11:antiox11101954. [PMID: 36290677 PMCID: PMC9598714 DOI: 10.3390/antiox11101954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification that widely participates in various immune and inflammatory responses; however, its regulatory mechanisms in the inflammation of liver induced by lipopolysaccharide in piglets remain largely unknown. In the present study, piglets were intraperitoneally injected with 80 μg/kg LPS or an equal dose of sterile saline. Results indicated that LPS administration increased activities of serum alanine aminotransferase (ALT), induced M1 macrophage polarization and promoted secretion of inflammatory cytokines, and finally led to hepatic lesions in piglets. The NOD1/NF-κB signaling pathway was activated in the livers of the LPS group. Moreover, the total m6A level was significantly elevated after LPS treatment. MeRIP-seq showed that 1166 and 1344 transcripts contained m6A methylation in control and LPS groups, respectively. The m6A methylation sites of these transcripts mainly distributes in the 5′ untranslated region (5′UTR), the coding sequence (CDS), and the 3′ untranslated region (3′UTR). Interestingly, these genes were mostly enriched in the NF-κB signaling pathway, and LPS treatment significantly changed the m6A modification in NOD1, RIPK2, NFKBIA, NFKBIB, and TNFAIP3 mRNAs. In addition, knockdown of METTL3 or overexpression of FTO both changed gene levels in the NOD1/NF-κB pathway, suggesting that activation of this pathway was regulated by m6A RNA methylation. Moreover, the alteration of m6A RNA methylation profile may be associated with the increase of reactive oxygen species (ROS), HIF-1α, and MAT2A. In conclusion, LPS activated the NOD1/NF-κB pathway at post-transcriptional regulation through changing m6A RNA methylation, and then promoted the overproduction of proinflammatory cytokines, ultimately resulting in liver inflammation and damage.
Collapse
|
24
|
Vitamin C Attenuates Oxidative Stress, Inflammation, and Apoptosis Induced by Acute Hypoxia through the Nrf2/Keap1 Signaling Pathway in Gibel Carp (Carassius gibelio). Antioxidants (Basel) 2022; 11:antiox11050935. [PMID: 35624798 PMCID: PMC9137936 DOI: 10.3390/antiox11050935] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Previous studies have found that vitamin C (VC) has protective effects in fish. However, the efficacy of VC on hypoxia-induced liver injury in fish remains unknown. Therefore, to investigate the protective mechanism of VC on liver injury after acute hypoxic stimulation in fish, gibel carp were fed a diet containing VC for eight weeks, then were subjected to acute hypoxia stimulation. The specific growth rate of fish was increased by the supplementation of VC. Plasma stress markers (glucose, lactic acid, and cortisol) were decreased by the VC supplementation. Moreover, the levels of the inflammatory cytokines (tnf-α, il-2, il-6, and il-12) were increased by enhancing the Nrf2/Keap1 signaling pathway. Upregulation of the antioxidant enzymes activity (CAT, SOD, and GPx); T-AOC; and anti-inflammatory factors (il-4 and tgf-β) highlighted the antioxidant and anti-inflammatory activities of VC. The results showed that VC reduced the apoptotic index of the fish hypothalamus. The expression of GRP78 protein in the liver and endoplasmic reticulum stress and apoptosis induced by hypoxia were inhibited by VC. Taken together, the results indicate that VC can attenuate oxidative damage, inflammation, and acute hypoxia induced apoptosis in gibel carp via the Nrf2/Keap1 signaling pathway. The results identify a new defense strategy of gibel carp in response to hypoxic conditions.
Collapse
|
25
|
Brereton CJ, Yao L, Davies ER, Zhou Y, Vukmirovic M, Bell JA, Wang S, Ridley RA, Dean LSN, Andriotis OG, Conforti F, Brewitz L, Mohammed S, Wallis T, Tavassoli A, Ewing RM, Alzetani A, Marshall BG, Fletcher SV, Thurner PJ, Fabre A, Kaminski N, Richeldi L, Bhaskar A, Schofield CJ, Loxham M, Davies DE, Wang Y, Jones MG. Pseudohypoxic HIF pathway activation dysregulates collagen structure-function in human lung fibrosis. eLife 2022; 11:e69348. [PMID: 35188460 PMCID: PMC8860444 DOI: 10.7554/elife.69348] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix (ECM) stiffening with downstream activation of mechanosensitive pathways is strongly implicated in fibrosis. We previously reported that altered collagen nanoarchitecture is a key determinant of pathogenetic ECM structure-function in human fibrosis (Jones et al., 2018). Here, through human tissue, bioinformatic and ex vivo studies we provide evidence that hypoxia-inducible factor (HIF) pathway activation is a critical pathway for this process regardless of the oxygen status (pseudohypoxia). Whilst TGFβ increased the rate of fibrillar collagen synthesis, HIF pathway activation was required to dysregulate post-translational modification of fibrillar collagen, promoting pyridinoline cross-linking, altering collagen nanostructure, and increasing tissue stiffness. In vitro, knockdown of Factor Inhibiting HIF (FIH), which modulates HIF activity, or oxidative stress caused pseudohypoxic HIF activation in the normal fibroblasts. By contrast, endogenous FIH activity was reduced in fibroblasts from patients with lung fibrosis in association with significantly increased normoxic HIF pathway activation. In human lung fibrosis tissue, HIF-mediated signalling was increased at sites of active fibrogenesis whilst subpopulations of human lung fibrosis mesenchymal cells had increases in both HIF and oxidative stress scores. Our data demonstrate that oxidative stress can drive pseudohypoxic HIF pathway activation which is a critical regulator of pathogenetic collagen structure-function in fibrosis.
Collapse
Affiliation(s)
- Christopher J Brereton
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Elizabeth R Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Milica Vukmirovic
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale University School of MedicineNew HavenUnited States
- Leslie Dan Faculty of Pharmacy, University of TorontoTorontoCanada
| | - Joseph A Bell
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Siyuan Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Robert A Ridley
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Lareb SN Dean
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Orestis G Andriotis
- Institute of Lightweight Design and Structural Biomechanics, TU WienViennaAustria
| | - Franco Conforti
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Lennart Brewitz
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Soran Mohammed
- School of Chemistry, University of SouthamptonSouthamptonUnited Kingdom
| | - Timothy Wallis
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Ali Tavassoli
- School of Chemistry, University of SouthamptonSouthamptonUnited Kingdom
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Aiman Alzetani
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Benjamin G Marshall
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Sophie V Fletcher
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU WienViennaAustria
| | - Aurelie Fabre
- Department of Histopathology, St. Vincent's University Hospital & UCD School of Medicine, University College DublinDublinIreland
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale University School of MedicineNew HavenUnited States
| | - Luca Richeldi
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli IRCCSRomeItaly
| | - Atul Bhaskar
- Faculty of Engineering and Physical Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Matthew Loxham
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Donna E Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Yihua Wang
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Mark G Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| |
Collapse
|
26
|
Abstract
Oxidative stress following a lung injury can alter the structure of collagen, causing it to stiffen and trigger the formation of a fibrotic scar that further hardens the tissue.
Collapse
Affiliation(s)
- Rebecca G Wells
- Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
27
|
Lappano R, Todd LA, Stanic M, Cai Q, Maggiolini M, Marincola F, Pietrobon V. Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers (Basel) 2022; 14:539. [PMID: 35158804 PMCID: PMC8833523 DOI: 10.3390/cancers14030539] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Lauren A. Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Mia Stanic
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA 90404, USA; (Q.C.); (F.M.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | | | | |
Collapse
|
28
|
Homeostatic Regulation of Glucocorticoid Receptor Activity by Hypoxia-Inducible Factor 1: From Physiology to Clinic. Cells 2021; 10:cells10123441. [PMID: 34943949 PMCID: PMC8699886 DOI: 10.3390/cells10123441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids (GCs) represent a well-known class of lipophilic steroid hormones biosynthesised, with a circadian rhythm, by the adrenal glands in humans and by the inter-renal tissue in teleost fish (e.g., zebrafish). GCs play a key role in the regulation of numerous physiological processes, including inflammation, glucose, lipid, protein metabolism and stress response. This is achieved through binding to their cognate receptor, GR, which functions as a ligand-activated transcription factor. Due to their potent anti-inflammatory and immune-suppressive action, synthetic GCs are broadly used for treating pathological disorders that are very often linked to hypoxia (e.g., rheumatoid arthritis, inflammatory, allergic, infectious, and autoimmune diseases, among others) as well as to prevent graft rejections and against immune system malignancies. However, due to the presence of adverse effects and GC resistance their therapeutic benefits are limited in patients chronically treated with steroids. For this reason, understanding how to fine-tune GR activity is crucial in the search for novel therapeutic strategies aimed at reducing GC-related side effects and effectively restoring homeostasis. Recent research has uncovered novel mechanisms that inhibit GR function, thereby causing glucocorticoid resistance, and has produced some surprising new findings. In this review we analyse these mechanisms and focus on the crosstalk between GR and HIF signalling. Indeed, its comprehension may provide new routes to develop novel therapeutic targets for effectively treating immune and inflammatory response and to simultaneously facilitate the development of innovative GCs with a better benefits-risk ratio.
Collapse
|
29
|
Bettadapura M, Roys H, Bowlin A, Venugopal G, Washam CL, Fry L, Murdock S, Wanjala H, Byrum SD, Weinkopff T. HIF-α Activation Impacts Macrophage Function during Murine Leishmania major Infection. Pathogens 2021; 10:pathogens10121584. [PMID: 34959539 PMCID: PMC8706659 DOI: 10.3390/pathogens10121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmanial skin lesions are characterized by inflammatory hypoxia alongside the activation of hypoxia-inducible factors, HIF-1α and HIF-2α, and subsequent expression of the HIF-α target VEGF-A during Leishmania major infection. However, the factors responsible for HIF-α activation are not known. We hypothesize that hypoxia and proinflammatory stimuli contribute to HIF-α activation during infection. RNA-Seq of leishmanial lesions revealed that transcripts associated with HIF-1α signaling were induced. To determine whether hypoxia contributes to HIF-α activation, we followed the fate of myeloid cells infiltrating from the blood and into hypoxic lesions. Recruited myeloid cells experienced hypoxia when they entered inflamed lesions, and the length of time in lesions increased their hypoxic signature. To determine whether proinflammatory stimuli in the inflamed tissue can also influence HIF-α activation, we subjected macrophages to various proinflammatory stimuli and measured VEGF-A. While parasites alone did not induce VEGF-A, and proinflammatory stimuli only modestly induced VEGF-A, HIF-α stabilization increased VEGF-A during infection. HIF-α stabilization did not impact parasite entry, growth, or killing. Conversely, the absence of ARNT/HIF-α signaling enhanced parasite internalization. Altogether, these findings suggest that HIF-α is active during infection, and while macrophage HIF-α activation promotes lymphatic remodeling through VEGF-A production, HIF-α activation does not impact parasite internalization or control.
Collapse
Affiliation(s)
- Manjunath Bettadapura
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Hayden Roys
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Anne Bowlin
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Gopinath Venugopal
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Charity L. Washam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.W.); (S.D.B.)
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Lucy Fry
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Steven Murdock
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Humphrey Wanjala
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.W.); (S.D.B.)
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
- Correspondence: ; Tel.: +1-501-686-5518
| |
Collapse
|
30
|
Mani S, Swargiary G, Ralph SJ. Targeting the redox imbalance in mitochondria: A novel mode for cancer therapy. Mitochondrion 2021; 62:50-73. [PMID: 34758363 DOI: 10.1016/j.mito.2021.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Changes in reactive oxygen species (ROS) levels affect many aspects of cell behavior. During carcinogenesis, moderate ROS production modifies gene expression to alter cell function, elevating metabolic activity and ROS. To avoid extreme ROS-activated death, cancer cells increase antioxidative capacity, regulating sustained ROS levels that promote growth. Anticancer therapies are exploring inducing supranormal, cytotoxic oxidative stress levels either inhibiting antioxidative capacity or promoting excess ROS to selectively destroy cancer cells, triggering mechanisms such as apoptosis, autophagy, necrosis, or ferroptosis. This review exemplifies pro-oxidants (natural/synthetic/repurposed drugs) and their clinical significance as cancer therapies providing revolutionary approaches.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Stephen J Ralph
- School of Medical Science, Griffith University, Southport, Australia.
| |
Collapse
|
31
|
Canton M, Sánchez-Rodríguez R, Spera I, Venegas FC, Favia M, Viola A, Castegna A. Reactive Oxygen Species in Macrophages: Sources and Targets. Front Immunol 2021; 12:734229. [PMID: 34659222 PMCID: PMC8515906 DOI: 10.3389/fimmu.2021.734229] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022] Open
Abstract
Reactive oxygen species (ROS) are fundamental for macrophages to eliminate invasive microorganisms. However, as observed in nonphagocytic cells, ROS play essential roles in processes that are different from pathogen killing, as signal transduction, differentiation, and gene expression. The different outcomes of these events are likely to depend on the specific subcellular site of ROS formation, as well as the duration and extent of ROS production. While excessive accumulation of ROS has long been appreciated for its detrimental effects, there is now a deeper understanding of their roles as signaling molecules. This could explain the failure of the “all or none” pharmacologic approach with global antioxidants to treat several diseases. NADPH oxidase is the first source of ROS that has been identified in macrophages. However, growing evidence highlights mitochondria as a crucial site of ROS formation in these cells, mainly due to electron leakage of the respiratory chain or to enzymes, such as monoamine oxidases. Their role in redox signaling, together with their exact site of formation is only partially elucidated. Hence, it is essential to identify the specific intracellular sources of ROS and how they influence cellular processes in both physiological and pathological conditions to develop therapies targeting oxidative signaling networks. In this review, we will focus on the different sites of ROS formation in macrophages and how they impact on metabolic processes and inflammatory signaling, highlighting the role of mitochondrial as compared to non-mitochondrial ROS sources.
Collapse
Affiliation(s)
- Marcella Canton
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy
| | - Ricardo Sánchez-Rodríguez
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy
| | - Iolanda Spera
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Francisca C Venegas
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy
| | - Alessandra Castegna
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
32
|
Korbecki J, Simińska D, Gąssowska-Dobrowolska M, Listos J, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Chronic and Cycling Hypoxia: Drivers of Cancer Chronic Inflammation through HIF-1 and NF-κB Activation: A Review of the Molecular Mechanisms. Int J Mol Sci 2021; 22:ijms221910701. [PMID: 34639040 PMCID: PMC8509318 DOI: 10.3390/ijms221910701] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic (continuous, non-interrupted) hypoxia and cycling (intermittent, transient) hypoxia are two types of hypoxia occurring in malignant tumors. They are both associated with the activation of hypoxia-inducible factor-1 (HIF-1) and nuclear factor κB (NF-κB), which induce changes in gene expression. This paper discusses in detail the mechanisms of activation of these two transcription factors in chronic and cycling hypoxia and the crosstalk between both signaling pathways. In particular, it focuses on the importance of reactive oxygen species (ROS), reactive nitrogen species (RNS) together with nitric oxide synthase, acetylation of HIF-1, and the action of MAPK cascades. The paper also discusses the importance of hypoxia in the formation of chronic low-grade inflammation in cancerous tumors. Finally, we discuss the effects of cycling hypoxia on the tumor microenvironment, in particular on the expression of VEGF-A, CCL2/MCP-1, CXCL1/GRO-α, CXCL8/IL-8, and COX-2 together with PGE2. These factors induce angiogenesis and recruit various cells into the tumor niche, including neutrophils and monocytes which, in the tumor, are transformed into tumor-associated neutrophils (TAN) and tumor-associated macrophages (TAM) that participate in tumorigenesis.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland;
| | - Izabela Gutowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
- Correspondence: ; Tel.: +48-(91)-466-1515
| |
Collapse
|
33
|
Kumar A, Vaish M, Karuppagounder SS, Gazaryan I, Cave JW, Starkov AA, Anderson ET, Zhang S, Pinto JT, Rountree AM, Wang W, Sweet IR, Ratan RR. HIF1α stabilization in hypoxia is not oxidant-initiated. eLife 2021; 10:72873. [PMID: 34596045 PMCID: PMC8530508 DOI: 10.7554/elife.72873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/19/2021] [Indexed: 01/08/2023] Open
Abstract
Hypoxic adaptation mediated by HIF transcription factors requires mitochondria, which have been implicated in regulating HIF1α stability in hypoxia by distinct models that involve consuming oxygen or alternatively converting oxygen into the second messenger peroxide. Here, we use a ratiometric, peroxide reporter, HyPer to evaluate the role of peroxide in regulating HIF1α stability. We show that antioxidant enzymes are neither homeostatically induced nor are peroxide levels increased in hypoxia. Additionally, forced expression of diverse antioxidant enzymes, all of which diminish peroxide, had disparate effects on HIF1α protein stability. Moreover, decrease in lipid peroxides by glutathione peroxidase-4 or superoxide by mitochondrial SOD, failed to influence HIF1α protein stability. These data show that mitochondrial, cytosolic or lipid ROS were not necessary for HIF1α stability, and favor a model where mitochondria contribute to hypoxic adaptation as oxygen consumers.
Collapse
Affiliation(s)
- Amit Kumar
- Burke Neurological Institute, White Plains, New York, United States.,Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, United States.,Department of Neurology, Weill Medical College of Cornell University, New York, United States
| | - Manisha Vaish
- Burke Neurological Institute, White Plains, New York, United States.,Pandemic Response Lab, New York, United States
| | - Saravanan S Karuppagounder
- Burke Neurological Institute, White Plains, New York, United States.,Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, United States.,Department of Neurology, Weill Medical College of Cornell University, New York, United States
| | - Irina Gazaryan
- Department of Anatomy and Cell Biology, New York Medical College, New York, United States
| | - John W Cave
- Burke Neurological Institute, White Plains, New York, United States.,Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, United States.,Department of Neurology, Weill Medical College of Cornell University, New York, United States
| | - Anatoly A Starkov
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, United States.,Department of Neurology, Weill Medical College of Cornell University, New York, United States
| | | | - Sheng Zhang
- Institute for Biotechnology, Cornell University, Ithaca, United States
| | - John T Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, United States
| | - Austin M Rountree
- Department of Medicine, University of Washington, Seattle, United States
| | - Wang Wang
- Department of Pain and Anesthesiology, University of Washington, Seattle, United States
| | - Ian R Sweet
- Department of Medicine, University of Washington, Seattle, United States
| | - Rajiv R Ratan
- Burke Neurological Institute, White Plains, New York, United States.,Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, United States.,Department of Neurology, Weill Medical College of Cornell University, New York, United States
| |
Collapse
|
34
|
Vanderhaeghen T, Beyaert R, Libert C. Bidirectional Crosstalk Between Hypoxia Inducible Factors and Glucocorticoid Signalling in Health and Disease. Front Immunol 2021; 12:684085. [PMID: 34149725 PMCID: PMC8211996 DOI: 10.3389/fimmu.2021.684085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoid-induced (GC) and hypoxia-induced transcriptional responses play an important role in tissue homeostasis and in the regulation of cellular responses to stress and inflammation. Evidence exists that there is an important crosstalk between both GC and hypoxia effects. Hypoxia is a pathophysiological condition to which cells respond quickly in order to prevent metabolic shutdown and death. The hypoxia inducible factors (HIFs) are the master regulators of oxygen homeostasis and are responsible for the ability of cells to cope with low oxygen levels. Maladaptive responses of HIFs contribute to a variety of pathological conditions including acute mountain sickness (AMS), inflammation and neonatal hypoxia-induced brain injury. Synthetic GCs which are analogous to the naturally occurring steroid hormones (cortisol in humans, corticosterone in rodents), have been used for decades as anti-inflammatory drugs for treating pathological conditions which are linked to hypoxia (i.e. asthma, ischemic injury). In this review, we investigate the crosstalk between the glucocorticoid receptor (GR), and HIFs. We discuss possible mechanisms by which GR and HIF influence one another, in vitro and in vivo, and the therapeutic effects of GCs on HIF-mediated diseases.
Collapse
Affiliation(s)
- Tineke Vanderhaeghen
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Wu Y, Li Z, McDonough MA, Schofield CJ, Zhang X. Inhibition of the Oxygen-Sensing Asparaginyl Hydroxylase Factor Inhibiting Hypoxia-Inducible Factor: A Potential Hypoxia Response Modulating Strategy. J Med Chem 2021; 64:7189-7209. [PMID: 34029087 DOI: 10.1021/acs.jmedchem.1c00415] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Factor inhibiting hypoxia-inducible factor (FIH) is a JmjC domain 2-oxogluarate and Fe(II)-dependent oxygenase that catalyzes hydroxylation of specific asparagines in the C-terminal transcriptional activation domain of hypoxia-inducible factor alpha (HIF-α) isoforms. This modification suppresses the transcriptional activity of HIF by reducing its interaction with the transcriptional coactivators p300/CBP. By contrast with inhibition of the HIF prolyl hydroxylases (PHDs), inhibitors of FIH, which accepts multiple non-HIF substrates, are less studied; they are of interest due to their potential ability to alter metabolism (either in a HIF-dependent and/or -independent manner) and, provided HIF is upregulated, to modulate the course of the HIF-mediated hypoxic response. Here we review studies on the mechanism and inhibition of FIH. We discuss proposed biological roles of FIH including its regulation of HIF activity and potential roles of FIH-catalyzed oxidation of non-HIF substrates. We highlight potential therapeutic applications of FIH inhibitors.
Collapse
Affiliation(s)
- Yue Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhihong Li
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Xiaojin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
36
|
Prikhodko VA, Selizarova NO, Okovityi SV. [Molecular mechanisms for hypoxia development and adaptation to it. Part I]. Arkh Patol 2021; 83:52-61. [PMID: 33822555 DOI: 10.17116/patol20218302152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypoxia is a typical pathological process characterized by the occurrence of oxygen deficiency in tissues and cells and accompanied by the development of immediate and delayed compensatory and adaptive reactions. Reprogramming of the mitochondrial electron transport chain (ETC) function is one the most essential regulatory mechanisms that allow for immediate adaptation to hypoxia. Succinic acid, or succinate, is involved in this process not only as one of the intermediates of the tricarboxylic acid (TAC) cycle, but also as a signaling molecule. In this connection, the purpose of this review was to systematize the available data on the molecular mechanisms for the development of hypoxia and its adaptation at the ETC/TAC coupling site, as well as on the role of succinic acid in these processes.
Collapse
Affiliation(s)
- V A Prikhodko
- Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation, Saint Petersburg, Russia
| | - N O Selizarova
- Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation, Saint Petersburg, Russia
| | - S V Okovityi
- Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation, Saint Petersburg, Russia
| |
Collapse
|
37
|
Chen Y, Gaber T. Hypoxia/HIF Modulates Immune Responses. Biomedicines 2021; 9:biomedicines9030260. [PMID: 33808042 PMCID: PMC8000289 DOI: 10.3390/biomedicines9030260] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Oxygen availability varies throughout the human body in health and disease. Under physiological conditions, oxygen availability drops from the lungs over the blood stream towards the different tissues into the cells and the mitochondrial cavities leading to physiological low oxygen conditions or physiological hypoxia in all organs including primary lymphoid organs. Moreover, immune cells travel throughout the body searching for damaged cells and foreign antigens facing a variety of oxygen levels. Consequently, physiological hypoxia impacts immune cell function finally controlling innate and adaptive immune response mainly by transcriptional regulation via hypoxia-inducible factors (HIFs). Under pathophysiological conditions such as found in inflammation, injury, infection, ischemia and cancer, severe hypoxia can alter immune cells leading to dysfunctional immune response finally leading to tissue damage, cancer progression and autoimmunity. Here we summarize the effects of physiological and pathophysiological hypoxia on innate and adaptive immune activity, we provide an overview on the control of immune response by cellular hypoxia-induced pathways with focus on the role of HIFs and discuss the opportunity to target hypoxia-sensitive pathways for the treatment of cancer and autoimmunity.
Collapse
Affiliation(s)
- Yuling Chen
- Charité—Universitätsmedizin Berlin, Corporate Ember of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany;
| | - Timo Gaber
- Charité—Universitätsmedizin Berlin, Corporate Ember of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany;
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513364
| |
Collapse
|
38
|
Potteti HR, Noone PM, Tamatam CR, Ankireddy A, Noel S, Rabb H, Reddy SP. Nrf2 mediates hypoxia-inducible HIF1α activation in kidney tubular epithelial cells. Am J Physiol Renal Physiol 2021; 320:F464-F474. [PMID: 33491566 PMCID: PMC7988808 DOI: 10.1152/ajprenal.00501.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/22/2020] [Accepted: 01/20/2021] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) and hypoxia-inducible factor-1α (HIF1α) transcription factors protect against ischemic acute kidney injury (AKI) by upregulating metabolic and cytoprotective gene expression. In this study, we tested the hypothesis that Nrf2 is required for HIF1α-mediated hypoxic responses using Nrf2-sufficient (wild-type) and Nrf2-deficient (Nrf2-/-) primary murine renal/kidney tubular epithelial cells (RTECs) and human immortalized tubular epithelial cells (HK2 cells) with HIF1 inhibition and activation. The HIF1 pathway inhibitor digoxin blocked hypoxia-stimulated HIF1α activation and heme oxygenase (HMOX1) expression in HK2 cells. Hypoxia-mimicking cobalt (II) chloride-stimulated HMOX1 expression was significantly lower in Nrf2-/- RTECs than in wild-type counterparts. Similarly, hypoxia-stimulated HIF1α-dependent metabolic gene expression was markedly impaired in Nrf2-/- RTECs. Nrf2 deficiency impaired hypoxia-induced HIF1α stabilization independent of increased prolyl 4-hydroxylase gene expression. We found decreased HIF1α mRNA levels in Nrf2-/- RTECs under both normoxia and hypoxia-reoxygenation conditions. In silico analysis and chromatin immunoprecipitation assays demonstrated Nrf2 binding to the HIF1α promoter in normoxia, but its binding decreased in hypoxia-exposed HK2 cells. However, Nrf2 binding at the HIF1α promoter was enriched following reoxygenation, demonstrating that Nrf2 maintains constitutive HIF1α expression. Consistent with this result, we found decreased levels of Nrf2 in hypoxia and that were restored following reoxygenation. Inhibition of mitochondrial complex I prevented hypoxia-induced Nrf2 downregulation and also increased basal Nrf2 levels. These results demonstrate a crucial role for Nrf2 in optimal HIF1α activation in hypoxia and that mitochondrial signaling downregulates Nrf2 levels in hypoxia, whereas reoxygenation restores it. Nrf2 and HIF1α interact to provide optimal metabolic and cytoprotective responses in ischemic AKI.
Collapse
Affiliation(s)
- Haranatha R Potteti
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Patrick M Noone
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Chandramohan R Tamatam
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Aparna Ankireddy
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Sanjeev Noel
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sekhar P Reddy
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
39
|
Pucciariello C, Perata P. The Oxidative Paradox in Low Oxygen Stress in Plants. Antioxidants (Basel) 2021; 10:332. [PMID: 33672303 PMCID: PMC7926446 DOI: 10.3390/antiox10020332] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/07/2023] Open
Abstract
Reactive oxygen species (ROS) are part of aerobic environments, and variations in the availability of oxygen (O2) in the environment can lead to altered ROS levels. In plants, the O2 sensing machinery guides the molecular response to low O2, regulating a subset of genes involved in metabolic adaptations to hypoxia, including proteins involved in ROS homeostasis and acclimation. In addition, nitric oxide (NO) participates in signaling events that modulate the low O2 stress response. In this review, we summarize recent findings that highlight the roles of ROS and NO under environmentally or developmentally defined low O2 conditions. We conclude that ROS and NO are emerging regulators during low O2 signalling and key molecules in plant adaptation to flooding conditions.
Collapse
Affiliation(s)
- Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| | | |
Collapse
|
40
|
Chopra A, Adhikary H, Willmore WG, Biggar KK. Insights into The Function and Regulation of Jumonji C Lysine Demethylases as Hypoxic Responsive Enzymes. Curr Protein Pept Sci 2021; 21:642-654. [PMID: 31889485 DOI: 10.2174/1389203721666191231104225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022]
Abstract
Cellular responses to hypoxia (low oxygen) are governed by oxygen sensitive signaling pathways. Such pathways, in part, are controlled by enzymes with oxygen-dependent catalytic activity, of which the role of prolyl 4-hydroxylases has been widely reviewed. These enzymes inhibit hypoxic response by inducing the oxygen-dependent degradation of hypoxia-inducible factor 1α, the master regulator of the transcriptional hypoxic response. Jumonji C domain-containing lysine demethylases are similar enzymes which share the same oxygen-dependent catalytic mechanism as prolyl 4- hydroxylases. Traditionally, the role of lysine demethylases has been studied in relation to demethylation activity against histone substrates, however, within the past decade an increasing number of nonhistone protein targets have been revealed, some of which have a key role in survival in the hypoxic tumor microenvironment. Within this review, we highlight the involvement of methyllysine in the hypoxic response with a focus on the HIF signaling pathway, the regulation of demethylase activity by oxygen, and provide insights into notable areas of future hypoxic demethylase research.
Collapse
Affiliation(s)
- Anand Chopra
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| | - Hemanta Adhikary
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| | - William G Willmore
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| | - Kyle K Biggar
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
41
|
DeFrates KG, Franco D, Heber-Katz E, Messersmith PB. Unlocking mammalian regeneration through hypoxia inducible factor one alpha signaling. Biomaterials 2021; 269:120646. [PMID: 33493769 PMCID: PMC8279430 DOI: 10.1016/j.biomaterials.2020.120646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Historically, the field of regenerative medicine has aimed to heal damaged tissue through the use of biomaterials scaffolds or delivery of foreign progenitor cells. Despite 30 years of research, however, translation and commercialization of these techniques has been limited. To enable mammalian regeneration, a more practical approach may instead be to develop therapies that evoke endogenous processes reminiscent of those seen in innate regenerators. Recently, investigations into tadpole tail regrowth, zebrafish limb restoration, and the super-healing Murphy Roths Large (MRL) mouse strain, have identified ancient oxygen-sensing pathways as a possible target to achieve this goal. Specifically, upregulation of the transcription factor, hypoxia-inducible factor one alpha (HIF-1α) has been shown to modulate cell metabolism and plasticity, as well as inflammation and tissue remodeling, possibly priming injuries for regeneration. Since HIF-1α signaling is conserved across species, environmental or pharmacological manipulation of oxygen-dependent pathways may elicit a regenerative response in non-healing mammals. In this review, we will explore the emerging role of HIF-1α in mammalian healing and regeneration, as well as attempts to modulate protein stability through hyperbaric oxygen treatment, intermittent hypoxia therapy, and pharmacological targeting. We believe that these therapies could breathe new life into the field of regenerative medicine.
Collapse
Affiliation(s)
- Kelsey G DeFrates
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Daniela Franco
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Ellen Heber-Katz
- Laboratory of Regenerative Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Phillip B Messersmith
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
42
|
Korbecki J, Kojder K, Kapczuk P, Kupnicka P, Gawrońska-Szklarz B, Gutowska I, Chlubek D, Baranowska-Bosiacka I. The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors-A Review of Literature. Int J Mol Sci 2021; 22:ijms22020843. [PMID: 33467722 PMCID: PMC7830156 DOI: 10.3390/ijms22020843] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors—CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. First, we present basic information on the effect of these chemoattractant cytokines on cancer processes. We then discuss the effect of hypoxia-induced changes on CXC chemokine expression on the angiogenesis, lymphangiogenesis and recruitment of various cells to the tumor niche, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), regulatory T cells (Tregs) and tumor-infiltrating lymphocytes (TILs). Finally, the review summarizes data on the use of drugs targeting the CXC chemokine system in cancer therapies.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland;
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Barbara Gawrońska-Szklarz
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
43
|
Liu PJ, Balfe P, McKeating JA, Schilling M. Oxygen Sensing and Viral Replication: Implications for Tropism and Pathogenesis. Viruses 2020; 12:E1213. [PMID: 33113858 PMCID: PMC7693908 DOI: 10.3390/v12111213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The ability to detect and respond to varying oxygen tension is an essential prerequisite to life. Several mechanisms regulate the cellular response to oxygen including the prolyl hydroxylase domain (PHD)/factor inhibiting HIF (FIH)-hypoxia inducible factor (HIF) pathway, cysteamine (2-aminoethanethiol) dioxygenase (ADO) system, and the lysine-specific demethylases (KDM) 5A and KDM6A. Using a systems-based approach we discuss the literature on oxygen sensing pathways in the context of virus replication in different tissues that experience variable oxygen tension. Current information supports a model where the PHD-HIF pathway enhances the replication of viruses infecting tissues under low oxygen, however, the reverse is true for viruses with a selective tropism for higher oxygen environments. Differences in oxygen tension and associated HIF signaling may play an important role in viral tropism and pathogenesis. Thus, pharmaceutical agents that modulate HIF activity could provide novel treatment options for viral infections and associated pathological conditions.
Collapse
|
44
|
Liu PJ, Harris JM, Marchi E, D'Arienzo V, Michler T, Wing PAC, Magri A, Ortega-Prieto AM, van de Klundert M, Wettengel J, Durantel D, Dorner M, Klenerman P, Protzer U, Giotis ES, McKeating JA. Hypoxic gene expression in chronic hepatitis B virus infected patients is not observed in state-of-the-art in vitro and mouse infection models. Sci Rep 2020; 10:14101. [PMID: 32839523 PMCID: PMC7445281 DOI: 10.1038/s41598-020-70865-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is the leading cause of hepatocellular carcinoma (HCC) worldwide. The prolyl hydroxylase domain (PHD)-hypoxia inducible factor (HIF) pathway is a key mammalian oxygen sensing pathway and is frequently perturbed by pathological states including infection and inflammation. We discovered a significant upregulation of hypoxia regulated gene transcripts in patients with chronic hepatitis B (CHB) in the absence of liver cirrhosis. We used state-of-the-art in vitro and in vivo HBV infection models to evaluate a role for HBV infection and the viral regulatory protein HBx to drive HIF-signalling. HBx had no significant impact on HIF expression or associated transcriptional activity under normoxic or hypoxic conditions. Furthermore, we found no evidence of hypoxia gene expression in HBV de novo infection, HBV infected human liver chimeric mice or transgenic mice with integrated HBV genome. Collectively, our data show clear evidence of hypoxia gene induction in CHB that is not recapitulated in existing models for acute HBV infection, suggesting a role for inflammatory mediators in promoting hypoxia gene expression.
Collapse
Affiliation(s)
- Peter Jianrui Liu
- Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7LF, UK
| | - James M Harris
- Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7LF, UK
| | - Emanuele Marchi
- Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - Valentina D'Arienzo
- Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7LF, UK
| | - Thomas Michler
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, 81675, Munich, Germany
| | - Peter A C Wing
- Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7LF, UK
| | - Andrea Magri
- Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7LF, UK
| | - Ana Maria Ortega-Prieto
- Section of Molecular Virology, Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
| | - Maarten van de Klundert
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, 81675, Munich, Germany
| | - Jochen Wettengel
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, 81675, Munich, Germany
| | - David Durantel
- Cancer Research Center of Lyon (CRCL), INSERM U1052, and University of Lyon (UCBL1), Lyon, France
| | - Marcus Dorner
- Section of Molecular Virology, Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
| | - Paul Klenerman
- Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, 81675, Munich, Germany
| | - Efstathios S Giotis
- Section of Molecular Virology, Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
- School of Life Sciences, University of Essex, Colchester, C04 3SQ, UK
| | - Jane A McKeating
- Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7LF, UK.
| |
Collapse
|
45
|
Baik AH, Jain IH. Turning the Oxygen Dial: Balancing the Highs and Lows. Trends Cell Biol 2020; 30:516-536. [PMID: 32386878 PMCID: PMC7391449 DOI: 10.1016/j.tcb.2020.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Oxygen is both vital and toxic to life. Molecular oxygen is the most used substrate in the human body and is required for several hundred diverse biochemical reactions. The discovery of the PHD-HIF-pVHL system revolutionized our fundamental understanding of oxygen sensing and cellular adaptations to hypoxia. It deepened our knowledge of the biochemical underpinnings of numerous diseases, ranging from anemia to cancer. Cellular dysfunction and tissue pathology can result from a mismatch of oxygen supply and demand. Recent work has shown that mitochondrial disease models display tissue hyperoxia and that disease pathology can be reversed by normalization of excess oxygen, suggesting that certain disease states can potentially be treated by modulating oxygen levels. In this review, we describe cellular and organismal mechanisms of oxygen sensing and adaptation. We provide a revitalized framework for understanding pathologies of too little or too much oxygen.
Collapse
Affiliation(s)
- Alan H Baik
- Department of Physiology, University of California, San Francisco, CA 94158, USA; Department of Medicine, Division of Cardiology, University of California, San Francisco, CA 94143, USA.
| | - Isha H Jain
- Department of Physiology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
46
|
Chowdhury AR, Zielonka J, Kalyanaraman B, Hartley RC, Murphy MP, Avadhani NG. Mitochondria-targeted paraquat and metformin mediate ROS production to induce multiple pathways of retrograde signaling: A dose-dependent phenomenon. Redox Biol 2020; 36:101606. [PMID: 32604037 PMCID: PMC7327929 DOI: 10.1016/j.redox.2020.101606] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 01/12/2023] Open
Abstract
The mitochondrial electron transport chain is a major source of reactive oxygen species (ROS) and is also a target of ROS, with an implied role in the stabilization of hypoxia-inducible factor (HIF) and induction of the AMPK pathway. Here we used varying doses of two agents, Mito-Paraquat and Mito-Metformin, that have been conjugated to cationic triphenylphosphonium (TPP+) moiety to selectively target them to the mitochondrial matrix compartment, thereby resulting in the site-specific generation of ROS within mitochondria. These agents primarily induce superoxide (O2•-) production by acting on complex I. In Raw264.7 macrophages, C2C12 skeletal myocytes, and HCT116 adenocarcinoma cells, we show that mitochondria-targeted oxidants can induce ROS (O2•- and H2O2). In all three cell lines tested, the mitochondria-targeted agents disrupted membrane potential and activated calcineurin and the Cn-dependent retrograde signaling pathway. Hypoxic culture conditions also induced Cn activation and HIF1α activation in a temporally regulated manner, with the former appearing at shorter exposure times. Together, our results indicate that mitochondrial oxidant-induced retrograde signaling is driven by disruption of membrane potential and activation of Ca2+/Cn pathway and is independent of ROS-induced HIF1α or AMPK pathways.
Collapse
Affiliation(s)
- Anindya Roy Chowdhury
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Michael P Murphy
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 OXY, UK
| | - Narayan G Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Patwardhan RS, Singh B, Pal D, Checker R, Bandekar M, Sharma D, Sandur SK. Redox regulation of regulatory T-cell differentiation and functions. Free Radic Res 2020; 54:947-960. [DOI: 10.1080/10715762.2020.1745202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raghavendra S. Patwardhan
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Babita Singh
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Debojyoti Pal
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Rahul Checker
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Mayuri Bandekar
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Santosh K. Sandur
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
48
|
Payen VL, Zampieri LX, Porporato PE, Sonveaux P. Pro- and antitumor effects of mitochondrial reactive oxygen species. Cancer Metastasis Rev 2020; 38:189-203. [PMID: 30820778 DOI: 10.1007/s10555-019-09789-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In cancer, mitochondrial functions are commonly altered. Directly involved in metabolic reprogramming, mitochondrial plasticity confers to cancer cells a high degree of adaptability to a wide range of stresses and to the harsh tumor microenvironment. Lack of nutrients or oxygen caused by altered perfusion, metabolic needs of proliferating cells, co-option of the microenvironment, control of the immune system, cell migration and metastasis, and evasion of exogenous stress (e.g., chemotherapy) are all, at least in part, influenced by mitochondria. Mitochondria are undoubtedly one of the key contributors to cancer development and progression. Understanding their protumoral (dys)functions may pave the way to therapeutic strategies capable of turning them into innocent entities. Here, we will focus on the production and detoxification of mitochondrial reactive oxygen species (mtROS), on their impact on tumorigenesis (genetic, prosurvival, and microenvironmental effects and their involvement in autophagy), and on tumor metastasis. We will also summarize the latest therapeutic approaches involving mtROS.
Collapse
Affiliation(s)
- Valéry L Payen
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200, Brussels, Belgium.,Pole of Pediatrics, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium.,Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Luca X Zampieri
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200, Brussels, Belgium
| | - Paolo E Porporato
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Centre, University of Torino, Torino, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200, Brussels, Belgium.
| |
Collapse
|
49
|
Alquraishi M, Puckett DL, Alani DS, Humidat AS, Frankel VD, Donohoe DR, Whelan J, Bettaieb A. Pyruvate kinase M2: A simple molecule with complex functions. Free Radic Biol Med 2019; 143:176-192. [PMID: 31401304 PMCID: PMC6848794 DOI: 10.1016/j.freeradbiomed.2019.08.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022]
Abstract
Pyruvate kinase M2 is a critical enzyme that regulates cell metabolism and growth under different physiological conditions. In its metabolic role, pyruvate kinase M2 catalyzes the last glycolytic step which converts phosphoenolpyruvate to pyruvate with the generation of ATP. Beyond this metabolic role in glycolysis, PKM2 regulates gene expression in the nucleus, phosphorylates several essential proteins that regulate major cell signaling pathways, and contribute to the redox homeostasis of cancer cells. The expression of PKM2 has been demonstrated to be significantly elevated in several types of cancer, and the overall inflammatory response. The unusual pattern of PKM2 expression inspired scientists to investigate the unrevealed functions of PKM2 and the therapeutic potential of targeting PKM2 in cancer and other disorders. Therefore, the purpose of this review is to discuss the mechanistic and therapeutic potential of targeting PKM2 with the focus on cancer metabolism, redox homeostasis, inflammation, and metabolic disorders. This review highlights and provides insight into the metabolic and non-metabolic functions of PKM2 and its relevant association with health and disease.
Collapse
Affiliation(s)
- Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dexter L Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dina S Alani
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Amal S Humidat
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Victoria D Frankel
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dallas R Donohoe
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Jay Whelan
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA; Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996-0840, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996-0840, USA.
| |
Collapse
|
50
|
Zarkasi KA, Jen-Kit T, Jubri Z. Molecular Understanding of the Cardiomodulation in Myocardial Infarction and the Mechanism of Vitamin E Protections. Mini Rev Med Chem 2019; 19:1407-1426. [DOI: 10.2174/1389557519666190130164334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/10/2018] [Accepted: 01/12/2019] [Indexed: 12/13/2022]
Abstract
:
Myocardial infarction is a major cause of deaths globally. Modulation of several molecular
mechanisms occurs during the initial stages of myocardial ischemia prior to permanent cardiac tissue
damage, which involves both pathogenic as well as survival pathways in the cardiomyocyte. Currently,
there is increasing evidence regarding the cardioprotective role of vitamin E in alleviating the disease.
This fat-soluble vitamin does not only act as a powerful antioxidant; but it also has the ability to regulate
several intracellular signalling pathways including HIF-1, PPAR-γ, Nrf-2, and NF-κB that influence
the expression of a number of genes and their protein products. Essentially, it inhibits the molecular
progression of tissue damage and preserves myocardial tissue viability. This review aims to summarize
the molecular understanding of the cardiomodulation in myocardial infarction as well as the
mechanism of vitamin E protection.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Tan Jen-Kit
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Zakiah Jubri
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|