1
|
Xiao Q, Liu Y, Li T, Wang C, He S, Zhai L, Yang Z, Zhang X, Wu Y, Liu Y. Viral oncogenesis in cancer: from mechanisms to therapeutics. Signal Transduct Target Ther 2025; 10:151. [PMID: 40350456 PMCID: PMC12066790 DOI: 10.1038/s41392-025-02197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 05/14/2025] Open
Abstract
The year 2024 marks the 60th anniversary of the discovery of the Epstein-Barr virus (EBV), the first virus confirmed to cause human cancer. Viral infections significantly contribute to the global cancer burden, with seven known Group 1 oncogenic viruses, including hepatitis B virus (HBV), human papillomavirus (HPV), EBV, Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV), human T-cell leukemia virus type 1 (HTLV-1), and human immunodeficiency virus (HIV). These oncogenic viruses induce cellular transformation and cancer development by altering various biological processes within host cells, particularly under immunosuppression or co-carcinogenic exposures. These viruses are primarily associated with hepatocellular carcinoma, gastric cancer, cervical cancer, nasopharyngeal carcinoma, Kaposi sarcoma, lymphoma, and adult T-cell leukemia/lymphoma. Understanding the mechanisms of viral oncogenesis is crucial for identifying and characterizing the early biological processes of virus-related cancers, providing new targets and strategies for treatment or prevention. This review first outlines the global epidemiology of virus-related tumors, milestone events in research, and the process by which oncogenic viruses infect target cells. It then focuses on the molecular mechanisms by which these viruses induce tumors directly or indirectly, including the regulation of oncogenes or tumor suppressor genes, induction of genomic instability, disruption of regular life cycle of cells, immune suppression, chronic inflammation, and inducing angiogenesis. Finally, current therapeutic strategies for virus-related tumors and recent advances in preclinical and clinical research are discussed.
Collapse
Affiliation(s)
- Qing Xiao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Tingting Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Chaoyu Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Sanxiu He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Liuyue Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Zailin Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yongzhong Wu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
2
|
Torne AS, Robertson ES. Epigenetic Mechanisms in Latent Epstein-Barr Virus Infection and Associated Cancers. Cancers (Basel) 2024; 16:991. [PMID: 38473352 PMCID: PMC10931536 DOI: 10.3390/cancers16050991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The Epstein-Barr Virus (EBV) is a double-stranded DNA-based human tumor virus that was first isolated in 1964 from lymphoma biopsies. Since its initial discovery, EBV has been identified as a major contributor to numerous cancers and chronic autoimmune disorders. The virus is particularly efficient at infecting B-cells but can also infect epithelial cells, utilizing an array of epigenetic strategies to establish long-term latent infection. The association with histone modifications, alteration of DNA methylation patterns in host and viral genomes, and microRNA targeting of host cell factors are core epigenetic strategies that drive interactions between host and virus, which are necessary for viral persistence and progression of EBV-associated diseases. Therefore, understanding epigenetic regulation and its role in post-entry viral dynamics is an elusive area of EBV research. Here, we present current outlooks of EBV epigenetic regulation as it pertains to viral interactions with its host during latent infection and its propensity to induce tumorigenesis. We review the important epigenetic regulators of EBV latency and explore how the strategies involved during latent infection drive differential epigenetic profiles and host-virus interactions in EBV-associated cancers.
Collapse
Affiliation(s)
| | - Erle S. Robertson
- Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
3
|
Abstract
Natural killer (NK)/T cell lymphoma (NKTCL) is a rare subtype of Epstein-Barr virus (EBV)-associated non-Hodgkin lymphoma characterized by poor clinical outcomes. It is more common in East Asian and Latin American countries. Despite the introduction of asparaginase/pegaspargase-based chemotherapy, the prognosis of patients with advanced NKTCL needs to be improved, and few salvage treatment options are available for relapsed/refractory patients who fail chemotherapy. Although many unknowns remain, novel treatment strategies to further improve outcomes are urgently needed. Immunotherapy has emerged and shown favorable antitumor activity in NKTCL, including monoclonal antibodies targeting immune checkpoint inhibitors, other receptors on the cellular membrane, and cellular immunotherapy, which could enhance immune cells attack on tumor cells. In this review, we provide an overview of recent immunotherapy in NKTCL, focusing on programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1), cytotoxic T lymphocyte-associated protein 4 (CTLA-4), chimeric antigen receptor (CAR) T cells, EBV-specific cytotoxic T lymphocytes, immunomodulatory agents, and other targeted agents, as well as the current progress and challenges in the field.
Collapse
Affiliation(s)
- Ling He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Na Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
In A, Stopa BM, Cuoco JA, Stump MS, Apfel LS, Rogers CM. Central Nervous System Lymphoproliferative Disorder Secondary to Methotrexate: A Systematic Literature Review and Case Illustration. World Neurosurg 2023; 179:118-126. [PMID: 37574195 DOI: 10.1016/j.wneu.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Methotrexate is an immunosuppressant commonly used to treat inflammatory conditions, such as rheumatoid arthritis. However, albeit exceedingly rare, it can have serious adverse effects within the central nervous system (CNS), such as methotrexate-associated lymphoproliferative disorder (MTX-LPD). Literature describing the natural history, treatment options, and clinical outcomes of patients with CNS MTX-LPD remains sparse. METHODS We present a systematic literature review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and a case illustration of CNS MTX-LPD. RESULTS A systematic review of the literature revealed 12 published cases of CNS MTX-LPD, plus the case presented herein, for a total of 13 included cases. The most common indication for MTX was rheumatoid arthritis. The most common treatment for the LPD was MTX cessation (12, 92.3%), adjunct chemotherapy (2, 15.4%), total tumor resection (3, 23.1%), or steroid therapy (1, 7.7%). Treatment usually led to improvement of neurological symptoms (9, 69.2%) along with regression of the lesions (3, 23.1%) with no recurrence (6, 46.2%). Death was reported in four cases (30.8%) with a mean time from onset of 11 months. CONCLUSIONS CNS MTX-LPD should be considered in the differential diagnosis for patients who are taking MTX presenting with neurologic symptoms, as immediate withdrawal of MTX has demonstrated good prognosis.
Collapse
Affiliation(s)
- Alexander In
- Department of Neuroscience, Fralin Biomedical Research Institute, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Brittany M Stopa
- Department of Neuroscience, Fralin Biomedical Research Institute, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA.
| | - Joshua A Cuoco
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Michael S Stump
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Department of Pathology, Carilion Clinic, Roanoke, Virginia, USA
| | - Lisa S Apfel
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Cara M Rogers
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
5
|
Liang F, Xu H, Cheng H, Zhao Y, Zhang J. Patient-derived tumor models: a suitable tool for preclinical studies on esophageal cancer. Cancer Gene Ther 2023; 30:1443-1455. [PMID: 37537209 DOI: 10.1038/s41417-023-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Esophageal cancer (EC) is the tenth most common cancer worldwide and has high morbidity and mortality. Its main subtypes include esophageal squamous cell carcinoma and esophageal adenocarcinoma, which are usually diagnosed during their advanced stages. The biological defects and inability of preclinical models to summarize completely the etiology of multiple factors, the complexity of the tumor microenvironment, and the genetic heterogeneity of tumors severely limit the clinical treatment of EC. Patient-derived models of EC not only retain the tissue structure, cell morphology, and differentiation characteristics of the original tumor, they also retain tumor heterogeneity. Therefore, compared with other preclinical models, they can better predict the efficacy of candidate drugs, explore novel biomarkers, combine with clinical trials, and effectively improve patient prognosis. This review discusses the methods and animals used to establish patient-derived models and genetically engineered mouse models, especially patient-derived xenograft models. It also discusses their advantages, applications, and limitations as preclinical experimental research tools to provide an important reference for the precise personalized treatment of EC and improve the prognosis of patients.
Collapse
Affiliation(s)
- Fan Liang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hongyan Xu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hongwei Cheng
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yabo Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Junhe Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
6
|
Salmerón-Villalobos J, Castrejón-de-Anta N, Guerra-García P, Ramis-Zaldivar JE, López-Guerra M, Mato S, Colomer D, Diaz-Crespo F, Menarguez J, Garrido-Pontnou M, Andrés M, García-Fernández E, Llavador M, Frigola G, García N, González-Farré B, Martín-Guerrero I, Garrido-Colino C, Astigarraga I, Fernández A, Verdú-Amorós J, González-Muñíz S, González B, Celis V, Campo E, Balagué O, Salaverria I. Decoding the molecular heterogeneity of pediatric monomorphic post-solid organ transplant lymphoproliferative disorders. Blood 2023; 142:434-445. [PMID: 37053555 DOI: 10.1182/blood.2022019543] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Posttransplant lymphoproliferative disorders (PTLDs) represent a broad spectrum of lymphoid proliferations, frequently associated with Epstein-Barr virus (EBV) infection. The molecular profile of pediatric monomorphic PTLDs (mPTLDs) has not been elucidated, and it is unknown whether they display similar genetic features as their counterpart in adult and immunocompetent (IMC) pediatric patients. In this study, we investigated 31 cases of pediatric mPTLD after solid organ transplantation, including 24 diffuse large B-cell lymphomas (DLBCLs), mostly classified as activated B cell, and 7 cases of Burkitt lymphoma (BL), 93% of which were EBV positive. We performed an integrated molecular approach, including fluorescence in situ hybridization, targeted gene sequencing, and copy number (CN) arrays. Overall, PTLD-BL carried mutations in MYC, ID3, DDX3X, ARID1A, or CCND3 resembling IMC-BL, higher mutational burden than PTLD-DLBCL, and lesser CN alterations than IMC-BL. PTLD-DLBCL showed a very heterogeneous genomic profile with fewer mutations and CN alterations than IMC-DLBCL. Epigenetic modifiers and genes of the Notch pathway were the most recurrently mutated in PTLD-DLBCL (both 28%). Mutations in cell cycle and Notch pathways correlated with a worse outcome. All 7 patients with PTLD-BL were alive after treatment with pediatric B-cell non-Hodgkin lymphoma protocols, whereas 54% of patients with DLBCL were cured with immunosuppression reduction, rituximab, and/or low-dose chemotherapy. These findings highlight the low complexity of pediatric PTLD-DLBCL, their good response to low-intensity treatment, and the shared pathogenesis between PTLD-BL and EBV-positive IMC-BL. We also suggest new potential parameters that could help in the diagnosis and the design of better therapeutic strategies for these patients.
Collapse
Affiliation(s)
- Julia Salmerón-Villalobos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Natalia Castrejón-de-Anta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Pilar Guerra-García
- Pediatric Hematology and Oncology Department, Hospital Universitario La Paz, Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, Instituto de Investigación Sanitaria del Hospital Universitario La Paz - IdiPAZ, Madrid, Spain
| | - Joan Enric Ramis-Zaldivar
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Mónica López-Guerra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Hematopathology Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Sara Mato
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Hematopathology Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Francisco Diaz-Crespo
- Pathology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Javier Menarguez
- Pathology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Mara Andrés
- Pediatric Hematology and Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, Valencia, Spain
| | | | - Margarita Llavador
- Pathology Department, Hospital Universitario y Politécnico La Fe de Valencia, Valencia, Spain
| | - Gerard Frigola
- Hematopathology Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Noelia García
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Blanca González-Farré
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Hematopathology Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Idoia Martín-Guerrero
- Department of Genetics, Physics Anthropology and Animal Physiology, Faculty of Science and Technology, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain
- Department of Pediatrics, Osakidetza, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Barakaldo, Spain
- Departament of Pediatrics, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Carmen Garrido-Colino
- Pediatric Oncology and Hematology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Itziar Astigarraga
- Department of Pediatrics, Osakidetza, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Barakaldo, Spain
- Departament of Pediatrics, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Alba Fernández
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jaime Verdú-Amorós
- Pediatric Oncology and Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Soledad González-Muñíz
- Pediatric Oncology and Hematology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Berta González
- Pediatric Hematology and Oncology Department, Hospital Universitario La Paz, Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, Instituto de Investigación Sanitaria del Hospital Universitario La Paz - IdiPAZ, Madrid, Spain
| | - Verónica Celis
- Pediatric Oncology and Hematology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Hematopathology Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Olga Balagué
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Hematopathology Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| |
Collapse
|
7
|
Gross TG, Rubinstein JD. Post-transplant lymphoproliferative disease in children, adolescents, and young adults. Hematol Oncol 2023; 41 Suppl 1:48-56. [PMID: 37294957 DOI: 10.1002/hon.3139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
Post-transplant lymphoproliferative disease (PTLD) remains a major complication of transplantation. PTLD is a rare entity and very heterogenous making consensus on diagnosis and treatment very challenging. The majority are Epstein-Barr virus (EBV) driven, CD20+ B-cell proliferations. PTLD does occur following hematopoietic stem cell transplant (HSCT), but due to the relative short risk period and efficacy of pre-emptive therapy, PTLD following HSCT will not be discussed in this review. This review will focus on the epidemiology, role of EBV, clinical presentation, diagnosis and evaluation and the current and emerging treatment strategies for pediatric PTLD following solid organ transplantation.
Collapse
Affiliation(s)
- Thomas G Gross
- Department of Pediatrics, Children's Hospital of Colorado, Aurora, Colorado, USA
| | - Jeremy D Rubinstein
- Department of Pediatric, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Oncology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Rubinstein J, Toner K, Gross T, Wistinghausen B. Diagnosis and management of post-transplant lymphoproliferative disease following solid organ transplantation in children, adolescents, and young adults. Best Pract Res Clin Haematol 2023; 36:101446. [PMID: 36907642 DOI: 10.1016/j.beha.2023.101446] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Post-transplant Lymphoproliferative Disease (PTLD) remains a major complication of solid organ transplantation (SOT) in pediatric patients. The majority are Epstein-Barr Virus (EBV) driven CD20+ B-cell proliferations responsive to reduction to immunosuppression and anti-CD20 directed immunotherapy. This review focusses on the epidemiology, role of EBV, clinical presentation, current treatment strategies, adoptive immunotherapy and future research in EBV + PTLD in pediatric patients.
Collapse
Affiliation(s)
- Jeremy Rubinstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 7018, Cincinnati, OH, 45229, USA.
| | - Keri Toner
- Center for Cancer and Blood Disorder, Children's National Hospital, Washington, DC, USA; Center for Cancer and Immunology Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Thomas Gross
- Department of Pediatrics, Children's Hospital of Colorado, University of Colorado School of Medicine, Box 115/AP Rm C3404, Aurora, CO, 80045, USA
| | - Birte Wistinghausen
- Center for Cancer and Blood Disorder, Children's National Hospital, Washington, DC, USA; Center for Cancer and Immunology Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW This review provides readers with examples of refractory infections due to inborn errors of immunity, highlighting how they may be successfully treated by deducing and targeting the underlying immunodeficiency. RECENT FINDINGS The use of host-directed immunotherapy to treat infectious disease in inborn errors of immunity is currently limited but growing. Different strategies include depleting the cellular reservoir for pathogens with restricted cell-tropism; augmenting the diminished effector response; and restoring molecular equipoise. The immunotherapies illustrated are existing drugs that have been re-purposed and rationally used, depending on the molecular or cellular impact of the mutation. As more biologic response modifiers and molecular targeted therapies are developed for other indications, they open the avenues for their use in inborn errors of immunity. Conversely, as more molecular pathways underlying defective immune responses and refractory infections are elucidated, they lend themselves to tractability with these emerging therapies. SUMMARY Infections that fail appropriate antimicrobial therapy are a harbinger of underlying inborn errors of immunity. Dissecting the mechanism by which the immune system fails provides opportunities to target the host response and make it succeed.
Collapse
|
10
|
Markouli M, Ullah F, Omar N, Apostolopoulou A, Dhillon P, Diamantopoulos P, Dower J, Gurnari C, Ahmed S, Dima D. Recent Advances in Adult Post-Transplant Lymphoproliferative Disorder. Cancers (Basel) 2022; 14:cancers14235949. [PMID: 36497432 PMCID: PMC9740763 DOI: 10.3390/cancers14235949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
PTLD is a rare but severe complication of hematopoietic or solid organ transplant recipients, with variable incidence and timing of occurrence depending on different patient-, therapy-, and transplant-related factors. The pathogenesis of PTLD is complex, with most cases of early PLTD having a strong association with Epstein-Barr virus (EBV) infection and the iatrogenic, immunosuppression-related decrease in T-cell immune surveillance. Without appropriate T-cell response, EBV-infected B cells persist and proliferate, resulting in malignant transformation. Classification is based on the histologic subtype and ranges from nondestructive hyperplasias to monoclonal aggressive lymphomas, with the most common subtype being diffuse large B-cell lymphoma-like PTLD. Management focuses on prevention of PTLD development, as well as therapy for active disease. Treatment is largely based on the histologic subtype. However, given lack of clinical trials providing evidence-based data on PLTD therapy-related outcomes, there are no specific management guidelines. In this review, we discuss the pathogenesis, histologic classification, and risk factors of PTLD. We further focus on common preventive and frontline treatment modalities, as well as describe the application of novel therapies for PLTD and elaborate on potential challenges in therapy.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Fauzia Ullah
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Najiullah Omar
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Anna Apostolopoulou
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Puneet Dhillon
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Panagiotis Diamantopoulos
- Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Joshua Dower
- Department of Hematology and Medical Oncology, Tufts Medical Center, Boston, MA 02111, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Sairah Ahmed
- Department of Lymphoma-Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Danai Dima
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence:
| |
Collapse
|
11
|
Abstract
Natural killer (NK)/T-cell lymphomas are aggressive malignancies with a predilection for Asian and South American populations. Epstein-Barr virus (EBV) infection in lymphoma cells is universal. Predominantly extranodal, NK/T-cell lymphomas are divided clinically into nasal (involving the nose and upper aerodigestive tract), non-nasal (involving the skin, gastrointestinal tract, testes, and other organs), and aggressive leukaemia/lymphoma (involving the marrow and multiple organs) subtypes. Initial assessment should include imaging with positron emission tomography computed tomography (PET/CT), quantification of plasma EBV DNA as a surrogate marker of lymphoma load, and bone marrow examination with in situ hybridization for EBV-encoded small RNA. Prognostication can be based on presentation parameters (age, stage, lymph node involvement, clinical subtypes, and EBV DNA), which represent patient factors and lymphoma load; and dynamic parameters during treatment (serial plasma EBV DNA and interim/end-of-treatment PET/CT), which reflect response to therapy. Therapeutic goals are to achieve undetectable plasma EBV DNA and normal PET/CT (Deauville score ≤ 3). NK/T-cell lymphomas express the multidrug resistance phenotype, rendering anthracycline-containing regimens ineffective. Stage I/II nasal cases are treated with non-anthracycline asparaginase-based regimens plus sequential/concurrent radiotherapy. Stage III/IV nasal, and non-nasal and aggressive leukaemia/lymphoma cases are treated with asparaginase-containing regimens and consolidated by allogeneic haematopoietic stem cell transplantation (HSCT) in suitable patients. Autologous HSCT does not improve outcome. In relapsed/refractory cases, novel approaches comprise immune checkpoint blockade of PD1/PD-L1, EBV-specific cytotoxic T-cells, monoclonal antibodies, and histone deacetylase inhibitors. Future strategies may include inhibition of signalling pathways and driver mutations, and immunotherapy targeting the lymphoma and its microenvironment.
Collapse
Affiliation(s)
- Eric Tse
- Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yok-Lam Kwong
- Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
12
|
Pediatric EBV Positive Mucocutaneous Ulceration in Stomach a Rare Entity. J Pediatr Hematol Oncol 2022; 44:e503-e506. [PMID: 34224521 DOI: 10.1097/mph.0000000000002250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/23/2021] [Indexed: 11/26/2022]
Abstract
Epstein Barr virus (EBV) related lymphoproliferative diseases may occur in immunocompromised patients or patients with a history of drug use causing immunodeficiency. EBV positive mucocutaneous ulceration in the new classification of lymphoproliferative diseases in 2016 is very rare in children. Involvement occurs in the skin, oral mucosa, and gastrointestinal system. Gastric involvement is very rare in the literature. There is no case of gastric involvement in children. There are no specified modalities in the treatment of EBV positive mucocutaneous ulceration. We presented our pediatric patient with ataxia telangiectasia who presented with abdominal pain and difficulty swallowing and diagnosed with EBV positive mucocutaneous ulceration in the stomach. We started brentuximab vedotin during the treatment process, and complete remission was achieved after 6 cures of treatment. Our patient is the first case of EBV positive mucocutaneous ulceration in the pediatric case series.
Collapse
|
13
|
Tse E, Kwong YL. Recent Advances in the Diagnosis and Treatment of Natural Killer Cell Malignancies. Cancers (Basel) 2022; 14:cancers14030597. [PMID: 35158865 PMCID: PMC8833626 DOI: 10.3390/cancers14030597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Natural killer (NK)/T-cell lymphomas are aggressive extranodal Epstein–Barr virus (EBV)-positive malignancies. They can be divided into three subtypes: nasal (involving the nose and upper aerodigestive tract), non-nasal (involving skin, gastrointestinal tract, testis and other organs) and disseminated (involving multiple organs). Lymphoma cells are positive for CD3ε, CD56, cytotoxic molecules and EBV-encoded small RNA. There is a predilection for Asian and Central/South American populations. Genome-wide association studies have identified lymphoma susceptibility loci in Asians. Positron emission tomography computed tomography and plasma EBV DNA quantification are crucial at diagnosis and follow-up. Stage I/II patients receive non-athracycline asparaginse-containing regimens, together with sequential/concurrent radiotherapy. Anthracycline-containing regimens are ineffective. Stage III/IV patients receive asparaginase-containing regimens, followed by allogeneic haematopoietic stem cell transplantation (HSCT). Autologous HSCT does not improve outcome. In relapsed/refractory patients, novel approaches include PD1/PD-L1 targeting, EBV-specific cytotoxic T-cells, and monoclonal antibodies. Small molecules including histone deacetylase inhibitors may be beneficial. Abstract Natural killer (NK)/T-cell lymphomas are aggressive malignancies. Epstein–Barr virus (EBV) infection in lymphoma cells is invariable. NK/T-cell lymphomas are divided into nasal, non-nasal, and disseminated subtypes. Nasal NK/T-cell lymphomas involve the nasal cavity and the upper aerodigestive tract. Non-nasal NK/T-cell lymphomas involve the skin, gastrointestinal tract, testis and other extranodal sites. Disseminated NK/T-cell lymphoma involves multiple organs, rarely presenting with a leukaemic phase. Lymphoma cells are positive for CD3ε (not surface CD3), CD56, cytotoxic molecules and EBV-encoded small RNA. There is a predilection for Asian and Central/South American populations. Genome-wide association studies have identified lymphoma susceptibility loci in Asian patients. Positron emission tomography computed tomography and plasma EBV DNA quantification are crucial evaluations at diagnosis and follow-up. Stage I/II patients typically receive non-athracycline regimens containing asparaginse, together with sequential/concurrent radiotherapy. Anthracycline-containing regimens are ineffective. Stage III/IV patients are treated with asparaginase-containing regimens, followed by allogeneic haematopoietic stem cell transplantation (HSCT) in suitable cases. Autologous HSCT does not improve outcome. In relapsed/refractory patients, novel approaches are needed, involving PD1/PD-L1 targeting, EBV-specific cytotoxic T-cells, and monoclonal antibodies. Small molecules including histone deacetylase inhibitors may be beneficial in selected patients. Future strategies may include targeting of signalling pathways and driver mutations.
Collapse
|
14
|
Chakravorty S, Afzali B, Kazemian M. EBV-associated diseases: Current therapeutics and emerging technologies. Front Immunol 2022; 13:1059133. [PMID: 36389670 PMCID: PMC9647127 DOI: 10.3389/fimmu.2022.1059133] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
EBV is a prevalent virus, infecting >90% of the world's population. This is an oncogenic virus that causes ~200,000 cancer-related deaths annually. It is, in addition, a significant contributor to the burden of autoimmune diseases. Thus, EBV represents a significant public health burden. Upon infection, EBV remains dormant in host cells for long periods of time. However, the presence or episodic reactivation of the virus increases the risk of transforming healthy cells to malignant cells that routinely escape host immune surveillance or of producing pathogenic autoantibodies. Cancers caused by EBV display distinct molecular behaviors compared to those of the same tissue type that are not caused by EBV, presenting opportunities for targeted treatments. Despite some encouraging results from exploration of vaccines, antiviral agents and immune- and cell-based treatments, the efficacy and safety of most therapeutics remain unclear. Here, we provide an up-to-date review focusing on underlying immune and environmental mechanisms, current therapeutics and vaccines, animal models and emerging technologies to study EBV-associated diseases that may help provide insights for the development of novel effective treatments.
Collapse
Affiliation(s)
- Srishti Chakravorty
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Department of Computer Science, Purdue University, West Lafayette IN, United States
| |
Collapse
|
15
|
Kim WS, Oki Y, Kim SJ, Yoon SE, Ardeshna KM, Lin Y, Ruan J, Porcu P, Brammer JE, Jacobsen ED, Yoon DH, Suh C, Suarez F, Radford J, Budde LE, Kim JS, Bachy E, Lee HJ, Bollard CM, Jaccard A, Kang HJ, Inman S, Murray M, Combs KE, Lee DY, Advani R, Gunter KC, Rooney CM, Heslop HE. Autologous EBV-specific T cell treatment results in sustained responses in patients with advanced extranodal NK/T lymphoma: results of a multicenter study. Ann Hematol 2021; 100:2529-2539. [PMID: 34304287 DOI: 10.1007/s00277-021-04558-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
We conducted a phase II clinical trial to develop an autologous EBV-specific T cell product (baltaleucel T) for advanced, relapsed ENKTL. Among 47 patients who provided whole blood starting material for manufacturing the product, 15 patients received a median of 4 doses of baltaleucel T. Thirty-two (68%) patients did not receive baltaleucel-T due to manufacturing failure, rapid disease progression, and death. Of the 15 patients, 10 patients had measurable disease at baseline (salvage cohort), and 5 patients had no disease at baseline assessment (adjuvant cohort). In the 15 patients, the median follow-up duration was 10.2 months (range 2.0-23.5 months), median progression-free survival (PFS) was 3.9 months, and the median overall survival (OS) was not reached. Patients in the salvage cohort achieved a 30% complete response (CR) and a 50% overall response rate (ORR). In the adjuvant cohort, disease progression was reported in three patients and two patients did not relapse during study follow-up. When we compared survival outcomes of seven responders and eight non-responders, the PFS (P = 0.001) and OS (P = 0.014) of responders proved statistically superior to that of non-responders. Baltaleucel-T was well tolerated. We have performed a phase II clinical trial of autologous EBV-specific T cell treatment (baltaleucel-T) in R/R ENKTL. Autologous EBV-specific T cells were well tolerated and demonstrated single-agent activity in R/R ENTKL.
Collapse
Affiliation(s)
- Won Seog Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, South Korea.
| | | | - Seok Jin Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, South Korea
| | - Sang Eun Yoon
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, South Korea
| | | | - Yi Lin
- Mayo Clinic, Rochester, MN, USA
| | - Jia Ruan
- Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY, USA
| | - Pierluigi Porcu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan E Brammer
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Eric D Jacobsen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Cheolwon Suh
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Felipe Suarez
- Hématologie Adulte, Hôpital Universitaire Necker, Paris, France
| | - John Radford
- Manchester Academic Health Science Centre, University of Manchester and the Christie NHS Foundation Trust, Manchester, UK
| | - Lihua E Budde
- Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Jin Seok Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, South Korea
| | - Emmanuel Bachy
- Hematology Department, Hospices Civils de Lyon 1 University, Sud Hospital, Pierre Benite, Lyon, France
| | - Hun Ju Lee
- Genentech Inc, South San Francisco, CA, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research and The George Washington Cancer Center, Children's National Hospital and The George Washington University, Washington, DC, USA
| | - Arnaud Jaccard
- Department of Hematology and National Referral Center for AL Amyloidosis, CHU Limoges, Limoges, France
| | - Hye Jin Kang
- Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | | | | | | | - Daniel Y Lee
- Houston Methodist Research Institute, Houston, TX, USA
| | | | | | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
16
|
Shahid S, Prockop SE. Epstein-Barr virus-associated post-transplant lymphoproliferative disorders: beyond chemotherapy treatment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:646-664. [PMID: 34485854 PMCID: PMC8415721 DOI: 10.20517/cdr.2021.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022]
Abstract
Post-transplant lymphoproliferative disorder (PTLD) is a rare but life-threatening complication of both allogeneic solid organ (SOT) and hematopoietic cell transplantation (HCT). The histology of PTLD ranges from benign polyclonal lymphoproliferation to a lesion indistinguishable from classic monoclonal lymphoma. Most commonly, PTLDs are Epstein-Barr virus (EBV) positive and result from loss of immune surveillance over EBV. Treatment for PTLD differs from the treatment for typical non-Hodgkin lymphoma because prognostic factors are different, resistance to treatment is unique, and there are specific concerns for organ toxicity. While recipients of HCT have a limited time during which they are at risk for this complication, recipients of SOT have a lifelong requirement for immunosuppression, so approaches that limit compromising or help restore immune surveillance are of high interest. Furthermore, while EBV-positive and EBV-negative PTLDs are not intrinsically resistant to chemotherapy, the poor tolerance of chemotherapy in the post-transplant setting makes it essential to minimize potential treatment-related toxicities and explore alternative treatment algorithms. Therefore, reduced-toxicity approaches such as single-agent CD20 monoclonal antibodies or bortezomib, reduced dosing of standard chemotherapeutic agents, and non-chemotherapy-based approaches such as cytotoxic T cells have all been explored. Here, we review the chemotherapy and non-chemotherapy treatment landscape for PTLD.
Collapse
Affiliation(s)
| | - Susan E. Prockop
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
17
|
Yang YC, Sugden B. Epstein-Barr Virus Limits the Accumulation of IPO7, an Essential Gene Product. Front Microbiol 2021; 12:643327. [PMID: 33664726 PMCID: PMC7920963 DOI: 10.3389/fmicb.2021.643327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 01/19/2023] Open
Abstract
Epstein-Barr virus (EBV) encodes more than 40 miRNAs that target cellular mRNAs to aid its infection, replication, and maintenance in individual cells and in its human host. Importin-7 (IPO7), also termed Imp7 or RanBPM7, is a nucleocytoplasmic transport protein that has been frequently identified as a target for two of these viral miRNAs. How the viral life cycle might benefit from regulating IPO7 has been unclear, though. We demonstrate with CRISPR-Cas9 mutagenesis that IPO7 is essential in at least three cells lines and that increasing its levels of expression inhibits growth of infected cells. EBV thus regulates the level of IPO7 to limit its accumulation consistent with its being required for survival of its host cell.
Collapse
Affiliation(s)
- Ya-Chun Yang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
18
|
Aftab BT, Sasu B, Krishnamurthy J, Gschweng E, Alcazer V, Depil S. Toward “off‐the‐shelf” allogeneic CAR T cells. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/acg2.86] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Barbra Sasu
- Allogene Therapeutics South San Francisco CA USA
| | | | | | | | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon Lyon France
- Centre Léon Bérard Lyon France
- Université Claude Bernard Lyon 1 Lyon France
| |
Collapse
|
19
|
Reactivation of Epstein-Barr Virus Presenting as Massive Splenomegaly after Initiation of Golimumab Treatment. Case Rep Hematol 2020; 2020:3641813. [PMID: 32328321 PMCID: PMC7171624 DOI: 10.1155/2020/3641813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Epstein–Barr virus infection is most commonly asymptomatic in the acute setting, where the end result of infection is the adoption of a viral latency phenotype. The virus can reactivate later in life leading to the abnormal proliferation of the infected B, T, or NK cells. Hereby, we report a 71-year-old female with seronegative rheumatoid arthritis who presented with massive splenomegaly, pancytopenia, and positivization of antibodies against double-stranded deoxyribonucleic acid (dsDNA) after initiation of the anti-tumor necrosis factor (TNF) golimumab. The diagnosis of EBV-associated lymphoproliferative disorder (LPD) was demonstrated by elevation of the plasmatic EBV viral load. Withdrawal of the anti-TNF and treatment with the anti-CD20 antibody rituximab were able to revert the clinical abnormalities. EBV-associated LPDs are described after initiation of other anti-TNF agents, such as infliximab, but no reports of golimumab-associated EBV LPD are found in the literature. The mechanisms for this occurrence are not clear, but these are known to involve expression of a panel of viral proteins specific to the viral latency phenotypes.
Collapse
|
20
|
Fujii E, Kato A, Suzuki M. Patient-derived xenograft (PDX) models: characteristics and points to consider for the process of establishment. J Toxicol Pathol 2020; 33:153-160. [PMID: 32764840 PMCID: PMC7396735 DOI: 10.1293/tox.2020-0007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor research has largely relied on xenograft models created by the engraftment of cultured cell lines derived from tumor tissues into immunodeficient mice for in vivo studies. Like in vitro models, such models retain the ability of tumor cells to continuously proliferate, so they have been used to predict the clinical relevance of studies on proliferating cells. However, these models are composed of a limited population of tumor cells, which include only those tumor cells that are able to adapt to culture conditions, and thus they do not reflect the diversity and heterogeneity of tumors. This, at least in part, explains the poor predictivity of non-clinical data in the research and development of molecularly targeted drugs. Recently, research focus has been directed towards patient-derived xenograft (PDX) models created by directly engrafting tumor tissues, which have not been cultured in vitro, into immunodeficient mice. PDX models reflect the diversity and heterogeneity of tumors, and the evidence they provide can be verified in the patient tissues from which they were derived originally. PDX models are anticipated to efficiently bridge non-clinical and clinical data in translational research. Based on the evidence obtained from our research experience, this review describes the characteristics of PDX models for acting as tumor models, and elucidates the points to consider when attempting to establish these models.
Collapse
Affiliation(s)
- Etsuko Fujii
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Atsuhiko Kato
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Masami Suzuki
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| |
Collapse
|
21
|
Auclair H, Ouk-Martin C, Roland L, Santa P, Al Mohamad H, Faumont N, Feuillard J, Jayat-Vignoles C. EBV Latency III-Transformed B Cells Are Inducers of Conventional and Unconventional Regulatory T Cells in a PD-L1-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2019; 203:1665-1674. [PMID: 31434708 DOI: 10.4049/jimmunol.1801420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 07/16/2019] [Indexed: 01/28/2023]
Abstract
EBV infects and immortalizes B cells in vitro and in vivo. It is the causative agent of most immune deficiency-related lymphoproliferative disorders and is associated with various lymphomas. EBV latency III-transformed B cells are known to express two immunosuppressive molecules, IL-10 and PD-L1, two characteristics of regulatory B cells (Bregs). In this study, we show that, in addition to secretion of the Breg immunosuppressive cytokines IL-10, IL-35, and TGF-β1, EBV latency III-transformed B cells were able to repress proliferation of their autologous T cells preactivated by CD2, CD3, and CD28. This inhibitory effect was likely caused by CD4+ T cells because EBV latency III-transformed B cells induced a strong proliferation of isolated autologous CD8 T cells. Indeed, EBV was able to promote expansion of autologous FOXP3+ CD39high CTLA4+, Helios+, GITR+, LAG3+ CD4 T cells (i.e., regulatory T cells [Tregs]). Two types of Tregs were induced: unconventional CD25neg and conventional CD25pos Tregs. These Tregs expressed both the latency-associated peptide (LAP) and the PD-1 receptor, two markers of functional Tregs. Expansion of both Treg subtypes depended on PD-L1, whose expression was under the control of LMP1, the main EBV oncogene. These results demonstrate that, like Bregs, EBV latency III-transformed B cells exhibit strong immunoregulatory properties. These data provide clues to the understanding of how after EBV primo-infection, EBV-proliferating B cells can survive in an aggressive immunological environment and later emerge to give rise to EBV-associated B cell lymphomas such as in elderly patients.
Collapse
Affiliation(s)
- Héloïse Auclair
- UMR CNRS 7276, INSERM 1262, Faculté de Médecine, Université de Limoges, F-87025 Limoges Cedex, France; and
| | - Catherine Ouk-Martin
- UMR CNRS 7276, INSERM 1262, Faculté de Médecine, Université de Limoges, F-87025 Limoges Cedex, France; and
| | - Lilian Roland
- UMR CNRS 7276, INSERM 1262, Faculté de Médecine, Université de Limoges, F-87025 Limoges Cedex, France; and
| | - Pauline Santa
- UMR CNRS 7276, INSERM 1262, Faculté de Médecine, Université de Limoges, F-87025 Limoges Cedex, France; and
| | - Hazar Al Mohamad
- UMR CNRS 7276, INSERM 1262, Faculté de Médecine, Université de Limoges, F-87025 Limoges Cedex, France; and
| | - Nathalie Faumont
- UMR CNRS 7276, INSERM 1262, Faculté de Médecine, Université de Limoges, F-87025 Limoges Cedex, France; and
| | - Jean Feuillard
- UMR CNRS 7276, INSERM 1262, Faculté de Médecine, Université de Limoges, F-87025 Limoges Cedex, France; and.,Le Centre Hospitalier Universitaire Dupuytren, Laboratoire d'Hématologie, F-87042 Limoges Cedex, France
| | - Chantal Jayat-Vignoles
- UMR CNRS 7276, INSERM 1262, Faculté de Médecine, Université de Limoges, F-87025 Limoges Cedex, France; and
| |
Collapse
|
22
|
Lymphoepithelioma-like gastric carcinoma treated with partial gastrectomy: Two case reports. Oncol Lett 2019; 18:545-552. [PMID: 31289526 PMCID: PMC6539528 DOI: 10.3892/ol.2019.10368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 02/21/2019] [Indexed: 11/05/2022] Open
Abstract
Lymphoepithelioma-like gastric carcinoma (LELGC) is a rare type of gastric cancer characterized by intense lymphocytic infiltration of the stroma. LELGC is associated with Epstein-Barr virus infection and has a favorable prognosis compared with other types of gastric carcinoma. The clinical symptoms of LELGC are usually similar to those of conventional gastric carcinoma. The diagnosis of LELGC is established based on pathological, histological and immunohistochemical findings. The present report describes the cases of two patients with LELGC who underwent esophagogastroduodenoscopy and computed tomography scans prior to surgery. The two patients accepted surgical treatment, and postoperative pathological and immunohistochemical analyses confirmed LELGC. Neither patient experienced local recurrence or distant metastasis during the postoperative period.
Collapse
|
23
|
Cogdill AP, Gaudreau PO, Arora R, Gopalakrishnan V, Wargo JA. The Impact of Intratumoral and Gastrointestinal Microbiota on Systemic Cancer Therapy. Trends Immunol 2019; 39:900-920. [PMID: 30392721 DOI: 10.1016/j.it.2018.09.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
Abstract
The human microbiome is a complex aggregate of microorganisms, and their genomes exert a number of influences crucial to the metabolic, immunologic, hormonal, and homeostatic function of the host. Recent work, both in preclinical mouse models and human studies, has shed light on the impact of gut and tumor microbiota on responses to systemic anticancer therapeutics. In light of this, strategies to target the microbiome to improve therapeutic responses are underway, including efforts to target gut and intratumoral microbes. Here, we discuss mechanisms by which microbiota may impact systemic and antitumor immunity, in addition to outstanding questions in the field. A deeper understanding of these is critical as we devise putative strategies to target the microbiome.
Collapse
Affiliation(s)
- Alexandria P Cogdill
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pierre Olivier Gaudreau
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vancheswaran Gopalakrishnan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; These authors contributed equally to this work
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; These authors contributed equally to this work.
| |
Collapse
|
24
|
Visalli RJ, Schwartz AM, Patel S, Visalli MA. Identification of the Epstein Barr Virus portal. Virology 2019; 529:152-159. [PMID: 30710799 DOI: 10.1016/j.virol.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
Little is known about Epstein Barr Virus (EBV) proteins that participate in viral DNA cleavage and packaging. Genes encoding potential terminase subunit and portal protein homologs include BGRF1/BDRF1, BALF3, BFRF1A and BBRF1 respectively. EBV mutants with deletions in one or more of these genes were impaired for DNA packaging (Pavlova et al., 2013). In the current study, BBRF1 oligomers were purified from recombinant baculovirus infected insect cell extracts. Transmission electron microscopy revealed that purified EBV portals retained features typically found in other portals including a central channel with clip, stem and wing/crown domains. Although compounds have been identified that target DNA encapsidation in human cytomegalovirus, herpes simplex viruses and varicella-zoster virus, the identification of new EBV targets has lagged significantly. Characterization of the EBV portal will direct studies aimed at developing potential small molecular inhibitors of the EBV encapsidation process.
Collapse
Affiliation(s)
- Robert J Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Adam M Schwartz
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Shivam Patel
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Melissa A Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
| |
Collapse
|
25
|
Sinit RB, Horan KL, Dorer RK, Aboulafia DM. Epstein-Barr Virus-Positive Mucocutaneous Ulcer: Case Report and Review of the First 100 Published Cases. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 19:e81-e92. [PMID: 30442566 DOI: 10.1016/j.clml.2018.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/06/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Ryan B Sinit
- Floyd and Delores Jones Cancer Institute, Virginia Mason Medical Center, Seattle, WA
| | - Kathleen L Horan
- Department of Pulmonary and Critical Care Medicine, Virginia Mason Medical Center, Seattle, WA
| | - Russell K Dorer
- Department of Pathology, Virginia Mason Medical Center, Seattle, WA
| | - David M Aboulafia
- Floyd and Delores Jones Cancer Institute, Virginia Mason Medical Center, Seattle, WA; Division of Hematology, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
26
|
Cellular-based immunotherapy in Epstein-Barr virus induced nasopharyngeal cancer. Oral Oncol 2018; 84:61-70. [DOI: 10.1016/j.oraloncology.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 12/27/2022]
|
27
|
Stanley K, Friehling E, Ranganathan S, Mazariegos G, McAllister-Lucas LM, Sindhi R. Post-transplant lymphoproliferative disorder in pediatric intestinal transplant recipients: A literature review. Pediatr Transplant 2018; 22:e13211. [PMID: 29745058 DOI: 10.1111/petr.13211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2018] [Indexed: 12/14/2022]
Abstract
Intestinal transplantation is a successful treatment for children with intestinal failure, but has many potential complications. PTLD, a clinically and histologically diverse malignancy, occurs frequently after intestinal transplantation and can be fatal. The management of this disease is particularly challenging. The rejection-prone intestinal allograft requires high levels of immunosuppression, a precondition for PTLD. While EBV infection clearly plays a role in disease pathogenesis, the relatively naïve immune system of children is another likely contributor. As a result, pediatric intestine recipients have a higher risk of developing PTLD than other solid organ recipients. Other risk factors for disease development such as molecular and genomic changes that precipitate malignant transformation are not fully understood, especially among children. Studies on adults have started to describe the molecular pathogenesis of PTLD, but the genomic landscape of the malignancy remains largely undefined in pediatric intestinal transplant patients. In this review, we describe what is known about PTLD in pediatric patients after intestinal transplant and highlight current knowledge gaps to better direct future investigations in the pediatric population.
Collapse
Affiliation(s)
- Kaitlin Stanley
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Erika Friehling
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | | | - George Mazariegos
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Linda M McAllister-Lucas
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Mehta B, Kasturi S, Teruya-Feldstein J, Horwitz S, Bass AR, Erkan D. Adult-Onset Still's Disease and Macrophage-Activating Syndrome Progressing to Lymphoma: A Clinical Pathology Conference Held by the Division of Rheumatology at Hospital for Special Surgery. HSS J 2018; 14:214-221. [PMID: 29983666 PMCID: PMC6031528 DOI: 10.1007/s11420-018-9606-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Bella Mehta
- 0000 0001 2285 8823grid.239915.5Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA ,000000041936877Xgrid.5386.8Weill Cornell Medicine, New York, NY USA
| | - Shanthini Kasturi
- 0000 0000 8934 4045grid.67033.31Tufts Medical Center, Boston, MA USA
| | - Julie Teruya-Feldstein
- 0000 0000 9963 6690grid.425214.4Icahn School of Medicine, Mount Sinai Health System, New York, NY USA
| | - Steven Horwitz
- 0000 0001 2171 9952grid.51462.34Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Anne R. Bass
- 0000 0001 2285 8823grid.239915.5Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA ,000000041936877Xgrid.5386.8Weill Cornell Medicine, New York, NY USA
| | - Doruk Erkan
- 0000 0001 2285 8823grid.239915.5Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA ,000000041936877Xgrid.5386.8Weill Cornell Medicine, New York, NY USA
| |
Collapse
|
29
|
Koizumi Y, Imadome KI, Ota Y, Minamiguchi H, Kodama Y, Watanabe D, Mikamo H, Uehira T, Okada S, Shirasaka T. Dual Threat of Epstein-Barr Virus: an Autopsy Case Report of HIV-Positive Plasmablastic Lymphoma Complicating EBV-Associated Hemophagocytic Lymphohistiocytosis. J Clin Immunol 2018; 38:478-483. [PMID: 29687211 DOI: 10.1007/s10875-018-0500-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Epstein-Barr virus (EBV) reactivation causes serious diseases in immunocompromised hosts, such as acquired immunodeficiency syndrome (AIDS). We report on a case of plasmablastic lymphoma (PBL) with hemophagocytic lymphohistiocytosis (HLH).A-53-year-old Japanese man was diagnosed with PBL and AIDS. In addition to combined antiretroviral therapy, HyperCVAD (cyclophosphamide, doxorubicin, vincristine, prednisone)/high-dose methotrexate + cytarabine was initiated immediately. Partial remission was attained with chemotherapy. However, the patient developed HLH and died despite intensive therapy. Autopsy findings suggested that PBL was controlled, and immunosuppression appeared to cause fatal infection. The patient showed high titers of EBV viral-capsid antigen (VCA)-IgG (1:2560) on PBL diagnosis and high EBV-DNA levels throughout the clinical course. Moreover, EBV-DNA was detected in the fraction of CD8-positive cells, which strongly supports the pathogenesis of EBV-associated HLH.Our report highlights the importance of EBV control in patients with EBV-positive AIDS lymphoma. EBV not only behaves as the etiologic pathogen of PBL but also can be a trigger of HLH, the fatal complication. Careful follow-up of the EBV status should be performed, and if needed, preemptive anti-EBV therapy should also be considered to prevent EBV-associated complications such as HLH.
Collapse
Affiliation(s)
- Yusuke Koizumi
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
- Department of Infectious Diseases, Osaka National Hospital, Osaka, Japan.
| | - Ken-Ichi Imadome
- Department of Advanced Medicine for Infections, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Yasunori Ota
- Department of Pathology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hitoshi Minamiguchi
- Department of Hematology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | - Dai Watanabe
- Department of Infectious Diseases, Osaka National Hospital, Osaka, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Tomoko Uehira
- Department of Infectious Diseases, Osaka National Hospital, Osaka, Japan
| | - Seiji Okada
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Takuma Shirasaka
- Department of Infectious Diseases, Osaka National Hospital, Osaka, Japan
| |
Collapse
|
30
|
Bilger A, Plowshay J, Ma S, Nawandar D, Barlow EA, Romero-Masters JC, Bristol JA, Li Z, Tsai MH, Delecluse HJ, Kenney SC. Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)- induced lymphoproliferative disease and lytic viral replication. Oncotarget 2018; 8:44266-44280. [PMID: 28574826 PMCID: PMC5546479 DOI: 10.18632/oncotarget.17863] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/27/2017] [Indexed: 12/25/2022] Open
Abstract
EBV infection causes mononucleosis and is associated with specific subsets of B cell lymphomas. Immunosuppressed patients such as organ transplant recipients are particularly susceptible to EBV-induced lymphoproliferative disease (LPD), which can be fatal. Leflunomide (a drug used to treat rheumatoid arthritis) and its active metabolite teriflunomide (used to treat multiple sclerosis) inhibit de novo pyrimidine synthesis by targeting the cellular dihydroorotate dehydrogenase, thereby decreasing T cell proliferation. Leflunomide also inhibits the replication of cytomegalovirus and BK virus via both "on target" and "off target" mechanisms and is increasingly used to treat these viruses in organ transplant recipients. However, whether leflunomide/teriflunomide block EBV replication or inhibit EBV-mediated B cell transformation is currently unknown. We show that teriflunomide inhibits cellular proliferation, and promotes apoptosis, in EBV-transformed B cells in vitro at a clinically relevant dose. In addition, teriflunomide prevents the development of EBV-induced lymphomas in both a humanized mouse model and a xenograft model. Furthermore, teriflunomide inhibits lytic EBV infection in vitro both by preventing the initial steps of lytic viral reactivation, and by blocking lytic viral DNA replication. Leflunomide/teriflunomide might therefore be clinically useful for preventing EBV-induced LPD in patients who have high EBV loads yet require continued immunosuppression.
Collapse
Affiliation(s)
- Andrea Bilger
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Julie Plowshay
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Rocky Mountain Infectious Disease Specialists, Aurora, Colorado, USA
| | - Shidong Ma
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Sanofi Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Dhananjay Nawandar
- Department Cellular and Molecular Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA.,Department of Cancer Biology and Immunology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Elizabeth A Barlow
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James C Romero-Masters
- Department of Cellular and Molecular Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jillian A Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zhe Li
- Joint DKFZ Inserm Unit U1074, German Cancer Center (DKFZ), Heidelberg, Germany
| | - Ming-Han Tsai
- Joint DKFZ Inserm Unit U1074, German Cancer Center (DKFZ), Heidelberg, Germany
| | | | - Shannon C Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
31
|
Hu L, Liu Y, Wang Y, Wang Z, Huang J, Xue Y, Liu J, Liu Z, Chen Y, Zhang Y. Discovery of acylphloroglucinol-based meroterpenoid enantiomers as KSHV inhibitors from Hypericum japonicum. RSC Adv 2018; 8:24101-24109. [PMID: 35539193 PMCID: PMC9081833 DOI: 10.1039/c8ra04073g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 06/26/2018] [Indexed: 11/28/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) has gained considerable attention as a type of carcinogenic pathogen. Recent research suggests that KSHV has participated in the pathogenesis of Kaposi's sarcoma-related malignant neoplastic diseases. Viral lytic infection might be pivotal for the etiopathogenesis of KSHV-induced diseases; however, most clinical KSHV lytic replication inhibitors like ganciclovir, nelfinavir, or cidofovir do not restrain virus replication effectively enough to achieve clinical efficacy. In our continued pharmaceutical studies on Chinese herbal medicines, new acylphloroglucinol-based meroterpenoid enantiomers have been discovered from Hypericum japonicum. Most of these metabolites have potential inhibitory activities that target KSHV lytic replication. Amongst these analogues, compounds 1a and 1b possess an unreported ring system cyclopenta[b]chromene. Compounds 1a with 4a exhibit stronger inhibitory activities towards the lytic replication of KSHV in Vero cells. In addition, 1a and 4a have IC50 values of 8.30 and 4.90 μM and selectivity indexes of 23.49 and 25.70, respectively. Qualitative and quantitative SAR and molecular docking studies for acylphloroglucinol-based meroterpenoids with regard to anti-KSHV activity were conducted. An explanation for the variation in the activity and selectivity indexes was proposed in accordance with the predicted binding pose found with molecular docking to a putative target, thymidylate synthase (kTS). Compounds 1a and 4a have potential for further development and optimization of their anti-KSHV activities which could lead to new candidate drugs. New enantiomers (1a/1b–4a/4b) were discovered from Hypericum japonicum. 1a/1b possessed a novel ring system cyclopenta[b]chromene. 1a and 4a exhibited promising anti-KSHV activities. QSAR studies for enantiomers on anti-KSHV activity were conducted.![]()
Collapse
|
32
|
Mui UN, Haley CT, Tyring SK. Viral Oncology: Molecular Biology and Pathogenesis. J Clin Med 2017; 6:E111. [PMID: 29186062 PMCID: PMC5742800 DOI: 10.3390/jcm6120111] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Oncoviruses are implicated in approximately 12% of all human cancers. A large number of the world's population harbors at least one of these oncoviruses, but only a small proportion of these individuals go on to develop cancer. The interplay between host and viral factors is a complex process that works together to create a microenvironment conducive to oncogenesis. In this review, the molecular biology and oncogenic pathways of established human oncoviruses will be discussed. Currently, there are seven recognized human oncoviruses, which include Epstein-Barr Virus (EBV), Human Papillomavirus (HPV), Hepatitis B and C viruses (HBV and HCV), Human T-cell lymphotropic virus-1 (HTLV-1), Human Herpesvirus-8 (HHV-8), and Merkel Cell Polyomavirus (MCPyV). Available and emerging therapies for these oncoviruses will be mentioned.
Collapse
Affiliation(s)
- Uyen Ngoc Mui
- Center for Clinical Studies, Houston, TX 77004, USA.
| | | | - Stephen K Tyring
- Center for Clinical Studies, Houston, TX 77004, USA.
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX 77004, USA.
| |
Collapse
|
33
|
Xu LP. [How I diagnose and treat post-transplant lymphoproliferative disorders after allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:923-929. [PMID: 29224312 PMCID: PMC7342797 DOI: 10.3760/cma.j.issn.0253-2727.2017.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 11/05/2022]
Affiliation(s)
- L P Xu
- Peking University, People' s Hospital, Peking University Institute of Hematology, Beijing 100044, China
| |
Collapse
|
34
|
Almeida JFM, Campos AH, Marcello MA, Bufalo NE, Rossi CL, Amaral LHP, Marques AB, Cunha LL, Alvarenga CA, Tincani PC, Tincani AJ, Ward LS. Investigation on the association between thyroid tumorigeneses and herpesviruses. J Endocrinol Invest 2017; 40:823-829. [PMID: 28276007 DOI: 10.1007/s40618-017-0609-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022]
Abstract
Herpesviruses have been associated with various human malignancies and with thyroid autoimmunity. Aiming to investigate the presence of these viruses in thyroid nodules, we analyzed serum and thyroid tissue from 183 patients (83 benign and 100 malignant thyroid nodules). We also obtained 104 normal thyroid tissues extracted from the contralateral lobe of these patients. We used ELISA to screen the serology of all patients and a real-time quantitative PCR to analyze thyroid tissue viral load in antibody-positive patients. In addition, the presence of herpesviruses was tested by histological analysis in 20 EBV-positive tissues using the expression of LMP-1 by immunohistochemistry (IHC) and EBER by in situ hybridization (ISH). There was no evidence of HSV-2 or CMV DNA, but we found EBV DNA sequences in 29 (16%) thyroid tissue samples. We also found 7 positive EBV cases out of 104 normal tissues. Viral load was higher in tumors than in their respective normal tissues (p = 0.0002). ISH analysis revealed EBER expression in 11 out of 20 (52%) EBV-positive tissues, mostly in malignant cases (8/11, 73%). The presence of high EBV copy numbers in thyroid tumors and the expression of EBER only in malignant cases suggest an association between EBV and thyroid malignancies. However, we did not find any association between the presence of EBV and/or its viral load and any clinical or pathological tumor feature. Further studies aiming to clarify the mechanisms of EBV infection in thyroid cells are necessary to support a possible role in the development of thyroid cancer.
Collapse
Affiliation(s)
- J F M Almeida
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - A H Campos
- Department of Anatomic Pathology, AC Camargo Cancer Center, Taguá Street, 440, Liberdade, São Paulo, SP, 01508-010, Brazil
| | - M A Marcello
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - N E Bufalo
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - C L Rossi
- Clinical Pathology Department, Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Vital Brasil Street, 251, Cidade Universitária, Campinas, São Paulo, 13083-888, Brazil
| | - L H P Amaral
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - A B Marques
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - L L Cunha
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - C A Alvarenga
- Laboratory of Pathology, Clinical Pathology Institute (IPC), Av. Orosimbo Maia, 165, Vila Itapura, Campinas, São Paulo, 13023-002, Brazil
| | - P C Tincani
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - A J Tincani
- Head and Neck Surgery Department, University of Campinas Teaching Hospital (HC-Unicamp), Vital Brasil Street, 251, Cidade Universitária, Campinas, SP, 13083-888, Brazil
| | - L S Ward
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil.
| |
Collapse
|
35
|
Feng Y, Rao H, Lei Y, Huang Y, Wang F, Zhang Y, Xi S, Wu Q, Shao J. CD30 expression in extranodal natural killer/T-cell lymphoma, nasal type among 622 cases of mature T-cell and natural killer-cell lymphoma at a single institution in South China. CHINESE JOURNAL OF CANCER 2017; 36:43. [PMID: 28486951 PMCID: PMC5424426 DOI: 10.1186/s40880-017-0212-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/05/2016] [Indexed: 01/15/2023]
Abstract
Background Mature T-cell and natural killer (NK)-cell lymphomas compose a heterogeneous group of non-Hodgkin lymphomas, and extranodal NK/T-cell lymphoma, nasal type (ENKTL) is an aggressive subtype with sporadic CD30 expression. However, the significance of CD30 expression in ENKTL is controversial. We aimed to classify a large cohort of patients with mature T-cell and NK-cell lymphomas according to the 2016 World Health Organization (WHO) classification guidelines and to study the association between CD30 expression and prognosis of patients with ENKTL. Methods We selected consecutive patients with mature T-cell and NK-cell lymphomas who attended our institution between September 1, 2009 and August 31, 2013. We classified the lymphomas according to the 2016 revision of the WHO classification of lymphoid neoplasms, analyzed the associations between CD30 expression and clinicopathologic features of ENKTL patients, and evaluated the prognostic implications of CD30 expression. Results We identified 622 consecutive patients with mature T-cell and NK-cell lymphomas, including 317 (51.0%) patients with ENKTL. In addition, CD30 expression was detected in 43 (47.3%) of a subset of 91 patients with ENKTL. No clinicopathologic features were associated with CD30 expression, and CD30 positivity showed no prognostic significance in patients with ENKTL. Conclusions ENKTL is the most common type of mature T-cell and NK-cell lymphoma diagnosed at our institution. CD30 is frequently expressed in ENKTL and represents a therapeutic target; however, it may not be a prognostic marker.
Collapse
Affiliation(s)
- Yanfen Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Huilan Rao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yiyan Lei
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Shaoyan Xi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Qiuliang Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Jianyong Shao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China. .,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.
| |
Collapse
|
36
|
Yang YC, Liem A, Lambert PF, Sugden B. Dissecting the regulation of EBV's BART miRNAs in carcinomas. Virology 2017; 505:148-154. [PMID: 28259048 PMCID: PMC5504693 DOI: 10.1016/j.virol.2017.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 01/31/2017] [Accepted: 02/14/2017] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus (EBV) encodes multiple miRNAs known to contribute to
its pathogenicity. Previous studies have found that the levels of some EBV
miRNAs are 10–100 fold higher in biopsies and in tumor xenografts than
in cells grown in culture. We have asked if these increased levels reflect
transcriptional enhancement resulting from the tumor microenvironment, selection
for increased levels of the EBV genome, or both. We measured the levels of BART
miRNAs and their DNA templates in tumor xenografts induced from EBV-positive
gastric carcinoma cells and EBV-negative gastric carcinoma cells expressing
plasmid replicons encoding these miRNAs. We focused on BART miRNAs which are
expressed in all tumors and found that they provide tumors selective growth
advantages as xenografts. Stem-loop PCR and real-time PCR revealed that the
xenografts expressed both higher levels of some miRNAs and viral DNA templates
than did the corresponding cells in culture.
Collapse
Affiliation(s)
- Ya-Chun Yang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705-2275, United States
| | - Amy Liem
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705-2275, United States
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705-2275, United States
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705-2275, United States.
| |
Collapse
|
37
|
Glaser SL, Canchola AJ, Keegan THM, Clarke CA, Longacre TA, Gulley ML. Variation in risk and outcomes of Epstein-Barr virus-associated breast cancer by epidemiologic characteristics and virus detection strategies: an exploratory study. Cancer Causes Control 2017; 28:273-287. [PMID: 28229344 DOI: 10.1007/s10552-017-0865-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/03/2017] [Indexed: 02/04/2023]
Abstract
PURPOSE A relationship of Epstein-Barr virus (EBV) and breast cancer etiology and outcome may have clinical utility and potential to enhance understanding of tumor biology. Research to date has yielded variable results, likely reflecting differing virus detection assays and unaddressed epidemiologic heterogeneity across studies. METHODS Applying our novel, five-target assay detection strategy in an exploratory study, we examined demographic, clinical, and tumor characteristics, and overall survival, associated with EBV positivity in breast adenocarcinomas from 59 non-Hispanic white and 68 Hispanic women sampled by age (<50, 50+) and stage (localized, regional/remote) and examined associations based on single assay targets. RESULTS EBV was localized only to lymphocytes. Nevertheless, viral prevalence, although low, varied across patient subgroups. Adjusted odds ratios (OR) for EBV positivity were lower for younger Hispanic than white women (p interaction = 0.05), and marginally higher for larger [OR (95% confidence intervals) 1.03 (1.00-1.05) per mm increase] and right-sided [2.8 (0.97-7.8)] tumors. In whites, ORs were marginally higher for larger tumors [1.04 (1.00-1.07)] and marginally lower for age 50+ [0.24 (0.06-1.03)]; in Hispanics, ORs were higher for ER negative [5.6 (1.1-30.5)], and marginally higher for right-sided, tumors [5.8 (0.94-36.2)]. Survival was suggestively poorer for EBV-positive than EBV-negative tumors in older women with localized disease. EBV associations differed across single assay targets, indicating variation in prior findings likely due to assay performance. CONCLUSIONS The differing EBV associations by age and race/ethnicity suggest a non-random role of EBV in breast cancer and support further study using multi-target assays, relevant epidemiologic design, and a larger study sample.
Collapse
Affiliation(s)
- Sally L Glaser
- Cancer Prevention Institute of California, 2201 Walnut Avenue, Suite 300, Fremont, CA, 94538, USA. .,Department of Health Research and Policy (Epidemiology), Stanford Medicine, Stanford, CA, 94306, USA.
| | - Alison J Canchola
- Cancer Prevention Institute of California, 2201 Walnut Avenue, Suite 300, Fremont, CA, 94538, USA
| | - Theresa H M Keegan
- Cancer Prevention Institute of California, 2201 Walnut Avenue, Suite 300, Fremont, CA, 94538, USA.,Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, 95817, USA
| | - Christina A Clarke
- Cancer Prevention Institute of California, 2201 Walnut Avenue, Suite 300, Fremont, CA, 94538, USA.,Department of Health Research and Policy (Epidemiology), Stanford Medicine, Stanford, CA, 94306, USA
| | - Teri A Longacre
- Department of Pathology, Stanford Medicine, Stanford, CA, 94305, USA
| | - Margaret L Gulley
- Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
38
|
PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood 2017; 129:2437-2442. [PMID: 28188133 DOI: 10.1182/blood-2016-12-756841] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/24/2017] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK)/T-cell lymphomas failing L-asparaginse regimens have no known salvage and are almost invariably fatal. Seven male patients with NK/T-cell lymphoma (median age, 49 years; range, 31-68 years) for whom a median of 2 (range, 1-5) regimens (including l-asparaginase regimens and allogeneic hematopoietic stem-cell transplantation [HSCT] in 2 cases) failed were treated with the anti-programmed death 1 (PD1) antibody pembrolizumab. All patients responded, according to various clinical, radiologic (positron emission tomography), morphologic, and molecular (circulating Epstein-Barr virus [EBV] DNA) criteria. Two patients achieved complete response (CR) in all parameters. Three patients achieved clinical and radiologic CRs, with two having molecular remission (undetectable EBV DNA) but minimal EBV-encoded RNA-positive cells in lesions comprising predominantly CD3+CD4+ and CD3+CD8+ T cells (which ultimately disappeared, suggesting they represented pseudoprogression) and one having detectable EBV DNA despite morphologic CR. Two patients achieved partial response (PR). After a median of 7 (range, 2-13) cycles of pembrolizumab and a follow-up of a median of 6 (range, 2-10) months, all five CR patients were still in remission. The only adverse event was grade 2 skin graft-versus-host disease in one patient with previous allogeneic HSCT. Expression of the PD1 ligand was strong in 4 patients (3 achieving CR) and weak in 1 (achieving PR). PD1 blockade with pembrolizumab was a potent strategy for NK/T-cell lymphomas failing l-asparaginase regimens.
Collapse
|
39
|
Abstract
Epstein-Barr virus (EBV) infection is associated with several distinct hematological and epithelial malignancies, e.g., Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and others. The association with several malignant tumors of local and worldwide distribution makes EBV one of the most important tumor viruses. Furthermore, because EBV can cause posttransplant lymphoproliferative disease, transplant medicine has to deal with EBV as a major pathogenic virus second only to cytomegalovirus. In this review, we summarize briefly the natural history of EBV infection and outline some of the recent advances in the pathogenesis of the major EBV-associated neoplasms. We present alternative scenarios and discuss them in the light of most recent experimental data. Emerging research areas including EBV-induced patho-epigenetic alterations in host cells and the putative role of exosome-mediated information transfer in disease development are also within the scope of this review. This book contains an in-depth description of a series of modern methodologies used in EBV research. In this introductory chapter, we thoroughly refer to the applications of these methods and demonstrate how they contributed to the understanding of EBV-host cell interactions. The data gathered using recent technological advancements in molecular biology and immunology as well as the application of sophisticated in vitro and in vivo experimental models certainly provided deep and novel insights into the pathogenetic mechanisms of EBV infection and EBV-associated tumorigenesis. Furthermore, the development of adoptive T cell immunotherapy has provided a novel approach to the therapy of viral disease in transplant medicine and hematology.
Collapse
Affiliation(s)
- Janos Minarovits
- Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza Lajos krt. 64, H-6720, Szeged, Hungary.
| | - Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
40
|
Zhang W, Han D, Wan P, Pan P, Cao Y, Liu Y, Wu K, Wu J. ERK/c-Jun Recruits Tet1 to Induce Zta Expression and Epstein-Barr Virus Reactivation through DNA Demethylation. Sci Rep 2016; 6:34543. [PMID: 27708396 PMCID: PMC5052586 DOI: 10.1038/srep34543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022] Open
Abstract
DNA demethylation plays an essential role in the reactivation of Epstein-Barr virus (EBV) from latency infection. However, it is unclear how epigenetic modification is initiated in responding to stimuli. Here, we demonstrate that ERK/c-Jun signaling is involved in DNA demethylation of EBV immediate early (IE) gene Zta in response to 12-O-Tetradecanoylphorbol-13-acetate (TPA) stimulation. Remarkably, Ser73 phosphorylation of c-Jun facilitates Zta promoter demethylation and EBV reactivation, whereas knockdown of c-Jun attenuates Zta demethylation and viral reactivation. More importantly, we reveal for the first time that c-Jun interacts with DNA dioxygenase Tet1 and facilitates Tet1 to bind to Zta promoter. The binding of c-Jun and Tet1 to Zta enhances promoter demethylation, resulting in the activation of Zta, the stimulation of BHRF1 (a lytic early gene) and gp350/220 (a lytic late gene), and ultimately the reactivation of EBV. Knockdown of Tet1 attenuates TPA-induced Zta demethylation and EBV reactivation. Thus, TPA activates ERK/c-Jun signaling, which subsequently facilitates Tet1 to bind to Zta promoter, leading to DNA demethylation, gene expression, and EBV reactivation. This study reveals important roles of ERK/c-Jun signaling and Tet1 dioxygenase in epigenetic modification, and provides new insights into the mechanism underlying the regulation of virus latent and lytic infection.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dongjie Han
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Pin Wan
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Pan Pan
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yanhua Cao
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingle Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kailang Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianguo Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
41
|
Perestelo NR, Jiménez IA, Tokuda H, Vázquez JT, Ichiishi E, Bazzocchi IL. Absolute Configuration of Dihydro-β-agarofuran Sesquiterpenes from Maytenus jelskii and Their Potential Antitumor-Promoting Effects. JOURNAL OF NATURAL PRODUCTS 2016; 79:2324-2331. [PMID: 27541714 DOI: 10.1021/acs.jnatprod.6b00469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemoprevention of human cancer appears to be a feasible strategy for cancer control, especially when chemopreventive intervention is involved during early stages of the carcinogenesis process. As a part of our ongoing research program into new chemopreventive agents, herein are reported the isolation, structural elucidation, and biological evaluation of 10 new (1-10) and three known (11-13) sesquiterpenes with a dihydro-β-agarofuran skeleton from the leaves of Maytenus jelskii Zahlbr. Their stereostructures have been elucidated by means of spectroscopic analysis, including 1D and 2D NMR techniques, ECD studies, and biogenetic considerations. The isolated metabolites and eight previously reported sesquiterpenes (14-21) were screened for their antitumor-promoting activity using a short-term in vitro assay for Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Six compounds from this series (4, 5, 11, and 13-15) were found to exhibit higher efficacies than β-carotene, used as reference inhibitor for EBV-EA activation. In particular, promising antitumor activity was observed for compound 5, exhibiting inhibition even at the lowest concentration assayed (10 mol ratio/TPA). Preliminary structure-activity relationship analysis revealed that the acetate, benzoate, and hydroxy groups are the most desirable substituents on the sesquiterpene scaffold for activity in the EBV-EA activation assay.
Collapse
Affiliation(s)
- Nayra R Perestelo
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Ignacio A Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Harukuni Tokuda
- Organic Chemistry in Life Science, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University , Kyoto 606-8502, Japan
| | - Jesús T Vázquez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Eiichiro Ichiishi
- Department of Internal Medicine, International University of Health and Welfare Hospital, Nasushiobara , Tochigi 329-2763, Japan
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
42
|
Cieniewicz B, Santana AL, Minkah N, Krug LT. Interplay of Murine Gammaherpesvirus 68 with NF-kappaB Signaling of the Host. Front Microbiol 2016; 7:1202. [PMID: 27582728 PMCID: PMC4987367 DOI: 10.3389/fmicb.2016.01202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Herpesviruses establish a chronic infection in the host characterized by intervals of lytic replication, quiescent latency, and reactivation from latency. Murine gammaherpesvirus 68 (MHV68) naturally infects small rodents and has genetic and biologic parallels with the human gammaherpesviruses (gHVs), Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. The murine gammaherpesvirus model pathogen system provides a platform to apply cutting-edge approaches to dissect the interplay of gammaherpesvirus and host determinants that enable colonization of the host, and that shape the latent or lytic fate of an infected cell. This knowledge is critical for the development of novel therapeutic interventions against the oncogenic gHVs. The nuclear factor kappa B (NF-κB) signaling pathway is well-known for its role in the promotion of inflammation and many aspects of B cell biology. Here, we review key aspects of the virus lifecycle in the host, with an emphasis on the route that the virus takes to gain access to the B cell latency reservoir. We highlight how the murine gammaherpesvirus requires components of the NF-κB signaling pathway to promote replication, latency establishment, and maintenance of latency. These studies emphasize the complexity of gammaherpesvirus interactions with NF-κB signaling components that direct innate and adaptive immune responses of the host. Importantly, multiple facets of NF-κB signaling have been identified that might be targeted to reduce the burden of gammaherpesvirus-associated diseases.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Alexis L Santana
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Nana Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| |
Collapse
|
43
|
Ibrahim AA, Mohamed MA, Babiker BA, Musa MB, Musa HH. Serological markers of Epstein-Barr virus in renal transplant recipients. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Du Y, Yu J, Du L, Tang J, Feng WH. Cordycepin enhances Epstein–Barr virus lytic infection and Epstein–Barr virus-positive tumor treatment efficacy by doxorubicin. Cancer Lett 2016; 376:240-8. [DOI: 10.1016/j.canlet.2016.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/12/2022]
|
45
|
Wang M, Jiang S, Han Z, Zhao B, Wang L, Zhou Z, Wang Y. Expression and immunogenic characterization of recombinant gp350 for developing a subunit vaccine against Epstein-Barr virus. Appl Microbiol Biotechnol 2015; 100:1221-1230. [PMID: 26433969 DOI: 10.1007/s00253-015-7027-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/04/2015] [Accepted: 09/20/2015] [Indexed: 01/27/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that is linked to the development of various malignancies. There is an urgent need for effective vaccines against EBV. EBV envelope glycoprotein gp350 is an attractive candidate for a prophylactic vaccine. This study was undertaken to produce the truncated (codons 1-443) gp350 protein (gp350(1-443)) in Pichia pastoris and evaluate its immunogenicity. The gp350(1-443) protein was expressed as a secretory protein with an N-terminal His-tag in P. pastoris and purified through Ni-NTA chromatography. Immunization with the recombinant gp350(1-443) could elicit high levels of gp350(1-443)-specific antibodies in mice. Moreover, gp350(1-443)-immunized mice developed strong lymphoproliferative and Th1/Th2 cytokine responses. Furthermore, the recombinant gp350(1-443) could stimulate CD4(+) and CD8(+) T cell responses in vaccinated mice. Collectively, these findings demonstrated that the yeast-expressed gp350(1-443) retained strong immunogenicity. This study will provide a useful source for developing EBV subunit vaccine candidates.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China.
| | - Shuai Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhenwei Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bing Zhao
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Li'ao Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Zhixia Zhou
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Yefu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|