1
|
Wei X, Xiong X, Chen Z, Chen B, Zhang C, Zhang W. MicroRNA155 in non-small cell lung cancer: a potential therapeutic target. Front Oncol 2025; 15:1517995. [PMID: 39963112 PMCID: PMC11830606 DOI: 10.3389/fonc.2025.1517995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Lung cancer (LC) is the second most commonly diagnosed cancer among both men and women, and it stands as the leading cause of cancer-related mortality, characterized by high rates of morbidity and mortality. Among its subtypes, non-small cell lung cancer (NSCLC) is the most prevalent and one of the most challenging malignant tumors to treat. To date, various therapeutic approaches, including surgery, radiotherapy, and chemotherapy, have been employed in the management of lung cancer; however, due to its aggressive nature, the survival rates remain low. Consequently, exploring novel treatment strategies is of paramount importance. MicroRNAs (miRNAs), a large family of non-coding RNAs, play crucial roles in regulating several key biological processes, including cell proliferation, differentiation, inflammation, and apoptosis. Among these, microRNA155(miR-155) is one of the most conserved and versatile miRNAs, predominantly overexpressed in various diseases, including malignant tumors. This review elucidates the biological functions and roles of miR-155 in NSCLC and discusses its potential significance as a therapeutic target for future research directions and clinical applications.
Collapse
Affiliation(s)
- Xiangju Wei
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xianmin Xiong
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ze Chen
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Bi Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Cantang Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenhui Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Song Y, Qiu J, Kang J, Chen Y, Cao R, Wang W, Dai M, Chen D, Fu Z, Guo R. Transcriptomic Characterization of miRNAs in Apis cerana Larvae Responding to Ascosphaera apis Infection. Genes (Basel) 2025; 16:156. [PMID: 40004485 PMCID: PMC11855511 DOI: 10.3390/genes16020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Ascosphaera apis is a fungal pathogen that specifically infects bee larvae, causing an outbreak of chalkbrood disease in the bee colony and a decline in the number of bee colonies. The role of miRNA regulation in honeybees in response to A. apis infection is unclear. In this study, based on small RNA-seq, we identified the differentially expressed miRNAs (DEmiRNAs) and their regulatory networks and functions in the gut of Apis cerana cerana on the first day (AcT1), the second day (AcT2) and the third day (AcT3) after A. apis infection, and analyzed the immune response mechanism of A. apis through the miRNAs-mRNA regulation network of A. apis infection. A total of 537 miRNAs were obtained, and 10, 27, and 54 DEmiRNAs were screened in the AcT1, AcT2, and AcT3 groups, respectively. The number of DEmiRNAs gradually increased with the infection time. Stem-loop RT-PCR results showed that most of the DEmiRNAs were truly expressed, and the expression trend of DEmiRNAs was consistent with the results of sRNA-seq. The top five GO terms of DEmiRNA-targeted mRNA were binding, cellular process, catalytic activity, metabolic process, and single-organism process. The main pathways enriched by KEGG were endocytosis, ubiquitin-mediated proteolysis, phagosome, and the JAK-STAT immune-related signaling pathways. The number of DEmiRNAs and target mRNAs of these related pathway genes increased with infection time. The miRNA-mRNA regulatory network analysis showed that ace-miR-539-y was the core miRNA of the early immune response in the gut of larvae infected with A. apis in the JAK-STAT pathway and phagosome, and ace-miR-1277-x was the core miRNA of the late immune response in the gut of larvae infected with A. apis in the JAK-STAT signaling pathway and phagosome. The results showed that miRNA participated in the immune response of honeybees to A. apis infection by regulating the host's energy metabolism, cellular immunity, and humoral immunity. The results of this study provide a basis for the regulation of miRNAs in A. c. cerana larvae in response to A. apis infection and provide new insights into host-pathogen interactions.
Collapse
Affiliation(s)
- Yuxuan Song
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (J.Q.); (J.K.); (Y.C.); (R.C.); (W.W.); (M.D.); (D.C.); (Z.F.)
| | - Jianfeng Qiu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (J.Q.); (J.K.); (Y.C.); (R.C.); (W.W.); (M.D.); (D.C.); (Z.F.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Kang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (J.Q.); (J.K.); (Y.C.); (R.C.); (W.W.); (M.D.); (D.C.); (Z.F.)
| | - Ying Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (J.Q.); (J.K.); (Y.C.); (R.C.); (W.W.); (M.D.); (D.C.); (Z.F.)
| | - Ruihua Cao
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (J.Q.); (J.K.); (Y.C.); (R.C.); (W.W.); (M.D.); (D.C.); (Z.F.)
| | - Wei Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (J.Q.); (J.K.); (Y.C.); (R.C.); (W.W.); (M.D.); (D.C.); (Z.F.)
| | - Mengyuan Dai
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (J.Q.); (J.K.); (Y.C.); (R.C.); (W.W.); (M.D.); (D.C.); (Z.F.)
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (J.Q.); (J.K.); (Y.C.); (R.C.); (W.W.); (M.D.); (D.C.); (Z.F.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongmin Fu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (J.Q.); (J.K.); (Y.C.); (R.C.); (W.W.); (M.D.); (D.C.); (Z.F.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (J.Q.); (J.K.); (Y.C.); (R.C.); (W.W.); (M.D.); (D.C.); (Z.F.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Li X, Qian B, Chen X, Shen M, Zhao S, Zhang X, He J. The role of miR-152 in urological tumors: potential biomarkers and therapeutic targets. Front Immunol 2024; 15:1464327. [PMID: 39606232 PMCID: PMC11599204 DOI: 10.3389/fimmu.2024.1464327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Urological malignant tumors pose a significant threat to human health, with a high incidence rate each year. Prostate cancer, bladder cancer, and renal cell carcinoma are among the most prevalent and extensively researched urological malignancies. Despite advancements in research, the prognosis for these tumors remains unfavorable due to late detection, postoperative recurrence, and treatment resistance. A thorough investigation into their pathogenesis is crucial for early diagnosis and treatment. Recent studies have highlighted the close association between microRNAs (miRNAs) and cancer progression. miRNAs are small non-coding RNAs composed of 19-23 nucleotides that regulate gene expression by binding to the 3' untranslated region (3'UTR) of target mRNAs, impacting key cellular processes such as proliferation, differentiation, apoptosis, and migration. Dysregulation of miRNAs can disrupt the expression of oncogenes and tumor suppressor genes, contributing to cancer development. Among the various miRNAs studied, miR-152 has garnered attention for its role in urological malignancies. Several studies have indicated that dysregulation of miR-152 expression is significant in these cancers, warranting a comprehensive review of the evidence. This review focuses on the expression and function of miR-152 in prostate cancer, bladder cancer, and renal cell carcinoma, elucidating its mechanisms in cancer progression and exploring its potential as a therapeutic target and biomarker in urological malignancies.
Collapse
Affiliation(s)
- Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Biao Qian
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xu Chen
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xinsheng Zhang
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian He
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
4
|
Wang B, Cai R, Sun T, Yang Z, Zhang H. Long non-coding RNA MIMT1 promotes retinoblastoma proliferation via sponging miR-153-5p to upregulate FGF2. Heliyon 2024; 10:e34243. [PMID: 39091947 PMCID: PMC11292528 DOI: 10.1016/j.heliyon.2024.e34243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/04/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
With the rapid development of biotechnology, long non-coding RNAs (lncRNAs) have shown promising potential for cancer treatment and may become novel therapeutic targets. This study aimed to explore the roles of lncRNAs in retinoblastoma (RB). It involves analysing differentially expressed lncRNAs in RB and normal tissues from the GSE111168 and GSE125903 datasets, further validating them in RB cells. Our findings determined that lncRNA MIMT1 was upregulated in RB cell lines and tissues. In WERI-Rb1 and Y79 cells, silencing MIMT1 significantly inhibited cell proliferation, whereas MIMT1 overexpression enhanced cell proliferation. Furthermore, in vivo xenograft experiments demonstrated that MIMT1 knockdown suppressed tumour volume and weight. Subsequent mechanistic investigations showed that MIMT1 upregulates fibroblast expression of FGF2 by binding to miR-153-5p, ultimately promoting RB cell proliferation. This suggest that MIMT1 functions as an oncogene in RB and potentially serves as a molecular marker for diagnostic and prognostic assessments. Thus, the MIMT1/miR-153-5p/FGF2 pathway is a promising therapeutic target for RB treatment.
Collapse
Affiliation(s)
| | | | | | - Zhufang Yang
- Department of Ophthalmology, Yancheng Third People's Hospital, Affiliated Hospital 6 of Nantong University, 75 Juchang Street, Yancheng, 224005, China
| | - Hongjie Zhang
- Department of Ophthalmology, Yancheng Third People's Hospital, Affiliated Hospital 6 of Nantong University, 75 Juchang Street, Yancheng, 224005, China
| |
Collapse
|
5
|
Gao X, Hou T, Wang L, Liu Y, Guo J, Zhang L, Yang T, Tang W, An M, Wen M. Aligned electrospun fibers of different diameters for improving cell migration capacity. Colloids Surf B Biointerfaces 2024; 234:113674. [PMID: 38039823 DOI: 10.1016/j.colsurfb.2023.113674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Electrospun fibers have gained significant attention as scaffolds in skin tissue engineering due to their biomimetic properties, which resemble the fibrous extracellular matrix. The morphological characteristics of electrospun fibers play a crucial role in determining cell behavior. However, the effects of electrospun fibers' arrangement and diameters on human skin fibroblasts (HSFs) remain elusive. Here, we revealed the impact of electrospun fiber diameters (700 nm, 2000 nm, and 3000 nm) on HSFs' proliferation, migration, and functional expression. The results demonstrated that all fibers exhibited good cytocompatibility. HSFs cultured on nanofibers (700 nm diameter) displayed a more dispersed and elongated morphology. Conversely, fibers with a diameter of 3000 nm exhibited a reduced specific surface area and lower adsorption of adhesion proteins, resulting in enhanced cell migration speed and effective migration rate. Meanwhile, the expression levels of migration-related genes and proteins were upregulated at 48 h for the 3000 nm fibers. This study demonstrated the unique role of fiber diameters in controlling the physiological functions of cells, especially decision-making and navigating migration in complex microenvironments of aligned electrospun fibers, and highlights the utility of these bioactive substitutes in skin tissue engineering applications.
Collapse
Affiliation(s)
- Xiang Gao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Tian Hou
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Jiqiang Guo
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Li Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tiantian Yang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Wenjie Tang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China.
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
6
|
Chou HD, Shiah SG, Chuang LH, Wu WC, Hwang YS, Chen KJ, Kang EYC, Yeung L, Nien CY, Lai CC. MicroRNA-152-3p and MicroRNA-196a-5p Are Downregulated When Müller Cells Are Promoted by Components of the Internal Limiting Membrane: Implications for Macular Hole Healing. Int J Mol Sci 2023; 24:17188. [PMID: 38139016 PMCID: PMC10743628 DOI: 10.3390/ijms242417188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Müller cells play a critical role in the closure of macular holes, and their proliferation and migration are facilitated by the internal limiting membrane (ILM). Despite the importance of this process, the underlying molecular mechanism remains underexplored. This study investigated the effects of ILM components on the microRNA (miRNA) profile of Müller cells. Rat Müller cells (rMC-1) were cultured with a culture insert and varying concentrations of ILM component coatings, namely, collagen IV, laminin, and fibronectin, and cell migration was assessed by measuring cell-free areas in successive photographs following insert removal. MiRNAs were then extracted from these cells and analyzed. Mimics and inhibitors of miRNA candidates were transfected into Müller cells, and a cell migration assay and additional cell viability assays were performed. The results revealed that the ILM components promoted Müller cell migration (p < 0.01). Among the miRNA candidates, miR-194-3p was upregulated, whereas miR-125b-1-3p, miR-132-3p, miR-146b-5p, miR-152-3p, miR-196a-5p, miR-542-5p, miR-871-3p, miR-1839-5p, and miR-3573-3p were significantly downregulated (p < 0.05; fold change > 1.5). Moreover, miR-152-3p and miR-196a-5p reduced cell migration (p < 0.05) and proliferation (p < 0.001), and their suppressive effects were reversed by their respective inhibitors. In conclusion, miRNAs were regulated in ILM component-activated Müller cells, with miR-152-3p and miR-196a-5p regulating Müller cell migration and proliferation. These results serve as a basis for understanding the molecular healing process of macular holes and identifying potential new target genes in future research.
Collapse
Affiliation(s)
- Hung-Da Chou
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan; (H.-D.C.); (S.-G.S.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Shine-Gwo Shiah
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan; (H.-D.C.); (S.-G.S.)
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Lan-Hsin Chuang
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
| | - Yih-Shiou Hwang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
| | - Kuan-Jen Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
| | - Ling Yeung
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Chung-Yi Nien
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan; (H.-D.C.); (S.-G.S.)
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| |
Collapse
|
7
|
Kim T, Croce CM. MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies. Exp Mol Med 2023; 55:1314-1321. [PMID: 37430087 PMCID: PMC10394030 DOI: 10.1038/s12276-023-01050-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023] Open
Abstract
As a type of short noncoding RNAs, microRNA (miRNA) undoubtedly plays a crucial role in cancer development. Since the discovery of the identity and clinical functions of miRNAs, over the past few decades, the roles of miRNAs in cancer have been actively investigated. Numerous pieces of evidence indicate that miRNAs are pivotal factors in most types of cancer. Recent cancer research focused on miRNAs has identified and characterized a large cohort of miRNAs commonly dysregulated in cancer or exclusively dysregulated in specific types of cancer. These studies have suggested the potential of miRNAs as biomarkers in the diagnosis and prognostication of cancer. Moreover, many of these miRNAs have oncogenic or tumor-suppressive functions. MiRNAs have been the focus of research given their potential clinical applications as therapeutic targets. Currently, various oncology clinical trials using miRNAs in screening, diagnosis, and drug testing are underway. Although clinical trials studying miRNAs in various diseases have been reviewed before, there have been fewer clinical trials related to miRNAs in cancer. Furthermore, updated results of recent preclinical studies and clinical trials of miRNA biomarkers and drugs in cancer are needed. Therefore, this review aims to provide up-to-date information on miRNAs as biomarkers and cancer drugs in clinical trials.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, China.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Samarth N, Gulhane P, Singh S. Immunoregulatory framework and the role of miRNA in the pathogenesis of NSCLC - A systematic review. Front Oncol 2022; 12:1089320. [PMID: 36620544 PMCID: PMC9811680 DOI: 10.3389/fonc.2022.1089320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
With a 5-year survival rate of only 15%, non-small cell lung cancer (NSCLC), the most common kind of lung carcinoma and the cause of millions of deaths annually, has drawn attention. Numerous variables, such as disrupted signaling caused by somatic mutations in the EGFR-mediated RAS/RAF/MAPK, PI3K/AKT, JAK/STAT signaling cascade, supports tumour survival in one way or another. Here, the tumour microenvironment significantly contributes to the development of cancer by thwarting the immune response. MicroRNAs (miRNAs) are critical regulators of gene expression that can function as oncogenes or oncosuppressors. They have a major influence on the occurrence and prognosis of NSCLC. Though, a myriad number of therapies are available and many are being clinically tested, still the drug resistance, its adverse effect and toxicity leading towards fatality cannot be ruled out. In this review, we tried to ascertain the missing links in between perturbed EGFR signaling, miRNAs favouring tumorigenesis and the autophagy mechanism. While connecting all the aforementioned points multiple associations were set, which can be targeted in order to combat NSCLC. Here, we tried illuminating designing synthetically engineered circuits with the toggle switches that might lay a prototype for better therapeutic paradigm.
Collapse
Affiliation(s)
| | | | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, India
| |
Collapse
|
9
|
Robinson I, Bertsch A, Leithner K, Stiegler P, Olschewski H, Hrzenjak A. Circulating microRNAs as molecular biomarkers for lung adenocarcinoma. Cancer Biomark 2022; 34:591-606. [DOI: 10.3233/cbm-210205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND: The potential of microRNAs (miRNAs) as molecular tumor biomarkers for early diagnosis and prognosis in lung cancer is still unclear. OBJECTIVE: To analyze expression of miRNAs in A549 lung adenocarcinoma (LUAD) cells and in primary, non-malignant bronchial epithelial (BE) cells from healthy donors. To analyze the most prominently deregulated miRNAs in plasma samples of LUAD patients and healthy donors. MATERIALS AND METHODS: The expression of 752 miRNAs in LUAD and BE cells was assessed by RT-qPCR with mean-centering restricted normalization. The relative plasma levels of 18 miRNAs in LUAD patients and healthy donors were analyzed using RT-qPCR and normalized to miR-191-5p and miR-16-3p. Putative interactions between miRNAs and their target genes were investigated in silico. RESULTS: Out of 752 miRNAs, 37 miRNAs were significantly deregulated in A549 cells compared to BE cells. MiR-15b-3p, miR-148a-3p, miR-193b-3p, and miR-195-5p were significantly deregulated in plasma samples of LUAD patients compared to donors. The target genes of those four miRNAs are involved in essential mechanisms in cancer development and progression. CONCLUSIONS: There are substantial differences between cancer and control miRNA expression in vitro and in plasma samples of LUAD patients compared to healthy donors. Four deregulated miRNAs are promising as a diagnostic biomarker for adenocarcinoma of the lung.
Collapse
Affiliation(s)
- Irina Robinson
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Alexandra Bertsch
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Katharina Leithner
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Philipp Stiegler
- Division of Transplantation Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Andelko Hrzenjak
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
10
|
Akram F, Haq IU, Sahreen S, Nasir N, Naseem W, Imitaz M, Aqeel A. CRISPR/Cas9: A revolutionary genome editing tool for human cancers treatment. Technol Cancer Res Treat 2022; 21:15330338221132078. [PMID: 36254536 PMCID: PMC9580090 DOI: 10.1177/15330338221132078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer is a genetic disease stemming from genetic and epigenetic mutations and is the second most common cause of death across the globe. Clustered regularly interspaced short palindromic repeats (CRISPR) is an emerging gene-editing tool, acting as a defense system in bacteria and archaea. CRISPR/Cas9 technology holds immense potential in cancer diagnosis and treatment and has been utilized to develop cancer disease models such as medulloblastoma and glioblastoma mice models. In diagnostics, CRISPR can be used to quickly and efficiently detect genes involved in various cancer development, proliferation, metastasis, and drug resistance. CRISPR/Cas9 mediated cancer immunotherapy is a well-known treatment option after surgery, chemotherapy, and radiation therapy. It has marked a turning point in cancer treatment. However, despite its advantages and tremendous potential, there are many challenges such as off-target effects, editing efficiency of CRISPR/Cas9, efficient delivery of CRISPR/Cas9 components into the target cells and tissues, and low efficiency of HDR, which are some of the main issues and need further research and development for completely clinical application of this novel gene editing tool. Here, we present a CRISPR/Cas9 mediated cancer treatment method, its role and applications in various cancer treatments, its challenges, and possible solution to counter these challenges.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Narmeen Nasir
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Waqas Naseem
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Memoona Imitaz
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| |
Collapse
|
11
|
Yang B, Huang S, Chen H, Li R, Hou S, Zhao J, Li Y. DNMT3B regulates proliferation of A549 cells through the microRNA-152-3p/NCAM1 pathway. Oncol Lett 2021; 23:11. [PMID: 34820010 PMCID: PMC8607351 DOI: 10.3892/ol.2021.13129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
The purpose of the present study was to examine the epigenetic mechanism by which microRNA (miR)-152-3p regulates proliferation in non-small cell lung cancer A549 cells via neural cell adhesion molecule 1 (NCAM1). Bisulfite sequencing PCR (BSP), the gold standard for methylation detection, uses bisulfite-treated DNA to determine its pattern of methylation. Treatment of DNA with bisulfite converts cytosine residues to uracil, but leaves 5-methylcytosine residues unaffected. It was conducted and demonstrated a relatively high level of methylation in the miR-152-3p promoter region. Chromatin immunoprecipitation was combined with PCR to detect the binding of DNA methyltransferase 3B (DNMT3B) protein to miR-152-3p, which tends to occur in the core region of the miR-152-3p gene in A549 cells. Luciferase assay identified NCAM1 as the target gene of miR-152-3p. MTT, colony formation and Transwell assays indicated that miR-152-3p could decrease cell proliferation and invasion and in addition to reducing the expression level of NCAM1. Overexpression of NCAM1 could attenuate the effect of miR-152-3p. DNMT3B knockdown decreased the proliferative ability of A549 cells and increased the expression of miR-152-3p, while decreased that of NCAM1. After treatment with miR-152-3p inhibitor, these effects were attenuated and the NCAM1 expression level was upregulated. The results indicated that miR-152-3p may suppress the proliferation of A549 cells by downregulating NCAM1. In addition, DNMT3B negatively regulated the expression of miR-152-3p via modulation of the methylation level in the miR-152-3p core region, thus mediating the proliferation of lung tumor cells.
Collapse
Affiliation(s)
- Bo Yang
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Shiqing Huang
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Hongming Chen
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Rizhu Li
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Shihao Hou
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Jingjing Zhao
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Yepeng Li
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| |
Collapse
|
12
|
Lu J, Wang Y, Hu Y, Yang B. Lnc-H19 enhances anaerobic glycolysis of keloid fibroblasts by targeting the miR-214-5p/FGF2 axis. Burns 2021:S0305-4179(21)00200-X. [PMID: 34887123 DOI: 10.1016/j.burns.2021.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/12/2023]
Abstract
Long non-coding RNA (lncRNA) H19 has been demonstrated as vital regulator in tumors. However, whether lnc-H19 mediated the development of keloid fibroblasts (KD) was unknown, this study was aimed to clarify the role and molecular mechanisms of lnc-H19 in KD. We have investigated the expression levels of lnc-H19, miR-214-5p and fibroblast growth factor 2 (FGF2) in KD skin samples and normal skin tissues as well as matched cells by real-time quantitative polymerase chain reaction (RT-qPCR) assay. The glycolysis ability of keloid fibroblasts was assessed by measuring glucose consumption, lactate production, and ATP level. The western blot assay was used to assay the expression levels of FGF2 and hexokinase 2 (HK2). Migration and invasion were analyzed by transwell in keloid fibroblasts. The bioinformatics database and dual-luciferase reporter assay were used to search and identify the target of miR-214-5p and lnc-H19. Lnc-H19 was overexpressed in KD tissues and keloid fibroblasts than normal skin tissues and normal fibroblasts, respectively. Small interfering RNA of lnc-H19 treatment markedly inhibited glycolysis, migration and invasion of keloid fibroblasts exposed to hypoxia, which was reserved by silencing of miR-214-5p or upregulation of FGF2. Mechanistically, lnc-H19 regulated KD development by regulation of miR-214-5p/FGF2 axis. In summary, lnc-H19 may exert regulatory functions in KD by targeting miR-214-5p/FGF2 axis, further regulated glycolysis, migration and invasion in keloid fibroblasts exposed to hypoxia, which might be a potential marker of KD diagnosis or progression.
Collapse
Affiliation(s)
- Junxu Lu
- Department of Plastic Surgery, Weifang Medical University, Weifang, 261000, Shandong, China
| | - Yuanbo Wang
- Department of Plastic Surgery, Weifang Medical University, Weifang, 261000, Shandong, China
| | - Yanuan Hu
- Department of Plastic Surgery, Weifang Medical University, Weifang, 261000, Shandong, China
| | - Biaobing Yang
- Department of Plastic Surgery, Weifang Medical University, Weifang, 261000, Shandong, China.
| |
Collapse
|
13
|
Lone SN, Bhat AA, Wani NA, Karedath T, Hashem S, Nisar S, Singh M, Bagga P, Das BC, Bedognetti D, Reddy R, Frenneaux MP, El-Rifai W, Siddiqi MA, Haris M, Macha MA. miRNAs as novel immunoregulators in cancer. Semin Cell Dev Biol 2021; 124:3-14. [PMID: 33926791 DOI: 10.1016/j.semcdb.2021.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The immune system is a well-known vital regulator of tumor growth, and one of the main hallmarks of cancer is evading the immune system. Immune system deregulation can lead to immune surveillance evasion, sustained cancer growth, proliferation, and metastasis. Tumor-mediated disruption of the immune system is accomplished by different mechanisms that involve extensive crosstalk with the immediate microenvironment, which includes endothelial cells, immune cells, and stromal cells, to create a favorable tumor niche that facilitates the development of cancer. The essential role of non-coding RNAs such as microRNAs (miRNAs) in the mechanism of cancer cell immune evasion has been highlighted in recent studies. miRNAs are small non-coding RNAs that regulate a wide range of post-transcriptional gene expression in a cell. Recent studies have focused on the function that miRNAs play in controlling the expression of target proteins linked to immune modulation. Studies show that miRNAs modulate the immune response in cancers by regulating the expression of different immune-modulatory molecules associated with immune effector cells, such as macrophages, dendritic cells, B-cells, and natural killer cells, as well as those present in tumor cells and the tumor microenvironment. This review explores the relationship between miRNAs, their altered patterns of expression in tumors, immune modulation, and the functional control of a wide range of immune cells, thereby offering detailed insights on the crosstalk of tumor-immune cells and their use as prognostic markers or therapeutic agents.
Collapse
Affiliation(s)
- Saife N Lone
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | - Ajaz A Bhat
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Nissar A Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | | | - Sheema Hashem
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bhudev Chandra Das
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar; Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India
| | - Mohammad Haris
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India.
| |
Collapse
|
14
|
Srivastava A, Rathore S, Munshi A, Ramesh R. Extracellular Vesicles in Oncology: from Immune Suppression to Immunotherapy. AAPS J 2021; 23:30. [PMID: 33586060 PMCID: PMC7882565 DOI: 10.1208/s12248-021-00554-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are involved in cell-to-cell communication and play a crucial role in cellular physiology. The role of exosomes in cancer has been widely explored. Tumor cells have evolved and adapted to evade the immune response. The study of the immune system's modulations in favor of rogue tumor cells led to the development of a novel immunotherapeutic strategy targeting the immune checkpoint proteins (ICPs). In clinical settings, the response to ICP therapy has been inconsistent and is difficult to predict. Quantitating the targeted ICPs through immunohistochemistry is one approach, but is not pragmatic in a clinical setting and is often not sensitive. Examining the molecules present in bodily fluids to determine ICP treatment response, "liquid biopsy" is a convenient alternative. The term "liquid biopsy" refers to circulating tumor cells (CTCs), extracellular vesicles (EVs), non-coding (nc) RNA, circulating tumor DNA (ctDNA), circulating free DNA (cfDNA), etc. EVs includes exosomes, microvesicles, and oncosomes. Herein, we focus on exosomes isolated from bodily fluids and their use in liquid biopsy. Due to their unique ability to transfer bioactive molecules and perturb the physiology of recipient cells, exosomes have garnered attention for their immune modulation role and as a resource to identify molecules associated with liquid biopsy-based diagnostic methods. In this review, we examine the putative role of exosomes and their cargo in influencing the immune system. We discuss the immune and tumor cells present in the tumor microenvironment (TME), and the exosomes derived from these cells to understand how they participate in creating the immune-suppressive TME. Additionally, use of exosomes in liquid biopsy-based methods to measure the treatment response elicited by immunotherapy is discussed. Finally, we describe how exosomes have been used to develop immune therapies, especially cell-free vaccines, for cancer treatment.
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 N.E., 10th Street, Oklahoma City, Oklahoma, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, Oklahoma, USA
| | - Shipra Rathore
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 N.E., 10th Street, Oklahoma City, Oklahoma, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, Oklahoma, USA
| | - Anupama Munshi
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, Oklahoma, USA
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 975 N.E., 10th Street, Oklahoma City, 73104, Oklahoma, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 N.E., 10th Street, Oklahoma City, Oklahoma, 73104, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, Oklahoma, USA.
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, Oklahoma, USA.
| |
Collapse
|
15
|
Li Z, Wang X, Liang S. Long non-coding RNA small nucleolar RNA host gene 1 knockdown suppresses the proliferation, migration and invasion of osteosarcoma cells by regulating microRNA-424-5p/FGF2 in vitro. Exp Ther Med 2021; 21:325. [PMID: 33732298 DOI: 10.3892/etm.2021.9756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to clarify the effect of long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) on the proliferation, migration and invasion of osteosarcoma (OS) cells and to explore the potential underlying mechanisms. The expression levels of SNHG1, microRNA (miR)-424-5p and fibroblast growth factor 2 (FGF2) in OS tissues and cells were detected using reverse transcription-quantitative polymerase chain reaction. OS cell proliferation, migration and invasion were analysed by MTT, wound healing and Transwell invasion assays, respectively. The targeting relationships between SNHG1 and miR-424-5p, as well as between miR-424-5p and FGF2, were confirmed using RNA-binding protein immunoprecipitation and/or dual-luciferase reporter gene assays. The results demonstrated that the expression levels of SNHG1 and FGF2 were upregulated, whereas the expression of miR-424-5p was downregulated in OS tissues and cells. The silencing of SNHG1 significantly inhibited the proliferation, migration and invasion of OS cells. Additionally, FGF2 was shown to be a target of miR-424-5p, which in turn, was a target of SNHG1. miR-424-5p silencing and FGF2 overexpression both reversed the suppressive effects of SNHG1 knockdown on the proliferation, migration and invasion of OS cells. Thus, the silencing of SNHG1 may inhibit the proliferation, migration and invasion of OS cells by regulating the miR-424-5p/FGF2 axis.
Collapse
Affiliation(s)
- Zhuokai Li
- Department of Orthopaedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Xiaohe Wang
- Department of Orthopaedics, Jinan Zhangqiu District Hospital of TCM, Jinan, Shandong 250200, P.R. China
| | - Shuofu Liang
- Department of Orthopaedics, Zibo Zhoucun People's Hospital, Zibo, Shandong 255300, P.R. China
| |
Collapse
|
16
|
Duan J, Wang L, Shang L, Yang S, Wu H, Huang Y, Miao Y. miR-152/TNS1 axis inhibits non-small cell lung cancer progression through Akt/mTOR/RhoA pathway. Biosci Rep 2021; 41:BSR20201539. [PMID: 33269380 PMCID: PMC7785040 DOI: 10.1042/bsr20201539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
AIM The purpose of the present study was to explore the function and mechanism of tensin 1 (TNS1) in non-small cell lung cancer (NSCLC) progression. METHODS The expression of TNS1 in NSCLC cells and tissues was assessed by RT-PCR and Western blot. Besides, Kaplan-Meier survival analysis was recruited to explore the association between TNS1 and NSCLC. Cell growth was analyzed by MTT and flow cytometry assay, while cell metastasis was determined by wound healing and transwell assays. The targeting relationship between TNS1 and miR-152 was assessed by luciferase activity assays. And Western blot was employed to determine the expression of related proteins of Akt/mTOR/RhoA pathway. RESULTS TNS1 level was boosted in NSCLC cells and tissues, related to the prognosis of NSCLC patients. Furthermore, it was proved that TNS1 promoted the growth and metastasis of NSCLC cells via Akt/mTOR/RhoA pathway. And miR-152 targeted TNS1 to affect the progression of NSCLC. CONCLUSION miR-152/TNS1 axis inhibits the progression of NSCLC by Akt/mTOR/RhoA pathway.
Collapse
Affiliation(s)
- Jinjin Duan
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| | - Liqun Shang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| | - Shumei Yang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| | - Hua Wu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| | - Yongcheng Huang
- Department of Pathology, Xi’an Central Hospital, Xi’an, Shaanxi 7100033, P.R. China
| | - Yi Miao
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| |
Collapse
|
17
|
Tu J, Yang H, Jiang L, Chen Y, Li Z, Li L, Zhang Y, Chen X, Chen H, Yu Z. The Central Roles of Noncoding RNA in Estrogen-Dependent Female Reproductive System Tumors. Int J Endocrinol 2021; 2021:5572063. [PMID: 34122542 PMCID: PMC8169271 DOI: 10.1155/2021/5572063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of ovarian and endometrial cancers is closely associated with estrogen-related pathways. These estrogen-dependent tumors seriously threaten the health and quality of life in women. Noncoding RNAs (ncRNAs) are defined as RNAs that do not encode proteins, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), both of which have been reported in estrogen-dependent female reproductive system tumors. This review systematically summarizes the role of ncRNAs in estrogen-dependent tumors and common patterns of regulatory mechanisms to explore their future research directions in tumor diagnosis, treatment, and prognosis. This may provide new ideas for the potential application of ncRNAs in estrogen-dependent female reproductive system tumors.
Collapse
Affiliation(s)
- Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Huan Yang
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Lei Jiang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhe Li
- The First Clinical Medical College of Southern Medical University, Guangzhou, China
| | - Lei Li
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yuanyuan Zhang
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaochun Chen
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - He Chen
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhiying Yu
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
18
|
Bhatt P, Sabeena SP, Varma M, Arunkumar G. Current Understanding of the Pathogenesis of Dengue Virus Infection. Curr Microbiol 2021; 78:17-32. [PMID: 33231723 PMCID: PMC7815537 DOI: 10.1007/s00284-020-02284-w] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022]
Abstract
The pathogenesis of dengue virus infection is attributed to complex interplay between virus, host genes and host immune response. Host factors such as antibody-dependent enhancement (ADE), memory cross-reactive T cells, anti-DENV NS1 antibodies, autoimmunity as well as genetic factors are major determinants of disease susceptibility. NS1 protein and anti-DENV NS1 antibodies were believed to be responsible for pathogenesis of severe dengue. The cytokine response of cross-reactive CD4+ T cells might be altered by the sequential infection with different DENV serotypes, leading to further elevation of pro-inflammatory cytokines contributing a detrimental immune response. Fcγ receptor-mediated antibody-dependent enhancement (ADE) results in release of cytokines from immune cells leading to vascular endothelial cell dysfunction and increased vascular permeability. Genomic variation of dengue virus and subgenomic flavivirus RNA (sfRNA) suppressing host immune response are viral determinants of disease severity. Dengue infection can lead to the generation of autoantibodies against DENV NS1antigen, DENV prM, and E proteins, which can cross-react with several self-antigens such as plasminogen, integrin, and platelet cells. Apart from viral factors, several host genetic factors and gene polymorphisms also have a role to play in pathogenesis of DENV infection. This review article highlights the various factors responsible for the pathogenesis of dengue and also highlights the recent advances in the field related to biomarkers which can be used in future for predicting severe disease outcome.
Collapse
Affiliation(s)
- Puneet Bhatt
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | | | - Muralidhar Varma
- Dept of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576101 India
| | - Govindakarnavar Arunkumar
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
- Present Address: WHO Country Office, Kathmandu, Nepal
| |
Collapse
|
19
|
Fu J, Mao J, Wang C. The microRNA-152/human leukocyte antigen-G axis affects proliferation and immune escape of non-small cell lung cancer cells. J Int Med Res 2020; 48:300060520970758. [PMID: 33249973 PMCID: PMC7708723 DOI: 10.1177/0300060520970758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate the role of human leukocyte antigen (HLA-G) on proliferation, invasion, and immune escape in non-small cell lung cancer (NSCLC). Methods The relationship between HLA-G and overall survival (OS) of NSCLC patients was analyzed using the KMPlot database. The expression of micro (mi)R-152 or HLA-G was modulated by transfecting synthetic oligonucleotides, and the impact of the miR-152/HLA-G axis on proliferation, invasion, colony formation in soft agar, and tolerance to natural killer (NK) cell cytolysis was measured. Results Bioinformatics analysis showed that high HLA-G expression was correlated with poor OS in NSCLC patients. The tolerance of NSCLC cells to NK cytotoxicity was negatively correlated with HLA-G and positively correlated with miR-152 expression. Over-expressing miR-152 inhibited HLA-G expression in A549 cells and attenuated cell proliferation, migration, colony formation ability, and tolerance to NK cells. However, blocking HLA-G expression by small interfering RNA did not affect migration or colony formation, but only proliferation and tolerance to NK cells in vitro and in vivo. Blocking Ig-like transcript 2 on the surface of NK cells increased their killing effect in the presence of high HLA-G expression. Conclusions miR-152/HLA-G axis plays an oncogenic role in NSCLC by affecting cell proliferation and immune escape.
Collapse
Affiliation(s)
- Jun Fu
- Department of Thoracic Surgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jun Mao
- Department of Thyroid and Breast Surgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chun Wang
- Department of Oncology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
20
|
MicroRNA-202 inhibits cell migration and invasion through targeting FGF2 and inactivating Wnt/β-catenin signaling in endometrial carcinoma. Biosci Rep 2020; 39:BSR20190680. [PMID: 31533968 PMCID: PMC6822492 DOI: 10.1042/bsr20190680] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/29/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
Recently, many mircroRNAs (miRNAs) involved in the development and progression of cancer have been reported to regulate cell growth and metastasis, including microRNA-202 (miR-202). The purpose of the present study was to elucidate the effect of miR-202 on endometrial carcinoma (EC) cell migration and invasion. First, qRT-PCR showed that miR-202 was down-regulated in EC tissues, which was associated with poor prognosis in EC patients. Functionally, transwell assay indicated that miR-202 inhibited cell migration and invasion in EC cells. In addition, miR-202 also blocked epithelial-mesenchymal transition (EMT) through suppressing N-cadherin and Vimentin expressions and promoting E-cadherin expression. Moreover, the dual-luciferase reporter assay showed that fibroblast growth factor 2 (FGF2) is a direct target gene for miR-202 in EC cells. Furthermore, up-regulation of FGF2 attenuated the inhibitory effect of miR-202 on cell migration and invasion in EC. Besides that, miR-202 inactivated the Wnt/β-catenin signaling by suppressing β-catenin expression in EC. In conclusion, miR-202 inhibited cell migration and invasion by targeting FGF2 and inactivating the Wnt/β-catenin signaling in EC.
Collapse
|
21
|
Wang J, Shu H, Guo S. MiR-646 suppresses proliferation and metastasis of non-small cell lung cancer by repressing FGF2 and CCND2. Cancer Med 2020; 9:4360-4370. [PMID: 32347652 PMCID: PMC7300416 DOI: 10.1002/cam4.3062] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNA‐646 (miR‐646) has been implicated in several other cancers; however, its functional mechanism in non‐small cell lung cancer (NSCLC) remains unclear. In this study, we observed the downregulation of miR‐646 expression in NSCLC tissues and cell lines. Low‐level expression of miR‐646 was associated with metastasis and stage of NSCLCs. Functional assays showed that overexpression of miR‐646 could suppress NSCLC cell proliferation, clonogenicity, invasion, and inhibit epithelial‐mesenchymal transition (EMT), whereas decreased miR‐646 expression showed the opposite effects. Importantly, miR‐646 overexpression attenuated in vivo tumor growth and metastasis in nude mice models. Mechanically, miR‐646 directly targeted and suppressed fibroblast growth factor 2 (FGF2) and cyclin D2 (CCND2) expression. Reintroduction of FGF2 and CCND2 attenuated miR‐646‐mediated suppression of proliferation and invasion in NSCLC. Collectively, these results demonstrate that miR‐646 acts as a tumor suppressor in NSCLC by targeting FGF2 and CCND2, and may serve as a therapeutic target for patients with NSCLC.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory Disease, Jinshan Hospital of Fudan University, Shanghai, China
| | - Huizhen Shu
- Xuanqiao Community Health Service Center, Shanghai, China
| | - Shuigen Guo
- Department of Respiratory Disease, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
22
|
Xi Y, Shen W, Jin C, Wang L, Yu B. PVT1 Promotes the Proliferation and Migration of Non-Small Cell Lung Cancer via Regulating miR-148/RAB34 Signal Axis. Onco Targets Ther 2020; 13:1819-1832. [PMID: 32184617 PMCID: PMC7054901 DOI: 10.2147/ott.s222898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022] Open
Abstract
Objective It has been verified that long non-coding RNAs (lncRNAs) play critical roles in the development of human cancers. Increasing evidence indicates that lncRNA human plasmacytoma variant translocation1 (PVT1) was dysregulated in non-small cell lung cancer (NSCLC) which is the leading cause of cancer-related death. However, the precise mechanism underlying the effect of PVT1 remains elusive. Our research focused on the correlation of PVT1 to miR-148 and RAB34 in NSCLC. Methods The quantitative real-time PCR (qRT-PCR) and western blot assay were used to detect gene and protein expression in NSCLC tissues and cells. CCK8, colony formation, transwell and wound healing assays were performed to evaluate the cell function of NSCLC cells. Dual-luciferase activity assay and RNA pull down assays were performed to verify the interaction between miR-148 and its targets. A xenograft test was conducted to detect the impact of RAB34 on tumor development in vitro. Results In NSCLC tissues and cells, PVT1 and RAB34 were up-regulated, and miR-148 was down-regulated. Overexpression of PVT1 was capable of promoting NSCLC cell proliferation and migration which could be reversed by miR-148 restoration or RAB34 knock down. Also, our data firstly determined that the down-regulation of RAB34 had inhibitor effects while the up-regulation of RAB34 had promotive effects on tumor growth in vitro and in vivo. Conclusion Those findings indicated that the signal pathway PVT1/miR-148/RAB34 play critical roles in the progression of NSCLC could be proposed in NSCLC as a possible diagnosis or therapeutic targets.
Collapse
Affiliation(s)
- Yong Xi
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, Zhejiang 315040, People's Republic of China
| | - Weiyu Shen
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, Zhejiang 315040, People's Republic of China
| | - Chenghua Jin
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, Zhejiang 315040, People's Republic of China
| | - Lijie Wang
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, Zhejiang 315040, People's Republic of China
| | - Bengtong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
23
|
Zheng J, Zhang Y, Cai S, Dong L, Hu X, Chen MB, Zhu YH. MicroRNA-4651 targets bromodomain-containing protein 4 to inhibit non-small cell lung cancer cell progression. Cancer Lett 2020; 476:129-139. [PMID: 32081805 DOI: 10.1016/j.canlet.2020.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
Bromodomain-containing protein 4 (BRD4) overexpression in non-small cell lung cancer (NSCLC) promotes cancer progression. Here, we show that miR-4651 selectively targets and negatively regulates BRD4 in A549 and primary human NSCLC cells. RNA pull-down experiments confirmed that miR-4651 directly binds to BRD4 mRNA. Further, ectopic overexpression of miR-4651 in A549 cells and primary NSCLC cells decreased BRD4 3'-UTR luciferase reporter activity and its expression, whereas miR-4651 inhibition elevated both. Functional studies demonstrated that NSCLC cell growth, proliferation, and migration were suppressed with ectopic miR-4651 overexpression but enhanced with miR-4651 inhibition. BRD4 re-expression using a 3'-UTR mutant BRD4 reversed A549 cell inhibition induced by miR-4651 overexpression. Further, miR-4651 overexpression or inhibition failed to alter the functions of BRD4-KO A549 cells. In vivo, miR-4651-overexpressing A549 xenografts grew slowly than control A549 xenografts in severe combined immunodeficient mice. Finally, miR-4651 was downregulated in human NSCLC tissues, correlating with BRD4 elevation. Together, miR-4651 targets BRD4 to inhibit NSCLC cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Jiangnan Zheng
- Department of Respiratory Medicine, Affiliated Wujiang Hospital of Nantong University, Suzhou, China; Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Zhang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Shang Cai
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingyun Dong
- Department of Respiratory Medicine, Affiliated Wujiang Hospital of Nantong University, Suzhou, China
| | - Xiaoyun Hu
- Department of Respiratory Medicine, Affiliated Wujiang Hospital of Nantong University, Suzhou, China
| | - Min-Bin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China.
| | - Ye-Han Zhu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
24
|
Maimaitiming A, Wusiman A, Aimudula A, Kuerban X, Su P. MicroRNA-152 Inhibits Cell Proliferation, Migration, and Invasion in Breast Cancer. Oncol Res 2020; 28:13-19. [PMID: 30982494 PMCID: PMC7851537 DOI: 10.3727/096504019x15519249902838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the roles of microRNA-152 (miR-152) in the initiation and progression of breast cancer. The expression level of miR-152 was detected in human breast cancer tissue and a panel of human breast cancer cell lines using qRT-PCR. Results found that miR-152 expression was significantly downregulated in breast cancer tissue samples compared to adjacent noncancerous tissues as well as in breast cancer cell lines. Overexpression of miR-152 significantly suppressed breast cancer cell proliferation, migration, and invasion. Luciferase reporter assay results found that ROCK1 is a direct and functional target gene of miR-152 in breast cancer. In addition, downexpression of ROCK1 could inhibit breast cancer cell proliferation, migration, and invasion. These findings indicate that miR-152 inhibited breast cancer growth and metastasis through negative regulation of ROCK1 expression. These data suggest that miR-152/ROCK1 pathway may be a useful therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Adilijiang Maimaitiming
- *Department of Breast and Thyroid Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - Ailijiang Wusiman
- †Department of Surgery, Hospital of Xinjiang Traditional Uyghur, Urumqi, P.R. China
| | - Abulajiang Aimudula
- †Department of Surgery, Hospital of Xinjiang Traditional Uyghur, Urumqi, P.R. China
| | - Xuekelaiti Kuerban
- *Department of Breast and Thyroid Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - Pengcheng Su
- *Department of Breast and Thyroid Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| |
Collapse
|
25
|
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5:1. [PMID: 32296011 PMCID: PMC6946647 DOI: 10.1038/s41392-019-0089-y] [Citation(s) in RCA: 1053] [Impact Index Per Article: 210.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Based on engineered or bacterial nucleases, the development of genome editing technologies has opened up the possibility of directly targeting and modifying genomic sequences in almost all eukaryotic cells. Genome editing has extended our ability to elucidate the contribution of genetics to disease by promoting the creation of more accurate cellular and animal models of pathological processes and has begun to show extraordinary potential in a variety of fields, ranging from basic research to applied biotechnology and biomedical research. Recent progress in developing programmable nucleases, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-associated nucleases, has greatly expedited the progress of gene editing from concept to clinical practice. Here, we review recent advances of the three major genome editing technologies (ZFNs, TALENs, and CRISPR/Cas9) and discuss the applications of their derivative reagents as gene editing tools in various human diseases and potential future therapies, focusing on eukaryotic cells and animal models. Finally, we provide an overview of the clinical trials applying genome editing platforms for disease treatment and some of the challenges in the implementation of this technology.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Mengyuan Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
26
|
Petrek H, Yu A. MicroRNAs in non-small cell lung cancer: Gene regulation, impact on cancer cellular processes, and therapeutic potential. Pharmacol Res Perspect 2019; 7:e00528. [PMID: 31859460 PMCID: PMC6923806 DOI: 10.1002/prp2.528] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/29/2022] Open
Abstract
Lung cancer remains the most lethal cancer among men and women in the United States and worldwide. The majority of lung cancer cases are classified as non-small cell lung cancer (NSCLC). Developing new therapeutics on the basis of better understanding of NSCLC biology is critical to improve the treatment of NSCLC. MicroRNAs (miRNAs or miRs) are a superfamily of genome-derived, small noncoding RNAs that govern posttranscriptional gene expression in cells. Functional miRNAs are commonly dysregulated in NSCLC, caused by genomic deletion, methylation, or altered processing, which may lead to the changes of many cancer-related pathways and processes, such as growth and death signaling, metabolism, angiogenesis, cell cycle, and epithelial to mesenchymal transition, as well as sensitivity to current therapies. With the understanding of miRNA biology in NSCLC, there are growing interests in developing new therapeutic strategies, namely restoration of tumor suppressive miRNAs and inhibition of tumor promotive miRNAs, to combat against NSCLC. In this article, we provide an overview on the molecular features of NSCLC and current treatment options with a focus on pharmacotherapy and personalized medicine. By illustrating the roles of miRNAs in the control of NSCLC tumorigenesis and progression, we highlight the latest efforts in assessing miRNA-based therapies in animal models and discuss some critical challenges in developing RNA therapeutics.
Collapse
Affiliation(s)
- Hannah Petrek
- Department of Biochemistry & Molecular MedicineUC Davis School of MedicineSacramentoCAUSA
| | - Ai‐Ming Yu
- Department of Biochemistry & Molecular MedicineUC Davis School of MedicineSacramentoCAUSA
| |
Collapse
|
27
|
Zhao W, Li H, Yang S, Guo D, Chen J, Miao S, Xin Y, Liang M. MicroRNA-152 suppresses cisplatin resistance in A549 cells. Oncol Lett 2019; 18:4613-4620. [PMID: 31611969 PMCID: PMC6781694 DOI: 10.3892/ol.2019.10834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to investigate the association between microRNA-152 and cisplatin resistance in non-small cell lung cancer. A549 and cisplatin-resistant A549 cells (A549/cis) were maintained in vitro. Reverse transcription-quantitative PCR (RT-qPCR) was performed to analyze differences in microRNA-152 levels between A549 and A549/cis cells, and changes in Bcl-2 and NF-κB expression levels were analyzed via RT-qPCR and western blot analyses. MicroRNA-152 was overexpressed in A549/cis cells via transfection of a microRNA-152 mimic. Upon treating transfected or untransfected A549/cis cells with 2 µg/l cisplatin for 24 h, a Cell Counting Kit-8 assay, morphological analysis and flow cytometry analysis were performed to evaluate the effect of microRNA-152 on the inhibition of cell proliferation and induction of apoptosis. Furthermore, changes in Bcl-2 and NF-κB expression levels in microRNA-152-overexpressing A549/cis cells were also analyzed. MicroRNA-152 was significantly downregulated and Bcl-2 and NF-κB were significantly upregulated in A549/cis cells (P<0.05). MicroRNA-152 upregulation enhanced the inhibitory effect of cisplatin on A549/cis cells. These results suggest that microRNA-152 downregulates Bcl-2 and NF-κB. MicroRNA-152 downregulation may induce cisplatin resistance in non-small cell lung cancer cells, whereas microRNA-152 upregulation may improve cisplatin sensitivity among A549/cis cells via downregulation of Bcl-2 and NF-κB.
Collapse
Affiliation(s)
- Wenfei Zhao
- Department of Respiratory, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongyun Li
- Department of Respiratory, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shanshan Yang
- Department of Respiratory, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Di Guo
- Department of Respiratory, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jing Chen
- Department of Respiratory, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shaoyi Miao
- Department of Respiratory, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yi Xin
- Department of Respiratory, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Miaomiao Liang
- Department of Respiratory, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
28
|
Feng F, Liu H, Chen A, Xia Q, Zhao Y, Jin X, Huang J. miR-148-3p and miR-152-3p synergistically regulate prostate cancer progression via repressing KLF4. J Cell Biochem 2019; 120:17228-17239. [PMID: 31104329 DOI: 10.1002/jcb.28984] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/23/2019] [Accepted: 04/12/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND miR-148-3p and miR-152-3p as the tumor suppressors have been reported in various cancer types. Our study is aimed to discuss the synergistic effect of miR-148-3p and miR-152-3p in prostate cancer (PCa). METHODS Bioinformatics algorithm and luciferase reporter assays were used to verify whether miR-148-3p and 152-3p could bind with the 3'-untranslated region (3'-UTR) of Kruppel-like factor 4 (KLF4). PCa cell growth in vivo was analyzed using the mouse xenograft tumor model. RESULTS miR-148-3p and miR-152-3p were reduced in PCa tumor tissues. Moreover, the protein expression of KLF4 was increased in PCa tissues. The 3'-UTR of KLF4 contained the conserved binding sites with miR-148-3p and miR-152-3p. The mimics or inhibitors of miR-148-3p and/or miR-152-3p could downregulated or upregulated KLF4 expression, respectively. miR-148-3p and miR-152-3p-induced PCa cell growth inhibition were observed both in vivo and in vitro. KLF4 overexpression had the ability to neutralize the antitumor effect of miR-148-3p/152-3p in vivo and in vitro. CONCLUSION miR-148-3p/152-3p family could serve as tumor suppressors in PCa via repressing KLF4.
Collapse
Affiliation(s)
- Feng Feng
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- School of Medicine, Shandong University, Jinan, China
| | - Hui Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Aiping Chen
- Liaocheng People's Hospital, Liao Cheng, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yong Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xunbo Jin
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jianjun Huang
- Laboratory of Tumor and Molecular Biology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
29
|
De Angelis MT, Santamaria G, Parrotta EI, Scalise S, Lo Conte M, Gasparini S, Ferlazzo E, Aguglia U, Ciampi C, Sgura A, Cuda G. Establishment and characterization of induced pluripotent stem cells (iPSCs) from central nervous system lupus erythematosus. J Cell Mol Med 2019; 23:7382-7394. [PMID: 31536674 PMCID: PMC6815917 DOI: 10.1111/jcmm.14598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
Involvement of the central nervous system (CNS) is an uncommon feature in systemic lupus erythematosus (SLE), making diagnosis rather difficult and challenging due to the poor specificity of neuropathic symptoms and neurological symptoms. In this work, we used human‐induced pluripotent stem cells (hiPSCs) derived from CNS‐SLE patient, with the aim to dissect the molecular insights underlying the disease by gene expression analysis and modulation of implicated pathways. CNS‐SLE‐derived hiPSCs allowed us to provide evidence of Erk and Akt pathways involvement and to identify a novel cohort of potential biomarkers, namely CHCHD2, IDO1, S100A10, EPHA4 and LEFTY1, never reported so far. We further extended the study analysing a panel of oxidative stress‐related miRNAs and demonstrated, under normal or stress conditions, a strong dysregulation of several miRNAs in CNS‐SLE‐derived compared to control hiPSCs. In conclusion, we provide evidence that iPSCs reprogrammed from CNS‐SLE patient are a powerful useful tool to investigate the molecular mechanisms underlying the disease and to eventually develop innovative therapeutic approaches.
Collapse
Affiliation(s)
- Maria Teresa De Angelis
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Stefania Scalise
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Sara Gasparini
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.,Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.,Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Clara Ciampi
- Department of Science, University of Rome " Roma Tre", Rome, Italy
| | - Antonella Sgura
- Department of Science, University of Rome " Roma Tre", Rome, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| |
Collapse
|
30
|
Omar HA, El‐Serafi AT, Hersi F, Arafa EA, Zaher DM, Madkour M, Arab HH, Tolba MF. Immunomodulatory MicroRNAs in cancer: targeting immune checkpoints and the tumor microenvironment. FEBS J 2019; 286:3540-3557. [DOI: 10.1111/febs.15000] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/29/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hany A. Omar
- Sharjah Institute for Medical Research University of Sharjah UAE
- Department of Pharmacology, Faculty of Pharmacy Beni‐Suef University Egypt
| | - Ahmed T. El‐Serafi
- Sharjah Institute for Medical Research University of Sharjah UAE
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Suez Canal University Ismailia Egypt
| | - Fatema Hersi
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - El‐Shaimaa A. Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences Ajman University UAE
| | - Dana M. Zaher
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - Mohamed Madkour
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - Hany H. Arab
- Department of Biochemistry, Faculty of Pharmacy Cairo University Egypt
- Biochemistry Division and GTMR Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy Taif University Saudi Arabia
| | - Mai F. Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Ain Shams University Cairo Egypt
- Biology Department, School of Sciences and Engineering The American University in Cairo New Cairo Egypt
| |
Collapse
|
31
|
Guo J, Chen M, Ai G, Mao W, Li H, Zhou J. Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomed Pharmacother 2019; 115:108957. [PMID: 31082770 DOI: 10.1016/j.biopha.2019.108957] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cervical cancer has been shown to be one of the leading cancer-related death causes all over the world. Several studies demonstrates that hsa_circ_0023404 plays a crucial role in progression of cervical cancer; however, the detailed mechanism of hsa_circ_0023404 regulating cervical cancer metastasis and chemoresistance remains unclear. METHODS We used RT-qPCR and westernblot approach to detect expression levels of various genes in cervical tumors and cancer cells. To examine invasion and lymphatic vessel formation of Human Dermal Lymphatic Endothelial Cells (HDLEC), transwell invasion assay and lymphatic vessel assay were utilized in the presence of conditioned medium of HeLa and SiHa cells. To examine direct interaction between hsa_circ_0023404 and miR-5047, bioinformatic analysis and luciferase reporter assay were used. Besides, MTT and flow cytometry analysis were conducted to assess cell viability and apoptosis rate of HeLa cell. RESULTS hsa_circ_0023404 knockdown attenuates invasion of cervical cancer cells and lymphatic vessel formation of HDLEC cells. hsa_circ_0023404 directly interacted with miR-5047. Moreover, miR-5047 inhibitor-transfected HeLa and SiHa cells enhanced invasion and lymphatic vessel formation of HDLEC cells. More interestingly, we confirmed that hsa_circ_0023404 knockdown and miR-5047 mimic downregulated the expression levels of VEGFA. The functional rescue experiments indicated VEGFA acted as key factor for hsa_circ_0023404- and miR-5047-regulated invasion and lymphatic vessel formaion. Ultimately, hsa_circ_0023404 and VEGFA were upregulated and showed positive correlation in cervical tumors, while miR-5047 was downregulated and showed negative correlation with hsa_circ_0023404 and VEGFA. On the other hand, autophagy-associated genes (Beclin1 and p62) were dysregulated in hsa_circ_0023404 depleted and overexpressed HeLa cells. hsa_circ_0023404 knockdown inhibited cell viability of cells, which was obviously abolished by autophagy inhibitor 3-MA in the presence of various concentrations of Cisplatin. Consistently, apoptosis rate was remarkably elevated in hsa_circ_0023404 depleted cells and diminished in hsa_circ_0023404 overexpressed cells under treatment of 2 μg/ml Cisplatin. CONCLUSIONS Here, we reveal a novel role of hsa_circ_0023404 for cervical cancer metastasis and chemoresistance by regulating miR-5047. Our findings help understand mechanism underlying cervical cancer and development of therapeutical approaches for treating cervical cancer.
Collapse
Affiliation(s)
- Jing Guo
- Gynaecology and Obstetrics Department, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Mengmeng Chen
- Gynaecology and Obstetrics Department, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Guihai Ai
- Gynaecology and Obstetrics Department, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Weipu Mao
- Urology Surgery Department, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Huan Li
- Clinical Medicine Department, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jianhong Zhou
- Gynaecology and Obstetrics Department, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China.
| |
Collapse
|
32
|
Tian X, Gu T, Patel S, Bode AM, Lee MH, Dong Z. CRISPR/Cas9 - An evolving biological tool kit for cancer biology and oncology. NPJ Precis Oncol 2019; 3:8. [PMID: 30911676 PMCID: PMC6423228 DOI: 10.1038/s41698-019-0080-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
The development of genetic engineering in the 1970s marked a new frontier in genome-editing technology. Gene-editing technologies have provided a plethora of benefits to the life sciences. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/ Cas9) system is a versatile technology that provides the ability to add or remove DNA in the genome in a sequence-specific manner. Serious efforts are underway to improve the efficiency of CRISPR/Cas9 targeting and thus reduce off-target effects. Currently, various applications of CRISPR/Cas9 are used in cancer biology and oncology to perform robust site-specific gene editing, thereby becoming more useful for biological and clinical applications. Many variants and applications of CRISPR/Cas9 are being rapidly developed. Experimental approaches that are based on CRISPR technology have created a very promising tool that is inexpensive and simple for developing effective cancer therapeutics. This review discusses diverse applications of CRISPR-based gene-editing tools in oncology and potential future cancer therapies.
Collapse
Affiliation(s)
- Xueli Tian
- Basic Medical College, Zhengzhou University, 450001 Zhengzhou, Henan China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
| | - Tingxuan Gu
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
| | - Satyananda Patel
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, Austin, 55912 USA
| | - Mee-Hyun Lee
- Basic Medical College, Zhengzhou University, 450001 Zhengzhou, Henan China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Zigang Dong
- Basic Medical College, Zhengzhou University, 450001 Zhengzhou, Henan China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
- The Hormel Institute, University of Minnesota, Austin, 55912 USA
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
33
|
Klimenko OV, Shtilman M. Reprogramming of CaCo2 colorectal cancer cells after using the complex of poly-(N-vinylpyrrolidone) with small non-coding RNAs. Toxicol Rep 2019; 6:186-192. [PMID: 30899675 PMCID: PMC6405903 DOI: 10.1016/j.toxrep.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/15/2019] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
Small non-coding RNAs control normal development and differentiation in the embryo. These regulatory molecules play a key role in the development of human diseases and are used often today for researching new treatments for different pathologies. In this study, CaCo2 colorectal adenocarcinoma cells were initially epigenetically reprogrammed and transformed into CD4+ cells with nano-sized complexes of amphiphilic poly-(N-vinylpyrrolidone) (PVP) with miRNA-152 and piRNA-30074. The transformation of cells was confirmed by morphological and genetic changes in the dynamic of reprogramming. CD4+ lymphocytes marker was detected using immunofluorescence. Amphiphilic poly-(N-vinylpyrrolidone)/small non-coding RNAs complexes were investigated for transfection efficiency and duration of transfection of CaCo2 colorectal adenocarcinoma cells using fluorescence.
Collapse
Key Words
- AGO2, argonaute 2
- Amphiphilic poly-(N-vinylpyrrolidone)
- BACH1, BTB domain and CNC homolog 1
- CD, cluster of differentiation
- CaCo2 colorectal adenocarcinoma
- DICER1, ribonuclease III
- DNMT1, DNA methyltransferase 1
- DTT, dithyothreitol
- ERK1/2, extracellular signal regulated kinase ½
- FGF2, fibroblast growth factor 2
- GITR3A, glucocorticoid-induced TNFR-related protein
- H3K9me3, tri-methyl lysine 9 of histone H3
- HILI, human piwi
- HMOX1, heme oxygenase 1
- HOXA10, homebox A10
- ICOS1B, inducible T-cell co-stimulator
- IL, interleukin
- KIR1DL2, CD158b, expressed on natural killer cells and a subset of T cells
- MKI-67, marker of proliferation ki-67
- OCT4, octamer-binding transcription factor 4
- PIWIL1, piwi-like protein 1
- PNVP, poly-(N-vinylpyrrolidone)
- Polymer carriers
- RB1, retinoblastoma 1
- Reprogramming
- SncRNAs, small non-coding RNAs
- TE, transposon elements
- TGFBR2, transforming growth factor beta receptor 2
- TNFRS6B, TNF receptor superfamily 6B
- TSS, transcriptional start sites
- VMAF, musculoaponeurotic fibrosarcoma
- Wnt-1, wingless type MMTV integration site family, member 1
- iPS, induced pluripotent stem cells
- mTOR, mechanistic target of rapamycin
- miR, micro-RNA
- miRNA-152
- piR, piwi-interacting RNA, P-element induced wimpy testis interacting RNA
- piRNA-30074
Collapse
Affiliation(s)
| | - Mikhail Shtilman
- Department of Biomaterials, D.Mendeleyev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia
- Corresponding author at: Department of Biomaterials, D.Mendeleyev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia
| |
Collapse
|
34
|
Huang X, Wang L, Liu W, Li F. MicroRNA-497-5p inhibits proliferation and invasion of non-small cell lung cancer by regulating FGF2. Oncol Lett 2019; 17:3425-3431. [PMID: 30867780 PMCID: PMC6396182 DOI: 10.3892/ol.2019.9954] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/16/2019] [Indexed: 01/01/2023] Open
Abstract
Increasing number of microRNAs (miRNAs) have been reported to play an important role in the development and progression of non-small cell lung cancer (NSCLC). In particular, microRNA-497-5p (miR-497-5p) has been proposed as a tumor suppressor miRNA in human cancers. However, the role of miR-497-5p and its potential molecular mechanism associated with NSCLC are less studied. Therefore, the role of miR-497-5p in the pathogenesis of NSCLC was investigated. In the present study, the expression of miR-497-5p was significantly downregulated in NSCLC. Moreover, overexpression of miR-497-5p inhibited the proliferation and invasion of NSCLC cells by suppressing FGF2. In addition, FGF2 was a downstream target of miR-497-5p in NSCLC. FGF2 was upregulated in NSCLC promoting cell proliferation and invasion. Overexpression of FGF2 impaired the inhibitory effect of miR-497-5p in NSCLC. Taken together, these results demonstrate that miR-497-5p is a tumor suppressor miRNA and demonstrate its potential for future use in the treatment of human NSCLC.
Collapse
Affiliation(s)
- Xiaori Huang
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Lei Wang
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Wei Liu
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Fei Li
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| |
Collapse
|
35
|
Tretbar US, Friedrich M, Lazaridou MF, Seliger B. Identification of Immune Modulatory miRNAs by miRNA Enrichment via RNA Affinity Purification. Methods Mol Biol 2019; 1913:81-101. [PMID: 30666600 DOI: 10.1007/978-1-4939-8979-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Immune escape by cancer cells can be triggered by aberrant expression of immunological key players, which can be achieved by distinct molecular mechanisms including immune modulatory miRNAs. One suitable method to identify miRNAs that specifically target immune relevant molecules is the miRNA enrichment via RNA affinity purification method named miTRAP (miRNA trapping by RNA in vitro affinity purification). Here, we present a detailed protocol for construct preparation, RNA immobilization via MS2BP-MBP to beads, miRNA enrichment, and elution followed by analysis of the obtained miRNA candidates via qRT-PCR.
Collapse
Affiliation(s)
- Uta Sandy Tretbar
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Michael Friedrich
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
36
|
Niu Y, Su M, Wu Y, Fu L, Kang K, Li Q, Li L, Hui G, Li F, Gou D. Circulating Plasma miRNAs as Potential Biomarkers of Non-Small Cell Lung Cancer Obtained by High-Throughput Real-Time PCR Profiling. Cancer Epidemiol Biomarkers Prev 2018; 28:327-336. [PMID: 30377207 DOI: 10.1158/1055-9965.epi-18-0723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/20/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Because of limited stability and sensitivity, circulating miRNAs as noninvasive biomarkers have not so far been used for early diagnosis and prognosis of non-small cell lung cancer (NSCLC) in clinic. Therefore, it is imperative to find more reliable biomarker(s). METHODS We performed one of most sensitive qRT-PCR assays, S-Poly(T) Plus, to select differently expressed miRNAs from genome-wide miRNA profiling. miRNA candidates were validated through a three-phase selection and two validation processes with 437 NSCLC cases and 415 controls. RESULTS A unique set of 7 and 9 miRNAs differed significantly in adenocarcinoma (ADC) and squamous cell carcinoma (SCC) samples compared with those in controls, of which, there were 5 universal biomarkers for NSCLC (ADC or SCC). Ten of 11 miRNAs could discriminate early stage (stage I) of NSCLC from healthy individuals. Risk score was obtained from the validation set-1 and was tested using the ROC curves with a high area under ROC curve of 0.89 in ADC and 0.96 in SCC. Ultimately, potential biomarkers and the risk score were verified by the validation set-2 with a sensitivity of 94% and a specificity of 91.6% in ADC, and a sensitivity of 98.5% and a specificity of 51.5% in SCC, respectively. CONCLUSIONS Taken together, 7 miRNAs and 9 miRNAs may provide noninvasive biomarkers for diagnosis and prognosis in ADC and SCC, respectively. IMPACT On the basis of our sensitive and accurate method, we hope that these candidate miRNAs may have strong impact on the early lung cancer diagnosis.
Collapse
Affiliation(s)
- Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Mingyang Su
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering Shenzhen University, Shenzhen, Guangdong, China
| | - Yike Wu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Liwu Fu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Kang Kang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, Guangdong, China
| | - Qing Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Li Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Gang Hui
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Furong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong, China.
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
37
|
Ghazanchaei A, Mansoori B, Mohammadi A, Biglari A, Baradaran B. Restoration of miR-152 expression suppresses cell proliferation, survival, and migration through inhibition of AKT-ERK pathway in colorectal cancer. J Cell Physiol 2018; 234:769-776. [PMID: 30076720 DOI: 10.1002/jcp.26891] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/12/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND MiR-152 has been reported as a tumor suppressor microRNA that is downregulated in a number of cancers, including colorectal cancer (CRC). A recent study suggested that miR-152 could be one of the key regulators of CRC. The aim of this study is to investigate the role of miR-152 in CRC and its mechanisms. METHODS The pCMV-GPF-miR-152 vector was transfected into SW-480 and HCT-116 CRC cells via JetPEI transfection reagent. The stable miR-152-expressed cells were selected for the further experiment. To evaluate the effect of miR-152 on cell proliferation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed. Also, the effect of miR-152 on the survival of CRC cells was analyzed using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. The inhibitory effect of miR-152 on migration was assessed by wound healing scratch assay. Then, the proteins expression levels of protein kinase B (AKT), phosphorylated AKT (p-AKT), extracellular signal-regulated kinase (ERK), and phosphorylated ERK (p-ERK) were measured by the western blot analysis method. RESULTS The result of MTT assay represented miR-152 could inhibit cell proliferation. The TUNEL assay showed miR-152 could induce apoptosis in CRC cells. The wound healing scratch assay showed that miR-152 replacement repressed cell migration in CRC cell lines compared to control groups. The result of protein expression by western blot analysis demonstrated that miR-152 could reduce AKT-p-AKT, and ERK-p-ERK ratio compared to control cells. CONCLUSION Our results show that miR-152 has new anticancer and antimetastatic effect in CRC tissue. The current study showed that miR-152 could be a novel therapeutic small molecule to suppress CRC cell proliferation, survival, and migration by suppressing AKT-ERK signaling pathways.
Collapse
Affiliation(s)
- Ardavan Ghazanchaei
- Department of Molecular Medicine and Genetics, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Biglari
- Department of Molecular Medicine and Genetics, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Li L, Sun Y, Feng M, Wang L, Liu J. Clinical significance of blood-based miRNAs as biomarkers of non-small cell lung cancer. Oncol Lett 2018; 15:8915-8925. [PMID: 29805626 DOI: 10.3892/ol.2018.8469] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/05/2018] [Indexed: 12/18/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) accounts for 85% of all cases of lung cancer. However, the predicted 5-year survival rate of patients with NSCLC is only 15.9%. microRNAs (miRNAs) are single-stranded, noncoding RNA molecules that are easily detectable in blood in a non-invasive manner, with features of stability, reproducibility and consistency in blood. Therefore, miRNAs derived from blood are able to have a significant impact on NSCLC diagnosis, metastasis and targeted therapies. Compared with the clinical protein markers carcinoembryonic antigen, cytokeratin fragment 21-1 and cancer antigen-125, blood-based miRNAs also display a higher diagnostic efficacy in NSCLC. Exosomal miRNAs are identified to be easily measured and have the potential to be used as diagnostic biomarkers in NSCLC, therefore providing an alternative method of biopsy profiling. The miRNA profile in exosomes is similar to the profile in primary tumor, meaning that this feature may be a powerful tool for NSCLC clinical diagnosis and targeted therapies. The focus of the present review was the clinical significance of blood-based exosomal miRNAs in diagnosis, prognosis, metastasis and targeted therapies of NSCLC.
Collapse
Affiliation(s)
- Lin Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yu Sun
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Min Feng
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
39
|
Ménard C, Rezende FA, Miloudi K, Wilson A, Tétreault N, Hardy P, SanGiovanni JP, De Guire V, Sapieha P. MicroRNA signatures in vitreous humour and plasma of patients with exudative AMD. Oncotarget 2017; 7:19171-84. [PMID: 27015561 PMCID: PMC4991373 DOI: 10.18632/oncotarget.8280] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/10/2016] [Indexed: 01/24/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide affecting individuals over the age of 50. The neovascular form (NV AMD) is characterized by choroidal neovascularization (CNV) and responsible for the majority of central vision impairment. Using non-biased microRNA arrays and individual TaqMan qPCRs, we profiled miRNAs in the vitreous humour and plasma of patients with NV AMD. We identified a disease-associated increase in miR-146a and a decrease in miR-106b and miR-152 in the vitreous humour which was reproducible in plasma. Moreover, miR-146a/miR-106b ratios discriminated patients with NV AMD with an area under the Receiver Operating Characteristic curve (ROC AUC) of 0,977 in vitreous humour and 0,915 in plasma suggesting potential for a blood-based diagnostic. Furthermore, using the AMD Gene Consortium (AGC) we mapped a NV AMD-associated SNP (rs1063320) in a binding site for miR-152-3p in the HLA-G gene. The relationship between our detected miRNAs and NV AMD related genes was also investigated using gene sets derived from the Ingenuity Pathway Analysis (IPA). To our knowledge, our study is the first to correlate vitreal and plasma miRNA signatures with NV AMD, highlighting potential future worth as biomarkers and providing insight on NV AMD pathogenesis.
Collapse
Affiliation(s)
- Catherine Ménard
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Flavio A Rezende
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Khalil Miloudi
- Departement of Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Ariel Wilson
- Department of Engineering Physics, École Polytechnique de Montréal, Laser Processing and Plasmonics Laboratory, Montreal, Quebec, Canada
| | - Nicolas Tétreault
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Pierre Hardy
- Departments of Pediatrics and Pharmacology, University of Montreal, Montreal, Quebec, Canada
| | - John Paul SanGiovanni
- Laboratory of Membrane Biochemistry and Biophysics, Nutritional Neuroscience Section, NIAAA, NIH, Bethesda, MD, United States of America
| | - Vincent De Guire
- Department of Clinical Biochemistry, Maisonneuve-Rosemont Hospital, Quebec, Canada
| | - Przemyslaw Sapieha
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.,Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.,Departement of Neuroscience, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Long Noncoding RNA PVT1 Acts as a "Sponge" to Inhibit microRNA-152 in Gastric Cancer Cells. Dig Dis Sci 2017; 62:3021-3028. [PMID: 28258379 DOI: 10.1007/s10620-017-4508-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/10/2017] [Indexed: 01/26/2023]
Abstract
BACKGROUND PVT1 was up-regulated in patients with gastric cancer (GC) and might be as a novel biomarker for predicting GC. However, the exact mechanism of PVT1 exerting functions in GC was still poorly understood. Emerging evidence suggests that long noncoding RNAs may act as endogenous microRNA (miRNA) sponges to bind to miRNAs and regulate their function. AIM This study aimed to determine the function of PVT1 on miR-152 expression in GC cells. METHODS The levels of PVT1 and miR-152 were determined in GC tissues by quantitative real-time PCR. The expression of miR-152 was detected in GC cells transfected with PVT1 plasmid or siPVT1. Luciferase assay was performed to verify the regulation of miR-152 to CD151 or FGF2 expression and PVT1 to miR-152 expression. The effects of PVT1 on the expression of CD151 and FGF2 were evaluated by Western blot. RESULTS PVT1 was up-regulated in GC tissues than that in the matched normal tissues, and mRNA level of miR-152 was decreased. MiR-152 was negatively associated with PVT1 expression in GC tissues. Based on the in silico analysis, we found that PVT1 have three binding sequences for miR-152. Moreover, PVT1 might inhibit the expression of miR-152 and increased the expression of CD151 and FGF2 through regulating miR-152. PVT1 was positively associated with CD151 and FGF2 expression in GC tissues. CONCLUSIONS PVT1 might act as a "sponge" to inhibit miR-152 in gastric cancer cells. PVT1 is a promising molecular target to improve the diagnosis and therapy of GC.
Collapse
|
41
|
Friedrich M, Pracht K, Mashreghi MF, Jäck HM, Radbruch A, Seliger B. The role of the miR-148/-152 family in physiology and disease. Eur J Immunol 2017; 47:2026-2038. [DOI: 10.1002/eji.201747132] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/30/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Friedrich
- Institute of Medical Immunology; Martin-Luther-University Halle-Wittenberg; Halle/Saale Germany
| | - Katharina Pracht
- Division of Molecular Immunology; Nikolaus-Fiebiger Center; Department of Internal Medicine III; University of Erlangen-Nürnberg; Erlangen Germany
| | | | - Hans-Martin Jäck
- Division of Molecular Immunology; Nikolaus-Fiebiger Center; Department of Internal Medicine III; University of Erlangen-Nürnberg; Erlangen Germany
| | | | - Barbara Seliger
- Institute of Medical Immunology; Martin-Luther-University Halle-Wittenberg; Halle/Saale Germany
| |
Collapse
|
42
|
Eichmüller SB, Osen W, Mandelboim O, Seliger B. Immune Modulatory microRNAs Involved in Tumor Attack and Tumor Immune Escape. J Natl Cancer Inst 2017; 109:3105955. [PMID: 28383653 DOI: 10.1093/jnci/djx034] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
Current therapies against cancer utilize the patient's immune system for tumor eradication. However, tumor cells can evade immune surveillance of CD8+ T and/or natural killer (NK) cells by various strategies. These include the aberrant expression of human leukocyte antigen (HLA) class I antigens, co-inhibitory or costimulatory molecules, and components of the interferon (IFN) signal transduction pathway. In addition, alterations of the tumor microenvironment could interfere with efficient antitumor immune responses by downregulating or inhibiting the frequency and/or functional activity of immune effector cells and professional antigen-presenting cells. Recently, microRNAs (miRNAs) have been identified as major players in the post-transcriptional regulation of gene expression, thereby controlling many physiological and also pathophysiological processes including neoplastic transformation. Indeed, the cellular miRNA expression pattern is frequently altered in many tumors of distinct origin, demonstrating the tumor suppressive or oncogenic potential of miRNAs. Furthermore, there is increasing evidence that miRNAs could also influence antitumor immune responses by affecting the expression of immune modulatory molecules in tumor and immune cells. Apart from their important role in tumor immune escape and altered tumor-host interaction, immune modulatory miRNAs often exert neoplastic properties, thus representing promising targets for future combined immunotherapy approaches. This review focuses on the characterization of miRNAs involved in the regulation of immune surveillance or immune escape of tumors and their potential use as diagnostic and prognostic biomarkers or as therapeutic targets.
Collapse
Affiliation(s)
- Stefan B Eichmüller
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel; Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Wolfram Osen
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel; Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Ofer Mandelboim
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel; Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Barbara Seliger
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel; Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
43
|
Cao Y, Shi H, Ren F, Jia Y, Zhang R. Long non-coding RNA CCAT1 promotes metastasis and poor prognosis in epithelial ovarian cancer. Exp Cell Res 2017; 359:185-194. [PMID: 28754469 DOI: 10.1016/j.yexcr.2017.07.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 01/17/2023]
Abstract
In this study, we reported that long non-coding RNA (lncRNA) CCAT1 was upregulated in epithelial ovarian cancer (EOC) tissues, and was associated with FIGO stage, histological grade, lymph node metastasis and poor survival of EOC patients. Multivariate Cox regression analysis showed that CCAT1 was an independent prognostic indicator. While CCAT1 downregulation inhibited EOC cell epithelial-mesenchymal transition (EMT), migration and invasion, CCAT1 upregulation promoted EOC cell EMT, migration and invasion. We further identified and confirmed that miR-152 and miR-130b were the targets of CCAT1, and CCAT1 functioned by targeting miR-152 and miR-130b. Subsequently, ADAM17 and WNT1, and STAT3 and ZEB1 were confirmed to be the targets of miR-152 and miR-130b, respectively, and could be regulated by CCAT1 in EOC cells. Knockdown of anyone of these four proteins inhibited EOC cell EMT, migration and invasion. Taken together, our study first revealed a critical role of CCAT1-miR-152/miR-130b-ADAM17/WNT1/STAT3/ZEB1 regulatory network in EOC cell metastasis. These findings provide great insights into EOC initiation and progression, and novel potential therapeutic targets and biomarkers for diagnosis and prognosis for EOC.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Gynaecology, the First Affiliated Hospital of Zhengzhou University, China
| | - Huirong Shi
- Department of Gynaecology, the First Affiliated Hospital of Zhengzhou University, China.
| | - Fang Ren
- Department of Gynaecology, the First Affiliated Hospital of Zhengzhou University, China
| | - Yanyan Jia
- Department of Gynaecology, the First Affiliated Hospital of Zhengzhou University, China
| | - Ruitao Zhang
- Department of Gynaecology, the First Affiliated Hospital of Zhengzhou University, China
| |
Collapse
|
44
|
Ronca R, Benkheil M, Mitola S, Struyf S, Liekens S. Tumor angiogenesis revisited: Regulators and clinical implications. Med Res Rev 2017. [PMID: 28643862 DOI: 10.1002/med.21452] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since Judah Folkman hypothesized in 1971 that angiogenesis is required for solid tumor growth, numerous studies have been conducted to unravel the angiogenesis process, analyze its role in primary tumor growth, metastasis and angiogenic diseases, and to develop inhibitors of proangiogenic factors. These studies have led in 2004 to the approval of the first antiangiogenic agent (bevacizumab, a humanized antibody targeting vascular endothelial growth factor) for the treatment of patients with metastatic colorectal cancer. This approval launched great expectations for the use of antiangiogenic therapy for malignant diseases. However, these expectations have not been met and, as knowledge of blood vessel formation accumulates, many of the original paradigms no longer hold. Therefore, the regulators and clinical implications of angiogenesis need to be revisited. In this review, we discuss recently identified angiogenesis mediators and pathways, new concepts that have emerged over the past 10 years, tumor resistance and toxicity associated with the use of currently available antiangiogenic treatment and potentially new targets and/or approaches for malignant and nonmalignant neovascular diseases.
Collapse
Affiliation(s)
- Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mohammed Benkheil
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Stefania Mitola
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
45
|
Chen Y, Xu J, Yang C, Zhang H, Wu F, Chen J, Li K, Wang H, Li Y, Li Y, Dai Z. Upregulation of miR-223 in the rat liver inhibits proliferation of hepatocytes under simulated microgravity. Exp Mol Med 2017. [PMID: 28642576 PMCID: PMC5519018 DOI: 10.1038/emm.2017.80] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long-term spaceflight affects numerous organ systems in the body, including metabolic dysfunction. Recently, ample evidence has demonstrated that the liver is a vulnerable organ during spaceflight. However, the changes in hepatocyte proliferation and cell cycle control under microgravity remain largely unexplored. In the present study, we first confirmed that the serum levels of aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase, biochemical markers of liver function, were altered in rats under tail suspension (TS) conditions to simulate microgravity, as shown in previous reports. Next, we demonstrated that the cell proliferation activity, determined by Ki67, PCNA and PH3, was significantly decreased at the different TS time points (TS for 14, 28 and 42 days) compared with that in the control group. Consistently, the positive cell cycle regulators Ccna2, Ccnd1, Cdk1, Cdk2 and cyclin D3 were also significantly decreased in the TS groups as shown by quantitative real-time PCR and western blotting analysis. Subsequent analysis revealed that the aberrant hepatocyte proliferation inhibition under simulated microgravity was associated with the upregulation of miR-223 in the liver. We further found that miR-223 inhibited the proliferation of Hepa1-6 cells and identified CDK2 and CUL1 as its direct targets. In addition, the decreased expression of CDK2 and CUL1 was negatively correlated with the level of p27 in vitro and in vivo, which may have been responsible for retarding hepatocyte proliferation. Collectively, these data indicate that upregulation of miR-223 was associated with the inhibition of liver cell growth and reveal the role of miR-223 in rat hepatocyte proliferation disorders and the pathophysiological process under simulated microgravity.
Collapse
Affiliation(s)
- Yongjie Chen
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ji Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chao Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jian Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Kai Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yu Li
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
46
|
Li Y, Min D, Wang K, Yin S, Zheng H, Liu L. MicroRNA‑152 inhibits cell proliferation, migration and invasion by directly targeting MAFB in nasopharyngeal carcinoma. Mol Med Rep 2017; 15:948-956. [PMID: 28000885 DOI: 10.3892/mmr.2016.6059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/20/2016] [Indexed: 11/06/2022] Open
Abstract
Aberrant expression of microRNAs (miRs) has been reported to be involved in nasopharyngeal carcinoma (NPC) carcinogenesis and development. The expression and functions of miR‑152 have previously been studied in several types of cancer. However, to the best of our knowledge, no previous studies have investigated the effects of miR‑152 on NPC. The present study aimed to explore the expression, functions and molecular mechanisms of miR‑152 in NPC. The expression levels of miR‑152 were detected in NPC tissues and cell lines using quantitative polymerase chain reaction (qPCR). Cell proliferation, migration and invasion were measured by MTT, cell migration and invasion assays, respectively. Dual‑luciferase reporter assay was used to determine whether V‑maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) was a direct target gene of miR‑152. qPCR and western blotting were used to detect the mRNA and protein expression levels of MAFB. In addition, functional assays were performed to explore the effects of endogenous MAFB on NPC. The results of the present study demonstrated that miR‑152 was significantly downregulated in NPC tissues and cell lines. Furthermore, ectopic expression of miR‑152 suppressed cell proliferation, migration and invasion of NPC cells. Dual‑luciferase reporter assay demonstrated that MAFB was a direct target gene of miR‑152, and qPCR and western blotting indicated that miR‑152 negatively regulated MAFB expression at the mRNA and protein level. Knockdown of MAFB expression markedly suppressed NPC cell proliferation, migration and invasion. These findings suggested that miR‑152 may target MAFB to regulate NPC initiation and progression; therefore, it may be investigated as a target for the treatment of NPC.
Collapse
Affiliation(s)
- Yan Li
- Department of Otolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Daliu Min
- Department of Otolaryngology Head Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Kai Wang
- Department of Otolaryngology, Zhabei Central Hospital, Shanghai 200070, P.R. China
| | - Shankai Yin
- Department of Otolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Hongliang Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Beijing 200433, P.R. China
| | - Liangfa Liu
- Department of Otolaryngology Head Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
47
|
Ortiz-Quintero B. Cell-free microRNAs in blood and other body fluids, as cancer biomarkers. Cell Prolif 2017; 49:281-303. [PMID: 27218664 DOI: 10.1111/cpr.12262] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 04/07/2016] [Indexed: 12/17/2022] Open
Abstract
The discovery of cell-free microRNAs (miRNAs) in serum, plasma and other body fluids has yielded an invaluable potential source of non-invasive biomarkers for cancer and other non-malignant diseases. miRNAs in the blood and other body fluids are highly stable in biological samples and are resistant to environmental conditions, such as freezing, thawing or enzymatic degradation, which makes them convenient as potential biomarkers. In addition, they are more easily sampled than tissue miRNAs. Altered levels of cell-free miRNAs have been found in every type of cancer analysed, and increasing evidence indicates that they may participate in carcinogenesis by acting as cell-to-cell signalling molecules. This review summarizes the biological characteristics and mechanisms of release of cell-free miRNAs that make them promising candidates as non-invasive biomarkers of cancer.
Collapse
Affiliation(s)
- Blanca Ortiz-Quintero
- Research Unit, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosio Villegas, 14080, Mexico City, Mexico
| |
Collapse
|
48
|
He Q, Ren X, Chen J, Li Y, Tang X, Wen X, Yang X, Zhang J, Wang Y, Ma J, Liu N. miR-16 targets fibroblast growth factor 2 to inhibit NPC cell proliferation and invasion via PI3K/AKT and MAPK signaling pathways. Oncotarget 2016; 7:3047-58. [PMID: 26655091 PMCID: PMC4823089 DOI: 10.18632/oncotarget.6504] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/21/2015] [Indexed: 12/14/2022] Open
Abstract
Dysregulation of miRNAs has been shown to contribute to the carcinogenesis and progression of nasopharyngeal carcinoma (NPC). Our previous microarray data showed that miR-16 expression is significantly decreased in archived NPC tissues. Here, we confirmed that miR-16 was reduced in NPC cell lines and freshly-frozen samples. Ectopic expression of miR-16 suppressed NPC cell proliferation, migration, and invasion in vitro and inhibited tumor growth and metastatic colonization in the lung in vivo. Furthermore, fibroblast growth factor 2 (FGF2) was identified as a direct target of miR-16, and both phosphoinositide-3- kinase/AKT (PI3K/AKT) and mitogen-activated protein kinase (MAPK) signaling pathways were repressed after miR-16 overexpression. In addition, the restoration of FGF2 reversed the suppressive effects of miR-16. Together, these results indicated that miR-16 suppresses NPC carcinogenesis and progression by targeting FGF2, thereby representing a potential target for miRNA-based therapy for NPC in the future.
Collapse
Affiliation(s)
- Qingmei He
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Xianyue Ren
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Jiewei Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Yingqin Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Xinran Tang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Xin Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Xiaojing Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Jian Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Yaqin Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Jun Ma
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Na Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
49
|
Liu X, Li J, Qin F, Dai S. miR-152 as a tumor suppressor microRNA: Target recognition and regulation in cancer. Oncol Lett 2016; 11:3911-3916. [PMID: 27313716 DOI: 10.3892/ol.2016.4509] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/01/2016] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are endogenous translation repressors of protein-coding genes that act by binding to the 3'-untranslated region of their target genes, and may contribute to tumorigenesis by functioning as oncogenes or tumor suppressor genes. miR-152, a member of the miR-148/152 family, is aberrantly expressed in various diseases, including various types of cancer. A growing body of evidence has demonstrated that miR-152 may act as a tumor suppressor gene by regulating its target genes, which are associated with cell proliferation, migration and invasion in human cancer. In the present review, the gene structure and functions of miR-152 are discussed, and in particular, its regulatory mechanism, experimentally validated targets and tumor suppressor role in cancer, are highlighted.
Collapse
Affiliation(s)
- Xuexiang Liu
- Department of Laboratory Science, The Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Jinwan Li
- Department of Laboratory Science, The Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Fengxian Qin
- Department of Laboratory Science, The Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Shengming Dai
- Department of Laboratory Science, The Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| |
Collapse
|
50
|
Singh DK, Bose S, Kumar S. Regulation of expression of microRNAs by DNA methylation in lung cancer. Biomarkers 2016; 21:589-99. [PMID: 27122255 DOI: 10.3109/1354750x.2016.1171906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Differential expression of miRNAs has been linked with lung carcinogenesis. Recent studies have indicated that DNA hypermethylation can lead to silencing of tumor suppressor miRNA-encoding genes. Restoration of tumor suppressor miRNAs using inhibitors of DNA methyltransferases has been shown to suppress cell proliferation, angiogenesis, invasion and metastasis implying that modulation of methylation of specific miRNAs can be used as novel therapeutic targets in lung cancer. In this review, we highlight tremendous progress which has been made in the identification of methylation-mediated silencing of miRNAs and their contribution in lung carcinogenesis along with the clinical utility of methylated miRNAs.
Collapse
Affiliation(s)
- Dhirendra Kumar Singh
- a Amity Institute of Biotechnology , Amity University , Noida , Uttar Pradesh , India
| | - Sudeep Bose
- a Amity Institute of Biotechnology , Amity University , Noida , Uttar Pradesh , India
| | - Sachin Kumar
- b Amity Institute of Molecular Medicine and Stem Cell Research , Amity University , Noida , Uttar Pradesh , India
| |
Collapse
|