1
|
Popova AK, Vashukova ES, Illarionov RA, Maltseva AR, Pachuliia OV, Postnikova TB, Glotov AS. Extracellular Vesicles as Biomarkers of Pregnancy Complications. Int J Mol Sci 2024; 25:11944. [PMID: 39596014 PMCID: PMC11594130 DOI: 10.3390/ijms252211944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Extracellular vesicles (EVs) are double-membrane vesicles that facilitate intercellular communication and play a pivotal role in both physiological and pathological processes. A substantial body of evidence suggests that EVs play a role in the pathogenesis of various pregnancy complications. Because EVs can be detected in the peripheral blood, they are potential biomarkers for the early diagnosis of pregnancy complications and foetal developmental disorders. The majority of studies have demonstrated a correlation between alterations in the concentration of EVs and changes in their contents and the occurrence of pregnancy complications. Despite the current limitations in establishing a clear link between these findings and the pathogenesis of the disease, as well as the lack of sufficient evidence to support their use in clinical practice, it is noteworthy to highlight the potential role of specific miRNAs carried by EVs in the development of pregnancy complications. These include miR-210 and miR-136-5p for pre-eclampsia and gestational diabetes mellitus, miR-155, miR-26b-5p, miR-181a-5p, miR-495 and miR-374c for pre-eclampsia and preterm birth. The following miRNAs have been identified as potential biomarkers for preterm birth and gestational diabetes mellitus: miR-197-3p and miR-520h, miR-1323, miR-342-3p, miR-132-3p, miR-182-3p, miR-517-3p, miR-222-3p, miR-16-5p and miR-126-3p. Additionally, miR-127-3p has been linked to foetal growth restriction and preterm birth. Nevertheless, it would be premature to propose that EVs can be employed as biomarkers for pregnancy complications. Further research and the accumulation of results obtained using the methods proposed in the MISEV2023 guidelines will enable a definitive conclusion to be reached.
Collapse
Affiliation(s)
- Anastasiia K. Popova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Elena S. Vashukova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Roman A. Illarionov
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Anastasia R. Maltseva
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Olga V. Pachuliia
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Tatiana B. Postnikova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
2
|
Wells C, Robertson T, Sheth P, Abraham S. How aging influences the gut-bone marrow axis and alters hematopoietic stem cell regulation. Heliyon 2024; 10:e32831. [PMID: 38984298 PMCID: PMC11231543 DOI: 10.1016/j.heliyon.2024.e32831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
The gut microbiome has come to prominence across research disciplines, due to its influence on major biological systems within humans. Recently, a relationship between the gut microbiome and hematopoietic system has been identified and coined the gut-bone marrow axis. It is well established that the hematopoietic system and gut microbiome separately alter with age; however, the relationship between these changes and how these systems influence each other demands investigation. Since the hematopoietic system produces immune cells that help govern commensal bacteria, it is important to identify how the microbiome interacts with hematopoietic stem cells (HSCs). The gut microbiota has been shown to influence the development and outcomes of hematologic disorders, suggesting dysbiosis may influence the maintenance of HSCs with age. Short chain fatty acids (SCFAs), lactate, iron availability, tryptophan metabolites, bacterial extracellular vesicles, microbe associated molecular patterns (MAMPs), and toll-like receptor (TLR) signalling have been proposed as key mediators of communication across the gut-bone marrow axis and will be reviewed in this article within the context of aging.
Collapse
Affiliation(s)
- Christopher Wells
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tristan Robertson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Prameet Sheth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Division of Microbiology, Queen's University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Sheela Abraham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Liu C, Yazdani N, Moran CS, Salomon C, Seneviratne CJ, Ivanovski S, Han P. Unveiling clinical applications of bacterial extracellular vesicles as natural nanomaterials in disease diagnosis and therapeutics. Acta Biomater 2024; 180:18-45. [PMID: 38641182 DOI: 10.1016/j.actbio.2024.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/03/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are naturally occurring bioactive membrane-bound nanoparticles released by both gram-negative and gram-positive bacterial species, exhibiting a multifaceted role in mediating host-microbe interactions across various physiological conditions. Increasing evidence supports BEVs as essential mediators of cell-to-cell communicaiton, influencing bacterial pathogenicity, disease mechanisms, and modulating the host immune response. However, the extent to which these BEV-mediated actions can be leveraged to predict disease onset, guide treatment strategies, and determine clinical outcomes remains uncertain, particularly in terms of their clinical translation potentials. This review briefly describes BEV biogenesis and their internalisation by recipient cells and summarises methods for isolation and characterization, essential for understanding their composition and cargo. Further, it discusses the potential of biofluid-associated BEVs as biomarkers for various diseases, spanning both cancer and non-cancerous conditions. Following this, we outline the ongoing human clinical trials of using BEVs for vaccine development. In addition to disease diagnostics, this review explores the emerging research of using natural or engineered BEVs as smart nanomaterials for applications in anti-cancer therapy and bone regeneration. This discussion extends to key factors for unlocking the clinical potential of BEVs, such as standardization of BEV isolation and characterisation, as well as other hurdles in translating these findings to the clinical setting. We propose that addressing these hurdles through collaborative research efforts and well-designed clinical trials holds the key to fully harnessing the clinical potential of BEVs. As this field advances, this review suggests that BEV-based nanomedicine has the potential to revolutionize disease management, paving the way for innovative diagnosis, therapeutics, and personalized medicine approaches. STATEMENT OF SIGNIFICANCE: Extracellular vesicles (EVs) from both host cells and bacteria serve as multifunctional biomaterials and are emerging in the fields of biomedicine, bioengineering, and biomaterials. However, the majority of current studies focus on host-derived EVs, leaving a gap in comprehensive research on bacteria-derived EVs (BEVs). Although BEVs offer an attractive option as nanomaterials for drug delivery systems, their unique nanostructure and easy-to-modify functions make them a potential method for disease diagnosis and treatment as well as vaccine development. Our work among the pioneering studies investigating the potential of BEVs as natural nanobiomaterials plays a crucial role in both understanding the development of diseases and therapeutic interventions.
Collapse
Affiliation(s)
- Chun Liu
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Negar Yazdani
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Corey S Moran
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029 Australia
| | - Chaminda Jayampath Seneviratne
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia.
| | - Pingping Han
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia.
| |
Collapse
|
4
|
Shah NM, Charani E, Ming D, Cheah FC, Johnson MR. Antimicrobial stewardship and targeted therapies in the changing landscape of maternal sepsis. JOURNAL OF INTENSIVE MEDICINE 2024; 4:46-61. [PMID: 38263965 PMCID: PMC10800776 DOI: 10.1016/j.jointm.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 01/25/2024]
Abstract
Pregnant and postnatal women are a high-risk population particularly prone to rapid progression to sepsis with significant morbidity and mortality worldwide. Moreover, severe maternal infections can have a serious detrimental impact on neonates with almost 1 million neonatal deaths annually attributed to maternal infection or sepsis. In this review we discuss the susceptibility of pregnant women and their specific physiological and immunological adaptations that contribute to their vulnerability to sepsis, the implications for the neonate, as well as the issues with antimicrobial stewardship and the challenges this poses when attempting to reach a balance between clinical care and urgent treatment. Finally, we review advancements in the development of pregnancy-specific diagnostic and therapeutic approaches and how these can be used to optimize the care of pregnant women and neonates.
Collapse
Affiliation(s)
- Nishel M Shah
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Esmita Charani
- Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Damien Ming
- Department of Infectious Diseases, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Fook-Choe Cheah
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mark R Johnson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
5
|
Schemiko Almeida K, Rossi SA, Alves LR. RNA-containing extracellular vesicles in infection. RNA Biol 2024; 21:37-51. [PMID: 39589334 PMCID: PMC11601058 DOI: 10.1080/15476286.2024.2431781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by cells that play vital roles in intercellular communication by transporting diverse biologically active molecules, including RNA molecules, including mRNA, miRNA, lncRNA, and other regulatory RNAs. These RNA types are protected within the lipid bilayer of EVs, ensuring their stability and enabling long-distance cellular interactions. Notably, EVs play roles in infection, where pathogens and host cells use EV-mediated RNA transfer to influence immune responses and disease outcomes. For example, bacterial EVs play a crucial role in infection by modulating host immune responses and facilitating pathogen invasion. This review explores the complex interactions between EV-associated RNA and host-pathogen dynamics in bacteria, parasites, and fungi, aiming to uncover molecular mechanisms in infectious diseases and potential therapeutic targets.
Collapse
Affiliation(s)
- Kayo Schemiko Almeida
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Suélen Andreia Rossi
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
6
|
Koukoulis TF, Beauchamp LC, Kaparakis-Liaskos M, McQuade RM, Purnianto A, Finkelstein DI, Barnham KJ, Vella LJ. Do Bacterial Outer Membrane Vesicles Contribute to Chronic Inflammation in Parkinson's Disease? JOURNAL OF PARKINSON'S DISEASE 2024; 14:227-244. [PMID: 38427502 PMCID: PMC10977405 DOI: 10.3233/jpd-230315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Parkinson's disease (PD) is an increasingly common neurodegenerative disease. It has been suggested that the etiology of idiopathic PD is complex and multifactorial involving environmental contributions, such as viral or bacterial infections and microbial dysbiosis, in genetically predisposed individuals. With advances in our understanding of the gut-brain axis, there is increasing evidence that the intestinal microbiota and the mammalian immune system functionally interact. Recent findings suggest that a shift in the gut microbiome to a pro-inflammatory phenotype may play a role in PD onset and progression. While there are links between gut bacteria, inflammation, and PD, the bacterial products involved and how they traverse the gut lumen and distribute systemically to trigger inflammation are ill-defined. Mechanisms emerging in other research fields point to a role for small, inherently stable vesicles released by Gram-negative bacteria, called outer membrane vesicles in disease pathogenesis. These vesicles facilitate communication between bacteria and the host and can shuttle bacterial toxins and virulence factors around the body to elicit an immune response in local and distant organs. In this perspective article, we hypothesize a role for bacterial outer membrane vesicles in PD pathogenesis. We present evidence suggesting that these outer membrane vesicles specifically from Gram-negative bacteria could potentially contribute to PD by traversing the gut lumen to trigger local, systemic, and neuroinflammation. This perspective aims to facilitate a discussion on outer membrane vesicles in PD and encourage research in the area, with the goal of developing strategies for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Tiana F. Koukoulis
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Leah C. Beauchamp
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Ann Romney Center for Neurologic Diseases, Brighamand Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
| | - Rachel M. McQuade
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Medicine, Gut-Axis Injury and Repair Laboratory, Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE), Sunshine Hospital, St Albans, VIC, Australia
| | - Adityas Purnianto
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kevin J. Barnham
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Laura J. Vella
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
7
|
Grange C, Dalmasso A, Cortez JJ, Spokeviciute B, Bussolati B. Exploring the role of urinary extracellular vesicles in kidney physiology, aging, and disease progression. Am J Physiol Cell Physiol 2023; 325:C1439-C1450. [PMID: 37842748 PMCID: PMC10861146 DOI: 10.1152/ajpcell.00349.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Extracellular vesicles (EVs), membranous vesicles present in all body fluids, are considered important messengers, carrying their information over long distance and modulating the gene expression profile of recipient cells. EVs collected in urine (uEVs) are mainly originated from the apical part of urogenital tract, following the urine flow. Moreover, bacterial-derived EVs are present within urine and may reflect the composition of microbiota. Consolidated evidence has established the involvement of uEVs in renal physiology, being responsible for glomerular and tubular cross talk and among different tubular segments. uEVs may also be involved in other physiological functions such as modulation of innate immunity, coagulation, or metabolic activities. Furthermore, it has been recently remonstrated that age, sex, endurance excise, and lifestyle may influence uEV composition and release, modifying their cargo. On the other hand, uEVs appear modulators of different urogenital pathological conditions, triggering disease progression. uEVs sustain fibrosis and inflammation processes, both involved in acute and chronic kidney diseases, aging, and stone formation. The molecular signature of uEVs collected from diseased patients can be of interest for understanding kidney physiopathology and for identifying diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Cristina Grange
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessia Dalmasso
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Judiel John Cortez
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Beatrice Spokeviciute
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Kaisanlahti A, Turunen J, Byts N, Samoylenko A, Bart G, Virtanen N, Tejesvi MV, Zhyvolozhnyi A, Sarfraz S, Kumpula S, Hekkala J, Salmi S, Will O, Korvala J, Paalanne N, Erawijantari PP, Suokas M, Medina TP, Vainio S, Medina OP, Lahti L, Tapiainen T, Reunanen J. Maternal microbiota communicates with the fetus through microbiota-derived extracellular vesicles. MICROBIOME 2023; 11:249. [PMID: 37953319 PMCID: PMC10642029 DOI: 10.1186/s40168-023-01694-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Reports regarding the presence of bacteria in the fetal environment remain limited and controversial. Recently, extracellular vesicles secreted by the human gut microbiota have emerged as a novel mechanism for host-microbiota interaction. We aimed to investigate the presence of bacterial extracellular vesicles in the fetal environment during healthy pregnancies and determine whether extracellular vesicles derived from the gut microbiota can cross biological barriers to reach the fetus. RESULTS Bacterial extracellular vesicles were detectable in the amniotic fluid of healthy pregnant women, exhibiting similarities to extracellular vesicles found in the maternal gut microbiota. In pregnant mice, extracellular vesicles derived from human maternal gut microbiota were found to reach the intra-amniotic space. CONCLUSIONS Our findings reveal maternal microbiota-derived extracellular vesicles as an interaction mechanism between the maternal microbiota and fetus, potentially playing a pivotal role in priming the prenatal immune system for gut colonization after birth. Video Abstract.
Collapse
Affiliation(s)
- Anna Kaisanlahti
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland.
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland.
| | - Jenni Turunen
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, 90220, Oulu, Finland
| | - Nadiya Byts
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland
| | - Anatoliy Samoylenko
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Genevieve Bart
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Nikke Virtanen
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland
| | - Mysore V Tejesvi
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Ecology and Genetics, Faculty of Science, University of Oulu, 90570, Oulu, Finland
| | - Artem Zhyvolozhnyi
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Sonia Sarfraz
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland
| | - Sohvi Kumpula
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland
| | - Jenni Hekkala
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland
| | - Sonja Salmi
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland
| | - Olga Will
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, 24105, Kiel, Germany
| | - Johanna Korvala
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland
| | - Niko Paalanne
- Research Unit of Clinical Medicine, University of Oulu, 90220, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, 90220, Oulu, Finland
| | | | - Marko Suokas
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
| | - Tuula Peñate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, 24105, Kiel, Germany
- Institute for Experimental Cancer Research, Kiel University, 24105, Kiel, Germany
| | - Seppo Vainio
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
- Kvantum Institute, University of Oulu, 90570, Oulu, Finland
| | - Oula Peñate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, 24105, Kiel, Germany
- Institute for Experimental Cancer Research, Kiel University, 24105, Kiel, Germany
- Lonza Netherlands B.V., 6167 RB, Geleen, Netherlands
| | - Leo Lahti
- Department of Computing, University of Turku, 20014, Turku, Finland
| | - Terhi Tapiainen
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, 90220, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, 90220, Oulu, Finland
| | - Justus Reunanen
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland
| |
Collapse
|
9
|
Pouresmaeili F, Alidoost S, Azimirad M, Azizmohammad Looha M, Emami Meibodi A, Abedin-Do A, Shamshiri H, Mohammadi M, Azari I, Fazeli Z, Yadegar A, Hosseinpour TS. Characterization of vaginal Lactobacillus species as a predictor of fertility among Iranian women with unexplained recurrent miscarriage and fertile women without miscarriage history using machine learning modeling. Mol Biol Rep 2023; 50:8785-8797. [PMID: 37644372 DOI: 10.1007/s11033-023-08745-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Lactobacillus spp. are the predominant bacteria of the vaginal tract, the alteration of which has been previously linked to miscarriage. Here, we investigated differences between selected vaginal Lactobacillus species of women with a history of recurrent miscarriages and fertile women without a history of miscarriage in Iran. METHODS AND RESULTS Vaginal swabs were taken from 29 fertile and 24 infertile women and quantitative real-time PCR (qPCR) assay was used to determine a selection of vaginal Lactobacillus species in both groups. The logistic regression (LR) model, Naive Bayes (NB) model, support vector machine model (SVM), and neural network model (NN) were developed to predict disease outcome by selected variables. LR analysis was used to construct a nomogram indicating predictions of the risk of miscarriage. The most abundant species among the patients were L. rhamnosus, L. ruminis, and L. acidophilus, while L. gasseri, L. vaginalis, L. fermentum, and L. iners were more abundant in healthy subjects. The distribution of L. ruminis, L. iners, and L. rhamnosus was higher in patients, while L. acidophilus, L. gasseri, and L. fermentum were highly distributed among healthy subjects. Higher AUC in predicting the disease outcome was observed for L. gasseri, L. rhamnosus, L. fermentum, and L. plantarum. CONCLUSION Our findings provide experimental evidence of vaginal Lactobacillus imbalance in infertile women and a suitable predictor for miscarriage based on the AUC algorithms. Further studies with larger sample size and using high-throughput technologies are needed to boost our understanding of the role of lactobacilli in miscarriage.
Collapse
Affiliation(s)
- Farkhondeh Pouresmaeili
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeideh Alidoost
- Department of Molecular Genetics, National Institute of Genetics Engineering and Biotechnology (VIGEB), Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armitasadat Emami Meibodi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Abedin-Do
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Hourieh Shamshiri
- Department of Community Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahan Mohammadi
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Azari
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Fazeli
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
10
|
Charpentier LA, Dolben EF, Hendricks MR, Hogan DA, Bomberger JM, Stanton BA. Bacterial Outer Membrane Vesicles and Immune Modulation of the Host. MEMBRANES 2023; 13:752. [PMID: 37755174 PMCID: PMC10536716 DOI: 10.3390/membranes13090752] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
This article reviews the role of outer membrane vesicles (OMVs) in mediating the interaction between Gram-negative bacteria and their human hosts. OMVs are produced by a diverse range of Gram-negative bacteria during infection and play a critical role in facilitating host-pathogen interactions without requiring direct cell-to-cell contact. This article describes the mechanisms by which OMVs are formed and subsequently interact with host cells, leading to the transport of microbial protein virulence factors and short interfering RNAs (sRNA) to their host targets, exerting their immunomodulatory effects by targeting specific host signaling pathways. Specifically, this review highlights mechanisms by which OMVs facilitate chronic infection through epigenetic modification of the host immune response. Finally, this review identifies critical knowledge gaps in the field and offers potential avenues for future OMV research, specifically regarding rigor and reproducibility in OMV isolation and characterization methods.
Collapse
Affiliation(s)
- Lily A. Charpentier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| | - Emily F. Dolben
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| | - Matthew R. Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| |
Collapse
|
11
|
Cho YJ, Shin B, Lee SH, Park S, Kim YK, Kim JJ, Kim E. Altered Urine Microbiome in Male Children and Adolescents with Attention-Deficit Hyperactivity Disorder. Microorganisms 2023; 11:2063. [PMID: 37630623 PMCID: PMC10458914 DOI: 10.3390/microorganisms11082063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
While interest in developing the human microbiome as a biomarker for attention-deficit hyperactivity disorder (ADHD) is increasing, there has been limited exploration in utilizing urine samples. In this study, we analysed urine microbiome profiles by extracting 16S ribosomal DNA from purified bacteria-derived extracellular membrane vesicles obtained from urine samples. Sequencing libraries were constructed by amplifying V3-V4 hypervariable regions sequenced using Illumina MiSeq. Profiles of male Korean children and adolescents with ADHD (n = 33) were compared with healthy sex-matched controls (n = 39). Statistically controlling for age, we found decreased alpha diversity in the urine bacteria of the ADHD group, as evidenced by reduced Shannon and Simpson indices (p < 0.05), and significant differences in beta diversity between the two groups (p < 0.001). The phyla Firmicutes and Actinobacteriota, as well as the genera Ralstonia and Afipia, were relatively more abundant in the ADHD group. The phylum Proteobacteria and the genera Corynebacterium and Peptoniphilus were more abundant in the control group. Notably, the genus Afipia exhibited significant correlations with the Child Behavior Checklist Attention Problems score and DSM-oriented ADHD subscale. This study is the first to propose the urine microbiome as a potential biomarker for pediatric ADHD.
Collapse
Affiliation(s)
- Yoon Jae Cho
- Department of Psychiatry, College of Medicine, Yonsei University, Seoul 06273, Republic of Korea
| | - Bokyoung Shin
- Department of Psychiatry, College of Medicine, Yonsei University, Seoul 06273, Republic of Korea
| | - Sung-Ha Lee
- Center for Happiness Studies, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangmin Park
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Jae-Jin Kim
- Department of Psychiatry, College of Medicine, Yonsei University, Seoul 06273, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Eunjoo Kim
- Department of Psychiatry, College of Medicine, Yonsei University, Seoul 06273, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| |
Collapse
|
12
|
Menon R, Khanipov K, Radnaa E, Ganguly E, Bento GFC, Urrabaz-Garza R, Kammala AK, Yaklic J, Pyles R, Golovko G, Tantengco OAG. Amplification of microbial DNA from bacterial extracellular vesicles from human placenta. Front Microbiol 2023; 14:1213234. [PMID: 37520380 PMCID: PMC10374210 DOI: 10.3389/fmicb.2023.1213234] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The placenta is essential for fetal growth and survival and maintaining a successful pregnancy. The sterility of the placenta has been challenged recently; however, the presence of a placental microbiome has been controversial. We tested the hypothesis that the bacterial extracellular vesicles (BEVs) from Gram-negative bacteria as an alternate source of microbial DNA, regardless of the existence of a microbial community in the placenta. Methods Placentae from the term, not in labor Cesareans deliveries, were used for this study, and placental specimens were sampled randomly from the fetal side. We developed a protocol for the isolation of BEVs from human tissues and this is the first study to isolate the BEVs from human tissue and characterize them. Results The median size of BEVs was 130-140 nm, and the mean concentration was 1.8-5.5 × 1010 BEVs/g of the wet placenta. BEVs are spherical and contain LPS and ompA. Western blots further confirmed ompA but not human EVs markers ALIX confirming the purity of preparations. Taxonomic abundance profiles showed BEV sequence reads above the levels of the negative controls (all reagent controls). In contrast, the sequence reads in the same placenta were substantially low, indicating nothing beyond contamination (low biomass). Alpha-diversity showed the number of detected genera was significantly higher in the BEVs than placenta, suggesting BEVs as a likely source of microbial DNA. Beta-diversity further showed significant overlap in the microbiome between BEV and the placenta, confirming that BEVs in the placenta are likely a source of microbial DNA in the placenta. Uptake studies localized BEVs in maternal (decidual) and placental cells (cytotrophoblast), confirming their ability to enter these cells. Lastly, BEVs significantly increased inflammatory cytokine production in THP-1 macrophages in a high-dose group but not in the placental or decidual cells. Conclusion We conclude that the BEVs are normal constituents during pregnancy and likely reach the placenta through hematogenous spread from maternal body sites that harbor microbiome. Their presence may result in a low-grade localized inflammation to prime an antigen response in the placenta; however, insufficient to cause a fetal inflammatory response and adverse pregnancy events. This study suggests that BEVs can confound placental microbiome studies, but their low biomass in the placenta is unlikely to have any immunologic impact.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Esha Ganguly
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Giovana Fernanda Cosi Bento
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Rheanna Urrabaz-Garza
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Jerome Yaklic
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Richard Pyles
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - George Golovko
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Biology, College of Science, De La Salle University, Manila, Philippines
| |
Collapse
|
13
|
Modasia AA, Jones EJ, Martel LM, Louvel H, Couraud P, Blackshaw LA, Carding SR. The use of a multicellular in vitro model to investigate uptake and migration of bacterial extracellular vesicles derived from the human gut commensal Bacteroides thetaiotaomicron. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e93. [PMID: 38939073 PMCID: PMC11080816 DOI: 10.1002/jex2.93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are increasingly seen as key signalling mediators between the gut microbiota and the host. Recent studies have provided evidence of BEVs ability to transmigrate across cellular barriers to elicit responses in other tissues, such as the central nervous system (CNS). Here we use a combination of single-, two- and three-cell culture systems to demonstrate the transmigration of Bacteroides thetaiotaomicron derived BEVs (Bt-BEVs) across gut epithelium and blood brain barrier (BBB) endothelium, and their subsequent acquisition and downstream effects in neuronal cells. Bt-BEVs were shown to traffic to the CNS in vivo after intravenous administration to mice, and in multi-cell in vitro culture systems to transmigrate across gut epithelial and BBB endothelial cell barriers, where they were acquired by both microglia and immature neuronal cells. No significant activation/inflammatory effects were induced in non-differentiated neurons, in contrast to that observed in microglia cells, although this was notably less than that induced by lipopolysaccharide (LPS). Overall, our findings provide evidence for transmigration of Bt-BEVs across gut-epithelial and BBB endothelial cell barriers in vivo and in vitro, and their downstream responses in neural cells. This study sheds light onto how commensal bacteria-derived BEV transport across the gut-brain axis and can be exploited for the development of targeted drug delivery.
Collapse
Affiliation(s)
- Amisha A. Modasia
- Quadram Institute BioscienceRosalind Franklin RoadNorwich Research ParkNorwichUK
| | - Emily J. Jones
- Quadram Institute BioscienceRosalind Franklin RoadNorwich Research ParkNorwichUK
| | | | - Hélène Louvel
- National Institute of Health and Medical Research (INSERM)6 PlaceTristan BernardParisFrance
| | - Pierre‐Olivier Couraud
- National Institute of Health and Medical Research (INSERM)6 PlaceTristan BernardParisFrance
| | - L. Ashley Blackshaw
- Quadram Institute BioscienceRosalind Franklin RoadNorwich Research ParkNorwichUK
| | - Simon R. Carding
- Quadram Institute BioscienceRosalind Franklin RoadNorwich Research ParkNorwichUK
- Norwich Medical SchoolNorwich Research ParkUniversity of East AngliaNorwichUK
| |
Collapse
|
14
|
Shin C, Baik I. Bacterial Extracellular Vesicle Composition in Human Urine and the 10-Year Risk of Abdominal Obesity. Metab Syndr Relat Disord 2023. [PMID: 37134220 DOI: 10.1089/met.2022.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Objective: We aimed to evaluate a causal relationship between commensal bacteria and abdominal obesity. Methods: A prospective study, including 2222 adults who provided urine samples at baseline, was performed. These samples were used for assays of genomic DNA from bacterial extracellular vesicles (EVs). During the 10-year period, the incidence rates of obesity (measured as body mass index) and abdominal obesity (measured as waist circumference) were ascertained as outcomes. To evaluate associations of bacterial composition at the phylum and genus levels with the outcomes, the hazard ratio (HR) and its confidence interval (95% CI) were estimated. Results: No significant association was observed for the risk of obesity, whereas the risk of abdominal obesity was inversely associated with the composition of Proteobacteria and positively associated with that of Firmicutes (adjusted P value <0.05). In joint analysis for the combination groups of Proteobacteria and Firmicutes composition tertiles, the group with top tertiles of both Proteobacteria and Firmicutes showed a significant HR of 2.59 (95% CI: 1.33 - 5.01) compared with the reference with lower tertiles (adjusted P value <0.05). Some genera of these phyla were associated with the risk of abdominal obesity. Conclusions: These findings suggest that bacterial composition in urinary EV samples can predict the 10-year risk of abdominal obesity.
Collapse
Affiliation(s)
- Chol Shin
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Inkyung Baik
- Department of Foods and Nutrition, College of Science and Technology, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Yoon H, Kim NE, Park J, Shin CM, Kim N, Lee DH, Park JY, Choi CH, Kim JG, Park YS. Analysis of the gut microbiome using extracellular vesicles in the urine of patients with colorectal cancer. Korean J Intern Med 2023; 38:27-38. [PMID: 36353788 PMCID: PMC9816683 DOI: 10.3904/kjim.2022.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND/AIMS We evaluated the gut microbiome using extracellular vesicles (EVs) in the urine of patients with colorectal cancer (CRC) to determine whether gut-microbe-derived EVs could be a potential biomarker for the diagnosis of CRC. METHODS EVs were isolated from the urine of patients with CRC and healthy controls. DNA was extracted from the EVs, and the bacterial composition was analyzed using next-generation sequencing of the 16S rRNA. RESULTS A total of 91 patients with CRC and 116 healthy controls were enrolled. We found some specific microbiomes that were more or less abundant in the CRC group than in the control group. The alpha-diversity of the gut microbiome was significantly lower in the CRC group than in the control group. A significant difference was observed in the beta-diversity between the groups. The alpha-diversity indices between patients with early- and late-stage CRC showed conflicting results; however, there was no significant difference in the beta-diversity according to the stage of CRC. There was no difference in the alpha- and beta-diversity of the gut microbiome corresponding to the location of CRC (proximal vs. distal). CONCLUSION A distinct gut microbiome is reflected in the urine EVs of patients with CRC compared with that in the healthy controls. Microbial signatures from EVs in urine could serve as potential biomarkers for the diagnosis of CRC.
Collapse
Affiliation(s)
- Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul,
Korea
| | - Nam-Eun Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul,
Korea
| | - Jihye Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul,
Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul,
Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul,
Korea
| | - Jae Yong Park
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul,
Korea
| | - Chang Hwan Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul,
Korea
| | - Jae Gyu Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul,
Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
| |
Collapse
|
16
|
Pérez Martínez G, Giner-Pérez L, Castillo-Romero KF. Bacterial extracellular vesicles and associated functional proteins in fermented dairy products with Lacticaseibacillus paracasei. Front Microbiol 2023; 14:1165202. [PMID: 37152726 PMCID: PMC10157241 DOI: 10.3389/fmicb.2023.1165202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Cells of all kingdoms produce extracellular vesicles (EVs); hence, they are present in most environments and body fluids. Lacticaseibacillus paracasei produces EVs that have attached biologically active proteins (P40 and P75). In this study, EV and functional proteins were found in five different commercial dairy-fermented products carrying L. paracasei. Strains present in those products were isolated, and with one exception, all produced small EVs (24-47 d.nm) carrying P40 and P75. In order to winnow bacterial EV from milk EV, products were subjected to centrifugal fractionation at 15,000 × g (15 K), 33,000 × g (33 K), and 100,000 × g (100 K). P75 was present in all supernatants and pellets, but P40 was only found in two products bound to the 15 and 33 K pellets, and 16S rDNA of L. paracasei could be amplified from all 100 K EVs, indicating the presence of L. paracasei EV. To investigate the interactions of bacterial EV and proteins with milk EV, L. paracasei BL23 EV was added to three commercial UHT milk products. Small-size vesicles (50-60 d.nm) similar to L. paracasei BL23 EV were found in samples from 100 K centrifugations, but intriguingly, P40 and P75 were bound to EV in 15 and 33 K pellets, containing bovine milk EV of larger size (200-300 d.nm). Sequencing 16S rDNA bands amplified from EV evidenced the presence of bacterial EVs of diverse origins in milk and fermented products. Furthermore, L. paracasei 16S rDNA could be amplified with species-specific primers from all samples, showing the presence of L. paracasei EV in all EV fractions (15, 33, and 100 K), suggesting that these bacterial EVs possibly aggregate and are co-isolated with EV from milk. P40 and P75 proteins would be interacting with specific populations of milk EV (15 and 33 K) because they were detected bound to them in fermented products and milk, and this possibly forced the sedimentation of part of L. paracasei EV at lower centrifugal forces. This study has solved technically complex problems and essential questions which will facilitate new research focusing on the molecular behavior of probiotics during fermentation and the mechanisms of action mediating the health benefits of fermented products.
Collapse
Affiliation(s)
- Gaspar Pérez Martínez
- Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
- *Correspondence: Gaspar Pérez Martínez
| | - Lola Giner-Pérez
- Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Keshia F. Castillo-Romero
- Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
17
|
Ortega MA, Fraile-Martínez O, García-Montero C, Paradela A, Asunción Sánchez-Gil M, Rodriguez-Martin S, De León-Luis JA, Pereda-Cerquella C, Bujan J, Guijarro LG, Alvarez-Mon M, García-Honduvilla N. Unfolding the role of placental-derived Extracellular Vesicles in Pregnancy: From homeostasis to pathophysiology. Front Cell Dev Biol 2022; 10:1060850. [PMID: 36478738 PMCID: PMC9720121 DOI: 10.3389/fcell.2022.1060850] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 08/11/2023] Open
Abstract
The human placenta is a critical structure with multiple roles in pregnancy, including fetal nutrition and support, immunological, mechanical and chemical barrier as well as an endocrine activity. Besides, a growing body of evidence highlight the relevance of this organ on the maternofetal wellbeing not only during gestation, but also from birth onwards. Extracellular vesicles (EVs) are complex macromolecular structures of different size and content, acting as carriers of a diverse set of molecules and information from donor to recipient cells. Since its early development, the production and function of placental-derived EVs are essential to ensure an adequate progress of pregnancy. In turn, the fetus receives and produce their own EVs, highlighting the importance of these components in the maternofetal communication. Moreover, several studies have shown the clinical relevance of EVs in different obstetric pathologies such as preeclampsia, infectious diseases or gestational diabetes, among others, suggesting that they could be used as pathophysiological biomarkers of these diseases. Overall, the aim of this article is to present an updated review of the published basic and translational knowledge focusing on the role of placental-derived EVs in normal and pathological pregnancies. We suggest as well future lines of research to take in this novel and promising field.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala de Henares, Spain
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | | | - María Asunción Sánchez-Gil
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- University Defense Center of Madrid (CUD), Madrid, Spain
| | - Sonia Rodriguez-Martin
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Service of Pediatric, Hospital Universitario Principe de Asturias, Alcalá de Henares, Spain
| | - Juan A. De León-Luis
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Ma-drid, Madrid, Spain
| | - Claude Pereda-Cerquella
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Luis G. Guijarro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Centro de Investigación Biomédica en Red en El Área Temática de Enfermedades Hepáticas (CIBEREHD), Department of System Biology, University of Alcalá, Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, Centro de Investigación Biomédica en Red en El Área Temática de Enfermedades Hepáticas (CIBEREHD), University Hospital Príncipe de Asturias, Alcala de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- University Defense Center of Madrid (CUD), Madrid, Spain
| |
Collapse
|
18
|
Mishra S, Amatya SB, Salmi S, Koivukangas V, Karihtala P, Reunanen J. Microbiota and Extracellular Vesicles in Anti-PD-1/PD-L1 Therapy. Cancers (Basel) 2022; 14:cancers14205121. [PMID: 36291904 PMCID: PMC9600290 DOI: 10.3390/cancers14205121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Immune checkpoint inhibitors (ICI) targeting PD-1/PD-L1 have emerged as contemporary treatments for a variety of cancers. However, the efficacy of antibody-based ICIs could be further enhanced. Microbiota have been demonstrated to be among the vital factors governing cancer progression and response to therapy in patients. Bacteria secrete extracellular vesicles carrying bioactive metabolites within their cargo that can cross physiological barriers, selectively accumulate near tumor cells, and alter the tumor microenvironment. Extracellular vesicles, particularly those derived from bacteria, could thus be of promising assistance in refining the treatment outcomes for anti-PD-1/PD-L1 therapy. The potentiality of microbiota-derived extracellular vesicles in improving the currently used treatments and presenting new therapeutic avenues for cancer has been featured in this review. Abstract Cancer is a deadly disease worldwide. In light of the requisite of convincing therapeutic methods for cancer, immune checkpoint inhibition methods such as anti-PD-1/PD-L1 therapy appear promising. Human microbiota have been exhibited to regulate susceptibility to cancer as well as the response to anti-PD-1/PD-L1 therapy. However, the probable contribution of bacterial extracellular vesicles (bEVs) in cancer pathophysiology and treatment has not been investigated much. bEVs illustrate the ability to cross physiological barriers, assemble around the tumor cells, and likely modify the tumor microenvironment (EVs). This systematic review emphasizes the correlation between cancer-associated extracellular vesicles, particularly bEVs and the efficacy of anti-PD-1/PD-L1 therapy. The clinical and pharmacological prospective of bEVs in revamping the contemporary treatments for cancer has been further discussed.
Collapse
Affiliation(s)
- Surbhi Mishra
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Sajeen Bahadur Amatya
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Sonja Salmi
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Vesa Koivukangas
- Department of Surgery, Oulu University Hospital, University of Oulu, 90014 Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, 90014 Oulu, Finland
| | - Peeter Karihtala
- Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, 00029 Helsinki, Finland
| | - Justus Reunanen
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
- Correspondence:
| |
Collapse
|
19
|
Park S, Moon J, Kang N, Kim YH, You YA, Kwon E, Ansari A, Hur YM, Park T, Kim YJ. Predicting preterm birth through vaginal microbiota, cervical length, and WBC using a machine learning model. Front Microbiol 2022; 13:912853. [PMID: 35983325 PMCID: PMC9378785 DOI: 10.3389/fmicb.2022.912853] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
An association between the vaginal microbiome and preterm birth has been reported. However, in practice, it is difficult to predict premature birth using the microbiome because the vaginal microbial community varies highly among samples depending on the individual, and the prediction rate is very low. The purpose of this study was to select markers that improve predictive power through machine learning among various vaginal microbiota and develop a prediction algorithm with better predictive power that combines clinical information. As a multicenter case–control study with 150 Korean pregnant women with 54 preterm delivery group and 96 full-term delivery group, cervicovaginal fluid was collected from pregnant women during mid-pregnancy. Their demographic profiles (age, BMI, education level, and PTB history), white blood cell count, and cervical length were recorded, and the microbiome profiles of the cervicovaginal fluid were analyzed. The subjects were randomly divided into a training (n = 101) and a test set (n = 49) in a two-to-one ratio. When training ML models using selected markers, five-fold cross-validation was performed on the training set. A univariate analysis was performed to select markers using seven statistical tests, including the Wilcoxon rank-sum test. Using the selected markers, including Lactobacillus spp., Gardnerella vaginalis, Ureaplasma parvum, Atopobium vaginae, Prevotella timonensis, and Peptoniphilus grossensis, machine learning models (logistic regression, random forest, extreme gradient boosting, support vector machine, and GUIDE) were used to build prediction models. The test area under the curve of the logistic regression model was 0.72 when it was trained with the 17 selected markers. When analyzed by combining white blood cell count and cervical length with the seven vaginal microbiome markers, the random forest model showed the highest test area under the curve of 0.84. The GUIDE, the single tree model, provided a more reasonable biological interpretation, using the 10 selected markers (A. vaginae, G. vaginalis, Lactobacillus crispatus, Lactobacillus fornicalis, Lactobacillus gasseri, Lactobacillus iners, Lactobacillus jensenii, Peptoniphilus grossensis, P. timonensis, and U. parvum), and the covariates produced a tree with a test area under the curve of 0.77. It was confirmed that the association with preterm birth increased when P. timonensis and U. parvum increased (AUC = 0.77), which could also be explained by the fact that as the number of Peptoniphilus lacrimalis increased, the association with preterm birth was high (AUC = 0.77). Our study demonstrates that several candidate bacteria could be used as potential predictors for preterm birth, and that the predictive rate can be increased through a machine learning model employing a combination of cervical length and white blood cell count information.
Collapse
Affiliation(s)
- Sunwha Park
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, South Korea
| | - Jeongsup Moon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Nayeon Kang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, South Korea
| | - Eunjin Kwon
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, South Korea
| | - AbuZar Ansari
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, South Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, South Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
- Department of Statistics, Seoul National University, Seoul, South Korea
- *Correspondence: Taesung Park,
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, South Korea
- Young Ju Kim,
| |
Collapse
|
20
|
Chiang TY, Yang YR, Zhuo MY, Yang F, Zhang YF, Fu CH, Lee TJ, Chung WH, Chen L, Chang CJ. Microbiome profiling of nasal extracellular vesicles in patients with allergic rhinitis. World Allergy Organ J 2022; 15:100674. [PMID: 36017065 PMCID: PMC9386106 DOI: 10.1016/j.waojou.2022.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Tsai-Yeh Chiang
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Yu-Ru Yang
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Ming-Ying Zhuo
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Feng Yang
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Ying-Fei Zhang
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Chia-Hsiang Fu
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Ta-Jen Lee
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wen-Hung Chung
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Medical Research Center, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Dermatology and Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Liang Chen
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Respiratory and Critical Care Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Allergy and Immunology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Corresponding author. Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.
| | - Chih-Jung Chang
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Medical Research Center, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Dermatology and Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan
- School of Medicine, Huaqiao University, Quanzhou, Fujian, China
- Corresponding author. Medical Research Center, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.
| |
Collapse
|
21
|
Park S, You YA, Kim YH, Kwon E, Ansari A, Kim SM, Lee G, Hur YM, Jung YJ, Kim K, Kim YJ. Ureaplasma and Prevotella colonization with Lactobacillus abundance during pregnancy facilitates term birth. Sci Rep 2022; 12:10148. [PMID: 35710793 PMCID: PMC9203766 DOI: 10.1038/s41598-022-13871-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Ureaplasma and Prevotella infections are well-known bacteria associated with preterm birth. However, with the development of metagenome sequencing techniques, it has been found that not all Ureaplasma and Prevotella colonizations cause preterm birth. The purpose of this study was to determine the association between Ureaplasma and Prevotella colonization with the induction of preterm birth even in the presence of Lactobacillus. In this matched case–control study, a total of 203 pregnant Korean women were selected and their cervicovaginal fluid samples were collected during mid-pregnancy. The microbiome profiles of the cervicovaginal fluid were analyzed using 16S rRNA gene amplification. Sequencing data were processed using QIIME1.9.1. Statistical analyses were performed using R software, and microbiome analysis was performed using the MicrobiomeAnalyst and Calypso software. A positive correlation between Ureaplasma and other genera was highly related to preterm birth, but interestingly, there was a negative correlation with Lactobacillus and term birth, with the same pattern observed with Prevotella. Ureaplasma and Prevotella colonization with Lactobacillus abundance during pregnancy facilitates term birth, although Ureaplasma and Prevotella are associated with preterm birth. Balanced colonization between Lactobacillus and Ureaplasma and Prevotella is important to prevent preterm birth.
Collapse
Affiliation(s)
- Sunwha Park
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, College of Medicine, Yonsei University, Seoul, Korea
| | - Eunjin Kwon
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - AbuZar Ansari
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Soo Min Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Gain Lee
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Yun Ji Jung
- Department of Obstetrics and Gynecology, College of Medicine, Yonsei University, Seoul, Korea
| | | | - Young Ju Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea.
| |
Collapse
|
22
|
Choi J, Kwon H, Kim YK, Han PL. Extracellular Vesicles from Gram-positive and Gram-negative Probiotics Remediate Stress-Induced Depressive Behavior in Mice. Mol Neurobiol 2022; 59:2715-2728. [PMID: 35171438 DOI: 10.1007/s12035-021-02655-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Chronic stress causes maladaptive changes in the brain that lead to depressive behavior. In the present study, we investigate whether chronic stress alters gut microbiota compositions that are related to stress-induced maladaptive changes in the brain. Mice treated with daily 2-h restraint for 14 days (CRST) exhibit depressive-like behavior. Sequence readings of 16S rRNA genes prepared from fecal samples taken from CRST-treated mice suggest that chronic stress induces gut microbiota changes that are pronounced in the post-stress period, relative to those that occur in the 14-day stress phase. The genus Lactobacillus is one such microbiota substantially changed following chronic stress. In contrast, intraperitoneal injection of extracellular vesicles (EVs) isolated from culture media of the Gram-positive probiotic Lactobacillus plantarum is sufficient to ameliorate stress-induced depressive-like behavior. Interestingly, EVs from the Gram-positive probiotic Bacillus subtilis and EVs from the Gram-negative probiotic Akkermansia muciniphila also produce anti-depressive-like effects. While chronic stress decreases the expression of MeCP2, Sirt1, and/or neurotrophic factors in the hippocampus, EVs from the three selected probiotics differentially restore stress-induced changes of these factors. These results suggest that chronic stress produces persistent changes in gut microbiota composition, whereas purified EVs of certain probiotics can be used for treatment of stress-induced depressive-like behavior.
Collapse
Affiliation(s)
- Juli Choi
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyejin Kwon
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yoon-Keun Kim
- MD Healthcare Inc, Rm 1303 Woori Technology Bldg, World Cup Buk-ro 56-gil, Mapo-Gu Seoul, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea. .,Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
23
|
Ramirez-Garrastacho M, Bajo-Santos C, Line A, Martens-Uzunova ES, de la Fuente JM, Moros M, Soekmadji C, Tasken KA, Llorente A. Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research. Br J Cancer 2022; 126:331-350. [PMID: 34811504 PMCID: PMC8810769 DOI: 10.1038/s41416-021-01610-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is a global cancer burden and considerable effort has been made through the years to identify biomarkers for the disease. Approximately a decade ago, the potential of analysing extracellular vesicles in liquid biopsies started to be envisaged. This was the beginning of a new exciting area of research investigating the rich molecular treasure found in extracellular vesicles to identify biomarkers for a variety of diseases. Vesicles released from prostate cancer cells and cells of the tumour microenvironment carry molecular information about the disease that can be analysed in several biological fluids. Numerous studies document the interest of researchers in this field of research. However, methodological issues such as the isolation of vesicles have been challenging. Remarkably, novel technologies, including those based on nanotechnology, show promise for the further development and clinical use of extracellular vesicles as liquid biomarkers. Development of biomarkers is a long and complicated process, and there are still not many biomarkers based on extracellular vesicles in clinical use. However, the knowledge acquired during the last decade constitutes a solid basis for the future development of liquid biopsy tests for prostate cancer. These are urgently needed to bring prostate cancer treatment to the next level in precision medicine.
Collapse
Affiliation(s)
- Manuel Ramirez-Garrastacho
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Aija Line
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Elena S Martens-Uzunova
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Urology, Laboratory of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Jesus Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Maria Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kristin Austlid Tasken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
24
|
Ahn HK, Kim K, Park J, Kim KH. Urinary microbiome profile in men with genitourinary malignancies. Investig Clin Urol 2022; 63:569-576. [PMID: 36068003 PMCID: PMC9448674 DOI: 10.4111/icu.20220124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/01/2022] [Accepted: 06/19/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Recent advances in molecular biology technology have allowed identification of microbial communities in the urinary tract, and urinary microbiome is associated with various urological diseases. In this study, we aimed to characterize the urinary microbiome of genitourinary malignancies. Materials and Methods Metagenomic analysis of urinary DNA was performed in 85 patients including 30 with bladder cancer (BC), 27 with prostate cancer (PC), 12 with renal cancer (RC), and 16 with non-cancer (NC). 16S rRNA gene sequencing was conducted after amplification of the V3–V4 region. Results PC and RC had significantly lower Shannon index than BC, and beta diversity showed significantly different microbiome composition between four groups. We identified six genera of Cutibacterium, Peptoniphilus, Sphingomonas, Staphylococcus, Micrococcus, and Moraxella, which showed significantly different abundance between the four groups. When each of the malignancies were compared to NC at the species level, Micrococcus sp. was significantly increased in BC. We also identified 12 and five species with increased populations in PC and RC, respectively. Of these, Cutibacterium acnes, Cutibacterium granulosum, Peptoniphilus lacydonensis, and Tessaracoccus were significantly increased in both PC and RC. Conclusions Urinary microbiome composition was different depending on the xlink:type of genitourinary malignancies, and we identified bacteria that are significantly associated with each xlink:type of malignancy. Specifically, several bacterial species were associated both PC and RC, suggesting that PC and RC share a similar pathogenesis-related urinary microbiome.
Collapse
Affiliation(s)
- Hyun Kyu Ahn
- Department of Urology, Ewha Womans University Seoul Hospital, Seoul, Korea
| | | | | | - Kwang Hyun Kim
- Department of Urology, Ewha Womans University Seoul Hospital, Seoul, Korea
| |
Collapse
|
25
|
Park J, Kim NE, Yoon H, Shin CM, Kim N, Lee DH, Park JY, Choi CH, Kim JG, Kim YK, Shin TS, Yang J, Park YS. Fecal Microbiota and Gut Microbe-Derived Extracellular Vesicles in Colorectal Cancer. Front Oncol 2021; 11:650026. [PMID: 34595105 PMCID: PMC8477046 DOI: 10.3389/fonc.2021.650026] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
The human microbiota comprises trillions of microbes, and the relationship between cancer and microbiota is very complex. The impact of fecal microbiota alterations on colorectal cancer (CRC) pathogenesis is emerging. This study analyzed changes in the microbial composition in CRC subjects with both fecal microbiota and gut microbe-derived extracellular vesicles (EVs). From August 2017 to August 2018, 70 CRC patients and 158 control subjects were enrolled in the study. Metagenomic profiling of fecal microbiota and gut microbe-derived EVs in stool was performed using 16S ribosomal DNA sequencing. Relative abundance, evenness, and diversity in both the gut microbiota and gut microbe-derived EVs were analyzed. Additionally, microbial composition changes according to the stage and location of CRC were analyzed. Microbial composition was significantly changed in CRC subjects compared to control subjects, with evenness and diversity significantly lower in the fecal microbiota of CRC subjects. Gut microbe-derived EVs of stool demonstrated significant differences in the microbial composition, evenness, and diversity in CRC subjects compared to the control subjects. Additionally, microbial composition, evenness, and diversity significantly changed in late CRC subjects compared to early CRC subjects with both fecal microbiota and gut microbe-derived EVs. Alistipes-derived EVs could be novel biomarkers for diagnosing CRC and predicting CRC stages. Ruminococcus 2-derived EVs significantly decreased in distal CRC subjects than in proximal CRC subjects. Gut microbe-derived EVs in CRC had a distinct microbial composition compared to the controls. Profiling of microbe-derived EVs may offer a novel biomarker for detecting and predicting CRC prognosis.
Collapse
Affiliation(s)
- Jihye Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam-Eun Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jae Yong Park
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Chang Hwan Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Jae Gyu Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Yoon-Keun Kim
- R&D Center, Institute of MD Healthcare Inc., Seoul, South Korea
| | - Tae-Seop Shin
- R&D Center, Institute of MD Healthcare Inc., Seoul, South Korea
| | - Jinho Yang
- R&D Center, Institute of MD Healthcare Inc., Seoul, South Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
26
|
Park JY, Kang CS, Seo HC, Shin JC, Kym SM, Park YS, Shin TS, Kim JG, Kim YK. Bacteria-Derived Extracellular Vesicles in Urine as a Novel Biomarker for Gastric Cancer: Integration of Liquid Biopsy and Metagenome Analysis. Cancers (Basel) 2021; 13:cancers13184687. [PMID: 34572913 PMCID: PMC8468964 DOI: 10.3390/cancers13184687] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Gastric cancer shows an improved prognosis when diagnosed in its early stage. However, non-invasive diagnostic markers for gastric cancer known to date have poor clinical efficacies. Many studies have shown that gastric cancer patients have distinct microbial changes compared to normal subjects. In the present study, we performed metagenome analysis using body fluid samples (gastric juice, blood, and urine) to investigate the distinct microbial composition using bacteria-derived EVs from gastric cancer patients. We could build diagnostic prediction models for gastric cancer with the metagenomic data and analyzed the accuracy of models. Although further validation is required to apply these findings to real clinical practice yet, our study showed the possibility of gastric cancer diagnosis with the integration of liquid biopsy and metagenome analysis. Abstract Early detection is crucial for improving the prognosis of gastric cancer, but there are no non-invasive markers for the early diagnosis of gastric cancer in real clinical settings. Recently, bacteria-derived extracellular vesicles (EVs) emerged as new biomarker resources. We aimed to evaluate the microbial composition in gastric cancer using bacteria-derived EVs and to build a diagnostic prediction model for gastric cancer with the metagenome data. Stool, urine, and serum samples were prospectively collected from 453 subjects (gastric cancer, 181; control, 272). EV portions were extracted from the samples for metagenome analysis. Differences in microbial diversity and composition were analyzed with 16S rRNA gene profiling, using the next-generation sequencing method. Biomarkers were selected using logistic regression models based on relative abundances at the genus level. The microbial composition of healthy groups and gastric cancer patient groups was significantly different in all sample types. The compositional differences of various bacteria, based on relative abundances, were identified at the genus level. Among the diagnostic prediction models for gastric cancer, the urine-based model showed the highest performance when compared to that of stool or serum. We suggest that bacteria-derived EVs in urine can be used as novel metagenomic markers for the non-invasive diagnosis of gastric cancer by integrating the liquid biopsy method and metagenome analysis.
Collapse
Affiliation(s)
- Jae-Yong Park
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul 06973, Korea;
| | - Chil-Sung Kang
- Institute of MD Healthcare Inc., Seoul 03923, Korea; (C.-S.K.); (H.-C.S.); (J.-C.S.); (T.-S.S.)
| | - Ho-Chan Seo
- Institute of MD Healthcare Inc., Seoul 03923, Korea; (C.-S.K.); (H.-C.S.); (J.-C.S.); (T.-S.S.)
| | - Jin-Chul Shin
- Institute of MD Healthcare Inc., Seoul 03923, Korea; (C.-S.K.); (H.-C.S.); (J.-C.S.); (T.-S.S.)
| | - Sung-Min Kym
- Division of Infectious Diseases, Department of Internal Medicine, Sejong Chungnam National University Hospital, Sejong 30099, Korea;
| | - Young-Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Tae-Seop Shin
- Institute of MD Healthcare Inc., Seoul 03923, Korea; (C.-S.K.); (H.-C.S.); (J.-C.S.); (T.-S.S.)
| | - Jae-Gyu Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul 06973, Korea;
- Correspondence: (J.-G.K.); (Y.-K.K.); Tel.: +82-2-6299-3147 (J.-G.K.); +82-2-2655-0766 (Y.-K.K.); Fax: +82-2-6299-1137 (J.-G.K.); +82-2-2655-0768 (Y.-K.K.)
| | - Yoon-Keun Kim
- Institute of MD Healthcare Inc., Seoul 03923, Korea; (C.-S.K.); (H.-C.S.); (J.-C.S.); (T.-S.S.)
- Correspondence: (J.-G.K.); (Y.-K.K.); Tel.: +82-2-6299-3147 (J.-G.K.); +82-2-2655-0766 (Y.-K.K.); Fax: +82-2-6299-1137 (J.-G.K.); +82-2-2655-0768 (Y.-K.K.)
| |
Collapse
|
27
|
Chang CJ, Zhang J, Tsai YL, Chen CB, Lu CW, Huo YP, Liou HM, Ji C, Chung WH. Compositional Features of Distinct Microbiota Base on Serum Extracellular Vesicle Metagenomics Analysis in Moderate to Severe Psoriasis Patients. Cells 2021; 10:2349. [PMID: 34571998 PMCID: PMC8467001 DOI: 10.3390/cells10092349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/14/2023] Open
Abstract
The bacterial microbiota in the skin and intestine of patients with psoriasis were different compared with that of healthy individuals. However, the presence of a distinct blood microbiome in patients with psoriasis is yet to be investigated. In this study, we investigated the differences in bacterial communities in plasma-derived extracellular vesicles (EVs) between patients with moderate to severe psoriasis (PSOs) and healthy controls (HCs). The plasma EVs from the PSO (PASI > 10) (n = 20) and HC (n = 8) groups were obtained via a series of centrifugations, and patterns were examined and confirmed using transmission electron microscopy (TEM) and EV-specific markers. The taxonomic composition of the microbiota was determined by using full-length 16S ribosomal RNA gene sequencing. The PSO group had lower bacterial diversity and richness compared with HC group. Principal coordinate analysis (PCoA)-based clustering was used to assess diversity and validated dysbiosis for both groups. Differences at the level of amplicon sequence variant (ASV) were observed, suggesting alterations in specific ASVs according to health conditions. The HC group had higher levels of the phylum Firmicutes and Fusobacteria than in the PSO group. The order Lactobacillales, family Brucellaceae, genera Streptococcus, and species Kingella oralis and Aquabacterium parvum were highly abundant in the HC group compared with the PSO group. Conversely, the order Bacillales and the genera Staphylococcus and Sphihgomonas, as well as Ralstonia insidiosa, were more abundant in the PSO group. We further predicted the microbiota functional capacities, which revealed significant differences between the PSO and HC groups. In addition to previous studies on microbiome changes in the skin and gut, we demonstrated compositional differences in the microbe-derived EVs in the plasma of PSO patients. Plasma EVs could be an indicator for assessing the composition of the microbiome of PSO patients.
Collapse
Affiliation(s)
- Chih-Jung Chang
- Medical Research Center and Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen 361028, China;
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan; (C.-B.C.); (C.-W.L.)
| | - Jing Zhang
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China;
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, Taipei 114202, Taiwan;
| | - Chun-Bing Chen
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan; (C.-B.C.); (C.-W.L.)
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 20445, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361028, China; (Y.-P.H.); (H.-M.L.)
| | - Chun-Wei Lu
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan; (C.-B.C.); (C.-W.L.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333323, Taiwan
| | - Yu-Ping Huo
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361028, China; (Y.-P.H.); (H.-M.L.)
| | - Huey-Ming Liou
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361028, China; (Y.-P.H.); (H.-M.L.)
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China;
| | - Wen-Hung Chung
- Medical Research Center and Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen 361028, China;
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan; (C.-B.C.); (C.-W.L.)
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 20445, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361028, China; (Y.-P.H.); (H.-M.L.)
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
28
|
Ansari A, Bose S, You Y, Park S, Kim Y. Molecular Mechanism of Microbiota Metabolites in Preterm Birth: Pathological and Therapeutic Insights. Int J Mol Sci 2021; 22:8145. [PMID: 34360908 PMCID: PMC8347546 DOI: 10.3390/ijms22158145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Preterm birth (PTB) refers to the birth of infants before 37 weeks of gestation and is a challenging issue worldwide. Evidence reveals that PTB is a multifactorial dysregulation mediated by a complex molecular mechanism. Thus, a better understanding of the complex molecular mechanisms underlying PTB is a prerequisite to explore effective therapeutic approaches. During early pregnancy, various physiological and metabolic changes occur as a result of endocrine and immune metabolism. The microbiota controls the physiological and metabolic mechanism of the host homeostasis, and dysbiosis of maternal microbial homeostasis dysregulates the mechanistic of fetal developmental processes and directly affects the birth outcome. Accumulating evidence indicates that metabolic dysregulation in the maternal or fetal membranes stimulates the inflammatory cytokines, which may positively progress the PTB. Although labour is regarded as an inflammatory process, it is still unclear how microbial dysbiosis could regulate the molecular mechanism of PTB. In this review based on recent research, we focused on both the pathological and therapeutic contribution of microbiota-generated metabolites to PTB and the possible molecular mechanisms.
Collapse
Affiliation(s)
- AbuZar Ansari
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| | - Shambhunath Bose
- Department of Bioscience, Sri Sathya Sai University for Human Excellence, Navanihal, Okali Post, Kamalapur, Kalaburagi, Karnataka 585313, India;
| | - Youngah You
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| | - Sunwha Park
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| | - Youngju Kim
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| |
Collapse
|
29
|
Josephs-Spaulding J, Krogh TJ, Rettig HC, Lyng M, Chkonia M, Waschina S, Graspeuntner S, Rupp J, Møller-Jensen J, Kaleta C. Recurrent Urinary Tract Infections: Unraveling the Complicated Environment of Uncomplicated rUTIs. Front Cell Infect Microbiol 2021; 11:562525. [PMID: 34368008 PMCID: PMC8340884 DOI: 10.3389/fcimb.2021.562525] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections (UTIs) are frequent in humans, affecting the upper and lower urinary tract. Present diagnosis relies on the positive culture of uropathogenic bacteria from urine and clinical markers of inflammation of the urinary tract. The bladder is constantly challenged by adverse environmental stimuli which influence urinary tract physiology, contributing to a dysbiotic environment. Simultaneously, pathogens are primed by environmental stressors such as antibiotics, favoring recurrent UTIs (rUTIs), resulting in chronic illness. Due to different confounders for UTI onset, a greater understanding of the fundamental environmental mechanisms and microbial ecology of the human urinary tract is required. Such advancements could promote the tandem translation of bench and computational studies for precision treatments and clinical management of UTIs. Therefore, there is an urgent need to understand the ecological interactions of the human urogenital microbial communities which precede rUTIs. This review aims to outline the mechanistic aspects of rUTI ecology underlying dysbiosis between both the human microbiome and host physiology which predisposes humans to rUTIs. By assessing the applications of next generation and systems level methods, we also recommend novel approaches to elucidate the systemic consequences of rUTIs which requires an integrated approach for successful treatment. To this end, we will provide an outlook towards the so-called 'uncomplicated environment of UTIs', a holistic and systems view that applies ecological principles to define patient-specific UTIs. This perspective illustrates the need to withdraw from traditional reductionist perspectives in infection biology and instead, a move towards a systems-view revolving around patient-specific pathophysiology during UTIs.
Collapse
Affiliation(s)
- Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Thøger Jensen Krogh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hannah Clara Rettig
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Mark Lyng
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mariam Chkonia
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Silvio Waschina
- Research Group Nutriinformatics, Institute of Human Nutrition and Food Science, Christian-Albrechts-Universität, Kiel, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
30
|
Rhee SJ, Kim H, Lee Y, Lee HJ, Park CHK, Yang J, Kim YK, Ahn YM. The association between serum microbial DNA composition and symptoms of depression and anxiety in mood disorders. Sci Rep 2021; 11:13987. [PMID: 34234173 PMCID: PMC8263754 DOI: 10.1038/s41598-021-93112-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence supporting the association between gut microbiome composition and mood disorders; however, studies on the circulating microbiome are scarce. This study aimed to analyze the association of the serum microbial DNA composition with depressive and anxiety symptoms in patients with mood disorders. The sera of 69 patients with mood disorders, aged from 19 to 60, were analyzed. Bacterial DNA was isolated from extracellular membrane vesicles and, subsequently, amplified and quantified with specific primers for the V3-V4 hypervariable region of the 16S rDNA gene. Sequence reads were clustered into Operational Taxonomic Units and classified using the SILVA database. There were no significant associations between alpha diversity measures and the total Hamilton depression rating scale (HAM-D) or Beck anxiety inventory (BAI) scores. Only the weighted UniFrac distance was associated with the total HAM-D score (F = 1.57, p = 0.045). The Bacteroidaceae family and Bacteroides genus were negatively associated with the total HAM-D score (β = - 0.016, p < 0.001, q = 0.08 and β = - 0.016, p < 0.001, q = 0.15, respectively). The Desulfovibrionaceae family and Clostridiales Family XIII were positively associated with the total BAI score (β = 1.8 × 10-3, p < 0.001, q = 0.04 and β = 1.3 × 10-3, p < 0.001, q = 0.24, respectively). Further studies with larger sample sizes and longitudinal designs are warranted.
Collapse
Affiliation(s)
- Sang Jin Rhee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeyoung Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Inha University Hospital, Incheon, Republic of Korea
| | - Yunna Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Hyun Jeong Lee
- Department of Psychiatry, National Cancer Center; Division of Cancer Management Policy, National Cancer Center, Goyang, Republic of Korea
| | - C Hyung Keun Park
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Asan Medical Center, Seoul, Republic of Korea
| | - Jinho Yang
- MD Healthcare Inc., Seoul, Republic of Korea
| | | | - Yong Min Ahn
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
31
|
The Fruits of Paris polyphylla Inhibit Colorectal Cancer Cell Migration Induced by Fusobacterium nucleatum-Derived Extracellular Vesicles. Molecules 2021; 26:molecules26134081. [PMID: 34279421 PMCID: PMC8271733 DOI: 10.3390/molecules26134081] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 01/19/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Gut microbiota are highly associated with CRC, and Fusobacterium nucleatum was found to be enriched in CRC lesions and correlated with CRC carcinogenesis and metastases. Paris polyphylla is a well-known herbal medicine that showed anticancer activity. The present study demonstrates that P. polyphylla inhibited the growth of CRC cells. In addition, treating with active compounds pennogenin 3-O-beta-chacotrioside and polyphyllin VI isolated from P. polyphylla inhibited the growth of F. nucleatum. We also found that extracellular vesicles (EVs) released from F. nucleatum could promote mitochondrial fusion and cell invasion in CRC cells, whereas active components from P. polyphylla could dampen such an impact. The data suggest that P. polyphylla and its active ingredients could be further explored as potential candidates for developing complementary chemotherapy for the treatment of CRC.
Collapse
|
32
|
Ñahui Palomino RA, Vanpouille C, Costantini PE, Margolis L. Microbiota-host communications: Bacterial extracellular vesicles as a common language. PLoS Pathog 2021; 17:e1009508. [PMID: 33984071 PMCID: PMC8118305 DOI: 10.1371/journal.ppat.1009508] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Both gram-negative and gram-positive bacteria release extracellular vesicles (EVs) that contain components from their mother cells. Bacterial EVs are similar in size to mammalian-derived EVs and are thought to mediate bacteria–host communications by transporting diverse bioactive molecules including proteins, nucleic acids, lipids, and metabolites. Bacterial EVs have been implicated in bacteria–bacteria and bacteria–host interactions, promoting health or causing various pathologies. Although the science of bacterial EVs is less developed than that of eukaryotic EVs, the number of studies on bacterial EVs is continuously increasing. This review highlights the current state of knowledge in the rapidly evolving field of bacterial EV science, focusing on their discovery, isolation, biogenesis, and more specifically on their role in microbiota–host communications. Knowledge of these mechanisms may be translated into new therapeutics and diagnostics based on bacterial EVs.
Collapse
Affiliation(s)
- Rogers A. Ñahui Palomino
- Section on Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christophe Vanpouille
- Section on Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paolo E. Costantini
- Section on Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Leonid Margolis
- Section on Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Erdbrügger U, Blijdorp CJ, Bijnsdorp IV, Borràs FE, Burger D, Bussolati B, Byrd JB, Clayton A, Dear JW, Falcón‐Pérez JM, Grange C, Hill AF, Holthöfer H, Hoorn EJ, Jenster G, Jimenez CR, Junker K, Klein J, Knepper MA, Koritzinsky EH, Luther JM, Lenassi M, Leivo J, Mertens I, Musante L, Oeyen E, Puhka M, van Royen ME, Sánchez C, Soekmadji C, Thongboonkerd V, van Steijn V, Verhaegh G, Webber JP, Witwer K, Yuen PS, Zheng L, Llorente A, Martens‐Uzunova ES. Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J Extracell Vesicles 2021; 10:e12093. [PMID: 34035881 PMCID: PMC8138533 DOI: 10.1002/jev2.12093] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Urine is commonly used for clinical diagnosis and biomedical research. The discovery of extracellular vesicles (EV) in urine opened a new fast-growing scientific field. In the last decade urinary extracellular vesicles (uEVs) were shown to mirror molecular processes as well as physiological and pathological conditions in kidney, urothelial and prostate tissue. Therefore, several methods to isolate and characterize uEVs have been developed. However, methodological aspects of EV separation and analysis, including normalization of results, need further optimization and standardization to foster scientific advances in uEV research and a subsequent successful translation into clinical practice. This position paper is written by the Urine Task Force of the Rigor and Standardization Subcommittee of ISEV consisting of nephrologists, urologists, cardiologists and biologists with active experience in uEV research. Our aim is to present the state of the art and identify challenges and gaps in current uEV-based analyses for clinical applications. Finally, recommendations for improved rigor, reproducibility and interoperability in uEV research are provided in order to facilitate advances in the field.
Collapse
|
34
|
Kim MJ, Kim KP, Choi E, Yim JH, Choi C, Yun HS, Ahn HY, Oh JY, Cho Y. Effects of Lactobacillus plantarum CJLP55 on Clinical Improvement, Skin Condition and Urine Bacterial Extracellular Vesicles in Patients with Acne Vulgaris: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2021; 13:nu13041368. [PMID: 33921829 PMCID: PMC8073324 DOI: 10.3390/nu13041368] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Lactobacillus plantarum CJLP55 has anti-pathogenic bacterial and anti-inflammatory activities in vitro. We investigated the dietary effect of CJLP55 supplement in patients with acne vulgaris, a prevalent inflammatory skin condition. Subjects ingested CJLP55 or placebo (n = 14 per group) supplements for 12 weeks in this double-blind, placebo-controlled randomized study. Acne lesion count and grade, skin sebum, hydration, pH and surface lipids were assessed. Metagenomic DNA analysis was performed on urine extracellular vesicles (EV), which indirectly reflect systemic bacterial flora. Compared to the placebo supplement, CJLP55 supplement improved acne lesion count and grade, decreased sebum triglycerides (TG), and increased hydration and ceramide 2, the major ceramide species that maintains the epidermal lipid barrier for hydration. In addition, CJLP55 supplement decreased the prevalence of Proteobacteria and increased Firmicutes, which were correlated with decreased TG, the major skin surface lipid of sebum origin. CJLP55 supplement further decreased the Bacteroidetes:Firmicutes ratio, a relevant marker of bacterial dysbiosis. No differences in skin pH, other skin surface lipids or urine bacterial EV phylum were noted between CJLP55 and placebo supplements. Dietary Lactobacillus plantarum CJLP55 was beneficial to clinical state, skin sebum, and hydration and urine bacterial EV phylum flora in patients with acne vulgaris.
Collapse
Affiliation(s)
- Mi-Ju Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Gyeongggi-do, Korea; (M.-J.K.); (K.-P.K.); (E.C.)
| | - Kun-Pyo Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Gyeongggi-do, Korea; (M.-J.K.); (K.-P.K.); (E.C.)
| | - Eunhye Choi
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Gyeongggi-do, Korea; (M.-J.K.); (K.-P.K.); (E.C.)
| | - June-Hyuck Yim
- Department of Dermatology, Kyung Hee University Medical Center, Seoul 02447, Korea;
| | - Chunpil Choi
- Skyfeel Dermatologic Clinic, Seoul 06020, Korea;
| | - Hyun-Sun Yun
- CJ Foods R & D Center, CJ CheilJedang Corporation, Suwon-si 16495, Gyeongggi-do, Korea; (H.-S.Y.); (H.-Y.A.); (J.-Y.O.)
| | - Hee-Yoon Ahn
- CJ Foods R & D Center, CJ CheilJedang Corporation, Suwon-si 16495, Gyeongggi-do, Korea; (H.-S.Y.); (H.-Y.A.); (J.-Y.O.)
| | - Ji-Young Oh
- CJ Foods R & D Center, CJ CheilJedang Corporation, Suwon-si 16495, Gyeongggi-do, Korea; (H.-S.Y.); (H.-Y.A.); (J.-Y.O.)
| | - Yunhi Cho
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Gyeongggi-do, Korea; (M.-J.K.); (K.-P.K.); (E.C.)
- Correspondence: ; Tel.: +82-31-201-3817
| |
Collapse
|
35
|
Kim JR, Han K, Han Y, Kang N, Shin TS, Park HJ, Kim H, Kwon W, Lee S, Kim YK, Park T, Jang JY. Microbiome Markers of Pancreatic Cancer Based on Bacteria-Derived Extracellular Vesicles Acquired from Blood Samples: A Retrospective Propensity Score Matching Analysis. BIOLOGY 2021; 10:biology10030219. [PMID: 33805810 PMCID: PMC8000718 DOI: 10.3390/biology10030219] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary Although tremendous advances in diagnosis and treatment, pancreatic cancer still remains one of the lethal diseases with an overall survival rate of 10~15%. Early detection and diagnosis of pancreatic cancer is very important in improving the prognosis of patients. The aim of our study was to find new biomarkers, using microbiomes based on bacteria-derived extracellular vesicles, extracted from blood serum. With 38 patients with pancreatic cancer and 52 healthy controls with no history of pancreatic disease, we identified several compositional differences of microbiome between them. Using various combinations of the metagenomic markers which made the compositional differences, we also built a pancreatic cancer prediction model with high area under the receiver operating characteristic curve (0.966 at the phylum level and 1.000 at the genus level). These microbiome markers, based on bacteria-derived extracellular vesicles acquired from blood, show demonstrate the potential of candidate biomarkers for early diagnosis of pancreatic cancer. Abstract Novel biomarkers for early diagnosis of pancreatic cancer (PC) are necessary to improve prognosis. We aimed to discover candidate biomarkers by identifying compositional differences of microbiome between patients with PC (n = 38) and healthy controls (n = 52), using microbial extracellular vesicles (EVs) acquired from blood samples. Composition analysis was performed using 16S rRNA gene analysis and bacteria-derived EVs. Statistically significant differences in microbial compositions were used to construct PC prediction models after propensity score matching analysis to reduce other possible biases. Between-group differences in microbial compositions were identified at the phylum and genus levels. At the phylum level, three species (Verrucomicrobia, Deferribacteres, and Bacteroidetes) were more abundant and one species (Actinobacteria) was less abundant in PC patients. At the genus level, four species (Stenotrophomonas, Sphingomonas, Propionibacterium, and Corynebacterium) were less abundant and six species (Ruminococcaceae UCG-014, Lachnospiraceae NK4A136 group, Akkermansia, Turicibacter, Ruminiclostridium, and Lachnospiraceae UCG-001) were more abundant in PC patients. Using the best combination of these microbiome markers, we constructed a PC prediction model that yielded a high area under the receiver operating characteristic curve (0.966 and 1.000, at the phylum and genus level, respectively). These microbiome markers, which altered microbial compositions, are therefore candidate biomarkers for early diagnosis of PC.
Collapse
Affiliation(s)
- Jae Ri Kim
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.R.K.); (Y.H.); (H.K.); (W.K.)
- Department of Surgery, Gyeongsang National University Changwon Hospital, Changwon 51472, Korea
| | - Kyulhee Han
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (K.H.); (N.K.)
| | - Youngmin Han
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.R.K.); (Y.H.); (H.K.); (W.K.)
| | - Nayeon Kang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (K.H.); (N.K.)
| | - Tae-Seop Shin
- MD Healthcare Inc., Seoul 03923, Korea; (T.-S.S.); (H.J.P.); (Y.-K.K.)
| | - Hyeon Ju Park
- MD Healthcare Inc., Seoul 03923, Korea; (T.-S.S.); (H.J.P.); (Y.-K.K.)
| | - Hongbeom Kim
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.R.K.); (Y.H.); (H.K.); (W.K.)
| | - Wooil Kwon
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.R.K.); (Y.H.); (H.K.); (W.K.)
| | - Seungyeoun Lee
- Department of Mathematics and Statistics, Sejong University, Seoul 05006, Korea;
| | - Yoon-Keun Kim
- MD Healthcare Inc., Seoul 03923, Korea; (T.-S.S.); (H.J.P.); (Y.-K.K.)
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (K.H.); (N.K.)
- Department of Statistics, Seoul National University, Seoul 08826, Korea
- Correspondence: (T.P.); (J.-Y.J.); Tel.: +82-2-880-8924 (T.P.); Fax: +82-2-880-6144 (T.P.); Tel./Fax: +82-2-2072-2194 (J.-Y.J.)
| | - Jin-Young Jang
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.R.K.); (Y.H.); (H.K.); (W.K.)
- Correspondence: (T.P.); (J.-Y.J.); Tel.: +82-2-880-8924 (T.P.); Fax: +82-2-880-6144 (T.P.); Tel./Fax: +82-2-2072-2194 (J.-Y.J.)
| |
Collapse
|
36
|
Abstract
The release of extracellular vesicles (EVs) is a process conserved across the three domains of life. Amongst prokaryotes, EVs produced by Gram-negative bacteria, termed outer membrane vesicles (OMVs), were identified more than 50 years ago and a wealth of literature exists regarding their biogenesis, composition and functions. OMVs have been implicated in benefiting numerous metabolic functions of their parent bacterium. Additionally, OMVs produced by pathogenic bacteria have been reported to contribute to pathology within the disease setting. By contrast, the release of EVs from Gram-positive bacteria, known as membrane vesicles (MVs), has only been widely accepted within the last decade. As such, there is a significant disproportion in knowledge regarding MVs compared to OMVs. Here we provide an overview of the literature regarding bacterial membrane vesicles (BMVs) produced by pathogenic and commensal bacteria. We highlight the mechanisms of BMV biogenesis and their roles in assisting bacterial survival, in addition to discussing their functions in promoting disease pathologies and their potential use as novel therapeutic strategies.
Collapse
Affiliation(s)
- William J Gilmore
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Natalie J Bitto
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Maria Kaparakis-Liaskos
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia.
- Research Centre for Extracellular Vesicles, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
37
|
Ricci V, Carcione D, Messina S, Colombo GI, D’Alessandra Y. Circulating 16S RNA in Biofluids: Extracellular Vesicles as Mirrors of Human Microbiome? Int J Mol Sci 2020; 21:ijms21238959. [PMID: 33255779 PMCID: PMC7728300 DOI: 10.3390/ijms21238959] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
The human body is inhabited by around 1013 microbes composing a multicomplex system, termed microbiota, which is strongly involved in the regulation and maintenance of homeostasis. Perturbations in microbiota composition can lead to dysbiosis, which has been associated with several human pathologies. The gold-standard method to explore microbial composition is next-generation sequencing, which involves the analysis of 16S rRNA, an indicator of the presence of specific microorganisms and the principal tool used in bacterial taxonomic classification. Indeed, the development of 16S RNA sequencing allows us to explore microbial composition in several environments and human body districts and fluids, since it has been detected in “germ-free” environments such as blood, plasma, and urine of diseased and healthy subjects. Recently, prokaryotes showed to generate extracellular vesicles, which are known to be responsible for shuttling different intracellular components such as proteins and nucleic acids (including 16S molecules) by protecting their cargo from degradation. These vesicles can be found in several human biofluids and can be exploited as tools for bacterial detection and identification. In this review, we examine the complex link between circulating 16S RNA molecules and bacteria-derived vesicles.
Collapse
Affiliation(s)
- Veronica Ricci
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino—IRCCS, 20138 Milan, Italy; (V.R.); (S.M.); (G.I.C.)
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy
| | - Davide Carcione
- Unit of Laboratory Medicine, Centro Cardiologico Monzino—IRCCS, 20138 Milan, Italy;
| | - Simone Messina
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino—IRCCS, 20138 Milan, Italy; (V.R.); (S.M.); (G.I.C.)
| | - Gualtiero I. Colombo
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino—IRCCS, 20138 Milan, Italy; (V.R.); (S.M.); (G.I.C.)
| | - Yuri D’Alessandra
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino—IRCCS, 20138 Milan, Italy; (V.R.); (S.M.); (G.I.C.)
- Correspondence: ; Tel.: +39-02-5800-2852; Fax: +39-02-5800-2750
| |
Collapse
|
38
|
Correlation between the Antimicrobial Activity and Metabolic Profiles of Cell Free Supernatants and Membrane Vesicles Produced by Lactobacillus reuteri DSM 17938. Microorganisms 2020; 8:microorganisms8111653. [PMID: 33114410 PMCID: PMC7692313 DOI: 10.3390/microorganisms8111653] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
The aim of the work is to assess the antimicrobial activities of Cell Free Supernatants (CFS) and Membrane Vesicles (MVs), produced by Lactobacillus reuteri DSM 17938, versus Gram-positive and Gram-negative bacteria and investigate their metabolic profiles. The Minimum Inhibitory Concentration was determined through the broth microdilution method and cell proliferation assay while the Minimum Bactericidal Concentration was determined by Colony Forming Units counts. The characteristics of the antimicrobial compounds were evaluated by pH adjustments, proteinase treatment, and size fractionation of the CFS. The cytotoxicity of CFS was tested on two human cell lines. A detailed snapshot of the L. reuteri metabolism was attained through an untargeted metabolic profiling by means of high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) coupled with Electrospray Ionization Source (ESI). The results showed (i) a greater efficacy of CFS and its fractions towards Gram-negative compared to Gram-positive bacteria; (ii) an antimicrobial effect related to pH-dependent compounds but not to MVs; (iii) a molecular weight < 3 KDa as well as an a non-proteinaceous nature of the antimicrobial compounds; and (iv) more than 200 and 500 putative metabolites annotated in MVs and supernatants, covering several classes of metabolites, including amino acids, lipids, fatty and organic acids, polyalcohols, nucleotides, and vitamins. Some putative compounds were proposed not only as characteristic of specific fractions, but also possibly involved in antimicrobial activity.
Collapse
|
39
|
Kim KU, Kim WH, Jeong CH, Yi DY, Min H. More than Nutrition: Therapeutic Potential of Breast Milk-Derived Exosomes in Cancer. Int J Mol Sci 2020; 21:E7327. [PMID: 33023062 PMCID: PMC7582863 DOI: 10.3390/ijms21197327] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
Human breast milk (HBM) is an irreplaceable source of nutrition for early infant growth and development. Breast-fed children are known to have a low prevalence and reduced risk of various diseases, such as necrotizing enterocolitis, gastroenteritis, acute lymphocytic leukemia, and acute myeloid leukemia. In recent years, HBM has been found to contain a microbiome, extracellular vesicles or exosomes, and microRNAs, as well as nutritional components and non-nutritional proteins, including immunoregulatory proteins, hormones, and growth factors. Especially, the milk-derived exosomes exert various physiological and therapeutic function in cell proliferation, inflammation, immunomodulation, and cancer, which are mainly attributed to their cargo molecules such as proteins and microRNAs. The exosomal miRNAs are protected from enzymatic digestion and acidic conditions, and play a critical role in immune regulation and cancer. In addition, the milk-derived exosomes are developed as drug carriers for delivering small molecules and siRNA to tumor sites. In this review, we examined the various components of HBM and their therapeutic potential, in particular of exosomes and microRNAs, towards cancer.
Collapse
Affiliation(s)
- Ki-Uk Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (K.-U.K.); (W.-H.K.); (C.H.J.)
| | - Wan-Hoon Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (K.-U.K.); (W.-H.K.); (C.H.J.)
| | - Chi Hwan Jeong
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (K.-U.K.); (W.-H.K.); (C.H.J.)
| | - Dae Yong Yi
- Department of Pediatrics, Chung-Ang University College of Medicine, Seoul 06974, Korea
- Department of Pediatrics, Chung-Ang University Hospital, Seoul 06973, Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (K.-U.K.); (W.-H.K.); (C.H.J.)
| |
Collapse
|
40
|
Microbiomes in agricultural and mining soils contaminated with arsenic in Guanajuato, Mexico. Arch Microbiol 2020; 203:499-511. [PMID: 32964256 DOI: 10.1007/s00203-020-01973-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
In this report, physical and chemical properties, and total arsenic (As) concentrations were analyzed in agricultural (MASE) and mining soils (SMI) in the State of Guanajuato, México. Additionally, a metagenomic analysis of both types of soils was the bases for the identification and selection of bacteria and fungi resistant to As. The SMI soil showed higher concentration of As (39 mg kg-1) as compared to MASE soil (15 mg kg-1). The metagenome showed a total of 175,240 reads from both soils. MASE soil showed higher diversity of bacteria, while the SMI soil showed higher diversity of fungi. 16S rRNA analysis showed that the phylum Proteobacteria showed the highest proportion (39.6% in MASE and 36.4% in SMI) and Acidobacteria was the second most representative (24.2% in SMI and 11.6% in MASE). 18S rRNA analysis, showed that the phylum Glomeromycota was found only in the SMI soils (11.6%), while Ascomycota was the most abundant, followed by Basidiomycota, and Zygomycota, in both soils. Genera Bacillus and Penicillium were able to grow in As concentrations as high as 5 and 10 mM, reduced As (V) to As (III), and removed As at 9.8% and 12.1% rates, respectively. When aoxB, arsB, ACR3(1), ACR3(2,) and arrA genes were explored, only the arsB gene was identified in Bacillus sp., B. simplex, and B. megaterium. In general, SMI soils showed more microorganisms resistant to As than MASE soils. Bacteria and fungi selected in this work may show potential to be used as bioremediation agents in As contaminated soils.
Collapse
|
41
|
Joseph A. The Diagnosis and Management of UTI in >65s: To Dipstick or Not? The Argument Against Dipsticks. Infect Prev Pract 2020; 2:100063. [PMID: 34368711 PMCID: PMC8336295 DOI: 10.1016/j.infpip.2020.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/22/2020] [Indexed: 11/28/2022] Open
|
42
|
Kim SY, Yi DY. Analysis of the human breast milk microbiome and bacterial extracellular vesicles in healthy mothers. Exp Mol Med 2020; 52:1288-1297. [PMID: 32747701 PMCID: PMC8080581 DOI: 10.1038/s12276-020-0470-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
The microbiota of human breast milk (HBM) contribute to infant gut colonization; however, whether bacterial extracellular vesicles (EVs) are present in HBM or might contribute to this process remains unknown. In this study, we characterized the HBM microbiota of healthy Korean mothers and measured the key bacteria likely affecting infant gut colonization by analyzing both the microbiota and bacterial EVs. A total of 22 HBM samples were collected from lactating mothers. The DNA of bacteria and bacteria-derived EVs was extracted from each sample. In alpha-diversity analyses, bacterial samples showed higher richness and evenness than bacterial EV samples, and beta-diversity analyses showed significant differences between bacteria and bacterial EVs within identical individual samples. Firmicutes accounted for the largest proportion among the phyla, followed by Proteobacteria, Bacteroidetes, and Actinobacteria, in both bacteria and bacterial EV samples. At the genus level, Streptococcus (25.1%) and Staphylococcus (10.7%) were predominant in bacterial samples, whereas Bacteroides (9.1%), Acinetobacter (6.9%), and Lactobacillaceae(f) (5.5%) were prevalent in bacterial EV samples. Several genera, including Bifidobacterium, were significantly positively correlated between the two samples. This study revealed the diverse bacterial communities in the HBM of healthy lactating mothers, and found that gut-associated genera accounted for a high proportion in bacterial EV samples. Our findings suggest the existence of key bacteria with metabolic activity that are independent of the major bacterial populations that inhabit HBM, and the possibility that EVs derived from these bacteria are involved in the vertical transfer of gut microbiota.
Collapse
Affiliation(s)
- Su Yeong Kim
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, 06973, South Korea
| | - Dae Yong Yi
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, 06973, South Korea.
- College of Medicine, Chung-Ang University, Seoul, 06911, South Korea.
| |
Collapse
|
43
|
Jang YO, Lee SH, Choi JJ, Kim DH, Choi JM, Kang MJ, Oh YM, Park YJ, Shin Y, Lee SW. Fecal microbial transplantation and a high fiber diet attenuates emphysema development by suppressing inflammation and apoptosis. Exp Mol Med 2020; 52:1128-1139. [PMID: 32681029 PMCID: PMC8080776 DOI: 10.1038/s12276-020-0469-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/24/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Recent work has suggested a microbial dysbiosis association between the lung and gut in respiratory diseases. Here, we demonstrated that gut microbiome modulation attenuated emphysema development. To modulate the gut microbiome, fecal microbiota transplantation (FMT) and diet modification were adopted in mice exposed to smoking and poly I:C for the emphysema model. We analyzed the severity of emphysema by the mean linear intercept (MLI) and apoptosis by the fluorescent TUNEL assay. Microbiome analysis was also performed in feces and fecal extracellular vesicles (EVs). The MLI was significantly increased with smoking exposure. FMT or a high-fiber diet (HFD) attenuated the increase. Weight loss, combined with smoking exposure, was not noted in mice with FMT. HFD significantly decreased macrophages and lymphocytes in bronchoalveolar lavage fluid. Furthermore, IL-6 and IFN-γ were decreased in the bronchoalveolar lavage fluid and serum. The TUNEL score was significantly lower in mice with FMT or HFD, suggesting decreased cell apoptosis. In the microbiome analysis, Bacteroidaceae and Lachnospiraceae, which are alleged to metabolize fiber into short-chain fatty acids (SCFAs), increased at the family level with FMT and HFD. FMT and HFD attenuated emphysema development via local and systemic inhibition of inflammation and changes in gut microbiota composition, which could provide a new paradigm in COPD treatment.
Collapse
Affiliation(s)
- Yoon Ok Jang
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Se Hee Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, 13496, Republic of Korea
| | - Jong Jin Choi
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Do-Hyun Kim
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, 06520-8057, Connecticut, USA
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
44
|
Zhang J, Li H, Fan B, Xu W, Zhang X. Extracellular vesicles in normal pregnancy and pregnancy-related diseases. J Cell Mol Med 2020; 24:4377-4388. [PMID: 32175696 PMCID: PMC7176865 DOI: 10.1111/jcmm.15144] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized, membranous vesicles released by almost all types of cells. Extracellular vesicles can be classified into distinct subtypes according to their sizes, origins and functions. Extracellular vesicles play important roles in intercellular communication through the transfer of a wide spectrum of bioactive molecules, contributing to the regulation of diverse physiological and pathological processes. Recently, it has been established that EVs mediate foetal‐maternal communication across gestation. Abnormal changes in EVs have been reported to be critically involved in pregnancy‐related diseases. Moreover, EVs have shown great potential to serve as biomarkers for the diagnosis of pregnancy‐related diseases. In this review, we discussed about the roles of EVs in normal pregnancy and how changes in EVs led to complicated pregnancy with an emphasis on their values in predicting and monitoring of pregnancy‐related diseases.
Collapse
Affiliation(s)
- Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Haibo Li
- Department of Clinical Laboratory, Nantong Maternal and Child Health Care Hospital, Nantong, China
| | - Boyue Fan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
45
|
Kazemtabrizi A, Haddadi A, Shavandi M, Harzandi N. Metagenomic investigation of bacteria associated with dental lesions: a cross-sectional study. Med Oral Patol Oral Cir Bucal 2020; 25:e240-e251. [PMID: 32040467 PMCID: PMC7103443 DOI: 10.4317/medoral.23326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dental caries is considered as one of the most significant global health problem over the world. Dental caries initiates from bacterial shifts within the supragingival biofilm, then a polymicrobial biofilm is formed on the surface of tooth, and finally various bacterial species aggregate in a complex-organized manner. The exploiting variability in 16S rRNA gene sequence has been considered as a cost-efficient high-throughput characterization approach in human oral microbiome investigations. The aim of this study is to characterize bacterial species associated with superficial dental biofilm, underlying carious dentine and root caries lesion by16S rRNA gene-based metagenomic analysis. MATERIAL AND METHODS Herein, the bacterial communities in carious dentin lesion, biofilm and root canal samples of 30 subjects (aged 4-76 years) admitted to a clinic in Tehran during 2017 were investigated using a culture independent approach. Total genomic DNA of each tissue was subjected to metagenomic identification of bacteria using a nested PCR assay and 16S rRNA library construction method. RESULTS 31 samples collected from 30 consenting patients (29 samples from 29 patients ant two biofilm samples from one patient). Bioinformatics analyses of a-800bp sequences of the second step of Nested-PCR revealed presence of 156 bacterial isolates in carious (n=45), biofilm (n=81) and root canal (n=30) specimens. Prevotella spp., Lactobacillus vaginalis, and streptococcus spp. showed higher prevalence in carious dentin, root and biofilm samples, respectively. CONCLUSIONS Exploring the dental microbiota and comparing them in health or diseased conditions is critical step in the determination of human general health. The method applied in this study could identify bacteria related to the three dental lesions. However, due to lack of data for comparison in Genbank or because of the sequence similarity lower than 98% for most identified bacteria, the use of more powerful approaches like NGS platforms or typing of multiple loci (MLST) in future studies is recommended.
Collapse
Affiliation(s)
- A Kazemtabrizi
- Department of Microbiology, Karaj Branch Islamic Azad University, Karaj, Iran
| | | | | | | |
Collapse
|
46
|
Jones EJ, Booth C, Fonseca S, Parker A, Cross K, Miquel-Clopés A, Hautefort I, Mayer U, Wileman T, Stentz R, Carding SR. The Uptake, Trafficking, and Biodistribution of Bacteroides thetaiotaomicron Generated Outer Membrane Vesicles. Front Microbiol 2020; 11:57. [PMID: 32117106 PMCID: PMC7015872 DOI: 10.3389/fmicb.2020.00057] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
Gram-negative bacteria ubiquitously produce and release nano-size, non-replicative outer membrane vesicles (OMVs). In the gastrointestinal (GI-) tract, OMVs generated by members of the intestinal microbiota are believed to contribute to maintaining the intestinal microbial ecosystem and mediating bacteria-host interactions, including the delivery of bacterial effector molecules to host cells to modulate their physiology. Bacterial OMVs have also been found in the bloodstream although their origin and fate are unclear. Here we have investigated the interactions between OMVs produced by the major human gut commensal bacterium, Bacteroides thetaiotaomicron (Bt), with cells of the GI-tract. Using a combination of in vitro culture systems including intestinal epithelial organoids and in vivo imaging we show that intestinal epithelial cells principally acquire Bt OMVs via dynamin-dependent endocytosis followed by intracellular trafficking to LAMP-1 expressing endo-lysosomal vesicles and co-localization with the perinuclear membrane. We observed that Bt OMVs can also transmigrate through epithelial cells via a paracellular route with in vivo imaging demonstrating that within hours of oral administration Bt OMVs can be detected in systemic tissues and in particular, the liver. Our findings raise the intriguing possibility that OMVs may act as a long-distance microbiota-host communication system.
Collapse
Affiliation(s)
- Emily J. Jones
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Catherine Booth
- Core Science Resources, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Sonia Fonseca
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Aimee Parker
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Kathryn Cross
- Core Science Resources, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Ariadna Miquel-Clopés
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | | | - Ulrike Mayer
- Biomedical Research Centre, University of East Anglia, Norwich, United Kingdom
| | - Tom Wileman
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Régis Stentz
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
47
|
Lee H, Lee HK, Min SK, Lee WH. 16S rDNA microbiome composition pattern analysis as a diagnostic biomarker for biliary tract cancer. World J Surg Oncol 2020; 18:19. [PMID: 31980025 PMCID: PMC6982396 DOI: 10.1186/s12957-020-1793-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The aim of this study is to investigate the composition of microbiota in biliary tract cancer patients and healthy adults by metagenome analysis and evaluate its potential values as biomarkers for biliary tract cancer. METHODS Patients who were diagnosed with biliary tract cancer or benign inflammation were enrolled in this study. The control group consisted of healthy adults who presented with no history of significant medical issues. We isolated bacteria-derived extracellular vesicles in the plasma. The microbiome composition was investigated with 16S rDNA metagenome analysis. We evaluated each microbiome to ensure suitability for the biliary tract cancer prediction model. RESULTS A total of 155 patients were included in this study: 24 patients with diagnosed biliary tract cancers, 43 diagnosed with cholecystitis or cholangitis, and 88 healthy adults. The microbiome composition pattern of the biliary tract cancer differed from the microbiome composition pattern seen in healthy adult group in beta diversity analysis. The percent composition of microbiota was found to be different from the phylum to genus level. Differences in the composition of the Bifidobacteriaceae and Pseudomonaceae families and Corynebacteriaceae Corynebacterium, Oxalobacteraceae Ralstonia and Comamonadaceae Comamonas species may be used to develop predictive models for biliary tract cancer. CONCLUSION Biliary tract cancer patients have altered microbiome composition, which represents a promising biomarker to differentiate malignant biliary tract disease from normal control group.
Collapse
Affiliation(s)
- Huisong Lee
- Department of Surgery, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Hyeon Kook Lee
- Department of Surgery, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea.
| | - Seog Ki Min
- Department of Surgery, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | | |
Collapse
|
48
|
You YA, Yoo JY, Kwon EJ, Kim YJ. Blood Microbial Communities During Pregnancy Are Associated With Preterm Birth. Front Microbiol 2019; 10:1122. [PMID: 31214131 PMCID: PMC6558066 DOI: 10.3389/fmicb.2019.01122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
Microbial infection of the placenta, amniotic fluid, vaginal canal, and oral cavity is known to significantly contribute to preterm birth (PTB). Although microbes can be translocated into the blood, little is known regarding the blood microbiota during pregnancy. To assess changes in the microbiome during pregnancy, blood samples were obtained 2 or 3 times during pregnancy from a cohort of 45 pregnant women enrolled between 2008 and 2010. To analyze the association with PTB, we conducted a case-control study involving 41 pregnant women upon admission for preterm labor and rupture of membrane (20 with term delivery; 21 with PTB). Bacterial diversity was assessed in number and composition between the first, second, and third trimesters in term delivered women according to 16S rRNA gene amplicon sequencing, and data were analyzed using Quantitative Insight Into Microbial Ecology (QIIME). Taxonomy was assigned using the GreenGenes 8.15.13 database. Dominant microorganisms at the phylum level in all pregnant women were identified as Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. However, the number and composition of bacteria in women with PTB differed from that in women with term delivery. Firmicutes and Bacteroidetes were more abundant in women with PTB than in women with term delivery, while Proteobacteria was less prevalent in women with PTB. At the genus level, Bacteroides, Lactobacillus, Sphingomonas, Fastidiosipila, Weissella, and Butyricicoccus were enriched in PTB samples. These observational results suggest that several taxa in the maternal blood microbiome are associated with PTB. Further studies are needed to confirm the composition of the blood microbiota in women with PTB. Additionally, the mechanism by which pathogenic microbes in maternal blood cause infection and PTB requires further analysis.
Collapse
Affiliation(s)
- Young-Ah You
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Jae Young Yoo
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Eun Jin Kwon
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, Ewha Womans University School of Medicine, Seoul, South Korea
| |
Collapse
|
49
|
Samra M, Nam SK, Lim DH, Kim DH, Yang J, Kim YK, Kim JH. Urine Bacteria-Derived Extracellular Vesicles and Allergic Airway Diseases in Children. Int Arch Allergy Immunol 2018; 178:150-158. [PMID: 30415264 DOI: 10.1159/000492677] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/03/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Microbiota and human allergic airway diseases have been proven to be interrelated. Bacteria-derived extracellular vesicle (EV)s are known to play important roles in interbacterial and human-bacteria communications, but their relationship with allergies has not been examined yet. Urine EVs were investigated to determine whether they could be used as biomarkers for monitoring allergic airway diseases in children. METHODS Subjects were 4 groups of chronic rhinitis (CR), allergic rhinitis (AR), atopic asthma (AS) and healthy controls. Single voided urine samples were collected. Urine EVs were isolated and their DNA was extracted for 16S-rDNA pyrosequencing. RESULTS A total of 118 children participated in this study; 27, 39, 19, and 33 were in the CR, AR, AS, and control group, respectively. The AR had a significantly high Chao-1 index than that of controls. Principal component analysis revealed dysbiosis in the CR, AR, and AS compared to the controls. One phylum and 19 families and genera were significantly enriched or depleted in the disease groups compared to the controls; the Actinobacteria phylum and the Sphingomonadaceae family were more abundant in the AS and CR, the Comamonadaceae family, the Propionibacteraceae family, Propionibacterium and Enhydrobacter were more enriched in the CR, and the Methylobacteriaceae family and Methylobacterium were more abundant in each disease group, while the Enterobacteriaceae family was depleted in each disease group. CONCLUSIONS CR, AR, and AS had a distinct composition of urine EVs. Urine EVs could be an indicator for assessing allergic airway diseases in children.
Collapse
Affiliation(s)
- Mona Samra
- Department of Pediatrics, Inha University School of Medicine, Incheon, Republic of Korea.,Environmental Health Center of Allergic Rhinitis, Inha University Hospital, Incheon, Republic of Korea
| | - Soo Kyung Nam
- Department of Pediatrics, Inha University Hospital, Incheon, Republic of Korea
| | - Dae Hyun Lim
- Department of Pediatrics, Inha University School of Medicine, Incheon, Republic of Korea.,Environmental Health Center of Allergic Rhinitis, Inha University Hospital, Incheon, Republic of Korea.,Department of Pediatrics, Inha University Hospital, Incheon, Republic of Korea
| | - Dong Hyun Kim
- Environmental Health Center of Allergic Rhinitis, Inha University Hospital, Incheon, Republic of Korea.,Department of Pediatrics, Inha University Hospital, Incheon, Republic of Korea
| | - Jinho Yang
- MD Healthcare Inc., Seoul, Republic of Korea
| | | | - Jeong Hee Kim
- Department of Pediatrics, Inha University School of Medicine, Incheon, Republic of Korea, .,Environmental Health Center of Allergic Rhinitis, Inha University Hospital, Incheon, Republic of Korea, .,Department of Pediatrics, Inha University Hospital, Incheon, Republic of Korea,
| |
Collapse
|
50
|
Liu F, Lv L, Jiang H, Yan R, Dong S, Chen L, Wang W, Chen YQ. Alterations in the Urinary Microbiota Are Associated With Cesarean Delivery. Front Microbiol 2018; 9:2193. [PMID: 30258432 PMCID: PMC6143726 DOI: 10.3389/fmicb.2018.02193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Similar to the gut, the bladder contains urinary microbiota, and its bacterial composition and structure are determined by the individual’s health status. Cesarean section is a traumatic event for women and it is correlated with postpartum complications. To better understand the urinary microbiota alterations caused by cesarean section, 16S rDNA sequencing was used to assess urine specimens collected by transurethral catheterization from 30 healthy women undergoing cesarean section pre-delivery (PreD) and post-delivery (PostD). A significant increase in bacterial diversity and more detectable bacteria at the phylum, family, and genus levels was observed in the PostD group compared to the PreD group, indicating that cesarean delivery (a process that includes surgery and delivery) altered the bacterial community. Specifically, the phylum Firmicutes and its affiliated family Lactobacillaceae and genus Lactobacillus dramatically decreased in the PostD group, suggesting that beneficial bacteria decreased after cesarean section, and clinicians should be aware that this might increase the risk of complications. Concurrently, the phylum Proteobacteria and its affiliated bacteria Pseudomonadaceae and Pseudomonas increased in the PostD group compared to the PreD group. This indicates that pathogen growth increases after cesarean section, making it important for clinicians to combat these changes to protect women from infectious diseases. Interestingly, several metabolic pathways, such as metabolism of energy, cofactors and vitamins were strengthened in the PostD group, whereas membrane transport was lessened in this group. This suggests that women’s metabolic disorders might be cured by balancing urinary microbiota. In conclusion, the altered urinary microbiota between the PreD and PostD periods appears to provide insight into how to prevent postpartum metabolic disorders.
Collapse
Affiliation(s)
- Fengping Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Longxian Lv
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huiyong Jiang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ren Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shurong Dong
- Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
| | - Liping Chen
- Intensive Unit, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|