1
|
Pollreisz A, Neschi M, Sloan KR, Pircher M, Mittermueller T, Dacey DM, Schmidt-Erfurth U, Curcio CA. Atlas of Human Retinal Pigment Epithelium Organelles Significant for Clinical Imaging. Invest Ophthalmol Vis Sci 2020; 61:13. [PMID: 32648890 PMCID: PMC7425708 DOI: 10.1167/iovs.61.8.13] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To quantify organelles impacting imaging in the cell body and intact apical processes of human retinal pigment epithelium (RPE), including melanosomes, lipofuscin-melanolipofuscin (LM), mitochondria, and nuclei. Methods A normal perifovea of a 21-year-old white male was preserved after rapid organ recovery. An aligned image stack was generated using serial block-face scanning electron microscopy and was annotated by expert readers (TrakEM, ImageJ). Acquired measures included cell body and nuclear volume (n = 17); organelle count in apical processes (n = 17) and cell bodies (n = 8); distance of cell body organelles along a normalized apical-basal axis (n = 8); and dimensions of organelle-bounding boxes in apical processes in selected subsamples of cell bodies and apical processes. Results In 2661 sections through 17 cells, apical processes contained 65 ± 24 melanosomes in mononucleate (n = 15) and 131 ± 28 in binucleate cells (n = 2). Cell bodies contained 681 ± 153 LM and 734 ± 170 mitochondria. LM was excluded from the basal quartile, and mitochondria from the apical quartile. Lengths of melanosomes, LM, and mitochondria, respectively were 2305 ± 528, 1320 ± 574, and 1195 ± 294 nm. The ratio of cell body to nucleus volume was 4.6 ± 0.4. LM and mitochondria covered 75% and 63%, respectively, of the retinal imaging plane. Conclusions Among RPE signal sources for optical coherence tomography, LM and mitochondria are the most numerous reflective cell body organelles. These and our published data show that most melanosomes are in apical processes. Overlapping LM and previously mitochondria cushions may support multiple reflective bands in cell bodies. This atlas of subcellular reflectivity sources can inform development of advanced optical coherence tomography technologies.
Collapse
Affiliation(s)
- Andreas Pollreisz
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Martina Neschi
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Computer Science, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Dennis M. Dacey
- Department of Biologic Structure, University of Washington, Seattle, Washington, United States
| | | | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Tao JX, Zhou WC, Zhu XG. Mitochondria as Potential Targets and Initiators of the Blue Light Hazard to the Retina. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6435364. [PMID: 31531186 PMCID: PMC6721470 DOI: 10.1155/2019/6435364] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/18/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022]
Abstract
Commercially available white light-emitting diodes (LEDs) have an intense emission in the range of blue light, which has raised a range of public concerns about their potential risks as retinal hazards. Distinct from other visible light components, blue light is characterized by short wavelength, high energy, and strong penetration that can reach the retina with relatively little loss in damage potential. Mitochondria are abundant in retinal tissues, giving them relatively high access to blue light, and chromophores, which are enriched in the retina, have many mitochondria able to absorb blue light and induce photochemical effects. Therefore, excessive exposure of the retina to blue light tends to cause ROS accumulation and oxidative stress, which affect the structure and function of the retinal mitochondria and trigger mitochondria-involved death signaling pathways. In this review, we highlight the essential roles of mitochondria in blue light-induced photochemical damage and programmed cell death in the retina, indicate directions for future research and preventive targets in terms of the blue light hazard to the retina, and suggest applying LED devices in a rational way to prevent the blue light hazard.
Collapse
Affiliation(s)
- Jin-Xin Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Clinical Medicine, The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wen-Chuan Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Clinical Medicine, The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Xin-Gen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
3
|
Ubels JL, DeJong RJ, Hoolsema B, Wurzberger A, Nguyen TT, Blankespoor HD, Blankespoor CL. Impairment of retinal function in yellow perch (Perca flavescens) by Diplostomum baeri metacercariae. Int J Parasitol Parasites Wildl 2018; 7:171-179. [PMID: 29988865 PMCID: PMC6032499 DOI: 10.1016/j.ijppaw.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 01/27/2023]
Abstract
Histologic studies of fish from Douglas Lake, Cheboygan County, Michigan, USA show that Diplostomum spp. infect the lens of spottail shiners (Notropis hudsonius) and common shiners (Luxilus cornutus). In contrast, infection was confined to the choroidal vasculature of yellow perch (Perca flavescens), and the morphology of the pigment epithelium and retina in regions adjacent to the metacercariae was abnormal. The difference in location of metacercariae within the host suggested that different Diplostomum species may infect shiners and perch in Douglas Lake. Species diversity was investigated by sequencing the barcode region of the cytochrome oxidase I gene of metacercariae. Four species of Diplostomum were identified, all four of which were present in shiner lenses; however, only Diplostomum baeri was present in the perch choroid. To determine whether infection of perch eyes affects the response of the retina to a light stimulus, electroretinograms (ERG) were recorded. The amplitude of the b-wave of the ERG was reduced and the b-wave latency was increased in infected perch, as compared to uninfected eyes, and the flicker-fusion frequency was also reduced. Infection of the yellow perch choroid by Diplostomum baeri, which shows strong host and tissue specificity, has an adverse effect on retinal function, lending support to the hypothesis that parasite-induced impairment of host vision may afford Diplostomum baeri the evolutionary benefit of increasing the likelihood of transmission, via host fish predation, to its definitive avian host.
Collapse
Affiliation(s)
- John L. Ubels
- Department of Biology, Calvin College, Grand Rapids, MI, USA
- University of Michigan Biological Station, Pellston, MI, USA
| | | | | | - Amy Wurzberger
- Department of Biology, Calvin College, Grand Rapids, MI, USA
| | | | - Harvey D. Blankespoor
- University of Michigan Biological Station, Pellston, MI, USA
- Department of Biology, Hope College, Holland, MI, USA
- Swimmer's Itch Solutions, LLC, Adrian, MI, USA
| | - Curtis L. Blankespoor
- University of Michigan Biological Station, Pellston, MI, USA
- Swimmer's Itch Solutions, LLC, Adrian, MI, USA
- Jackson College, Jackson, MI, USA
| |
Collapse
|
4
|
Ioshimoto GL, Camargo AA, Liber AMP, Nagy BV, Damico FM, Ventura DF. Comparison between albino and pigmented rabbit ERGs. Doc Ophthalmol 2018; 136:113-123. [PMID: 29572760 DOI: 10.1007/s10633-018-9628-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Pigmented and albino rabbits are commonly used in visual research; however, the lack of pigment in the eyes may affect retinal responses. Here, we compare and describe the differences of retinal function between pigmented (English Butterfly) and albino (New Zealand) rabbits. METHODS Electroretinograms were recorded in pigmented and albino rabbits in the dark-adapted eye, in the light-adapted eye and for four temporal frequencies in the light-adapted eye. The implicit time and amplitude of the a- and b-waves were analyzed, as well as the amplitude and phase of the first harmonic component of the photopic flicker response. RESULTS Albino rabbits presented significantly larger amplitudes for both a- and b-waves at all intensities and frequencies. The intensity-response function of the scotopic b-wave also showed that the albino retina is more sensitive than the pigmented retina and the larger flicker amplitudes found in the albino group also revealed post-receptoral changes specifically related to cone pathways. CONCLUSIONS The larger amplitude of albino receptoral and post-receptoral activities might be attributed to greater availability of light due to scatter and reflection at the retinal layer, and as the differences in response amplitudes between the groups increase with flicker frequency, we suggest that ON bipolar cells recover faster in the albino group, suggesting that this might be a mechanism to explain the higher temporal resolution for albinos compared to the pigmented group.
Collapse
Affiliation(s)
- Gabriela Lourençon Ioshimoto
- Department of Experimental Psychology, Institute of Psychology, Universidade de São Paulo, Av. Prof. Mello Moraes 1721, Cidade Universitária, São Paulo, SP, CEP 05508-030, Brazil.
| | - Amanda Alves Camargo
- Department of Experimental Psychology, Institute of Psychology, Universidade de São Paulo, Av. Prof. Mello Moraes 1721, Cidade Universitária, São Paulo, SP, CEP 05508-030, Brazil
| | - André Maurício Passos Liber
- Department of Experimental Psychology, Institute of Psychology, Universidade de São Paulo, Av. Prof. Mello Moraes 1721, Cidade Universitária, São Paulo, SP, CEP 05508-030, Brazil
| | - Balázs Vince Nagy
- Department of Experimental Psychology, Institute of Psychology, Universidade de São Paulo, Av. Prof. Mello Moraes 1721, Cidade Universitária, São Paulo, SP, CEP 05508-030, Brazil
| | - Francisco Max Damico
- Department of Ophthalmology, Medical School, Universidade de São Paulo, São Paulo, Brazil
| | - Dora Fix Ventura
- Department of Experimental Psychology, Institute of Psychology, Universidade de São Paulo, Av. Prof. Mello Moraes 1721, Cidade Universitária, São Paulo, SP, CEP 05508-030, Brazil
| |
Collapse
|
5
|
Xia T, Rizzolo LJ. Effects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium. Vision Res 2017; 139:72-81. [PMID: 28347688 DOI: 10.1016/j.visres.2017.02.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy is a debilitating microvascular complication of diabetes mellitus. A rich literature describes the breakdown of retinal endothelial cells and the inner blood-retinal barrier, but the effects of diabetes on the retinal pigment epithelium (RPE) has received much less attention. RPE lies between the choroid and neurosensory retina to form the outer blood-retinal barrier. RPE's specialized and dynamic barrier functions are crucial for maintaining retinal health. RPE barrier functions include a collection of interrelated structures and activities that regulate the transepithelial movement of solutes, including: diffusion through the paracellular spaces, facilitated diffusion through the cells, active transport, receptor-mediated and bulk phase transcytosis, and metabolic processing of solutes in transit. In the later stages of diabetic retinopathy, the tight junctions that regulate the paracellular space begin to disassemble, but there are earlier effects on the other aspects of RPE barrier function, particularly active transport and metabolic processing. With advanced understanding of RPE-specific barrier functions, and more in vivo-like culture models, the time is ripe for revisiting experiments in the literature to resolve controversies and extend our understanding of how diabetes affects the outer blood-retinal barrier.
Collapse
Affiliation(s)
- Tina Xia
- Departments of Surgery and Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208062, New Haven, CT 06520-8062, USA.
| | - Lawrence J Rizzolo
- Departments of Surgery and Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208062, New Haven, CT 06520-8062, USA.
| |
Collapse
|
6
|
Kim MH, Inamori M, Akechi M, Abe H, Yagi Y, Kino-oka M. Development of an automated chip culture system with integrated on-line monitoring for maturation culture of retinal pigment epithelial cells. AIMS BIOENGINEERING 2017. [DOI: 10.3934/bioeng.2017.3.402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Kim MH, Inamori M, Akechi M, Abe H, Yagi Y, Kino-oka M. Development of an automated chip culture system with integrated on-line monitoring for maturation culture of retinal pigment epithelial cells. AIMS BIOENGINEERING 2017. [DOI: 10.3934/bioeng.2017.4.402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
8
|
Chong CM, Zheng W. Artemisinin protects human retinal pigment epithelial cells from hydrogen peroxide-induced oxidative damage through activation of ERK/CREB signaling. Redox Biol 2016; 9:50-56. [PMID: 27372058 PMCID: PMC4939375 DOI: 10.1016/j.redox.2016.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023] Open
Abstract
The pathological increase in the levels of reactive oxygen species (ROS) in the retinal pigment epithelium (RPE), is implicated in the development of age-related macular degeneration (AMD). The discovery of drug candidates to effectively protect RPE cells from oxidative damage is required to resolve the pathological aspects and modify the process of AMD. In this study, a FDA-approved anti-malaria drug, Artemisinin was found to suppress hydrogen peroxide (H2O2)-induced cell death in human RPE cell-D407 cells. Further study showed that Artemisinin significantly suppressed H2O2- induced D407 cell death by restoring abnormal changes in nuclear morphology, intracellular ROS, mitochondrial membrane potential and apoptotic biomarkers. Western blotting analysis showed that Artemisinin was able to activate extracellular regulated ERK/CREB survival signaling. Furthermore, Artemisinin failed to suppress H2O2-induced cytotoxicity and the increase of caspase 3/7 activity in the presence of the ERK inhibitor PD98059. Taken together, these results suggest that Artemisinin is a potential protectant with the pro-survival effects against H2O2 insult through activation of the ERK/CREB pathway.
Collapse
Affiliation(s)
| | - Wenhua Zheng
- Faculty of Health Science, University of Macau, Macau, China.
| |
Collapse
|
9
|
Zhang QX, Lu RW, Messinger JD, Curcio CA, Guarcello V, Yao XC. In vivo optical coherence tomography of light-driven melanosome translocation in retinal pigment epithelium. Sci Rep 2014; 3:2644. [PMID: 24025778 PMCID: PMC3770963 DOI: 10.1038/srep02644] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/27/2013] [Indexed: 01/23/2023] Open
Abstract
Optical coherence tomography (OCT) may revolutionize fundamental investigation and clinical management of age-related macular degeneration and other eye diseases. However, quantitative OCT interpretation is hampered due to uncertain sub-cellular correlates of reflectivity in the retinal pigment epithelium (RPE) and photoreceptor. The purpose of this study was twofold: 1) to test OCT correlates in the RPE, and 2) to demonstrate the feasibility of longitudinal OCT monitoring of sub-cellular RPE dynamics. A high resolution OCT was constructed to achieve dynamic imaging of frog eyes, in which light-driven translocation of RPE melanosomes occurred within the RPE cell body and apical processes. Comparative histological examination of dark- and light-adapted eyes indicated that the RPE melanin granule, i.e., melanosome, was a primary OCT correlate. In vivo OCT imaging of RPE melanosomes opens the opportunity for quantitative assessment of RPE abnormalities associated with disease, and enables longitudinal investigation of RPE kinetics correlated with visual function.
Collapse
Affiliation(s)
- Qiu-Xiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | | | | | | | | |
Collapse
|
10
|
Burstedt M, Jonsson F, Köhn L, Burstedt M, Kivitalo M, Golovleva I. Genotype-phenotype correlations in Bothnia dystrophy caused by RLBP1 gene sequence variations. Acta Ophthalmol 2013; 91:437-44. [PMID: 22551409 DOI: 10.1111/j.1755-3768.2012.02431.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To evaluate phenotypes caused by different RLBP1 mutations in autosomal recessive retinitis pigmentosa of Bothnia type. METHODS Compound heterozygotes for mutations in the RLBP1 gene [c.677T>A]+[c.700C>T] (p.M226K+p.R234W), n = 10, aged 7-84 years, and homozygotes c.677T>A (p.M226K), n = 2, aged 63 and 73 years, were studied using visual acuity (VA), low-contrast VA, visual fields (VFs) and optical coherence tomography (OCT). Retrospective VA and VFs, standardized dark adaptation and full-field electroretinograms (ERGs) were analysed and prolonged dark adaptometry and ERG (at 24 hr) were performed. RESULTS Progressive decline of VA and VF areas was age-dependent. Retinal degenerative maculopathy, peripheral degenerative changes and retinitis punctata albescens (RPA) were present. Early retinal thinning in the central foveal, foveal (Ø 1 mm), and inner ring (Ø 3 mm) in the macular region, with homogenous, high-reflectance RPA changes, was visualized in and adjacent to the retinal pigment epithelium/choriocapillaris using OCT. Reduced dark adaptation and affected ERGs were present in all ages. Prolonged dark adaptation and ERG (at 24 hr), an increase in final threshold, and ERG rod and mixed rod/cone responses were found. CONCLUSIONS The two RLBP1 genotypes presented a phenotypical and electrophysiological expression of progressive retinal disease similar to that previously described in homozygotes for the c.700C>T (p.R234W) RLBP1 mutation. The uniform phenotypical expression of RLBP1 mutations is relevant information for the disease and of importance in planning future treatment strategies.
Collapse
Affiliation(s)
- Marie Burstedt
- Department of Clinical Sciences/Ophthalmology, University of Umeå, Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
11
|
Vachali PP, Besch BM, Gonzalez-Fernandez F, Bernstein PS. Carotenoids as possible interphotoreceptor retinoid-binding protein (IRBP) ligands: a surface plasmon resonance (SPR) based study. Arch Biochem Biophys 2013; 539:181-6. [PMID: 23876239 DOI: 10.1016/j.abb.2013.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/13/2013] [Accepted: 07/05/2013] [Indexed: 12/11/2022]
Abstract
Uptake, transport and stabilization of xanthophylls in the human retina are important components of a complex multistep process that culminates in a non-uniform distribution of these important nutrients in the retina. The process is far from understood; here, we consider the potential role of interphotoreceptor retinoid-binding protein (IRBP) in this process. IRBP is thought to facilitate the exchange of 11-cis-retinal, 11-cis-retinol and all-trans-retinol between the retinal pigment epithelium (RPE), photoreceptors and Müller cells in the visual cycle. Structural and biochemical studies suggest that IRBP has a variety of nonequivalent ligand binding sites that function in this process. IRBP is multifunctional, being able to bind a variety of physiologically significant molecules including fatty acids in the subretinal space. This wide range of binding activities is of particular interest because it is unknown whether the lutein and zeaxanthin found in the macula originate from the choroidal or retinal circulations. If from the choroidal circulation, then IRBP is a likely mediator for their transport across the interphotoreceptor matrix. In this report, we explore the binding interactions of retinoids, fatty acids, and carotenoids with IRBP using surface plasmon resonance (SPR)-based biosensors. IRBP showed similar affinity toward retinoids and carotenoids (1-2 μM), while fatty acids had approximately 10 times less affinity. These results suggest that further studies should be carried out to evaluate whether IRBP has a physiologically relevant role in binding lutein and zeaxanthin in the interphotoreceptor matrix.
Collapse
Affiliation(s)
- Preejith P Vachali
- Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, United States
| | | | | | | |
Collapse
|
12
|
Behar-Cohen F, Martinsons C, Viénot F, Zissis G, Barlier-Salsi A, Cesarini JP, Enouf O, Garcia M, Picaud S, Attia D. Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog Retin Eye Res 2011; 30:239-57. [PMID: 21600300 DOI: 10.1016/j.preteyeres.2011.04.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/21/2011] [Accepted: 04/29/2011] [Indexed: 12/11/2022]
Abstract
Light-emitting diodes (LEDs) are taking an increasing place in the market of domestic lighting because they produce light with low energy consumption. In the EU, by 2016, no traditional incandescent light sources will be available and LEDs may become the major domestic light sources. Due to specific spectral and energetic characteristics of white LEDs as compared to other domestic light sources, some concerns have been raised regarding their safety for human health and particularly potential harmful risks for the eye. To conduct a health risk assessment on systems using LEDs, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES), a public body reporting to the French Ministers for ecology, for health and for employment, has organized a task group. This group consisted physicists, lighting and metrology specialists, retinal biologist and ophthalmologist who have worked together for a year. Part of this work has comprised the evaluation of group risks of different white LEDs commercialized on the French market, according to the standards and found that some of these lights belonged to the group risk 1 or 2. This paper gives a comprehensive analysis of the potential risks of white LEDs, taking into account pre-clinical knowledge as well as epidemiologic studies and reports the French Agency's recommendations to avoid potential retinal hazards.
Collapse
Affiliation(s)
- F Behar-Cohen
- Inserm UMRS 872, Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rakoczy EP, Kiel C, McKeone R, Stricher F, Serrano L. Analysis of disease-linked rhodopsin mutations based on structure, function, and protein stability calculations. J Mol Biol 2010; 405:584-606. [PMID: 21094163 DOI: 10.1016/j.jmb.2010.11.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/28/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
Abstract
Retinitis pigmentosa (RP) refers to a heterogeneous group of inherited diseases that result in progressive retinal degeneration, characterized by visual field constriction and night blindness. A total of 103 mutations in rhodopsin are linked to RP to date, and the phenotypes range from severe to asymptomatic. To study the relation between phenotype and rhodopsin stability in disease mutants, we used a structure-based approach. For 12 of the mutants located at the protein-lipid interphase, we used the von Heijne water-membrane transfer scale, and we find that 9 of the mutations could affect membrane insertion. For 91 mutants, we used the protein design algorithm FoldX. The 3 asymptomatic mutations had no significant reduced stability, 2 were unsuitable for FoldX analysis since the structure was incorrect in this region, 63 mutations had a significant change in protein stability (>1.6 kcal/mol), and 23 mutations had energy change values under the prediction error threshold (<1.6 kcal/mol). Out of these 23, the disease-causing effect could be explained by the involvement in other functions (e.g., glycosylation motifs, the interface with arrestin and transducin, and the cilia-binding motif) for 19 mutants. The remaining 4 mutants were probably incorrectly associated with RP or have functionalities not discovered yet. For destabilizing mutations where clinical data were available, we found a highly significant correlation between FoldX energy changes and the average age of night blindness and between FoldX energy changes and daytime vision loss onset. Our detailed structural, functional, and energetic analysis provides a complete picture of the rhodopsin mutations and can guide mutation-specific therapies.
Collapse
|
14
|
Siu TL, Morley JW, Coroneo MT. Toxicology of the retina: advances in understanding the defence mechanisms and pathogenesis of drug- and light-induced retinopathy. Clin Exp Ophthalmol 2008; 36:176-85. [DOI: 10.1111/j.1442-9071.2008.01699.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Burstedt MSI, Sandgren O, Golovleva I, Wachtmeister L. Effects of prolonged dark adaptation in patients with retinitis pigmentosa of Bothnia type: an electrophysiological study. Doc Ophthalmol 2007; 116:193-205. [DOI: 10.1007/s10633-007-9082-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 05/09/2007] [Accepted: 09/08/2007] [Indexed: 12/22/2022]
|
16
|
Jonsson ÅC, Burstedt MSI, Golovleva I, Sandgren O. Tinted contact lenses in Bothnia dystrophy. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1755-3768.2007.00894.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Jonsson AC, Burstedt MSI, Golovleva I, Sandgren O. Tinted contact lenses in Bothnia dystrophy. ACTA OPHTHALMOLOGICA SCANDINAVICA 2007; 85:534-9. [PMID: 17376191 DOI: 10.1111/j.1600-0420.2007.00894.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PURPOSE To determine whether tinted contact lenses can improve visual function in patients with Bothnia dystrophy (BD), a genetically defined retinal dystrophy with prolonged dark adaptation. METHODS Twelve patients with BD were fitted with the same type of soft contact lenses tinted dark brown. Visual acuity (VA), contrast vision, near vision and visual fields were tested before and 1 month after contact lens fitting. The patients completed a visual function questionnaire. The physical properties of the contact lenses were tested using spectrophotometry. RESULTS The patients with the lowest VA described the most obvious improvement in visual function. This group of patients preferred darker contact lenses and continued wearing their contact lenses after the study ended. The patients with the best VA preferred lighter contact lenses and a few patients in this group discontinued contact lens wear upon completion of the study. CONCLUSIONS Visual function in BD patients was improved by dark tinted contact lenses. The optimal colour for lenses varies, depending on the season and the individual. Other patient groups with retinal dystrophies associated with prolonged dark adaptation or dysfunction of the cone system, such as cone dystrophies or achromatopsia, may also benefit from this type of contact lens.
Collapse
Affiliation(s)
- Asa C Jonsson
- Department of Clinical Sciences/Ophthalmology, University of Umeå, Umeå, Sweden
| | | | | | | |
Collapse
|
18
|
Youn HY, Bantseev V, Bols NC, Cullen AP, Sivak JG. In vitro assays for evaluating the ultraviolet B-induced damage in cultured human retinal pigment epithelial cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2007; 88:21-8. [PMID: 17566755 DOI: 10.1016/j.jphotobiol.2007.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 04/02/2007] [Accepted: 04/24/2007] [Indexed: 11/18/2022]
Abstract
The present study demonstrates broadband UV-B-induced damage of cultured human retinal pigment epithelial cells as an effort to develop an in vitro model that can be used, along with in vivo research and other in vitro efforts, to evaluate the need for retinal UV protection in humans after cataract removal. The human retinal pigment epithelial cell line, ARPE-19, was cultured in two groups: control and treated. Treated cells were irradiated with three broadband UVB radiations at energy levels of 0.05, 0.1 and 0.2J/cm(2). After irradiation, cells were incubated for 48h while cellular viability, morphology, and phagocytotic activity were analyzed using the Alamar blue assay, confocal microscopy, and fluorescent microspheres. Confocal analysis concentrated on the study of the cell nuclei and mitochondria. The Alamar blue assay of UV-B-exposed cells showed dose and time-dependent decreases in cellular viability in comparison to control cells. Loss of cell viability was measured at the two higher energy levels (0.2 and 0.1J/cm(2)), but the cell group exposed to 0.05J/cm(2) showed no significant viability change at 1-h time point. Morphological evaluation also showed dose and time-dependent degradation of mitochondria and nucleic acids. Cells exposed with 0.05J/cm(2) UVB did not show significant degradation of mitochondria and nucleic acids during the entire culture period. Phagocytotic activity assay data for UVB-exposed cells showed dose-dependent decreases in phagocytotic activity in comparison with the control cells. The control cells have significantly greater capacities for uptake than the 0.1 and 0.2J/cm(2) UV-B-exposed cells, while the 0.05J/cm(2) UV-B-exposed cell group showed no significant difference from the control cell group. The findings suggest that UVB radiation-induced cultured RPE cell damage can be evaluated by assays that probe cellular viability, morphological change, and phagocytotic activity, and that these assay methods together provide a valuable in vitro model for ultraviolet radiation-induced retinal toxicology research.
Collapse
Affiliation(s)
- Hyun-Yi Youn
- School of Optometry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
19
|
Abstract
Visual perception occurs when radiation with a wavelength between 400 and 760 nm reaches the retina. The retina has evolved to capture photons efficiently and initiate visual transduction. The retina, however, is vulnerable to damage by light, a vulnerability that has long been recognized. Photochemical damage has been widely studied, because it can cause retinal damage within the intensity range of natural light. Photochemical lesions are primarily located in the outer layers at the central region of the retina. Two classes of photochemical damage have been recognized: Class I damage, which is characterized by the rhodopsin action spectrum, is believed to be mediated by visual pigments, with the primary lesions located in the photoreceptors; whereas Class II damage is generally confined to the retinal pigment epithelium. The action spectrum peaks in the short wavelength region, providing the basis for the concept of blue light hazard. Several factors can modify the susceptibility of the retina to photochemical damage. Photochemical mechanisms, in particular mechanisms that arise from illumination with blue light, are responsible for solar retinitis and for iatrogenic retinal insult from ophthalmological instruments. Further, blue light may play a role in the pathogenesis of age-related macular degeneration. Laboratory studies have suggested that photochemical damage includes oxidative events. Retinal cells die by apoptosis in response to photic injury, and the process of cell death is operated by diverse damaging mechanisms. Modern molecular biology techniques help to study in-depth the basic mechanism of photochemical damage of the retina and to develop strategies of neuroprotection.
Collapse
Affiliation(s)
- Jiangmei Wu
- Department of Vitreoretinal Diseases, Saint Erik's Eye Hospital and Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
20
|
|
21
|
Sarrafizadeh R, Trese MT. New therapies for the treatment of age-related macular degeneration. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.10.3.333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Chapter 1 Morphology and physiology of the retina. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1567-4231(09)70198-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Burstedt MSI, Sandgren O, Golovleva I, Wachtmeister L. Retinal function in Bothnia dystrophy. An electrophysiological study. Vision Res 2003; 43:2559-71. [PMID: 13129542 DOI: 10.1016/s0042-6989(03)00440-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Using prolonged dark adaptometry, standard dark adaptation (DA) and prolonged DA full-field electroretinograms (ERGs), we analysed the retinal function in patients with Bothnia dystrophy (BD), a variant of recessive retinitis punctata albescens (RPA). A compromised rod and cone function, a likely dysfunction of the Müller cells, and indications of disturbed neuronal function of the inner retina, were found. With prolonged DA, a gradual increase in retinal sensitivity to light and an improvement of the ERG components occurred. The findings indicate a prolonged synthesis of photopigments, retardation of the visual process in the retinal pigment epithelium (RPE), and a loss of retinal cells, probably starting at a relatively early age in BD.
Collapse
Affiliation(s)
- Marie S I Burstedt
- Department of Clinical Sciences/Ophthalmology, University of Umeå, S-901 85, Umeå, Sweden.
| | | | | | | |
Collapse
|
24
|
Gollapalli DR, Rando RR. All-trans-retinyl esters are the substrates for isomerization in the vertebrate visual cycle. Biochemistry 2003; 42:5809-18. [PMID: 12741839 DOI: 10.1021/bi0341004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identification of the critical enzyme(s) that carries out the trans to cis isomerization producing 11-cis-retinol during the operation of the visual cycle remains elusive. Confusion exists in the literature as to the exact nature of the isomerization substrate. At issue is whether it is an all-trans-retinyl ester or all-trans-retinol (vitamin A). As both putative substrates interconvert rapidly in retinal pigment epithelial membranes, the choice of substrate can be ambiguous. The two enzymes that effect interconversion of all-trans-retinol and all-trans-retinyl esters are lecithin retinol acyl transferase (LRAT) and retinyl ester hydrolase (REH). The retinyl ester or all-trans-retinol pools are radioactively labeled separately in the presence of inhibitors of LRAT and REH, effectively preventing their interconversion. Pulse-chase experiments unambiguously demonstrate that all-trans-retinyl esters, and not all-trans-retinol, are the precursors of 11-cis-retinol. When the all-trans-retinyl ester pool is radioactively labeled, the resulting 11-cis-retinol is labeled with the same specific activity as the precursor ester. The converse is true with vitamin A. These data unambiguously establish all-trans-retinyl esters as the precursors of 11-cis-retinol.
Collapse
Affiliation(s)
- Deviprasad R Gollapalli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 45 Shattuck Street, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
25
|
Keen TJ, Mohamed MD, McKibbin M, Rashid Y, Jafri H, Maumenee IH, Inglehearn CF. Identification of a locus (LCA9) for Leber's congenital amaurosis on chromosome 1p36. Eur J Hum Genet 2003; 11:420-3. [PMID: 12734549 DOI: 10.1038/sj.ejhg.5200981] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Leber's congenital amaurosis (LCA) is the most common cause of inherited childhood blindness and is characterised by severe retinal degeneration at or shortly after birth. We have identified a new locus, LCA9, on chromosome 1p36, at which the disease segregates in a single consanguineous Pakistani family. Following a whole genome linkage search, an autozygous region of 10 cM was identified between the markers D1S1612 and D1S228. Multipoint linkage analysis generated a lod score of 4.4, strongly supporting linkage to this region. The critical disease interval contains at least 5.7 Mb of DNA and around 50 distinct genes. One of these, retinoid binding protein 7 (RBP7), was screened for mutations in the family, but none was found.
Collapse
|
26
|
Abstract
The olfactory system sits at the interface of the environment and the nervous system and is responsible for correctly coding sensory information from thousands of odorous stimuli. Many theories existed regarding the signal transduction mechanism that mediates this difficult task. The discovery that odorant transduction utilizes a unique variation (a novel family of G protein-coupled receptors) based upon a very common theme (the G protein-coupled adenylyl cyclase cascade) to accomplish its vital task emphasized the power and versatility of this motif. We now must understand the downstream consequences of this cascade that regulates multiple second messengers and perhaps even gene transcription in response to the initial interaction of ligand with G protein-coupled receptor.
Collapse
Affiliation(s)
- Gabriele V Ronnett
- Departments of Neuroscience and Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
27
|
Affiliation(s)
- E W Harris
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA
| |
Collapse
|
28
|
Saari JC, Nawrot M, Kennedy BN, Garwin GG, Hurley JB, Huang J, Possin DE, Crabb JW. Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation. Neuron 2001; 29:739-48. [PMID: 11301032 DOI: 10.1016/s0896-6273(01)00248-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mutations in the human CRALBP gene cause retinal pathology and delayed dark adaptation. Biochemical studies have not identified the primary physiological function of CRALBP. To resolve this, we generated and characterized mice with a non-functional CRALBP gene (Rlbp1(-/-) mice). The photosensitivity of Rlbp1(-/-) mice is normal but rhodopsin regeneration, 11-cis-retinal production, and dark adaptation after illumination are delayed by >10-fold. All-trans-retinyl esters accumulate during the delay indicating that isomerization of all-trans- to 11-cis-retinol is impaired. No evidence of photoreceptor degeneration was observed in animals raised in cyclic light/dark conditions for up to 1 year. Albino Rlbp(-/-) mice are protected from light damage relative to the wild type. These findings support a role for CRALBP as an acceptor of 11-cis-retinol in the isomerization reaction of the visual cycle.
Collapse
Affiliation(s)
- J C Saari
- Department of Ophthalmology, Box 356485, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sarrafizadeh R, Trese MT. Ophthalmology update for the primary practitioner. Part II. Therapeutic management of age-related macular degeneration. Dis Mon 2000; 46:533-43. [PMID: 10969716 DOI: 10.1016/s0011-5029(00)90014-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Corson D, Kefalov VJ, Cornwall MC, Crouch RK. Effect of 11-cis 13-demethylretinal on phototransduction in bleach-adapted rod and cone photoreceptors. J Gen Physiol 2000; 116:283-97. [PMID: 10919871 PMCID: PMC2229494 DOI: 10.1085/jgp.116.2.283] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used 11-cis 13-demethylretinal to examine the physiological consequences of retinal's noncovalent interaction with opsin in intact rod and cone photoreceptors during visual pigment regeneration. 11-Cis 13-demethylretinal is an analog of 11-cis retinal in which the 13 position methyl group has been removed. Biochemical experiments have shown that it is capable of binding in the chromophore pocket of opsin, forming a Schiff-base linkage with the protein to produce a pigment, but at a much slower rate than the native 11-cis retinal (Nelson, R., J. Kim deReil, and A. Kropf. 1970. Proc. Nat. Acad. Sci. USA. 66:531-538). Experimentally, this slow rate of pigment formation should allow separate physiological examination of the effects of the initial binding of retinal in the pocket and the subsequent formation of the protonated Schiff-base linkage. Currents from solitary rods and cones from the tiger salamander were recorded in darkness before and after bleaching and then after exposure to 11-cis 13-demethylretinal. In bleach-adapted rods, 11-cis 13-demethylretinal caused transient activation of phototransduction, as evidenced by a decrease of the dark current and sensitivity, acceleration of the dim flash responses, and activation of cGMP phosphodiesterase and guanylyl cyclase. The steady state of phototransduction activity was still higher than that of the bleach-adapted rod. In contrast, exposure of bleach-adapted cones to 11-cis 13-demethylretinal resulted in an immediate deactivation of transduction as measured by the same parameters. These results extend the validity of a model for the effects of the noncovalent binding of a retinoid in the chromophore pockets of rod and cone opsins to analogs capable of forming a Schiff-base and imply that the noncovalent binding by itself may play a role for the dark adaptation of photoreceptors.
Collapse
Affiliation(s)
- D.Wesley Corson
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Vladimir J. Kefalov
- Department of Physiology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - M. Carter Cornwall
- Department of Physiology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Rosalie K. Crouch
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
31
|
Stenkamp DL, Frey RA, Prabhudesai SN, Raymond PA. Function for Hedgehog genes in zebrafish retinal development. Dev Biol 2000; 220:238-52. [PMID: 10753513 DOI: 10.1006/dbio.2000.9629] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hedgehog (hh) genes encode secreted signaling proteins that have important developmental functions in vertebrates and invertebrates. In Drosophila, expression of hh coordinates retinal development by propagating a wave of photoreceptor differentiation across the eye primordium. Here we report that two vertebrate hh genes, sonic hedgehog (shh) and tiggy-winkle hedgehog (twhh), may perform similar functions in the developing zebrafish. Both shh and twhh are expressed in the embryonic zebrafish retinal pigmented epithelium (RPE), initially in a discrete ventral patch which then expands outward in advance of an expanding wave of photoreceptor recruitment in the subjacent neural retina. A gene encoding a receptor for the hedgehog protein, ptc-2, is expressed by retinal neuroepithelial cells. Injection of a cocktail of antisense (alphashh/alphatwhh) oligonucleotides reduces expression of both hh genes in the RPE and slows or arrests the progression of rod and cone photoreceptor differentiation. Zebrafish strains known to have mutations in Hh signaling pathway genes similarly exhibit retardation of photoreceptor differentiation. We propose that hedgehog genes may play a role in propagating photoreceptor differentiation across the developing eye of the zebrafish.
Collapse
Affiliation(s)
- D L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844-3051, USA
| | | | | | | |
Collapse
|
32
|
von Recum HA, Okano T, Kim SW, Bernstein PS. Maintenance of retinoid metabolism in human retinal pigment epithelium cell culture. Exp Eye Res 1999; 69:97-107. [PMID: 10375454 DOI: 10.1006/exer.1999.0682] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
If transplantation of cultured retinal pigment epithelium (RPE) or iris pigment epithelium (IPE) is to be successful in the treatment of ocular disease, it is imperative to demonstrate that these cells can perform all of their necessary metabolic functions. Unfortunately, a critical function of the RPE, retinoid metabolism, is often lost rapidly in culture. We have examined whether or not nonspecific proteolytic enzymes commonly used in cell isolation and serial passaging may be responsible for this loss of function, and we have investigated novel isolation and passaging techniques which can alleviate this loss of retinoid metabolism.RPE cells were obtained from human donor eyes by enzymatic and nonenzymatic methods. Cells were cultured either on control tissue culture inserts or on inserts coated with a layer of thermally responsive poly(N -isopropylacrylamide-co-cinnamoylcarbamidemethylstyrene). Upon confluence, cells were detached either by trypsinization or by lowering dish temperature. Retinoid metabolism of cells was assessed after isolation and culture by incubating membrane fractions with3H-all- trans -retinol. Retinoid metabolism was also measured in freshly isolated IPE, corneal endothelium (CE), an RPE cell line (D407), and two hepatocyte cell lines (Hepa 6 and HepG2). Membrane fractions from cells isolated nonenzymatically or using collagenase/hyaluronidase formed 11- cis -retinol, retinal isomers and retinyl esters. Retinoid metabolism of RPE cells freshly isolated by trypsinization showed no 11- cis -retinal and little 11- cis -retinol formation. Nondamaged cells cultured on thermally responsive surfaces detached in sheets upon temperature change. They showed metabolism similar to that of cells freshly isolated by nonenzymatic means. After trypsinization, confluent cultures dissociated into individual cells, but these cells showed poor retinoid metabolism, including no detectable retinyl esters or 11- cis -retinoid isomers. IPE, CE and Hepa 6 did not show any retinoid metabolism. D407 and HepG2 produced retinals, but not the 11- cis isomer.RPE cells isolated using trypsin lose the ability to form critical intermediates in the visual cycle. Collagenase/hyaluronidase or nonenzymatic cell isolation techniques enable these functions to be maintained. After cell culture, thermally responsive surfaces allow nonenzymatic cell detachment and excellent maintenance of retinoid metabolism.
Collapse
Affiliation(s)
- H A von Recum
- Center for Controlled Chemical Delivery, Department of Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | | | | | | |
Collapse
|
33
|
van Soest S, Westerveld A, de Jong PT, Bleeker-Wagemakers EM, Bergen AA. Retinitis pigmentosa: defined from a molecular point of view. Surv Ophthalmol 1999; 43:321-34. [PMID: 10025514 DOI: 10.1016/s0039-6257(98)00046-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Retinitis pigmentosa (RP) denotes a group of hereditary retinal dystrophies, characterized by the early onset of night blindness followed by a progressive loss of the visual field. The primary defect underlying RP affects the function of the rod photoreceptor cell, and, subsequently, mostly unknown molecular and cellular mechanisms trigger the apoptotic degeneration of these photoreceptor cells. Retinitis pigmentosa is very heterogeneous, both phenotypically and genetically. In this review we propose a tentative classification of RP based on the functional systems affected by the mutated proteins. This classification connects the variety of phenotypes to the mutations and segregation patterns observed in RP. Current progress in the identification of the molecular defects underlying RP reveals that at least three distinct functional mechanisms may be affected: 1) the daily renewal and shedding of the photoreceptor outer segments, 2) the visual transduction cascade, and 3) the retinol (vitamin A) metabolism. The first group includes the rhodopsin and peripherin/RDS genes, and mutations in these genes often result in a dominant phenotype. The second group is predominantly associated with a recessive phenotype that results, as we argue, from continuous inactivation of the transduction pathway. Disturbances in the retinal metabolism seem to be associated with equal rod and cone involvement and the presence of deposits in the retinal pigment epithelium.
Collapse
Affiliation(s)
- S van Soest
- Department of Ophthalmogenetics, The Netherlands Ophthalmic Research Institute, Amsterdam
| | | | | | | | | |
Collapse
|
34
|
Saari JC, Garwin GG, Van Hooser JP, Palczewski K. Reduction of all-trans-retinal limits regeneration of visual pigment in mice. Vision Res 1998; 38:1325-33. [PMID: 9667000 DOI: 10.1016/s0042-6989(97)00198-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Absorption of photons by pigments in photoreceptor cells results in photoisomerization of the chromophore, 11-cis-retinal, to all-trans-retinal and activation of opsin. Photolysed chromophore is converted back to the 11-cis-configuration via several enzymatic steps in photoreceptor and retinal pigment epithelial cells. We investigated the levels of retinoids in mouse retina during constant illumination and regeneration in the dark as a means of obtaining more information about the rate-limiting step of the visual cycle and about cycle intermediates that could be responsible for desensitization of the visual system. All-trans-retinal accumulated in the retinas during constant illumination and following flash illumination. Decay of all-trans-retinal in the dark following constant illumination occurred without substantial accumulation of all-trans-retinal, generated by constant approximately equal to visual pigment regeneration (t1/2 approximately 5 and t1/2 approximately 7 min, respectively). All-trans-retinal, generated by constant illumination, decayed approximately 3 times more rapidly than that generated by a flash and, as shown previously, the rate of rhodopsin regeneration following a flash was approximately 4 times slower than after constant illumination. The retinyl ester pool (> 95% all-trans-retinyl ester) did not show a statistically significant change in size or composition during illumination. In addition, constant illumination increased the amount of photoreceptor membrane-associated arrestin. The results suggest that the rate-limiting step of the visual cycle is the reduction of all-trans-retinal to all-trans-retinol by all-trans-retinol dehydrogenase. The accumulation of all-trans-retinal during illumination may be responsible, in part, for the reduction in sensitivity of the visual system that accompanies photobleaching and may contribute to the development of retinal pathology associated with light damage and aging.
Collapse
Affiliation(s)
- J C Saari
- Department of Ophthalmology, University of Washington School of Medicine, Seattle 98195-6485, USA.
| | | | | | | |
Collapse
|
35
|
Retinal pigment epithelial transport mechanisms and their contributions to the electroretinogram. Prog Retin Eye Res 1997. [DOI: 10.1016/s1350-9462(96)00037-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Takata K, Hirano H, Kasahara M. Transport of glucose across the blood-tissue barriers. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 172:1-53. [PMID: 9102392 DOI: 10.1016/s0074-7696(08)62357-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In specialized parts of the body, free exchange of substances between blood and tissue cells is hindered by the presence of a barrier cell layer(s). Specialized milieu of the compartments provided by these "blood-tissue barriers" seems to be important for specific functions of the tissue cells guarded by the barriers. In blood-tissue barriers, such as the blood-brain barrier, blood-cerebrospinal fluid barrier, blood-nerve barrier, blood-retinal barrier, blood-aqueous barrier, blood-perilymph barrier, and placental barrier, endothelial or epithelial cells sealed by tight junctions, or a syncytial cell layer(s), serve as a structural basis of the barrier. A selective transport system localized in the cells of the barrier provides substances needed by the cells inside the barrier. GLUT1, an isoform of facilitated-diffusion glucose transporters, is abundant in cells of the barrier. GLUT1 is concentrated at the critical plasma membranes of cells of the barriers and thereby constitutes the major machinery for the transport of glucose across these barriers where transport occurs by a transcellular mechanism. In the barrier composed of double-epithelial layers, such as the epithelium of the ciliary body in the case of the blood-aqueous barrier, gap junctions appear to play an important role in addition to GLUT1 for the transfer of glucose across the barrier.
Collapse
Affiliation(s)
- K Takata
- Laboratory of Molecular and Cellular Morphology, Gunma University, Japan
| | | | | |
Collapse
|
37
|
Tuitoek PJ, Ziari S, Tsin AT, Rajotte RV, Suh M, Basu TK. Streptozotocin-induced diabetes in rats is associated with impaired metabolic availability of vitamin A (retinol). Br J Nutr 1996; 75:615-22. [PMID: 8672413 DOI: 10.1079/bjn19960164] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Using streptozotocin-induced diabetic Wistar rats, studies were carried out to examine the metabolic availability of vitamin A in the plasma, liver and the retina of the eye. Control and diabetic rats were fed ad lib. on a semi-purified diet either with or without (basal) vitamin A supplementation, or pair-fed on the basal diet for 4 weeks. Despite the fact that diabetic rats consumed 48% more feed, they had lower plasma concentrations of retinol (P < 0.003). The decrease in plasma retinol concentration was a response to diabetes (or diabetes-induced trauma), since neither pair-feeding (P < 0.01) nor vitamin A supplementation altered this effect (P < 0.05). Furthermore, the hepatic concentrations of the vitamin in these animals remained elevated and this increase was greater in the supplemented diabetic group (P < 0.001). Decreases in 11-cis retinal (a component of rhodopsin) concentrations in the retina were also observed in diabetic animals. The increased hepatic and the decreased plasma and retina vitamin A levels suggest a defect in the transport of the vitamin from the liver.
Collapse
Affiliation(s)
- P J Tuitoek
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
PURPOSE To evaluate bone spicule pigmentation, a fundus feature in retinitis pigmentosa (RP) formed by migration of pigment-containing cells to perivascular sites in the inner retina. METHODS The authors performed light and electron microscopy, including immunocytochemistry, on the retinas from ten patients with RP and five normal donors. RESULTS The pigment-containing cells in regions of bone spicule pigmentation were derived from the retinal pigment epithelium (RPE). The translocated cells were remarkably polarized with a number of specializations characteristic of RPE cells in situ, but they did not contain lipofuscin granules and were not immunoreactive for cellular retinaldehyde-binding protein. The cells were linked by junctional complexes and formed epithelial layers around retinal vessels and next to the inner limiting membrane. Adjacent Müller cell processes contained glial fibrillary acidic protein-positive filaments and formed microvilli and intermediate junctions, resembling those in the external limiting membrane. Vascular endothelial cells adjacent to the translocated RPE cells were thin and fenestrated, resembling the choriocapillaris, and were separated from the pigmented cells by a layer of extracellular matrix similar in organization to Bruch membrane. Thickening of the matrix layer caused narrowing and occlusion of the vascular lumina. CONCLUSIONS The lack of lipofuscin granules and cellular retinaldehyde-binding protein immunoreactivity in the translocated RPE cells is probably related to the loss of photoreceptors. The development of fenestrations in the endothelial cells correlates with the leakiness of retinal vessels to fluorescein observed in some cases of RP. Narrowing and occlusion of vascular lumina by thickening of the surrounding layer of extracellular matrix may contribute to the loss of inner retinal neurons found in RP. These changes in the RPE, blood vessels, glia, and inner neurons warrant consideration in designing therapies to restore vision to degenerate retinas.
Collapse
Affiliation(s)
- Z Y Li
- Department of Ophthalmology, University of Washington, Seattle
| | | | | |
Collapse
|
39
|
Abstract
Recent experiments on the retina have examined the effectiveness of various factors (e.g. growth factors, neurotrophins and cytokines) for enhancing survival and reducing injury of retinal neurons, such as photoreceptors and ganglion cells, whose death leads to blindness in degenerative retinal diseases. It has also been shown that retinal injury stimulates intrinsic survival mechanisms that promote survival of these neurons.
Collapse
Affiliation(s)
- R H Steinberg
- Department of Physiology, University of California, San Francisco 94143-0730
| |
Collapse
|
40
|
Ong DE, Davis JT, O'Day WT, Bok D. Synthesis and secretion of retinol-binding protein and transthyretin by cultured retinal pigment epithelium. Biochemistry 1994; 33:1835-42. [PMID: 8110786 DOI: 10.1021/bi00173a029] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent studies indicate that the retinal pigment epithelium (RPE) may serve as an extrahepatic source of retinol-binding protein (RBP) and transthyretin (TTR) for the retina by virtue of the fact that this cell layer is the exclusive retinal location for mRNA coding for these proteins [Herbert, J., et al. (1991) Invest. Ophthalmol. Vis. Sci. 32, 302-309; Cavallaro, T., et al. (1990) Invest. Ophthalmol. Vis. Sci. 31, 497-501], although the proteins themselves are present in a variety of retinal neurons. It is therefore necessary to determine whether these mRNAs are translated and whether their translated products are secreted like hepatic RBP and TTR. Metabolic labeling of cultured bovine RPE with [35S]cysteine and [35S]methionine and subsequent analysis of newly synthesized proteins in the conditioned medium by affinity chromatography, gel filtration, partial amino acid sequence analysis, and autoradiography of electrophoretograms indicate that both RBP and TTR are synthesized and secreted by the RPE. Moreover, for cells grown in chambers with permeable supports, the predominant direction for secretion was into the apical medium. The mean apical:basal ratio after 72 h of incubation was 9.2 for TTR and 4.5 for RBP. A function for these proteins in the neurosensory retina remains speculative. They could be involved in the delivery of all-trans-retinol to amacrine and Müller cells as a precursor for retinoic acid, since these cells are known to contain cellular retinoic acid binding protein [Gaur, V.P., et al. (1990) Exp. Eye Res. 50, 505-511; Milam et al. (1990) J. Comp. Neurol. 296, 123-129].(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D E Ong
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | | | | | | |
Collapse
|
41
|
Pepperberg DR, Okajima TL, Wiggert B, Ripps H, Crouch RK, Chader GJ. Interphotoreceptor retinoid-binding protein (IRBP). Molecular biology and physiological role in the visual cycle of rhodopsin. Mol Neurobiol 1993; 7:61-85. [PMID: 8318167 DOI: 10.1007/bf02780609] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The regeneration of visual pigment in rod photoreceptors of the vertebrate retina requires an exchange of retinoids between the neural retina and the retina pigment epithelium (RPE). It has been hypothesized that interphotoreceptor retinoid-binding protein (IRBP) functions as a two-way carrier of retinoid through the aqueous compartment (interphotoreceptor matrix) that separates the RPE and the photoreceptors. The first part of this review summarizes the cellular and molecular biology of IRBP. Work on the IRBP gene indicates that the protein contains a four-fold repeat structure that may be involved in binding multiple retinoid and fatty acid ligands. These repeats and other aspects of the gene structure indicate that the gene has had an active and complex evolutionary history. IRBP mRNA is detected only in retinal photoreceptors and in the pineal gland; expression is thus restricted to the two photosensitive tissues of vertebrate organisms. In the second part of this review, we consider the results obtained in experiments that have examined the activity of IRBP in the process of visual pigment regeneration. We also consider the results obtained on the bleaching and regeneration of rhodopsin in the acutely detached retina, as well as in experiments testing the ability of IRBP to protect its retinoid ligand from isomerization and oxidation. Taken together, the findings provide evidence that, in vivo, IRBP facilitates both the delivery of all-trans retinol to the RPE and the transfer of 11-cis retinal from the RPE to bleached rod photoreceptors, and thereby directly supports the regeneration of rhodopsin in the visual cycle.
Collapse
Affiliation(s)
- D R Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences
| | | | | | | | | | | |
Collapse
|
42
|
Crouch RK, Hazard ES, Lind T, Wiggert B, Chader G, Corson DW. Interphotoreceptor retinoid-binding protein and alpha-tocopherol preserve the isomeric and oxidation state of retinol. Photochem Photobiol 1992; 56:251-5. [PMID: 1502268 DOI: 10.1111/j.1751-1097.1992.tb02154.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Retinol decomposes rapidly into a number of products, including its aldehyde form, retinal, when introduced into buffer in phospholipid vesicles or ethanol. Interphotoreceptor retinoid-binding protein at low concentrations is found to protect retinol from isomerization and oxidation. The addition of alpha-tocopherol to either liposomes or an ethanolic-buffer solution also prevents decomposition. Neither of these agents interferes with the successful regeneration of pigment with 9-cis retinal in rod outer segment preparations or the restoration of sensitivity by retinoids in isolated rod photoreceptors.
Collapse
Affiliation(s)
- R K Crouch
- Department of Ophthalmology, Medical University of South Carolina, Charleston 29425
| | | | | | | | | | | |
Collapse
|
43
|
Sarna T. Properties and function of the ocular melanin--a photobiophysical view. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1992; 12:215-58. [PMID: 1635010 DOI: 10.1016/1011-1344(92)85027-r] [Citation(s) in RCA: 280] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper reviews the biosynthesis and physicochemical properties of the ocular melanin. Age-related changes of melanin granules and the corresponding formation of lipofuscin pigments in the retinal pigment epithelium (RPE) are also described. Adverse photoreactions of the eye and, in particular, light-induced damage to the RPE-retina are reviewed in relation to the ocular pigmentation. A hypothesis on the photoprotective role of the RPE melanin is presented that is based on the ability of the cellular melanin to bind redoxactive metal ions. Since bound-to-melanin metal ions are expected to be less damaging to the pigment cells, it is proposed that sequestration of heavy metal ions by the RPE melanin is an efficient detoxifying mechanism. It is postulated that oxidative degradation of RPE melanin may lower its metal-binding capability and decrease its anti-oxidant efficiency. Cellular and environmental factors that may contribute to possible oxidative damage of the RPE melanin are discussed in connection with the etiology of age-related macular degeneration.
Collapse
Affiliation(s)
- T Sarna
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
44
|
Pepperberg DR, Okajima TL, Ripps H, Chader GJ, Wiggert B. Functional properties of interphotoreceptor retinoid-binding protein. Photochem Photobiol 1991; 54:1057-60. [PMID: 1775528 DOI: 10.1111/j.1751-1097.1991.tb02129.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has been hypothesized that interphotoreceptor retinoid-binding protein (IRBP) functions as a two-way carrier of retinoid between the retinal pigment epithelium (RPE) and rod photoreceptors in the vertebrate eye. This hypothesis has been tested in recent studies that have employed purified, initially ligand-free, bovine IRBP and the "RPE-eyecup" obtained from the toad (Bufo marinus) eye. The present experiments further characterize the IRBP/RPE-eyecup system with respect to (i) the solubilization and protection of retinol by IRBP, and (ii) the time course of IRBP-mediated release of 11-cis retinal by the RPE. The data, together with previous findings in the IRBP/RPE-eyecup preparation, support the view that 11-cis retinal is the principal retinoid released by the RPE into IRBP-supplemented aqueous medium, and that IRBP in vivo promotes the regeneration of rhodopsin by facilitating the exchange of retinoid between bleached rods and the RPE.
Collapse
Affiliation(s)
- D R Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois, College of Medicine, Chicago 60612
| | | | | | | | | |
Collapse
|