1
|
Ben Mahmoud K, Mezghani N, Ouakrim Y, Mezghani N, Jemai N, Jemmali A. Distribution of Tunisian beet wild relatives ( Beta sp.) according to morphological characteristics and eco-geographical origin. Heliyon 2025; 11:e41773. [PMID: 39877610 PMCID: PMC11773021 DOI: 10.1016/j.heliyon.2025.e41773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
Beta vulgaris subsp. maritima (L.) Arcang. and Beta macrocarpa Guss. are crop wild relative taxa belonging to the primary gene pool. They constitute a crucial gene reserve for enhancing cultivated Beta species (B. vulgaris subsp. vulgaris L.). Climate change poses a significant threat to genetic reservoir in Tunisia. We evaluated the morphological diversity of ten populations of B. vulgaris subsp. maritima and five populations of B. macrocarpa growing in different Tunisian bioclimatic and ecological areas using a set of 9 quantitative and 14 qualitative traits to promote the preservation and exploration of this germplasm. Variance component analysis of the quantitative data showed an important spectrum of variability, both within and between populations. The principal component analysis (PCA) allocated this wild Beta collection into three groups. G1 included the populations of B. macrocarpa that were characterized by the largest glomerules and heaviest seeds, while G2 included all B. vulgaris subsp. maritima populations except one, i.e., N1015 that clustered into G3, which was characterized by the highest values of leaf characters. Similarly, qualitative traits exhibited a high diversity level (H'index ≥0.6) for almost all characters. The PCA divided these 15 populations into three groups as well: G'1 concerned the island B. vulgaris subsp. maritima populations, characterized by prostrate growth habit and red inflorescences; G'2 included all B. macrocarpa populations characterized by erect-procumbent growth habit and very synchronous flowering pattern; and G'3 was formed by the mainland B. vulgaris subsp. maritima populations, characterized by erect growth habit and hairy, curly leaves. The observed eco-geographic distribution patterns suggest that these wild relatives are highly adaptable to diverse and even extreme conditions (salinity, heat, and drought), highlighting their potential as resilient gene sources for beet breeding under the challenges of accelerating climate change.
Collapse
Affiliation(s)
- Kaouther Ben Mahmoud
- Laboratory of Horticulture, National Institute of Agronomic Research of Tunisia, University of Carthage, Rue Hedi Karray, 2049, El-Menzah, Tunisia
| | - Najla Mezghani
- National Gene Bank of Tunisia, Boulevard Leader Yasser Arafat Z. I Charguia 1, 1080, Tunis, Tunisia
- Research Laboratory « Management of Horticultural Species in Organic and Conventional System » (LR21AGR05). High Agronomic Institute of Chott Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Youssef Ouakrim
- LICEF Research Center, TELUQ University, 5800 Rue Saint-Denis, Quebec, QC, H2S3L5, Canada
| | - Neila Mezghani
- LICEF Research Center, TELUQ University, 5800 Rue Saint-Denis, Quebec, QC, H2S3L5, Canada
| | - Noura Jemai
- Laboratory of Horticulture, National Institute of Agronomic Research of Tunisia, University of Carthage, Rue Hedi Karray, 2049, El-Menzah, Tunisia
| | - Ahmed Jemmali
- Laboratory of Plant Protection, National Institute of Agronomic Research of Tunisia, University of Carthage, Rue Hedi Karray, 2049, El-Menzah, Tunisia
| |
Collapse
|
2
|
Carley LN, Mitchell-Olds T, Morris WF. Increasing Aridity May Threaten the Maintenance of a Plant Defence Polymorphism. Ecol Lett 2025; 28:e70039. [PMID: 39737722 DOI: 10.1111/ele.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 01/01/2025]
Abstract
It is unclear how environmental change influences standing genetic variation in wild populations. Here, we characterised environmental conditions that protect versus erode polymorphic chemical defences in Boechera stricta (Brassicaceae), a short-lived perennial wildflower. By manipulating drought and herbivory in a 4-year field experiment, we measured the effects of driver variation on vital rates of genotypes varying in defence chemistry and then assessed interacting driver effects on total fitness (estimated as each genotype's lineage growth rate, λ) using demographic models. Drought and herbivory interacted to shape vital rates, but contrasting defence genotypes had equivalent total fitness in many environments. Defence polymorphism thus may persist under a range of conditions; however, ambient field conditions fall close to the boundary of putatively polymorphic environment space, and increasing aridity may drive populations to monomorphism. Consequently, elevated intensity and/or frequency of drought under climate change may erode genetic variation for defence chemistry in B. stricta.
Collapse
Affiliation(s)
- Lauren N Carley
- University Program in Ecology, Duke University, Durham, North Carolina, USA
- Department of Biology, Duke University, Durham, North Carolina, USA
- Rocky Mountain Biological Laboratory, Gothic, Colorado, USA
- Ecology & Evolution Department, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
3
|
Aguiar LMS, Diniz UM, Bueno‐Rocha ID, Filomeno LRA, Aguiar‐Machado LS, Gomes PA, Togni PHB. Untangling biodiversity interactions: A meta network on pollination in Earth's most diverse tropical savanna. Ecol Evol 2024; 14:e11094. [PMID: 38476698 PMCID: PMC10928258 DOI: 10.1002/ece3.11094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Pollination is vital for ecosystem functioning, especially in biodiversity-rich regions like the Brazilian Cerrado. Our research establishes a comprehensive meta network of pollinator-plant interactions within this biome. We quantified the importance of different pollinator groups, identifying keystone species. We examined potential biases in sampling effort and the spatial behavior of interactions within the heterogeneous Cerrado plant physiognomies. Our investigation uncovered 1499 interactions among 293 plant species and 386 visitor species, with legitimate pollination accounting for 42.4% of the interactions. The network exhibited modularity, driven by bees and insects, with vertebrates bridging diurnal and nocturnal modules. While a generalized pattern emerged, high specialization existed within modules due to habitat diversity. Bees, particularly Apis mellifera (exotic) and Trigona spinipes (native), played central roles as network hubs. Hummingbirds and bats, engaged in specialized interactions showing strong connectivity within and between modules. Interestingly, invertebrate-vertebrate modules were more prevalent than expected in the meta network. However, a bias was evident, primarily within specific biogeographical districts with fragmented landscapes and intrusion from other biomes. Variations in plant species and endemism rates influenced pollinator occurrence and the Cerrado network topology. Our study offers valuable insights into pollinator-plant interactions within the Cerrado, encompassing both invertebrates and vertebrates. The modeled network represents a significant step in understanding the structural complexity of pollination networks, integrating partial networks from diverse pollination systems within heterogeneous habitats. Nevertheless, a biogeographical bias could limit a comprehensive understanding of network functionality across the Cerrado.
Collapse
Affiliation(s)
- Ludmilla M. S. Aguiar
- Departamento de Zoologia, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaDFBrazil
| | - Ugo M. Diniz
- Chair of Plant‐Insect Interactions, School of Life SciencesTechnical University of MunichFreisingGermany
| | - Igor D. Bueno‐Rocha
- Programa de Pós‐Graduação em Ecologia, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaDFBrazil
| | - Laura R. A. Filomeno
- Programa de Pós‐Graduação em Zoologia, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaDFBrazil
| | - Luísa S. Aguiar‐Machado
- Programa de Pós‐Graduação em Zoologia, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaDFBrazil
| | - Priscilla A. Gomes
- Programa de Pós‐Graduação em Zoologia, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaDFBrazil
| | - Pedro H. B. Togni
- Departamento de Ecologia, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaDFBrazil
| |
Collapse
|
4
|
Wade MJ, Sultan SE. Niche construction and the environmental term of the price equation: How natural selection changes when organisms alter their environments. Evol Dev 2023; 25:451-469. [PMID: 37530093 DOI: 10.1111/ede.12452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023]
Abstract
Organisms construct their own environments and phenotypes through the adaptive processes of habitat choice, habitat construction, and phenotypic plasticity. We examine how these processes affect the dynamics of mean fitness change through the environmental change term of the Price Equation. This tends to be ignored in evolutionary theory, owing to the emphasis on the first term describing the effect of natural selection on mean fitness (the additive genetic variance for fitness of Fisher's Fundamental Theorem). Using population genetic models and the Price Equation, we show how adaptive niche constructing traits favorably alter the distribution of environments that organisms encounter and thereby increase population mean fitness. Because niche-constructing traits increase the frequency of higher-fitness environments, selection favors their evolution. Furthermore, their alteration of the actual or experienced environmental distribution creates selective feedback between niche constructing traits and other traits, especially those with genotype-by-environment interaction for fitness. By altering the distribution of experienced environments, niche constructing traits can increase the additive genetic variance for such traits. This effect accelerates the process of overall adaption to the niche-constructed environmental distribution and can contribute to the rapid refinement of alternative phenotypic adaptations to different environments. Our findings suggest that evolutionary biologists revisit and reevaluate the environmental term of the Price Equation: owing to adaptive niche construction, it contributes directly to positive change in mean fitness; its magnitude can be comparable to that of natural selection; and, when there is fitness G × E, it increases the additive genetic variance for fitness, the much-celebrated first term.
Collapse
Affiliation(s)
- Michael J Wade
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Sonia E Sultan
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
5
|
Sanderson S, Bolnick DI, Kinnison MT, O'Dea RE, Gorné LD, Hendry AP, Gotanda KM. Contemporary changes in phenotypic variation, and the potential consequences for eco-evolutionary dynamics. Ecol Lett 2023; 26 Suppl 1:S127-S139. [PMID: 37840026 DOI: 10.1111/ele.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 10/17/2023]
Abstract
Most studies assessing rates of phenotypic change focus on population mean trait values, whereas a largely overlooked additional component is changes in population trait variation. Theoretically, eco-evolutionary dynamics mediated by such changes in trait variation could be as important as those mediated by changes in trait means. To date, however, no study has comprehensively summarised how phenotypic variation is changing in contemporary populations. Here, we explore four questions using a large database: How do changes in trait variances compare to changes in trait means? Do different human disturbances have different effects on trait variance? Do different trait types have different effects on changes in trait variance? Do studies that established a genetic basis for trait change show different patterns from those that did not? We find that changes in variation are typically small; yet we also see some very large changes associated with particular disturbances or trait types. We close by interpreting and discussing the implications of our findings in the context of eco-evolutionary studies.
Collapse
Affiliation(s)
- Sarah Sanderson
- Department of Biology and Redpath Museum, McGill University, Montréal, Québec, Canada
| | - Daniel I Bolnick
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael T Kinnison
- School of Biology and Ecology and Maine Center for Genetics in the Environment, University of Maine, Orono, Maine, USA
| | | | - Lucas D Gorné
- Department of Biology and Redpath Museum, McGill University, Montréal, Québec, Canada
- Department of Biological Sciences, Brock University, St. Catharine's, Ontario, Canada
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrew P Hendry
- Department of Biology and Redpath Museum, McGill University, Montréal, Québec, Canada
| | - Kiyoko M Gotanda
- Department of Biological Sciences, Brock University, St. Catharine's, Ontario, Canada
| |
Collapse
|
6
|
Ware-Gilmore F, Novelo M, Sgrò CM, Hall MD, McGraw EA. Assessing the role of family level variation and heat shock gene expression in the thermal stress response of the mosquito Aedes aegypti. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220011. [PMID: 36744557 PMCID: PMC9900713 DOI: 10.1098/rstb.2022.0011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/25/2022] [Indexed: 02/07/2023] Open
Abstract
The geographical range of the mosquito vector for many human disease-causing viruses, Aedes aegypti, is expanding, in part owing to changing climate. The capacity of this species to adapt to thermal stress will affect its future distributions. It is unclear how much heritable genetic variation may affect the upper thermal limits of mosquito populations over the long term. Nor are the genetic pathways that confer thermal tolerance fully understood. In the short term, cells induce a plastic, protective response known as 'heat shock'. Using a physiological 'knockdown' assay, we investigated mosquito thermal tolerance to characterize the genetic architecture of the trait. While families representing the extreme ends of the distribution for knockdown time differed from one another, the trait exhibited low but non-zero broad-sense heritability. We then explored whether families representing thermal performance extremes differed in their heat shock response by measuring gene expression of heat shock protein-encoding genes Hsp26, Hsp83 and Hsp70. Contrary to prediction, the families with higher thermal tolerance demonstrated less Hsp expression. This pattern may indicate that other mechanisms of heat tolerance, rather than heat shock, may underpin the stress response, and the costly production of HSPs may instead signal poor adaptation. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Fhallon Ware-Gilmore
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mario Novelo
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Carla M. Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Matthew D. Hall
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Elizabeth A. McGraw
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Wagner MR, Mitchell-Olds T. Soil variation among natural habitats alters glucosinolate content in a wild perennial mustard. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1723-1740. [PMID: 36583734 PMCID: PMC10010606 DOI: 10.1093/jxb/erac520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Baseline levels of glucosinolates-important defensive phytochemicals in brassicaceous plants-are determined by both genotype and environment. However, the ecological causes of glucosinolate plasticity are not well characterized. Fertilization is known to alter glucosinolate content of Brassica crops, but the effect of naturally occurring soil variation on glucosinolate content of wild plants is unknown. Here, we conducted greenhouse experiments using Boechera stricta to ask (i) whether soil variation among natural habitats shapes leaf and root glucosinolate profiles; (ii) whether such changes are caused by abiotic soil properties, soil microbes, or both; and (iii) whether soil-induced glucosinolate plasticity is genetically variable. Total glucosinolate quantity differed up to 2-fold between soils from different natural habitats, while the relative amounts of different compounds were less responsive. This effect was due to physico-chemical soil properties rather than microbial communities. We detected modest genetic variation for glucosinolate plasticity in response to soil. In addition, glucosinolate composition, but not quantity, of field-grown plants could be accurately predicted from measurements from greenhouse-grown plants. In summary, soil alone is sufficient to cause plasticity of baseline glucosinolate levels in natural plant populations, which may have implications for the evolution of this important trait across complex landscapes.
Collapse
Affiliation(s)
- Maggie R Wagner
- Department of Ecology and Evolutionary Biology, Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS 66045, USA
| | - Thomas Mitchell-Olds
- Program in Genetics and Genomics, Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
8
|
Zia MAB, Yousaf MF, Asim A, Naeem M. An overview of genome-wide association mapping studies in Poaceae species (model crops: wheat and rice). Mol Biol Rep 2022; 49:12077-12090. [DOI: 10.1007/s11033-022-08036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
9
|
Carper DL, Appidi MR, Mudbhari S, Shrestha HK, Hettich RL, Abraham PE. The Promises, Challenges, and Opportunities of Omics for Studying the Plant Holobiont. Microorganisms 2022; 10:microorganisms10102013. [PMID: 36296289 PMCID: PMC9609723 DOI: 10.3390/microorganisms10102013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Microorganisms are critical drivers of biological processes that contribute significantly to plant sustainability and productivity. In recent years, emerging research on plant holobiont theory and microbial invasion ecology has radically transformed how we study plant–microbe interactions. Over the last few years, we have witnessed an accelerating pace of advancements and breadth of questions answered using omic technologies. Herein, we discuss how current state-of-the-art genomics, transcriptomics, proteomics, and metabolomics techniques reliably transcend the task of studying plant–microbe interactions while acknowledging existing limitations impeding our understanding of plant holobionts.
Collapse
Affiliation(s)
- Dana L. Carper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Manasa R. Appidi
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - Sameer Mudbhari
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - Him K. Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - Robert L. Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence:
| |
Collapse
|
10
|
De-la-Cruz IM, Batsleer F, Bonte D, Diller C, Hytönen T, Muola A, Osorio S, Posé D, Vandegehuchte ML, Stenberg JA. Evolutionary Ecology of Plant-Arthropod Interactions in Light of the "Omics" Sciences: A Broad Guide. FRONTIERS IN PLANT SCIENCE 2022; 13:808427. [PMID: 35548276 PMCID: PMC9084618 DOI: 10.3389/fpls.2022.808427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Aboveground plant-arthropod interactions are typically complex, involving herbivores, predators, pollinators, and various other guilds that can strongly affect plant fitness, directly or indirectly, and individually, synergistically, or antagonistically. However, little is known about how ongoing natural selection by these interacting guilds shapes the evolution of plants, i.e., how they affect the differential survival and reproduction of genotypes due to differences in phenotypes in an environment. Recent technological advances, including next-generation sequencing, metabolomics, and gene-editing technologies along with traditional experimental approaches (e.g., quantitative genetics experiments), have enabled far more comprehensive exploration of the genes and traits involved in complex ecological interactions. Connecting different levels of biological organization (genes to communities) will enhance the understanding of evolutionary interactions in complex communities, but this requires a multidisciplinary approach. Here, we review traditional and modern methods and concepts, then highlight future avenues for studying the evolution of plant-arthropod interactions (e.g., plant-herbivore-pollinator interactions). Besides promoting a fundamental understanding of plant-associated arthropod communities' genetic background and evolution, such knowledge can also help address many current global environmental challenges.
Collapse
Affiliation(s)
- Ivan M. De-la-Cruz
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Femke Batsleer
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Carolina Diller
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- NIAB EMR, West Malling, United Kingdom
| | - Anne Muola
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Biodiversity Unit, University of Turku, Finland
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, Málaga, Spain
| | - David Posé
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, Málaga, Spain
| | - Martijn L. Vandegehuchte
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Johan A. Stenberg
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
11
|
Folio DM, Gil J, Caudron A, Labonne J. Genotype-by-environment interactions drive the maintenance of genetic variation in a Salmo trutta L. hybrid zone. Evol Appl 2021; 14:2698-2711. [PMID: 34815748 PMCID: PMC8591331 DOI: 10.1111/eva.13307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
Allopatric gene pools can evolve in different directions through adaptive and nonadaptive processes and are therefore a source of intraspecific diversity. The connection of these previously isolated gene pools through human intervention can lead to intraspecific diversity loss, through extirpation of native populations or hybridization. However, the mechanisms leading to these situations are not always explicitly documented and are thus rarely used to manage intraspecific diversity. In particular, genotype-by-environment (GxE) interactions can drive postzygotic reproductive isolation mechanisms that may result in a mosaic of diversity patterns, depending on the local environment. We test this hypothesis using a salmonid species (Salmo trutta) in the Mediterranean (MED) area, where intensive stocking from non-native Atlantic (ATL) origins has led to various outcomes of hybridization with the native MED lineage, going from MED resilience to total extirpation via full hybridization. We investigate patterns of offspring survival at egg stage in natural environments, based on parental genotypes in interaction with river temperature, to detect potential GxE interactions. Our results show a strong influence of maternal GxE interaction on embryonic survival, mediated by maternal effect through egg size, and a weak influence of paternal GxE interaction. In particular, when egg size is large and temperature is cold, the survival rate of offspring originating from MED females is three times higher than that of ATL females' offspring. Because river temperatures show contrast at small scale, this cold adaptation for MED females' offspring constitutes a potent postzygotic mechanism to explain small-scale spatial heterogeneity in diversity observed in MED areas where ATL fish have been stocked. It also indicates that management efforts could be specifically targeted at the environments that actively favor native intraspecific diversity through eco-evolutionary processes such as postzygotic selection.
Collapse
Affiliation(s)
- Dorinda Marie Folio
- Université de Pau et des Pays de l’AdourUMR INRAE‐UPPAEcobiopSaint‐Pée‐sur‐NivelleFrance
- SCIMABIO InterfaceThonon‐les‐BainsFrance
| | - Jordi Gil
- UMR CARRTELINRAEUSMBThonon‐les‐BainsFrance
- Conservatoire des Espaces Naturels Rhône‐AlpesVogüeFrance
| | | | - Jacques Labonne
- Université de Pau et des Pays de l’AdourUMR INRAE‐UPPAEcobiopSaint‐Pée‐sur‐NivelleFrance
| |
Collapse
|
12
|
Reider KE, Schmidt SK. Vicuña dung gardens at the edge of the cryosphere: Reply. Ecology 2021; 103:e03579. [PMID: 34719020 DOI: 10.1002/ecy.3579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Kelsey E Reider
- Department of Biology, James Madison University, Harrisonburg, Virginia, 22807, USA
| | - Steven K Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| |
Collapse
|
13
|
Wright SJ, Goad DM, Gross BL, Muñoz PR, Olsen KM. Genetic trade-offs underlie divergent life history strategies for local adaptation in white clover. Mol Ecol 2021; 31:3742-3760. [PMID: 34532899 DOI: 10.1111/mec.16180] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 01/26/2023]
Abstract
Local adaptation is common in plants, yet characterization of its underlying genetic basis is rare in herbaceous perennials. Moreover, while many plant species exhibit intraspecific chemical defence polymorphisms, their importance for local adaptation remains poorly understood. We examined the genetic architecture of local adaptation in a perennial, obligately-outcrossing herbaceous legume, white clover (Trifolium repens). This widespread species displays a well-studied chemical defence polymorphism for cyanogenesis (HCN release following tissue damage) and has evolved climate-associated cyanogenesis clines throughout its range. Two biparental F2 mapping populations, derived from three parents collected in environments spanning the U.S. latitudinal species range (Duluth, MN, St. Louis, MO and Gainesville, FL), were grown in triplicate for two years in reciprocal common garden experiments in the parental environments (6,012 total plants). Vegetative growth and reproductive fitness traits displayed trade-offs across reciprocal environments, indicating local adaptation. Genetic mapping of fitness traits revealed a genetic architecture characterized by allelic trade-offs between environments, with 100% and 80% of fitness QTL in the two mapping populations showing significant QTL×E interactions, consistent with antagonistic pleiotropy. Across the genome there were three hotspots of QTL colocalization. Unexpectedly, we found little evidence that the cyanogenesis polymorphism contributes to local adaptation. Instead, divergent life history strategies in reciprocal environments were major fitness determinants: selection favoured early investment in flowering at the cost of multiyear survival in the southernmost site versus delayed flowering and multiyear persistence in the northern environments. Our findings demonstrate that multilocus genetic trade-offs contribute to contrasting life history characteristics that allow for local adaptation in this outcrossing herbaceous perennial.
Collapse
Affiliation(s)
- Sara J Wright
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - David M Goad
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Briana L Gross
- Biology Department, University of Minnesota-Duluth, Duluth, Minnesota, USA
| | - Patricio R Muñoz
- Horticultural Science Department, University of Florida, Gainesville, Florida, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Carley LN, Mojica JP, Wang B, Chen CY, Lin YP, Prasad KVSK, Chan E, Hsu CW, Keith R, Nuñez CL, Olson-Manning CF, Rushworth CA, Wagner MR, Wang J, Yeh PM, Reichelt M, Ghattas K, Gershenzon J, Lee CR, Mitchell-Olds T. Ecological factors influence balancing selection on leaf chemical profiles of a wildflower. Nat Ecol Evol 2021; 5:1135-1144. [PMID: 34140651 PMCID: PMC8325631 DOI: 10.1038/s41559-021-01486-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023]
Abstract
Balancing selection is frequently invoked as a mechanism that maintains variation within and across populations. However, there are few examples of balancing selection operating on loci underpinning complex traits, which frequently display high levels of variation. We investigated mechanisms that may maintain variation in a focal polymorphism-leaf chemical profiles of a perennial wildflower (Boechera stricta, Brassicaceae)-explicitly interrogating multiple ecological and genetic processes including spatial variation in selection, antagonistic pleiotropy and frequency-dependent selection. A suite of common garden and greenhouse experiments showed that the alleles underlying variation in chemical profile have contrasting fitness effects across environments, implicating two ecological drivers of selection on chemical profile: herbivory and drought. Phenotype-environment associations and molecular genetic analyses revealed additional evidence of past selection by these drivers. Together, these data are consistent with balancing selection on chemical profile, probably caused by pleiotropic effects of secondary chemical biosynthesis genes on herbivore defence and drought response.
Collapse
Affiliation(s)
- Lauren N Carley
- Duke University Program in Ecology, Durham, NC, USA
- Biology Department, Duke University, Durham, NC, USA
- Rocky Mountain Biological Laboratory, Gothic, CO, USA
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St Paul, MN, USA
| | - Julius P Mojica
- Biology Department, Duke University, Durham, NC, USA
- Pairwise Plants, Durham, NC, USA
| | - Baosheng Wang
- Biology Department, Duke University, Durham, NC, USA
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Chia-Yu Chen
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
| | - Ya-Ping Lin
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- World Vegetable Center Headquarters, Tainan, Taiwan
| | - Kasavajhala V S K Prasad
- Department of Biology and Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
| | - Emily Chan
- Biology Department, Duke University, Durham, NC, USA
| | - Che-Wei Hsu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Rose Keith
- Biology Department, Duke University, Durham, NC, USA
- Biology Department, DePauw University, Greencastle, IN, USA
| | - Chase L Nuñez
- Duke University Program in Ecology, Durham, NC, USA
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Baden-Württemberg, Germany
| | - Carrie F Olson-Manning
- Biology Department, Duke University, Durham, NC, USA
- Augustana University, Sioux Falls, SD, USA
| | - Catherine A Rushworth
- Biology Department, Duke University, Durham, NC, USA
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St Paul, MN, USA
- Evolution and Ecology Department, University of California Davis, Davis, CA, USA
- University and Jepson Herbaria, University of California Berkeley, Berkeley, CA, USA
| | - Maggie R Wagner
- Biology Department, Duke University, Durham, NC, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Kansas Biological Survey, Lawrence, KS, USA
| | - Jing Wang
- Biology Department, Duke University, Durham, NC, USA
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Pei-Min Yeh
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan.
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.
| | - Thomas Mitchell-Olds
- Biology Department, Duke University, Durham, NC, USA.
- Rocky Mountain Biological Laboratory, Gothic, CO, USA.
| |
Collapse
|
15
|
Guo X, Ma BL, McLaughlin NB, Wu X, Chen B, Gao Y. Nitrogen utilisation-efficient oilseed rape (Brassica napus) genotypes exhibit stronger growth attributes from flowering stage onwards. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:755-765. [PMID: 33715767 DOI: 10.1071/fp20263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Preliminary studies observed a lower growth activity during the vegetative stage with higher growth attributes at the pod-filling stage among the high nitrogen (N) utilisation efficiency (NUtE) oilseed rape (Brassica napus L.) genotypes, compared with the low NUtE genotypes. Therefore, we hypothesised that there would exist a critical growth stage when distinctive phenotypic traits are exhibited to regulate yield formation and NUE. A field experiment and a hydroponic culture were conducted to characterise the differences in shoot and root physiological indicators of the high and low NUtE oilseed rape genotypes at seedling, bud, bolting, flowering and pod-filling stages. We found that flowering was the critical period when the reverse growth habit occurred between high and low NUtE genotypes. The high NUtE genotypes displayed larger values of root traits, stronger N uptake kinetics parameters, higher activity of leaf glutamine synthetase (GS) and glutamate synthetase (GOGAT), larger SPAD values and net photosynthetic rate, ultimately leading to higher seed yield and NUE. Our results indicate that flowering is the critical growth stage to distinguish the high from low NUtE oilseed rape genotypes, and plant breeders may focus on selecting root and shoot phenotypic traits from flowering stage onwards to achieve both high yields and NUE for oilseed rape genotypes.
Collapse
Affiliation(s)
- Xiao Guo
- College of Natural Resource and Environment, Northwest A and F University, 712100 Yangling, Shaanxi, China; and Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, K1A 0C6 Ottawa, Ontario, Canada
| | - Bao-Luo Ma
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, K1A 0C6 Ottawa, Ontario, Canada
| | - Neil B McLaughlin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, K1A 0C6 Ottawa, Ontario, Canada
| | - Xiaoming Wu
- Institute of Oil Crop Research, Chinese Academy of Agricultural Sciences, 430062 Wuhan, Hubei, China
| | - Biyun Chen
- Institute of Oil Crop Research, Chinese Academy of Agricultural Sciences, 430062 Wuhan, Hubei, China
| | - Yajun Gao
- College of Natural Resource and Environment, Northwest A and F University, 712100 Yangling, Shaanxi, China; and Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, 712100 Yangling, Shaanxi, China; and Corresponding author.
| |
Collapse
|
16
|
De-la-Cruz IM, Merilä J, Valverde PL, Flores-Ortiz CM, Núñez-Farfán J. Genomic and chemical evidence for local adaptation in resistance to different herbivores in Datura stramonium. Evolution 2020; 74:2629-2643. [PMID: 32935854 DOI: 10.1111/evo.14097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/28/2020] [Accepted: 09/12/2020] [Indexed: 12/18/2022]
Abstract
Because most species are collections of genetically variable populations distributed to habitats differing in their abiotic/biotic environmental factors and community composition, the pattern and strength of natural selection imposed by species on each other's traits are also expected to be highly spatially variable. Here, we used genomic and quantitative genetic approaches to understand how spatially variable selection operates on the genetic basis of plant defenses to herbivores. To this end, an F2 progeny was generated by crossing Datura stramonium (Solanaceae) parents from two populations differing in their level of chemical defense. This F2 progeny was reciprocally transplanted into the parental plants' habitats and by measuring the identity by descent (IBD) relationship of each F2 plant to each parent, we were able to elucidate how spatially variable selection imposed by herbivores operated on the genetic background (IBD) of resistance to herbivory, promoting local adaptation. The results highlight that plants possessing the highest total alkaloid concentrations (sum of all alkaloid classes) were not the most well-defended or fit. Instead, specific alkaloids and their linked loci/alleles were favored by selection imposed by different herbivores. This has led to population differentiation in plant defenses and thus, to local adaptation driven by plant-herbivore interactions.
Collapse
Affiliation(s)
- Ivan M De-la-Cruz
- Laboratory of Ecological Genetics and Evolution, Department of Evolutionary Ecology, Institute of Ecology, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro L Valverde
- Department of Biology, Universidad Autónoma Metropolitana Campus Iztapalapa, Mexico City, Mexico
| | - César M Flores-Ortiz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Núñez-Farfán
- Laboratory of Ecological Genetics and Evolution, Department of Evolutionary Ecology, Institute of Ecology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
17
|
Matesanz S, Ramos-Muñoz M, Moncalvillo B, Rubio Teso ML, García de Dionisio SL, Romero J, Iriondo JM. Plasticity to drought and ecotypic differentiation in populations of a crop wild relative. AOB PLANTS 2020; 12:plaa006. [PMID: 32190234 PMCID: PMC7065737 DOI: 10.1093/aobpla/plaa006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/10/2020] [Indexed: 06/01/2023]
Abstract
Populations of widely distributed species often exhibit geographic variation in functional traits in response to environmental heterogeneity. Such trait variation may be the result of different adaptive mechanisms, including genetically based differentiation, phenotypic plasticity or a combination of both. Disentangling the genetic and environmental components of trait variation may be particularly interesting in crop wild relatives, since they may provide unique reservoirs of genetic diversity for crop improvement. In this study, we assessed ecotypic differentiation and patterns of plasticity to drought in populations of Lupinus angustifolius, a Mediterranean crop wild relative, from two climatically distinct regions in the Iberian Peninsula. Using an outdoor common garden, we compared phenotypic responses of inbred maternal families to two ecologically meaningful water availability treatments (drought and high-moisture). We measured 18 different functional traits related to growth, morphology, phenology and reproduction. Plants in the drought treatment grew less, had lower leaf chlorophyll content and photochemical efficiency, but also reproduced faster, produced larger seeds and altered leaflet morphology through increased leaflet thickness, higher leaflet dry matter content and lower specific leaf area. We also found significant differences between regions that likely reflect adaptation to climatically distinct environments, with populations from the south showing a faster onset of reproduction, higher leaf thickness and higher seed size, consistent with the drier conditions experienced in southern sites. Plasticity to drought was in most cases in the same direction as quantitative genetic differentiation (i.e. cogradient variation), providing evidence of the adaptive value of the plastic change. Our results show that both genetic differentiation and plasticity can generate adaptive phenotypic variation in L. angustifolius, and help to identify potentially valuable genetic resources to incorporate into breeding programmes.
Collapse
Affiliation(s)
- S Matesanz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, Madrid, Spain
| | - M Ramos-Muñoz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, Madrid, Spain
| | - B Moncalvillo
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, Madrid, Spain
| | - M L Rubio Teso
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, Madrid, Spain
| | - S L García de Dionisio
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, Madrid, Spain
| | - J Romero
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, Madrid, Spain
| | - J M Iriondo
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, Madrid, Spain
| |
Collapse
|
18
|
Riesch R, Martin RA, Langerhans RB. Multiple traits and multifarious environments: integrated divergence of morphology and life history. OIKOS 2019. [DOI: 10.1111/oik.06344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rüdiger Riesch
- School of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway, Univ. of London Egham Surrey TW20 0EX UK
| | - Ryan A. Martin
- Dept of Biology, DeGrace Hall, Case Western Reserve Univ. Cleveland OH USA
| | - R. Brian Langerhans
- Dept of Biological Sciences & W. M. Keck Center for Behavioral Biology, North Carolina State Univ. Raleigh NC USA
| |
Collapse
|
19
|
Joshi AK, Kumar U, Mishra V, Chand R, Chatrath R, Naik R, Biradar S, Singh RP, Budhlakoti N, Devulapalli R, Blümmel M. Variations in straw fodder quality and grain-Straw relationships in a mapping population of 287 diverse spring wheat lines. FIELD CROPS RESEARCH 2019; 243:107627. [PMID: 31853164 PMCID: PMC6894307 DOI: 10.1016/j.fcr.2019.107627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/12/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
A wheat association mapping population consisting of 287 diverse spring wheat lines were evaluated for three years in one location (Varanasi) and out of these for one year across three locations (Karnal, Dharwad and Varanasi) in India. Straw fodder quality traits analyzed were nitrogen (N) content, neutral (NDF) and acid (ADF) detergent fiber, acid detergent lignin (ADL), ash (ASH), in vitro organic matter digestibility (IVOMD) and metabolizable energy (ME) content. Grain yield (GY) and straw yield (SY) were also recorded. Highly significant (P < 0.0001) differences among lines were observed for all traits except for ADF and ADL in the three years trials conducted at Varanasi. However, year and location had strong (P < 0.0001) effects on all traits. Compared to line-dependent variations in GY and SY variation in straw fodder quality traits were small. Proportionally greatest variations between lines were observed for straw N where lowest and highest N varied by about 30%. Difference for NDF and ADF between lines were at most 4% units and below 3% units for IVOMD. Grain yield and straw yield were positively correlated (P < 0.0001) with GY accounting for 26% of the variation in SY. Straw N, IVOMD and ME were weakly but significantly (P < 0.05) negatively associated with GY and SY. Straw NDF and ADF were significantly (P < 0.05) positively correlated with GY but the association was again weak. Straw NDF, ADF and ADL were also weakly but significantly positively correlated with SY. Genome-wide association studies (GWAS) were applied to detect significant marker- straw fodder quality trait associations. Five genomic regions contributed for six traits (ADF, ADL, ASH, IVOMD, ME and NDF). ADF and ADL mapped in the common QTL region on chromosome 2B. Similarly, for the IVOMD and ME QTLs on chromosome 5B were associated with SNP marker, wsnp_Ku_c35090_44349517. While some associations were detected for ADF, ALD, ASH, IVOMD, ME and NDF on chromosomes 1A, 2B, 3A, 5A and 5B, the phenotypic variation explained was low to medium by individual QTL. A likely contributing factor was the comparatively small difference in straw fodder quality traits among the lines. It is interesting to note that line dependent variations in GY and SY were about two-fold. In other words, strong genotypic variations of GY and SY do exist. The lack of any similar variations in straw fodder quality traits is intriguing and requires further research.
Collapse
Affiliation(s)
- Arun K. Joshi
- International Maize and Wheat Improvement Center (CIMMYT), NASC Complex, DPS Marg, New Delhi, India
- Borlaug Institute for South Asia (BISA), NASC Complex, DPS Marg, New Delhi, India
| | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), NASC Complex, DPS Marg, New Delhi, India
| | | | | | - R. Chatrath
- Indian Institute of Wheat and Barley Research (IIWBR), Karnal, India
| | - Rudra Naik
- University of Agricultural Sciences, Dharwad, India
| | - Suma Biradar
- University of Agricultural Sciences, Dharwad, India
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo postal 6-641, Mexico DF, Mexico
| | - Neeraj Budhlakoti
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, 110012, India
| | - Ravi Devulapalli
- International Livestock Research Institute (ILRI), ICRISAT Campus, Patancheru, Hyderabad 502324, Telangana, India
| | - Michael Blümmel
- International Livestock Research Institute (ILRI), P.O.Box5689, Addis Ababa, Ethiopia
| |
Collapse
|
20
|
Torres‐Martínez L, McCarten N, Emery NC. The adaptive potential of plant populations in response to extreme climate events. Ecol Lett 2019; 22:866-874. [DOI: 10.1111/ele.13244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/06/2018] [Accepted: 02/05/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Lorena Torres‐Martínez
- Department of Biological Sciences Purdue University 915 W. State Street West Lafayette IN47907‐2054 USA
- Department of Evolution, Ecology and Organismal Biology University of California Riverside CA92521 USA
| | - Niall McCarten
- Department of Land, Air and Water Resources University of California Davis CA95616 USA
| | - Nancy C. Emery
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Campus Box 334 Boulder CO80309‐0334 USA
| |
Collapse
|
21
|
Wille L, Messmer MM, Studer B, Hohmann P. Insights to plant-microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes. PLANT, CELL & ENVIRONMENT 2019; 42:20-40. [PMID: 29645277 DOI: 10.1111/pce.13214] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 05/19/2023]
Abstract
Root and foot diseases severely impede grain legume cultivation worldwide. Breeding lines with resistance against individual pathogens exist, but these resistances are often overcome by the interaction of multiple pathogens in field situations. Novel tools allow to decipher plant-microbiome interactions in unprecedented detail and provide insights into resistance mechanisms that consider both simultaneous attacks of various pathogens and the interplay with beneficial microbes. Although it has become clear that plant-associated microbes play a key role in plant health, a systematic picture of how and to what extent plants can shape their own detrimental or beneficial microbiome remains to be drawn. There is increasing evidence for the existence of genetic variation in the regulation of plant-microbe interactions that can be exploited by plant breeders. We propose to consider the entire plant holobiont in resistance breeding strategies in order to unravel hidden parts of complex defence mechanisms. This review summarizes (a) the current knowledge of resistance against soil-borne pathogens in grain legumes, (b) evidence for genetic variation for rhizosphere-related traits, (c) the role of root exudation in microbe-mediated disease resistance and elaborates (d) how these traits can be incorporated in resistance breeding programmes.
Collapse
Affiliation(s)
- Lukas Wille
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), 5070, Frick, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, 8092, Zurich, Switzerland
| | - Monika M Messmer
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), 5070, Frick, Switzerland
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, 8092, Zurich, Switzerland
| | - Pierre Hohmann
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), 5070, Frick, Switzerland
| |
Collapse
|
22
|
Nystrand M, Cassidy EJ, Dowling DK. The effects of a bacterial challenge on reproductive success of fruit flies evolved under low or high sexual selection. Ecol Evol 2018; 8:9341-9352. [PMID: 30377505 PMCID: PMC6194216 DOI: 10.1002/ece3.4450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 01/22/2023] Open
Abstract
The capacity of individuals to cope with stress, for example, from pathogen exposure, might decrease with increasing levels of sexual selection, although it remains unclear which sex should be more sensitive. Here, we measured the ability of each sex to maintain high reproductive success following challenges with either heat-killed bacteria or procedural control, across replicate populations of Drosophila melanogaster evolved under either high or low levels of sexual selection. Our experiment was run across four separate sampling blocks. We found an interaction between bacterial treatment, sexual selection treatment, and sampling block on female reproductive success. Specifically, and only in the fourth block, we observed that bacterial-challenged females that had evolved under high sexual selection, exhibited lower reproductive success than bacterial-challenged females that had evolved under low sexual selection. Furthermore, we could trace this block-specific effect to a reduction in viscosity of the ovipositioning substrate in the fourth block, in which females laid around 50% more eggs than in previous blocks. In contrast, patterns of male reproductive success were consistent across blocks. Males that evolved under high sexual selection exhibited higher reproductive success than their low-selection counterparts, regardless of whether they were subjected to a bacterial challenge or not. Our results are consistent with the prediction that heightened sexual selection will invoke male-specific evolutionary increases in reproductive fitness. Furthermore, our findings suggest that females might pay fitness costs when exposed to high levels of sexual selection, but that these costs may lie cryptic, and only be revealed under certain environmental contexts.
Collapse
Affiliation(s)
| | - Elizabeth J. Cassidy
- School of Biological SciencesMonash UniversityClaytonVic.Australia
- Department of Plant and Organismal BiologyUniversity of CopenhagenCopenhagenDenmark
| | | |
Collapse
|
23
|
Woodruff GC, Phillips PC. Field studies reveal a close relative of C. elegans thrives in the fresh figs of Ficus septica and disperses on its Ceratosolen pollinating wasps. BMC Ecol 2018; 18:26. [PMID: 30129423 PMCID: PMC6102938 DOI: 10.1186/s12898-018-0182-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biotic interactions are ubiquitous and require information from ecology, evolutionary biology, and functional genetics in order to be understood. However, study systems that are amenable to investigations across such disparate fields are rare. Figs and fig wasps are a classic system for ecology and evolutionary biology with poor functional genetics; Caenorhabditis elegans is a classic system for functional genetics with poor ecology. In order to help bridge these disciplines, here we describe the natural history of a close relative of C. elegans, Caenorhabditis inopinata, that is associated with the fig Ficus septica and its pollinating Ceratosolen wasps. RESULTS To understand the natural context of fig-associated Caenorhabditis, fresh F. septica figs from four Okinawan islands were sampled, dissected, and observed under microscopy. C. inopinata was found in all islands where F. septica figs were found. C.i nopinata was routinely found in the fig interior and almost never observed on the outside surface. C. inopinata was only found in pollinated figs, and C. inopinata was more likely to be observed in figs with more foundress pollinating wasps. Actively reproducing C. inopinata dominated early phase figs, whereas late phase figs with emerging wasp progeny harbored C. inopinata dauer larvae. Additionally, C. inopinata was observed dismounting from Ceratosolen pollinating wasps that were placed on agar plates. C. inopinata was not found on non-pollinating, parasitic Philotrypesis wasps. Finally, C. inopinata was only observed in F. septica figs among five Okinawan Ficus species sampled. CONCLUSION These are the first detailed field observations of C. inopinata, and they suggest a natural history where this species proliferates in early phase F. septica figs and disperses from late phase figs on Ceratosolen pollinating fig wasps. While consistent with other examples of nematode diversification in the fig microcosm, the fig and wasp host specificity of C. inopinata is highly divergent from the life histories of its close relatives and frames hypotheses for future investigations. This natural co-occurrence of the fig/fig wasp and C. inopinata study systems sets the stage for an integrated research program that can help to explain the evolution of interspecific interactions.
Collapse
Affiliation(s)
- Gavin C Woodruff
- Forest Pathology Laboratory, Forestry and Forest Products Research Institute, Tsukuba, Japan.
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.
| | - Patrick C Phillips
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
24
|
Abstract
In this very large-scale longitudinal field study of the maize rhizosphere microbiome, we identify heritable taxa. These taxa display variance in their relative abundances that can be partially explained by genetic differences between the maize lines, above and beyond the strong influences of field, plant age, and weather on the diversity of the rhizosphere microbiome. If these heritable taxa are associated with beneficial traits, they may serve as phenotypes in future breeding endeavors. Soil microbes that colonize plant roots and are responsive to differences in plant genotype remain to be ascertained for agronomically important crops. From a very large-scale longitudinal field study of 27 maize inbred lines planted in three fields, with partial replication 5 y later, we identify root-associated microbiota exhibiting reproducible associations with plant genotype. Analysis of 4,866 samples identified 143 operational taxonomic units (OTUs) whose variation in relative abundances across the samples was significantly regulated by plant genotype, and included five of seven core OTUs present in all samples. Plant genetic effects were significant amid the large effects of plant age on the rhizosphere microbiome, regardless of the specific community of each field, and despite microbiome responses to climate events. Seasonal patterns showed that the plant root microbiome is locally seeded, changes with plant growth, and responds to weather events. However, against this background of variation, specific taxa responded to differences in host genotype. If shown to have beneficial functions, microbes may be considered candidate traits for selective breeding.
Collapse
|
25
|
Invasive Rosa rugosa populations outperform native populations, but some populations have greater invasive potential than others. Sci Rep 2018; 8:5735. [PMID: 29636551 PMCID: PMC5893583 DOI: 10.1038/s41598-018-23974-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/23/2018] [Indexed: 11/08/2022] Open
Abstract
Increased performance of invasive plant species in their introduced range vs. their native range has been previously documented. However, performance differences among invasive populations have rarely been explored, despite this information being central to understanding the evolution of invasiveness as well as being a useful basis to inform management of invasive species. To examine variation in performance among populations of Rosa rugosa in its introduced range, and whether introduced populations perform better than native populations, we quantified growth and reproductive traits in five invasive populations in northwest Europe and two native and declining populations in China. Overall, we found that the introduced R. rugosa populations we sampled performed significantly better than the sampled native populations for growth and reproductive traits (2 to 4 fold increase). However, there was significant variation for most traits among the five invasive populations, demonstrating that some introduced populations we sampled were more successful invaders than others. Our findings provide a useful foundation for management of invasive R. rugosa in Europe, and support the recent call for more intra-species research in invasive species biology.
Collapse
|
26
|
Wagner MR, Mitchell-Olds T. Plasticity of plant defense and its evolutionary implications in wild populations of Boechera stricta. Evolution 2018. [PMID: 29522254 DOI: 10.1111/evo.13469] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phenotypic plasticity is thought to impact evolutionary trajectories by shifting trait values in a direction that is either favored by natural selection ("adaptive" plasticity) or disfavored ("nonadaptive" plasticity). However, it is unclear how commonly each of these types of plasticity occurs in natural populations. To answer this question, we measured glucosinolate defensive chemistry and reproductive fitness in over 1500 individuals of the wild perennial mustard Boechera stricta, planted in four common gardens across central Idaho, United States. Glucosinolate profiles-including total glucosinolate concentration as well as the relative abundances and overall diversity of different compounds-were strongly plastic both among habitats and within habitats. Patterns of glucosinolate plasticity varied greatly among genotypes. Plasticity among sites was predicted to affect fitness in 27.1% of cases; more often than expected by chance, glucosinolate plasticity increased rather than decreased relative fitness. In contrast, we found no evidence for within-habitat selection on glucosinolate reaction norm slopes (i.e., plasticity along a continuous environmental gradient). Together, our results indicate that glucosinolate plasticity may improve the ability of B. stricta populations to persist after migration to new habitats.
Collapse
Affiliation(s)
- Maggie R Wagner
- Program in Genetics and Genomics, Department of Biology, Duke University, Durham, North Carolina 27708.,Current Address: Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695
| | - Thomas Mitchell-Olds
- Program in Genetics and Genomics, Department of Biology, Duke University, Durham, North Carolina 27708
| |
Collapse
|
27
|
Swings T, Weytjens B, Schalck T, Bonte C, Verstraeten N, Michiels J, Marchal K. Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations. Mol Biol Evol 2018; 34:2927-2943. [PMID: 28961727 PMCID: PMC5850225 DOI: 10.1093/molbev/msx228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well.
Collapse
Affiliation(s)
- Toon Swings
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Bram Weytjens
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium.,Department of Information Technology, IDLab, IMEC, Ghent University, Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.,Bioinformatics Institute Ghent, Gent, Belgium
| | - Thomas Schalck
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Camille Bonte
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | | - Jan Michiels
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Kathleen Marchal
- Department of Information Technology, IDLab, IMEC, Ghent University, Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.,Bioinformatics Institute Ghent, Gent, Belgium.,Department of Genetics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
28
|
Saxon AD, O'Brien EK, Bridle JR. Temperature fluctuations during development reduce male fitness and may limit adaptive potential in tropical rainforest Drosophila. J Evol Biol 2018; 31:405-415. [PMID: 29282784 DOI: 10.1111/jeb.13231] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/23/2017] [Accepted: 12/19/2017] [Indexed: 01/19/2023]
Abstract
Understanding the potential for organisms to tolerate thermal stress through physiological or evolutionary responses is crucial given rapid climate change. Although climate models predict increases in both temperature mean and variance, such tolerances are typically assessed under constant conditions. We tested the effects of temperature variability during development on male fitness in the rainforest fly Drosophila birchii, by simulating thermal variation typical of the warm and cool margins of its elevational distribution, and estimated heritabilities and genetic correlations of fitness traits. Reproductive success was reduced for males reared in warm (mean 24 °C) fluctuating (±3 °C) vs. constant conditions but not in cool fluctuating conditions (mean 17 °C), although fluctuations reduced body size at both temperatures. Male reproductive success under warm fluctuating conditions was similar to that at constant 27 °C, indicating that briefly exceeding critical thermal limits has similar fitness costs to continuously stressful conditions. There was substantial heritable variation in all traits. However, reproductive success traits showed no genetic correlation between treatments reflecting temperature variation at elevational extremes, which may constrain evolutionary responses at these ecological margins. Our data suggest that even small increases in temperature variability will threaten tropical ectotherms living close to their upper thermal limits, both through direct effects on fitness and by limiting their adaptive potential.
Collapse
Affiliation(s)
- A D Saxon
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - E K O'Brien
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - J R Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
29
|
Badji A, Otim M, Machida L, Odong T, Kwemoi DB, Okii D, Agbahoungba S, Mwila N, Kumi F, Ibanda A, Mugo S, Kyamanywa S, Rubaihayo P. Maize Combined Insect Resistance Genomic Regions and Their Co-localization With Cell Wall Constituents Revealed by Tissue-Specific QTL Meta-Analyses. FRONTIERS IN PLANT SCIENCE 2018; 9:895. [PMID: 30026746 PMCID: PMC6041972 DOI: 10.3389/fpls.2018.00895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/07/2018] [Indexed: 05/09/2023]
Abstract
Combinatorial insect attacks on maize leaves, stems, and kernels cause significant yield losses and mycotoxin contaminations. Several small effect quantitative trait loci (QTL) control maize resistance to stem borers and storage pests and are correlated with secondary metabolites. However, efficient use of QTL in molecular breeding requires a synthesis of the available resistance information. In this study, separate meta-analyses of QTL of maize response to stem borers and storage pests feeding on leaves, stems, and kernels along with maize cell wall constituents discovered in these tissues generated 24 leaf (LIR), 42 stem (SIR), and 20 kernel (KIR) insect resistance meta-QTL (MQTL) of a diverse genetic and geographical background. Most of these MQTL involved resistance to several insect species, therefore, generating a significant interest for multiple-insect resistance breeding. Some of the LIR MQTL such as LIR4, 17, and 22 involve resistance to European corn borer, sugarcane borer, and southwestern corn borer. Eleven out of the 42 SIR MQTL related to resistance to European corn borer and Mediterranean corn borer. There KIR MQTL, KIR3, 15, and 16 combined resistance to kernel damage by the maize weevil and the Mediterranean corn borer and could be used in breeding to reduce insect-related post-harvest grain yield loss and field to storage mycotoxin contamination. This meta-analysis corroborates the significant role played by cell wall constituents in maize resistance to insect since the majority of the MQTL contain QTL for members of the hydroxycinnamates group such as p-coumaric acid, ferulic acid, and other diferulates and derivates, and fiber components such as acid detergent fiber, neutral detergent fiber, and lignin. Stem insect resistance MQTL display several co-localization between fiber and hydroxycinnamate components corroborating the hypothesis of cross-linking between these components that provide mechanical resistance to insect attacks. Our results highlight the existence of combined-insect resistance genomic regions in maize and set the basis of multiple-pests resistance breeding.
Collapse
Affiliation(s)
- Arfang Badji
- Department of Agricultural Production, Makerere University, Kampala, Uganda
- *Correspondence: Arfang Badji
| | - Michael Otim
- Cereals Program, National Crop Resource Research Institute, Kampala, Uganda
| | - Lewis Machida
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | - Thomas Odong
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | | | - Dennis Okii
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | | | - Natasha Mwila
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Frank Kumi
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Angele Ibanda
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Stephen Mugo
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | - Samuel Kyamanywa
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Patrick Rubaihayo
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| |
Collapse
|
30
|
Gage JL, Jarquin D, Romay C, Lorenz A, Buckler ES, Kaeppler S, Alkhalifah N, Bohn M, Campbell DA, Edwards J, Ertl D, Flint-Garcia S, Gardiner J, Good B, Hirsch CN, Holland J, Hooker DC, Knoll J, Kolkman J, Kruger G, Lauter N, Lawrence-Dill CJ, Lee E, Lynch J, Murray SC, Nelson R, Petzoldt J, Rocheford T, Schnable J, Schnable PS, Scully B, Smith M, Springer NM, Srinivasan S, Walton R, Weldekidan T, Wisser RJ, Xu W, Yu J, de Leon N. The effect of artificial selection on phenotypic plasticity in maize. Nat Commun 2017; 8:1348. [PMID: 29116144 PMCID: PMC5677005 DOI: 10.1038/s41467-017-01450-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 09/18/2017] [Indexed: 01/24/2023] Open
Abstract
Remarkable productivity has been achieved in crop species through artificial selection and adaptation to modern agronomic practices. Whether intensive selection has changed the ability of improved cultivars to maintain high productivity across variable environments is unknown. Understanding the genetic control of phenotypic plasticity and genotype by environment (G × E) interaction will enhance crop performance predictions across diverse environments. Here we use data generated from the Genomes to Fields (G2F) Maize G × E project to assess the effect of selection on G × E variation and characterize polymorphisms associated with plasticity. Genomic regions putatively selected during modern temperate maize breeding explain less variability for yield G × E than unselected regions, indicating that improvement by breeding may have reduced G × E of modern temperate cultivars. Trends in genomic position of variants associated with stability reveal fewer genic associations and enrichment of variants 0–5000 base pairs upstream of genes, hypothetically due to control of plasticity by short-range regulatory elements. Breeding has increased crop productivity, but whether it has also changed phenotypic plasticity is unclear. Here, the authors find maize genomic regions selected for high productivity show reduced contribution to genotype by environment variation and provide evidence for regulatory control of phenotypic stability.
Collapse
Affiliation(s)
- Joseph L Gage
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Diego Jarquin
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA
| | - Aaron Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota-St Paul, St Paul, MN, 55108, USA
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA.,USDA-ARS Plant, Soil, and Nutrition Research Unit, Cornell University, Ithaca, NY, 14853, USA
| | - Shawn Kaeppler
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Naser Alkhalifah
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Martin Bohn
- Department of Crop Sciences, University of Illinois at Urban-Champaign, Urbana, IL, 61801, USA
| | - Darwin A Campbell
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Jode Edwards
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA, 50011, USA
| | - David Ertl
- Iowa Corn Promotion Board, 5505 NW 88th Street, Johnston, IA, 50131, USA
| | - Sherry Flint-Garcia
- USDA-ARS Plant Genetics Research Unit, University of Missouri, Columbia, MO, 65211, USA
| | - Jack Gardiner
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, MO, 65203, USA
| | - Byron Good
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota-St Paul, St Paul, MN, 55108, USA
| | - Jim Holland
- USDA-ARS Plant Science Research Unit, North Carolina State University, Raleigh, NC, 27695, USA
| | - David C Hooker
- Department of Plant Agriculture, University of Guelph-Ridgetown Campus, Ridgetown, ON, Canada, N0P 2C0
| | - Joseph Knoll
- USDA-ARS Crop Genetics and Breeding Research Unit, Tifton, GA, 31793, USA
| | - Judith Kolkman
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Greg Kruger
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, 69101, USA
| | - Nick Lauter
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA, 50011, USA
| | - Carolyn J Lawrence-Dill
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Elizabeth Lee
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Jonathan Lynch
- Department of Plant Science, Penn State University, University Park, Penn, PA, 16802, USA
| | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Rebecca Nelson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.,Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jane Petzoldt
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Torbert Rocheford
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - James Schnable
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | | | - Brian Scully
- USDA-ARS U.S. Horticultural Research Laboratory, Fort Pierce, FL, 34945, USA
| | - Margaret Smith
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Srikant Srinivasan
- School of Computing and EE, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Renee Walton
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | | | - Randall J Wisser
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Wenwei Xu
- Texas A&M AgriLife Research, Texas A&M University, Lubbock, TX, 79403, USA
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
31
|
Abstract
In recent decades, the phenotype of an organism (i.e. its traits and behaviour) has been studied as the outcome of a developmental 'programme' coded in its genotype. This deterministic view is implicit in the Modern Synthesis approach to adaptive evolution as a sorting process among genetic variants. Studies of developmental pathways have revealed that genotypes are in fact differently expressed depending on environmental conditions. Accordingly, the genotype can be understood as a repertoire of potential developmental outcomes or norm of reaction. Reconceiving the genotype as an environmental response repertoire rather than a fixed developmental programme leads to three critical evolutionary insights. First, plastic responses to specific conditions often comprise functionally appropriate trait adjustments, resulting in an individual-level, developmental mode of adaptive variation. Second, because genotypes are differently expressed depending on the environment, the genetic diversity available to natural selection is itself environmentally contingent. Finally, environmental influences on development can extend across multiple generations via cytoplasmic and epigenetic factors transmitted to progeny individuals, altering their responses to their own, immediate environmental conditions and, in some cases, leading to inherited but non-genetic adaptations. Together, these insights suggest a more nuanced understanding of the genotype and its evolutionary role, as well as a shift in research focus to investigating the complex developmental interactions among genotypes, environments and previous environments.
Collapse
Affiliation(s)
- Sonia E. Sultan
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
32
|
Farooq S, Tad S, Onen H, Gunal H, Caldiran U, Ozaslan C. Range expansion potential of two co-occurring invasive vines to marginal habitats in Turkey. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2017. [DOI: 10.1016/j.actao.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Wright JP, Ames GM, Mitchell RM. The more things change, the more they stay the same? When is trait variability important for stability of ecosystem function in a changing environment. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0272. [PMID: 27114574 DOI: 10.1098/rstb.2015.0272] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2015] [Indexed: 02/06/2023] Open
Abstract
The importance of intraspecific trait variability for community dynamics and ecosystem functioning has been underappreciated. There are theoretical reasons for predicting that species that differ in intraspecific trait variability will also differ in their effects on ecosystem functioning, particularly in variable environments. We discuss whether species with greater trait variability are likely to exhibit greater temporal stability in their population dynamics, and under which conditions this might lead to stability in ecosystem functioning. Resolving this requires us to consider several questions. First, are species with high levels of variation for one trait equally variable in others? In particular, is variability in response and effects traits typically correlated? Second, what is the relative contribution of local adaptation and phenotypic plasticity to trait variability? If local adaptation dominates, then stability in function requires one of two conditions: (i) individuals of appropriate phenotypes present in the environment at high enough frequencies to allow for populations to respond rapidly to the changing environment, and (ii) high levels of dispersal and gene flow. While we currently lack sufficient information on the causes and distribution of variability in functional traits, filling in these key data gaps should increase our ability to predict how changing biodiversity will alter ecosystem functioning.
Collapse
Affiliation(s)
- Justin P Wright
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA Department of Biodiversity Research and Systematic Botany, Universität Potsdam, Maulbeerallee 2a, Potsdam, Germany
| | - Gregory M Ames
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Rachel M Mitchell
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| |
Collapse
|
34
|
Böckelmann J, Tremetsberger K, Šumberová K, Grausgruber H, Bernhardt KG. Fitness and growth of the ephemeral mudflat species Cyperus fuscus in river and anthropogenic habitats in response to fluctuating water-levels. FLORA 2017; 234:135-149. [PMID: 31719726 PMCID: PMC6850911 DOI: 10.1016/j.flora.2017.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyperus fuscus is a representative of threatened ephemeral wetland plant communities in summer-dry shoreline habitats. We compared variation and plasticity in traits related to fitness and growth of plants germinating from the soil seed bank and established plants from river and secondary anthropogenic habitats. Plants from sites at rivers, fishponds and fish storage ponds were cultivated and selfed to get homogenous seed material for a germination and an environmental manipulation experiment involving three different water regimes. Differences in traits and their plasticities were evaluated by means of linear mixed models. Cyperus fuscus followed a low-oxygen escape strategy when flooded. Seeds of plants derived from the soil seed bank germinated faster than seeds of plants derived from established plants suggesting that short-term selection of genotypes is mediated by the particular conditions on the site during germination. The experiment revealed significant differences between river and secondary habitats as well as between the soil seed bank and established plants. For example, plants from river habitats produced the highest number of culms with inflorescences. The difference was most evident under partial submergence. Plants from fish storage ponds rapidly reached the reproductive phase, but produced less culms with inflorescences. This seemingly allows them to cope with numerous and irregular disturbances and intensive substrate moisture changes. Our results suggest that populations have adapted to conditions at secondary habitats provided by fish farming during the last centuries.
Collapse
Affiliation(s)
- Jörg Böckelmann
- Institute of Botany, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna, Gregor Mendel-Straβe 33, A-1180 Vienna, Austria
| | - Karin Tremetsberger
- Institute of Botany, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna, Gregor Mendel-Straβe 33, A-1180 Vienna, Austria
| | - Kateřina Šumberová
- Department of Vegetation Ecology, Institute of Botany, The Czech Academy of Sciences, Lidická 25/27, CZ-602 00 Brno, Czech Republic
| | - Heinrich Grausgruber
- Division of Plant Breeding, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz-Straβe 24, A-3430 Tulln an der Donau, Austria
| | - Karl-Georg Bernhardt
- Institute of Botany, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna, Gregor Mendel-Straβe 33, A-1180 Vienna, Austria
| |
Collapse
|
35
|
S X, L K, F N. EFFECTS OF DIFFERENT HYDROPONIC SUBSTRATE COMBINATIONS AND WATERING REGIMES ON PHYSIOLOGICAL AND ANTI-FUNGAL PROPERTIES OF SIPHONOCHILUS AETHIOPICUS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2017; 14:89-104. [PMID: 28480420 PMCID: PMC5412242 DOI: 10.21010/ajtcam.v14i3.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Production of medicinal plants in controlled environments, particularly hydroponic technology, provides opportunities for high quality biomass accumulation and optimizes production of secondary metabolites. Applying special watering regimes in combination with efficient soil draining is an encouraging new tool for the production of pharmaceutical relevant plants. The purpose of this paper was to evaluate the effect of substrate combinations and watering regimes on nutrient uptake, anti-F. oxysporum activity and secondary metabolite profile of S. aethiopicus. MATERIALS AND METHODS Coir was used as the main component for the preparation of media in different combinations; TI (Coir + vermiculite + perlite + bark), T2 (Coir + bark), T3 (Coir + perlite) and T4 (Coir + vermiculite). Plants in different treatments were grown under two watering regimes: 3 and 5-days watering intervals. At 9 weeks post treatment, plants were harvested, oven dried and tissue nutrient content, anti-F. oxysporum activity and secondary metabolites were analyzed. RESULTS The results showed that there were significant differences (P < 0.05) on the uptake of P, K, N, Mg, Fe, Cu, B and NH4-.The highest mean values for most nutrients were obtained in treatments under 3-days interval. Acetone extracts of S. aethiopicus under 5-days interval were the most bioactive against F. oxysporum. The MIC values obtained are relatively lower for the rhizomes, ranging from 0.078 - 0.3125 mg/ml compared to the higher MIC values (0.375 - 0.75 mg/ml) obtained in the leaves. LC-MS analysis of acetone extracts revealed the presence of phytochemicals such as caffeic acid, quercetin, p-hydroxybenzoic acid, rutin, kaempferol, epicatechin, naringenin, hesperetin and protocatechuic acid. CONCLUSION The antimicrobial activity and/or the phytochemical profile of the crude extracts were affected by watering regimes.
Collapse
Affiliation(s)
- Xego S
- Department of Horticultural Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Kambizi L
- Department of Horticultural Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Nchu F
- Department of Horticultural Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
36
|
Soto Sedano JC, Mora Moreno RE, Mathew B, Léon J, Gómez Cano FA, Ballvora A, López Carrascal CE. Major Novel QTL for Resistance to Cassava Bacterial Blight Identified through a Multi-Environmental Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:1169. [PMID: 28725234 PMCID: PMC5496946 DOI: 10.3389/fpls.2017.01169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/19/2017] [Indexed: 05/31/2023]
Abstract
Cassava, Manihot esculenta Crantz, has been positioned as one of the most promising crops world-wide representing the staple security for more than one billion people mainly in poor countries. Cassava production is constantly threatened by several diseases, including cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam), it is the most destructive disease causing heavy yield losses. Here, we report the detection and localization on the genetic map of cassava QTL (Quantitative Trait Loci) conferring resistance to CBB. An F1 mapping population of 117 full sibs was tested for resistance to two Xam strains (Xam318 and Xam681) at two locations in Colombia: La Vega, Cundinamarca and Arauca. The evaluation was conducted in rainy and dry seasons and additional tests were carried out under controlled greenhouse conditions. The phenotypic evaluation of the response to Xam revealed continuous variation. Based on composite interval mapping analysis, 5 strain-specific QTL for resistance to Xam explaining between 15.8 and 22.1% of phenotypic variance, were detected and localized on a high resolution SNP-based genetic map of cassava. Four of them show stability among the two evaluated seasons. Genotype by environment analysis detected three QTL by environment interactions and the broad sense heritability for Xam318 and Xam681 were 20 and 53%, respectively. DNA sequence analysis of the QTL intervals revealed 29 candidate defense-related genes (CDRGs), and two of them contain domains related to plant immunity proteins, such as NB-ARC-LRR and WRKY.
Collapse
Affiliation(s)
- Johana C. Soto Sedano
- Manihot Biotec Laboratory, Biology Department, Universidad Nacional de ColombiaBogotá, Colombia
| | - Rubén E. Mora Moreno
- Manihot Biotec Laboratory, Biology Department, Universidad Nacional de ColombiaBogotá, Colombia
| | - Boby Mathew
- Institute of Crop Science and Resource Conservation-Plant Breeding, University of BonnBonn, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation-Plant Breeding, University of BonnBonn, Germany
| | - Fabio A. Gómez Cano
- Manihot Biotec Laboratory, Biology Department, Universidad Nacional de ColombiaBogotá, Colombia
- Institute of Crop Science and Resource Conservation-Plant Breeding, University of BonnBonn, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation-Plant Breeding, University of BonnBonn, Germany
| | | |
Collapse
|
37
|
Balao F, Trucchi E, Wolfe TM, Hao B, Lorenzo MT, Baar J, Sedman L, Kosiol C, Amman F, Chase MW, Hedrén M, Paun O. Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima. Mol Ecol 2017; 26:3649-3662. [PMID: 28370647 PMCID: PMC5518283 DOI: 10.1111/mec.14123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/24/2017] [Accepted: 03/15/2017] [Indexed: 12/23/2022]
Abstract
The orchid family is the largest in the angiosperms, but little is known about the molecular basis of the significant variation they exhibit. We investigate here the transcriptomic divergence between two European terrestrial orchids, Dactylorhiza incarnata and Dactylorhiza fuchsii, and integrate these results in the context of their distinct ecologies that we also document. Clear signals of lineage-specific adaptive evolution of protein-coding sequences are identified, notably targeting elements of biotic defence, including both physical and chemical adaptations in the context of divergent pools of pathogens and herbivores. In turn, a substantial regulatory divergence between the two species appears linked to adaptation/acclimation to abiotic conditions. Several of the pathways affected by differential expression are also targeted by deviating post-transcriptional regulation via sRNAs. Finally, D. incarnata appears to suffer from insufficient sRNA control over the activity of RNA-dependent DNA polymerase, resulting in increased activity of class I transposable elements and, over time, in larger genome size than that of D. fuchsii. The extensive molecular divergence between the two species suggests significant genomic and transcriptomic shock in their hybrids and offers insights into the difficulty of coexistence at the homoploid level. Altogether, biological response to selection, accumulated during the history of these orchids, appears governed by their microenvironmental context, in which biotic and abiotic pressures act synergistically to shape transcriptome structure, expression and regulation.
Collapse
Affiliation(s)
- Francisco Balao
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Departamento de Biología Vegetal y EcologíaUniversity of SevilleSevillaSpain
| | - Emiliano Trucchi
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Department of Life Sciences and BiotechnologiesUniversity of FerraraFerraraItaly
| | - Thomas M. Wolfe
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Bao‐Hai Hao
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Maria Teresa Lorenzo
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Departamento de Biología Vegetal y EcologíaUniversity of SevilleSevillaSpain
| | - Juliane Baar
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Laura Sedman
- Gregor Mendel Institute for Plant Molecular BiologyViennaAustria
| | - Carolin Kosiol
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Centre of Biological DiversitySchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Fabian Amman
- Department of Chromosome BiologyUniversity of ViennaViennaAustria
| | - Mark W. Chase
- Royal Botanic Gardens KewRichmondUK
- School of Plant BiologyUniversity of Western AustraliaCrawley, PerthWAAustralia
| | | | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| |
Collapse
|
38
|
Pfennigwerth AA, Bailey JK, Schweitzer JA. Trait variation along elevation gradients in a dominant woody shrub is population-specific and driven by plasticity. AOB PLANTS 2017; 9:plx027. [PMID: 28721188 PMCID: PMC5509947 DOI: 10.1093/aobpla/plx027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/15/2017] [Indexed: 05/24/2023]
Abstract
Elevation gradients are frequently used as space-for-time substitutions to infer species' trait responses to climate change. However, studies rarely investigate whether trait responses to elevation are widespread or population-specific within a species, and the relative genetic and plastic contributions to such trait responses may not be well understood. Here, we examine plant trait variation in the dominant woody shrub, Rhododendron maximum, along elevation gradients in three populations in the South Central Appalachian Mountains, USA, in both field and common garden environments. We ask the following: (i) do plant traits vary along elevation? (ii) do trait responses to elevation differ across populations, and if so, why? and (iii) does genetic differentiation or phenotypic plasticity drive trait variation within and among populations? We found that internode length, shoot length, leaf dry mass, and leaf area varied along elevation, but that these responses were generally unique to one population, suggesting that trait responses to environmental gradients are population-specific. A common garden experiment identified no genetic basis to variation along elevation or among populations in any trait, suggesting that plasticity drives local and regional trait variation and may play a key role in the persistence of plant species such as R. maximum with contemporary climate change. Overall, our findings highlight the importance of examining multiple locations in future elevation studies and indicate that, for a given plant species, the magnitude of trait responses to global climate change may vary by location.
Collapse
Affiliation(s)
- Alix A. Pfennigwerth
- Department of Ecology and Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996-0001, USA
| | - Joseph K. Bailey
- Department of Ecology and Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996-0001, USA
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996-0001, USA
| |
Collapse
|
39
|
Mueller LO, Breza LC, Genung MA, Giardina CP, Stone NE, Sidak‐Loftis LC, Busch JD, Wagner DM, Bailey JK, Schweitzer JA. Ecosystem consequences of plant genetic divergence with colonization of new habitat. Ecosphere 2017. [DOI: 10.1002/ecs2.1743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Liam O. Mueller
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Lauren C. Breza
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Mark A. Genung
- Department of Ecology, Evolution and Natural Resources Rutgers University New Brunswick New Jersey 08901 USA
| | - Christian P. Giardina
- Institute for Pacific Islands Forestry Pacific Southwest Research Station USDA Forest Service Hilo Hawai`i 96720 USA
| | - Nathan E. Stone
- Center for Microbial Genetics and Genomics Northern Arizona University Flagstaff Arizona 86001 USA
| | - Lindsay C. Sidak‐Loftis
- Center for Microbial Genetics and Genomics Northern Arizona University Flagstaff Arizona 86001 USA
| | - Joseph D. Busch
- Center for Microbial Genetics and Genomics Northern Arizona University Flagstaff Arizona 86001 USA
| | - David M. Wagner
- Center for Microbial Genetics and Genomics Northern Arizona University Flagstaff Arizona 86001 USA
| | - Joseph K. Bailey
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| |
Collapse
|
40
|
McKown AD, Klápště J, Guy RD, Soolanayakanahally RY, La Mantia J, Porth I, Skyba O, Unda F, Douglas CJ, El-Kassaby YA, Hamelin RC, Mansfield SD, Cronk QCB. Sexual homomorphism in dioecious trees: extensive tests fail to detect sexual dimorphism in Populus †. Sci Rep 2017; 7:1831. [PMID: 28500332 PMCID: PMC5431824 DOI: 10.1038/s41598-017-01893-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/05/2017] [Indexed: 11/09/2022] Open
Abstract
The evolution of sexual dimorphism and expansion of sex chromosomes are both driven through sexual conflict, arising from differing fitness optima between males and females. Here, we pair work in poplar (Populus) describing one of the smallest sex-determining regions known thus far in complex eukaryotes (~100 kbp) with comprehensive tests for sexual dimorphism using >1300 individuals from two Populus species and assessing 96 non-reproductive functional traits. Against expectation, we found sexual homomorphism (no non-reproductive trait differences between the sexes), suggesting that gender is functionally neutral with respect to non-reproductive features that affect plant survival and fitness. Combined with a small sex-determining region, we infer that sexual conflict may be effectively stymied or non-existent within these taxa. Both sexual homomorphism and the small sex-determining region occur against a background of strong environmental selection and local adaptation in Populus. This presents a powerful hypothesis for the evolution of dioecious species. Here, we suggest that environmental selection may be sufficient to suppress and stymy sexual conflict if it acts orthogonal to sexual selection, thereby placing limitations on the evolution of sexual dimorphism and genomic expansion of sex chromosomes.
Collapse
Affiliation(s)
- Athena D McKown
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, BC V6T 1Z4, Canada.
| | - Jaroslav Klápště
- Department of Dendrology and Forest Tree Breeding, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, 165 21, Czech Republic.,Scion (New Zealand Forest Research Institute Ltd.), Whakarewarewa, Rotorua, 3046, New Zealand
| | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, BC V6T 1Z4, Canada
| | - Raju Y Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Jonathan La Mantia
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Corn and Soybean Research, Wooster, OH, 44691, USA
| | - Ilga Porth
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, BC V6T 1Z4, Canada.,Département des sciences du bois et de la forêt, Faculté de foresterie, de géographie et de géomatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Oleksandr Skyba
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, BC V6T 1Z4, Canada
| | - Faride Unda
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, BC V6T 1Z4, Canada
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, BC V6T 1Z4, Canada
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, BC V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, BC V6T 1Z4, Canada
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
41
|
Yoder JB, Tiffin P. Effects of Gene Action, Marker Density, and Timing of Selection on the Performance of Landscape Genomic Scans of Local Adaptation. J Hered 2017; 109:16-28. [DOI: 10.1093/jhered/esx042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/05/2017] [Indexed: 11/13/2022] Open
|
42
|
Colautti RI, Alexander JM, Dlugosch KM, Keller SR, Sultan SE. Invasions and extinctions through the looking glass of evolutionary ecology. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160031. [PMID: 27920376 PMCID: PMC5182427 DOI: 10.1098/rstb.2016.0031] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 11/12/2022] Open
Abstract
Invasive and endangered species reflect opposite ends of a spectrum of ecological success, yet they experience many similar eco-evolutionary challenges including demographic bottlenecks, hybridization and novel environments. Despite these similarities, important differences exist. Demographic bottlenecks are more transient in invasive species, which (i) maintains ecologically relevant genetic variation, (ii) reduces mutation load, and (iii) increases the efficiency of natural selection relative to genetic drift. Endangered species are less likely to benefit from admixture, which offsets mutation load but also reduces fitness when populations are locally adapted. Invading species generally experience more benign environments with fewer natural enemies, which increases fitness directly and also indirectly by masking inbreeding depression. Adaptive phenotypic plasticity can maintain fitness in novel environments but is more likely to evolve in invasive species encountering variable habitats and to be compromised by demographic factors in endangered species. Placed in an eco-evolutionary context, these differences affect the breadth of the ecological niche, which arises as an emergent property of antagonistic selection and genetic constraints. Comparative studies of invasions and extinctions that apply an eco-evolutionary perspective could provide new insights into the environmental and genetic basis of ecological success in novel environments and improve efforts to preserve global biodiversity.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Robert I Colautti
- Department of Biology, Queen's University, 116 Barrie Street, Kingston, Ontario, Canada K7L 3N6
| | - Jake M Alexander
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA
| | - Stephen R Keller
- Department of Plant Biology, University of Vermont, 111 Jeffords Hall, Burlington, VT 05405, USA
| | - Sonia E Sultan
- Department of Biology, Wesleyan University, 237 Church Street, Middletown, CT 06459, USA
| |
Collapse
|
43
|
Soto Sedano C, Mora Moreno RE, Calle F, López Carrascal CE. QTL identification for cassava bacterial blight resistance under natural infection conditions. ACTA BIOLÓGICA COLOMBIANA 2017. [DOI: 10.15446/abc.v22n1.57951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
La yuca, Manihot esculenta Crantz, representa la principal fuente de alimento para cerca de 1000 millones de personas. La producción de yuca se ve afectada por diversas enfermedades, una de las más serias es la bacteriosis vascular (CBB) causada por Xanthomonas axonopodis pv. manihotis (Xam). En este estudio se realizó un análisis de loci de rasgos cuantitativos (QTL) para la resistencia a CBB en condiciones naturales de infección, usando una población de mapeo constituida por 99 genotipos de hermanos completos segregantes y un mapa genético altamente denso basado en SNPs. La evaluación fenotípica se llevó a cabo en Puerto López (Meta), Colombia, durante la época de lluvias durante el segundo semestre de 2015. En la población de mapeo fueron detectados individuos con una segregación transgresiva tanto resistentes como susceptibles. A través de un análisis no paramétrico de intervalo simple, se detectaron dos QTL que explican el 10,9 y el 12,6 % de la varianza fenotípica de la resistencia en campo a CBB. Mediante análisis bioinformáticos se identificaron cuatro genes candidatos presentes en los intervalos de los QTL. Este trabajo representa un esfuerzo por dilucidar los mecanismos moleculares implicados en la resistencia de yuca a CBB.
Collapse
|
44
|
Diamond SE. Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change. Ann N Y Acad Sci 2016; 1389:5-19. [PMID: 27706832 DOI: 10.1111/nyas.13223] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 11/26/2022]
Abstract
How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness-related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolutionary change requires the presence of heritable variation and natural selection. Because organismal tolerances of high temperature place an upper bound on responding to temperature change, there has been a surge of research effort on the evolutionary potential of upper thermal tolerance traits. Here, I review the available evidence on heritable variation in upper thermal tolerance traits, adopting a biogeographic perspective to understand how heritability of tolerance varies across space. Specifically, I use meta-analytical models to explore the relationship between upper thermal tolerance heritability and environmental variability in temperature. I also explore how variation in the methods used to obtain these thermal tolerance heritabilities influences the estimation of heritable variation in tolerance. I conclude by discussing the implications of a positive relationship between thermal tolerance heritability and environmental variability in temperature and how this might influence responses to future changes in climate.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
45
|
Hess M, Wildhagen H, Junker LV, Ensminger I. Transcriptome responses to temperature, water availability and photoperiod are conserved among mature trees of two divergent Douglas-fir provenances from a coastal and an interior habitat. BMC Genomics 2016; 17:682. [PMID: 27565139 PMCID: PMC5002200 DOI: 10.1186/s12864-016-3022-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 08/16/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Local adaptation and phenotypic plasticity are important components of plant responses to variations in environmental conditions. While local adaptation has been widely studied in trees, little is known about plasticity of gene expression in adult trees in response to ever changing environmental conditions in natural habitats. Here we investigate plasticity of gene expression in needle tissue between two Douglas-fir provenances represented by 25 adult trees using deep RNA sequencing (RNA-Seq). RESULTS Using linear mixed models we investigated the effect of temperature, soil water availability and photoperiod on the abundance of 59189 detected transcripts. Expression of more than 80 % of all identified transcripts revealed a response to variations in environmental conditions in the field. GO term overrepresentation analysis revealed gene expression responses to temperature, soil water availability and photoperiod that are highly conserved among many plant taxa. However, expression differences between the two Douglas-fir provenances were rather small compared to the expression differences observed between individual trees. Although the effect of environment on global transcript expression was high, the observed genotype by environment (GxE) interaction of gene expression was surprisingly low, since only 21 of all detected transcripts showed a GxE interaction. CONCLUSIONS The majority of the transcriptome responses in plant leaf tissue is driven by variations in environmental conditions. The small variation between individuals and populations suggests strong conservation of this response within Douglas-fir. Therefore we conclude that plastic transcriptome responses to variations in environmental conditions are only weakly affected by local adaptation in Douglas-fir.
Collapse
Affiliation(s)
- Moritz Hess
- Forest Research Institute of Baden-Württemberg (FVA), Wonnhaldestrasse 4, D-79100 Freiburg i. Brsg., Germany
- Institute for Biology III, Faculty of Biology, Albert Ludwigs University Freiburg, Schänzlestrasse 1, D-79104 Freiburg i. Brsg., Germany
- Present Address: Institute of Medical Biometry, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Obere Zahlbacher Strasse 69, 55131 Mainz, Germany
| | - Henning Wildhagen
- Forest Research Institute of Baden-Württemberg (FVA), Wonnhaldestrasse 4, D-79100 Freiburg i. Brsg., Germany
- Present Address: Department of Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
| | - Laura Verena Junker
- Forest Research Institute of Baden-Württemberg (FVA), Wonnhaldestrasse 4, D-79100 Freiburg i. Brsg., Germany
- Department of Biology, Graduate Programs in Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6 Canada
| | - Ingo Ensminger
- Forest Research Institute of Baden-Württemberg (FVA), Wonnhaldestrasse 4, D-79100 Freiburg i. Brsg., Germany
- Department of Biology, Graduate Programs in Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6 Canada
| |
Collapse
|
46
|
A Framework for Predicting Intraspecific Variation in Plant Defense. Trends Ecol Evol 2016; 31:646-656. [DOI: 10.1016/j.tree.2016.05.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/01/2023]
|
47
|
Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 2016; 7:12151. [PMID: 27402057 PMCID: PMC4945892 DOI: 10.1038/ncomms12151] [Citation(s) in RCA: 486] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 06/06/2016] [Indexed: 01/01/2023] Open
Abstract
Bacteria living on and in leaves and roots influence many aspects of plant health, so the extent of a plant's genetic control over its microbiota is of great interest to crop breeders and evolutionary biologists. Laboratory-based studies, because they poorly simulate true environmental heterogeneity, may misestimate or totally miss the influence of certain host genes on the microbiome. Here we report a large-scale field experiment to disentangle the effects of genotype, environment, age and year of harvest on bacterial communities associated with leaves and roots of Boechera stricta (Brassicaceae), a perennial wild mustard. Host genetic control of the microbiome is evident in leaves but not roots, and varies substantially among sites. Microbiome composition also shifts as plants age. Furthermore, a large proportion of leaf bacterial groups are shared with roots, suggesting inoculation from soil. Our results demonstrate how genotype-by-environment interactions contribute to the complexity of microbiome assembly in natural environments.
Collapse
Affiliation(s)
- Maggie R. Wagner
- Program in Genetics and Genomics, Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Derek S Lundberg
- Department of Biology, Curriculum in Genetics and Molecular Biology, Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Tijana G. del Rio
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Susannah G. Tringe
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Jeffery L. Dangl
- Department of Biology, Curriculum in Genetics and Molecular Biology, Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Thomas Mitchell-Olds
- Program in Genetics and Genomics, Department of Biology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
48
|
What drivers phenotypic divergence in Leymus chinensis (Poaceae) on large-scale gradient, climate or genetic differentiation? Sci Rep 2016; 6:26288. [PMID: 27195668 PMCID: PMC4872539 DOI: 10.1038/srep26288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/27/2016] [Indexed: 01/10/2023] Open
Abstract
Elucidating the driving factors among-population divergence is an important task in evolutionary biology, however the relative contribution from natural selection and neutral genetic differentiation has been less debated. A manipulation experiment was conducted to examine whether the phenotypic divergence of Leymus chinensis depended on climate variations or genetic differentiations at 18 wild sites along a longitudinal gradient from 114 to 124°E in northeast China and at common garden condition of transplantation. Demographical, morphological and physiological phenotypes of 18 L. chinensis populations exhibited significant divergence along the gradient, but these divergent variations narrowed significantly at the transplantation. Moreover, most of the phenotypes were significantly correlated with mean annual precipitation and temperature in wild sites, suggesting that climatic variables played vital roles in phenotypic divergence of the species. Relative greater heterozygosity (HE), genotype evenness (E) and Shannon-Wiener diversity (I) in western group of populations suggested that genetic differentiation also drove phenotypic divergence of the species. However, neutral genetic differentiation (FST = 0.041) was greatly lower than quantitative differentiation (QST = 0.199), indicating that divergent selection/climate variable was the main factor in determining the phenotypic divergence of the species along the large-scale gradient.
Collapse
|
49
|
Kilkenny FF, Galloway LF. Evolution of marginal populations of an invasive vine increases the likelihood of future spread. THE NEW PHYTOLOGIST 2016; 209:1773-1780. [PMID: 26467337 DOI: 10.1111/nph.13702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
The prediction of invasion patterns may require an understanding of intraspecific differentiation in invasive species and its interaction with climate change. We compare Japanese honeysuckle (Lonicera japonica) plants from the core (100-150 yr old) and northern margin (< 65 yr old) of their North American invaded range to determine whether evolution during invasion increases the probability of future expansion. Plants from populations in the core and margin were compared in two sites beyond the northern range edge to assess their potential to invade novel areas. Data were compared with previous work to assess the effect of latitudinal climate on L. japonica spread. Winter survival in current climates was modeled and projected for future climates to predict future spread. Margin plants were larger and had 60% greater survival than core plants at sites beyond the northern range edge. Overall, winter survival decreased with increasing latitude and decreasing temperature, and was greater in margin plants than core plants. Models suggested that greater winter tolerance in margin populations has increased L. japonica's northward spread by 76 km, and that this survival advantage will persist under future climates. These results demonstrate that evolution during invasion may increase spread beyond predictions using increasing global temperatures alone.
Collapse
Affiliation(s)
- Francis F Kilkenny
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Laura F Galloway
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| |
Collapse
|
50
|
Breed MF, Gellie NJC, Lowe AJ. Height differences in two eucalypt provenances with contrasting levels of aridity. Restor Ecol 2016. [DOI: 10.1111/rec.12335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Martin F. Breed
- School of Biological Sciences and the Environment Institute University of Adelaide North Terrace SA 5005 Australia
| | - Nicholas J. C. Gellie
- School of Biological Sciences and the Environment Institute University of Adelaide North Terrace SA 5005 Australia
| | - Andrew J. Lowe
- School of Biological Sciences and the Environment Institute University of Adelaide North Terrace SA 5005 Australia
| |
Collapse
|