1
|
Chen M, Song X, Wu S, Yu A, Wei X, Qiu J, Pei D. Genomic insights into genome-wide heterozygosity and its impact on walnut adaptive evolution and improvement. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:50. [PMID: 40438424 PMCID: PMC12106288 DOI: 10.1007/s11032-025-01572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 05/02/2025] [Indexed: 06/01/2025]
Abstract
Walnut (Juglans regia L.), an important woody oil plant, is cultivated globally and has a prominent position in the world's major nuts. Heterozygosity enriches plant genetic diversity by providing a wider array of gene combinations, significantly enhancing their adaptability to the environment and consequently improving their survival ability. In this study, we found that the heterozygosity rate was significantly correlated with 21 traits. Heterogeneity rate showed the strongest positive correlation with yield and nutrition, while it showed the most significant negative correlation with tree height and precocity. Among these, 13 traits showed positive correlations, the remaining 8 traits exhibited negative correlations. We conducted an in-depth study on the characteristics of walnut whole-genome heterozygosity. By using the GWAS based on the heterozygosity rate, we successfully identified 11 significant loci and 4 candidate genes. In the analysis of local heterozygosity rate by GWAS, it was found that 63.8% exhibited trans-acting and 36.2% exhibited cis-acting. In addition, with the help of genomic residual heterozygotes, we enriched functional genes from 44 Pfam families related to growth regulation and development. Finally, it is worth mentioning that during the process of walnut improvement, we observed an increase in the heterozygosity rate of genes related to the flowering time. It is speculated that a higher level of whole-genome heterozygosity can enhance the environmental adaptability of plants and improve their growth performance. The results of this study may provide assistance for optimizing the breeding strategies of walnuts. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01572-2.
Collapse
Affiliation(s)
- Mengjiao Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Xiaobo Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Shuang Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Anjie Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| |
Collapse
|
2
|
Rahman MM, Ahmed KA, Rabbane MG, Alam MS. Genetic Diversity Resonates With Conservation Strategies: A Case Study of Labeo rohita Population. Ecol Evol 2025; 15:e71480. [PMID: 40416765 PMCID: PMC12103948 DOI: 10.1002/ece3.71480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025] Open
Abstract
Conservation strategies often overlook genetic diversity, which is essential for biodiversity preservation and species adaptability. Efforts are minimal for low-income countries like Bangladesh. The current study assessed the population variances of Labeo rohita, a commercially important freshwater fish of Bangladesh, to find the impact of historical policy efforts in conserving diversity. Partial sequences of the mitochondrial cytochrome b gene (cytb) of 137 samples, originating from three major rivers (Padma, Jamuna, and Halda) and from randomly sampled cultured individuals, were analyzed. Significant differentiation was detected among the groups, with most genetic variation (90.35%) within groups. Eleven haplotypes were identified, including the most frequent haplotype (Hap1BD, 107/137). The geographically isolated Halda subpopulation, with earlier stronger conservation policy, displayed the highest haplotype (0.494) and nucleotide diversities (0.00133) compared to those of the Padma and Jamuna. The culture group also showed distinct diversity and haplotype patterns, which indicate an admixture of L. rohita fishes from different sources, including the Halda subpopulation. Pair-wise FST analysis indicated minimal genetic divergence between the Padma and Jamuna samples (FST = 0.00376), reflecting their geographical connections and moderate conservation strategies. Phylogenetic and haplotype network analyses revealed two distinct genetic clusters, with Jamuna and Padma clustering separately from the Halda subpopulation. Relatively lower effective population size estimation in both Padma and Jamuna could be a reflection of the loose conservation policy on these two rivers. This connection between conservation rules and genetic diversity in the Halda and other rivers indicates that conservation policy efforts, besides many other factors, might impact genetic variability, offering hope for future biodiversity conservation.
Collapse
Affiliation(s)
- Md. Mahfuzur Rahman
- Genetics and Molecular Biology Laboratory, Department of ZoologyUniversity of DhakaDhakaBangladesh
| | - Khandaker Asif Ahmed
- Genetics and Molecular Biology Laboratory, Department of ZoologyUniversity of DhakaDhakaBangladesh
- CSIRO Australian Animal Health Laboratory (AAHL)Australian Centre for Disease Preparedness (ACDP)East GeelongVictoriaAustralia
| | - Md. Golam Rabbane
- Fisheries Genetics and Biotechnology Laboratory, Department of FisheriesUniversity of DhakaDhakaBangladesh
| | - Mohammad Shamimul Alam
- Genetics and Molecular Biology Laboratory, Department of ZoologyUniversity of DhakaDhakaBangladesh
| |
Collapse
|
3
|
Peres PA, Mantelatto FL. Macrogenetics Approach Reveals Spatial Trends and Drivers of Mitochondrial Genetic Diversity at Different Biological Organization Levels in Tropical Western Atlantic Decapods. Ecol Evol 2025; 15:e71372. [PMID: 40370346 PMCID: PMC12077758 DOI: 10.1002/ece3.71372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/01/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
Recent studies explored whether the latitudinal diversity gradient extends to a latitudinal genetic diversity gradient. There is a knowledge gap concerning the genetic diversity distribution across marine invertebrates, and whether the latitudinal genetic diversity gradient results from congruent intraspecific trends. Here, we tested the hypotheses of the existence of a latitudinal mitochondrial genetic diversity gradient in marine decapods (crabs, hermit crabs, shrimps, lobsters) driven by environmental variables and that this gradient is the result of the accumulation of similar trends at the intraspecific level. We analyzed populational-level cytochrome oxidase subunit I sequence available for Tropical Western Atlantic species (1883 sequences, 23 species) to investigate the association between mitochondrial genetic diversity versus latitude, and genetic diversity versus six environmental variables (sea surface temperature, dissolved oxygen, chlorophyll-a, salinity, current velocity, pH). Intraspecific mitochondrial genetic diversity versus latitude analyses were also performed. Our findings indicate higher mitochondrial genetic diversity in lower latitudes (latitudinal genetic diversity gradient) driven by productivity and oxygen levels (only for nucleotide diversity). However, this trend is not caused by the accumulation of intraspecific patterns, which can be variable and species-specific. Our results indicate that different levels of biological organization can show discordant patterns and suggest caution when interpreting macroscale investigations.
Collapse
Affiliation(s)
- Pedro A. Peres
- Laboratory of Bioecology and Crustacean Systematics (LBSC), Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto (FFCLRP)University of São Paulo (USP)São PauloBrazil
- Institute of Environment, Department of BiologyFlorida International UniversityFloridaUSA
| | - Fernando L. Mantelatto
- Laboratory of Bioecology and Crustacean Systematics (LBSC), Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto (FFCLRP)University of São Paulo (USP)São PauloBrazil
| |
Collapse
|
4
|
Kim KR, Park JW, Park KI, Lee HJ. Genetic Diversity and Population Structure in Farmed and Wild Pacific Oysters ( Crassostrea gigas): A Comparative Study. Int J Mol Sci 2025; 26:4172. [PMID: 40362408 PMCID: PMC12072065 DOI: 10.3390/ijms26094172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
The Pacific oyster, Crassostrea gigas, is an important commercially farmed species in Korea. C. gigas exhibits low genetic diversity in wild populations in Korea. To address this, we bred Japanese broodstock for more than five generations and released them into two populations to increase genetic diversity. We also assessed whether this improvement was achieved by comparing them with a control population. In this study, we analyzed genetic diversity using 16 microsatellite loci of C. gigas. The observed heterozygosity HO in the farmed population ranged up to 0.494, while in the wild population, it was 0.437. The farmed population had the highest genetic diversity, but the effective population size was low (105). The PD population size for resource creation was 403, which was higher than that of GH. The genetic structure was divided into two groups with K = 2. The first group consisted of the BR population, while the second group included the GH, GW, and PD populations. Therefore, we confirmed significant genetic differences between the farmed, wild, and resource creation populations. This study provides essential genetic information for future fishery resource development and conservation of C. gigas.
Collapse
Affiliation(s)
- Kang-Rae Kim
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Namhae 52440, Republic of Korea;
| | - Jong-Won Park
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea;
| | - Kyung-Il Park
- Kunsan National University, Gunsan 541150, Republic of Korea;
| | - Hee-Jung Lee
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea;
| |
Collapse
|
5
|
Kim KR, Lee D, Kim KH, Kim HC, Kim SH, Park SJ, Lee DC. Genetic Diversity and Structure of Korean Pacific Oyster ( Crassostrea gigas) for Determining Selective Breeding Groups. BIOLOGY 2025; 14:449. [PMID: 40282314 PMCID: PMC12024884 DOI: 10.3390/biology14040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
This study investigated the genetic diversity and structure of thirteen wild populations of Crassostrea gigas in Korea. The purpose of this investigation was to provide foundational data for selecting reference populations to enhance genetic diversity. Overall, the genetic diversity of Korean C. gigas was relatively low. Analysis using AMOVA, genetic differentiation, and DAPC revealed a genetic structure that was consistent with one group. This study identified reference populations to be used for selective breeding to increase the genetic diversity of Korean C. gigas and provided essential data on genetic diversity and structure for future selective breeding efforts in C. gigas.
Collapse
Affiliation(s)
- Kang-Rae Kim
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Namhae 52440, Republic of Korea; (K.-R.K.); (S.H.K.); (S.J.P.)
| | - Dain Lee
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Republic of Korea; (D.L.); (K.-H.K.); (H.C.K.)
| | - Kyung-Hee Kim
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Republic of Korea; (D.L.); (K.-H.K.); (H.C.K.)
| | - Hyun Chul Kim
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Republic of Korea; (D.L.); (K.-H.K.); (H.C.K.)
| | - So Hee Kim
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Namhae 52440, Republic of Korea; (K.-R.K.); (S.H.K.); (S.J.P.)
| | - Su Jin Park
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Namhae 52440, Republic of Korea; (K.-R.K.); (S.H.K.); (S.J.P.)
| | - Deok-Chan Lee
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Namhae 52440, Republic of Korea; (K.-R.K.); (S.H.K.); (S.J.P.)
| |
Collapse
|
6
|
Oliva A, Foare R, Campbell P, Twine NA, Bauer DC, Johar AS. A Pangenomic Approach to Improve Population Genetics Analysis and Reference Bias in Underrepresented Middle Eastern and Horn of Africa Populations. Biomolecules 2025; 15:582. [PMID: 40305331 PMCID: PMC12025191 DOI: 10.3390/biom15040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Genomics plays a crucial role in addressing health disparities, yet most studies rely on the hg38 linear reference genome, limiting the potential of pangenomic approaches, particularly for underrepresented populations. In this study, we focus on characterising East African populations, particularly Somalis, by constructing a variation graph using Mozabites from the Human Genome Diversity Project (HGDP) given their ancestral affinity with Somalis. We evaluated the effectiveness of this graph-based reference in estimating effective population sizes (Ne) in Bedouins compared to the hg38 reference and examined its impact on allele frequencies and genome-wide association studies (GWAS). Applying a coalescent model to the graph-based reference produced a Ne estimate of approximately 17 for the Bedouin population, which was significantly lower than the estimate from the hg38 reference (approximately 79,000). Only the graph-based estimate fell within the 95% confidence interval in simulations, indicating improved accuracy. Moreover, graph variants exhibited significantly lower allele frequencies (p-value < 2.2 × 10-16), suggesting potential effects on the interpretation and power of GWAS. Notably, GWAS variants specific to Bedouins derived from the graph showed lower frequencies (p = 0.023) than those obtained from the linear reference. These findings suggest that a pangenomic approach, informed by populations with ancestral affinities such as the Mozabites, provides more accurate estimates of Ne and allele frequencies. This highlights the importance of pangenomic strategies to better capture genetic diversity in underrepresented populations, a critical step towards improving population genetics studies, personalised medicine, and equitable healthcare.
Collapse
Affiliation(s)
- Adrien Oliva
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne 3169, Australia; (N.A.T.); (D.C.B.)
| | - Rachel Foare
- Life Sciences and Health Graduate School, Université Paris-Saclay, 3 Rue Joliot Curie, 91190 Gif-sur-Yvette, France;
| | - Peter Campbell
- Information Management and Technology (IM&T), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne 3169, Australia;
| | - Natalie A. Twine
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne 3169, Australia; (N.A.T.); (D.C.B.)
| | - Denis C. Bauer
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne 3169, Australia; (N.A.T.); (D.C.B.)
| | - Angad Singh Johar
- Menzies Institute of Medical Research, The University of Tasmania, Hobart 7000, Australia;
| |
Collapse
|
7
|
Johnson A, Zipfel K, Smith D, Welsh A. Fishing for Florida Bass in West Virginia: Genomic Evaluation of Florida Bass Presence and Establishing Baselines of Genetic Structure and Diversity for Native Largemouth Bass. BIOLOGY 2025; 14:392. [PMID: 40282257 PMCID: PMC12024669 DOI: 10.3390/biology14040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Florida bass (Micropterus salmoides) and largemouth bass (Micropterus nigricans) are iconic sport fish that hybridize readily, influencing fishery management practices. While the Florida bass has been introduced to various U.S. states to create trophy fisheries, its genetic introgression into native populations can lead to ecological and genetic consequences. Recognizing the need to assess Florida bass presence to guide future management directions, diagnostic SNPs were genotyped for 856 putative largemouth bass across 31 sampling locations across the state of West Virginia. Florida bass controls and a reduced representative sample of 226 individuals from 19 sampling locations were sequenced using the genotype-by-sequencing dd-RAD protocol. The results from the two genomic investigations found no Florida bass ancestry in West Virginia populations, suggesting either no introduction or failed reproductive success of Florida bass in the state. Among West Virginia largemouth bass populations, unique genetic ancestries were found predominantly in introduced non-native largemouth bass populations, indicating that the only sub-structuring in the state is a result of stocking non-native ancestries into the state. Genomic diversity was found to be higher in Ohio River pools compared to inland reservoirs, as well as showing higher levels of potential inbreeding. These results underscore the need to preserve the genetic integrity of native Ohio River strain largemouth bass and prevent the introduction of the Florida bass or F1 hybrids into the Ohio River and other watersheds of West Virginia. Management recommendations include prioritizing the stocking of native strain bass to mitigate inbreeding and avoid introducing Florida bass to conserve genetic diversity.
Collapse
Affiliation(s)
- Andrew Johnson
- School of Natural Resources and the Environment, West Virginia University, Morgantown, WV 26506, USA;
| | - Katherine Zipfel
- West Virginia Division of Natural Resources, 324 4th Avenue, South Charleston, WV 25303, USA; (K.Z.); (D.S.)
| | - Dustin Smith
- West Virginia Division of Natural Resources, 324 4th Avenue, South Charleston, WV 25303, USA; (K.Z.); (D.S.)
| | - Amy Welsh
- School of Natural Resources and the Environment, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
8
|
Leiva C, Torda G, Zhou C, Pan Y, Harris J, Xiang X, Tan S, Tian W, Hume B, Miller DJ, Li Q, Zhang G, Cooke I, Rodolfo‐Metalpa R. Rapid Evolution in Action: Environmental Filtering Supports Coral Adaptation to a Hot, Acidic, and Deoxygenated Extreme Habitat. GLOBAL CHANGE BIOLOGY 2025; 31:e70103. [PMID: 40028829 PMCID: PMC11874183 DOI: 10.1111/gcb.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
The semienclosed Bouraké lagoon in New Caledonia is a natural system that enables observation of evolution in action with respect to stress tolerance in marine organisms, a topic directly relevant to understanding the consequences of global climate change. Corals inhabiting the Bouraké lagoon endure extreme conditions of elevated temperature (> 33°C), acidification (7.2 pH units), and deoxygenation (2.28 mg O2 L-1), which fluctuate with the tide due to the lagoon's geomorphology. To investigate the underlying bases of the apparent stress tolerance of these corals, we combined whole genome resequencing of the coral host and ITS2 metabarcoding of the photosymbionts from 90 Acropora tenuis colonies from three localities along the steep environmental gradient from Bouraké to two nearby control reefs. Our results highlight the importance of coral flexibility to associate with different photosymbionts in facilitating stress tolerance of the holobiont; but, perhaps more significantly, strong selective effects were detected at specific loci in the host genome. Fifty-seven genes contained SNPs highly associated with the extreme environment of Bouraké and were enriched in functions related to sphingolipid metabolism. Within these genes, the conserved sensor of noxious stimuli TRPA1 and the ABCC4 transporter stood out due to the high number of environmentally selected SNPs that they contained. Protein 3D structure predictions suggest that a single-point mutation causes the rotation of the main regulatory domain of TRPA1, which may be behind this case of natural selection through environmental filtering. While the corals of the Bouraké lagoon provide a striking example of rapid adaptation to extreme conditions, overall, our results highlight the need to preserve the current standing genetic variation of coral populations to safeguard their adaptive potential to ongoing rapid environmental change.
Collapse
Affiliation(s)
- Carlos Leiva
- Marine LaboratoryUniversity of GuamGuamUSA
- Laboratoire d'Excellence CORAILENTROPIE (UMR9220), IRDNouméaNew Caledonia
| | - Gergely Torda
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Chengran Zhou
- BGI ResearchWuhanChina
- State Key Laboratory of Genome and Multi‐Omics TechnologiesBGI ResearchShenzhenChina
| | - Yunrui Pan
- Research Center for eco‐Environmental ScienceChinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Jess Harris
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Xueyan Xiang
- BGI ResearchWuhanChina
- State Key Laboratory of Genome and Multi‐Omics TechnologiesBGI ResearchShenzhenChina
| | - Shangjin Tan
- BGI ResearchWuhanChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Wei Tian
- BGI‐AustraliaHerstonQueenslandAustralia
| | - Benjamin Hume
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - David J. Miller
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
- Centre for Tropical Bioinformatics and Molecular BiologyJames Cook UniversityTownsvilleQueenslandAustralia
| | - Qiye Li
- BGI ResearchWuhanChina
- State Key Laboratory of Genome and Multi‐Omics TechnologiesBGI ResearchShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology and Women's Hospital at Zhejiang University School of Medicine, and Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
| | - Ira Cooke
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
- Centre for Tropical Bioinformatics and Molecular BiologyJames Cook UniversityTownsvilleQueenslandAustralia
| | - Riccardo Rodolfo‐Metalpa
- Laboratoire d'Excellence CORAILENTROPIE (UMR9220), IRDNouméaNew Caledonia
- ENTROPIE, IRDUniversité de la Réunion, IFREMER, Université de Nouvelle‐CalédonieNouméaNew Caledonia
- Labex ICONA International CO2 Natural Analogues NetworkTsukubaJapan
| |
Collapse
|
9
|
Suis MAF, Matami M, Nakabayashi M, Mutalib AHA, Ismail F, Kanak FA, Tangah J. Isolated Population of Proboscis Monkeys and Their Status in Sulaman Lake Forest Reserve, Sabah, Malaysia. Trop Life Sci Res 2025; 36:77-91. [PMID: 40276052 PMCID: PMC12017280 DOI: 10.21315/tlsr2025.36.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/27/2024] [Indexed: 04/26/2025] Open
Abstract
Proboscis monkeys are largely confined along the eastern coastal zone of Sabah, Malaysia. Sulaman Lake Forest Reserve (SLFR) is the only Class V Mangrove Forest Reserve in the forestry district of Kota Kinabalu, Sabah. This study is in accordance with the conservation strategies outlined in the Sabah Proboscis Monkey Action Plan (2019-2028), which is to focus on areas that have not been surveyed. Prior to this study, the status of proboscis monkeys in this reserve had not been scientifically documented. In addition, the habitat of this colobine species along the coastal zone of Sulaman Bay will be impacted by the construction of Pan Borneo Highway (Work Package 9). Hence, we intend to shed light on the status of proboscis monkeys in the SLFR including local threats to their population. This study discovered a small and isolated relict population of proboscis monkeys through a boat survey approach, which was also derived from interview sessions with local communities. We found that the degradation of mangrove forest integrity is a major threat to this population in the SLFR. It is hoped that this study will trigger more research, especially population size estimation, because such baseline information is crucial in the formulation of effective conservation programmes.
Collapse
Affiliation(s)
- Mohd. Aminur Faiz Suis
- Research Management Centre, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Marrynah Matami
- Forest Research Centre, Sabah Forestry Department, P.O. Box 1407, 90715 Sandakan, Sabah, Malaysia
| | - Miyabi Nakabayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8528, Japan
| | - Aini Hasanah Abd Mutalib
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Fazidah Ismail
- Forest Research Centre, Sabah Forestry Department, P.O. Box 1407, 90715 Sandakan, Sabah, Malaysia
| | - Fadzilah Awang Kanak
- Preparatory Centre for Science and Technology, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Joseph Tangah
- Forest Research Centre, Sabah Forestry Department, P.O. Box 1407, 90715 Sandakan, Sabah, Malaysia
| |
Collapse
|
10
|
Kasimanickam R, Ferreira JCP, Kastelic J, Kasimanickam V. Application of Genomic Selection in Beef Cattle Disease Prevention. Animals (Basel) 2025; 15:277. [PMID: 39858277 PMCID: PMC11759163 DOI: 10.3390/ani15020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Genomic applications in beef cattle disease prevention have gained traction in recent years, offering new strategies for improving herd health and reducing economic losses in the livestock industry. Advances in genomics, including identification of genetic markers linked to disease resistance, provide powerful tools for early detection, selection, and management of cattle resistant to infectious diseases. By incorporating genomic technologies such as whole-genome sequencing, genotyping, and transcriptomics, researchers can identify specific genetic variants associated with resistance to pathogens like bovine respiratory disease and Johne's disease. These genomic insights allow for more accurate breeding programs aimed at enhancing disease resistance and overall herd resilience. Genomic selection, in particular, enables identification of individuals with superior genetic traits for immune function, reducing the need for antibiotic treatments and improving animal welfare. Moreover, precision medicine, powered by genomic data, supports development of tailored health management strategies, including targeted vaccination plans and antimicrobial stewardship. Incorporation of genomic tools in beef cattle management also offers the potential for early disease detection, facilitating proactive interventions that reduce the spread of infections. Despite challenges like cost, data interpretation and integration into current management systems, the potential advantages of genomic applications in disease prevention are substantial. As these technologies advance, they are anticipated to have crucial roles in improving sustainability (by enhancing herd performance), profitability (by improving overall herd longevity), and biosecurity (by decreasing the likelihood of disease outbreaks) of beef cattle production systems worldwide.
Collapse
Affiliation(s)
- Ramanathan Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6610, USA; (J.C.P.F.); (V.K.)
| | - Joao Carlos Pinheiro Ferreira
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6610, USA; (J.C.P.F.); (V.K.)
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu 18618-681, Brazil
| | - John Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Vanmathy Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6610, USA; (J.C.P.F.); (V.K.)
| |
Collapse
|
11
|
Yin X, Schraidt CE, Sparks MM, Euclide PT, Hoyt TJ, Ruetz III CR, Höök TO, Christie MR. Parallel genetic adaptation amid a background of changing effective population sizes in divergent yellow perch ( Perca flavescens) populations. Proc Biol Sci 2025; 292:20242339. [PMID: 39809312 PMCID: PMC11732403 DOI: 10.1098/rspb.2024.2339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
Aquatic ecosystems are highly dynamic environments vulnerable to natural and anthropogenic disturbances. High-economic-value fisheries are one of many ecosystem services affected by these disturbances, and it is critical to accurately characterize the genetic diversity and effective population sizes of valuable fish stocks through time. We used genome-wide data to reconstruct the demographic histories of economically important yellow perch (Perca flavescens) populations. In two isolated and genetically divergent populations, we provide independent evidence for simultaneous increases in effective population sizes over both historic and contemporary time scales including negative genome-wide estimates of Tajima's D, 3.1 times more single nucleotide polymorphisms than adjacent populations, and contemporary effective population sizes that have increased 10- and 47-fold from their minimum, respectively. The excess of segregating sites and negative Tajima's D values probably arose from mutations accompanying historic population expansions with insufficient time for purifying selection, whereas linkage disequilibrium-based estimates of Ne also suggest contemporary increases that may have been driven by reduced fishing pressure or environmental remediation. We also identified parallel, genetic adaptation to reduced visual clarity in the same two habitats. These results suggest that the synchrony of key ecological and evolutionary processes can drive parallel demographic and evolutionary trajectories across independent populations.
Collapse
Affiliation(s)
- Xiaoshen Yin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao266003, People’s Republic of China
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907-2054, USA
| | - Claire E. Schraidt
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN47907-2054, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06511, USA
| | - Morgan M. Sparks
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907-2054, USA
- US Forest Service, Rocky Mountain Research Station, Boise, ID83702, USA
| | - Peter T. Euclide
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN47907-2054, USA
- Illinois-Indiana Sea Grant, Purdue University, West Lafayette, ID47907, USA
| | - Tyler J. Hoyt
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI49441, USA
| | - Carl R. Ruetz III
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI49441, USA
| | - Tomas O. Höök
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN47907-2054, USA
- Illinois-Indiana Sea Grant, Purdue University, West Lafayette, ID47907, USA
| | - Mark R. Christie
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907-2054, USA
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN47907-2054, USA
| |
Collapse
|
12
|
Thomas NE, Chadwick EA, Bruford MW, Hailer F. Spatio-Temporal Changes in Effective Population Size in an Expanding Metapopulation of Eurasian Otters. Evol Appl 2025; 18:e70067. [PMID: 39830484 PMCID: PMC11742082 DOI: 10.1111/eva.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Conservation efforts are leading to demographic growth and spatial expansion of some previously endangered species. However, past population bottlenecks or population size fluctuations can have lasting effects on effective population size (N e), even when census size (N c) appears large or recovered. The UK metapopulation of Eurasian otters (Lutra lutra) has a well-documented history of population recovery over recent decades, with indicators of presence (faeces and footprints) increasing in distribution and number over successive national surveys. To determine whether this increase in N c is reflected in increased N e, we analysed a large-scale microsatellite dataset (21 years: 1993-2014; 407 individuals) for signals of recent N e change using BOTTLENECK and LDNe, and evaluated potential biases associated with unaccounted spatial genetic structuring and inclusion of admixed genotypes. We obtained clear bottleneck signals in East England, and signals of recent population expansion in Wales and South West England in some analyses, consistent with national otter surveys and recent findings from whole-genome sequencing. Analyses that did not account for spatial genetic structuring yielded strong spurious signals of United Kingdom-wide population expansion, and N e estimates from these analyses were suppressed by a factor of 3-4. Inclusion of admixed individuals had weaker impacts on N e estimates, with overlapping 95% confidence intervals from different analyses. Notably, total N e summed across regions was small and well below the N e = 500 size deemed necessary for long-term population viability (sum of river basin district groups: 170.6, 95% C.I.: 102.1-348.3). Conclusions drawn from UK otter surveys, which had suggested a robust population close to panmixia, are therefore not supported by our genetic evidence. Our study highlights the value of including genetic monitoring of endangered or recovering species in monitoring plans, while also providing methodologically important information about N e estimation from real-world datasets.
Collapse
Affiliation(s)
- Nia Evelyn Thomas
- Organisms and Environment, School of Biosciences and Water Research InstituteCardiff UniversityWalesUK
| | - Elizabeth A. Chadwick
- Organisms and Environment, School of Biosciences and Water Research InstituteCardiff UniversityWalesUK
| | - Michael W. Bruford
- Organisms and Environment, School of Biosciences and Water Research InstituteCardiff UniversityWalesUK
| | - Frank Hailer
- Organisms and Environment, School of Biosciences and Water Research InstituteCardiff UniversityWalesUK
- Cardiff University ‐ Institute of Zoology Joint Laboratory for Biocomplexity Research (CIBR)Chinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Mikalsen SO, Í Hjøllum J, Salter I, Djurhuus A, Í Kongsstovu S. A Faroese perspective on decoding life for sustainable use of nature and protection of biodiversity. NPJ BIODIVERSITY 2024; 3:37. [PMID: 39632982 PMCID: PMC11618374 DOI: 10.1038/s44185-024-00068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Biodiversity is under pressure, mainly due to human activities and climate change. At the international policy level, it is now recognised that genetic diversity is an important part of biodiversity. The availability of high-quality reference genomes gives the best basis for using genetics and genetic diversity towards the global aims of (1) the protection of species, biodiversity, and nature, and (2) the management of biodiversity for achieving sustainable harvesting of nature. Protecting biodiversity is a global responsibility, also resting on small nations, like the Faroe Islands. Being in the middle of the North Atlantic Ocean and having large fisheries activity, the nation has a particular responsibility towards maritime matters. We here provide the reasoning behind the Genome Atlas of Faroese Ecology (Gen@FarE), a project based on our participation in the European Reference Genome Atlas consortium (ERGA). Gen@FarE has three major aims: (1) To acquire high-quality genomes of all eukaryotic species in the Faroe Islands and Faroese waters. (2) To establish population genetics for species of commercial or ecological interest. (3) To establish an information databank for all Faroese species, combined with a citizen science registration database, making it possible for the public to participate in acquiring and maintaining the overview of Faroese species in both terrestrial and marine environments. Altogether, we believe that this will enhance the society's interest in and awareness of biodiversity, thereby protecting the foundations of our lives. Furthermore, the combination of a wide and highly competent ERGA umbrella and more targeted national projects will help fulfil the formal and moral responsibilities that all nations, also those with limited resources, have in protecting biodiversity and achieving sustainability in harvesting from nature.
Collapse
Affiliation(s)
- Svein-Ole Mikalsen
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands.
| | - Jari Í Hjøllum
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Ian Salter
- Faroe Marine Research Institute, Tórshavn, Faroe Islands
| | - Anni Djurhuus
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Sunnvør Í Kongsstovu
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands
| |
Collapse
|
14
|
Nayak SS, Rajawat D, Jain K, Sharma A, Gondro C, Tarafdar A, Dutt T, Panigrahi M. A comprehensive review of livestock development: insights into domestication, phylogenetics, diversity, and genomic advances. Mamm Genome 2024; 35:577-599. [PMID: 39397083 DOI: 10.1007/s00335-024-10075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Livestock plays an essential role in sustaining human livelihoods, offering a diverse range of species integral to food security, economic stability, and cultural traditions. The domestication of livestock, which began over 10,000 years ago, has driven significant genetic changes in species such as cattle, buffaloes, sheep, goats, and pigs. Recent advancements in genomic technologies, including next-generation sequencing (NGS), genome-wide association studies (GWAS), and genomic selection, have dramatically enhanced our understanding of these genetic developments. This review brings together key research on the domestication process, phylogenetics, genetic diversity, and selection signatures within major livestock species. It emphasizes the importance of admixture studies and evolutionary forces like natural selection, genetic drift, and gene flow in shaping livestock populations. Additionally, the integration of machine learning with genomic data offers new perspectives on the functional roles of genes in adaptation and evolution. By exploring these genomic advancements, this review provides insights into genetic variation and evolutionary processes that could inform future approaches to improving livestock management and adaptation to environmental challenges, including climate change.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ayon Tarafdar
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| |
Collapse
|
15
|
Lévêque A, Duputié A, Vignon V, Duez F, Godé C, Mazoyer C, Arnaud J. Levels and Spatial Patterns of Effective Population Sizes in the Southern Damselfly ( Coenagrion mercuriale): On the Need to Carefully Interpret Single-Point and Temporal Estimations to Set Conservation Guidelines. Evol Appl 2024; 17:e70062. [PMID: 39720624 PMCID: PMC11667679 DOI: 10.1111/eva.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
The effective population size (N e) is a key parameter in conservation and evolutionary biology, reflecting the strength of genetic drift and inbreeding. Although demographic estimations of N e are logistically and time-consuming, genetic methods have become more widely used due to increasing data availability. Nonetheless, accurately estimating N e remains challenging, with few studies comparing N e estimates across molecular markers types and estimators such as single-sample methods based on linkage disequilibrium or sibship analyses versus methods based on temporal variance in allele frequencies. This study aims at bridging this gap by analysing single-sample and temporally spaced populations in the southern damselfly (Coenagrion mercuriale), a bioindicator Odonata species of conservation concern found in southwestern Europe's freshwater stream networks. A total of 77 local populations were sampled from a semi-urbanised area located in eastern France near Strasbourg city, yielding 2842 individuals that were genotyped with microsatellites and 958 of which were also genotyped for 2092 SNPs. Spatial genetic structure was stable over time, suggesting porosity between alternate-year cohorts. When accounting for spatial genetic structure, single-sample and temporal estimations of N e were consistent for each set of molecular markers. Biologically meaningful results were obtained when the effect of migration was minimising by considering metapopulation N e estimates based on the level of genetic differentiation and population boundaries. In terms of applied conservation and management, most depicted metapopulations displayed large N e, indicating no immediate need for conservation measures to mitigate anthropogenic pressures, provided that a continuous suitable freshwater network is maintained. However, urbanisation negatively impacted N e levels in populations close to Strasbourg city. Because N e is used to inform conservation decisions, caution is crucial in interpreting N e estimates, especially in continuously distributed populations undergoing migration. Altogether, our study highlights the challenge of obtaining robust N e estimates and the necessity of careful interpretation to set relevant conservation guidelines.
Collapse
Affiliation(s)
- Agathe Lévêque
- Univ. Lille, CNRS, UMR 8198—Evo‐Eco‐PaleoLilleFrance
- Office de Génie Écologique (O.G.E.)StrasbourgFrance
| | - Anne Duputié
- Univ. Lille, CNRS, UMR 8198—Evo‐Eco‐PaleoLilleFrance
| | - Vincent Vignon
- Office de Génie Écologique (O.G.E.)StrasbourgFrance
- ALKIOSAvignonFrance
| | - Fabien Duez
- Univ. Lille, CNRS, UMR 8198—Evo‐Eco‐PaleoLilleFrance
| | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198—Evo‐Eco‐PaleoLilleFrance
| | | | | |
Collapse
|
16
|
Jasper RJ, Yeaman S. Local adaptation can cause both peaks and troughs in nucleotide diversity within populations. G3 (BETHESDA, MD.) 2024; 14:jkae225. [PMID: 39290136 PMCID: PMC11540321 DOI: 10.1093/g3journal/jkae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
The amount of standing variation present within populations is a fundamental quantity of interest in population genetics, commonly represented by calculating the average number of differences between pairs of nucleotide sequences (nucleotide diversity, π). It is well understood that both background and positive selection can cause reductions in nucleotide diversity, but less clear how local adaptation affects it. Depending on the assumptions and parameters, some theoretical studies have emphasized how local adaptation can reduce nucleotide diversity, while others have shown that it can increase it. Here, we explore how local adaptation shapes genome-wide patterns in within-population nucleotide diversity, extending previous work to study the effects of polygenic adaptation, genotypic redundancy, and population structure. We show that local adaptation produces two very different patterns depending on the relative strengths of migration and selection, either markedly decreasing or increasing within-population diversity at linked sites at equilibrium. At low migration, regions of depleted diversity can extend large distances from the causal locus, with substantially more diversity eroded than expected with background selection. With higher migration, peaks occur over much smaller genomic distances but with much larger magnitude changes in diversity. Across spatially extended environmental gradients, both patterns can be found within a single species, with increases in diversity at the center of the range and decreases towards the periphery. Our results demonstrate that there is no universal diagnostic signature of local adaptation based on within-population nucleotide diversity, so it will not be broadly useful for explaining increased FST. However, given that neither background nor positive selection inflate diversity, when peaks are found they suggest local adaptation may be acting on a causal allele in the region.
Collapse
Affiliation(s)
- Russ J Jasper
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
- Institute of Ecology and Evolution, Department of Biology, University of Bern, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
17
|
Ahlawat S, Niranjan SK, Arora R, Vijh RK, Kumar A, Sharma U, Raheja M, Popli K, Yadav S, Mehta SC. Advancing equine genomics: the development of a high density Axiom_Ashwa SNP chip for Indian horses and ponies. Funct Integr Genomics 2024; 24:195. [PMID: 39441226 DOI: 10.1007/s10142-024-01482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The unique horse and pony breeds of India are declining at an alarming rate. These horses have been integral to the Indian culture and customs for centuries and represent a valuable genetic resource. It is imperative to harness the potential of this equine genetic resource that urgently needs conservation. The study highlights the design and development of a high density SNP array, the Axiom_Ashwa to aid in the genetic analysis and conservation efforts for Indian horse and pony breeds. With 613,950 SNPs, this chip offers extensive genome coverage having an average inter-marker distance of 4 kb. The Axiom_Ashwa has been validated on a larger set of diverse indigenous samples as well as Thoroughbreds, demonstrating a high call rate of 99.4% and robustness for genotyping indigenous breeds. Linkage disequilibrium (LD) analysis showed higher average LD in Indian breeds compared to exotic breeds, suggesting a limited effective population size and recent bottlenecks. Phylogenetic and population stratification analyses using PCA and DAPC clearly distinguished horses, ponies and Thoroughbreds, confirming the efficacy of the Axiom_Ashwa chip. These findings underscore the urgent need for conservation efforts for Indian horse breeds, which have experienced significant drop in population size. The Axiom_Ashwa SNP chip offers advantages such as cost-effectiveness and high throughput, providing a more accurate genetic representation of Indian horses.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | - Saket Kumar Niranjan
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India.
| | - Ramesh Kumar Vijh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | - Amod Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | - Meenal Raheja
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | - Kanika Popli
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | - Seema Yadav
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | - Sharat Chandra Mehta
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner, Rajasthan, 334 001, India
| |
Collapse
|
18
|
Chen R, Yang L, Pajor MS, Wiedmann M, Orsi RH. Salmonella associated with agricultural animals exhibit diverse evolutionary rates and show evidence of recent clonal expansion. mBio 2024; 15:e0191324. [PMID: 39287448 PMCID: PMC11492988 DOI: 10.1128/mbio.01913-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
Most foodborne salmonellosis outbreaks are linked to agricultural animal products with a few serovars accounting for most Salmonella isolated from specific animal products, suggesting an adaptation to the corresponding animal hosts and their respective environments. Here, we utilized whole-genome sequence (WGS) data to analyze the evolution and population genetics of seven serovars frequently isolated from ground beef (Montevideo, Cerro, and Dublin), chicken (Kentucky, Infantis, and Enteritidis), and turkey (Reading) in the United States. In addition, publicly available metadata were used to characterize major clades within each serovar with regard to public health significance. Except for Dublin, all serovars were polyphyletic, comprising 2-6 phylogenetic groups. Further partitioning of the phylogenies identified 25 major clades, including 12 associated with animal or environmental niches. These 12 clades differed in evolutionary parameters (e.g., substitution rates) as well as public health relevant characteristics (e.g., association with human illness, antimicrobial resistance). Overall, our results highlight several critical trends: (i) the Salmonella generation time appears to be more dependent on source than serovar and (ii) all serovars contain clades and sub-clades that are estimated to have emerged after the year 1940 and that are enriched for isolates associated with humans, agricultural animals, antimicrobial resistance (AMR), and/or specific geographical regions. These findings suggest that serotyping alone does not provide enough resolution to differentiate isolates that may have evolved independently, present distinct geographic distribution and host association, and possibly have distinct public health significance. IMPORTANCE Non-typhoidal Salmonella are major foodborne bacterial pathogens estimated to cause more than one million illnesses, thousands of hospitalizations, and hundreds of deaths annually in the United States. More than 70% of Salmonella outbreaks in the United States have been associated with agricultural animals. Certain serovars include persistent strains that have repeatedly contaminated beef, chicken, and turkey, causing outbreaks and sporadic cases over many years. These persistent strains represent a particular challenge to public health, as they are genetically clonal and widespread, making it difficult to differentiate distinct outbreak and contamination events using whole-genome sequence (WGS)-based subtyping methods (e.g., core genome allelic typing). Our results indicate that a phylogenetic approach is needed to investigate persistent strains and suggest that the association between a Salmonella serovar and an agricultural animal is driven by the expansion of clonal subtypes that likely became adapted to specific animals and associated environments.
Collapse
Affiliation(s)
- Ruixi Chen
- Department of Food
Science, Cornell University,
Ithaca, New York, USA
| | - Linghuan Yang
- Department of Food
Science, Cornell University,
Ithaca, New York, USA
| | | | - Martin Wiedmann
- Department of Food
Science, Cornell University,
Ithaca, New York, USA
| | - Renato H. Orsi
- Department of Food
Science, Cornell University,
Ithaca, New York, USA
| |
Collapse
|
19
|
Wu F, Cai G, Xi P, Guo Y, Xu M, Li A. Genetic Diversity Analysis and Fingerprint Construction for 87 Passionfruit ( Passiflora spp.) Germplasm Accessions on the Basis of SSR Fluorescence Markers. Int J Mol Sci 2024; 25:10815. [PMID: 39409142 PMCID: PMC11476748 DOI: 10.3390/ijms251910815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
A comprehensive genetic diversity analysis of 87 Passiflora germplasm accessions domesticated and cultivated for several years in the karst region of Guizhou, China, was conducted utilizing simple sequence repeat (SSR) fluorescent markers. These Passiflora species, renowned for their culinary and medicinal value, could bring significant economic and ecological benefits to the region. This study aimed to assess the genetic resources of these species and facilitate the selection of superior cultivars adapted to the karst environment. Our analysis revealed an abundance of SSR loci within the Passiflora transcriptome, with single-base repeats being the most prevalent type. Through rigorous primer screening and amplification, we successfully identified 27 SSR primer pairs exhibiting robust polymorphisms. Further interrogation at eight microsatellite loci revealed 68 alleles, underscoring the high level of genetic diversity present in the cultivated accessions. The average expected heterozygosity was 0.202, with the ssr18 locus exhibiting the highest value of 0.768, indicating significant genetic variation. The mean polymorphic information content (PIC) of 0.657 indicates the informativeness of these SSR markers. Comparative analyses of the cultivated and potential wild progenitors revealed distinct genetic variations among the different Passiflora types. Genetic structure and clustering analyses of the 87 accessions revealed seven distinct groups, suggesting gene flow and similarities among the resources. Notably, a DNA fingerprinting system was established using eight SSR primer pairs, effectively distinguishing the selected cultivars that had adapted to the karst mountainous region. This study not only deepens our understanding of Passiflora genetic resources in the karst environment but also provides a valuable reference for conservation, genetic improvement, and cultivar selection. The rich genetic diversity of the Passiflora germplasm underscores their potential for sustainable utilization in breeding programs aimed at enhancing the economic and ecological viability of these valuable plant species.
Collapse
Affiliation(s)
- Fengchan Wu
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China; (F.W.); (P.X.); (Y.G.)
| | - Guojun Cai
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China;
| | - Peiyu Xi
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China; (F.W.); (P.X.); (Y.G.)
| | - Yulin Guo
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China; (F.W.); (P.X.); (Y.G.)
| | - Meng Xu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| | - Anding Li
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China; (F.W.); (P.X.); (Y.G.)
| |
Collapse
|
20
|
Hong A, Cheek RG, De Silva SN, Mukherjee K, Yooseph I, Oliva M, Heim M, W. Funk C, Tallmon D, Boucher C. ONeSAMP 3.0: estimation of effective population size via single nucleotide polymorphism data from one population. G3 (BETHESDA, MD.) 2024; 14:jkae153. [PMID: 38996058 PMCID: PMC11457061 DOI: 10.1093/g3journal/jkae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
The genetic effective size (Ne) is arguably one of the most important characteristics of a population as it impacts the rate of loss of genetic diversity. Methods that estimate Ne are important in population and conservation genetic studies as they quantify the risk of a population being inbred or lacking genetic diversity. Yet there are very few methods that can estimate the Ne from data from a single population and without extensive information about the genetics of the population, such as a linkage map, or a reference genome of the species of interest. We present ONeSAMP 3.0, an algorithm for estimating Ne from single nucleotide polymorphism data collected from a single population sample using approximate Bayesian computation and local linear regression. We demonstrate the utility of this approach using simulated Wright-Fisher populations, and empirical data from five endangered Channel Island fox (Urocyon littoralis) populations to evaluate the performance of ONeSAMP 3.0 compared to a commonly used Ne estimator. Our results show that ONeSAMP 3.0 is broadly applicable to natural populations and is flexible enough that future versions could easily include summary statistics appropriate for a suite of biological and sampling conditions. ONeSAMP 3.0 is publicly available under the GNU General Public License at https://github.com/AaronHong1024/ONeSAMP_3.
Collapse
Affiliation(s)
- Aaron Hong
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca G Cheek
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Suhashi Nihara De Silva
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Kingshuk Mukherjee
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Isha Yooseph
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Marco Oliva
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Mark Heim
- Department of Math, Colorado State University, Fort Collins, CO 80523, USA
| | - Chris W. Funk
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - David Tallmon
- Biology and Marine Biology Program, University of Alaska Southeast, Juneau, AK 99801, USA
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
21
|
de Greef E, Müller C, Thorstensen MJ, Ferguson SH, Watt CA, Marcoux M, Petersen SD, Garroway CJ. Unraveling the Genetic Legacy of Commercial Whaling and Population Dynamics in Arctic Bowhead Whales and Narwhals. GLOBAL CHANGE BIOLOGY 2024; 30:e17528. [PMID: 39400406 DOI: 10.1111/gcb.17528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024]
Abstract
Assessing genetic structure and diversity in wildlife is particularly important in the context of climate change. The Arctic is rapidly warming, and endemic species must adapt quickly or face significant threats to persistence. Bowhead whales (Balaena mysticetus) and narwhals (Monodon monoceros) are two long-lived Arctic species with similar habitat requirements and are often seen together in the Canadian Arctic. Although their ranges overlap extensively, bowhead whales experienced significantly greater commercial whaling mortality than narwhals over several centuries. The similar habitat requirements but different harvest histories of these two species provide an opportunity to examine present-day genetic diversity and the demographic and genetic consequences of commercial whaling. We whole-genome resequenced contemporary Canadian Arctic bowhead whales and narwhals to delineate population structure and reconstruct demographic history. We found higher genetic diversity in bowhead whales compared to narwhals. However, bowhead whale effective population size sharply declined contemporaneously with the intense commercial whaling period. Narwhals, in contrast, exhibited recent growth in effective population size, likely reflecting exposure to limited opportunistic commercial harvest. Bowhead whales will likely continue to experience significant genetic drift in the future, leading to the erosion of genetic diversity. In contrast, narwhals do not seem to be at imminent risk of losing their current levels of genetic variation due to their long-term low effective population size and lack of evidence for a recent decline. This work highlights the importance of considering population trajectories in addition to genetic diversity when assessing the genetics of populations for conservation and management purposes.
Collapse
Affiliation(s)
- Evelien de Greef
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Claudio Müller
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matt J Thorstensen
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Steven H Ferguson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Cortney A Watt
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Marianne Marcoux
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Stephen D Petersen
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Conservation and Research Department, Assiniboine Park Zoo, Winnipeg, Manitoba, Canada
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
22
|
Delord C, Arnaud‐Haond S, Leone A, Rolland J, Nikolic N. Unraveling the Complexity of the N e/ N c Ratio for Conservation of Large and Widespread Pelagic Fish Species: Current Status and Challenges. Evol Appl 2024; 17:e70020. [PMID: 39391864 PMCID: PMC11464753 DOI: 10.1111/eva.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Estimating and understanding the ratio between effective population size (N e) and census population size (N c) are pivotal in the conservation of large marine pelagic fish species, including bony fish such as tunas and cartilaginous fish such as sharks, given the challenges associated with obtaining accurate estimates of their abundance. The difficulties inherent in capturing and monitoring these species in vast and dynamic marine environments often make direct estimation of their population size challenging. By focusing on N e, it is conceivable in certain cases to approximate census size once the N e/N c ratio is known, although this ratio can vary and does not always increase linearly, as it is influenced by various ecological and evolutionary factors. Thus, this ratio presents challenges and complexities in the context of pelagic species conservation. To delve deeper into these challenges, firstly, we recall the diverse types of effective population sizes, including contemporary and historical sizes, and their implications in conservation biology. Secondly, we outline current knowledge about the influence of life history traits on the N e/N c ratio in the light of examples drawn from large and abundant pelagic fish species. Despite efforts to document an increasing number of marine species using recent technologies and statistical methods, establishing general rules to predict N e/N c remains elusive, necessitating further research and investment. Finally, we recall statistical challenges in relating N e and N c emphasizing the necessity of aligning temporal and spatial scales. This last part discusses the roles of generation and reproductive cycle effective population sizes to predict genetic erosion and guiding management strategies. Collectively, these sections underscore the multifaceted nature of effective population size estimation, crucial for preserving genetic diversity and ensuring the long-term viability of populations. By navigating statistical and theoretical complexities, and addressing methodological challenges, scientists should be able to advance our understanding of the N e/N c ratio.
Collapse
Affiliation(s)
- Chrystelle Delord
- UMR248 MARBEC, Univ. MontpellierIfremer, IRD, CNRSLa RéunionFrance
- UMR248 MARBEC, Univ. MontpellierIfremer, IRD, CNRSSèteFrance
| | | | - Agostino Leone
- UMR248 MARBEC, Univ. MontpellierIfremer, IRD, CNRSSèteFrance
- Department of Earth and Marine Sciences (DiSTeM)University of PalermoPalermoItaly
- National Biodiversity Future CenterPalermoItaly
| | - Jonathan Rolland
- Centre de Recherche Sur la Biodiversité et l'Environnement (CRBE)Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3)ToulouseFrance
| | - Natacha Nikolic
- Centre de Recherche Sur la Biodiversité et l'Environnement (CRBE)Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3)ToulouseFrance
- Universite de Pau et des Pays de l’Adour, INRAE, AQUA, ECOBIOPSain‐Pée‐sur‐NivelleFrance
- ARBRE – Agence de Recherche Pour la Biodiversité à La RéunionSaint‐GillesFrance
| |
Collapse
|
23
|
Sang H, Li Y, Tan S, Gao P, Wang B, Guo S, Luo S, Sun C. Conservation genomics analysis reveals recent population decline and possible causes in bumblebee Bombus opulentus. INSECT SCIENCE 2024; 31:1631-1644. [PMID: 38297451 DOI: 10.1111/1744-7917.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Bumblebees are a genus of pollinators (Bombus) that play important roles in natural ecosystem and agricultural production. Several bumblebee species have been recorded as under population decline, and the proportion of species experiencing population decline within subgenus Thoracobombus is higher than average. Bombus opulentus is 1 species in Thoracobombus, but little is known about its recent population dynamics. Here, we employed conservation genomics methods to investigate the population dynamics of B. opulentus during the recent past and identify the likely environmental factors that may cause population decline. Firstly, we placed the scaffold-level of B. opulentus reference genome sequence onto chromosome-level using Hi-C technique. Then, based on this reference genome and whole-genome resequencing data for 51 B. opulentus samples, we reconstructed the population structure and effective population size (Ne) trajectories of B. opulentus and identified genes that were under positive selection. Our results revealed that the collected B. opulentus samples could be divided into 2 populations, and 1 of them experienced a recent population decline; the declining population also exhibited lower genetic diversity and higher inbreeding levels. Genes related to high-temperature tolerance, immune response, and detoxication showed signals of positive selection in the declining population, suggesting that climate warming and pathogen/pesticide exposures may contribute to the decline of this B. opulentus population. Taken together, our study provided insights into the demography of B. opulentus populations and highlighted that populations of the same bumblebee species could have contrasting Ne trajectories and population decline could be caused by a combination of various stressors.
Collapse
Affiliation(s)
- Huiling Sang
- College of Life Sciences, Capital Normal University, Beijing, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yancan Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Shuxin Tan
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Pu Gao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Bei Wang
- Yan'an Beekeeping Experimental Station, Yan'an, Shannxi, China
| | - Shengnan Guo
- Hengshui center for Disease Prevention and Control, Hengshui, Hebei, China
| | - Shudong Luo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
24
|
Kosman E, Feijen F, Jokela J. Effective number of different populations: A new concept and how to use it. Ecol Evol 2024; 14:e70303. [PMID: 39279796 PMCID: PMC11402519 DOI: 10.1002/ece3.70303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/06/2024] [Accepted: 08/31/2024] [Indexed: 09/18/2024] Open
Abstract
Widely used methods to assess population genetic structure and differentiation rely on independence of marker loci. Following the assumption, the common metrics, for example F ST, evaluate genetic structure by averaging across loci. Common metrics do not use information in the associations among loci at the individual level and are often criticized for failing to measure true differentiation even when loci segregate independently. We introduce a new concept to measure β-variation (Effective Number of Different Populations, ENDP). It requires the following steps: (a) calculation of a proper dissimilarity between genetic profiles of all individuals; (b) calculation of suitable pairwise distances between the samples based on the dissimilarities between individuals; (c) calculation of diversity (in terms of Hill numbers) and dispersion of samples based on the pairwise distances between samples; (d) ENDP is then estimated by combining the diversity and dispersion. ENDP estimates β-variation independently of estimates of within-sample α-variation, although β- and α-estimates could statistically correlate to some extent. This new concept differs from the existing standard where β-diversity is estimated based on the "partition of variation" scheme (beta = gamma - alpha orbeta = gamma / alpha ), so that estimates of β-diversity directly depend on the corresponding values of α-diversity. ENDP estimates are obtained by evaluating information in the available genetic profiles of individuals including association of loci. Therefore, ENDP can be used even in an absence of panmixia. We illustrate the use of this concept by analyzing the population genetic structure of a sexual species (a trematode parasite) occupying connected populations across a broad geographic area. The analysis is complicated by geographically coexisting cryptic species and the potential mixed-mating system of this hermaphroditic parasite. Analyses with subsampled data demonstrated that ENDP estimates are robust. Number of loci used for genotyping has much stronger effect on variation of point ENDP estimates than sample size.
Collapse
Affiliation(s)
- Evsey Kosman
- Institute for Cereal Crops Research, School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - Frida Feijen
- ETH Zurich, Department of Environmental Systems Science Institute of Integrative Biology (IBZ) Zürich Switzerland
- EAWAG Aquatic Ecology Dübendorf Switzerland
| | - Jukka Jokela
- ETH Zurich, Department of Environmental Systems Science Institute of Integrative Biology (IBZ) Zürich Switzerland
- EAWAG Aquatic Ecology Dübendorf Switzerland
| |
Collapse
|
25
|
Filatov DA, Kirkpatrick M. How does evolution work in superabundant microbes? Trends Microbiol 2024; 32:836-846. [PMID: 38360431 DOI: 10.1016/j.tim.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
Marine phytoplankton play crucial roles in the Earth's ecological, chemical, and geological processes. They are responsible for about half of global primary production and drive the ocean biological carbon pump. Understanding how plankton species may adapt to the Earth's rapidly changing environments is evidently an urgent priority. This problem requires evolutionary genetic approaches as evolution occurs at the level of allele frequency change within populations driven by genetic drift and natural selection (microevolution). Plankters such as the coccolithophore Gephyrocapsa huxleyi and the cyanobacterium Prochlorococcus 'marinus' are among Earth's most abundant organisms. In this opinion paper we discuss how evolution in astronomically large populations of superabundant microbes (SAMs) may act fundamentally differently than it does in the populations of more modest size found in well-studied organisms. This offers exciting opportunities to study evolution in the conditions that have yet to be explored and also leads to unique challenges. Exploring these opportunities and challenges is the goal of this article.
Collapse
Affiliation(s)
- Dmitry A Filatov
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
26
|
Miyumo S, Wasike CB, Ilatsia ED, Bennewitz J, Chagunda MGG. Evaluation of selection strategies in dual-purpose and specialized breeding of indigenous chicken. Poult Sci 2024; 103:103916. [PMID: 38908120 PMCID: PMC11637208 DOI: 10.1016/j.psj.2024.103916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
This study aimed to evaluate various selection strategies for adoption in dual-purpose (ICD), meat (ICM) and layer (ICL) breeding goals in indigenous chicken breeding programs. The ICM goal aimed to improve live weight (LW12), daily gain (ADG) and egg weight (EW12) or together with feed efficiency and antibody response. For the ICL goal, age at first egg (AFE) and egg number (EN12) or together with feed efficiency and antibody response were targeted. In the ICD goal, the objective was to improve LW12, ADG, AFE and EN12 or together with feed efficiency and antibody response. Highest total index responses of US$ 49.83, US$ 65.71, and US$ 37.90 were estimated in indices targeting only production traits in the ICD, ICM and ICL goals, respectively. Highest index accuracy estimates of 0.77 and 0.70 were observed in indices that considered production and feed-related traits in the ICD and ICL goals, respectively, while in the ICM goal, the highest estimate of 0.96 was observed in an index targeting only production traits. Inbreeding levels ranged from 0.60 to 1.14% across the various indices considered in the breeding goals. Targeting only production traits in the ICD, ICM and ICL goals required the least number of generations of selection of 7.46, 5.50, and 8.52, respectively, to achieve predefined gains. Generally, a strategy targeting only production traits in a goal was the most optimal but resulted to unfavorable correlated responses in feed efficiency and antibody response. Addition of feed efficiency or/and antibody response in a goal was, however, not attractive due to the decline in total index response and accuracy and increase in inbreeding levels and number of generations of selection. Considering the feed availability and disease challenges in the tropics, choice of including feed efficiency or/and antibody response in the ICD, ICM and ICL goals should depend on targeted production system, resource availability to support breeding activities and magnitude of correlated responses on these traits when not included in the goals.
Collapse
Affiliation(s)
- Sophie Miyumo
- Department of Animal Breeding and Husbandry in the Tropics and Sub-tropics, University of Hohenheim, Stuttgart 70599, Germany.
| | - Chrilukovian B Wasike
- Livestock Efficiency Enhancement group (LEEG), Department of Animal and Fisheries Sciences, Maseno University, Maseno, Kenya
| | - Evans D Ilatsia
- Kenya Agricultural and Livestock Research Organization, Poultry Research Program, Naivasha 20117, Kenya
| | - Jörn Bennewitz
- Department of Animal Breeding and Genetics, University of Hohenheim, Stuttgart 70599, Germany
| | - Mizeck G G Chagunda
- Department of Animal Breeding and Husbandry in the Tropics and Sub-tropics, University of Hohenheim, Stuttgart 70599, Germany
| |
Collapse
|
27
|
Çetin C, Jokela J, Feulner PGD, Schlegel T, Tardent N, Seppälä O. Population genetic structure in a self-compatible hermaphroditic snail is driven by drift independently of its contemporary mating system. Ecol Evol 2024; 14:e70162. [PMID: 39139911 PMCID: PMC11319733 DOI: 10.1002/ece3.70162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Genetic drift, gene flow, and natural selection commonly influence population genetic diversity. In populations of self-compatible hermaphrodites, the mating system (e.g., self-fertilization) further reduces individual heterozygosity. Furthermore, selfing, as a form of inbreeding, significantly impacts genetic drift by reducing effective population size (N e). This can potentially accelerate genetic drift, particularly in small populations where self-fertilization is likely during founder events. To investigate the roles of genetic drift and contemporary mating system in populations of the freshwater snail Lymnaea stagnalis, we examined their effective population sizes (N e) and Tajima's D values, which reflect genetic drift over extended time periods, as well as estimates of within-population selfing rates and pairwise relatedness reflecting contemporary mating system. We used 4054 SNP markers obtained using restriction site associated DNA (RAD) sequencing from individuals in five snail populations originating from geographically closely located ponds. We found strong population genetic structure and differences in genetic diversity among populations. Covariation between genetic diversity and N e estimates and Tajima's D values suggested drift being an important determinant of genetic diversity and structure in these populations. However, this effect was independent of the contemporary mating system, as indicated by the similarity of selfing rates and relatedness estimates among populations. Thus, founder events (possibly including historical inbreeding) and/or drift due to small sizes of L. stagnalis populations are likely to explain their genetic structure and limit within-population genetic diversity.
Collapse
Affiliation(s)
- Cansu Çetin
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Jukka Jokela
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| | - Philine G. D. Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Tamara Schlegel
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| | - Nadine Tardent
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| | - Otto Seppälä
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
- Research Department for LimnologyUniversität InnsbruckMondseeAustria
| |
Collapse
|
28
|
Johnson JP, Piche L, Worral H, Atanda SA, Coyne CJ, McGee RJ, McPhee K, Bandillo N. Effective population size in field pea. BMC Genomics 2024; 25:695. [PMID: 39009980 PMCID: PMC11251210 DOI: 10.1186/s12864-024-10587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Effective population size (Ne) is a pivotal parameter in population genetics as it can provide information on the rate of inbreeding and the contemporary status of genetic diversity in breeding populations. The population with smaller Ne can lead to faster inbreeding, with little potential for genetic gain making selections ineffective. The importance of Ne has become increasingly recognized in plant breeding, which can help breeders monitor and enhance the genetic variability or redesign their selection protocols. Here, we present the first Ne estimates based on linkage disequilibrium (LD) in the pea genome. RESULTS We calculated and compared Ne using SNP markers from North Dakota State University (NDSU) modern breeding lines and United States Department of Agriculture (USDA) diversity panel. The extent of LD was highly variable not only between populations but also among different regions and chromosomes of the genome. Overall, NDSU had a higher and longer-range LD than the USDA that could extend up to 500 Kb, with a genome-wide average r2 of 0.57 (vs 0.34), likely due to its lower recombination rates and the selection background. The estimated Ne for the USDA was nearly three-fold higher (Ne = 174) than NDSU (Ne = 64), which can be confounded by a high degree of population structure due to the selfing nature of pea. CONCLUSIONS Our results provided insights into the genetic diversity of the germplasm studied, which can guide plant breeders to actively monitor Ne in successive cycles of breeding to sustain viability of the breeding efforts in the long term.
Collapse
Affiliation(s)
| | - Lisa Piche
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Hannah Worral
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Sikiru Adeniyi Atanda
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Clarice J Coyne
- USDA-ARS Plant Germplasm Introduction and Testing, Washington State University, Pullman, WA, 99164, USA
| | - Rebecca J McGee
- USDA-ARS Grain Legume Genetics and Physiology Research, Pullman, WA, 99164, USA
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Kevin McPhee
- Department of Plant Science and Plant Pathology, Montana State University, 119 Plant Bioscience Building, Bozeman, MT, 59717-3150, USA
| | - Nonoy Bandillo
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
29
|
vonHoldt BM, DeCandia AL, Cassidy KA, Stahler EE, Sinsheimer JS, Smith DW, Stahler DR. Patterns of reproduction and autozygosity distinguish the breeding from nonbreeding gray wolves of Yellowstone National Park. J Hered 2024; 115:327-338. [PMID: 37793153 PMCID: PMC11235126 DOI: 10.1093/jhered/esad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
For species of management concern, accurate estimates of inbreeding and associated consequences on reproduction are crucial for predicting their future viability. However, few studies have partitioned this aspect of genetic viability with respect to reproduction in a group-living social mammal. We investigated the contributions of foundation stock lineages, putative fitness consequences of inbreeding, and genetic diversity of the breeding versus nonreproductive segment of the Yellowstone National Park gray wolf population. Our dataset spans 25 years and seven generations since reintroduction, encompassing 152 nuclear families and 329 litters. We found more than 87% of the pedigree foundation genomes persisted and report influxes of allelic diversity from two translocated wolves from a divergent source in Montana. As expected for group-living species, mean kinship significantly increased over time but with minimal loss of observed heterozygosity. Strikingly, the reproductive portion of the population carried a significantly lower genome-wide inbreeding coefficients, autozygosity, and more rapid decay for linkage disequilibrium relative to the nonbreeding population. Breeding wolves had significantly longer lifespans and lower inbreeding coefficients than nonbreeding wolves. Our model revealed that the number of litters was negatively significantly associated with heterozygosity (R = -0.11). Our findings highlight genetic contributions to fitness, and the importance of the reproductively active individuals in a population to counteract loss of genetic variation in a wild, free-ranging social carnivore. It is crucial for managers to mitigate factors that significantly reduce effective population size and genetic connectivity, which supports the dispersion of genetic variation that aids in rapid evolutionary responses to environmental challenges.
Collapse
Affiliation(s)
- Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Alexandra L DeCandia
- Department of Biology, Georgetown University, Washington, DC, United States
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Kira A Cassidy
- Yellowstone Center for Resources, Yellowstone National Park, WY, United States
| | - Erin E Stahler
- Yellowstone Center for Resources, Yellowstone National Park, WY, United States
| | - Janet S Sinsheimer
- Department of Biostatistics, Fielding School of Public Health, UCLA, Los Angeles, CA, United States
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Douglas W Smith
- Yellowstone Center for Resources, Yellowstone National Park, WY, United States
| | - Daniel R Stahler
- Yellowstone Center for Resources, Yellowstone National Park, WY, United States
| |
Collapse
|
30
|
Aitken SN, Jordan R, Tumas HR. Conserving Evolutionary Potential: Combining Landscape Genomics with Established Methods to Inform Plant Conservation. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:707-736. [PMID: 38594931 DOI: 10.1146/annurev-arplant-070523-044239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Biodiversity conservation requires conserving evolutionary potential-the capacity for wild populations to adapt. Understanding genetic diversity and evolutionary dynamics is critical for informing conservation decisions that enhance adaptability and persistence under environmental change. We review how emerging landscape genomic methods provide plant conservation programs with insights into evolutionary dynamics, including local adaptation and its environmental drivers. Landscape genomic approaches that explore relationships between genomic variation and environments complement rather than replace established population genomic and common garden approaches for assessing adaptive phenotypic variation, population structure, gene flow, and demography. Collectively, these approaches inform conservation actions, including genetic rescue, maladaptation prediction, and assisted gene flow. The greatest on-the-ground impacts from such studies will be realized when conservation practitioners are actively engaged in research and monitoring. Understanding the evolutionary dynamics shaping the genetic diversity of wild plant populations will inform plant conservation decisions that enhance the adaptability and persistence of species in an uncertain future.
Collapse
Affiliation(s)
- Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; ,
| | | | - Hayley R Tumas
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; ,
| |
Collapse
|
31
|
Clarke SH, Lawrence ER, Matte JM, Gallagher BK, Salisbury SJ, Michaelides SN, Koumrouyan R, Ruzzante DE, Grant JWA, Fraser DJ. Global assessment of effective population sizes: Consistent taxonomic differences in meeting the 50/500 rule. Mol Ecol 2024; 33:e17353. [PMID: 38613250 DOI: 10.1111/mec.17353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal and amphibian populations had a <54% probability of reachingN ̂ e = 50 and a <9% probability of reachingN ̂ e = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smaller medianN ̂ e than unlisted populations, and this was consistent across all taxonomic groups.N ̂ e was reduced in areas with a greater Global Human Footprint, especially for amphibians, birds and mammals, however relationships varied between taxa. We also highlight several considerations for future works, including the role that gene flow and subpopulation structure plays in the estimation ofN ̂ e in wild populations, and the need for finer-scale taxonomic analyses. Our findings provide guidance for more specific thresholds based on Ne and help prioritise assessment of populations from taxa most at risk of failing to meet conservation thresholds.
Collapse
Affiliation(s)
- Shannon H Clarke
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Jean-Michel Matte
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Brian K Gallagher
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Sarah J Salisbury
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Ramela Koumrouyan
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Daniel E Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James W A Grant
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Dylan J Fraser
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Cave R, Kalizang'oma A, Chaguza C, Mwalukomo TS, Kamng’ona A, Brown C, Msefula J, Bonomali F, Nyirenda R, Swarthout TD, Kwambana-Adams B, French N, Heyderman RS. Expansion of pneumococcal serotype 23F and 14 lineages with genotypic changes in capsule polysaccharide locus and virulence gene profiles post introduction of pneumococcal conjugate vaccine in Blantyre, Malawi. Microb Genom 2024; 10:001264. [PMID: 38896467 PMCID: PMC11261835 DOI: 10.1099/mgen.0.001264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Since the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) in Malawi in 2011, there has been persistent carriage of vaccine serotype (VT) Streptococcus pneumoniae, despite high vaccine coverage. To determine if there has been a genetic change within the VT capsule polysaccharide (cps) loci since the vaccine's introduction, we compared 1022 whole-genome-sequenced VT isolates from 1998 to 2019. We identified the clonal expansion of a multidrug-resistant, penicillin non-susceptible serotype 23F GPSC14-ST2059 lineage, a serotype 14 GPSC9-ST782 lineage and a novel serotype 14 sequence type GPSC9-ST18728 lineage. Serotype 23F GPSC14-ST2059 had an I253T mutation within the capsule oligosaccharide repeat unit polymerase Wzy protein, which is predicted in silico to alter the protein pocket cavity. Moreover, serotype 23F GPSC14-ST2059 had SNPs in the DNA binding sites for the cps transcriptional repressors CspR and SpxR. Serotype 14 GPSC9-ST782 harbours a non-truncated version of the large repetitive protein (Lrp), containing a Cna protein B-type domain which is also present in proteins associated with infection and colonisation. These emergent lineages also harboured genes associated with antibiotic resistance, and the promotion of colonisation and infection which were absent in other lineages of the same serotype. Together these data suggest that in addition to serotype replacement, modifications of the capsule locus associated with changes in virulence factor expression and antibiotic resistance may promote vaccine escape. In summary, the study highlights that the persistence of vaccine serotype carriage despite high vaccine coverage in Malawi may be partly caused by expansion of VT lineages post-PCV13 rollout.
Collapse
Affiliation(s)
- Rory Cave
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, UK
| | - Akuzike Kalizang'oma
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, UK
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Chrispin Chaguza
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| | | | | | - Comfort Brown
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | | | | | | | - Todd D. Swarthout
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, UK
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Brenda Kwambana-Adams
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, UK
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Neil French
- Clinical Infection, Microbiology and Immunology, Institute of Infection Veterinary & Ecological Science, University of Liverpool, Liverpool, UK
| | - Robert S. Heyderman
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, UK
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| |
Collapse
|
33
|
Huang JP, Wu SP, Chen WY, Pham GJ, Kuan YH. Genomic data revealed inbreeding despite a geographically connected stable effective population size since the Holocene in the protected Formosan Long-Arm Scarab beetle, Cheirotonus formosanus. J Hered 2024; 115:292-301. [PMID: 38364316 DOI: 10.1093/jhered/esae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Biodiversity conservation is a top priority in the face of global environmental change, and the practical restoration of biodiversity has emerged as a key objective. Nevertheless, the question of how to effectively contribute to biodiversity restoration and identify suitable systems for such efforts continues to present major challenges. By using genome-wide SNP data, our study revealed that populations from different mountain ranges of the Formosan Long-Arm Scarab beetle, a flagship species that receives strict protection, exhibited a single genetic cluster with no subdivision. Additionally, our result implied an association between the demographic history and historical fluctuations in climate and environmental conditions. Furthermore, we showed that, despite a stable and moderately sized effective population over recent history, all the individuals we studied exhibited signs of genetic inbreeding. We argued that the current practice of protecting the species as one evolutionarily significant unit remains the best conservation plan and that recent habitat change may have led to the pattern of significant inbreeding. We closed by emphasizing the importance of conservation genetic studies in guiding policy decisions and highlighting the potential of genomic data for identifying ideal empirical systems for genetic rescue, or assisted gene flow studies.
Collapse
Affiliation(s)
- Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Ping Wu
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan
| | - Wei-Yun Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Guan Jie Pham
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsiu Kuan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
34
|
Brown LM, Elbon MC, Bharadwaj A, Damle G, Lachance J. Does Effective Population Size Govern Evolutionary Differences in Telomere Length? Genome Biol Evol 2024; 16:evae111. [PMID: 38771124 PMCID: PMC11140418 DOI: 10.1093/gbe/evae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
Lengths of telomeres vary by an order of magnitude across mammalian species. Similarly, age- and sex-standardized telomere lengths differ by up to 1 kb (14%) across human populations. How to explain these differences? Telomeres play a central role in senescence and aging, and genes that affect telomere length are likely under weak selection (i.e. telomere length is a trait that is subject to nearly neutral evolution). Importantly, natural selection is more effective in large populations than in small populations. Here, we propose that observed differences in telomere length across species and populations are largely due to differences in effective population sizes. In this perspective, we present preliminary evolutionary genetic evidence supporting this hypothesis and highlight the need for more data.
Collapse
Affiliation(s)
- Lyda M Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mia C Elbon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ajay Bharadwaj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gargi Damle
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
35
|
Ewart KM, Ho SYW, Chowdhury AA, Jaya FR, Kinjo Y, Bennett J, Bourguignon T, Rose HA, Lo N. Pervasive relaxed selection in termite genomes. Proc Biol Sci 2024; 291:20232439. [PMID: 38772424 DOI: 10.1098/rspb.2023.2439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Genetic changes that enabled the evolution of eusociality have long captivated biologists. More recently, attention has focussed on the consequences of eusociality on genome evolution. Studies have reported higher molecular evolutionary rates in eusocial hymenopteran insects compared with their solitary relatives. To investigate the genomic consequences of eusociality in termites, we analysed nine genomes, including newly sequenced genomes from three non-eusocial cockroaches. Using a phylogenomic approach, we found that termite genomes have experienced lower rates of synonymous substitutions than those of cockroaches, possibly as a result of longer generation times. We identified higher rates of non-synonymous substitutions in termite genomes than in cockroach genomes, and identified pervasive relaxed selection in the former (24-31% of the genes analysed) compared with the latter (2-4%). We infer that this is due to reductions in effective population size, rather than gene-specific effects (e.g. indirect selection of caste-biased genes). We found no obvious signature of increased genetic load in termites, and postulate efficient purging of deleterious alleles at the colony level. Additionally, we identified genomic adaptations that may underpin caste differentiation, such as genes involved in post-translational modifications. Our results provide insights into the evolution of termites and the genomic consequences of eusociality more broadly.
Collapse
Affiliation(s)
- Kyle M Ewart
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Al-Aabid Chowdhury
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Frederick R Jaya
- Ecology & Evolution, Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia
| | - Yukihiro Kinjo
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Okinawa International University, Okinawa, Japan
| | - Juno Bennett
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Bourguignon
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Harley A Rose
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Hogg CJ. Translating genomic advances into biodiversity conservation. Nat Rev Genet 2024; 25:362-373. [PMID: 38012268 DOI: 10.1038/s41576-023-00671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
A key action of the new Global Biodiversity Framework is the maintenance of genetic diversity in all species to safeguard their adaptive potential. To achieve this goal, a translational mindset, which aims to convert results of basic research into direct practical benefits, needs to be applied to biodiversity conservation. Despite much discussion on the value of genomics to conservation, a disconnect between those generating genomic resources and those applying it to biodiversity management remains. As global efforts to generate reference genomes for non-model species increase, investment into practical biodiversity applications is critically important. Applications such as understanding population and multispecies diversity and longitudinal monitoring need support alongside education for policymakers on integrating the data into evidence-based decisions. Without such investment, the opportunity to revolutionize global biodiversity conservation using genomics will not be fully realized.
Collapse
Affiliation(s)
- Carolyn J Hogg
- School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
37
|
Gargiulo R, Decroocq V, González‐Martínez SC, Paz‐Vinas I, Aury J, Lesur Kupin I, Plomion C, Schmitt S, Scotti I, Heuertz M. Estimation of contemporary effective population size in plant populations: Limitations of genomic datasets. Evol Appl 2024; 17:e13691. [PMID: 38707994 PMCID: PMC11069024 DOI: 10.1111/eva.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Effective population size (N e) is a pivotal evolutionary parameter with crucial implications in conservation practice and policy. Genetic methods to estimate N e have been preferred over demographic methods because they rely on genetic data rather than time-consuming ecological monitoring. Methods based on linkage disequilibrium (LD), in particular, have become popular in conservation as they require a single sampling and provide estimates that refer to recent generations. A software program based on the LD method, GONE, looks particularly promising to estimate contemporary and recent-historical N e (up to 200 generations in the past). Genomic datasets from non-model species, especially plants, may present some constraints to the use of GONE, as linkage maps and reference genomes are seldom available, and SNP genotyping is usually based on reduced-representation methods. In this study, we use empirical datasets from four plant species to explore the limitations of plant genomic datasets when estimating N e using the algorithm implemented in GONE, in addition to exploring some typical biological limitations that may affect N e estimation using the LD method, such as the occurrence of population structure. We show how accuracy and precision of N e estimates potentially change with the following factors: occurrence of missing data, limited number of SNPs/individuals sampled, and lack of information about the location of SNPs on chromosomes, with the latter producing a significant bias, previously unexplored with empirical data. We finally compare the N e estimates obtained with GONE for the last generations with the contemporary N e estimates obtained with the programs currentNe and NeEstimator.
Collapse
Affiliation(s)
| | | | | | - Ivan Paz‐Vinas
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- CNRS, ENTPE, UMR5023 LEHNAUniversité Claude Bernard Lyon 1VilleurbanneFrance
| | - Jean‐Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
| | | | | | - Sylvain Schmitt
- AMAPUniv. Montpellier, CIRAD, CNRS, INRAE, IRDMontpellierFrance
| | | | | |
Collapse
|
38
|
Kvalnes T, Flagstad Ø, Våge J, Strand O, Viljugrein H, Sæther B. Harvest and decimation affect genetic drift and the effective population size in wild reindeer. Evol Appl 2024; 17:e13684. [PMID: 38617828 PMCID: PMC11009432 DOI: 10.1111/eva.13684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024] Open
Abstract
Harvesting and culling are methods used to monitor and manage wildlife diseases. An important consequence of these practices is a change in the genetic dynamics of affected populations that may threaten their long-term viability. The effective population size (N e) is a fundamental parameter for describing such changes as it determines the amount of genetic drift in a population. Here, we estimate N e of a harvested wild reindeer population in Norway. Then we use simulations to investigate the genetic consequences of management efforts for handling a recent spread of chronic wasting disease, including increased adult male harvest and population decimation. The N e/N ratio in this population was found to be 0.124 at the end of the study period, compared to 0.239 in the preceding 14 years period. The difference was caused by increased harvest rates with a high proportion of adult males (older than 2.5 years) being shot (15.2% in 2005-2018 and 44.8% in 2021). Increased harvest rates decreased N e in the simulations, but less sex biased harvest strategies had a lower negative impact. For harvest strategies that yield stable population dynamics, shifting the harvest from calves to adult males and females increased N e. Population decimation always resulted in decreased genetic variation in the population, with higher loss of heterozygosity and rare alleles with more severe decimation or longer periods of low population size. A very high proportion of males in the harvest had the most severe consequences for the loss of genetic variation. This study clearly shows how the effects of harvest strategies and changes in population size interact to determine the genetic drift of a managed population. The long-term genetic viability of wildlife populations subject to a disease will also depend on population impacts of the disease and how these interact with management actions.
Collapse
Affiliation(s)
- Thomas Kvalnes
- Norwegian Institute for Nature Research (NINA)TrondheimNorway
- Centre for Biodiversity Dynamics (CBD), Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | | | - Jørn Våge
- Norwegian Veterinary InstituteÅsNorway
| | - Olav Strand
- Norwegian Institute for Nature Research (NINA)TrondheimNorway
| | | | - Bernt‐Erik Sæther
- Centre for Biodiversity Dynamics (CBD), Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Gjærevoll Center for Biodiversity Foresight AnalysesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
39
|
vonHoldt BM, Stahler DR, Brzeski KE, Musiani M, Peterson R, Phillips M, Stephenson J, Laudon K, Meredith E, Vucetich JA, Leonard JA, Wayne RK. Demographic history shapes North American gray wolf genomic diversity and informs species' conservation. Mol Ecol 2024; 33:e17231. [PMID: 38054561 DOI: 10.1111/mec.17231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Effective population size estimates are critical information needed for evolutionary predictions and conservation decisions. This is particularly true for species with social factors that restrict access to breeding or experience repeated fluctuations in population size across generations. We investigated the genomic estimates of effective population size along with diversity, subdivision, and inbreeding from 162,109 minimally filtered and 81,595 statistically neutral and unlinked SNPs genotyped in 437 grey wolf samples from North America collected between 1986 and 2021. We found genetic structure across North America, represented by three distinct demographic histories of western, central, and eastern regions of the continent. Further, grey wolves in the northern Rocky Mountains have lower genomic diversity than wolves of the western Great Lakes and have declined over time. Effective population size estimates revealed the historical signatures of continental efforts of predator extermination, despite a quarter century of recovery efforts. We are the first to provide molecular estimates of effective population size across distinct grey wolf populations in North America, which ranged between Ne ~ 275 and 3050 since early 1980s. We provide data that inform managers regarding the status and importance of effective population size estimates for grey wolf conservation, which are on average 5.2-9.3% of census estimates for this species. We show that while grey wolves fall above minimum effective population sizes needed to avoid extinction due to inbreeding depression in the short term, they are below sizes predicted to be necessary to avoid long-term risk of extinction.
Collapse
Affiliation(s)
- Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Daniel R Stahler
- Yellowstone Center for Resources, Yellowstone National Park, Wyoming, USA
| | - Kristin E Brzeski
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Marco Musiani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, Bologna, Italy
| | - Rolf Peterson
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | | | | | - Kent Laudon
- California Department of Fish and Wildlife, Northern Region, Redding, California, USA
| | - Erin Meredith
- California Department of Fish and Wildlife, Wildlife Forensic Laboratory, Sacramento, California, USA
| | - John A Vucetich
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
40
|
Swaminathan A, Xia F, Rohner N. From darkness to discovery: evolutionary, adaptive, and translational genetic insights from cavefish. Trends Genet 2024; 40:24-38. [PMID: 38707509 PMCID: PMC11068324 DOI: 10.1016/j.tig.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 05/07/2024]
Abstract
How genotype determines phenotype is a well-explored question, but genotype-environment interactions and their heritable impact on phenotype over the course of evolution are not as thoroughly investigated. The fish Astyanax mexicanus, consisting of surface and cave ecotypes, is an ideal emerging model to study the genetic basis of adaptation to new environments. This model has permitted quantitative trait locus mapping and whole-genome comparisons to identify the genetic bases of traits such as albinism and insulin resistance and has helped to better understand fundamental evolutionary mechanisms. In this review, we summarize recent advances in A. mexicanus genetics and discuss their broader impact on the fields of adaptation and evolutionary genetics.
Collapse
Affiliation(s)
| | - Fanning Xia
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
41
|
Ojeda-Marín C, Cervantes I, Formoso-Rafferty N, Gutiérrez JP. Genomic inbreeding measures applied to a population of mice divergently selected for birth weight environmental variance. Front Genet 2023; 14:1303748. [PMID: 38155710 PMCID: PMC10752941 DOI: 10.3389/fgene.2023.1303748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
This study aimed to compare different inbreeding measures estimated from pedigree and molecular data from two divergent mouse lines selected for environmental birth weight during 26 generations. Furthermore, the performance of different approaches and both molecular and pedigree data sources for estimating Ne were tested in this population. A total of 1,699 individuals were genotyped using a high-density genotyping array. Genomic relationship matrices were used to calculate molecular inbreeding: Nejati-Javaremi (F NEJ), Li and Horvitz (F L&H), Van Raden method 1 (F VR1) and method 2 (F VR2), and Yang (F YAN). Inbreeding based on runs of homozygosity (F ROH) and pedigree inbreeding (F PED) were also computed. F ROH, F NEJ, and F L&H were also adjusted for their average values in the first generation of selection and named F ROH0, F NEJ0, and F L&H0. ∆F was calculated from pedigrees as the individual inbreeding rate between the individual and his parents (∆F PEDt) and individual increases in inbreeding (∆F PEDi). Moreover, individual ∆F was calculated from the different molecular inbreeding coefficients (∆F NEJ0, ∆F L&H, ∆F L&H0, ∆F VR1, ∆F VR2, ∆F YAN, and ∆F ROH0). The Ne was obtained from different ∆F, such as Ne PEDt, Ne PEDi, Ne NEJ0, Ne L&H, Ne L&H0, Ne VR1, Ne VR2, Ne YAN, and Ne ROH0. Comparing with F PED , F ROH , F NEJ and F VR2 overestimated inbreeding while F NEJ0 , F L&H , F L&H0 , F VR1 and F YAN underestimated inbreeding. Correlations between inbreeding coefficients and ∆F were calculated. F ROH had the highest correlation with F PED (0.89); F YAN had correlations >0.95 with all the other molecular inbreeding coefficients. Ne PEDi was more reliable than Ne PEDt and presented similar behaviour to Ne L&H0 and Ne NEJ0. Stable trends in Ne were not observed until the 10th generation. In the 10th generation Ne PEDi was 42.20, Ne L&H0 was 45.04 and Ne NEJ0 was 45.05 and in the last generation these Ne were 35.65, 35.94 and 35.93, respectively F ROH presented the highest correlation with F PED, which addresses the identity by descent probability (IBD). The evolution of Ne L&H0 and Ne NEJ0 was the most similar to that of Ne PEDi. Data from several generations was necessary to reach a stable trend for Ne, both with pedigree and molecular data. This population was useful to test different approaches to computing inbreeding coefficients and Ne using molecular and pedigree data.
Collapse
Affiliation(s)
- Candela Ojeda-Marín
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel Cervantes
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Nora Formoso-Rafferty
- Departamento de Producción Agraria, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
42
|
Collins G, Schneider C, Boštjančić LL, Burkhardt U, Christian A, Decker P, Ebersberger I, Hohberg K, Lecompte O, Merges D, Muelbaier H, Romahn J, Römbke J, Rutz C, Schmelz R, Schmidt A, Theissinger K, Veres R, Lehmitz R, Pfenninger M, Bálint M. The MetaInvert soil invertebrate genome resource provides insights into below-ground biodiversity and evolution. Commun Biol 2023; 6:1241. [PMID: 38066075 PMCID: PMC10709333 DOI: 10.1038/s42003-023-05621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Soil invertebrates are among the least understood metazoans on Earth. Thus far, the lack of taxonomically broad and dense genomic resources has made it hard to thoroughly investigate their evolution and ecology. With MetaInvert we provide draft genome assemblies for 232 soil invertebrate species, representing 14 common groups and 94 families. We show that this data substantially extends the taxonomic scope of DNA- or RNA-based taxonomic identification. Moreover, we confirm that theories of genome evolution cannot be generalised across evolutionarily distinct invertebrate groups. The soil invertebrate genomes presented here will support the management of soil biodiversity through molecular monitoring of community composition and function, and the discovery of evolutionary adaptations to the challenges of soil conditions.
Collapse
Affiliation(s)
- Gemma Collins
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
| | - Clément Schneider
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Ljudevit Luka Boštjančić
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
- Department of Molecular Ecology, Institute for Environmental Sciences, Rhineland-Palatinate Technical University Kaiserslautern Landau, Landau, Germany
| | | | - Axel Christian
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Peter Decker
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Ingo Ebersberger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Karin Hohberg
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Odile Lecompte
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Dominik Merges
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hannah Muelbaier
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Juliane Romahn
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
| | - Jörg Römbke
- ECT Oekotoxikologie GmbH, Flörsheim, Germany
| | - Christelle Rutz
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | | | - Alexandra Schmidt
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Kathrin Theissinger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Department of Molecular Ecology, Institute for Environmental Sciences, Rhineland-Palatinate Technical University Kaiserslautern Landau, Landau, Germany
| | - Robert Veres
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Institute of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ricarda Lehmitz
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Johannes Gutenberg University, Mainz, Germany
| | - Miklós Bálint
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany.
- Department of Insect Biotechnology, Justus-Liebig University, Gießen, Germany.
| |
Collapse
|
43
|
Novo I, Ordás P, Moraga N, Santiago E, Quesada H, Caballero A. Impact of population structure in the estimation of recent historical effective population size by the software GONE. Genet Sel Evol 2023; 55:86. [PMID: 38049712 PMCID: PMC10694967 DOI: 10.1186/s12711-023-00859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Effective population size (Ne) is a crucial parameter in conservation genetics and animal breeding. A recent method, implemented by the software GONE, has been shown to be rather accurate in estimating recent historical changes in Ne from a single sample of individuals. However, GONE estimations assume that the population being studied has remained isolated for a period of time, that is, without migration or confluence of other populations. If this occurs, the estimates of Ne can be heavily biased. In this paper, we evaluate the impact of migration and admixture on the estimates of historical Ne provided by GONE through a series of computer simulations considering several scenarios: (a) the mixture of two or more ancestral populations; (b) subpopulations that continuously exchange individuals through migration; (c) populations receiving migrants from a large source; and (d) populations with balanced systems of chromosomal inversions, which also generate genetic structure. RESULTS Our results indicate that the estimates of historical Ne provided by GONE may be substantially biased when there has been a recent mixture of populations that were previously separated for a long period of time. Similarly, biases may occur when the rate of continued migration between populations is low, or when chromosomal inversions are present at high frequencies. However, some biases due to population structuring can be eliminated by conducting population structure analyses and restricting the estimation to the differentiated groups. In addition, disregarding the genomic regions that are involved in inversions can also remove biases in the estimates of Ne. CONCLUSIONS Different kinds of deviations from isolation and panmixia of the populations can generate biases in the recent historical estimates of Ne. Therefore, estimation of past demography could benefit from performing population structure analyses beforehand, by mitigating the impact of these biases on historical Ne estimates.
Collapse
Affiliation(s)
- Irene Novo
- Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, 36310, Vigo, Spain.
| | - Pilar Ordás
- Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, 36310, Vigo, Spain
| | - Natalia Moraga
- Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, 36310, Vigo, Spain
| | - Enrique Santiago
- Departamento de Biología Funcional, Facultad de Biología, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Humberto Quesada
- Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, 36310, Vigo, Spain
| | - Armando Caballero
- Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, 36310, Vigo, Spain
| |
Collapse
|
44
|
Huang X, Athrey GN, Kaufman PE, Fredregill C, Slotman MA. Effective population size of Culex quinquefasciatus under insecticide-based vector management and following Hurricane Harvey in Harris County, Texas. Front Genet 2023; 14:1297271. [PMID: 38075683 PMCID: PMC10702589 DOI: 10.3389/fgene.2023.1297271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/24/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction: Culex quinquefasciatus is a mosquito species of significant public health importance due to its ability to transmit multiple pathogens that can cause mosquito-borne diseases, such as West Nile fever and St. Louis encephalitis. In Harris County, Texas, Cx. quinquefasciatus is a common vector species and is subjected to insecticide-based management by the Harris County Public Health Department. However, insecticide resistance in mosquitoes has increased rapidly worldwide and raises concerns about maintaining the effectiveness of vector control approaches. This concern is highly relevant in Texas, with its humid subtropical climate along the Gulf Coast that provides suitable habitat for Cx. quinquefasciatus and other mosquito species that are known disease vectors. Therefore, there is an urgent and ongoing need to monitor the effectiveness of current vector control programs. Methods: In this study, we evaluated the impact of vector control approaches by estimating the effective population size of Cx. quinquefasciatus in Harris County. We applied Approximate Bayesian Computation to microsatellite data to estimate effective population size. We collected Cx. quinquefasciatus samples from two mosquito control operation areas; 415 and 802, during routine vector monitoring in 2016 and 2017. No county mosquito control operations were applied at area 415 in 2016 and 2017, whereas extensive adulticide spraying operations were in effect at area 802 during the summer of 2016. We collected data for eighteen microsatellite markers for 713 and 723 mosquitoes at eight timepoints from 2016 to 2017 in areas 415 and 802, respectively. We also investigated the impact of Hurricane Harvey's landfall in the Houston area in August of 2017 on Cx. quinquefasciatus population fluctuation. Results: We found that the bottleneck scenario was the most probable historical scenario describing the impact of the winter season at area 415 and area 802, with the highest posterior probability of 0.9167 and 0.4966, respectively. We also detected an expansion event following Hurricane Harvey at area 802, showing a 3.03-fold increase in 2017. Discussion: Although we did not detect significant effects of vector control interventions, we found considerable influences of the winter season and a major hurricane on the effective population size of Cx. quinquefasciatus. The fluctuations in effective population size in both areas showed a significant seasonal pattern. Additionally, the significant population expansion following Hurricane Harvey in 2017 supports the necessity for post-hurricane vector-control interventions.
Collapse
Affiliation(s)
- Xinyue Huang
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Giridhar N. Athrey
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
| | - Phillip E. Kaufman
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Chris Fredregill
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX, United States
| | - Michel A. Slotman
- Department of Entomology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
45
|
Marašinskienė Š, Šveistienė R, Razmaitė V, Račkauskaitė A, Juškienė V. Genetic Variability and Conservation Challenges in Lithuanian Dairy Cattle Populations. Animals (Basel) 2023; 13:3506. [PMID: 38003124 PMCID: PMC10668635 DOI: 10.3390/ani13223506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of the study was to investigate the genetic variability of open Lithuanian Red and Red-and-White (LRWP) and Lithuanian Black-and-White (LBWP) dairy cattle populations and indicate the differences from the old genotypes of Lithuanian Black-and-White (LBW) and Lithuanian Red cattle (LR), which are currently under a conservation program. In order to gain a better understanding of the populations under conservation and to minimize the potential influence of other breeds, a distinct subgroup was formed that comprised animals whose father and mother belonged to the same breed (LR_pure and LBW_pure). The genetic variability was estimated using the number of founders, pedigree completeness, number of males and females in reproduction and age distribution, generation interval (GI), inbreeding coefficient (F) and effective population size (Ne). The highest average pedigree completeness values in the second generations of the old genotype LR and LBW were 100%. Higher ages of females in the populations under conservation were related to a higher GI and their longer life expectancy. In 2021, the reproductive age of bulls used for insemination within these populations ranged from 5.1 to 27.8 years. The proportions of males producing offspring in their older age indicate that the semen was used from the national gene bank of commercial artificial insemination companies. The GI (>5) in LR and LBW females was higher than that in LRWP and LBWP. The analysis of the data over the 15-year period showed that the GI of males in LRWP and LBWP decreased equally by 38%, while in LR_pure population, it increased by 80%. A high (9.24%) average inbreeding coefficient (F) was found in inbred animals of LR_pure population, while in LBW_pure, it was 5.35% in 2021. The coefficient of inbreeding varied within the different cattle populations. In the open LR population, it ranged from 1.48% to 2.7%, while in the LRWP population, it fell between 2.12% and 3.72%. The lowest effective population size (Ne) concerning the rate of inbreeding was observed in LBW_pure (23) and LR_pure (59), with the highest Ne identified in the LBWP population (462). When considering Ne based on the number of parents, LR_pure displayed the lowest Ne (42), while the highest Ne was found in LBWP (4449). An analysis of local cattle populations reveals that LR faces the most critical situation. This particular population has been steadily declining for a number of years, necessitating additional measures and efforts to safeguard the LR's ancestral genetic makeup. The results of the LBWP analysis also highlight a concerning trend. Even in very large populations with open breeding programs, the effective population size per generation can experience a significant decrease.
Collapse
Affiliation(s)
- Šarūnė Marašinskienė
- Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, LT 82317 Baisogala, Lithuania; (R.Š.); (V.R.); (A.R.); (V.J.)
| | | | | | | | | |
Collapse
|
46
|
Oldt RF, Beisner B, Cameron A, Pomerantz O, Kanthaswamy S. Pedigree Data from Six Rhesus Macaque ( Macaca mulatta) Matrilines at the California National Primate Research Center Indicate Inbreeding and Loss of Genetic Variation. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:502-511. [PMID: 37821216 PMCID: PMC10772905 DOI: 10.30802/aalas-jaalas-23-000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 08/02/2023] [Indexed: 10/13/2023]
Abstract
Relatedness and kinship structure in matrilines are a potential source of social stability. The current study aimed to analyze the extant pedigrees of 6 living matrilines in different field cages to assess rates of cross-generational inbreeding and loss of genetic variation over time. All 6 matrilines showed increasing levels of inbreeding over generation time, although the rates of increase were different. The female-to-male-adult sex ratio was correlated with average matriline inbreeding levels, while the number of adult males was positively correlated with average matriline genetic diversity. Over five times more paternal half-sibs than maternal half-sibs were present because paternity had been restricted to a few males yearly. Therefore, the relatedness through the paternal lines was over five times greater than that of the maternal lines. Overall, each matriline lost low to moderate levels of genetic variation with time. The current rates of gene flow between field cages by cross-fostered infants have not stopped inbreeding within these matrilines or loss of diversity due to genetic drift. This situation probably developed because translocated animals, especially males, may not breed successfully. Only 4 of the 22 translocated individuals, all females, eventually reproduced, resulting in 13 offspring and generating an overall breeding success of 0.59 across all 6 study matrilines. However, even this low rate of reproduction by the translocated animals reduced inbreeding and kinship among matrilines and increased genetic heterogeneity in the matrilines. Based on this study, we propose several colony management strategies, including equalizing adult sex ratios to increase the effective population size in the field cages, increasing the number of cross-fostered infants, and relying more on multigenerational pedigree data to aid the alignment of genetic and behavioral management techniques.
Collapse
Affiliation(s)
- Robert F Oldt
- School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, Arizona
- Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Brianne Beisner
- Colony Management Department, Emory National Primate Research Center Field Station, Lawrenceville, Georgia
| | - Ashley Cameron
- Population Behavioral Health Services, California National Primate Research Center, Davis, California; and
| | - Ori Pomerantz
- Population Behavioral Health Services, California National Primate Research Center, Davis, California; and
| | - Sree Kanthaswamy
- School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, Arizona
- Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, Arizona
- Genetic Management Services, California National Primate Research Center, Davis, California
| |
Collapse
|
47
|
Yerlanov M, Agarwal P, Colijn C, Stockdale JE. Effective population size in simple infectious disease models. J Math Biol 2023; 87:80. [PMID: 37926744 DOI: 10.1007/s00285-023-02016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/11/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Almost all models used in analysis of infectious disease outbreaks contain some notion of population size, usually taken as the census population size of the community in question. In many settings, however, the census population is not equivalent to the population likely to be exposed, for example if there are population structures, outbreak controls or other heterogeneities. Although these factors may be taken into account in the model: adding compartments to a compartmental model, variable mixing rates and so on, this makes fitting more challenging, especially if the population complexities are not fully known. In this work we consider the concept of effective population size in outbreak modelling, which we define as the size of the population involved in an outbreak, as an alternative to use of more complex models. Effective population size is an important quantity in genetics for estimation of genetic diversity loss in populations, but it has not been widely applied in epidemiology. Through simulation studies and application to data from outbreaks of COVID-19 in China, we find that simple SIR models with effective population size can provide a good fit to data which are not themselves simple or SIR.
Collapse
Affiliation(s)
- Madi Yerlanov
- Department of Mathematics, Simon Fraser University, Burnaby, Canada
| | - Piyush Agarwal
- Department of Mathematics, Simon Fraser University, Burnaby, Canada
| | - Caroline Colijn
- Department of Mathematics, Simon Fraser University, Burnaby, Canada
| | | |
Collapse
|
48
|
Arias KD, Gutiérrez JP, Fernández I, Álvarez I, Goyache F. Approaching autozygosity in a small pedigree of Gochu Asturcelta pigs. Genet Sel Evol 2023; 55:74. [PMID: 37880572 PMCID: PMC10601182 DOI: 10.1186/s12711-023-00846-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND In spite of the availability of single nucleotide polymorphism (SNP) array data, differentiation between observed homozygosity and that caused by mating between relatives (autozygosity) introduces major difficulties. Homozygosity estimators show large variation due to different causes, namely, Mendelian sampling, population structure, and differences among chromosomes. Therefore, the ascertainment of how inbreeding is reflected in the genome is still an issue. The aim of this research was to study the usefulness of genomic information for the assessment of genetic diversity in the highly endangered Gochu Asturcelta pig breed. Pedigree depth varied from 0 (founders) to 4 equivalent discrete generations (t). Four homozygosity parameters (runs of homozygosity, FROH; heterozygosity-rich regions, FHRR; Li and Horvitz's, FLH; and Yang and colleague's FYAN) were computed for each individual, adjusted for the variability in the base population (BP; six individuals) and further jackknifed over autosomes. Individual increases in homozygosity (depending on t) and increases in pairwise homozygosity (i.e., increase in the parents' mean) were computed for each individual in the pedigree, and effective population size (Ne) was computed for five subpopulations (cohorts). Genealogical parameters (individual inbreeding, individual increase in inbreeding, and Ne) were used for comparisons. RESULTS The mean F was 0.120 ± 0.074 and the mean BP-adjusted homozygosity ranged from 0.099 ± 0.081 (FLH) to 0.152 ± 0.075 (FYAN). After jackknifing, the mean values were slightly lower. The increase in pairwise homozygosity tended to be twofold higher than the corresponding individual increase in homozygosity values. When compared with genealogical estimates, estimates of Ne obtained using FYAN tended to have low root-mean-squared errors. However, Ne estimates based on increases in pairwise homozygosity using both FROH and FHRR estimates of genomic inbreeding had lower root-mean-squared errors. CONCLUSIONS Parameters characterizing homozygosity may not accurately depict losses of variability in small populations in which breeding policy prohibits matings between close relatives. After BP adjustment, the performance of FROH and FHRR was highly consistent. Assuming that an increase in homozygosity depends only on pedigree depth can lead to underestimating it in populations with shallow pedigrees. An increase in pairwise homozygosity computed from either FROH or FHRR is a promising approach for characterizing autozygosity.
Collapse
Affiliation(s)
- Katherine D Arias
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain
| | - Iván Fernández
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - Isabel Álvarez
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - Félix Goyache
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain.
| |
Collapse
|
49
|
Wang D, Salehian-Dehkordi H, Suo L, Lv F. Impacts of Population Size and Domestication Process on Genetic Diversity and Genetic Load in Genus Ovis. Genes (Basel) 2023; 14:1977. [PMID: 37895326 PMCID: PMC10606048 DOI: 10.3390/genes14101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
In theoretical biology, a prevailing hypothesis posits a profound interconnection between effective population size (Ne), genetic diversity, inbreeding, and genetic load. The domestication and improvement processes are believed to be pivotal in diminishing genetic diversity while elevating levels of inbreeding and increasing genetic load. In this study, we performed a whole genome analysis to quantity genetic diversity, inbreeding, and genetic load across seven wild Ovis species and five domesticated sheep breeds. Our research demonstrates that the genetic load and diversity of species in the genus Ovis have no discernible impact on recent Ne, and three species within the subgenus Pachyceros tend to carry a higher genetic load and lower genetic diversity patterns. The results coincide with these species' dramatic decline in population sizes within the subgenus Pachyceros ~80-250 thousand years ago. European mouflon presented with the lowest Ne, lower genetic diversity, and higher individual inbreeding coefficient but a lower genetic load (missense and LoF). This suggests that the small Ne of European mouflon could reduce harmful mutations compared to other species within the genus Ovis. We showed lower genetic diversity in domesticated sheep than in Asiatic mouflon, but counterintuitive patterns of genetic load, i.e., lower weak genetic load (missense mutation) and no significant difference in strong genetic load (LoF mutation) between domestic sheep and Asiatic mouflon. These findings reveal that the "cost of domestication" during domestication and improvement processes reduced genetic diversity and purified weak genetic load more efficiently than wild species.
Collapse
Affiliation(s)
- Dongfeng Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | | | - Langda Suo
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China;
| | - Fenghua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
50
|
Li CYJ, Tsai WP, Ranatunga RRMKP, Samidon M, Liu SYV. Genetic stock structure of the silky shark Carcharhinus falciformis in the Indo-Pacific Ocean. PLoS One 2023; 18:e0292743. [PMID: 37824585 PMCID: PMC10569576 DOI: 10.1371/journal.pone.0292743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The silky shark, Carcharhinus falciformis, is a cosmopolitan species commonly caught as a bycatch for longline fisheries. However, the genetic stock structure for the Indo-Pacific Ocean is not well-defined yet. Here, we used eight microsatellite loci to examine the genetic stock structure and effective population size of 307 silky sharks across 5 Indo-Pacific sampling locations. A major genetic break was found between Aceh and the remaining locations (FST = 0.0505-0.0828, p = 0.001). The Indian Ocean displayed a slightly lower effective population estimate (Ne) compared to the Pacific Ocean, potentially due to the higher fishing pressure in the Indian Ocean region. The lowest Ne was found in the Aceh population (Ne = 2.3), suggesting it might be a small and endemic population. These findings offer valuable information for the conservation and management of the silky shark. We suggest that the population around Aceh waters constitutes a distinct stock and should be managed independently. Further investigations into migratory and movement patterns are needed to define the boundaries of different stocks, ensuring effective management the silky shark across the Indo-Pacific region.
Collapse
Affiliation(s)
- Chia-Yun Joanne Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Pei Tsai
- Department of Fisheries Production and Management, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - R. R. M. K. P. Ranatunga
- Centre for Marine Science and Technology, Department of Zoology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Munandar Samidon
- Department of Marine Science, Teuku Umar University, Aceh Barat, Indonesia
| | - Shang Yin Vanson Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|