1
|
Orihuela-Rivero R, Morente-López J, Reyes-Betancort JA, Schaefer H, Valido A, Menezes de Sequeira M, Romeiras MM, Góis-Marques CA, Salas-Pascual M, Vanderpoorten A, Fernández-Palacios JM, Patiño J. Geographic and Biological Drivers Shape Anthropogenic Extinctions in the Macaronesian Vascular Flora. GLOBAL CHANGE BIOLOGY 2025; 31:e70072. [PMID: 39962933 DOI: 10.1111/gcb.70072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 05/10/2025]
Abstract
Whether species extinctions have accelerated during the Anthropocene and the extent to which certain species are more susceptible to extinction due to their ecological preferences and intrinsic biological traits are among the most pressing questions in conservation biology. Assessing extinction rates is, however, challenging, as best exemplified by the phenomenon of 'dark extinctions': the loss of species that disappear before they are even formally described. These issues are particularly problematic in oceanic islands, where species exhibit high rates of endemism and unique biological traits but are also among the most vulnerable to extinction. Here, we document plant species extinctions since Linnaeus' Species Plantarum in Macaronesia, a biogeographic region comprised of five hyperdiverse oceanic archipelagos, and identify the key drivers behind these extinctions. We compiled 168 records covering 126 taxa, identifying 13 global and 155 local extinction events. Significantly higher extinction rates were observed compared to the expected global background rate. We uncovered differentiated extinction patterns along altitudinal gradients, highlighting a recent coastal hotspot linked to socioeconomic changes in Macaronesian archipelagos from the 1960s onwards. Key factors influencing extinction patterns include island age, elevation, introduced herbivorous mammals, and human population size. Trait-based analyses across the floras of the Azores and Canary Islands revealed that endemicity, pollination by vertebrates, nitrogen-fixing capacity, woodiness, and zoochory consistently tended to increase extinction risk. Our findings emphasize the critical role of geography and biological traits, alongside anthropogenic impacts, in shaping extinction dynamics on oceanic islands. Enhancing our knowledge of life-history traits within island floras is crucial for accurately predicting and mitigating future extinction risks, underscoring the urgent need for comprehensive biodiversity assessments in island ecosystems.
Collapse
Affiliation(s)
- Raúl Orihuela-Rivero
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Javier Morente-López
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
- Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - J Alfredo Reyes-Betancort
- Jardín de Aclimatación de La Orotava, Instituto Canario de Investigaciones Agrarias (ICIA), Puerto de La Cruz, Tenerife, Spain
| | - Hanno Schaefer
- Department of Life Science Systems, Plant Biodiversity Research, Technical University of Munich, Freising, Germany
| | - Alfredo Valido
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
| | - Miguel Menezes de Sequeira
- Madeira Botanical Group, Faculty of Life Sciences, Campus Universitário da Penteada, University of Madeira, Funchal, Portugal
- CIBIO, Centro de Investigação Em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada, Portugal
| | - María M Romeiras
- LEAF, Linking Landscape, Environment, Agriculture and Food & Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidadede Lisboa, Lisbon, Portugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Portugal
| | - Carlos A Góis-Marques
- Madeira Botanical Group, Faculty of Life Sciences, Campus Universitário da Penteada, University of Madeira, Funchal, Portugal
- CIBIO, Centro de Investigação Em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Instituto Dom Luiz (IDL), Laboratório Associado, Universidade de Lisboa, Campo Grande, Lisbon, Portugal
| | - Marcos Salas-Pascual
- Instituto de Estudios Ambientales y Recursos Naturales, Universidad de las Palmas de Gran Canaria, Campus de Tafira, Tafira Baja, Las Palmas de Gran Canaria Islas Canarias, Spain
| | | | | | - Jairo Patiño
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
2
|
Cohen DH, Fant JB, Skogen KA. Conservation genomics assessment of Tharp's bluestar ( Amsonia tharpii) with comparisons to widespread ( A. longilora) and narrowly endemic ( A. fugatei) congeners. Evol Appl 2024; 17:e13736. [PMID: 38903246 PMCID: PMC11186748 DOI: 10.1111/eva.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
Land-use change and habitat fragmentation are threats to biodiversity. The decrease in available habitat, increase in isolation, and mating within populations can lead to elevated inbreeding, lower genetic diversity, and poor fitness. Here we investigate the genetics of two rare and threatened plant species, Amsonia tharpii and A. fugatei, and we compare them to a widespread congener A. longiflora. We also report the first phylogenetic study of the genus Amsonia (Apocynaceae), including 10 of the 17 taxa and multiple sampling locations, to understand species relationships. We used a double digest restriction-site associated DNA sequencing (ddRADseq) approach to investigate the genetic diversity and gene flow of each species and to create a maximum likelihood phylogeny. The ddRADseq data was mapped to a reference genome to separate out the chloroplast and nuclear markers for population genetic analysis. Our results show that genetic diversity and inbreeding were low across all three species. The chloroplast and nuclear dataset in A. tharpii were highly structured, whereas they showed no structure for A. fugatei, while A. longiflora lacked structure for nuclear data but not chloroplast. Phylogenetic results revealed that A. tharpii is distinct and sister to A. fugatei, and together they are distantly related to A. longiflora. Our results demonstrated that evolutionary history and contemporary ecological processes largely influences genetic diversity within Amsonia. Interestingly, we show that in A. tharpii there was significant structure despite being pollinated by large, bodied hawkmoths that are known to be able to carry pollen long distances, suggesting that other factors are contributing to the structure observed among A. tharpii populations. Conservation efforts should focus on protecting all of the A. tharpii populations, as they contain unique genetic diversity, and a protection plan for A. fugatei needs to be established due to its limited distribution.
Collapse
Affiliation(s)
- Dylan H. Cohen
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic GardenGlencoeIllinoisUSA
- Plant Biology and ConservationNorthwestern UniversityEvanstonIllinoisUSA
| | - Jeremie B. Fant
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic GardenGlencoeIllinoisUSA
- Plant Biology and ConservationNorthwestern UniversityEvanstonIllinoisUSA
| | - Krissa A. Skogen
- Department of Biological SciencesClemson UniversityClemsonSouth CarolinaUSA
| |
Collapse
|
3
|
Ferguson S, Jones A, Murray K, Andrew R, Schwessinger B, Borevitz J. Plant genome evolution in the genus Eucalyptus is driven by structural rearrangements that promote sequence divergence. Genome Res 2024; 34:606-619. [PMID: 38589251 PMCID: PMC11146599 DOI: 10.1101/gr.277999.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Genomes have a highly organized architecture (nonrandom organization of functional and nonfunctional genetic elements within chromosomes) that is essential for many biological functions, particularly gene expression and reproduction. Despite the need to conserve genome architecture, a high level of structural variation has been observed within species. As species separate and diverge, genome architecture also diverges, becoming increasingly poorly conserved as divergence time increases. However, within plant genomes, the processes of genome architecture divergence are not well described. Here we use long-read sequencing and de novo assembly of 33 phylogenetically diverse, wild and naturally evolving Eucalyptus species, covering 1-50 million years of diverging genome evolution to measure genome architectural conservation and describe architectural divergence. The investigation of these genomes revealed that following lineage divergence, genome architecture is highly fragmented by rearrangements. As genomes continue to diverge, the accumulation of mutations and the subsequent divergence beyond recognition of rearrangements become the primary driver of genome divergence. The loss of syntenic regions also contribute to genome divergence but at a slower pace than that of rearrangements. We hypothesize that duplications and translocations are potentially the greatest contributors to Eucalyptus genome divergence.
Collapse
Affiliation(s)
- Scott Ferguson
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia;
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia;
| | - Kevin Murray
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- Weigel Department, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Rose Andrew
- Botany & N.C.W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Justin Borevitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| |
Collapse
|
4
|
Nagle MF, Nahata SS, Zahl B, Niño de Rivera A, Tacker XV, Elorriaga E, Ma C, Goralogia GS, Klocko AL, Gordon M, Joshi S, Strauss SH. Knockout of floral and meiosis genes using CRISPR/Cas9 produces male-sterility in Eucalyptus without impacts on vegetative growth. PLANT DIRECT 2023; 7:e507. [PMID: 37456612 PMCID: PMC10345981 DOI: 10.1002/pld3.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Eucalyptus spp. are widely cultivated for the production of pulp, energy, essential oils, and as ornamentals. However, their dispersal from plantings, especially when grown as an exotic, can cause ecological disruptions. To provide new tools for prevention of sexual dispersal by pollen as well as to induce male-sterility for hybrid breeding, we studied the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated knockout of three floral genes in both FT-expressing (early-flowering) and non-FT genotypes. We report male-sterile phenotypes resulting from knockout of the homologs of all three genes, including one involved in meiosis and two regulating early stages of pollen development. The targeted genes were Eucalyptus homologs of REC8 (EREC8), TAPETAL DEVELOPMENT AND FUNCTION 1 (ETDF1), and HECATE3 (EHEC3-like). The erec8 knockouts yielded abnormal pollen grains and a predominance of inviable pollen, whereas the etdf1 and ehec3-like knockouts produced virtually no pollen. In addition to male-sterility, both erec8 and ehec3-like knockouts may provide complete sterility because the failure of erec8 to undergo meiosis is expected to be independent of sex, and ehec3-like knockouts produce flowers with shortened styles and no visible stigmas. When comparing knockouts to controls in wild-type (non-early-flowering) backgrounds, we did not find visible morphological or statistical differences in vegetative traits, including average single-leaf mass, stem volume, density of oil glands, or chlorophyll in leaves. Loss-of-function mutations in any of these three genes show promise as a means of inducing male- or complete sterility without impacting vegetative development.
Collapse
Affiliation(s)
- Michael F. Nagle
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Surbhi S. Nahata
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Bahiya Zahl
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Alexa Niño de Rivera
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Xavier V. Tacker
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Estefania Elorriaga
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Cathleen Ma
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Greg S. Goralogia
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Amy L. Klocko
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Michael Gordon
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Sonali Joshi
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Steven H. Strauss
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
5
|
Gamba D, Muchhala N. Pollinator type strongly impacts gene flow within and among plant populations for six Neotropical species. Ecology 2023; 104:e3845. [PMID: 36224746 DOI: 10.1002/ecy.3845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023]
Abstract
Animal pollinators directly affect plant gene flow by transferring pollen grains between individuals. Pollinators with restricted mobility are predicted to limit gene flow within and among populations, whereas pollinators that fly longer distances are likely to promote genetic cohesion. These predictions, however, remain poorly tested. We examined population genetic structure and fine-scale spatial genetic structure (FSGS) in six perennial understory angiosperms in Andean cloud forests of northwestern Ecuador. Species belong to three families (Gesneriaceae, Melastomataceae, and Rubiaceae), and within each family we paired one insect-pollinated with one hummingbird-pollinated species, predicting that insect-pollinated species have greater population differentiation (as quantified with the FST statistic) and stronger FSGS (as quantified with the SP statistic) than hummingbird-pollinated species. We confirmed putative pollinators through a literature review and fieldwork, and inferred population genetic parameters with a genome-wide genotyping approach. In two of the three species pairs, insect-pollinated species had much greater (>2-fold) population-level genetic differentiation and correspondingly steeper declines in fine-scale genetic relatedness. In the Gesneriaceae pair, however, FST and SP values were similar between species and to those of the other hummingbird-pollinated plants. In this pair, the insect pollinators are euglossine bees (as opposed to small bees and flies in the other pairs), which are thought to forage over large areas, and therefore may provide similar levels of gene flow as hummingbirds. Overall, our results shed light on how different animal pollination modes influence the spatial scale of plant gene flow, suggesting that small insects strongly decrease genetic cohesion.
Collapse
Affiliation(s)
- Diana Gamba
- Department of Biology, University of Missouri at Saint Louis, Saint Louis, Missouri, USA
| | - Nathan Muchhala
- Department of Biology, University of Missouri at Saint Louis, Saint Louis, Missouri, USA
| |
Collapse
|
6
|
Reproductive biology and population structure of the endangered shrub Grevillea bedggoodiana (Proteaceae). CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractNarrowly endemic species are particularly vulnerable to catastrophic events. Compared to widespread species, they may also be less capable of adapting to shifts in environmental pressures as a result of specialisation on a narrow range of local condition and limited ability to disperse. However, life-history traits, such as preferential outcrossing and high fecundity can maintain genetic diversity and evolutionary potential, and boost species resilience. The endangered Grevillea bedggoodiana (Enfield Grevillea) is an understorey shrub restricted to an area of ca. 150 km2 in south-eastern Australia with a legacy of large-scale anthropogenic disturbance. Prior to this study little was known about its biology and population structure. Here, its breeding system was assessed through a controlled pollination experiment at one of its central populations, and eight populations were sampled for genetic analysis with microsatellite markers. The species was found to be preferentially outcrossing, with no evidence of pollination limitation. In most populations, allelic richness, observed heterozygosity and gene diversity were high (Ar: 3.8–6.3; Ho: 0.45–0.65, He: 0.60 − 0.75). However, the inbreeding coefficients were significant in at least four populations, ranging from Fi -0.061 to 0.259 despite high outcrossing rates. Estimated reproductive rates varied among sampled populations but were independent of gene diversity and inbreeding. Despite its small geographic range, the species’ populations showed moderate differentiation (AMOVA: FST = 0.123), which was largely attributable to isolation by distance. We interpret these results as suggesting that G. bedggoodiana is reproductively healthy and has maintained high levels of genetic diversity despite recent disturbance.
Collapse
|
7
|
Rutherford S, Wilson TC, Yap JYS, Lee E, Errington G, Rossetto M. Evolutionary processes in an undescribed eucalypt: implications for the translocation of a critically endangered species. ANNALS OF BOTANY 2022; 130:491-508. [PMID: 35802354 PMCID: PMC9510949 DOI: 10.1093/aob/mcac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Knowledge of the evolutionary processes responsible for the distribution of threatened and highly localized species is important for their conservation. Population genomics can provide insights into evolutionary processes to inform management practices, including the translocation of threatened plant species. In this study, we focus on a critically endangered eucalypt, Eucalyptus sp. Cattai, which is restricted to a 40-km2 area of Sydney, Australia, and is threatened by increased urbanization. Eucalyptus sp. Cattai has yet to be formally described in part due to its suspected hybrid origin. Here, we examined evolutionary processes and species boundaries in E. sp. Cattai to determine whether translocation was warranted. METHODS We used genome-wide scans to investigate the evolutionary relationships of E. sp. Cattai with related species, and to assess levels of genetic health and admixture. Morphological trait and genomic data were obtained from seedlings of E. sp. Cattai propagated in a common garden to assess their genetic provenance and hybrid status. KEY RESULTS All analyses revealed that E. sp. Cattai was strongly supported as a distinct species. Genetic diversity varied across populations, and clonality was unexpectedly high. Interspecific hybridization was detected, and was more prevalent in seedlings compared to in situ adult plants, indicating that post-zygotic barriers may restrict the establishment of hybrids. CONCLUSIONS Multiple evolutionary processes (e.g. hybridization and clonality) can operate within one rare and restricted species. Insights regarding evolutionary processes from our study were used to assist with the translocation of genetically 'pure' and healthy ex situ seedlings to nearby suitable habitat. Our findings demonstrate that it is vital to provide an understanding of evolutionary relationships and processes with an examination of population genomics in the design and implementation of an effective translocation strategy.
Collapse
Affiliation(s)
| | - Trevor C Wilson
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| | - Jia-Yee Samantha Yap
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| | - Enhua Lee
- Biodiversity and Conservation Division, New South Wales Department of Planning and Environment, Sydney, Australia
| | - Graeme Errington
- Australian PlantBank, Australian Institute of Botanical Science, Australian Botanic Garden, Mount Annan, New South Wales, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| |
Collapse
|
8
|
Carrete M, Hiraldo F, Romero-Vidal P, Blanco G, Hernández-Brito D, Sebastián-González E, Díaz-Luque JA, Tella JL. Worldwide Distribution of Antagonistic-Mutualistic Relationships Between Parrots and Palms. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.790883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Palms, like all plants, show coevolutionary relationships with animals that have been traditionally categorized as mutualistic (seed dispersers and pollinators) or antagonistic (seed predators). This dual perspective, however, has prevented a full understanding of their true interactions with some animal groups, mainly those that do not ingest entire fruits. One clear example is parrots, which have been described to use palm species as feeding resources, while their role as seed dispersers has been largely neglected. Here, we combined fieldwork data with information from the literature and citizen science (i.e., naturalists and nature photographers) on parrot foraging ecology worldwide to evaluate the spatial and taxonomic extent of parrot-palm interactions and to identify the eco-evolutionary factors involved. We identified 1,189 interactions between 135 parrots and 107 palm species in more than 50 countries across the six realms where palms are present as natives or introduced. Combining this information, we identified 427 unique parrot-palm interacting pairs (i.e., a parrot species interacting with a palm species). Pure antagonistic interactions (i.e., parrots just preying on seeds or eating or destroying their non-reproductive parts) were less common (5%) than mutualistic ones (i.e., parrots benefiting by partially preying on the seed or fruit or consuming the pulp of the fruit or the flower but also contributing to seed dispersal and, potentially, pollination; 89%). After controlling for phylogeny, the size of consumed seeds and parrot body mass were positively related. Seed dispersal distances varied among palm species (range of estimated median dispersal distances: 9–250 m), with larger parrots dispersing seeds at greater distances, especially large fruits commonly categorized as megafauna anachronisms (>4 cm length). Although parrot-palm interactions are widespread, several factors (e.g., social behavior, predation fear, food availability, or seasonality) may affect the actual position of parrots on the antagonism-mutualism continuum for different palm species and regions, deserving further research. Meanwhile, the pervasiveness of parrot-palm mutualistic interactions, mainly involving seed dispersal and pollination, should not be overlooked in studies of palm ecology and evolution.
Collapse
|
9
|
Xiang WQ, Malabrigo PL, Tang L, Ren MX. Limited-Distance Pollen Dispersal and Low Paternal Diversity in a Bird-Pollinated Self-Incompatible Tree. FRONTIERS IN PLANT SCIENCE 2022; 13:806217. [PMID: 35283871 PMCID: PMC8914170 DOI: 10.3389/fpls.2022.806217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Bird pollination in Asia is regarded as an uncommon phenomenon and, therefore, only a few investigations on mating pattern and paternity in fruits of Asian bird-pollinated plants have been conducted. Here, we examined spatial genetic structure, pollen dispersal, and multiple paternity in a natural population of Bombax ceiba (B. ceiba) (Malvaceae) in Hainan Island, South China, using simple sequence repeat (SSR) markers. A low genetic diversity (H e = 0.351 ± 0.0341 and 0.389 ± 0.043, respectively, for adults and offspring) and bottleneck effects were observed. Genetic kinship was significant within 400 m or in 1,800-3,800 m. Both the mating pattern and paternity analysis confirmed obligate xenogamy and a low multiple paternity in B. ceiba. There was a strongly negative relationship between the frequency of matings and the distance between mating pairs. The average pollen dispersal distance was 202.89 ± 41.01 m (mean ± SE) and the farthest distance of > 1 km was recorded. Realized mating events showed an extremely leptokurtic distribution within 1,200 m, suggesting that the pollen dispersal distance was consistent with the optimal foraging theory of generalist birds such as Zosterops spp. and Pycnonotus spp. Paternity per tree ranged from two to six and the average effective number of pollen donors per maternal plant was 3.773, suggesting a low level of paternity diversity as compared to other bird-pollinated plants. We concluded that optimal foraging behavior by generalist birds could explain the leptokurtic pollen dispersal distribution and predominantly near-neighbor matings in B. ceiba. The limited pollen dispersal distance and low multiple paternity were consistent with low fruit setting rate (3.27 ± 0.93%) in this self-incompatible tree, which was caused mainly by the restricted flight distance of birds and human disturbances. Low genetic diversity and significant spatial genetic structure might have largely resulted from logging and human collection of fruits.
Collapse
Affiliation(s)
- Wen-Qian Xiang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan University, Haikou, China
- Center for Terrestrial Biodiversity of the South China Sea, Hainan University, Haikou, China
| | - Pastor L. Malabrigo
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Los Baños, Philippines
| | - Liang Tang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan University, Haikou, China
- Center for Terrestrial Biodiversity of the South China Sea, Hainan University, Haikou, China
| | - Ming-Xun Ren
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan University, Haikou, China
- Center for Terrestrial Biodiversity of the South China Sea, Hainan University, Haikou, China
| |
Collapse
|
10
|
Monks L, Standish R, McArthur S, Dillon R, Byrne M, Coates D. Genetic and mating system assessment of translocation success of the long‐lived perennial shrub
Lambertia orbifolia
(Proteaceae). Restor Ecol 2021. [DOI: 10.1111/rec.13369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Leonie Monks
- Biodiversity Conservation Science, Department of Biodiversity Conservation and Attractions Locked Bag 104, Bentley Delivery Centre, Bentley WA 6983 Australia
- Environmental and Conservation Sciences Murdoch University 90 South Street, Murdoch WA 6150 Australia
| | - Rachel Standish
- Environmental and Conservation Sciences Murdoch University 90 South Street, Murdoch WA 6150 Australia
| | - Shelley McArthur
- Biodiversity Conservation Science, Department of Biodiversity Conservation and Attractions Locked Bag 104, Bentley Delivery Centre, Bentley WA 6983 Australia
| | - Rebecca Dillon
- Biodiversity Conservation Science, Department of Biodiversity Conservation and Attractions Locked Bag 104, Bentley Delivery Centre, Bentley WA 6983 Australia
| | - Margaret Byrne
- Biodiversity Conservation Science, Department of Biodiversity Conservation and Attractions Locked Bag 104, Bentley Delivery Centre, Bentley WA 6983 Australia
| | - David Coates
- Biodiversity Conservation Science, Department of Biodiversity Conservation and Attractions Locked Bag 104, Bentley Delivery Centre, Bentley WA 6983 Australia
| |
Collapse
|
11
|
Unexpectedly low paternal diversity is associated with infrequent pollinator visitation for a bird-pollinated plant. Oecologia 2021; 196:937-950. [PMID: 33870456 DOI: 10.1007/s00442-021-04906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
The behaviour of pollinators has important consequences for plant mating. Nectar-feeding birds often display behaviour that results in more pollen carryover than insect pollinators, which is predicted to result in frequent outcrossing and high paternal diversity for bird-pollinated plants. We tested this prediction by quantifying mating system parameters and bird visitation in three populations of an understory bird-pollinated herb, Anigozanthos humilis (Haemodoraceae). Microsatellite markers were used to genotype 131 adult plants, and 211 seeds from 23 maternal plants, from three populations. While outcrossing rates were high, estimates of paternal diversity were surprisingly low compared with other bird-pollinated plants. Despite nectar-feeding birds being common at the study sites, visits to A. humilis flowers were infrequent (62 visits over 21,552 recording hours from motion-triggered cameras, or equivalent to one visit per flower every 10 days), and the majority (76%) were by a single species, the western spinebill Acanthorhynchus superciliosus (Meliphagidae). Pollen counts from 30 captured honeyeaters revealed that A. humilis comprised just 0.3% of the total pollen load. For 10 western spinebills, A. humilis pollen comprised only 4.1% of the pollen load, which equated to an average of 3.9 A. humilis pollen grains per bird. Taken together, our findings suggest that low visitation rates and low pollen loads of floral visitors have led to the low paternal diversity observed in this understory bird-pollinated herb. As such, we shed new light on the conditions that can lead to departures from high paternal diversity for plants competing for the pollination services of generalist nectar-feeding birds.
Collapse
|
12
|
Huang K, Huber G, Ritland K, Dunn DW, Li B. Performing parentage analysis for polysomic inheritances based on allelic phenotypes. G3-GENES GENOMES GENETICS 2021; 11:6080682. [PMID: 33585871 PMCID: PMC8022955 DOI: 10.1093/g3journal/jkaa064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022]
Abstract
Polyploidy poses several problems for parentage analysis. We present a new polysomic inheritance model for parentage analysis based on genotypes or allelic phenotypes to solve these problems. The effects of five factors are simultaneously accommodated in this model: (1) double-reduction, (2) null alleles, (3) negative amplification, (4) genotyping errors and (5) self-fertilization. To solve genotyping ambiguity (unknown allele dosage), we developed a new method to establish the likelihood formulas for allelic phenotype data and to simultaneously include the effects of our five chosen factors. We then evaluated and compared the performance of our new method with three established methods by using both simulated data and empirical data from the cultivated blueberry (Vaccinium corymbosum). We also developed and compared the performance of two additional estimators to estimate the genotyping error rate and the sample rate. We make our new methods freely available in the software package polygene, at http://github.com/huangkang1987/polygene.
Collapse
Affiliation(s)
- Kang Huang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China.,Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Gwendolyn Huber
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Kermit Ritland
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Derek W Dunn
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
13
|
Hopper SD, Lambers H, Silveira FAO, Fiedler PL. OCBIL theory examined: reassessing evolution, ecology and conservation in the world’s ancient, climatically buffered and infertile landscapes. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
OCBIL theory was introduced as a contribution towards understanding the evolution, ecology and conservation of the biological and cultural diversity of old, climatically buffered, infertile landscapes (OCBILs), especially in the Southern Hemisphere. The theory addresses some of the most intransigent environmental and cultural trends of our time – the ongoing decline of biodiversity and cultural diversity of First Nations. Here we reflect on OCBILs, the origins of the theory, and its principal hypotheses in biological, anthropological and conservation applications. The discovery that threatened plant species are concentrated in the Southwest Australian Floristic Region (SWAFR) on infertile, phosphorous-impoverished uplands within 500 km of the coast formed the foundational framework for OCBIL theory and led to the development of testable hypotheses that a growing literature is addressing. Currently, OCBILs are recognized in 15 Global Biodiversity Hotspots and eight other regions. The SWAFR, Greater Cape Floristic Region of South Africa and South America’s campos rupestres (montane grasslands) are those regions that have most comprehensively been investigated in the context of OCBIL theory. We summarize 12 evolutionary, ecological and cultural hypotheses and ten conservation-management hypotheses being investigated as recent contributions to the OCBIL literature.
Collapse
Affiliation(s)
- Stephen D Hopper
- Centre of Excellence in Natural Resource Management, School of Agriculture & Environment, The University of Western Australia, Albany, WA, Australia
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Crawley (Perth), WA, Australia
| | - Fernando A O Silveira
- Departmento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Peggy L Fiedler
- Natural Reserve System, University of California, Office of the President, Oakland, CA, USA
| |
Collapse
|
14
|
Hopper SD. Out of the OCBILs: new hypotheses for the evolution, ecology and conservation of the eucalypts. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
OCBIL theory is a multi-hypothesis formulation aimed towards an understanding of the evolution, ecology and conservation of biological and cultural diversity on old, climatically buffered, infertile landscapes (OCBILs). OCBILs have been in existence contemporaneously with rainforest since Gondwanan times. Such landscapes are common in areas of eucalypt species richness embraced by Australia’s two Global Biodiversity Hotspots, the Southwest Australian Floristic Region and the Forests of East Australia. Here, I summarize evidence pertaining to the eucalypts in the context of a recent reformulation of OCBIL theory into 12 evolutionary, ecological and cultural hypotheses and ten conservation management hypotheses. A compelling argument emerges for a new interpretation of the eucalypts evolving out of the OCBILs, rather than out of the rainforests as traditionally interpreted. This calls for a significant reinterpretation of best conservation management of the eucalypts. For example, traditional ideas on application of fire in eucalypt communities regarded as well adapted to this disturbance need to give way to a more nuanced and cautious view. This review of eucalypts seen as evolving out of the OCBILs helps in understanding the group from several new perspectives. Interpretation of other sedentary plant and animal groups as out of the OCBILs is commended for further study.
Collapse
Affiliation(s)
- Stephen D Hopper
- Centre of Excellence in Natural Resource Management, School of Agriculture & Environment, The University of Western Australia, Albany, WA, Australia
| |
Collapse
|
15
|
Butcher CL, Rubin BY, Anderson SL, Lewis JD. Pollen dispersal patterns differ among sites for a wind-pollinated species and an insect-pollinated species. AMERICAN JOURNAL OF BOTANY 2020; 107:1504-1517. [PMID: 33108685 DOI: 10.1002/ajb2.1554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Pollen dispersal, the main component of overall plant gene flow, generally decreases with increasing distance from the pollen source, but the pattern of this relationship may differ among sites. Although site-based differences in pollen dispersal may lead to over- or underestimation of gene flow, no studies have investigated pollen dispersal patterns among differing urban site types, despite the incongruent range of habitats in urban areas. METHODS We used paternity assignment to assess pollen dispersal patterns in a wind-pollinated species (waterhemp; Amaranthus tuberculatus) and in an insect-pollinated species (tomato; Solanum lycopersicum) in experimental arrays at four disparate sites (two roof-level sites, two ground-level sites) in the New York (New York, USA) metropolitan area. RESULTS The number of seeds or fruits, a proxy for the number of flowers pollinated, decreased with increasing distance from the pollen donors at all sites for both species. However, the mean number of Amaranthus tuberculatusseeds produced at a given distance differed two-fold among sites, while the slope of the relationship between Solanum lycopersicumfruit production and distance differed by a factor of four among sites. CONCLUSIONS Pollen dispersal patterns may differ substantially among sites, both in the amount of pollen dispersed at a given distance and in the proportional decrease in pollen dispersal with increasing distance, and these effects may act independently. Accordingly, the capacity of plant species to adapt to climate change and other selection pressures may be different from predictions based on pollen dispersal patterns at a single location.
Collapse
Affiliation(s)
- Chelsea L Butcher
- Louis Calder Center - Biological Field Station, Fordham University, 31 Whippoorwill Road, Armonk, New York, 10504, USA
- Center for Urban Ecology, Fordham University, 441 East Fordham Road, Bronx, New York, 10458, USA
- Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, New York, 10458, USA
- Department of Mathematics and Natural Sciences, Northwood University, 4000 Whiting Drive, Midland, Michigan, 48640, USA
| | - Berish Y Rubin
- Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, New York, 10458, USA
| | - Sylvia L Anderson
- Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, New York, 10458, USA
| | - James D Lewis
- Louis Calder Center - Biological Field Station, Fordham University, 31 Whippoorwill Road, Armonk, New York, 10504, USA
- Center for Urban Ecology, Fordham University, 441 East Fordham Road, Bronx, New York, 10458, USA
- Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, New York, 10458, USA
| |
Collapse
|
16
|
Lullfitz A, Pettersen C, Reynolds R(D, Eades A, Dean A, Knapp L, Woods E, Woods T, Eades E, Yorkshire-Selby G, Woods S, Dortch J, Guilfoyle D, Hopper SD. The Noongar of south-western Australia: a case study of long-term biodiversity conservation in a matrix of old and young landscapes. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Occurring across all southern hemisphere continents except Antarctica, old, climatically buffered, infertile landscapes (OCBILs) are centres of biological richness, often in biodiversity hotspots. Among a matrix of young, often disturbed, fertile landscapes (YODFELs), OCBILs are centres of endemism and diversity in the exceptionally rich flora of the south-west Australian global biodiversity hotspot, home to Noongar peoples for ≥ 48 000 years. We analysed contemporary traditional Noongar knowledge of adjacent OCBILs (e.g. granite outcrops) and YODFELs (e.g. creekline fringes) both at a single site and in two larger areas to test whether patterns of disturbance dictated by Noongar custom align with OCBIL theory. We found that Noongar traditional knowledge reflects a regime of concentrated YODFEL rather than OCBIL disturbance—a pattern which aligns with maximal biodiversity preservation. SIMPER testing found traditional Noongar OCBIL and YODFEL activities are 64–75% dissimilar, whereas Pearson’s chi-square tests revealed camping, burning, travelling through country and hunting as primarily YODFEL rather than OCBIL activities. We found that Noongar activities usually avoid OCBIL disturbance. This combined with high floristic diversity following enduring First Peoples’ presence, suggests that traditional Noongar knowledge is valuable and necessary for south-west Australian biodiversity conservation. Similar cultural investigations in other OCBIL-dominated global biodiversity hotspots may prove profitable.
Collapse
Affiliation(s)
- Alison Lullfitz
- Centre of Excellence in Natural Resource Management, School of Agriculture and Environment, University of Western Australia, Albany, WA, Australia
| | - Carol Pettersen
- Centre of Excellence in Natural Resource Management, School of Agriculture and Environment, University of Western Australia, Albany, WA, Australia
| | - Ron (Doc) Reynolds
- Esperance Tjaltjraak Native Title Aboriginal Corporation, Esperance, WA, Australia
| | - Aden Eades
- Centre of Excellence in Natural Resource Management, School of Agriculture and Environment, University of Western Australia, Albany, WA, Australia
| | - Averil Dean
- Centre of Excellence in Natural Resource Management, School of Agriculture and Environment, University of Western Australia, Albany, WA, Australia
| | - Lynette Knapp
- Centre of Excellence in Natural Resource Management, School of Agriculture and Environment, University of Western Australia, Albany, WA, Australia
| | - Eliza Woods
- Centre of Excellence in Natural Resource Management, School of Agriculture and Environment, University of Western Australia, Albany, WA, Australia
| | - Treasy Woods
- Centre of Excellence in Natural Resource Management, School of Agriculture and Environment, University of Western Australia, Albany, WA, Australia
| | - Eugene Eades
- Centre of Excellence in Natural Resource Management, School of Agriculture and Environment, University of Western Australia, Albany, WA, Australia
| | - Gail Yorkshire-Selby
- Esperance Tjaltjraak Native Title Aboriginal Corporation, Esperance, WA, Australia
| | - Steven Woods
- Centre of Excellence in Natural Resource Management, School of Agriculture and Environment, University of Western Australia, Albany, WA, Australia
| | - Joe Dortch
- Centre for Rock Art Research and Management, University of Western Australia, Perth, WA, Australia
| | | | - Stephen D Hopper
- Centre of Excellence in Natural Resource Management, School of Agriculture and Environment, University of Western Australia, Albany, WA, Australia
| |
Collapse
|
17
|
Bezemer N, Hopper SD, Krauss SL, Phillips RD, Roberts DG. Primary pollinator exclusion has divergent consequences for pollen dispersal and mating in different populations of a bird‐pollinated tree. Mol Ecol 2019; 28:4883-4898. [DOI: 10.1111/mec.15264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Nicole Bezemer
- Centre of Excellence in Natural Resource Management School of Agriculture and Environment The University of Western Australia Albany WA Australia
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
| | - Stephen D. Hopper
- Centre of Excellence in Natural Resource Management School of Agriculture and Environment The University of Western Australia Albany WA Australia
| | - Siegy L. Krauss
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
- Biological Sciences The University of Western Australia Crawley WA Australia
| | - Ryan D. Phillips
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
- Department of Ecology, Environment and Evolution La Trobe University Melbourne Vic. Australia
| | - David G. Roberts
- Centre of Excellence in Natural Resource Management School of Agriculture and Environment The University of Western Australia Albany WA Australia
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
| |
Collapse
|
18
|
Ayre BM, Roberts DG, Phillips RD, Hopper SD, Krauss SL. Near-neighbour optimal outcrossing in the bird-pollinated Anigozanthos manglesii. ANNALS OF BOTANY 2019; 124:423-436. [PMID: 31115446 PMCID: PMC6798840 DOI: 10.1093/aob/mcz091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/20/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS In plants, the spatial and genetic distance between mates can influence reproductive success and offspring fitness. Negative fitness consequences associated with the extremes of inbreeding and outbreeding suggest that there will be an intermediate optimal outcrossing distance (OOD), the scale and drivers of which remain poorly understood. In the bird-pollinated Anigozanthos manglesii (Haemodoraceae) we tested (1) for the presence of within-population OOD, (2) over what scale it occurs, and (3) for OOD under biologically realistic scenarios of multi-donor deposition associated with pollination by nectar-feeding birds. METHODS We measured the impact of mate distance (spatial and genetic) on seed set, fruit size, seed mass, seed viability and germination success following hand pollination from (1) single donors across 0 m (self), <1 m, 1-3 m, 7-15 m and 50 m, and (2) a mix of eight donors. Microsatellite loci were used to quantify spatial genetic structure and test for the presence of an OOD by paternity assignment after multi-donor deposition. KEY RESULTS Inter-mate distance had a significant impact on single-donor reproductive success, with selfed and nearest-neighbour (<1 m) pollination resulting in only ~50 seeds per fruit, lower overall germination success and slower germination. Seed set was greatest for inter-mate distance of 1-3 m (148 seeds per fruit), thereafter plateauing at ~100 seeds per fruit. Lower seed set following nearest-neighbour mating was associated with significant spatial genetic autocorrelation at this scale. Paternal success following pollination with multiple sires showed a significantly negative association with increasing distance between mates. CONCLUSIONS Collectively, single- and multi-donor pollinations indicated evidence for a near-neighbour OOD within A. manglesii. A survey of the literature suggests that within-population OOD may be more characteristic of plants pollinated by birds than those pollinated by insects.
Collapse
Affiliation(s)
- Bronwyn M Ayre
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia
| | - David G Roberts
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia
- Centre for Excellence in Natural Resource Management, School of Agriculture and Environment, University of Western Australia, Albany, WA, Australia
| | - Ryan D Phillips
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC, Australia
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Stephen D Hopper
- Centre for Excellence in Natural Resource Management, School of Agriculture and Environment, University of Western Australia, Albany, WA, Australia
| | - Siegfried L Krauss
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia
| |
Collapse
|
19
|
Nakanishi A, Takeuchi T, Ueno S, Nishimura N, Tomaru N. Spatial variation in bird pollination and its mitigating effects on the genetic diversity of pollen pools accepted by Camellia japonica trees within a population at a landscape level. Heredity (Edinb) 2019; 124:170-181. [PMID: 31485029 DOI: 10.1038/s41437-019-0262-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/03/2023] Open
Abstract
Bird pollination can vary spatially in response to spatial fluctuations in flowering even within plant populations. In this study, we examined the hypothesis that the spatial variation in bird pollination may induce mitigating effects, which maintains or increases genetic diversity of pollen pools at local sites with low flowering densities. To test this hypothesis, we analyzed the landscape-level genetic effects within a population of Camellia japonica on the pollen pools accepted by individuals in two reproductive years by using genotypes at eight microsatellite loci of 1323 seeds from 19 seed parents. Regression analyses using the quadratic models of correlated paternity between pollen pools against spatial distances between the seed-parent pairs revealed not only local pollination but also some amount of long-distance pollen dispersal. The genetic diversity of pollen pools accepted by seed parents tended to be negatively related to the densities of flowering individuals near the seed parents during winter (when the effective pollination of C. japonica is mediated mostly by Zosterops japonica). We show that the low density of flowering individuals may induce the expansion of the foraging areas of Z. japonica and consequently increase the genetic diversity of pollen pools. This spatial variation in bird pollination may induce the mitigating effects on the C. japonica population. The comparisons between the two study years indicate that the overall pattern of bird pollination and the genetic effects described here, including the mitigating effects, may be stable over time.
Collapse
Affiliation(s)
- Atsushi Nakanishi
- Hokkaido Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 7 Hitsujigaoka, Toyohira-ku, Sapporo, 062-8516, Japan
| | - Tomoe Takeuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.,Forestry Department, Saku Regional Development Bureau, Nagano Prefectural Government, 65-1 Atobe, Saku, Nagano, 385-0054, Japan
| | - Saneyoshi Ueno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Naoyuki Nishimura
- Faculty of Social and Information Studies, Gunma University, 4-2 Aramaki-machi, Maebashi, Gunma, 371-8510, Japan
| | - Nobuhiro Tomaru
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
20
|
Bezemer N, Krauss SL, Roberts DG, Hopper SD. Conservation of old individual trees and small populations is integral to maintain species' genetic diversity of a historically fragmented woody perennial. Mol Ecol 2019; 28:3339-3357. [DOI: 10.1111/mec.15164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Nicole Bezemer
- School of Agriculture and Environment Centre of Excellence in Natural Resource Management The University of Western Australia Albany WA Australia
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
| | - Siegfried L. Krauss
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
- Biological Sciences The University of Western Australia Crawley WA Australia
| | - David G. Roberts
- School of Agriculture and Environment Centre of Excellence in Natural Resource Management The University of Western Australia Albany WA Australia
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
| | - Stephen D. Hopper
- School of Agriculture and Environment Centre of Excellence in Natural Resource Management The University of Western Australia Albany WA Australia
| |
Collapse
|
21
|
Yates CJ, Robinson T, Wardell‐Johnson GW, Keppel G, Hopper SD, Schut AGT, Byrne M. High species diversity and turnover in granite inselberg floras highlight the need for a conservation strategy protecting many outcrops. Ecol Evol 2019; 9:7660-7675. [PMID: 31346430 PMCID: PMC6635920 DOI: 10.1002/ece3.5318] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/19/2023] Open
Abstract
Determining patterns of plant diversity on granite inselbergs is an important task for conservation biogeography due to mounting threats. However, beyond the tropics there are relatively few quantitative studies of floristic diversity, or consideration of these patterns and their environmental, biogeographic, and historical correlates for conservation. We sought to contribute broader understanding of global patterns of species diversity on granite inselbergs and inform biodiversity conservation in the globally significant Southwest Australian Floristic Region (SWAFR). We surveyed floristics from 16 inselbergs (478 plots) across the climate gradient of the SWAFR stratified into three major habitats on each outcrop. We recorded 1,060 species from 92 families. At the plot level, local soil and topographic variables affecting aridity were correlated with species richness in herbaceous (HO) and woody vegetation (WO) of soil-filled depressions, but not in woody vegetation on deeper soils at the base of outcrops (WOB). At the outcrop level, bioclimatic variables affecting aridity were correlated with species richness in two habitats (WO and WOB) but, contrary to predictions from island biogeography, were not correlated with inselberg area and isolation in any of the three habitats. Species turnover in each of the three habitats was also influenced by aridity, being correlated with bioclimatic variables and with interplot geographic distance, and for HO and WO habitats with local site variables. At the outcrop level, species replacement was the dominant component of species turnover in each of the three habitats, consistent with expectations for long-term stable landscapes. Our results therefore highlight high species diversity and turnover associated with granite outcrop flora. Hence, effective conservation strategies will need to focus on protecting multiple inselbergs across the entire climate gradient of the region.
Collapse
Affiliation(s)
- Colin J. Yates
- Department of Biodiversity Conservation and AttractionsBiodiversity and Conservation ScienceKensingtonWestern AustraliaAustralia
| | - Todd Robinson
- School of Earth and Planetary SciencesCurtin UniversityPerthWestern AustraliaAustralia
| | - Grant W. Wardell‐Johnson
- School of Molecular and Life Sciences, Centre for Mine Site RestorationCurtin UniversityPerthWestern AustraliaAustralia
| | - Gunnar Keppel
- School of Natural and Built Environments, Natural and Built Environments Research CentreUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Biodiversity, Macroecology and Conservation Biogeography Group, Faculty of Forest Sciences and Forest EcologyUniversity of GoettingenGőttingenGermany
| | - Stephen D. Hopper
- School of Plant Biology, Centre of Excellence in Natural Resource ManagementThe University of Western AustraliaAlbanyWestern AustraliaAustralia
| | | | - Margaret Byrne
- Department of Biodiversity Conservation and AttractionsBiodiversity and Conservation ScienceKensingtonWestern AustraliaAustralia
- School of Molecular and Life Sciences, Centre for Mine Site RestorationCurtin UniversityPerthWestern AustraliaAustralia
| |
Collapse
|
22
|
McCallum KP, Breed MF, Paton DC, Lowe AJ. Clumped planting arrangements improve seed production in a revegetated eucalypt woodland. Restor Ecol 2018. [DOI: 10.1111/rec.12905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kimberly P. McCallum
- School of Biological Sciences Faculty of Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Martin F. Breed
- School of Biological Sciences Faculty of Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| | - David C. Paton
- School of Biological Sciences Faculty of Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Andrew J. Lowe
- School of Biological Sciences Faculty of Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| |
Collapse
|
23
|
Zhou J, Zimmer EA, Fenster CB, Dudash MR. Characterization of the mating system of a native perennial tetraploid herb, Silene stellata. AMERICAN JOURNAL OF BOTANY 2018; 105:1643-1652. [PMID: 30276803 DOI: 10.1002/ajb2.1158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Nursery pollination systems can range from obligate to facultative. In a system where generalists provide substantial pollination service, an important question is whether the cost of seed predation outweighs the benefit provided by the nursery pollinator to cause the plant to evolve toward more generalized pollination. Using a facultative system native to North America, we tested whether nursery pollinator vs. strictly mutualistic generalists affect mating-system parameters of the host plant and explored the implications for long-term coevolution. METHODS We used paternity analyses with 11 microsatellite markers to characterize the mating system of Silene stellata when pollination service is primarily through the nursery pollinator Hadena ectypa and generalist moths. KEY RESULTS Our experimental population of S. stellata was predominantly outcrossing (average outcrossing rate t = 0.83), and mating-system parameters were similar between pollinator groups. We detected significant correlations in both selfing and outcrossed paternity at the fruit and maternal family level, corresponding to limited pollen dispersal (mean = 3.9 m). Among individuals, variation in anther-stigma separation was positively associated with outcrossing rate, which suggests the importance of herkogamy in preventing selfing. CONCLUSIONS Correlated paternity suggests that seeds from the same fruit and/or plants are sired by a limited number of pollen donors, resulting from low pollen dispersal and potential male-male competition. The similar mating-system parameters of the two pollinator groups suggest that selection for higher outcrossing in S. stellata is likely to be through floral design rather than through increased pollinator specialization with H. ectypa.
Collapse
Affiliation(s)
- Juannan Zhou
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | - Elizabeth A Zimmer
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, D.C., 20013, USA
| | - Charles B Fenster
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Michele R Dudash
- Department of Natural Resource Management, South Dakota State University, Brookings, South Dakota, 57007, USA
| |
Collapse
|
24
|
Taylor AR, Schaffner SF, Cerqueira GC, Nkhoma SC, Anderson TJC, Sriprawat K, Pyae Phyo A, Nosten F, Neafsey DE, Buckee CO. Quantifying connectivity between local Plasmodium falciparum malaria parasite populations using identity by descent. PLoS Genet 2017; 13:e1007065. [PMID: 29077712 PMCID: PMC5678785 DOI: 10.1371/journal.pgen.1007065] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/08/2017] [Accepted: 10/10/2017] [Indexed: 01/18/2023] Open
Abstract
With the rapidly increasing abundance and accessibility of genomic data, there is a growing interest in using population genetic approaches to characterize fine-scale dispersal of organisms, providing insight into biological processes across a broad range of fields including ecology, evolution and epidemiology. For sexually recombining haploid organisms such as the human malaria parasite P. falciparum, however, there have been no systematic assessments of the type of data and methods required to resolve fine scale connectivity. This analytical gap hinders the use of genomics for understanding local transmission patterns, a crucial goal for policy makers charged with eliminating this important human pathogen. Here we use data collected from four clinics with a catchment area spanning approximately 120 km of the Thai-Myanmar border to compare the ability of divergence (FST) and relatedness based on identity by descent (IBD) to resolve spatial connectivity between malaria parasites collected from proximal clinics. We found no relationship between inter-clinic distance and FST, likely due to sampling of highly related parasites within clinics, but a significant decline in IBD-based relatedness with increasing inter-clinic distance. This association was contingent upon the data set type and size. We estimated that approximately 147 single-infection whole genome sequenced parasite samples or 222 single-infection parasite samples genotyped at 93 single nucleotide polymorphisms (SNPs) were sufficient to recover a robust spatial trend estimate at this scale. In summary, surveillance efforts cannot rely on classical measures of genetic divergence to measure P. falciparum transmission on a local scale. Given adequate sampling, IBD-based relatedness provides a useful alternative, and robust trends can be obtained from parasite samples genotyped at approximately 100 SNPs.
Collapse
Affiliation(s)
- Aimee R. Taylor
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Stephen F. Schaffner
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Gustavo C. Cerqueira
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Standwell C. Nkhoma
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Timothy J. C. Anderson
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Old Road campus, Oxford, United Kingdom
| | - Daniel E. Neafsey
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Caroline O. Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
25
|
Krauss SL, Phillips RD, Karron JD, Johnson SD, Roberts DG, Hopper SD. Novel Consequences of Bird Pollination for Plant Mating. TRENDS IN PLANT SCIENCE 2017; 22:395-410. [PMID: 28412035 DOI: 10.1016/j.tplants.2017.03.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/12/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
Pollinator behaviour has profound effects on plant mating. Pollinators are predicted to minimise energetic costs during foraging bouts by moving between nearby flowers. However, a review of plant mating system studies reveals a mismatch between behavioural predictions and pollen-mediated gene dispersal in bird-pollinated plants. Paternal diversity of these plants is twice that of plants pollinated solely by insects. Comparison with the behaviour of other pollinator groups suggests that birds promote pollen dispersal through a combination of high mobility, limited grooming, and intra- and interspecies aggression. Future opportunities to test these predictions include seed paternity assignment following pollinator exclusion experiments, single pollen grain genotyping, new tracking technologies for small pollinators, and motion-triggered cameras and ethological experimentation for quantifying pollinator behaviour.
Collapse
Affiliation(s)
- Siegfried L Krauss
- Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, Fraser Avenue, Kings Park, WA 6005, Australia; School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Ryan D Phillips
- Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, Fraser Avenue, Kings Park, WA 6005, Australia; School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Jeffrey D Karron
- Department of Biological Sciences, PO Box 413, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Steven D Johnson
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| | - David G Roberts
- Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, Fraser Avenue, Kings Park, WA 6005, Australia; Centre of Excellence in Natural Resource Management and School of Plant Biology, University of Western Australia, 35 Stirling Terrace, Albany, WA 6330, Australia
| | - Stephen D Hopper
- Centre of Excellence in Natural Resource Management and School of Plant Biology, University of Western Australia, 35 Stirling Terrace, Albany, WA 6330, Australia
| |
Collapse
|