1
|
Antoni AC, Pylaeva E, Budeus B, Jablonska J, Klein-Hitpaß L, Dudda M, Flohé SB. TLR2-induced CD8+ T-cell deactivation shapes dendritic cell differentiation in the bone marrow during sepsis. Front Immunol 2022; 13:945409. [PMID: 36148245 PMCID: PMC9488929 DOI: 10.3389/fimmu.2022.945409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Sepsis is associated with profound immune dysregulation that increases the risk for life-threatening secondary infections: Dendritic cells (DCs) undergo functional reprogramming due to yet unknown changes during differentiation in the bone marrow (BM). In parallel, lymphopenia and exhaustion of T lymphocytes interfere with antigen-specific adaptive immunity. We hypothesized that there exists a link between T cells and the modulation of DC differentiation in the BM during murine polymicrobial sepsis. Sepsis was induced by cecal ligation and puncture (CLP), a model for human bacterial sepsis. At different time points after CLP, the BM and spleen were analyzed in terms of T-cell subpopulations, activation, and Interferon (IFN)-γ synthesis as well as the number of pre-DCs. BM-derived DCs were generated in vitro. We observed that naïve and virtual memory CD8+ T cells, but not CD4+ T cells, were activated in an antigen-independent manner and accumulated in the BM early after CLP, whereas lymphopenia was evident in the spleen. The number of pre-DCs strongly declined during acute sepsis in the BM and almost recovered by day 4 after CLP, which required the presence of CD8+ T cells. Adoptive transfer experiments and in vitro studies with purified T cells revealed that Toll-like receptor 2 (TLR2) signaling in CD8+ T cells suppressed their capacity to secrete IFN-γ and was sufficient to change the transcriptome of the BM during sepsis. Moreover, the diminished IFN-γ production of CD8+ T cells favored the differentiation of DCs with increased production of the immune-activating cytokine Interleukin (IL)-12. These data identify a novel role of CD8+ T cells in the BM during sepsis as they sense TLR2 ligands and control the number and function of de novo differentiating DCs.
Collapse
Affiliation(s)
- Anne-Charlotte Antoni
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bettina Budeus
- Institute of Cell Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ludger Klein-Hitpaß
- Institute of Cell Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marcel Dudda
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stefanie B. Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- *Correspondence: Stefanie B. Flohé,
| |
Collapse
|
2
|
Alekseenko I, Kuzmich A, Kondratyeva L, Kondratieva S, Pleshkan V, Sverdlov E. Step-by-Step Immune Activation for Suicide Gene Therapy Reinforcement. Int J Mol Sci 2021; 22:ijms22179376. [PMID: 34502287 PMCID: PMC8430744 DOI: 10.3390/ijms22179376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Gene-directed enzyme prodrug gene therapy (GDEPT) theoretically represents a useful method to carry out chemotherapy for cancer with minimal side effects through the formation of a chemotherapeutic agent inside cancer cells. However, despite great efforts, promising preliminary results, and a long period of time (over 25 years) since the first mention of this method, GDEPT has not yet reached the clinic. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. The advent of checkpoint immunotherapy has yielded new highly promising avenues of study in cancer therapy. For such therapy, it seems reasonable to use combinations of different immunomodulators alongside traditional methods, such as chemotherapy and radiotherapy, as well as GDEPT. In this review, we focused on non-viral gene immunotherapy systems combining the intratumoral production of toxins diffused by GDEPT and immunomodulatory molecules. Special attention was paid to the applications and mechanisms of action of the granulocyte-macrophage colony-stimulating factor (GM–CSF), a cytokine that is widely used but shows contradictory effects. Another method to enhance the formation of stable immune responses in a tumor, the use of danger signals, is also discussed. The process of dying from GDEPT cancer cells initiates danger signaling by releasing damage-associated molecular patterns (DAMPs) that exert immature dendritic cells by increasing antigen uptake, maturation, and antigen presentation to cytotoxic T-lymphocytes. We hypothesized that the combined action of this danger signal and GM–CSF issued from the same dying cancer cell within a limited space would focus on a limited pool of immature dendritic cells, thus acting synergistically and enhancing their maturation and cytotoxic T-lymphocyte attraction potential. We also discuss the problem of enhancing the cancer specificity of the combined GDEPT–GM–CSF–danger signal system by means of artificial cancer specific promoters or a modified delivery system.
Collapse
Affiliation(s)
- Irina Alekseenko
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
- Institute of Oncogynecology and Mammology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Correspondence: (I.A.); (E.S.)
| | - Alexey Kuzmich
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Sofia Kondratieva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Victor Pleshkan
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Eugene Sverdlov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Correspondence: (I.A.); (E.S.)
| |
Collapse
|
3
|
Wooster AL, Girgis LH, Brazeale H, Anderson TS, Wood LM, Lowe DB. Dendritic cell vaccine therapy for colorectal cancer. Pharmacol Res 2021; 164:105374. [PMID: 33348026 PMCID: PMC7867624 DOI: 10.1016/j.phrs.2020.105374] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths in the United States despite an array of available treatment options. Current standard-of-care interventions for this malignancy include surgical resection, chemotherapy, and targeted therapies depending on the disease stage. Specifically, infusion of anti-vascular endothelial growth factor agents in combination with chemotherapy was an important development in improving the survival of patients with advanced colorectal cancer, while also helping give rise to other forms of anti-angiogenic therapies. Yet, one approach by which tumor angiogenesis may be further disrupted is through the administration of a dendritic cell (DC) vaccine targeting tumor-derived blood vessels, leading to cytotoxic immune responses that decrease tumor growth and synergize with other systemic therapies. Early generations of such vaccines exhibited protection against various forms of cancer in pre-clinical models, but clinical results have historically been disappointing. Sipuleucel-T (Provenge®) was the first, and to-date, only dendritic cell-based therapy to receive FDA approval after significantly increasing overall survival in prostate cancer patients. The unparalleled success of Sipuleucel-T has helped revitalize the clinical development of dendritic cell vaccines, which will be examined in this review. We also highlight the promise of these vaccines to instill anti-angiogenic immunity for individuals with advanced colorectal cancer.
Collapse
Affiliation(s)
- Amanda L Wooster
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Lydia H Girgis
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Hayley Brazeale
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Trevor S Anderson
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Laurence M Wood
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Devin B Lowe
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States.
| |
Collapse
|
4
|
Scheenstra MR, Martínez-Botía P, Acebes-Huerta A, Brouwer RWW, Caballero-Sánchez N, Gillemans N, De Bleser P, Nota B, De Cuyper IM, Salunkhe V, Woltman AM, van de Laar L, Rijkers E, Demmers JAA, van IJcken WFJ, Philipsen S, van den Berg TK, Kuijpers TW, Gutiérrez L. Comparison of the PU.1 transcriptional regulome and interactome in human and mouse inflammatory dendritic cells. J Leukoc Biol 2020; 110:735-751. [PMID: 33289106 DOI: 10.1002/jlb.6a1219-711rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) are key immune modulators and are able to mount immune responses or tolerance. DC differentiation and activation imply a plethora of molecular and cellular responses, including transcriptional changes. PU.1 is a highly expressed transcription factor in DCs and coordinates relevant aspects of DC biology. Due to their role as immune regulators, DCs pose as a promising immunotherapy tool. However, some of their functional features, such as survival, activation, or migration, are compromised due to the limitations to simulate in vitro the physiologic DC differentiation process. A better knowledge of transcriptional programs would allow the identification of potential targets for manipulation with the aim of obtaining "qualified" DCs for immunotherapy purposes. Most of the current knowledge regarding DC biology derives from studies using mouse models, which not always find a parallel in human. In the present study, we dissect the PU.1 transcriptional regulome and interactome in mouse and human DCs, in the steady state or LPS activated. The PU.1 transcriptional regulome was identified by performing PU.1 chromatin immunoprecipitation followed by high-throughput sequencing and pairing these data with RNAsequencing data. The PU.1 interactome was identified by performing PU.1 immunoprecipitation followed by mass spectrometry analysis. Our results portray PU.1 as a pivotal factor that plays an important role in the regulation of genes required for proper DC activation and function, and assures the repression of nonlineage genes. The interspecies differences between human and mouse DCs are surprisingly substantial, highlighting the need to study the biology of human DCs.
Collapse
Affiliation(s)
- Maaike R Scheenstra
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Andrea Acebes-Huerta
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Nynke Gillemans
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Pieter De Bleser
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Data Mining and Modeling for Biomedicine, Ghent, Belgium
| | - Benjamin Nota
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Iris M De Cuyper
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Vishal Salunkhe
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Andrea M Woltman
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
- Current Address: Institute of Medical Education Research Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Lianne van de Laar
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Wilfred F J van IJcken
- Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Immunotherapy, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije University, Amsterdam, The Netherlands
| | - Laura Gutiérrez
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- University of Oviedo, Oviedo, Spain
| |
Collapse
|
5
|
Naik SH. Dendritic cell development at a clonal level within a revised 'continuous' model of haematopoiesis. Mol Immunol 2020; 124:190-197. [PMID: 32593782 DOI: 10.1016/j.molimm.2020.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/15/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
Abstract
Understanding development of the dendritic cell (DC) subtypes continues to evolve. The origin and relationship of conventional DC type 1 (cDC1), cDC type 2 (cDC2) and plasmacytoid DCs (pDCs) to each other, and in relation to classic myeloid and lymphoid cells, has had a long and controversial history and is still not fully resolved. This review summarises the technological developments and findings that have been achieved at a clonal level, and how that has enhanced our knowledge of the process. It summarises the single cell lineage tracing technologies that have emerged, their application in in vitro and in vivo studies, in both mouse and human settings, and places the findings in a wider context of understanding haematopoiesis at a single cell or clonal level. In particular, it addresses the fate heterogeneity observed in many phenotypically defined progenitor subsets and how these findings have led to a departure from the classic ball-and-stick models of haematopoiesis to the emerging continuous model. Prior contradictions in DC development may be reconciled if they are framed within this revised model, where commitment to a lineage or cell type does not occur in an all-or-nothing process in defined progenitors but rather can occur at many stages of haematopoiesis in a dynamic process.
Collapse
Affiliation(s)
- Shalin H Naik
- Immunology Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia; The Department of Medical Biology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
6
|
Particles from the Echinococcus granulosus Laminated Layer Inhibit CD40 Upregulation in Dendritic Cells by Interfering with Akt Activation. Infect Immun 2019; 87:IAI.00641-19. [PMID: 31570562 PMCID: PMC6867849 DOI: 10.1128/iai.00641-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/20/2019] [Indexed: 12/22/2022] Open
Abstract
The larval stage of the cestode Echinococcus granulosus causes cystic echinococcosis in humans and livestock. This larva is protected by the millimeter-thick, mucin-based laminated layer (LL), from which materials have to be shed to allow parasite growth. We previously reported that dendritic cells (DCs) respond to microscopic pieces of the mucin gel of the LL (pLL) with unconventional maturation phenotypes, in the absence or presence of Toll-like receptor (TLR) agonists, including lipopolysaccharide (LPS). The larval stage of the cestode Echinococcus granulosus causes cystic echinococcosis in humans and livestock. This larva is protected by the millimeter-thick, mucin-based laminated layer (LL), from which materials have to be shed to allow parasite growth. We previously reported that dendritic cells (DCs) respond to microscopic pieces of the mucin gel of the LL (pLL) with unconventional maturation phenotypes, in the absence or presence of Toll-like receptor (TLR) agonists, including lipopolysaccharide (LPS). We also reported that the presence of pLL inhibited the activating phosphorylation of the phosphatidylinositol 3-kinase (PI3K) effector Akt induced by granulocyte-macrophage colony-stimulating factor or interleukin-4. We now show that the inhibitory effect of pLL extends to LPS as a PI3K activator, and results in diminished phosphorylation of GSK3 downstream from Akt. Functionally, the inhibition of Akt and GSK3 phosphorylation are linked to the blunted upregulation of CD40, a major feature of the unconventional maturation phenotype. Paradoxically, all aspects of unconventional maturation induced by pLL depend on PI3K class I. Additional components of the phagocytic machinery are needed, but phagocytosis of pLL particles is not required. These observations hint at a DC response mechanism related to receptor-independent mechanisms proposed for certain crystalline and synthetic polymer-based particles; this would fit the previously reported lack of detection of molecular-level motifs necessary of the effects of pLL on DCs. Finally, we report that DCs exposed to pLL are able to condition DCs not exposed to the material so that these cannot upregulate CD40 in full in response to LPS.
Collapse
|
7
|
Liu C, Choi MW, Xue X, Cheung PCK. Immunomodulatory Effect of Structurally Characterized Mushroom Sclerotial Polysaccharides Isolated from Polyporus rhinocerus on Bone Marrow Dendritic Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12137-12143. [PMID: 31566976 DOI: 10.1021/acs.jafc.9b03294] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study evaluated the immunomodulatory effects of two high-molecular-weight and structurally different mushroom polysaccharides, an alkali-soluble polysaccharide (mPRSon) and a water-soluble polysaccharide-protein complex (PRW), isolated previously from the sclerotia of Pleurotus rhinocerus, on the maturation of murine bone-marrow-derived dendritic cells (BMDCs). The effects of mPRSon and PRW on the expression of morphological change, surface molecules, phagocytic activity, and cytokine release in BMDCs were determined by flow cytometry and a mouse cytokine array. The results showed that both mPRSon and PRW could induce phenotypic and functional maturation of BMDCs. At the same time, mPRSon upregulated the expression of membrane phenotypic marker CD86 and PRW markedly upregulated CD40, CD80, and CD86. In addition, mPRSon could bind to the dectin-1 receptor and stimulate the release of MIP-1α, MIP-2, and IL-2, while PRW could bind to complement receptor 3 and toll-like receptor 2 with an upregulation of the expression of IL-2, IL-6, MIP-1α, MIP-2, RANTES, IL-12p40p70, IL-12p70, TIMP-1, IFN-γ, KC, MCP-1, and GCSF. The study provides additional information on how structural differences in sclerotial polysaccharides influence their immunomodulatory activities on BMDCs involving different PAMP receptors. It is anticipated that more understanding of the interactions between the sclerotial polysaccharides and their receptors in immune cells can facilitate their future application for cancer immunotherapy.
Collapse
Affiliation(s)
- Chaoran Liu
- Medical Research Center , The People's Hospital of Longhua , Shenzhen , 518109 , People's Republic of China
- Food and Nutritional Sciences, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong Special Administrative Region of the People's Republic of China
| | - Man Wing Choi
- Food and Nutritional Sciences, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong Special Administrative Region of the People's Republic of China
| | - Xingkui Xue
- Medical Research Center , The People's Hospital of Longhua , Shenzhen , 518109 , People's Republic of China
| | - Peter C K Cheung
- Food and Nutritional Sciences, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
8
|
Backer RA, Diener N, Clausen BE. Langerin +CD8 + Dendritic Cells in the Splenic Marginal Zone: Not So Marginal After All. Front Immunol 2019; 10:741. [PMID: 31031751 PMCID: PMC6474365 DOI: 10.3389/fimmu.2019.00741] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DC) fulfill an essential sentinel function within the immune system, acting at the interface of innate and adaptive immunity. The DC family, both in mouse and man, shows high functional heterogeneity in order to orchestrate immune responses toward the immense variety of pathogens and other immunological threats. In this review, we focus on the Langerin+CD8+ DC subpopulation in the spleen. Langerin+CD8+ DC exhibit a high ability to take up apoptotic/dying cells, and therefore they are essential to prime and shape CD8+ T cell responses. Next to the induction of immunity toward blood-borne pathogens, i.e., viruses, these DC are important for the regulation of tolerance toward cell-associated self-antigens. The ontogeny and differentiation pathways of CD8+CD103+ DC should be further explored to better understand the immunological role of these cells as a prerequisite of their therapeutic application.
Collapse
Affiliation(s)
- Ronald A Backer
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nathalie Diener
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Björn E Clausen
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
9
|
Yu H, Tian Y, Wang Y, Mineishi S, Zhang Y. Dendritic Cell Regulation of Graft-Vs.-Host Disease: Immunostimulation and Tolerance. Front Immunol 2019; 10:93. [PMID: 30774630 PMCID: PMC6367268 DOI: 10.3389/fimmu.2019.00093] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Graft-vs.-host disease (GVHD) remains a significant cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Significant progresses have been made in defining the dichotomous role of dendritic cells (DCs) in the development of GVHD. Host-derived DCs are important to elicit allogeneic T cell responses, whereas certain donor-types of DCs derived from newly engrafted hematopoietic stem/progenitor cells (HSPCs) can amply this graft-vs.-host reaction. In contrast, some DCs also play non-redundant roles in mediating immune tolerance. They induce apoptotic deletion of host-reactive donor T cells while promoting expansion and function of regulatory T cells (Treg). Unfortunately, this tolerogenic effect of DCs is impaired during GVHD. Severe GVHD in patients subject to allo-HSCT is associated with significantly decreased number of circulating peripheral blood DCs during engraftment. Existing studies reveal that GVHD causes delayed reconstitution of donor DCs from engrafted HSPCs, impairs the antigen presentation function of newly generated DCs and reduces the capacity of DCs to regulate Treg. The present review will discuss the importance of DCs in alloimmunity and the mechanism underlying DC reconstitution after allo-HSCT.
Collapse
Affiliation(s)
- Hongshuang Yu
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Yuanyuan Tian
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Ying Wang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Shin Mineishi
- Department of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States,Department of Microbiology & Immunology, Temple University, Philadelphia, PA, United States,*Correspondence: Yi Zhang
| |
Collapse
|
10
|
Zhao Y, Hanniffy S, Arce-Gorvel V, Conde-Alvarez R, Oh S, Moriyón I, Mémet S, Gorvel JP. Immunomodulatory properties of Brucella melitensis lipopolysaccharide determinants on mouse dendritic cells in vitro and in vivo. Virulence 2018; 9:465-479. [PMID: 28968180 PMCID: PMC5955181 DOI: 10.1080/21505594.2017.1386831] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The lipopolysaccharide (LPS) is a major virulence factor of Brucella, a facultative intracellular pathogenic Gram-negative bacterium. Brucella LPS exhibits a low toxicity and its atypical structure was postulated to delay the host immune response, favouring the establishment of chronic disease. Here we carried out an in-depth in vitro and in vivo characterisation of the immunomodulatory effects of Brucella LPS on different dendritic cell (DC) subpopulations. By using LPSs from bacteria that share some of Brucella LPS structural features, we demonstrated that the core component of B. melitensis wild-type (Bm-wt) LPS accounts for the low activation potential of Brucella LPS in mouse GM-CSF-derived (GM-) DCs. Contrary to the accepted dogma considering Brucella LPS a poor TLR4 agonist and DC activator, Bm-wt LPS selectively induced expression of surface activation markers and cytokine secretion from Flt3-Ligand-derived (FL-) DCs in a TLR4-dependent manner. It also primed in vitro T cell proliferation by FL-DCs. In contrast, modified LPS with a defective core purified from Brucella carrying a mutated wadC gene (Bm-wadC), efficiently potentiated mouse and human DC activation and T cell proliferation in vitro. In vivo, Bm-wt LPS promoted scant activation of splenic DC subsets and limited recruitment of monocyte- DC like cells in the spleen, conversely to Bm-wadC LPS. Bm-wadC live bacteria drove high cytokine secretion levels in sera of infected mice. Altogether, these results illustrate the immunomodulatory properties of Brucella LPS and the enhanced DC activation ability of the wadC mutation with potential for vaccine development targeting Brucella core LPS structure.
Collapse
Affiliation(s)
- Yun Zhao
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| | - Sean Hanniffy
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| | - Vilma Arce-Gorvel
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| | - Raquel Conde-Alvarez
- b Departamento de Microbiología y Parasitología , Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra , c/Irunlarrea 1, Pamplona , Spain
| | - SangKon Oh
- c Baylor Institute for Immunology Research , 3434 Live Oak St., Dallas , TX , U.S.A
| | - Ignacio Moriyón
- b Departamento de Microbiología y Parasitología , Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra , c/Irunlarrea 1, Pamplona , Spain
| | - Sylvie Mémet
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| | - Jean-Pierre Gorvel
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| |
Collapse
|
11
|
The Making of Hematopoiesis: Developmental Ancestry and Environmental Nurture. Int J Mol Sci 2018; 19:ijms19072122. [PMID: 30037064 PMCID: PMC6073875 DOI: 10.3390/ijms19072122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/02/2023] Open
Abstract
Evidence from studies of the behaviour of stem and progenitor cells and of the influence of cytokines on their fate determination, has recently led to a revised view of the process by which hematopoietic stem cells and their progeny give rise to the many different types of blood and immune cells. The new scenario abandons the classical view of a rigidly demarcated lineage tree and replaces it with a much more continuum-like view of the spectrum of fate options open to hematopoietic stem cells and their progeny. This is in contrast to previous lineage diagrams, which envisaged stem cells progressing stepwise through a series of fairly-precisely described intermediate progenitors in order to close down alternative developmental options. Instead, stem and progenitor cells retain some capacity to step sideways and adopt alternative, closely related, fates, even after they have “made a lineage choice.” The stem and progenitor cells are more inherently versatile than previously thought and perhaps sensitive to lineage guidance by environmental cues. Here we examine the evidence that supports these views and reconsider the meaning of cell lineages in the context of a continuum model of stem cell fate determination and environmental modulation.
Collapse
|
12
|
Abstract
The immune system is characterized by the generation of structurally and functionally heterogeneous immune cells that constitute complex innate and adaptive immunity. This heterogeneity of immune cells results from changes in the expression of genes without altering DNA sequence. To achieve this heterogeneity, immune cells orchestrate the expression and functional status of transcription factor (TF) networks, which can be broadly categorized into 3 classes: pioneer TFs that facilitate initial commitment and differentiation of hematopoietic cells, subset-specific TFs that promote the generation of selected cell lineages, and immune-signaling TFs that regulate specialized function in differentiated cells. Epigenetic mechanisms are known to be critical for organizing the TF networks, thereby controlling immune cell lineage-fate decisions, plasticity, and function. The effects of epigenetic regulators can be heritable during cell mitosis, primarily through the modification of DNA and histone methylation patterns at gene loci. By doing so, the immune system is enabled to mount a selective but robust response to stimuli, such as pathogens, tumor cells, autoantigens, or allogeneic antigens in the setting of transplantation, while preserving the immune cell reservoir necessary for protecting the host against numerous other unexpected stimuli and limit detrimental effect of systemic inflammatory reactions.
Collapse
|
13
|
Manthey H, Zernecke A. Dendritic cells in atherosclerosis: Functions in immune regulation and beyond. Thromb Haemost 2017; 106:772-8. [DOI: 10.1160/th11-05-0296] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/02/2011] [Indexed: 12/15/2022]
Abstract
SummaryChronic inflammation drives the development of atherosclerosis. Dendritic cells (DCs) are known as central mediators of adaptive immune responses and the development of immunological memory and tolerance. DCs are present in non-diseased arteries, and accumulate within atherosclerotic lesions where they can be localised in close vicinity to T cells. Recent work has revealed important functions of DCs in regulating immune mechanisms in atherogenesis, and vaccination strategies using DCs have been explored for treatment of disease. However, in line with a phenotypical and functional overlap with plaque macrophages vascular DCs were also identified to engulf lipids, thus contributing to lipid burden in the vessel wall and initiation of lesion growth. Furthermore, a function of DCs in regulating cholesterol homeostasis has been revealed. Finally, phenotypically distinct plasmacytoid dendritic cells (pDCs) have been identified within atherosclerotic lesions. This review will dissect the multifaceted contribution of DCs and pDCs to the initiation and progression of atherosclerosis and the experimental approaches utilising DCs in therapeutic vaccination strategies.
Collapse
|
14
|
Smirnov A, Pohlmann S, Nehring M, Ali S, Mann-Nüttel R, Scheu S, Antoni AC, Hansen W, Büettner M, Gardiasch MJ, Westendorf AM, Wirsdörfer F, Pastille E, Dudda M, Flohé SB. Sphingosine 1-Phosphate- and C-C Chemokine Receptor 2-Dependent Activation of CD4 + Plasmacytoid Dendritic Cells in the Bone Marrow Contributes to Signs of Sepsis-Induced Immunosuppression. Front Immunol 2017; 8:1622. [PMID: 29218051 PMCID: PMC5703700 DOI: 10.3389/fimmu.2017.01622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/08/2017] [Indexed: 12/24/2022] Open
Abstract
Sepsis is the dysregulated response of the host to systemic, mostly bacterial infection, and is associated with an enhanced susceptibility to life-threatening opportunistic infections. During polymicrobial sepsis, dendritic cells (DCs) secrete enhanced levels of interleukin (IL) 10 due to an altered differentiation in the bone marrow and contribute to the development of immunosuppression. We investigated the origin of the altered DC differentiation using murine cecal ligation and puncture (CLP), a model for human polymicrobial sepsis. Bone marrow cells (BMC) were isolated after sham or CLP operation, the cellular composition was analyzed, and bone marrow-derived DCs (BMDCs) were generated in vitro. From 24 h on after CLP, BMC gave rise to BMDC that released enhanced levels of IL-10. In parallel, a population of CD11chiMHCII+CD4+ DCs expanded in the bone marrow in a MyD88-dependent manner. Prior depletion of the CD11chiMHCII+CD4+ DCs from BMC in vitro reversed the increased IL-10 secretion of subsequently differentiating BMDC. The expansion of the CD11chiMHCII+CD4+ DC population in the bone marrow after CLP required the function of sphingosine 1-phosphate receptors and C-C chemokine receptor (CCR) 2, the receptor for C-C chemokine ligand (CCL) 2, but was not associated with monocyte mobilization. CD11chiMHCII+CD4+ DCs were identified as plasmacytoid DCs (pDCs) that had acquired an activated phenotype according to their increased expression of MHC class II and CD86. A redistribution of CD4+ pDCs from MHC class II− to MHC class II+ cells concomitant with enhanced expression of CD11c finally led to the rise in the number of CD11chiMHCII+CD4+ DCs. Enhanced levels of CCL2 were found in the bone marrow of septic mice and the inhibition of CCR2 dampened the expression of CD86 on CD4+ pDCs after CLP in vitro. Depletion of pDCs reversed the bias of splenic DCs toward increased IL-10 synthesis after CLP in vivo. Thus, during polymicrobial sepsis, CD4+ pDCs are activated in the bone marrow and induce functional reprogramming of differentiating BMDC toward an immunosuppressive phenotype.
Collapse
Affiliation(s)
- Anna Smirnov
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephanie Pohlmann
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Nehring
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany.,Cells in Motion, Cluster of Excellence, University of Münster, Münster, Germany
| | - Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Anne-Charlotte Antoni
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manuela Büettner
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Miriam J Gardiasch
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Wirsdörfer
- Medical Faculty, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Eva Pastille
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marcel Dudda
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefanie B Flohé
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
15
|
Hey YY, O’Neill HC. Antigen Presenting Properties of a Myeloid Dendritic-Like Cell in Murine Spleen. PLoS One 2016; 11:e0162358. [PMID: 27654936 PMCID: PMC5031434 DOI: 10.1371/journal.pone.0162358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/22/2016] [Indexed: 12/02/2022] Open
Abstract
This paper distinguishes a rare subset of myeloid dendritic-like cells found in mouse spleen from conventional (c) dendritic cells (DC) in terms of phenotype, function and gene expression. These cells are tentatively named “L-DC” since they resemble dendritic-like cells produced in longterm cultures of spleen. L-DC can be distinguished on the basis of their unique phenotype as CD11bhiCD11cloMHCII-CD43+Ly6C-Ly6G-Siglec-F- cells. They demonstrate similar ability as cDC to uptake and retain complex antigens like mannan via mannose receptors, but much lower ability to endocytose and retain soluble antigen. While L-DC differ from cDC by their inability to activate CD4+ T cells, they are capable of antigen cross-presentation for activation of CD8+ T cells, although less effectively so than the cDC subsets. In terms of gene expression, CD8- cDC and CD8+ cDC are quite distinct from L-DC. CD8+ cDC are distinguishable from the other two subsets by expression of CD24a, Clec9a, Xcr1 and Tlr11, while CD8- cDC are distinguished by expression of Ccnd1 and H-2Eb2. L-DC are distinct from the two cDC subsets through upregulated expression of Clec4a3, Emr4, Itgam, Csf1r and CD300ld. The L-DC gene profile is quite distinct from that of cDC, confirming a myeloid cell type with distinct antigen presenting properties.
Collapse
Affiliation(s)
- Ying-ying Hey
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- Clem Jones Research Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Helen C. O’Neill
- Clem Jones Research Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, Australia
- * E-mail:
| |
Collapse
|
16
|
DLL4 + dendritic cells: Key regulators of Notch Signaling in effector T cell responses. Pharmacol Res 2016; 113:449-457. [PMID: 27639599 DOI: 10.1016/j.phrs.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/07/2023]
Abstract
Dendritic cells (DCs) are critical regulators of adaptive immune responses. DCs can elicit primary T cell responses at low DC:T cell ratios through their expression of high levels of antigen-presenting molecules and costimulatory molecules. DCs are important for induction of functionally diverse T cell subsets such as CD4+ T helper (Th)1 and Th17 cells and effector CD8+ T cells able to reside in epithelial tissues. Recent studies begin illuminating the underlying mechanism by which DCs regulate specialized T cell subsets. DCs are composed of subsets that differ in their phenotype, localization and function. DCs expressing high levels of DLL4 (DLL4+ DCs), which is a member of Notch ligand family, are newly discovered cells that have greater ability than DLL4- DCs to promote the generation of Th1 and Th17 CD4+ T cells. DLL4 derived from DLL4+ DCs is also important for promoting the differentiation and expansion of effector CD8+ T cells. Experimental studies have demonstrated that selective deletion of DLL4 in DCs causes impaired antitumor immunity. In contrast, blocking DLL4 leads to dramatic reduction of inflammatory T cell responses and their-mediated tissue damage. We will discuss emerging functional specialization within the DLL4+ DC compartment, DLL4+ DC biology and the impact of pharmacological modulation of DLL4 to control inflammatory disorders.
Collapse
|
17
|
Uzureau S, Coquerelle C, Vermeiren C, Uzureau P, Van Acker A, Pilotte L, Monteyne D, Acolty V, Vanhollebeke B, Van den Eynde B, Pérez-Morga D, Moser M, Pays E. Apolipoproteins L control cell death triggered by TLR3/TRIF signaling in dendritic cells. Eur J Immunol 2016; 46:1854-66. [PMID: 27198486 DOI: 10.1002/eji.201546252] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/04/2016] [Accepted: 05/12/2016] [Indexed: 02/01/2023]
Abstract
Apolipoproteins L (ApoLs) are Bcl-2-like proteins expressed under inflammatory conditions in myeloid and endothelial cells. We found that Toll-like receptor (TLR) stimuli, particularly the viral mimetic polyinosinic:polycytidylic acid (poly(I:C)), specifically induce ApoLs7/11 subfamilies in murine CD8α(+) dendritic cells (DCs). This induction requires the TLR3/TRIF (where TRIF is TIR domain containing adapter-inducing interferon β) signaling pathway and is dependent on IFN-β in all ApoLs subfamilies except for ApoL7c. Poly(I:C) treatment of DCs is also associated with induction of both cell death and autophagy. ApoLs expression is related to promotion of DC death by poly(I:C), as ApoLs7/11 knockdown increases DC survival and ApoLs7 are associated with the anti-apoptotic protein Bcl-xL (where Bcl-xL is B-cell lymphoma extra large). Similarly, in human monocyte-derived DCs poly(I:C) induces both cell death and the expression of ApoLs, principally ApoL3. Finally, the BH3-like peptide of ApoLs appears to be involved in the DC death-promoting activity. We would like to propose that ApoLs are involved in cell death linked to activation of DCs by viral stimuli.
Collapse
Affiliation(s)
- Sophie Uzureau
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Caroline Coquerelle
- Laboratoire d'Immunobiologie, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Corentin Vermeiren
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Pierrick Uzureau
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, Gosselies, Belgium.,Laboratoire de Médecine Expérimentale, Hôpital Vésale, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Annette Van Acker
- Laboratoire d'Immunobiologie, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Luc Pilotte
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Daniel Monteyne
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Valérie Acolty
- Laboratoire d'Immunobiologie, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Benoit Vanhollebeke
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | | | - David Pérez-Morga
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Muriel Moser
- Laboratoire d'Immunobiologie, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Etienne Pays
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
18
|
Ginhoux F, Guilliams M, Naik SH. Editorial: Dendritic Cell and Macrophage Nomenclature and Classification. Front Immunol 2016; 7:168. [PMID: 27199991 PMCID: PMC4852170 DOI: 10.3389/fimmu.2016.00168] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Martin Guilliams
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent University, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Shalin H Naik
- Molecular Medicine Division, The Walter + Eliza Hall Institute of Medical Research, The University of Melbourne, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Lutz MB. Induction of CD4(+) Regulatory and Polarized Effector/helper T Cells by Dendritic Cells. Immune Netw 2016; 16:13-25. [PMID: 26937228 PMCID: PMC4770096 DOI: 10.4110/in.2016.16.1.13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are considered to play major roles during the induction of T cell immune responses as well as the maintenance of T cell tolerance. Naive CD4(+) T cells have been shown to respond with high plasticity to signals inducing their polarization into effector/helper or regulatory T cells. Data obtained from in vitro generated bone-marrow (BM)-derived DCs as well as genetic mouse models revealed an important but not exclusive role of DCs in shaping CD4(+) T cell responses. Besides the specialization of some conventional DC subsets for the induction of polarized immunity, also the maturation stage, activation of specialized transcription factors and the cytokine production of DCs have major impact on CD4(+) T cells. Since in vitro generated BM-DCs show a high diversity to shape CD4(+) T cells and their high similarity to monocyte-derived DCs in vivo, this review reports data mainly on BM-DCs in this process and only touches the roles of transcription factors or of DC subsets, which have been discussed elsewhere. Here, recent findings on 1) the conversion of naive into anergic and further into Foxp3(-) regulatory T cells (Treg) by immature DCs, 2) the role of RelB in steady state migratory DCs (ssmDCs) for conversion of naive T cells into Foxp3(+) Treg, 3) the DC maturation signature for polarized Th2 cell induction and 4) the DC source of IL-12 for Th1 induction are discussed.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute of Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
20
|
Constantino J, Gomes C, Falcão A, Cruz MT, Neves BM. Antitumor dendritic cell-based vaccines: lessons from 20 years of clinical trials and future perspectives. Transl Res 2016; 168:74-95. [PMID: 26297944 DOI: 10.1016/j.trsl.2015.07.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are versatile elements of the immune system and are best known for their unparalleled ability to initiate and modulate adaptive immune responses. During the past few decades, DCs have been the subject of numerous studies seeking new immunotherapeutic strategies against cancer. Despite the initial enthusiasm, disappointing results from early studies raised some doubts regarding the true clinical value of these approaches. However, our expanding knowledge of DC immunobiology and the definition of the optimal characteristics for antitumor immune responses have allowed a more rational development of DC-based immunotherapies in recent years. Here, after a brief overview of DC immunobiology, we sought to systematize the knowledge provided by 20 years of clinical trials, with a special emphasis on the diversity of approaches used to manipulate DCs and their consequent impact on vaccine effectiveness. We also address how new therapeutic concepts, namely the combination of DC vaccines with other anticancer therapies, are being implemented and are leveraging clinical outcomes. Finally, optimization strategies, new insights, and future perspectives on the field are also highlighted.
Collapse
Affiliation(s)
- João Constantino
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Célia Gomes
- Faculty of Medicine, Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI) and Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Bruno M Neves
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal; Department of Chemistry and QOPNA, Mass Spectrometry Centre, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
21
|
Hey YY, Tan JKH, O’Neill HC. Redefining Myeloid Cell Subsets in Murine Spleen. Front Immunol 2016; 6:652. [PMID: 26793192 PMCID: PMC4707843 DOI: 10.3389/fimmu.2015.00652] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022] Open
Abstract
Spleen is known to contain multiple dendritic and myeloid cell subsets, distinguishable on the basis of phenotype, function and anatomical location. As a result of recent intensive flow cytometric analyses, splenic dendritic cell (DC) subsets are now better characterized than other myeloid subsets. In order to identify and fully characterize a novel splenic subset termed "L-DC" in relation to other myeloid cells, it was necessary to investigate myeloid subsets in more detail. In terms of cell surface phenotype, L-DC were initially characterized as a CD11b(hi)CD11c(lo)MHCII(-)Ly6C(-)Ly6G(-) subset in murine spleen. Their expression of CD43, lack of MHCII, and a low level of CD11c was shown to best differentiate L-DC by phenotype from conventional DC subsets. A complete analysis of all subsets in spleen led to the classification of CD11b(hi)CD11c(lo)MHCII(-)Ly6C(lo)Ly6G(-) cells as monocytes expressing CX3CR1, CD43 and CD115. Siglec-F expression was used to identify a specific eosinophil population, distinguishable from both Ly6C(lo) and Ly6C(hi) monocytes, and other DC subsets. L-DC were characterized as a clear subset of CD11b(hi)CD11c(lo)MHCII(-)Ly6C(-)Ly6G(-) cells, which are CD43(+), Siglec-F(-) and CD115(-). Changes in the prevalence of L-DC compared to other subsets in spleens of mutant mice confirmed the phenotypic distinction between L-DC, cDC and monocyte subsets. L-DC development in vivo was shown to occur independently of the BATF3 transcription factor that regulates cDC development, and also independently of the FLT3L and GM-CSF growth factors which drive cDC and monocyte development, so distinguishing L-DC from these commonly defined cell types.
Collapse
Affiliation(s)
- Ying-Ying Hey
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jonathan K. H. Tan
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Helen C. O’Neill
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| |
Collapse
|
22
|
Ramanathan R, Park J, Hughes S, Lykins W, Bennett H, Hladik F, Woodrow K. Effect of Mucosal Cytokine Administration on Selective Expansion of Vaginal Dendritic Cells to Support Nanoparticle Transport. Am J Reprod Immunol 2015; 74:333-44. [PMID: 26118309 PMCID: PMC4599983 DOI: 10.1111/aji.12409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022] Open
Abstract
PROBLEM The capacity of antigen-carrying vaccine nanoparticles (NPs) administered vaginally to stimulate local immune responses may be limited by the relatively low numbers of antigen-presenting cells (APCs) in the genital mucosa. Because inflammation is associated with increased susceptibility to sexually transmitted infections, we sought to increase APC numbers without causing inflammation. METHOD OF STUDY In this study, we evaluated intravaginal delivery of chemokines, growth factors, or synthetic adjuvants to expand APCs in reproductive tissues. RESULTS We found that granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated expansion of CD11b+ dendritic cells (DCs) within 24 hr of intravaginal administration, with no effect on Langerhans cells or macrophages. Expansion of the CD11b+ DC population was not associated with increased inflammatory cytokine production, and these cells retained phagocytic function. CONCLUSION Our data suggest that non-inflammatory expansion of mucosal APCs by intravaginal GM-CSF could be used as an adjuvanting strategy to potentiate the genital immune response to nanoparticulate mucosal vaccines.
Collapse
Affiliation(s)
- R. Ramanathan
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - J. Park
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - S.M. Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - W.R. Lykins
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - H.R. Bennett
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - F. Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle
| | - K.A. Woodrow
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
23
|
Scheenstra MR, Salunkhe V, De Cuyper IM, Hoogenboezem M, Li E, Kuijpers TW, van den Berg TK, Gutiérrez L. Characterization of hematopoietic GATA transcription factor expression in mouse and human dendritic cells. Blood Cells Mol Dis 2015; 55:293-303. [PMID: 26460250 DOI: 10.1016/j.bcmd.2015.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are key initiators and regulators of the immune response. The development of the DC lineage and their subsets requires an orchestrated regulation of their transcriptional program. Gata1, a transcription factor expressed in several hematopoietic cell lineages, has been recently reported to be required for mouse DC development and function. In humans, GATA1 is involved in the lineage separation between monocyte-derived DCs and Langerhans cells (LC) and loss of GATA1 results in differentiation arrest at the monocyte stage. The hematopoietic GATA factors (i.e. Gata1, Gata2, Gata3) are known to regulate each other's expression and to function consecutively throughout lineage commitment (so-called GATA switch). In humans, mutations in GATA2 are causative of MonoMAC disease, a human immunodeficiency syndrome characterized by loss of DCs, monocytes, B and NK cells. However, additional data on the expression of hematopoietic GATA factors in the DC lineage is missing. In this study, we have characterized the expression of hematopoietic GATA factors in murine and human DCs and their expression dynamics upon TLR stimulation. We found that all hematopoietic GATA factors are expressed in DCs, but identified species-specific differences in the relative expression of each GATA factor, and how their expression fluctuates upon stimulation.
Collapse
Affiliation(s)
- Maaike R Scheenstra
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vishal Salunkhe
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Iris M De Cuyper
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Hoogenboezem
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eveline Li
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Gutiérrez
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Vu Manh TP, Bertho N, Hosmalin A, Schwartz-Cornil I, Dalod M. Investigating Evolutionary Conservation of Dendritic Cell Subset Identity and Functions. Front Immunol 2015; 6:260. [PMID: 26082777 PMCID: PMC4451681 DOI: 10.3389/fimmu.2015.00260] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T-cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks, and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization, and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation, and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes, and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types, organs, and species.
Collapse
Affiliation(s)
- Thien-Phong Vu Manh
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| | - Nicolas Bertho
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique , Jouy-en-Josas , France
| | - Anne Hosmalin
- INSERM U1016, Institut Cochin , Paris , France ; CNRS UMR8104 , Paris , France ; Université Paris Descartes , Paris , France ; Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin , Paris , France
| | - Isabelle Schwartz-Cornil
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique , Jouy-en-Josas , France
| | - Marc Dalod
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| |
Collapse
|
25
|
Schuster P, Thomann S, Werner M, Vollmer J, Schmidt B. A subset of human plasmacytoid dendritic cells expresses CD8α upon exposure to herpes simplex virus type 1. Front Microbiol 2015; 6:557. [PMID: 26082771 PMCID: PMC4451679 DOI: 10.3389/fmicb.2015.00557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/20/2015] [Indexed: 11/13/2022] Open
Abstract
Classical and plasmacytoid dendritic cells (DC) play important roles in the defense against murine and human infections with herpes simplex virus (HSV). So far, CD8α expression has only been reported for murine DC. CD8α+ DC have prominent cross-presenting activities, which are enhanced by murine CD8α+ PDC. The human orthologue of murine CD8α+ DC, the CD141 (BDCA3)+ DC, mainly cross-present after TLR3 ligation. We report here the serendipitous finding that a subset of human PDC upregulates CD8α upon HSV-1 stimulation, as shown by gene array and flow cytometry analyses. CD8α, not CD8ß, was expressed upon exposure. Markers of activation, migration, and costimulation were upregulated on CD8α-expressing human PDC. In these cells, increased cytokine and chemokine levels were detected that enhance development and function of T, B, and NK cells, and recruit immature DC, monocytes, and Th1 cells, respectively. Altogether, human CD8α+ PDC exhibit a highly activated phenotype and appear to recruit other immune cells to the site of inflammation. Further studies will show whether CD8α-expressing PDC contribute to antigen cross-presentation, which may be important for immune defenses against HSV infections in vitro and in vivo.
Collapse
Affiliation(s)
- Philipp Schuster
- Institute of Medical Microbiology and Hygiene, University of Regensburg , Regensburg, Germany ; Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Sabrina Thomann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Maren Werner
- Institute of Medical Microbiology and Hygiene, University of Regensburg , Regensburg, Germany
| | | | - Barbara Schmidt
- Institute of Medical Microbiology and Hygiene, University of Regensburg , Regensburg, Germany ; Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| |
Collapse
|
26
|
Toward defining a ‘lineage’ – The case for dendritic cells. Semin Cell Dev Biol 2015; 41:3-8. [DOI: 10.1016/j.semcdb.2015.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/10/2015] [Indexed: 12/23/2022]
|
27
|
IL-36α induces maturation of Th1-inducing human MDDC and synergises with IFN-γ to induce high surface expression of CD14 and CD11c. Hum Immunol 2015; 76:245-53. [DOI: 10.1016/j.humimm.2015.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 01/10/2015] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
|
28
|
Abstract
Cystic echinococcosis is a chronic infectious disease that results from a host/parasite interaction. Vaccination with ferritin derived from Echinococcus granulosus is a potential preventative treatment. To understand whether ferritin is capable of inducing a host immune response, we investigated the response of dendritic cells (DCs) to both recombinant ferritin protein and the hydatid fluid (HF) of E. granulosus. We evaluated the immunomodulatory potential of these antigens by performing, immunocytochemistry, electron microscopy and in vivo imaging of monocyte-derived murine DCs. During antigen stimulation of DCs, ferritin cause DCs maturation and induced higher levels of surface marker expression and activated T-cell proliferation and migration. On contrary, HF failed to induce surface marker expression and to stimulate T-cell proliferation. In response to HF, DCs produced interleukin-6 (IL-6), but no IL-12 and IL-10. DCs stimulated with ferritin produced high levels of cytokines. Overall, HF appears to induce host immunosuppression in order to ensure parasite survival via inhibits DC maturation and promotes Th2-dependent secretion of cytokines. Although ferritin also promoted DC maturation and cytokine release, it also activates CD4+T-cell proliferation, but regard of the mechanism of the Eg.ferritin induce host to eradicate E. granulosus were not clear.
Collapse
|
29
|
Hochheiser K, Kurts C. Selective Dependence of Kidney Dendritic Cells on CX3CR1--Implications for Glomerulonephritis Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 850:55-71. [PMID: 26324346 DOI: 10.1007/978-3-319-15774-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As central regulators of the adaptive immune response, dendritic cells (DCs) are found in virtually all lymphatic and non-lymphatic organs. A compact network of DCs also spans the kidneys. DCs play a central role in maintenance of organ homeostasis as well as in induction of immune responses against invading pathogens. They can mediate protective or destructive functions in a context-dependent manner.We recently identified CX(3)CR1 as a kidney-specific "homing receptor" for DCs. There was a strong reduction of DCs in the kidneys of CX(3)CR1-deficient mice compared to controls. This reduction was not observed in other organs except the small intestine. As a possible underlying reason we found a strong expression of the CX(3)CR1 ligand fractalkine in the kidneys. Due to this CX(3)CR1-dependent reduction of DCs, especially in the renal cortex, a glomerulonephritis (GN) model was ameliorated in CX(3)CR1-deficient mice. In contrast, the immune defense against the most common renal infection, bacterial pyelonephritis (PN), was not significantly influenced by CX(3)CR1-deficiency. This was explained by the much smaller CX(3)CR1-dependency of medullary DCs, which recruit effector cells into the kidney during PN. Additionally, once neutrophils had been recruited by mechanisms distinct from CX(3)CR1, they carried out some of the functions of DCs.Taken together, we suggest CX(3)CR1 as a therapeutic target for GN treatment, as the absence of CX(3)CR1 selectively influences DCs in the kidney without rendering mice more susceptible towards bacterial kidney infections.
Collapse
Affiliation(s)
- Katharina Hochheiser
- Institute of Experimental Immunology(IMMEI), Rheinische Friedrich-Wilhelms University, 53105, Bonn, Germany,
| | | |
Collapse
|
30
|
The influence of Ouabain on human dendritic cells maturation. Mediators Inflamm 2014; 2014:494956. [PMID: 25609892 PMCID: PMC4291013 DOI: 10.1155/2014/494956] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/01/2014] [Indexed: 11/17/2022] Open
Abstract
Although known as a Na,K-ATPase inhibitor, several other cellular and systemic actions have been ascribed to the steroid Ouabain (Oua). Particularly in the immune system, our group showed that Ouabain acts on decreasing lymphocyte proliferation, synergizing with glucocorticoids in spontaneous thymocyte apoptosis, and also lessening CD14 expression and blocking CD16 upregulation on human monocytes. However, Ouabain effects on dendritic cells (DCs) were not explored so far. Considering the peculiar plasticity and the importance of DCs in immune responses, the aim of our study was to investigate DC maturation under Ouabain influence. To generate immature DCs, human monocytes were cultured with IL-4 and GM-CSF (5 days). To investigate Ouabain role on DC activation, DCs were stimulated with TNF-α for 48 h in the presence or absence of Ouabain. TNF-induced CD83 expression and IL-12 production were abolished in DCs incubated with 100 nM Ouabain, though DC functional capacity concerning lymphocyte activation remained unaltered. Nevertheless, TNF-α-induced antigen capture downregulation, another maturation marker, occurred even in the presence of Ouabain. Besides, Ouabain increased HLA-DR and CD86 expression, whereas CD80 expression was maintained. Collectively, our results suggest that DCs respond to Ouabain maturating into a distinct category, possibly contributing to the balance between immunity and tolerance.
Collapse
|
31
|
Tahoori MT, Pourfathollah AA, Soleimani M, Vasheghani-Farahani E, Mohammadzadeh A, Amari A, Hashemi SM, Mossahebi-Mohammadi M. Fibroblasts feeder niche and Flt3 Ligand as a novel inducer of plasmacytoid dendritic cells development in vitro. Int Immunopharmacol 2014; 24:474-480. [PMID: 25445955 DOI: 10.1016/j.intimp.2014.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
Plasmacytoid dendritic cell (pDC), plays central role in antiviral immunity. The aim of this study was to assess the effect of Flt3 ligand (FL) alone or with L929 fibroblast feeder or L929 conditioned media on differentiation of mouse bone marrow (BM) cells into pDC in vitro. Murine BM cells were cultured with FL or with L929 or conditioned media for 9days. The differentiated cells were analyzed using flow cytometry for PDCA-1, B220 and CXCR4. The relative expression of Stat3, CXCR4, CXCR7, IFN-β, TGF-β and Runx2 in differentiated cells determined by real time PCR. The development of pDC showed up to 19% increase after co-culture of BM cells with fibroblast feeder. Upregulation of Stat3, Runx2 and CXCR4 due to the presence of fibroblast feeder with FL in culture results in improved pDC development. Furthermore, 30% L929 supernatant along with Flt3 ligand was able to derive pDC up to 8.9% in comparison with FL alone, which was 6.6% in vitro. Thus, for the first time we introduced L929 fibroblast feeder as a niche producer of M-CSF and probably other growth factors and chemokines, which promotes the development of pDC in vitro along with FL, similar to in vivo niche.
Collapse
Affiliation(s)
- Mohammad Taher Tahoori
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| | - Masoud Soleimani
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran Iran; Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | | | - Adel Mohammadzadeh
- Department of Microbiology, Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Afshin Amari
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
32
|
Rogers NM, Ferenbach DA, Isenberg JS, Thomson AW, Hughes J. Dendritic cells and macrophages in the kidney: a spectrum of good and evil. Nat Rev Nephrol 2014; 10:625-43. [PMID: 25266210 PMCID: PMC4922410 DOI: 10.1038/nrneph.2014.170] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Renal dendritic cells (DCs) and macrophages represent a constitutive, extensive and contiguous network of innate immune cells that provide sentinel and immune-intelligence activity; they induce and regulate inflammatory responses to freely filtered antigenic material and protect the kidney from infection. Tissue-resident or infiltrating DCs and macrophages are key factors in the initiation and propagation of renal disease, as well as essential contributors to subsequent tissue regeneration, regardless of the aetiological and pathogenetic mechanisms. The identification, and functional and phenotypic distinction of these cell types is complex and incompletely understood, and the same is true of their interplay and relationships with effector and regulatory cells of the adaptive immune system. In this Review, we discuss the common and distinct characteristics of DCs and macrophages, as well as key advances that have identified the renal-specific functions of these important phagocytic, antigen-presenting cells, and their roles in potentiating or mitigating intrinsic kidney disease. We also identify remaining issues that are of priority for further investigation, and highlight the prospects for translational and therapeutic application of the knowledge acquired.
Collapse
Affiliation(s)
- Natasha M Rogers
- Vascular Medicine Institute and Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, W1544 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - David A Ferenbach
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jeffrey S Isenberg
- Vascular Medicine Institute and Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, W1544 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Angus W Thomson
- Vascular Medicine Institute and Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, W1544 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Jeremy Hughes
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
33
|
Moraco AH, Kornfeld H. Cell death and autophagy in tuberculosis. Semin Immunol 2014; 26:497-511. [PMID: 25453227 DOI: 10.1016/j.smim.2014.10.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis has succeeded in infecting one-third of the human race though inhibition or evasion of innate and adaptive immunity. The pathogen is a facultative intracellular parasite that uses the niche provided by mononuclear phagocytes for its advantage. Complex interactions determine whether the bacillus will or will not be delivered to acidified lysosomes, whether the host phagocyte will survive infection or die, and whether the timing and mode of cell death works to the advantage of the host or the pathogen. Here we discuss cell death and autophagy in TB. These fundamental processes of cell biology feature in all aspects of TB pathogenesis and may be exploited to the treatment or prevention of TB disease.
Collapse
Affiliation(s)
- Andrew H Moraco
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
34
|
Intestine-derived Clostridium leptum induces murine tolerogenic dendritic cells and regulatory T cells in vitro. Hum Immunol 2014; 75:1232-8. [PMID: 25300998 DOI: 10.1016/j.humimm.2014.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 09/27/2014] [Accepted: 09/27/2014] [Indexed: 01/17/2023]
Abstract
Patients with autoimmune and allergic diseases frequently present with reduced numbers and functionally impaired regulatory T cells (Tregs) and/or tolerogenic dendritic cells (tDCs). tDC-mediated regulation of Treg proliferation (numbers) and activation is crucial to establishing and maintaining an appropriate level of immune tolerance. Colonic colonization of Clostridium spp. is associated with accumulation of Tregs, which inhibits development of inflammatory lesions. To investigate whether infection with the Clostridium leptum sp. can specifically induce Tregs and/or tDCs bone marrow-derived dendritic cells were cultured in the presence or absence of C. leptum then co-cultured with CD4(+)CD25(-) T cells or not. Changes in tDC numbers, Treg numbers, percentages of T cell subsets, and expression of cytokines related to Tregs (IL-10 and transforming growth factor-beta (TGF-β1)), DCs (IL-12p40 and IL-6) and effector T cells (IFN-γ, IL-4, IL-5, IL-13, and IL-17A) were measured. In the co-culture system, C. leptum-stimulated tDCs were able to increase the percentage and total number of Tregs attenuate activation of T helper cells (Th1, Th2, and Th17), and decrease the amount of secreted IL-4, IL-5, IL-13, IFN-γ and IL-17A. Thus, C. leptum exposure can induce the tDC-mediated stimulation of Tregs while disrupting the immune inflammatory response mediated by Th1, Th2 and Th17 cells.
Collapse
|
35
|
Ashok D, Acha-Orbea H. Timing is everything: dendritic cell subsets in murine Leishmania infection. Trends Parasitol 2014; 30:499-507. [DOI: 10.1016/j.pt.2014.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 02/02/2023]
|
36
|
Polz J, Remke A, Weber S, Schmidt D, Weber-Steffens D, Pietryga-Krieger A, Müller N, Ritter U, Mostböck S, Männel DN. Myeloid suppressor cells require membrane TNFR2 expression for suppressive activity. IMMUNITY INFLAMMATION AND DISEASE 2014; 2:121-30. [PMID: 25400932 PMCID: PMC4217546 DOI: 10.1002/iid3.19] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/18/2014] [Accepted: 03/20/2014] [Indexed: 12/12/2022]
Abstract
TNF and TNF receptor type 2 (TNFR2) have been shown to be important for generation of myeloid-derived suppressor cells (MDSC). In order to analyze whether and how TNFR2 passes the effect of TNF on, myeloid cells from TNFR2-deficient mice were compared to respective cells from wild-type mice. Primary TNFR2-deficient myeloid cells showed reduced production of NO and IL-6 which was attributable to CD11b+ CD11c− Ly6C+ Ly6G− immature monocytic MDSC. TNFR2-deficient MDSC isolated from bone marrow were less suppressive for T cell proliferation compared to WT-derived MDSC. These differences on myeloid cells between the two mouse lines were still observed after co-culture of bone marrow cells from the two mouse lines together during myeloid cell differentiation, which demonstrated that the impaired functional capacity of TNFR2-deficient cells was independent of soluble factors but required membrane expression of TNFR2. Similarly, adoptive transfer of TNFR2-deficient bone marrow cells into wild-type hosts did not rescue the TNFR2-specific phenotype of bone marrow-derived myeloid cells. Therefore, membrane TNFR2 expression determines generation and function of monocytic MDSC.
Collapse
Affiliation(s)
- Johannes Polz
- Institute of Immunology, University of Regensburg Regensburg, Germany
| | - Annika Remke
- Institute of Immunology, University of Regensburg Regensburg, Germany
| | - Sabine Weber
- Institute of Immunology, University of Regensburg Regensburg, Germany
| | - Dominic Schmidt
- Institute of Immunology, University of Regensburg Regensburg, Germany
| | | | | | - Nils Müller
- Institute of Immunology, University of Regensburg Regensburg, Germany
| | - Uwe Ritter
- Institute of Immunology, University of Regensburg Regensburg, Germany
| | - Sven Mostböck
- Institute of Immunology, University of Regensburg Regensburg, Germany
| | - Daniela N Männel
- Institute of Immunology, University of Regensburg Regensburg, Germany
| |
Collapse
|
37
|
Zernecke A. Distinct functions of specialized dendritic cell subsets in atherosclerosis and the road ahead. SCIENTIFICA 2014; 2014:952625. [PMID: 24818041 PMCID: PMC4003768 DOI: 10.1155/2014/952625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Atherosclerotic vascular disease is modulated by immune mechanisms. Dendritic cells (DCs) and T cells are present within atherosclerotic lesions and function as central players in the initiation and modulation of adaptive immune responses. In previous years, we have studied the functional contribution of distinct DC subsets in disease development, namely, that of CCL17-expressing DCs as well as that of plasmacytoid DCs that play specialized roles in disease development. This review focuses on important findings gathered in these studies and dissects the multifaceted contribution of CCL17-expressing DCs and pDCs to the pathogenesis of atherosclerosis. Furthermore, an outlook on future challenges faced when studying DCs in this detrimental disease are provided, and hurdles that will need to be overcome in order to enable a better understanding of the contribution of DCs to atherogenesis are discussed, a prerequisite for their therapeutic targeting in atherosclerosis.
Collapse
Affiliation(s)
- Alma Zernecke
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
38
|
Pletinckx K, Lutz MB. Dendritic cells generated with Flt3L and exposed to apoptotic cells lack induction of T cell anergy and Foxp3⁺ regulatory T cell conversion in vitro. Immunobiology 2013; 219:230-40. [PMID: 24252473 DOI: 10.1016/j.imbio.2013.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/10/2013] [Accepted: 10/12/2013] [Indexed: 12/12/2022]
Abstract
Removal of apoptotic cells, which appear during the steady state, is a pre-requisite to prevent generation of secondary necrotic cells that may lead to autoimmunity. The recognition of apoptotic material by dendritic cells (DCs) has been proposed to convert them into tolerogenic DCs equipped with specialized tolerogenic mechanisms on T cells. However, comparative studies to demonstrate functional alterations of DCs upon exposure to apoptotic cells have not been performed so far. Here we show that immature murine bone marrow-derived DCs generated with GM-CSF (GM-DCs) or Flt3L (FL-DCs) interact with live or apoptotic syngeneic thymocytes. As expected, GM-DCs phagocytose apoptotic but not live cells, FL-DCs only show trogocytosis of membrane parts. Interaction with live or apoptotic thymocytes did not lead to DC maturation. Both GM-DCs and FL-DCs present OVA as protein, peptide and membrane-associated antigens. Interestingly, only GM-DCs were able to induce T cell anergy or convert naïve T cells into FoxP3⁺ regulatory T cells (Tregs) but FL-DCs did not show either of these effects. Unexpectedly, exposure of immature GM-DCs to live or apoptotic thymocytes did not improve DC functions in both types of in vitro T cell tolerance induction assays. Together, our data suggest that these tolerogenic in vitro measures of immature BM-DCs are not further enhanced by exposure to apoptotic cells and may depend on the generating cytokine.
Collapse
Affiliation(s)
- Katrien Pletinckx
- Institute of Virology and Immunobiology, University of Wuerzburg, Germany
| | - Manfred B Lutz
- Institute of Virology and Immunobiology, University of Wuerzburg, Germany.
| |
Collapse
|
39
|
Hafner AM, Corthésy B, Merkle HP. Particulate formulations for the delivery of poly(I:C) as vaccine adjuvant. Adv Drug Deliv Rev 2013; 65:1386-99. [PMID: 23751781 DOI: 10.1016/j.addr.2013.05.013] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 12/18/2022]
Abstract
Current research and development of antigens for vaccination often center on purified recombinant proteins, viral subunits, synthetic oligopeptides or oligosaccharides, most of them suffering from being poorly immunogenic and subject to degradation. Hence, they call for efficient delivery systems and potent immunostimulants, jointly denoted as adjuvants. Particulate delivery systems like emulsions, liposomes, nanoparticles and microspheres may provide protection from degradation and facilitate the co-formulation of both the antigen and the immunostimulant. Synthetic double-stranded (ds) RNA, such as polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a mimic of viral dsRNA and, as such, a promising immunostimulant candidate for vaccines directed against intracellular pathogens. Poly(I:C) signaling is primarily dependent on Toll-like receptor 3 (TLR3), and on melanoma differentiation-associated gene-5 (MDA-5), and strongly drives cell-mediated immunity and a potent type I interferon response. However, stability and toxicity issues so far prevented the clinical application of dsRNAs as they undergo rapid enzymatic degradation and bear the potential to trigger undue immune stimulation as well as autoimmune disorders. This review addresses these concerns and suggests strategies to improve the safety and efficacy of immunostimulatory dsRNA formulations. The focus is on technological means required to lower the necessary dosage of poly(I:C), to target surface-modified microspheres passively or actively to antigen-presenting cells (APCs), to control their interaction with non-professional phagocytes and to modulate the resulting cytokine secretion profile.
Collapse
|
40
|
Barbuto JAM. Are dysfunctional monocyte-derived dendritic cells in cancer an explanation for cancer vaccine failures? Immunotherapy 2013; 5:105-7. [PMID: 23413899 DOI: 10.2217/imt.12.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 2013; 496:229-32. [PMID: 23552896 DOI: 10.1038/nature12013] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 02/14/2013] [Indexed: 12/24/2022]
Abstract
Haematopoietic stem cells (HSCs) and their subsequent progenitors produce blood cells, but the precise nature and kinetics of this production is a contentious issue. In one model, lymphoid and myeloid production branch after the lymphoid-primed multipotent progenitor (LMPP), with both branches subsequently producing dendritic cells. However, this model is based mainly on in vitro clonal assays and population-based tracking in vivo, which could miss in vivo single-cell complexity. Here we avoid these issues by using a new quantitative version of 'cellular barcoding' to trace the in vivo fate of hundreds of LMPPs and HSCs at the single-cell level. These data demonstrate that LMPPs are highly heterogeneous in the cell types that they produce, separating into combinations of lymphoid-, myeloid- and dendritic-cell-biased producers. Conversely, although we observe a known lineage bias of some HSCs, most cellular output is derived from a small number of HSCs that each generates all cell types. Crucially, in vivo analysis of the output of sibling cells derived from single LMPPs shows that they often share a similar fate, suggesting that the fate of these progenitors was imprinted. Furthermore, as this imprinting is also observed for dendritic-cell-biased LMPPs, dendritic cells may be considered a distinct lineage on the basis of separate ancestry. These data suggest a 'graded commitment' model of haematopoiesis, in which heritable and diverse lineage imprinting occurs earlier than previously thought.
Collapse
|
42
|
Mochizuki K, Xie F, He S, Tong Q, Liu Y, Mochizuki I, Guo Y, Kato K, Yagita H, Mineishi S, Zhang Y. Delta-like ligand 4 identifies a previously uncharacterized population of inflammatory dendritic cells that plays important roles in eliciting allogeneic T cell responses in mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:3772-82. [PMID: 23440416 DOI: 10.4049/jimmunol.1202820] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Graft-versus-host disease (GVHD) reflects an exaggerated inflammatory allogeneic T cell response in hosts receiving allogeneic hematopoietic stem cell transplantation (HSCT). Inhibition of pan-Notch receptor signaling in donor T cells causes reduction of GVHD. However, which Notch ligand(s) in what APCs is important for priming graft-versus-host reaction remains unknown. We demonstrate that δ-like ligand-4 (Dll4) and Dll4-positive (Dll4(high)) inflammatory dendritic cells (i-DCs) play important roles in eliciting allogeneic T cell responses. Host-type Dll4(high) i-DCs occurred in the spleen and intestine of HSCT mice during GVHD induction phase. These Dll4(high) i-DCs were CD11c(+)B220(+)PDCA-1(+), resembling plasmacytoid dentritic cells (pDCs) of naive mice. However, as compared with unstimulated pDCs, Dll4(high) i-DCs expressed higher levels of costimulatory molecules, Notch ligands Jagged1 and Jagged2, and CD11b, and produced more Ifnb and Il23 but less Il12. In contrast, Dll4-negative (Dll4(low)) i-DCs were CD11c(+)B220(-)PDCA-1(-), and had low levels of Jagged1. In vitro assays showed that Dll4(high) i-DCs induced significantly more IFN-γ- and IL-17-producing effector T cells (3- and 10-fold, respectively) than Dll4(low) i-DCs. This effect could be blocked by anti-Dll4 Ab. In vivo administration of Dll4 Ab reduced donor-alloreactive effector T cells producing IFN-γ and IL-17 in GVHD target organs, leading to reduction of GVHD and improved survival of mice after allogeneic HSCT. Our findings indicate that Dll4(high) i-DCs represent a previously uncharacterized i-DC population distinctive from steady state DCs and Dll4(low) i-DCs. Furthermore, Dll4 and Dll4(high) i-DCs may be beneficial targets for modulating allogeneic T cell responses, and could facilitate the discovery of human counterparts of mouse Dll4(high) i-DCs.
Collapse
Affiliation(s)
- Kazuhiro Mochizuki
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Quéré P, Pierre J, Hoang MD, Esnault E, Domenech J, Sibille P, Dimier-Poisson I. Presence of dendritic cells in chicken spleen cell preparations and their functional interaction with the parasite Toxoplasma gondii. Vet Immunol Immunopathol 2013; 153:57-69. [PMID: 23477930 DOI: 10.1016/j.vetimm.2013.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/18/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
Toxoplasmosis is a worldwide epizootic disease of mammals. Chickens, albeit being less susceptible, can be contaminated in free-range flocks and may have an important role in parasite transmission. Plastic adherence selection of chicken spleen cells enriched 8F2+ (putative chicken CD11c) MHC II+ cells of the myeloid type; however, we did not succeed to separate dendritic cells from macrophages using their feature to become loosely adherent after culture as in mammals. Still we clearly identified dendritic-like cells being morphologically distinguishable from macrophages in the KUL01 (macrophage marker) negative fraction, exhibiting responsiveness to LPS and parasite extracts by developing characteristic cellular protrusions as well as a minor phagocytic incorporation of dead parasites. Live T. gondii tachyzoites were able to invade the two different types of myeloid adherent cells, to replicate, and to induce an overall decrease in the expression of MHC II and co-stimulatory molecules, CD80 and CD40. Our data indicate that dendritic cells in addition to macrophages may have a role in hiding viable replicating T. gondii tachyzoites from the immune system and in shuttling them to different organs in the chicken as previously described for different Apicomplexa infecting mammals.
Collapse
Affiliation(s)
- Pascale Quéré
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe PIA, 37380 Nouzilly, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Haugland GT, Jordal AEO, Wergeland HI. Characterization of small, mononuclear blood cells from salmon having high phagocytic capacity and ability to differentiate into dendritic like cells. PLoS One 2012; 7:e49260. [PMID: 23166624 PMCID: PMC3498127 DOI: 10.1371/journal.pone.0049260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/04/2012] [Indexed: 12/16/2022] Open
Abstract
Phagocytes are the principal component of the innate immune system, playing a key role in the clearance of foreign particles that include potential pathogens. In vertebrates, both neutrophils and mononuclear cells like monocytes, macrophages and dendritic cells are all professional phagocytes. In teleosts, B-lymphocytes also have potent phagocytic ability. We have isolated a population of small (<5 µm), mononuclear blood cells from Atlantic salmon (Salmo salar L.) not previously characterized. In order to identify them, we have performed morphological, gene expression, flow cytometry, cytochemical, ultrastructural and functional analyses. Interestingly, they highly express the gene encoding CD83, the most characteristic cell surface marker for dendritic cells in mammals, and MHC class II limited to professional antigen presenting cells. They did not express genes nor did they have cell markers for B-cells, T-cells, monocytes/macrophages or neutrophils as shown by qRT-PCR, flow cytometry and immunoblotting. A remarkable feature of these cells is their potent phagocytic capacity. Their oxygen-independent killing mechanism, as shown by intense acid phosphatase staining, is supported by lack of respiratory burst and myeloperoxidase activity and the acid phosphatase's sensitivity to tartrate. They show a high level of morphological plasticity, as, upon stimulation with mitogens, they change morphology and obtain branching protrusions similarly to dendritic cells. We suggest, based on our findings, that the small, round cells described here are progenitor cells with potential to differentiate into dendritic like cells, although we can not exclude the possibility that they represent a novel cell type.
Collapse
Affiliation(s)
- Gyri T Haugland
- Department of Biology, University of Bergen, Bergen High-Technology Centre, Bergen, Norway.
| | | | | |
Collapse
|
45
|
Hey YY, O'Neill HC. Murine spleen contains a diversity of myeloid and dendritic cells distinct in antigen presenting function. J Cell Mol Med 2012; 16:2611-9. [PMID: 22862733 PMCID: PMC4118229 DOI: 10.1111/j.1582-4934.2012.01608.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 07/23/2012] [Indexed: 12/24/2022] Open
Abstract
The spleen contains multiple subsets of myeloid and dendritic cells (DC). DC are important antigen presenting cells (APC) which induce and control the adaptive immune response. They are cells specialized for antigen capture, processing and presentation to naïve T cells. However, DC are a heterogeneous population and each subset differs subtly in phenotype, function and location. Similarly, myeloid cell subsets can be distinguished which can also play an important role in the regulation of immunity. This review aims to characterize splenic subsets of DC and myeloid cells to better understand their individual roles in the immune response.
Collapse
Affiliation(s)
- Ying Y Hey
- Research School of Biology, The Australian National UniversityCanberra, Australia
| | - Helen C O'Neill
- Research School of Biology, The Australian National UniversityCanberra, Australia
| |
Collapse
|
46
|
Abstract
Plasmacytoid dendritic cells (pDCs), originating from hematopoietic progenitor cells in the BM, are a unique dendritic cell subset that can produce large amounts of type I IFNs by signaling through the nucleic acid-sensing TLR7 and TLR9 (TLR7/9). The molecular mechanisms for pDC function and development remain largely unknown. In the present study, we focused on an Ets family transcription factor, Spi-B, that is highly expressed in pDCs. Spi-B could transactivate the type I IFN promoters in synergy with IFN regulatory factor 7 (IRF-7), which is an essential transcription factor for TLR7/9-induced type I IFN production in pDCs. Spi-B-deficient pDCs and mice showed defects in TLR7/9-induced type I IFN production. Furthermore, in Spi-B-deficient mice, BM pDCs were decreased and showed attenuated expression of a set of pDC-specific genes whereas peripheral pDCs were increased; this uneven distribution was likely because of defective retainment of mature nondividing pDCs in the BM. The expression pattern of cell-surface molecules in Spi-B-deficient mice indicated the involvement of Spi-B in pDC development. The developmental defects of pDCs in Spi-B-deficient mice were more prominent in the BM than in the peripheral lymphoid organs and were intrinsic to pDCs. We conclude that Spi-B plays critical roles in pDC function and development.
Collapse
|
47
|
Abstract
Life-threatening fungal infections have increased in recent years while treatment options remain limited. The development of vaccines against fungal pathogens represents a key advance sorely needed to combat the increasing fungal disease threat. Dendritic cells (DC) are uniquely able to shape antifungal immunity by initiating and modulating naive T cell responses. Targeting DC may allow for the generation of potent vaccines against fungal pathogens. In the context of antifungal vaccine design, we describe the characteristics of the varied DC subsets, how DC recognize fungi, their function in immunity against fungal pathogens, and how DC can be targeted in order to create new antifungal vaccines. Ongoing studies continue to highlight the critical role of DC in antifungal immunity and will help guide DC-based vaccine strategies.
Collapse
|
48
|
Köhler T, Reizis B, Johnson RS, Weighardt H, Förster I. Influence of hypoxia-inducible factor 1α on dendritic cell differentiation and migration. Eur J Immunol 2012; 42:1226-36. [PMID: 22539295 DOI: 10.1002/eji.201142053] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dendritic cells(DCs) are important sentinels of the immune system and frequently reside in areas of low oxygen availability, in particular in the course of inflammatory processes. Hypoxia-inducible transcription factor (HIF)1α is responsible for major alterations in gene expression as part of the cellular adaptation to low oxygen concentration. In this study, we generated mice with a conditional deletion of HIF1α in DCs. Bone marrow-derived DCs from WT and conditional mutant mice expressed elevated levels of major histocompatibility complex class II and CD86 when grown in a hypoxic environment, whereas production of the cytokines interleukin (IL)-12p70, IL-10, IL-6, TNF-α, IL-1β, and IL-23 was reduced, both independent of HIF1α expression. In contrast, secretion of IL-22 was strongly enhanced under hypoxic conditions in an HIF1α-dependent manner. The chemokine receptor CCR7 was expressed at higher levels in wild-type DCs compared with HIF1α-deficient DCs, whereas the production of CCL17 and CCL22 was increased in conditions of low oxygen. Using in vitro as well as in vivo migration assays, we observed an enhanced migratory capability of DCs generated under hypoxia, which was HIF1α-dependent. Taken together, our data indicate that HIF1α plays an important role for DC differentiation and migration in a low oxygen environment.
Collapse
Affiliation(s)
- Theresa Köhler
- Molecular Immunology, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
49
|
Döring Y, Zernecke A. Plasmacytoid dendritic cells in atherosclerosis. Front Physiol 2012; 3:230. [PMID: 22754539 PMCID: PMC3385355 DOI: 10.3389/fphys.2012.00230] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 06/07/2012] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of the vessel wall and the underlying cause of cardiovascular disease, is initiated and maintained by innate and adaptive immunity. Accumulating evidence suggests an important contribution of autoimmune responses to this disease. Plasmacytoid dendritic cells (pDCs), a specialized cell type known to produce large amounts of type I interferons (IFNs) in response to bacterial and viral infections, have recently been revealed to play important roles in atherosclerosis. For example, the development of autoimmune complexes consisting of self-DNA and antimicrobial peptides, which trigger chronic type I IFN production by pDCs, promote early atherosclerotic lesion formation. pDCs and pDC-derived type I IFNs can also induce the maturation of conventional DCs and macrophages, and the development of autoreactive B cells and antibody production. These mechanisms, known to play a role in the pathogenesis of other autoimmune diseases such as systemic lupus erythematosus and psoriasis, may also affect the development and progression of atherosclerotic lesion formation. This review discusses emerging evidence showing a contribution of pDCs in the onset and progression of atherosclerosis.
Collapse
Affiliation(s)
- Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich Munich, Germany
| | | |
Collapse
|
50
|
Lievens D, Habets KL, Robertson AK, Laouar Y, Winkels H, Rademakers T, Beckers L, Wijnands E, Boon L, Mosaheb M, Ait-Oufella H, Mallat Z, Flavell RA, Rudling M, Binder CJ, Gerdes N, Biessen EAL, Weber C, Daemen MJAP, Kuiper J, Lutgens E. Abrogated transforming growth factor beta receptor II (TGFβRII) signalling in dendritic cells promotes immune reactivity of T cells resulting in enhanced atherosclerosis. Eur Heart J 2012; 34:3717-27. [PMID: 22613345 DOI: 10.1093/eurheartj/ehs106] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIMS The importance of transforming growth factor beta (TGFβ) as an immune regulatory cytokine in atherosclerosis has been established. However, the role of TGFβ signalling in dendritic cells (DCs) and in DC-mediated T cell proliferation and differentiation in atherosclerosis is unknown. METHODS AND RESULTS Here, we investigated the effect of disrupted TGFβ signalling in DCs on atherosclerosis by using mice carrying a transgene resulting in functional inactivation of TGFβ receptor II (TGFβRII) signalling in CD11c(+) cells (Apoe(-/-)CD11cDNR). Apoe(-/-)CD11cDNR mice exhibited an over two-fold increase in the plaque area compared with Apoe(-/-) mice. Plaques of Apoe(-/-)CD11cDNR mice showed an increase in CD45(+) leucocyte content, and specifically in CD3(+), CD4(+) and CD8(+) cells, whereas macrophage content was not affected. In lymphoid organs, Apoe(-/-)CD11cDNR mice had equal amounts of CD11c(+) cells, and CD11c(+)CD8(+) and CD11c(+)CD8(-) subsets, but showed a subtle shift in the CD11c(+)CD8(-) population towards the more inflammatory CD11c(+)CD8(-)CD4(-) DC subset. In addition, the number of plasmacytoid-DCs decreased. Maturation markers such as MHCII, CD86 and CD40 on CD11c(hi) cells did not change, but the CD11cDNR DCs produced more TNFα and IL-12. CD11c(+) cells from CD11cDNR mice strongly induced T-cell proliferation and activation, resulting in increased amounts of effector T cells producing high amounts of Th1 (IFN-γ), Th2 (IL-4, IL-10), Th17 (IL-17), and Treg (IL-10) cytokines. CONCLUSION Here, we show that loss of TGFβRII signalling in CD11c(+) cells induces subtle changes in DC subsets, which provoke uncontrolled T cell activation and maturation. This results in increased atherosclerosis and an inflammatory plaque phenotype during hypercholesterolaemia.
Collapse
Affiliation(s)
- Dirk Lievens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Pettenkoferstr. 9, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|