1
|
Ho BHT, Spicer BA, Dunstone MA. Action of the Terminal Complement Pathway on Cell Membranes. J Membr Biol 2025:10.1007/s00232-025-00343-6. [PMID: 40122920 DOI: 10.1007/s00232-025-00343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The complement pathway is one of the most ancient elements of the host's innate response and includes a set of protein effectors that rapidly react against pathogens. The late stages of the complement reaction are broadly categorised into two major outcomes. Firstly, C5a receptors, expressed on membranes of host cells, are activated by C5a to generate pro-inflammatory responses. Secondly, target cells are lysed by a hetero-oligomeric pore known as the membrane attack complex (MAC) that punctures the cellular membrane, causing ion and osmotic flux. Generally, several membrane-bound and soluble inhibitors protect the host membrane from complement damage. This includes inhibitors against the MAC, such as clusterin and CD59. This review addresses the most recent molecular and structural insights behind the activation and modulation of the integral membrane proteins, the C5a receptors (C5aR1 and C5aR2), as well as the regulation of MAC assembly. The second aspect of the review focuses on the molecular basis behind inflammatory diseases that are reflective of failure to regulate the terminal complement effectors. Although each arm is unique in its function, both pathways may share similar outcomes in these diseases. As such, the review outlines potential synergy and crosstalk between C5a receptor activation and MAC-mediated cellular responses.
Collapse
Affiliation(s)
- Bill H T Ho
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Bradley A Spicer
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Michelle A Dunstone
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Zhang T, Ma N, Wang J, Min X, Wei L, Li K. C5aR2 Deficiency Lessens C5aR1 Distribution and Expression in Neutrophils and Macrophages. J Immunol Res 2024; 2024:2899154. [PMID: 39021433 PMCID: PMC11254461 DOI: 10.1155/2024/2899154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
As another receptor for complement activation product C5a, C5aR2 has been paid much attention these years. Although controversial and complex, its specific signals or roles in modulating the classic receptor C5aR1 have been investigated and gradually revealed. The hypothesis of the heterodimer of C5aR1 and C5aR2 has also been suggested and observed under extremely high C5a concentrations. In this article, we tried to investigate whether C5aR2 would affect C5aR1 expression under normal or inflammatory conditions in WT and C5ar2 -/- mice of C57BL/6 background. We focused on the innate immune cells-neutrophils and macrophages. The mRNA levels of C5ar1 in normal kidney, liver, and the mRNA or protein levels of naïve-bone marrow and peripheral blood leukocytes and peritoneal Mφs were comparable between WT and C5ar2 -/- mice, indicating the technique of C5aR2 knockout did not affect the transcription of its neighboring gene C5aR1. However, the mean fluorescence intensity of surface C5aR1 on naïve circulating C5ar2 -/- neutrophils detected by FACS was reduced, which might be due to the reduced internalization of C5aR1 on C5ar2 -/- neutrophils. In the peritonitis model induced by i.p. injection of thioglycollate, more neutrophils were raised after 10 hr in C5ar2 -/- peritoneal cavity, indicating the antagonism of C5aR2 on C5aR1 signal in neutrophil chemotaxis. After 3 days of thioglycollate injection, the mainly infiltrating macrophages were comparable between WT and C5ar2 -/- mice, but the C5ar1 mRNA and surface or total C5aR1 protein expression were both reduced in C5ar2 -/- macrophages, combined with our previous study of reduced chemokines and cytokines expression in C5ar2 -/- peritoneal macrophages, indicating that C5aR2 in macrophages may cooperate with C5aR1 inflammatory signals. Our article found C5aR2 deficiency lessened C5aR1 distribution and expression in neutrophils and macrophages with different functions, indicating C5aR2 might function differently in different cells.
Collapse
Affiliation(s)
- Ting Zhang
- Department of PathologyThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
- Core Research LaboratoryThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
| | - Ning Ma
- Core Research LaboratoryThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
| | - Jiaxing Wang
- Institute of HematologySchool of MedicineNorthwest University, Xi'an 710069, China
| | - Xiaoyun Min
- Core Research LaboratoryThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
| | - Linlin Wei
- Core Research LaboratoryThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
| | - Ke Li
- Core Research LaboratoryThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
3
|
Li XX, Fung JN, Clark RJ, Lee JD, Woodruff TM. Cell-intrinsic C5a synergizes with Dectin-1 in macrophages to mediate fungal killing. Proc Natl Acad Sci U S A 2024; 121:e2314627121. [PMID: 38252818 PMCID: PMC10835034 DOI: 10.1073/pnas.2314627121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The complement factor C5a is a core effector product of complement activation. C5a, acting through its receptors C5aR1 and C5aR2, exerts pleiotropic immunomodulatory functions in myeloid cells, which is vital for host defense against pathogens. Pattern-recognition receptors (PRRs) are similarly expressed by immune cells as detectors of pathogen-associated molecular patterns. Although there is evidence of cross talk between complement and PRR signaling pathways, knowledge of the full potential for C5a-PRR interaction is limited. In this study, we comprehensively investigated how C5a signaling through C5a receptors can modulate diverse PRR-mediated cytokine responses in human primary monocyte-derived macrophages and observed a powerful, concentration-dependent bidirectional effect of C5a on PRR activities. Unexpectedly, C5a synergized with Dectin-1, Mincle, and STING in macrophages to a much greater extent than TLRs. Notably, we also identified that selective Dectin-1 activation using depleted zymosan triggered macrophages to generate cell-intrinsic C5a, which acted on intracellular and cell surface C5aR1, to help sustain mitochondrial ROS generation, up-regulate TNFα production, and enhance fungal killing. This study adds further evidence to the holistic functions of C5a as a central immunomodulator and important orchestrator of pathogen sensing and killing by phagocytes.
Collapse
Affiliation(s)
- Xaria X. Li
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - Jenny N. Fung
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - Richard J. Clark
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - John D. Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| |
Collapse
|
4
|
Dahmani M, Zhu JC, Cook JH, Riley SP. Anaphylatoxin signaling activates macrophages to control intracellular Rickettsia proliferation. Microbiol Spectr 2023; 11:e0253823. [PMID: 37855623 PMCID: PMC10714731 DOI: 10.1128/spectrum.02538-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Pathogenic Rickettsia species are extremely dangerous bacteria that grow within the cytoplasm of host mammalian cells. In most cases, these bacteria are able to overpower the host cell and grow within the protected environment of the cytoplasm. However, a dramatic conflict occurs when Rickettsia encounter innate immune cells; the bacteria can "win" by taking over the host, or the bacteria can "lose" if the host cell efficiently fights the infection. This manuscript examines how the immune complement system is able to detect the presence of Rickettsia and alert nearby cells. Byproducts of complement activation called anaphylatoxins are signals that "activate" innate immune cells to mount an aggressive defensive strategy. This study enhances our collective understanding of the innate immune reaction to intracellular bacteria and will contribute to future efforts at controlling these dangerous infections.
Collapse
Affiliation(s)
- Mustapha Dahmani
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Jinyi C. Zhu
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Jack H. Cook
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Sean P. Riley
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
- Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
5
|
Yadav MK, Maharana J, Yadav R, Saha S, Sarma P, Soni C, Singh V, Saha S, Ganguly M, Li XX, Mohapatra S, Mishra S, Khant HA, Chami M, Woodruff TM, Banerjee R, Shukla AK, Gati C. Molecular basis of anaphylatoxin binding, activation, and signaling bias at complement receptors. Cell 2023; 186:4956-4973.e21. [PMID: 37852260 PMCID: PMC7615941 DOI: 10.1016/j.cell.2023.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
The complement system is a critical part of our innate immune response, and the terminal products of this cascade, anaphylatoxins C3a and C5a, exert their physiological and pathophysiological responses primarily via two GPCRs, C3aR and C5aR1. However, the molecular mechanism of ligand recognition, activation, and signaling bias of these receptors remains mostly elusive. Here, we present nine cryo-EM structures of C3aR and C5aR1 activated by their natural and synthetic agonists, which reveal distinct binding pocket topologies of complement anaphylatoxins and provide key insights into receptor activation and transducer coupling. We also uncover the structural basis of a naturally occurring mechanism to dampen the inflammatory response of C5a via proteolytic cleavage of the terminal arginine and the G-protein signaling bias elicited by a peptide agonist of C3aR identified here. In summary, our study elucidates the innerworkings of the complement anaphylatoxin receptors and should facilitate structure-guided drug discovery to target these receptors in a spectrum of disorders.
Collapse
Affiliation(s)
- Manish K Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ravi Yadav
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Shirsha Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Chahat Soni
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Vinay Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sayantan Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Manisankar Ganguly
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Xaria X Li
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samanwita Mohapatra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sudha Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Htet A Khant
- USC Center of Excellence for Nano-Imaging, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Mohamed Chami
- BioEM Lab, Biozentrum, Universität Basel, Basel, Switzerland
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Cornelius Gati
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA; Department of Chemistry, Department of Quantitative and Computational Biology, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Santos-López J, de la Paz K, Fernández FJ, Vega MC. Structural biology of complement receptors. Front Immunol 2023; 14:1239146. [PMID: 37753090 PMCID: PMC10518620 DOI: 10.3389/fimmu.2023.1239146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The complement system plays crucial roles in a wide breadth of immune and inflammatory processes and is frequently cited as an etiological or aggravating factor in many human diseases, from asthma to cancer. Complement receptors encompass at least eight proteins from four structural classes, orchestrating complement-mediated humoral and cellular effector responses and coordinating the complex cross-talk between innate and adaptive immunity. The progressive increase in understanding of the structural features of the main complement factors, activated proteolytic fragments, and their assemblies have spurred a renewed interest in deciphering their receptor complexes. In this review, we describe what is currently known about the structural biology of the complement receptors and their complexes with natural agonists and pharmacological antagonists. We highlight the fundamental concepts and the gray areas where issues and problems have been identified, including current research gaps. We seek to offer guidance into the structural biology of the complement system as structural information underlies fundamental and therapeutic research endeavors. Finally, we also indicate what we believe are potential developments in the field.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Karla de la Paz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Research & Development, Abvance Biotech SL, Madrid, Spain
| | | | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
7
|
Schanzenbacher J, Hendrika Kähler K, Mesler E, Kleingarn M, Marcel Karsten C, Leonard Seiler D. The role of C5a receptors in autoimmunity. Immunobiology 2023; 228:152413. [PMID: 37598588 DOI: 10.1016/j.imbio.2023.152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 08/22/2023]
Abstract
The complement system is an essential component of the innate immune response and plays a vital role in host defense and inflammation. Dysregulation of the complement system, particularly involving the anaphylatoxin C5a and its receptors (C5aR1 and C5aR2), has been linked to several autoimmune diseases, indicating the potential for targeted therapies. C5aR1 and C5aR2 are seven-transmembrane receptors with distinct signaling mechanisms that play both partially overlapping and opposing roles in immunity. Both receptors are expressed on a broad spectrum of immune and non-immune cells and are involved in cellular functions and physiological processes during homeostasis and inflammation. Dysregulated C5a-mediated inflammation contributes to autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, epidermolysis bullosa acquisita, antiphospholipid syndrome, and others. Therefore, targeting C5a or its receptors may yield therapeutic innovations in these autoimmune diseases by reducing the recruitment and activation of immune cells that lead to tissue inflammation and injury, thereby exacerbating the autoimmune response. Clinical trials focused on the inhibition of C5 cleavage or the C5a/C5aR1-axis using small molecules or monoclonal antibodies hold promise for bringing novel treatments for autoimmune diseases into practice. However, given the heterogeneous nature of (systemic) autoimmune diseases, there are still several challenges, such as patient selection, optimal dosing, and treatment duration, that require further investigation and development to realize the full therapeutic potential of C5a receptor inhibition, ideally in the context of a personalized medicine approach. Here, we aim to provide a brief overview of the current knowledge on the function of C5a receptors, the involvement of C5a receptors in autoimmune disorders, the molecular mechanisms underlying C5a receptor-mediated autoimmunity, and the potential for targeted therapies to modulate their activity.
Collapse
Affiliation(s)
- Jovan Schanzenbacher
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja Hendrika Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Evelyn Mesler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | | | - Daniel Leonard Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
8
|
Trambas IA, Coughlan MT, Tan SM. Therapeutic Potential of Targeting Complement C5a Receptors in Diabetic Kidney Disease. Int J Mol Sci 2023; 24:ijms24108758. [PMID: 37240105 DOI: 10.3390/ijms24108758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) affects 30-40% of patients with diabetes and is currently the leading cause of end-stage renal disease (ESRD). The activation of the complement cascade, a highly conserved element of the innate immune system, has been implicated in the pathogenesis of diabetes and its complications. The potent anaphylatoxin C5a is a critical effector of complement-mediated inflammation. Excessive activation of the C5a-signalling axis promotes a potent inflammatory environment and is associated with mitochondrial dysfunction, inflammasome activation, and the production of reactive oxygen species. Conventional renoprotective agents used in the treatment of diabetes do not target the complement system. Mounting preclinical evidence indicates that inhibition of the complement system may prove protective in DKD by reducing inflammation and fibrosis. Targeting the C5a-receptor signaling axis is of particular interest, as inhibition at this level attenuates inflammation while preserving the critical immunological defense functions of the complement system. In this review, the important role of the C5a/C5a-receptor axis in the pathogenesis of diabetes and kidney injuries will be discussed, and an overview of the status and mechanisms of action of current complement therapeutics in development will be provided.
Collapse
Affiliation(s)
- Inez A Trambas
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sih Min Tan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
9
|
Ghosh M, Rana S. The anaphylatoxin C5a: Structure, function, signaling, physiology, disease, and therapeutics. Int Immunopharmacol 2023; 118:110081. [PMID: 36989901 DOI: 10.1016/j.intimp.2023.110081] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The complement system is one of the oldest known tightly regulated host defense systems evolved for efficiently functioning cell-based immune systems and antibodies. Essentially, the complement system acts as a pivot between the innate and adaptive arms of the immune system. The complement system collectively represents a cocktail of ∼50 cell-bound/soluble glycoproteins directly involved in controlling infection and inflammation. Activation of the complement cascade generates complement fragments like C3a, C4a, and C5a as anaphylatoxins. C5a is the most potent proinflammatory anaphylatoxin, which is involved in inflammatory signaling in a myriad of tissues. This review provides a comprehensive overview of human C5a in the context of its structure and signaling under several pathophysiological conditions, including the current and future therapeutic applications targeting C5a.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
10
|
Mechanism of activation and biased signaling in complement receptor C5aR1. Cell Res 2023; 33:312-324. [PMID: 36806352 PMCID: PMC9937529 DOI: 10.1038/s41422-023-00779-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/13/2023] [Indexed: 02/19/2023] Open
Abstract
The complement system plays an important role in the innate immune response to invading pathogens. The complement fragment C5a is one of its important effector components and exerts diverse physiological functions through activation of the C5a receptor 1 (C5aR1) and associated downstream G protein and β-arrestin signaling pathways. Dysfunction of the C5a-C5aR1 axis is linked to numerous inflammatory and immune-mediated diseases, but the structural basis for activation and biased signaling of C5aR1 remains elusive. Here, we present cryo-electron microscopy structures of the activated wild-type C5aR1-Gi protein complex bound to each of the following: C5a, the hexapeptidic agonist C5apep, and the G protein-biased agonist BM213. The structures reveal the landscape of the C5a-C5aR1 interaction as well as a common motif for the recognition of diverse orthosteric ligands. Moreover, combined with mutagenesis studies and cell-based pharmacological assays, we deciphered a framework for biased signaling using different peptide analogs and provided insight into the activation mechanism of C5aR1 by solving the structure of C5aR1I116A mutant-Gi signaling activation complex induced by C089, which exerts antagonism on wild-type C5aR1. In addition, unusual conformational changes in the intracellular end of transmembrane domain 7 and helix 8 upon agonist binding suggest a differential signal transduction process. Collectively, our study provides mechanistic understanding into the ligand recognition, biased signaling modulation, activation, and Gi protein coupling of C5aR1, which may facilitate the future design of therapeutic agents.
Collapse
|
11
|
Huang C, Qiu O, Mao C, Hu Z, Qu S. An integrated analysis of C5AR2 related to malignant properties and immune infiltration of gliomas. CANCER INNOVATION 2022; 1:240-251. [PMID: 38089762 PMCID: PMC10686109 DOI: 10.1002/cai2.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2024]
Abstract
Background C5AR2 is recognized as a proinflammatory molecule and activates the inflammatory response in multiple disorders. However, little has been reported on C5AR2 in glioma. This study sought to explore its expression, biological function, and association with clinical pathological indicators, prognosis, and immune infiltration levels in glioma through glioma cohorts. Methods A cohort of 657 patients was screened from the Chinese Glioma Genome Atlas (CGGA). χ 2 test was performed to calculate the difference of classified variables. Cox proportional hazard regression modeling was used to identify independent prognostic indicators of glioma patients. A survival plot was generated by the Kaplan-Meier method. The immune cell infiltration score of glioma patients was calculated by TIMER algorithm. Results We observed that high expression of C5AR2 was strongly associated with malignant clinical indicators in 657 patients with glioma, and patients with high C5AR2 expression had worse prognoses. Multivariate Cox analysis showed that C5AR2 could be a new independent prognostic indicator for glioma patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that C5AR2 overexpression correlated with multiple inflammatory and immune biological processes. Additionally, high C5AR2 expression was strongly associated with higher abundance and marker gene expression of multiple tumor immune cells in low-grade glioma. Finally, a model was constructed to improve the prognostic evaluation of glioma patients. Conclusions The C5AR2 gene is highly expressed in gliomas and is significantly associated with clinical indicators of malignant progression in glioma patients. In glioma, patients with high C5AR2 expression displayed a worse outcome. In glioma tissues, the expression level of C5AR2 highly correlated with the abundance of tumor immune cell infiltration. Additionally, GO and KEGG enrichment analysis revealed that C5AR2 expression may be involved in a variety of immune and inflammatory biological processes.
Collapse
Affiliation(s)
- Chengying Huang
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Obstetrics and Gynecology, Baiyun Branch, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ouwen Qiu
- Department of Neurosurgery, Brain Injury Center, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chaofu Mao
- Department of Neurosurgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhicheng Hu
- Department of Burn Surgery, First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shanqiang Qu
- Department of Neurosurgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
12
|
Cui CS, Kumar V, Gorman DM, Clark RJ, Lee JD, Woodruff TM. In Vivo Pharmacodynamic Method to Assess Complement C5a Receptor Antagonist Efficacy. ACS Pharmacol Transl Sci 2022; 5:41-51. [PMID: 35059568 DOI: 10.1021/acsptsci.1c00227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 12/17/2022]
Abstract
The complement C5a receptor 1 (C5aR1) has been studied as a potential therapeutic target for autoimmune and inflammatory diseases, with several drug candidates identified. Understanding the pharmacokinetics and pharmacodynamics of a drug candidate is a crucial preclinical step that allows for a greater understanding of a compound's in vivo biodistribution and target engagement to assist in clinical dose selection and dosing frequency. However, few in vivo pharmacodynamic methods have been described for C5a inhibitors. In this study, we, therefore, developed a complete in vivo pharmacodynamic assay in mice and applied this method to the peptide-based C5aR1 antagonists PMX53 and JPE-1375. Intravenous administration of recombinant mouse C5a induced rapid neutrophil mobilization and plasma TNF elevation over a 60 min period. By using C5a receptor-deficient mice, we demonstrated that this response was driven primarily through C5aR1. We next identified using this model that both PMX53 and JPE-1375 have similar in vivo working doses that can inhibit C5aR1-mediated neutrophilia and cytokine production in a dose as low as 1 mg/kg following intravenous injection. However, the in vivo active duration for PMX53 lasted for up to 6 h, significantly longer than that for JPE-1375 (<2 h). Pharmacokinetic analysis demonstrated rapid plasma distribution and elimination of both compounds, although PMX53 had a longer half-life, which allowed for the development of an accurate pharmacokinetic/pharmacodynamic model. Overall, our study developed a robust in vivo pharmacodynamic model for C5aR1 inhibitors in mice that may assist in preclinical translational studies of therapeutic drug candidates targeting C5a and its receptors.
Collapse
Affiliation(s)
- Cedric S Cui
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Vinod Kumar
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Declan M Gorman
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
13
|
Seiler DL, Kleingarn M, Kähler KH, Gruner C, Schanzenbacher J, Ehlers-Jeske E, Kenno S, Sadik CD, Schmidt E, Bieber K, Köhl J, Ludwig RJ, Karsten CM. C5aR2 deficiency ameliorates inflammation in murine epidermolysis bullosa acquisita by regulating FcγRIIb expression on neutrophils. J Invest Dermatol 2022; 142:2715-2723.e2. [PMID: 35007559 DOI: 10.1016/j.jid.2021.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
Epidermolysis bullosa acquisita (EBA) is a rare blistering skin disease induced by autoantibodies directed against type VII collagen (COL7). Transfer of antibodies against murine COL7 (mCOL7) into mice mimics the effector phase of EBA and results in a subepidermal blistering phenotype. Activation of the complement system, and especially the C5a/C5aR1 axis driving neutrophil activation, are critical for EBA pathogenesis. However, the role of the alternative C5a receptor, C5aR2, which is commonly thought to be more immunosuppressive, in the pathogenesis of EBA is still elusive. Therefore, we sought to delineate the functional relevance of C5aR2 during the effector phase of EBA. Unexpectedly, C5aR2-deficient (C5ar2-/-) mice showed an attenuated disease phenotype, suggesting a pathogenic contribution of C5aR2 to disease progression. In vitro, C5ar2-/- neutrophils exhibited significantly reduced (Ca2+)i flux, reactive oxygen species release, and migratory capacity when activated with immune complexes or exposed to C5a. These functions were completely absent when C5ar1-/- neutrophils were activated. Moreover, C5aR2 deficiency more than tripled FcγRIIb expression on neutrophils thus lowering the A/I ratio of FcγRs and impeding the sustainment of inflammation. Collectively, we demonstrate here a pro-inflammatory contribution of C5aR2 to the pathogenesis of antibody-induced tissue damage in experimental EBA.
Collapse
Affiliation(s)
- Daniel L Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany; Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja H Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Caroline Gruner
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Jovan Schanzenbacher
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Elvira Ehlers-Jeske
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Samyr Kenno
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Christian D Sadik
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ralf J Ludwig
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
14
|
Li XX, Gorman DM, Lee JD, Clark RJ, Woodruff TM. Unexpected Off-Target Activities for Recombinant C5a in Human Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:133-142. [PMID: 34853076 DOI: 10.4049/jimmunol.2100444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The anaphylatoxin C5a is core effector of complement activation. C5a exerts potent proinflammatory and immunomodulatory actions through interacting with its C5a receptors, C5aR1 and C5aR2, modulating multiple signaling and functional activities of immune cells. Native C5a contains a large N-linked glycosylation site at Asn64, which accounts for up to 25% of its m.w. To date, the vast majority of published studies examining C5a are performed using Escherichia coli-generated recombinant C5a, which is readily available from numerous commercial suppliers, but lacks this glycosylation moiety. However, a plasma-purified "native" form of C5a is also commercially available. The different size and glycosylation of these two C5a versions could have functional implications. Therefore, the current study aimed to compare recombinant human C5a to purified plasma-derived human C5a in driving the signaling and functional activities of human primary macrophages. We found that both versions of C5a displayed similar potencies at triggering C5aR1- and C5aR2-mediated cell signaling, but elicited distinct functional responses in primary human monocyte-derived macrophages. Multiple commercial sources of recombinant C5a, but not the plasma-purified or a synthetic C5a version, induced human monocyte-derived macrophages to produce IL-6 and IL-10 in a C5a receptor-independent manner, which was driven through Syk and NF-κB signaling and apparently not due to endotoxin contamination. Our results, therefore, offer caution against the sole use of recombinant human C5a, particularly in functional/cytokine assays conducted in human primary immune cells, and suggest studies using recombinant human C5a should be paired with C5aR1 inhibitors or purified/synthetic human C5a to confirm relevant findings.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Declan M Gorman
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
15
|
Gorman D, Li XX, Payne CD, Cui CS, Lee JD, Rosengren KJ, Woodruff TM, Clark RJ. Development of Synthetic Human and Mouse C5a: Application to Binding and Functional Assays In Vitro and In Vivo. ACS Pharmacol Transl Sci 2021; 4:1808-1817. [PMID: 34927012 PMCID: PMC8669711 DOI: 10.1021/acsptsci.1c00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 11/28/2022]
Abstract
The complement activation peptide C5a is a key mediator of inflammation that is associated with numerous immune disorders. C5a binds and activates two seven-transmembrane receptors, C5aR1 and C5aR2. Experimentally, C5a is utilized to investigate C5a receptor biology and to screen for potential C5aR1/C5aR2 therapeutics. Currently, laboratory sources of C5a stem from either isolation of endogenous C5a from human serum or most predominantly via recombinant expression. An alternative approach to C5a production is chemical synthesis, which has several advantages, including the ability to introduce non-natural amino acids and site-specific modifications whilst also maintaining a lower probability of C5a being contaminated with microbial molecules or other endogenous proteins. Here, we describe the efficient synthesis of both human (hC5a) and mouse C5a (mC5a) without the need for ligation chemistry. We validate the synthetic peptides by comparing pERK1/2 signaling in CHO-hC5aR1 cells and primary human macrophages (for hC5a) and in RAW264.7 cells (for mC5a). C5aR2 activation was confirmed by measuring β-arrestin recruitment in C5aR2-transfected HEK293 cells. We also demonstrate the functionalization of synthetic C5a through the introduction of a lanthanide chelating cage to facilitate a screen for the binding of ligands to C5aR1. Finally, we verify that the synthetic ligands are functionally similar to recombinant or native C5a by assessing hC5a-induced neutrophil chemotaxis in vitro and mC5a-mediated neutrophil mobilization in vivo. We propose that the synthetic hC5a and mC5a described herein are valuable alternatives to recombinant or purified C5a for in vitro and in vivo applications and add to the growing complement reagent toolbox.
Collapse
Affiliation(s)
- Declan
M. Gorman
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Xaria X. Li
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Colton D. Payne
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Cedric S. Cui
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - John D. Lee
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - K. Johan Rosengren
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Trent M. Woodruff
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
- Queensland
Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard J. Clark
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
16
|
Gorman DM, Li XX, Lee JD, Fung JN, Cui CS, Lee HS, Rolfe BE, Woodruff TM, Clark RJ. Development of Potent and Selective Agonists for Complement C5a Receptor 1 with In Vivo Activity. J Med Chem 2021; 64:16598-16608. [PMID: 34762432 DOI: 10.1021/acs.jmedchem.1c01174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anaphylatoxin C5a is a complement peptide associated with immune-related disorders. C5a binds with equal potency to two GPCRs, C5aR1 and C5aR2. Multiple C5a peptide agonists have been developed to interrogate the C5a receptor function but none show selectivity for C5aR1. To address these limitations, we developed potent and stable peptide C5aR1 agonists that display no C5aR2 activity and over 1000-fold selectivity for C5aR1 over C3aR. This includes BM213, which induces C5aR1-mediated calcium mobilization and pERK1/2 signaling but not β-arrestin recruitment, and BM221, which exhibits no signaling bias. Both ligands are functionally similar to C5a in human macrophage cytokine release assays and in a murine in vivo neutrophil mobilization assay. BM213 showed antitumor activity in a mouse model of mammary carcinoma. We anticipate that these C5aR1-selective agonists will be useful research tools to investigate C5aR1 function.
Collapse
Affiliation(s)
- Declan M Gorman
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xaria X Li
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jenny N Fung
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cedric S Cui
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Han Siean Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Barbara E Rolfe
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
17
|
Vandendriessche S, Cambier S, Proost P, Marques PE. Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis. Front Cell Dev Biol 2021; 9:624025. [PMID: 33644062 PMCID: PMC7905230 DOI: 10.3389/fcell.2021.624025] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
The complement system is deeply embedded in our physiology and immunity. Complement activation generates a multitude of molecules that converge simultaneously on the opsonization of a target for phagocytosis and activation of the immune system via soluble anaphylatoxins. This response is used to control microorganisms and to remove dead cells, but also plays a major role in stimulating the adaptive immune response and the regeneration of injured tissues. Many of these effects inherently depend on complement receptors expressed on leukocytes and parenchymal cells, which, by recognizing complement-derived molecules, promote leukocyte recruitment, phagocytosis of microorganisms and clearance of immune complexes. Here, the plethora of information on the role of complement receptors will be reviewed, including an analysis of how this functionally and structurally diverse group of molecules acts jointly to exert the full extent of complement regulation of homeostasis.
Collapse
Affiliation(s)
- Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Pedro E Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
18
|
Li XX, Kumar V, Clark RJ, Lee JD, Woodruff TM. The "C3aR Antagonist" SB290157 is a Partial C5aR2 Agonist. Front Pharmacol 2021; 11:591398. [PMID: 33551801 PMCID: PMC7859635 DOI: 10.3389/fphar.2020.591398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022] Open
Abstract
Innate immune complement activation generates the C3 and C5 protein cleavage products C3a and C5a, defined classically as anaphylatoxins. C3a activates C3aR, while C5a activates two receptors (C5aR1 and C5aR2) to exert their immunomodulatory activities. The non-peptide compound, SB290157, was originally reported in 2001 as the first C3aR antagonist. In 2005, the first report on the non-selective nature of SB290157 was published, where the compound exerted clear agonistic, not antagonistic, activity in variety of cells. Other studies also documented the non-selective activities of this drug in vivo. These findings severely hamper data interpretation regarding C3aR when using this compound. Unfortunately, given the dearth of C3aR inhibitors, SB290157 still remains widely used to explore C3aR biology (>70 publications to date). Given these issues, in the present study we aimed to further explore SB290157's pharmacological selectivity by screening the drug against three human anaphylatoxin receptors, C3aR, C5aR1 and C5aR2, using cell models. We identified that SB290157 exerts partial agonist activity at C5aR2 by mediating β-arrestin recruitment at higher compound doses. This translated to a functional outcome in both human and mouse primary macrophages, where SB290157 significantly dampened C5a-induced ERK signaling. We also confirmed that SB290157 acts as a potent agonist at human C3aR in transfected cells, but as an antagonist in primary human macrophages. Our results therefore provide even more caution against using SB290157 as a research tool to explore C3aR function. Given the reported immunomodulatory and anti-inflammatory activities of C5aR2 agonism, any function observed with SB290157 could be due to these off-target activities.
Collapse
Affiliation(s)
| | | | | | | | - Trent M. Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Li XX, Lee JD, Massey NL, Guan C, Robertson AAB, Clark RJ, Woodruff TM. Pharmacological characterisation of small molecule C5aR1 inhibitors in human cells reveals biased activities for signalling and function. Biochem Pharmacol 2020; 180:114156. [PMID: 32682759 DOI: 10.1016/j.bcp.2020.114156] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
The complement fragment C5a is a core effector of complement activation. C5a, acting through its major receptor C5aR1, exerts powerful pro-inflammatory and immunomodulatory functions. Dysregulation of the C5a-C5aR1 axis has been implicated in numerous immune disorders, and the therapeutic inhibition of this axis is therefore imperative for the treatment of these diseases. A myriad of small-molecule C5aR1 inhibitors have been developed and independently characterised over the past two decades, however the pharmacological properties of these compounds has been difficult to directly compare due to the wide discrepancies in the model, read-out, ligand dose and instrumentation implemented across individual studies. Here, we performed a systematic characterisation of the most commonly reported and clinically advanced small-molecule C5aR1 inhibitors (peptidic: PMX53, PMX205 and JPE1375; non-peptide: W545011, NDT9513727, DF2593A and CCX168). Through signalling assays measuring C5aR1-mediated cAMP and ERK1/2 signalling, and β-arrestin 2 recruitment, this study highlighted the signalling-pathway dependence of the rank order of potencies of the C5aR1 inhibitors. Functional experiments performed in primary human macrophages demonstrated the high insurmountable antagonistic potencies for the peptidic inhibitors as compared to the non-peptide compounds. Finally, wash-out studies provided novel insights into the duration of inhibition of the C5aR1 inhibitors, and confirmed the long-lasting antagonistic properties of PMX53 and CCX168. Overall, this study revealed the potent and prolonged antagonistic activities of selected peptidic C5aR1 inhibitors and the unique pharmacological profile of CCX168, which thus represent ideal candidates to fulfil diverse C5aR1 research and clinical therapeutic needs.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, Australia
| | - John D Lee
- School of Biomedical Sciences, Australia
| | | | - Carolyn Guan
- The University of Queensland, St Lucia 4072, Australia; Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | | | | | - Trent M Woodruff
- School of Biomedical Sciences, Australia; Queensland Brain Institute, Australia.
| |
Collapse
|
20
|
Li XX, Clark RJ, Woodruff TM. C5aR2 Activation Broadly Modulates the Signaling and Function of Primary Human Macrophages. THE JOURNAL OF IMMUNOLOGY 2020; 205:1102-1112. [PMID: 32611725 DOI: 10.4049/jimmunol.2000407] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
The complement activation fragment C5a is a potent proinflammatory mediator that is increasingly recognized as an immune modulator. C5a acts through two C5a receptors, C5aR1 (C5aR, CD88) and C5aR2 (C5L2, GPR77), to powerfully modify multiple aspects of immune cell function. Although C5aR1 is generally acknowledged to be proinflammatory and immune-activating, the potential roles played by C5aR2 remain poorly defined. Despite studies demonstrating C5aR2 can modulate C5aR1 in human cells, it is not yet known whether C5aR2 functionality is limited to, or requires, C5aR1 activation or influences immune cells more broadly. The present study, therefore, aimed to characterize the roles of C5aR2 on the signaling and function of primary human monocyte-derived macrophages, using a C5aR2 agonist (Ac-RHYPYWR-OH; P32) to selectively activate the receptor. We found that although C5aR2 activation with P32 by itself was devoid of any detectable MAPK signaling activities, C5aR2 agonism significantly dampened C5aR1-, C3aR-, and chemokine-like receptor 1 (CMKLR1)-mediated ERK signaling and altered intracellular calcium mobilization mediated by these receptors. Functionally, selective C5aR2 activation also downregulated cytokine production triggered by various TLRs (TLR2, TLR3, TLR4, and TLR7), C-type lectin receptors (Dectin-1, Dectin-2, and Mincle), and the cytosolic DNA sensor stimulator of IFN genes (STING). Surprisingly, activity at the C-type lectin receptors was particularly powerful, with C5aR2 activation reducing Mincle-mediated IL-6 and TNF-α generation by 80-90%. In sum, this study demonstrates that C5aR2 possesses pleiotropic functions in primary human macrophages, highlighting the role of C5aR2 as a powerful regulator of innate immune function.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
21
|
Li XX, Lee JD, Kemper C, Woodruff TM. The Complement Receptor C5aR2: A Powerful Modulator of Innate and Adaptive Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 202:3339-3348. [PMID: 31160390 DOI: 10.4049/jimmunol.1900371] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 01/01/2023]
Abstract
Complement activation generates the core effector protein C5a, a potent immune molecule that is linked to multiple inflammatory diseases. Two C5a receptors, C5aR1 (C5aR, CD88) and C5aR2 (C5L2, GPR77), mediate the biological activities of C5a. Although C5aR1 has broadly acknowledged proinflammatory roles, C5aR2 remains at the center of controversy, with existing findings supporting both immune-activating and immune-dampening functions. Recent progress has been made toward resolving these issues. Instead of being a pure recycler and sequester of C5a, C5aR2 is capable of mediating its own set of signaling events and through these events exerting significant immunomodulatory effects not only toward C5aR1 but also other pattern recognition receptors and innate immune systems, such as NLRP3 inflammasomes. This review highlights the existing knowns and unknowns concerning C5aR2 and provides a timely update on recent breakthroughs which are expected to have a substantial impact on future fundamental and translational C5aR2 research.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; and
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; and
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; and
| |
Collapse
|
22
|
Pandey S, Li XX, Srivastava A, Baidya M, Kumari P, Dwivedi H, Chaturvedi M, Ghosh E, Woodruff TM, Shukla AK. Partial ligand-receptor engagement yields functional bias at the human complement receptor, C5aR1. J Biol Chem 2019; 294:9416-9429. [PMID: 31036565 DOI: 10.1074/jbc.ra119.007485] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/17/2019] [Indexed: 12/25/2022] Open
Abstract
The human complement component, C5a, binds two different seven-transmembrane receptors termed C5aR1 and C5aR2. C5aR1 is a prototypical G-protein-coupled receptor that couples to the Gαi subfamily of heterotrimeric G-proteins and β-arrestins (βarrs) following C5a stimulation. Peptide fragments derived from the C terminus of C5a can still interact with the receptor, albeit with lower affinity, and can act as agonists or antagonists. However, whether such fragments might display ligand bias at C5aR1 remains unexplored. Here, we compare C5a and a modified C-terminal fragment of C5a, C5apep, in terms of G-protein coupling, βarr recruitment, endocytosis, and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase activation at the human C5aR1. We discover that C5apep acts as a full agonist for Gαi coupling as measured by cAMP response and extracellular signal-regulated kinase 1/2 phosphorylation, but it displays partial agonism for βarr recruitment and receptor endocytosis. Interestingly, C5apep exhibits full-agonist efficacy with respect to inhibiting lipopolysaccharide-induced interleukin-6 secretion in human macrophages, but its ability to induce human neutrophil migration is substantially lower compared with C5a, although both these responses are sensitive to pertussis toxin treatment. Taken together, our data reveal that compared with C5a, C5apep exerts partial efficacy for βarr recruitment, receptor trafficking, and neutrophil migration. Our findings therefore uncover functional bias at C5aR1 and also provide a framework that can potentially be extended to chemokine receptors, which also typically interact with chemokines through a biphasic mechanism.
Collapse
Affiliation(s)
- Shubhi Pandey
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Xaria X Li
- the School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane 4072, Australia
| | - Ashish Srivastava
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Mithu Baidya
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Punita Kumari
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Hemlata Dwivedi
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Madhu Chaturvedi
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Eshan Ghosh
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Trent M Woodruff
- the School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane 4072, Australia
| | - Arun K Shukla
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| |
Collapse
|
23
|
Zaal A, van Ham SM, Ten Brinke A. Differential effects of anaphylatoxin C5a on antigen presenting cells, roles for C5aR1 and C5aR2. Immunol Lett 2019; 209:45-52. [PMID: 30959077 DOI: 10.1016/j.imlet.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022]
Abstract
The anaphylatoxin C5a is well-known for its role as chemoattractant and contributes to immune cell recruitment into inflamed tissue and local inflammation. C5a has recently been implicated in modulation of antigen presenting cell function, such as macrophages and dendritic cells, which are pivotal for T cell activation and final T cell effector function. The published data on the effect of C5a on APC function and subsequent adaptive immune responses are in part conflicting, as both pro and anti-inflammatory effects have been described. In this review the opposing effects of C5a on APC function in mice and human are summarized and discussed in relation to origin of the involved APC subset, being either of the monocyte-derived lineage or dendritic cell lineage. In addition, the current knowledge on the expression of C5aR1 and C5aR2 on the different APC subsets is summarized. Based on the combined data, we propose that the differential effects of C5a on APC function may be attributed to absence or presence of co-expression of C5aR2 and C5aR1 on the specific APC.
Collapse
Affiliation(s)
- Anouk Zaal
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, the Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Haapasalo K, Wollman AJM, de Haas CJC, van Kessel KPM, van Strijp JAG, Leake MC. Staphylococcus aureus toxin LukSF dissociates from its membrane receptor target to enable renewed ligand sequestration. FASEB J 2019; 33:3807-3824. [PMID: 30509126 PMCID: PMC6404581 DOI: 10.1096/fj.201801910r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/29/2018] [Indexed: 11/11/2022]
Abstract
Staphylococcus aureus Panton-Valentine leukocidin is a pore-forming toxin targeting the human C5a receptor (hC5aR), enabling this pathogen to battle the immune response by destroying phagocytes through targeted lysis. The mechanisms that contribute to rapid cell lysis are largely unexplored. Here, we show that cell lysis may be enabled by a process of toxins targeting receptor clusters and present indirect evidence for receptor "recycling" that allows multiple toxin pores to be formed close together. With the use of live cell single-molecule super-resolution imaging, Förster resonance energy transfer and nanoscale total internal reflection fluorescence colocalization microscopy, we visualized toxin pore formation in the presence of its natural docking ligand. We demonstrate disassociation of hC5aR from toxin complexes and simultaneous binding of new ligands. This effect may free mobile receptors to amplify hyperinflammatory reactions in early stages of microbial infections and have implications for several other similar bicomponent toxins and the design of new antibiotics.-Haapasalo, K., Wollman, A. J. M., de Haas, C. J. C., van Kessel, K. P. M., van Strijp, J. A. G., Leake, M. C. Staphylococcus aureus toxin LukSF dissociates from its membrane receptor target to enable renewed ligand sequestration.
Collapse
Affiliation(s)
- Karita Haapasalo
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Adam J. M. Wollman
- Department of Biology, Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Carla J. C. de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kok P. M. van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos A. G. van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mark C. Leake
- Department of Biology, Biological Physical Sciences Institute, University of York, York, United Kingdom
- Department of Physics, Biological Physical Sciences Institute, University of York, York, United Kingdom
| |
Collapse
|
25
|
Tasneem S, Liu B, Li B, Choudhary MI, Wang W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol Res 2019; 139:126-140. [DOI: 10.1016/j.phrs.2018.11.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
|
26
|
McCullough RL, McMullen MR, Poulsen KL, Kim A, Medof ME, Nagy LE. Anaphylatoxin Receptors C3aR and C5aR1 Are Important Factors That Influence the Impact of Ethanol on the Adipose Secretome. Front Immunol 2018; 9:2133. [PMID: 30294325 PMCID: PMC6158367 DOI: 10.3389/fimmu.2018.02133] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
Background and aims: Chronic ethanol exposure results in inflammation in adipose tissue; this response is associated with activation of complement as well as the development of alcohol-related liver disease (ALD). Adipose communicates with other organs, including liver, via the release of soluble mediators, such as adipokines and cytokines, characterized as the "adipose secretome." Here we investigated the role of the anaphaylatoxin receptors C3aR and C5aR1 in the development of adipose tissue inflammation and regulation of the adipose secretome in murine ALD (mALD). Methods: Wild-type C57BL/6 (WT), C3aR -/-, and C5aR1 -/- mice were fed Lieber-DeCarli ethanol diet for 25 days (6% v/v, 32% kcal) or isocaloric control diets; indicators of inflammation and injury were assessed in gonadal adipose tissue. The adipose secretome was characterized in isolated adipocytes and stromal vascular cells. Results: Ethanol feeding increased the expression of adipokines, chemokines and leukocyte markers in gonadal adipose tissue from WT mice; C3aR -/- were partially protected while C5aR1 -/- mice were completely protected. In contrast, induction of CYP2E1 and accumulation of TUNEL-positive cells in adipose in response to ethanol feeding was independent of genotype. Bone marrow chimeras, generated with WT and C5aR1 -/- mice, revealed C5aR1 expression on non-myeloid cells, likely to be adipocytes, contributed to ethanol-induced adipose inflammation. Chronic ethanol feeding regulated both the quantity and distribution of adipokines secreted from adipocytes in a C5aR1-dependent mechanism. In WT mice, chronic ethanol feeding induced a predominant release of pro-inflammatory adipokines from adipocytes, while the adipose secretome from C5aR1 -/- mice was characterized by an anti-inflammatory/protective profile. Further, the cargo of adipocyte-derived extracellular vesicles (EVs) was distinct from the soluble secretome; in WT EVs, ethanol increased the abundance of pro-inflammatory mediators while EV cargo from C5aR1 -/- adipocytes contained a greater diversity and more robust expression of adipokines. Conclusions: C3aR and C5aR1 are potent regulators of ethanol-induced adipose inflammation in mALD. C5aR1 modulated the impact of chronic ethanol on the content of the adipose secretome, as well as influencing the cargo of an extensive array of adipokines from adipocyte-derived EVs. Taken together, our data demonstrate that C5aR1 contributes to ethanol-mediated changes in the adipose secretome, likely contributing to intra-organ injury in ALD.
Collapse
Affiliation(s)
- Rebecca L McCullough
- Department of Inflammation and Immunity, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Megan R McMullen
- Department of Inflammation and Immunity, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Kyle L Poulsen
- Department of Inflammation and Immunity, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Adam Kim
- Department of Inflammation and Immunity, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - M Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Laura E Nagy
- Department of Inflammation and Immunity, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
27
|
Reichhardt MP, Meri S. Intracellular complement activation-An alarm raising mechanism? Semin Immunol 2018; 38:54-62. [PMID: 29631809 DOI: 10.1016/j.smim.2018.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
It has become increasingly apparent that the complement system, being an ancient defense mechanism, is not operative only in the extracellular milieu but also intracellularly. In addition to the known synthetic machinery in the liver and by macrophages, many other cell types, including lymphocytes, adipocytes and epithelial cells produce selected complement components. Activation of e.g. C3 and C5 inside cells may have multiple effects ranging from direct antimicrobial defense to cell differentiation and possible influence on metabolism. Intracellular activation of C3 and C5 in T cells is involved in the maintenance of immunological tolerance and promotes differentiation of T helper cells into Th1-type cells that activate cell-mediated immune responses. Adipocytes are unique in producing many complement sensor proteins (like C1q) and Factor D (adipsin), the key enzyme in promoting alternative pathway amplification. The effects of complement activation products are mediated by intracellular and cell membrane receptors, like C3aR, C5aR1, C5aR2 and the complement regulator MCP/CD46, often jointly with other receptors like the T cell receptor, Toll-like receptors and those of the inflammasomes. These recent observations link complement activation to cellular metabolic processes, intracellular defense reactions and to diverse adaptive immune responses. The complement components may thus be viewed as intracellular alarm molecules involved in the cellular danger response.
Collapse
Affiliation(s)
- M P Reichhardt
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
| | - S Meri
- Department of Bacteriology and Immunology, Haartman Institute, Immunobiology Research Program, University of Helsinki, Helsinki, Finland; Helsinki University Central Hospital Laboratory (HUSLAB), Helsinki, Finland.
| |
Collapse
|
28
|
Martin IV, Bohner A, Boor P, Shagdarsuren E, Raffetseder U, Lammert F, Floege J, Ostendorf T, Weber SN. Complement C5a receptors C5L2 and C5aR in renal fibrosis. Am J Physiol Renal Physiol 2017; 314:F35-F46. [PMID: 28903945 DOI: 10.1152/ajprenal.00060.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Complement factor C5a has two known receptors, C5aR, which mediates proinflammatory effects, and C5L2, a potential C5a decoy receptor. We previously identified C5a/C5aR signaling as a potent profibrotic pathway in the kidney. Here we tested for the first time the role of C5L2 in renal fibrosis. In unilateral ureteral obstruction (UUO)-induced kidney fibrosis, the expression of C5aR and C5L2 increased similarly and gradually as fibrosis progressed and was particularly prominent in injured dilated tubules. Genetic deficiency of either C5aR or C5L2 significantly reduced UUO-induced tubular injury. Expression of key proinflammatory mediators, however, significantly increased in C5L2- compared with C5aR-deficient mice, but this had no effect on the number of renal infiltrating macrophages or T cells. Moreover, in C5L2-/- mice, the cytokine and matrix metalloproteinase-inhibitor tissue inhibitor of matrix metalloproteinase-1 was specifically enhanced. Consequently, in C5L2-/- mice the degree of renal fibrosis was similar to wild type (WT), albeit with reduced mRNA expression of some fibrosis-related genes. In contrast, C5aR-/- mice had significantly reduced renal fibrosis compared with WT and C5L2-/- mice in UUO. In vitro experiments with primary tubular cells demonstrated that deficiency for either C5aR or C5L2 led to a significantly reduced expression of tubular injury and fibrosis markers. Vice versa, stimulation of WT tubular cells with C5a significantly induced the expression of these markers, whereas the absence of either receptor abolished this induction. In conclusion, in experimental renal fibrosis C5L2 and C5aR both contribute to tubular injury, and, while C5aR acts profibrotic, C5L2 does not play a role in extracellular matrix accumulation, arguing against C5L2 functioning simply as a decoy receptor.
Collapse
Affiliation(s)
- Ina V Martin
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany
| | - Annika Bohner
- Division of Gastroenterology, Saarland University Medical Center , Homburg , Germany
| | - Peter Boor
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany.,Institute of Pathology, RWTH University of Aachen , Aachen , Germany
| | | | - Ute Raffetseder
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany
| | - Frank Lammert
- Division of Gastroenterology, Saarland University Medical Center , Homburg , Germany
| | - Jürgen Floege
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany
| | - Tammo Ostendorf
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany
| | - Susanne N Weber
- Division of Gastroenterology, Saarland University Medical Center , Homburg , Germany
| |
Collapse
|
29
|
The Controversial C5a Receptor C5aR2: Its Role in Health and Disease. J Immunol Res 2017; 2017:8193932. [PMID: 28706957 PMCID: PMC5494583 DOI: 10.1155/2017/8193932] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/11/2017] [Indexed: 01/24/2023] Open
Abstract
After the discovery of the C5a receptor C5aR1, C5aR2 is the second receptor found to bind C5a and its des-arginine form. As a heptahelical G protein-coupled receptor but devoid of the intracellular Gα signal, C5aR2 is special and confusing. Ramifications and controversies about C5aR2 are under debate since its identification, from putative ligands and cellular localization to intracellular signals and pathological roles in inflammation and immunity. The ruleless and even conflicting pro- or anti-inflammatory role of C5aR2 in animal models of diverse diseases makes one bewildered. This review summarizes reports on C5aR2, tries to clear up available evidence on these four controversial aspects, and delineates C5aR2 function(s). It also summarizes available toolboxes for C5aR2 study.
Collapse
|
30
|
Ender F, Wiese AV, Schmudde I, Sun J, Vollbrandt T, König P, Laumonnier Y, Köhl J. Differential regulation of C5a receptor 1 in innate immune cells during the allergic asthma effector phase. PLoS One 2017; 12:e0172446. [PMID: 28231307 PMCID: PMC5322932 DOI: 10.1371/journal.pone.0172446] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/03/2017] [Indexed: 12/31/2022] Open
Abstract
C5a drives airway constriction and inflammation during the effector phase of allergic asthma, mainly through the activation of C5a receptor 1 (C5aR1). Yet, C5aR1 expression on myeloid and lymphoid cells during the allergic effector phase is ill-defined. Recently, we generated and characterized a floxed green fluorescent protein (GFP)-C5aR1 knock-in mouse. Here, we used this reporter strain to monitor C5aR1 expression in airway, pulmonary and lymph node cells during the effector phase of OVA-driven allergic asthma. C5aR1 reporter and wildtype mice developed a similar allergic phenotype with comparable airway resistance, mucus production, eosinophilic/neutrophilic airway inflammation and Th2/Th17 cytokine production. During the allergic effector phase, C5aR1 expression increased in lung tissue eosinophils but decreased in airway and pulmonary macrophages as well as in pulmonary CD11b+ conventional dendritic cells (cDCs) and monocyte-derived DCs (moDCs). Surprisingly, expression in neutrophils was not affected. Of note, moDCs but not CD11b+ cDCs from mediastinal lymph nodes (mLN) expressed less C5aR1 than DCs residing in the lung after OVA challenge. Finally, neither CD103+ cDCs nor cells of the lymphoid lineage such as Th2 or Th17-differentiated CD4+ T cells, B cells or type 2 innate lymphoid cells (ILC2) expressed C5aR1 under allergic conditions. Our findings demonstrate a complex regulation pattern of C5aR1 in the airways, lung tissue and mLN of mice, suggesting that the C5a/C5aR1 axis controls airway constriction and inflammation through activation of myeloid cells in all three compartments in an experimental model of allergic asthma.
Collapse
Affiliation(s)
- Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Anna V. Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Inken Schmudde
- Institute for Anatomy, University of Lübeck, Lübeck, Germany
| | - Jing Sun
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | | | - Peter König
- Institute for Anatomy, University of Lübeck, Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- * E-mail: (JK); (YL)
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (JK); (YL)
| |
Collapse
|
31
|
An LL, Gorman JV, Stephens G, Swerdlow B, Warrener P, Bonnell J, Mustelin T, Fung M, Kolbeck R. Complement C5a induces PD-L1 expression and acts in synergy with LPS through Erk1/2 and JNK signaling pathways. Sci Rep 2016; 6:33346. [PMID: 27624143 PMCID: PMC5022031 DOI: 10.1038/srep33346] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022] Open
Abstract
Severe bacterial infection results in both uncontrolled inflammation and immune suppression in septic patients. Although there is ample evidence that complement activation provokes overwhelming pro-inflammatory responses, whether or not it plays a role in immune suppression in this case is unclear. Here, we identify that complement C5a directly participates in negative regulation of immune responses to bacteria-induced inflammation in an ex vivo model of human whole blood. Challenge of whole blood with heat-killed Pseudomonas aeruginosa induces PD-L1 expression on monocytes and the production of IL-10 and TGF-β, which we show to be inhibited by C5a blockade. The induction of PD-L1 expression by C5a is via C5aR1but not C5aR2. Furthermore, C5a synergises with P. aeruginosa LPS in both PD-L1 expression and the production of IL-10 and TGF-β. Mechanistically, C5a contributes to the synergy in PD-L1 expression by specifically activating Erk1/2 and JNK signaling pathways. Our study reveals a new role for C5a in directly promoting immunosuppressive responses. Therefore, aberrant production of complement C5a during bacterial infection could have broader effect on compromising host defense including the induction of immune suppression.
Collapse
Affiliation(s)
- Ling-Ling An
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC. One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Jacob V Gorman
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC. One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Geoffrey Stephens
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC. One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Bonnie Swerdlow
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC. One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Paul Warrener
- Department of Infectious Diseases, MedImmune, LLC, Gaithersburg, MD 20878, USA
| | - Jessica Bonnell
- Department of Infectious Diseases, MedImmune, LLC, Gaithersburg, MD 20878, USA
| | - Tomas Mustelin
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC. One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Michael Fung
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC. One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Roland Kolbeck
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC. One Medimmune Way, Gaithersburg, MD 20878, USA
| |
Collapse
|
32
|
Fang YY, Shao R, Yu H, Zhang Q, Wang MM, Li CS. Prognostic significance of C5a2 on polymorphonuclear neutrophil and C5a2intra/C5a2 ratio level for early sepsis in an ED. Am J Emerg Med 2016; 34:2084-2089. [PMID: 27475040 DOI: 10.1016/j.ajem.2016.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION The current study was designed to evaluate the expression of the second C5a receptor (C5a2) on polymorphonuclear neutrophil and in the cytoplasm of polymorphonuclear neutrophils (C5a2intra) in patients with sepsis in the emergency department (ED) for risk stratification and mortality. METHODS Consecutive patients fulfilling the criteria for systemic inflammatory response syndrome (n = 357) were admitted to Beijing Chao-Yang Hospital ED between January 2015 and July 2015. They were enrolled to identify the expression of C5a2 and C5a2intra and categorized into the following 4 groups: systemic inflammatory response syndrome, sepsis, severe sepsis, and septic shock. RESULTS We report that the surface C5a2 decreased and the C5a2intra/C5a2 ratio level increased with sepsis severity. As independent predictors of 28-day mortality, the areas under the receiver operating characteristic curves of combination of C5a2 or C5a2intra/C5a2 ratio level and the Mortality in ED Sepsis score were significantly higher than that of procalcitonin alone in predicting 28-day mortality in septic patients. CONCLUSION The C5a2 and the C5a2intra/C5a2 ratio levels are probably valuable for the risk stratification of sepsis and are associated with the mortality of early sepsis in the ED.
Collapse
Affiliation(s)
- Ying-Ying Fang
- Emergency Department, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Beijing, Chao-Yang District 100020, China.
| | - Rui Shao
- Emergency Department, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Beijing, Chao-Yang District 100020, China.
| | - Han Yu
- Emergency Department, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Beijing, Chao-Yang District 100020, China.
| | - Qing Zhang
- Emergency Department, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Beijing, Chao-Yang District 100020, China.
| | - Miao-Miao Wang
- Emergency Department, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Beijing, Chao-Yang District 100020, China.
| | - Chun-Sheng Li
- Emergency Department, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Beijing, Chao-Yang District 100020, China.
| |
Collapse
|
33
|
Arbore G, West EE, Spolski R, Robertson AAB, Klos A, Rheinheimer C, Dutow P, Woodruff TM, Yu ZX, O'Neill LA, Coll RC, Sher A, Leonard WJ, Köhl J, Monk P, Cooper MA, Arno M, Afzali B, Lachmann HJ, Cope AP, Mayer-Barber KD, Kemper C. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4⁺ T cells. Science 2016; 352:aad1210. [PMID: 27313051 DOI: 10.1126/science.aad1210] [Citation(s) in RCA: 394] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
Abstract
The NLRP3 inflammasome controls interleukin-1β maturation in antigen-presenting cells, but a direct role for NLRP3 in human adaptive immune cells has not been described. We found that the NLRP3 inflammasome assembles in human CD4(+) T cells and initiates caspase-1-dependent interleukin-1β secretion, thereby promoting interferon-γ production and T helper 1 (T(H)1) differentiation in an autocrine fashion. NLRP3 assembly requires intracellular C5 activation and stimulation of C5a receptor 1 (C5aR1), which is negatively regulated by surface-expressed C5aR2. Aberrant NLRP3 activity in T cells affects inflammatory responses in human autoinflammatory disease and in mouse models of inflammation and infection. Our results demonstrate that NLRP3 inflammasome activity is not confined to "innate immune cells" but is an integral component of normal adaptive T(H)1 responses.
Collapse
Affiliation(s)
- Giuseppina Arbore
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK
| | - Erin E West
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Avril A B Robertson
- Institute for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, QLD 4072, Australia
| | - Andreas Klos
- Institute for Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Claudia Rheinheimer
- Institute for Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Pavel Dutow
- Institute for Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Trent M Woodruff
- Institute for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, QLD 4072, Australia
| | - Zu Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Rebecca C Coll
- Institute for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, QLD 4072, Australia
| | - Alan Sher
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Pete Monk
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, UK
| | - Matthew A Cooper
- Institute for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, QLD 4072, Australia
| | - Matthew Arno
- Genomics Centre, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK
| | - Behdad Afzali
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK.,Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Helen J Lachmann
- UK National Amyloidosis Centre, Division of Medicine, University College London, Royal Free Campus, London NW3 2PF, UK
| | - Andrew P Cope
- Academic Department of Rheumatology, Division of Immunology, Infection and Inflammatory Diseases, King's College London, London SE1 1UL, UK
| | - Katrin D Mayer-Barber
- Laboratory of Clinical Infectious Diseases, Inflammation and Innate Immunity Unit, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Claudia Kemper
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK.,Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Discovery of functionally selective C5aR2 ligands: novel modulators of C5a signalling. Immunol Cell Biol 2016; 94:787-95. [PMID: 27108698 DOI: 10.1038/icb.2016.43] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/22/2022]
Abstract
The complement cascade is comprised of a highly sophisticated network of innate immune proteins that are activated in response to invading pathogens or tissue injury. The complement activation peptide, C5a, binds two seven transmembrane receptors, namely the C5a receptor 1 (C5aR1) and C5a receptor 2 (C5aR2, or C5L2). C5aR2 is a non-G-protein-signalling receptor whose biological role remains controversial. Some of this controversy arises owing to the lack of selective ligands for C5aR2. In this study, a library of 61 peptides based on the C-terminus of C5a was assayed for the ability to selectively modulate C5aR2 function. Two ligands (P32 and P59) were identified as functionally selective C5aR2 ligands, exhibiting selective recruitment of β-arrestin 2 via C5aR2, partial inhibition of C5a-induced ERK1/2 activation and lipopolysaccharide-stimulated interleukin-6 release from human monocyte-derived macrophages. Importantly, neither ligand could induce ERK1/2 activation or inhibit C5a-induced ERK1/2 activation via C5aR1 directly. Finally, P32 inhibited C5a-mediated neutrophil mobilisation in wild-type, but not C5aR2(-/-) mice. These functionally selective ligands for C5aR2 are novel tools that can selectively modulate C5a activity in vitro and in vivo, and thus will be valuable tools to interrogate C5aR2 function.
Collapse
|
35
|
Selle J, Asare Y, Köhncke J, Alampour-Rajabi S, Shagdarsuren G, Klos A, Weber C, Jankowski J, Shagdarsuren E. Atheroprotective role of C5ar2 deficiency in apolipoprotein E-deficient mice. Thromb Haemost 2015; 114:848-58. [PMID: 26084965 DOI: 10.1160/th14-12-1075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/20/2015] [Indexed: 12/22/2022]
Abstract
Atherogenic processes and vascular remodelling after arterial injury are controlled and driven by a plethora of factors amongst which the activation of the complement system is pivotal. Recently, we reported a clear correlation between high expressions of the second receptor for complement anaphylatoxin C5a, the C5a receptor-like 2 (C5L2, C5aR2), with high pro-inflammatory cytokine expression in advanced human atherosclerotic plaques. This prompted us to speculate that C5aR2 might have a functional role in atherosclerosis. We, therefore, investigated the role of C5aR2 in atherosclerosis and vascular remodelling. Here, we demonstrate that C5ar2 deletion, in atherosclerosis-prone mice, attenuates atherosclerotic as well as neointimal plaque formation, reduces macrophages and CD3+ T cells and induces features of plaque stability, as analysed by histomorphometry and quantitative immunohistochemistry. As a possible underlying mechanism, C5ar2-deficient plaques showed significantly reduced expression of C5a receptor (C5ar1), Tnf-α as well as Vcam-1, as determined by qPCR and quantitative immunohistochemistry. In addition, in vitro mechanistic studies revealed a reduction of these pro-inflammatory and pro-atherosclerotic mediators in C5ar2-deficient macrophages. Finally, blocking C5ar1 with antagonist JPE1375, in C5ar2(-/-)/Apoe(-/-) mice, led to a further reduction in neointimal plaque formation with reduced inflammation. In conclusion, C5ar2 deficiency attenuates atherosclerosis and neointimal plaque formation after arterial injury. This identifies C5aR2 as a promising target to reduce atherosclerosis and restenosis after vascular interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Erdenechimeg Shagdarsuren
- Erdenechimeg Shagdarsuren, MD, Institute for Molecular Cardiovascular Research, Universitätsklinikum der RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany, Tel.: +49 241 8036584, Fax: +49 241 8082703, E-mail:
| |
Collapse
|
36
|
Lillegard KE, Loeks-Johnson AC, Opacich JW, Peterson JM, Bauer AJ, Elmquist BJ, Regal RR, Gilbert JS, Regal JF. Differential effects of complement activation products c3a and c5a on cardiovascular function in hypertensive pregnant rats. J Pharmacol Exp Ther 2014; 351:344-51. [PMID: 25150279 PMCID: PMC4201271 DOI: 10.1124/jpet.114.218123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/21/2014] [Indexed: 11/22/2022] Open
Abstract
Early-onset pre-eclampsia is characterized by decreased placental perfusion, new-onset hypertension, angiogenic imbalance, and endothelial dysfunction associated with excessive activation of the innate immune complement system. Although our previous studies demonstrated that inhibition of complement activation attenuates placental ischemia-induced hypertension using the rat reduced uterine perfusion pressure (RUPP) model, the important product(s) of complement activation has yet to be identified. We hypothesized that antagonism of receptors for complement activation products C3a and C5a would improve vascular function and attenuate RUPP hypertension. On gestational day (GD) 14, rats underwent sham surgery or vascular clip placement on ovarian arteries and abdominal aorta (RUPP). Rats were treated once daily with the C5a receptor antagonist (C5aRA), PMX51 (acetyl-F-[Orn-P-(D-Cha)-WR]), the C3a receptor antagonist (C3aRA), SB290157 (N(2)-[(2,2-diphenylethoxy)acetyl]-l-arginine), or vehicle from GD 14-18. Both the C3aRA and C5aRA attenuated placental ischemia-induced hypertension without affecting the decreased fetal weight or decreased concentration of free circulating vascular endothelial growth factor (VEGF) also present in this model. The C5aRA, but not the C3aRA, attenuated placental ischemia-induced increase in heart rate and impaired endothelial-dependent relaxation. The C3aRA abrogated the acute pressor response to C3a peptide injection, but it also unexpectedly attenuated the placental ischemia-induced increase in C3a, suggesting nonreceptor-mediated effects. Overall, these results indicate that both C3a and C5a are important products of complement activation that mediate the hypertension regardless of the reduction in free plasma VEGF. The mechanism by which C3a contributes to placental ischemia-induced hypertension appears to be distinct from that of C5a, and management of pregnancy-induced hypertension is likely to require a broad anti-inflammatory approach.
Collapse
Affiliation(s)
- Kathryn E Lillegard
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| | - Alex C Loeks-Johnson
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| | - Jonathan W Opacich
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| | - Jenna M Peterson
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| | - Ashley J Bauer
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| | - Barbara J Elmquist
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| | - Ronald R Regal
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| | - Jeffrey S Gilbert
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| | - Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| |
Collapse
|
37
|
Halai R, Bellows-Peterson ML, Branchett W, Smadbeck J, Kieslich CA, Croker DE, Cooper MA, Morikis D, Woodruff TM, Floudas CA, Monk PN. Derivation of ligands for the complement C3a receptor from the C-terminus of C5a. Eur J Pharmacol 2014; 745:176-81. [PMID: 25446428 PMCID: PMC4263610 DOI: 10.1016/j.ejphar.2014.10.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/14/2014] [Accepted: 10/22/2014] [Indexed: 01/09/2023]
Abstract
The complement cascade is a highly sophisticated network of proteins that are well regulated and directed in response to invading pathogens or tissue injury. Complement C3a and C5a are key mediators produced by this cascade, and their dysregulation has been linked to a plethora of inflammatory and autoimmune diseases. Consequently, this has stimulated interest in the development of ligands for the receptors for these complement peptides, C3a receptor, and C5a1 (C5aR/CD88). In this study we used computational methods to design novel C5a1 receptor ligands. However, functional screening in human monocyte-derived macrophages using the xCELLigence label-free platform demonstrated altered specificity of our ligands. No agonist/antagonist activity was observed at C5a1, but we instead saw that the ligands were able to partially agonize the closely related complement receptor C3a receptor. This was verified in the presence of C3a receptor antagonist SB 290157 and in a stable cell line expressing either C5a1 or C3a receptor alone. C3a agonism has been suggested to be a potential treatment of acute neutrophil-driven traumatic pathologies, and may have great potential as a therapeutic avenue in this arena.
Collapse
Affiliation(s)
- Reena Halai
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Will Branchett
- Department of Infection and Immunity, Sheffield University Medical School, Sheffield, UK
| | - James Smadbeck
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Chris A Kieslich
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA; Department of Bioengineering, University of California, Riverside, CA, USA
| | - Daniel E Croker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, CA, USA
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christodoulos A Floudas
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
| | - Peter N Monk
- Department of Infection and Immunity, Sheffield University Medical School, Sheffield, UK.
| |
Collapse
|
38
|
C5a2 can modulate ERK1/2 signaling in macrophages via heteromer formation with C5a1 and β-arrestin recruitment. Immunol Cell Biol 2014; 92:631-9. [PMID: 24777312 DOI: 10.1038/icb.2014.32] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 01/08/2023]
Abstract
The complement system is a major component of our innate immune system, in which the complement proteins C5a and C5a-des Arg bind to two G-protein-coupled receptors: namely, the C5a receptor (C5a1) and C5a receptor like-2 receptor (C5a2, formerly called C5L2). Recently, it has been demonstrated that C5a, but not C5a-des Arg, upregulates heteromer formation between C5a1 and C5a2, leading to an increase in IL-10 release from human monocyte-derived macrophages (HMDMs). A bioluminescence resonance energy transfer (BRET) assay was used to assess the recruitment of β-arrestins by C5a and C5a-des Arg at the C5a1 and C5a2 receptors. C5a demonstrated elevated β-arrestin 2 recruitment levels in comparison with C5a-des Arg, whereas no significant difference was observed at C5a2. A constitutive complex that formed between β-arrestin 2 and C5a2 accounted for half of the BRET signal observed. Interestingly, both C5a and C5a-des Arg exhibited higher potency for β-arrestin 2 recruitment via C5a2, indicating preference for C5a2 over C5a1. When C5a was tested in a functional ERK1/2 assay in HMDMs, inhibition of ERK1/2 was observed only at concentrations at or above the EC50 for heteromer formation. This suggested that increased recruitment of the β-arrestin-C5a2 complex at these C5a concentrations might have an inhibitory role on C5a1 signaling through ERK1/2. An improved understanding of C5a2 modulation of signaling in acute inflammation could be of benefit in the development of ligands for conditions such as sepsis.
Collapse
|
39
|
Poursharifi P, Rezvani R, Gupta A, Lapointe M, Marceau P, Tchernof A, Cianflone K. Association of immune and metabolic receptors C5aR and C5L2 with adiposity in women. Mediators Inflamm 2014; 2014:413921. [PMID: 24523571 PMCID: PMC3913464 DOI: 10.1155/2014/413921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/07/2013] [Accepted: 12/11/2013] [Indexed: 12/30/2022] Open
Abstract
Adipose tissue receptors C5aR and C5L2 and their heterodimerization/functionality and interaction with ligands C5a and acylation stimulating protein (ASP) have been evaluated in cell and rodent studies. Their contribution to obesity factors in humans remains unclear. We hypothesized that C5a receptors, classically required for host defense, are also associated with adiposity. Anthropometry and fasting blood parameters were measured in 136 women divided by body mass index (BMI): normal/overweight (≤30 kg/m(2); n = 34), obese I (≤45 kg/m(2); n = 33), obese II (≤51 kg/m(2); n = 33), and obese III (≤80 kg/m(2); n = 36). Subcutaneous and omental adipose tissue C5aR and C5L2 expression were analysed. C5L2 expression was comparable between subcutaneous and omental across all BMI groups. Plasma ASP and ASP/omental C5L2 expression increased with BMI (P < 0.001 and P < 0.01, resp.). While plasma C5a was unchanged, C5aR expression decreased with increasing BMI in subcutaneous and omental tissues (P < 0.01 and P < 0.05, resp.), with subcutaneous omental depots. Omental C5L2/C5aR ratio increased with BMI (P < 0.01) with correlations between C5L2/C5aR and waist circumference, HDL-C, and adiponectin. Tissue and BMI differences in receptors and ligands, particularly in omental, suggest relationship to metabolic disturbances and highlight adipose-immune interactions.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Laval University, Y4323, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
- Department of Medicine, Laval University, 1050 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
| | - Reza Rezvani
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Laval University, Y4323, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Abhishek Gupta
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Laval University, Y4323, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Marc Lapointe
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Laval University, Y4323, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Picard Marceau
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Laval University, Y4323, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - André Tchernof
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Laval University, Y4323, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Katherine Cianflone
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Laval University, Y4323, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
- Department of Medicine, Laval University, 1050 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
| |
Collapse
|
40
|
Rezvani R, Smith J, Lapointe M, Marceau P, Tchernof A, Cianflone K. Complement receptors C5aR and C5L2 are associated with metabolic profile, sex hormones, and liver enzymes in obese women pre- and postbariatric surgery. J Obes 2014; 2014:383102. [PMID: 24796007 PMCID: PMC3984800 DOI: 10.1155/2014/383102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Obesity is associated with metabolic dysfunction with sex differences and chronic, low-grade inflammation.We proposed that hepatic expression of immune complement C3 related receptors (C3aR, C5aR, and C5L2) would be associated with pre- or postmenopausal status and metabolic profile in severely obese women. We hypothesized that C5L2/C5aR ratio, potentially influencing the ASP/C5L2 metabolic versus C5a/C5aR immune response, would predict metabolic profiles after weight loss surgery. MATERIALS AND METHODS Fasting plasma (hormone, lipid, and enzyme analysis) and liver biopsies (RT-PCR gene expression) were obtained from 91 women during surgery. RESULTS Hepatic C5L2 mRNA expression was elevated in pre- versus postmenopausal women (P < 0.01) and correlated positively with circulating estradiol, estrone, ApoB, ApoA1, ApoA1/B, waist circumference, age, and LDL-C (all P < 0.05).While plasma ASP was lower in pre- versus postmenopausal women (P < 0.01), the hepatic C5L2/C5aR mRNA ratio was increased (P < 0.001) and correlated positively with estrone (P < 0.01) and estradiol (P < 0.001) and negatively with circulating ApoB and liver enzymes ALT, AST, and GGT (all P < 0.05). Over 12 months postoperatively, liver enzymes in low C5L2/C5aR mRNA ratio group remained higher (ALP and ALT, P < 0.05, AST and GGT, P < 0.001 2-way-ANOVA). CONCLUSION C5L2-C5aR association with other mediators including estrogens may contribute to hepatic metabolic and inflammatory function.
Collapse
Affiliation(s)
- Reza Rezvani
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Jessica Smith
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Marc Lapointe
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Picard Marceau
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Andre Tchernof
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Katherine Cianflone
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
- *Katherine Cianflone:
| |
Collapse
|