1
|
Li D, Li X, Zhang J, Tang Z, Tian A. The immunomodulatory effect of IL-4 accelerates bone substitute material-mediated osteogenesis in aged rats via NLRP3 inflammasome inhibition. Front Immunol 2023; 14:1121549. [PMID: 37153554 PMCID: PMC10157059 DOI: 10.3389/fimmu.2023.1121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Background Bone defect repair by implanting bone substitute materials has been a common clinical treatment. With the understanding of substance-immune system interactions and increasing evidence indicating that the post-implantation immune response determines the fate of bone substitute materials, active modulation of host macrophage polarization is considered a promising strategy. However, whether the same regulatory effects exist when an individual immune system is altered with aging is unclear. Methods In this study, we mechanistically investigated the effect of immunosenescence on the active regulation of macrophage polarization by establishing a cranial bone defect model in young and aged rats implanted with Bio-Oss®. Forty-eight young and 48 aged specific pathogen-free (SPF) male SD rats were randomly divided into two groups. In the experimental group, 20 μL of IL-4 (0.5 μg/mL) was injected locally on the third to seventh postoperative days, while an equal volume of PBS was injected in the control group. Specimens were collected at 1, 2, 6, and 12 weeks postoperatively, and bone regeneration at the defect site was evaluated by micro-CT, histomorphometry, immunohistochemistry, double-labeling immunofluorescence, and RT-qPCR. Results The application of exogenous IL-4 reduced activation of NLRP3 inflammasomes by promoting the polarization of M1 macrophages to M2 macrophages, thus promoting bone regeneration at the site of bone defects in aged rats. However, this effect was gradually weakened after the IL-4 intervention was discontinued. Conclusion Our data confirmed that a strategy to regulate macrophage polarization is also feasible under conditions of immunosenescence, i.e., the local inflammatory microenvironment can be regulated by reducing M1-type macrophages. However, further experiments are needed to determine an exogenous IL-4 intervention that can maintain a more sustained effect.
Collapse
Affiliation(s)
- Duchenhui Li
- Department of Prosthodontics and Implantology, School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology of Guizhou Medical University, Guiyang, China
- Department of Physiology and Pathology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiao Li
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, Guizhou, China
| | - Jie Zhang
- Department of Prosthodontics and Implantology, School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhenglong Tang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology of Guizhou Medical University, Guiyang, China
- Department of Physiology and Pathology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- *Correspondence: Ai Tian, ; Zhenglong Tang,
| | - Ai Tian
- Department of Prosthodontics and Implantology, School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
- *Correspondence: Ai Tian, ; Zhenglong Tang,
| |
Collapse
|
2
|
Verma A, Shteinfer-Kuzmine A, Kamenetsky N, Pittala S, Paul A, Nahon Crystal E, Ouro A, Chalifa-Caspi V, Pandey SK, Monsengo A, Vardi N, Knafo S, Shoshan-Barmatz V. Targeting the overexpressed mitochondrial protein VDAC1 in a mouse model of Alzheimer's disease protects against mitochondrial dysfunction and mitigates brain pathology. Transl Neurodegener 2022; 11:58. [PMID: 36578022 PMCID: PMC9795455 DOI: 10.1186/s40035-022-00329-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/23/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) exhibits mitochondrial dysfunctions associated with dysregulated metabolism, brain inflammation, synaptic loss, and neuronal cell death. As a key protein serving as the mitochondrial gatekeeper, the voltage-dependent anion channel-1 (VDAC1) that controls metabolism and Ca2+ homeostasis is positioned at a convergence point for various cell survival and death signals. Here, we targeted VDAC1 with VBIT-4, a newly developed inhibitor of VDAC1 that prevents its pro-apoptotic activity, and mitochondria dysfunction. METHODS To address the multiple pathways involved in AD, neuronal cultures and a 5 × FAD mouse model of AD were treated with VBIT-4. We addressed multiple topics related to the disease and its molecular mechanisms using immunoblotting, immunofluorescence, q-RT-PCR, 3-D structural analysis and several behavioral tests. RESULTS In neuronal cultures, amyloid-beta (Aβ)-induced VDAC1 and p53 overexpression and apoptotic cell death were prevented by VBIT-4. Using an AD-like 5 × FAD mouse model, we showed that VDAC1 was overexpressed in neurons surrounding Aβ plaques, but not in astrocytes and microglia, and this was associated with neuronal cell death. VBIT-4 prevented the associated pathophysiological changes including neuronal cell death, neuroinflammation, and neuro-metabolic dysfunctions. VBIT-4 also switched astrocytes and microglia from being pro-inflammatory/neurotoxic to neuroprotective phenotype. Moreover, VBIT-4 prevented cognitive decline in the 5 × FAD mice as evaluated using several behavioral assessments of cognitive function. Interestingly, VBIT-4 protected against AD pathology, with no significant change in phosphorylated Tau and only a slight decrease in Aβ-plaque load. CONCLUSIONS The study suggests that mitochondrial dysfunction with its gatekeeper VDAC1 is a promising target for AD therapeutic intervention, and VBIT-4 is a promising drug candidate for AD treatment.
Collapse
Affiliation(s)
- Ankit Verma
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Anna Shteinfer-Kuzmine
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Nikita Kamenetsky
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Srinivas Pittala
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Avijit Paul
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Edna Nahon Crystal
- grid.443007.40000 0004 0604 7694Achva Academic College, 79804 Shikmim, Israel
| | - Alberto Ouro
- grid.7489.20000 0004 1937 0511Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.488911.d0000 0004 0408 4897Present Address: NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Vered Chalifa-Caspi
- grid.7489.20000 0004 1937 0511Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Swaroop Kumar Pandey
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Alon Monsengo
- grid.7489.20000 0004 1937 0511The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Noga Vardi
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Shira Knafo
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Varda Shoshan-Barmatz
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| |
Collapse
|
3
|
Challagundla N, Saha B, Agrawal-Rajput R. Insights into inflammasome regulation: cellular, molecular, and pathogenic control of inflammasome activation. Immunol Res 2022; 70:578-606. [PMID: 35610534 DOI: 10.1007/s12026-022-09286-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Maintenance of immune homeostasis is an intricate process wherein inflammasomes play a pivotal role by contributing to innate and adaptive immune responses. Inflammasomes are ensembles of adaptor proteins that can trigger a signal following innate sensing of pathogens or non-pathogens eventuating in the inductions of IL-1β and IL-18. These inflammatory cytokines substantially influence the antigen-presenting cell's costimulatory functions and T helper cell differentiation, contributing to adaptive immunity. As acute and chronic disease conditions may accompany parallel tissue damage, we analyze the critical role of extracellular factors such as cytokines, amyloids, cholesterol crystals, etc., intracellular metabolites, and signaling molecules regulating inflammasome activation/inhibition. We develop an operative framework for inflammasome function and regulation by host cell factors and pathogens. While inflammasomes influence the innate and adaptive immune components' interplay modulating the anti-pathogen adaptive immune response, pathogens may target inflammasome inhibition as a survival strategy. As trapped between health and diseases, inflammasomes serve as promising therapeutic targets and their modus operandi serves as a scientific rationale for devising better therapeutic strategies.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Lab-5, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Reena Agrawal-Rajput
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
4
|
Hu L, Shao C, Pan L, Jiang Z. Lack of STAT6 enhances murine acute lung injury through NLRP3/p38 MAPK signaling pathway in macrophages. BMC Immunol 2022; 23:25. [PMID: 35606692 PMCID: PMC9126100 DOI: 10.1186/s12865-022-00500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Signal transducer and activator of transcription 6 (STAT6) is an intracelluar transcriotion factor and NLRP3 (Nod-like receptor containing a pyrin domain 3) is a component of NLRP3 inflammasome in pyroptotic cells. There was increased activation of STAT6 and expression of NLRP3 in mice with murine acute lung injury (ALI). However, it is unknown their roles in the development of murine ALI. We in this study, investigated the effects of STAT6 signaling on murine ALI and pyroptosis in STAT6 knock-out (KO) mice and macrophages. Results STAT6 was activated in the lung tissues of mice 2 days after intratracheal treatmemt with 5 mg/kg LPS. Lack of STAT6 expression in KO mice induced more severe lung inflammation, associated with elevated neutrophil influx and expression of TNF-alpha, IL-6 and IL-1beta in the inflamed lung tissues. In addition, the expression of NLRP3, ASC (apoptosis-associated speck-like protein containing a CARD), p-p38 MAPK (p38 mitogen-activated protein kinase) and ratio of LC3-II/I (microtubule-associated protein-1 light chain-3) was increased, accompanied with the increased polarization of Siglec-F(−) subtype macrophages in KO mice with ALI. Further studies in bone marrow-derived macrophages (BMDMs) revealed that lack of STAT6 increased the expression of NLRP3 and p-p38 MAPK, in association with elevated expression of TNF-alpha, IL-1beta and Calreticulin in LPS-treated KO BMDMs. Conclusions Lack of STAT6 exacerbated murine ALI through improving the expression of NLRP3 and activation of p38 MAPK in macrophages. STAT6 has an immune suppressive role in the development of ALI and would be a promising therapeutic target in the treatment of ALI and possibly among patients with acute respiratory distress syndrome (ARDS). Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00500-9.
Collapse
Affiliation(s)
- Lu Hu
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.,Department of Respiratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'An, China
| | - Changzhou Shao
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Linyue Pan
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Zhilong Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| |
Collapse
|
5
|
Liu T, Wang L, Liang P, Wang X, Liu Y, Cai J, She Y, Wang D, Wang Z, Guo Z, Bates S, Xia X, Huang J, Cui J. USP19 suppresses inflammation and promotes M2-like macrophage polarization by manipulating NLRP3 function via autophagy. Cell Mol Immunol 2021; 18:2431-2442. [PMID: 33097834 PMCID: PMC8484569 DOI: 10.1038/s41423-020-00567-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophage polarization to proinflammatory M1-like or anti-inflammatory M2-like cells is critical to mount a host defense or repair tissue. The exact molecular mechanisms controlling this process are still elusive. Here, we report that ubiquitin-specific protease 19 (USP19) acts as an anti-inflammatory switch that inhibits inflammatory responses and promotes M2-like macrophage polarization. USP19 inhibited NLRP3 inflammasome activation by increasing autophagy flux and decreasing the generation of mitochondrial reactive oxygen species. In addition, USP19 inhibited the proteasomal degradation of inflammasome-independent NLRP3 by cleaving its polyubiquitin chains. USP19-stabilized NLRP3 promoted M2-like macrophage polarization by direct association with interferon regulatory factor 4, thereby preventing its p62-mediated selective autophagic degradation. Consistent with these observations, compared to wild-type mice, Usp19-/- mice had decreased M2-like macrophage polarization and increased interleukin-1β secretion, in response to alum and chitin injections. Thus, we have uncovered an unexpected mechanism by which USP19 switches the proinflammatory function of NLRP3 into an anti-inflammatory function, and suggest that USP19 is a potential therapeutic target for inflammatory interventions.
Collapse
Affiliation(s)
- Tao Liu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong People’s Republic of China
| | - Liqiu Wang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong People’s Republic of China
| | - Puping Liang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong People’s Republic of China
| | - Xiaojuan Wang
- grid.12981.330000 0001 2360 039XDepartment of Experimental Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Yukun Liu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong People’s Republic of China
| | - Jing Cai
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong People’s Republic of China
| | - Yuanchu She
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong People’s Republic of China
| | - Dan Wang
- grid.12981.330000 0001 2360 039XDepartment of Experimental Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Zhi Wang
- grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, 510060 Guangzhou, Guangdong People’s Republic of China
| | - Zhiyong Guo
- grid.12981.330000 0001 2360 039XOrgan Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, Guangdong People’s Republic of China
| | - Samuel Bates
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Xiaojun Xia
- grid.12981.330000 0001 2360 039XDepartment of Experimental Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Junjiu Huang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong People’s Republic of China
| | - Jun Cui
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong People’s Republic of China ,grid.12981.330000 0001 2360 039XDepartment of Experimental Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Mohamed RA, Abdallah DM, El-brairy AI, Ahmed KA, El-Abhar HS. Palonosetron/Methyllycaconitine Deactivate Hippocampal Microglia 1, Inflammasome Assembly and Pyroptosis to Enhance Cognition in a Novel Model of Neuroinflammation. Molecules 2021; 26:5068. [PMID: 34443654 PMCID: PMC8401912 DOI: 10.3390/molecules26165068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022] Open
Abstract
Since westernized diet-induced insulin resistance is a risk factor in Alzheimer's disease (AD) development, and lipopolysaccharide (LPS) coexists with amyloid β (Aβ)1-42 in these patients, our AD novel model was developed to resemble sporadic AD by injecting LPS into high fat/fructose diet (HFFD)-fed rats. The neuroprotective potential of palonosetron and/or methyllycaconitine, 5-HT3 receptor and α7 nAChR blockers, respectively, was evaluated after 8 days of daily administration in HFFD/LPS rats. All regimens improved histopathological findings and enhanced spatial memory (Morris Water Maze); however, palonosetron alone or with methyllycaconitine promoted animal performance during novel object recognition tests. In the hippocampus, all regimens reduced the expression of glial fibrillary acidic protein and skewed microglia M1 to M2 phenotype, indicated by the decreased M1 markers and the enhanced M2 related parameters. Additionally, palonosetron and its combination regimen downregulated the expression of ASC/TMS1, as well as levels of inflammasome downstream molecules and abated cleaved caspase-1, interleukin (IL)-1β, IL-18 and caspase-11. Furthermore, ACh and 5-HT were augmented after being hampered by the insult. Our study speculates that blocking 5-HT3 receptor using palonosetron overrides methyllycaconitine to combat AD-induced neuroinflammation and inflammasome cascade, as well as to restore microglial function in a HFFD/LPS novel model for sporadic AD.
Collapse
Affiliation(s)
- Reem A. Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts, 26 July Mehwar Road Intersection with Wahat Road, 6th of October City, Giza 12451, Egypt; (R.A.M.); (A.I.E.-b.)
| | - Dalaal M. Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., Cairo 11562, Egypt;
| | - Amany I. El-brairy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts, 26 July Mehwar Road Intersection with Wahat Road, 6th of October City, Giza 12451, Egypt; (R.A.M.); (A.I.E.-b.)
| | - Kawkab A. Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Hanan S. El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., Cairo 11562, Egypt;
| |
Collapse
|
7
|
Asl SS, Jalili C, Artimani T, Ramezani M, Mirzaei F. Inflammasome can Affect Adult Neurogenesis: A Review Article. Open Neurol J 2021. [DOI: 10.2174/1874205x02115010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adult neurogenesis is the process of producing new neurons in the adult brain and is limited to two major areas: the hippocampal dentate gyrus and the Subventricular Zone (SVZ). Adult neurogenesis is affected by some physiological, pharmacological, and pathological factors. The inflammasome is a major signalling platform that regulates caspase-1 and induces proinflammatory cytokines production such as interleukin-1β (IL1-β) and IL-18.
Inflammasomes may be stimulated through multiple signals, and some of these signaling factors can affect neurogenesis. In the current review, “adult neurogenesis and inflammasome” were searched in PubMed, Scopus, and Google Scholar. Reviewing various research works showed correlations between inflammasome and neurogenesis by different intermediate factors, such as interferons (IFN), interleukins (IL), α-synuclein, microRNAs, and natural compounds. Concerning the significant role of neurogenesis in the health of the nervous system and memory, understanding factors inducing neurogenesis is crucial for identifying new therapeutic aims. Hence in this review, we will discuss the different mechanisms by which inflammasome influences adult neurogenesis.
Collapse
|
8
|
Peng Y, Wang X, Wang H, Xu W, Wu K, Go X, Yin Y, Zhang X. Interleukin-4 protects mice against lethal influenza and Streptococcus pneumoniae co-infected pneumonia. Clin Exp Immunol 2021; 205:379-390. [PMID: 34061992 DOI: 10.1111/cei.13628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae co-infection post-influenza is a major cause of mortality characterized by uncontrolled bacteria burden and excessive immune response during influenza pandemics. Interleukin (IL)-4 is a canonical type II immune cytokine known for its wide range of biological activities on different cell types. It displays protective roles in numerous infectious diseases and immune-related diseases, but its role in influenza and S. pneumoniae (influenza/S. pneumoniae) co-infected pneumonia has not been reported. In our study, we used C57BL/6 wild-type (WT) and IL-4-deficient (IL-4-/- ) mice to establish co-infection model with S. pneumoniae after influenza virus infection. Co-infected IL-4-/- mice showed increased mortality and weight loss compared with WT mice. IL-4 deficiency led to increased bacterial loads in lungs without altering influenza virus replication, suggesting a role of IL-4 in decreasing post-influenza susceptibility to S. pneumoniae co-infection. Loss of IL-4 also resulted in aggravated lung damage together with massive proinflammatory cytokine production and immune cell infiltration during co-infection. Administration of recombinant IL-4 rescued the survival and weight loss of IL-4-/- mice in lethal co-infection. Additionally, IL-4 deficiency led to more immune cell death in co-infection. Gasdermin D (GSDMD) during co-infection was induced in IL-4-/- mice that subsequently activated cell pyroptosis. Treatment of recombinant IL-4 or inhibition of GSDMD activity by disulfiram decreased immune cell death and bacterial loads in lungs of IL-4-/- co-infected mice. These results suggest that IL-4 decreases post-influenza susceptibility to S. pneumoniae co-infection via suppressing GSDMD-induced pyroptosis. Collectively, this study demonstrates the protective role of IL-4 in influenza/S. pneumoniae co-infected pneumonia.
Collapse
Affiliation(s)
- Yang Peng
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaofang Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Hong Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Kaifeng Wu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuemei Go
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Huanosta-Murillo E, Alcántara-Hernández M, Hernández-Rico B, Victoria-Acosta G, Miranda-Cruz P, Domínguez-Gómez MA, Jurado-Santacruz F, Patiño-López G, Pérez-Koldenkova V, Palma-Guzmán A, Licona-Limón P, Fuentes-Pananá EM, Lemini-López A, Bonifaz LC. NLRP3 Regulates IL-4 Expression in TOX + CD4 + T Cells of Cutaneous T Cell Lymphoma to Potentially Promote Disease Progression. Front Immunol 2021; 12:668369. [PMID: 34220814 PMCID: PMC8244903 DOI: 10.3389/fimmu.2021.668369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/31/2021] [Indexed: 11/27/2022] Open
Abstract
In cutaneous T cell lymphoma (CTCL), a dominant Th2 profile associated with disease progression has been proposed. Moreover, although the production and regulation of IL-4 expression during the early stages of the disease may have important implications in later stages, these processes are poorly understood. Here, we demonstrate the presence of TOX+ CD4+ T cells that produce IL-4+ in early-stage skin lesions of CTCL patients and reveal a complex mechanism by which the NLRP3 receptor promotes a Th2 response by controlling IL-4 production. Unassembled NLRP3 is able to translocate to the nucleus of malignant CD4+ T cells, where it binds to the human il-4 promoter. Accordingly, IL-4 expression is decreased by knocking down and increased by promoting the nuclear localization of NLRP3. We describe a positive feedback loop in which IL-4 inhibits NLRP3 inflammasome assembly, thereby further increasing its production. IL-4 induced a potentially malignant phenotype measured based on TOX expression and proliferation. This mechanism of IL-4 regulation mediated by NLRP3 is amplified in late-stage CTCL associated with disease progression. These results indicate that NLRP3 might be a key regulator of IL-4 expression in TOX+ CD4+ T cells of CTCL patients and that this mechanism might have important implications in the progression of the disease.
Collapse
MESH Headings
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Cytotoxicity, Immunologic
- Disease Progression
- Gene Expression Regulation, Neoplastic
- Humans
- Interleukin-4/genetics
- Interleukin-4/metabolism
- Jurkat Cells
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/immunology
- Lymphoma, T-Cell, Cutaneous/metabolism
- Mexico
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Phenotype
- Signal Transduction
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
Collapse
Affiliation(s)
- Enrique Huanosta-Murillo
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Marcela Alcántara-Hernández
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Brenda Hernández-Rico
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Patricia Miranda-Cruz
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Fermín Jurado-Santacruz
- Centro Dermatológico Dr. Ladislao de la Pascua, Secretaría de Salud de la Ciudad de México, Mexico City, Mexico
| | - Genaro Patiño-López
- Laboratorio de Investigación en Inmunología y Proteómica, Sección de Biología Celular de Linfocitos, Unidad de Hemato-Oncología e Investigación Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, División de Desarrollo de la Investigación, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alam Palma-Guzmán
- Laboratorio de Histología, Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Alicia Lemini-López
- Servicio de Dermatología, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C. Bonifaz
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
10
|
Kivanc D, Dasdemir S. The relationship between defects in DNA repair genes and autoinflammatory diseases. Rheumatol Int 2021; 42:1-13. [PMID: 34091703 DOI: 10.1007/s00296-021-04906-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/29/2021] [Indexed: 01/11/2023]
Abstract
Tissue inflammation and damage with the abnormal and overactivation of innate immune system results with the development of a hereditary disease group of autoinflammatory diseases. Multiple numbers of DNA damage develop with the continuous exposure to endogenous and exogenous genotoxic effects, and these damages are repaired through the DNA damage response governed by the genes involved in the DNA repair mechanisms, and proteins of these genes. Studies showed that DNA damage might trigger the innate immune response through nuclear DNA accumulation in the cytoplasm, and through chronic DNA damage response which signals itself and/or by micronucleus. The aim of the present review is to identify the effect of mutation that occurred in DNA repair genes on development of DNA damage response and autoinflammatory diseases.
Collapse
Affiliation(s)
- Demet Kivanc
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Selcuk Dasdemir
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
11
|
Pan YG, Huang MT, Sekar P, Huang DY, Lin WW, Hsieh SL. Decoy Receptor 3 Inhibits Monosodium Urate-Induced NLRP3 Inflammasome Activation via Reduction of Reactive Oxygen Species Production and Lysosomal Rupture. Front Immunol 2021; 12:638676. [PMID: 33746978 PMCID: PMC7966727 DOI: 10.3389/fimmu.2021.638676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Gout is a common inflammatory arthritis caused by the deposition of monosodium urate (MSU) crystals in the joints. This activates the macrophages into a proinflammatory state by inducing NLRP3-dependent interleukin-1β (IL-1β) secretion, resulting in neutrophil recruitment. Soluble decoy receptor 3 (DcR3) is an immune modulator and can exert biological functions via decoy and non-decoy actions. Previously, we showed that DcR3 suppresses lipopolysaccharides (LPS)- and virus-induced inflammatory responses in the macrophages and promotes the macrophages into the M2 phenotype. In this study, we clarified the actions of DcR3 and its non-decoy action motif heparin sulfate proteoglycan (HSPG) binding domain (HBD) in the MSU crystal-induced NLRP3 inflammasome activation in the macrophages and in mice. In bone marrow-derived macrophages, THP-1 and U937 cells, we found that the MSU crystal-induced secretion of IL-1β and activation of NLRP3 were suppressed by both DcR3.Fc and HBD.Fc. The suppression of the MSU-induced NLRP3 inflammasome activation is accompanied by the inhibition of lysosomal rupture, mitochondrial production of the reactive oxygen species (ROS), expression of cathepsins, and activity of cathepsin B, without affecting the crystal uptake and the expression of NLRP3 or pro-IL-1β. In the air pouch mice model of gout, MSU induced less amounts of IL-1β and chemokines secretion, an increased M2/M1 macrophage ratio, and a reduction of neutrophil recruitment in DcR3-transgenic mice, which expresses DcR3 in myeloid cells. Similarly, the mice intravenously treated with DcR3.Fc or HBD.Fc displayed less inflammation response. These findings indicate that HBD of DcR3 can reduce MSU crystal-induced NLRP3 inflammasome activation via modulation of mitochondrial and lysosomal functions. Therefore, we, for the first time, demonstrate a new therapeutic potential of DcR3 for the treatment of gout.
Collapse
Affiliation(s)
- Yi-Gen Pan
- Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Ponarulselvam Sekar
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Clinical Medicine & Immunology Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
12
|
Wang Y, Chen S, Yang PL, Chen JJ, Kong WJ, Wang YJ. AIM2 inflammasome activation may mediate high mobility group box 1 release in murine allergic rhinitis. Braz J Otorhinolaryngol 2021; 88:925-931. [PMID: 33707120 PMCID: PMC9615526 DOI: 10.1016/j.bjorl.2020.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023] Open
Abstract
Introduction High mobility group box 1 protein participates in the pathogenesis of allergic rhinitis. Activation of the inflammasome can mediate the release of high mobility group box 1. The role of the absent in melanoma 2 inflammasome in allergic rhinitis remains unclear. Objective This study aimed to investigate the function of absent in melanoma 2 inflammasome in murine allergic rhinitis and the interaction between high mobility group box 1 and the absent in melanoma 2 inflammasome. Methods A murine allergic rhinitis model was established using twenty Balb/c mice. Expression of the components of the absent in melanoma 2 inflammasome: absent in melanoma 2, apoptosis-associated speck-like protein containing a CARD (Asc), caspase-1 p20, and additional nod-like receptor family pyrin domain containing 3 (Nlrp3) were detected by western blotting during allergic rhinitis. Alterations of absent in melanoma 2, caspase-1, and high mobility group box 1 after ovalbumin challenge were demonstrated by immunohistochemistry. TdT-mediated dUTP Nick end labeling, TUNEL assay, and cleavage of caspase-3 and PARP-1 were used for the observation of pyroptosis. Results Eosinophilia and goblet cell infiltration were observed in the nasal mucosa of mice in the allergic rhinitis group. Absent in melanoma 2, Asc, and caspase-1 p20 increased after ovalbumin exposure while Nlrp3 did not. High mobility group box 1 was released in the nasal mucosa of allergic rhinitis mice. TUNEL-positive cells increased in the epithelium and laminae propria, whereas cleavage of caspase-3 and PARP-1 was not observed. Conclusions The absent in melanoma 2 inflammasome was activated and pyroptosis may occur in the nasal mucosa after ovalbumin treatment. These may contribute to the translocation of high mobility group box 1 and the development of allergic rhinitis.
Collapse
Affiliation(s)
- Yan Wang
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China
| | - Shan Chen
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China
| | - Ping-Li Yang
- Shihezi University School of Medicine, The First Affiliated Hospital, Department of Otorhinolaryngology, Shihezi, China
| | - Jian-Jun Chen
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China
| | - Wei-Jia Kong
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China; Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Institute of Otorhinolaryngology, Wuhan, China.
| | - Yan-Jun Wang
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China; Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Institute of Otorhinolaryngology, Wuhan, China.
| |
Collapse
|
13
|
McVey MJ, Steinberg BE, Goldenberg NM. Inflammasome activation in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2020; 320:L165-L178. [PMID: 33296269 DOI: 10.1152/ajplung.00303.2020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Inflammasomes are multiprotein complexes tasked with sensing endogenous or exogenous inflammatory signals and integrating this signal into a downstream response. Inflammasome activation has been implicated in a variety of pulmonary diseases, including pulmonary hypertension, bacterial pneumonia, COPD, and asthma. Of increasing interest is the contribution of inflammasome activation in the context of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Inflammasome activation in both the lung parenchyma and resident immune cells generates intereukin-1β (IL-1β) and IL-18, both of which drive the cascade of lung inflammation forward. Blockade of these responses has been shown to be beneficial in animal models and is a focus of translational research in the field. In this review, we will discuss the assembly and regulation of inflammasomes during lung inflammation, highlighting therapeutically viable effector steps. We will examine the importance of IL-1β and IL-18, two key products of inflammasome activation, in ALI, as well as the contribution of the pulmonary endothelial cell to this process. Finally, we will explore translational research moving toward anti-inflammasome therapies for ALI/ARDS and speculate toward future directions for the field.
Collapse
Affiliation(s)
- Mark J McVey
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physics, Ryerson University, Toronto, Ontario, Canada
| | - Benjamin E Steinberg
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Neil M Goldenberg
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Wang C, Yan B, Zhang L. The epithelium-derived inflammatory mediators of chronic rhinosinusitis with nasal polyps. Expert Rev Clin Immunol 2020; 16:293-310. [PMID: 31986923 DOI: 10.1080/1744666x.2020.1723417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Shubin NJ, Clauson M, Niino K, Kasprzak V, Tsuha A, Guga E, Bhise G, Acharya M, Snyder JM, Debley JS, Ziegler SF, Piliponsky AM. Thymic stromal lymphopoietin protects in a model of airway damage and inflammation via regulation of caspase-1 activity and apoptosis inhibition. Mucosal Immunol 2020; 13:584-594. [PMID: 32103153 PMCID: PMC7312418 DOI: 10.1038/s41385-020-0271-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/27/2020] [Accepted: 02/12/2020] [Indexed: 02/04/2023]
Abstract
Thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine, exhibits both pro-inflammatory and pro-homeostatic properties depending on the context and tissues in which it is expressed. It remains unknown whether TSLP has a similar dual role in the airways, where TSLP is known to promote allergic inflammation. Here we show that TSLP receptor (TSLPR)-deficient mice (Tslpr-/-) and mice treated with anti-TSLP antibodies exhibited increased airway inflammation and morbidity rates after bleomycin-induced tissue damage. We found that signaling through TSLPR on non-hematopoietic cells was sufficient for TSLP's protective function. Consistent with this finding, we showed that TSLP reduces caspase-1 and caspase-3 activity levels in primary human bronchial epithelial cells treated with bleomycin via Bcl-xL up-regulation. These observations were recapitulated in vivo by observing that Tslpr-/- mice showed reduced Bcl-xL expression that paralleled increased lung caspase-1 and caspase-3 activity levels and IL-1β concentrations in the bronchial-alveolar lavage fluid. Our studies reveal a novel contribution for TSLP in preventing damage-induced airway inflammation.
Collapse
Affiliation(s)
- Nicholas J. Shubin
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Morgan Clauson
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Kerri Niino
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Victoria Kasprzak
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Avery Tsuha
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Eric Guga
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Gauri Bhise
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Manasa Acharya
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Jessica M. Snyder
- 0000000122986657grid.34477.33Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195 USA
| | - Jason S. Debley
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA ,0000 0000 9026 4165grid.240741.4Division of Pulmonary and Sleep Medicine, Seattle Children’s Hospital, Seattle, WA 98105 USA
| | - Steven F. Ziegler
- 0000 0001 2219 0587grid.416879.5Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101 USA ,0000000122986657grid.34477.33Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Adrian M. Piliponsky
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA ,0000000122986657grid.34477.33Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 USA ,0000000122986657grid.34477.33Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195 USA
| |
Collapse
|
16
|
Vanderwall AG, Milligan ED. Cytokines in Pain: Harnessing Endogenous Anti-Inflammatory Signaling for Improved Pain Management. Front Immunol 2019; 10:3009. [PMID: 31921220 PMCID: PMC6935995 DOI: 10.3389/fimmu.2019.03009] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Current pain therapeutics offer inadequate relief to patients with chronic pain. A growing literature supports that pro-inflammatory cytokine signaling between immune, glial, and neural cells is integral to the development of pathological pain. Modulation of these communications may hold the key to improved pain management. In this review we first offer an overview of the relationships between pro-inflammatory cytokine and chemokine signaling and pathological pain, with a focus on the actions of cytokines and chemokines in communication between glia (astrocytes and microglia), immune cells (macrophages and T cells), and neurons. These interactions will be discussed in relation to both peripheral and central nervous system locations. Several novel non-neuronal drug targets for controlling pain are emerging as highly promising, including non-viral IL-10 gene therapy, which offer the potential for substantial pain relief through localized modulation of targeted cytokine pathways. Preclinical investigation of the mechanisms underlying the success of IL-10 gene therapy revealed the unexpected discovery of the powerful anti-nociceptive anti-inflammatory properties of D-mannose, an adjuvant in the non-viral gene therapeutic formulation. This review will include gene therapeutic approaches showing the most promise in controlling pro-inflammatory signaling via increased expression of anti-inflammatory cytokines like interleukin-10 (IL-10) or IL-4, or by directly limiting the bioavailability of specific pro-inflammatory cytokines, as with tumor necrosis factor (TNF) by the TNF soluble receptor (TNFSR). Approaches that increase endogenous anti-inflammatory signaling may offer additional opportunities for pain therapeutic development in patients not candidates for gene therapy. Promising novel avenues discussed here include the disruption of lymphocyte function-associated antigen (LFA-1) activity, antagonism at the cannabinoid 2 receptor (CB2R), and toll-like receptor 4 (TLR4) antagonism. Given the partial efficacy of current drugs, new strategies to manipulate neuroimmune and cytokine interactions hold considerable promise.
Collapse
Affiliation(s)
- Arden G. Vanderwall
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Department of Anesthesiology and Critical Care, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Erin D. Milligan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
17
|
Chenery AL, Alhallaf R, Agha Z, Ajendra J, Parkinson JE, Cooper MM, Chan BHK, Eichenberger RM, Dent LA, Robertson AAB, Kupz A, Brough D, Loukas A, Sutherland TE, Allen JE, Giacomin PR. Inflammasome-Independent Role for NLRP3 in Controlling Innate Antihelminth Immunity and Tissue Repair in the Lung. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2724-2734. [PMID: 31586037 PMCID: PMC6826118 DOI: 10.4049/jimmunol.1900640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/09/2019] [Indexed: 01/03/2023]
Abstract
Alternatively activated macrophages are essential effector cells during type 2 immunity and tissue repair following helminth infections. We previously showed that Ym1, an alternative activation marker, can drive innate IL-1R-dependent neutrophil recruitment during infection with the lung-migrating nematode, Nippostrongylus brasiliensis, suggesting a potential role for the inflammasome in the IL-1-mediated innate response to infection. Although inflammasome proteins such as NLRP3 have important proinflammatory functions in macrophages, their role during type 2 responses and repair are less defined. We therefore infected Nlrp3 -/- mice with N. brasiliensis Unexpectedly, compared with wild-type (WT) mice, infected Nlrp3 -/- mice had increased neutrophilia and eosinophilia, correlating with enhanced worm killing but at the expense of increased tissue damage and delayed lung repair. Transcriptional profiling showed that infected Nlrp3 -/- mice exhibited elevated type 2 gene expression compared with WT mice. Notably, inflammasome activation was not evident early postinfection with N. brasiliensis, and in contrast to Nlrp3 -/- mice, antihelminth responses were unaffected in caspase-1/11-deficient or WT mice treated with the NLRP3-specific inhibitor MCC950. Together these data suggest that NLRP3 has a role in constraining lung neutrophilia, helminth killing, and type 2 immune responses in an inflammasome-independent manner.
Collapse
MESH Headings
- Animals
- Caspase 1/physiology
- Chemotaxis, Leukocyte
- Eosinophilia/etiology
- Eosinophilia/immunology
- Furans/pharmacology
- Heterocyclic Compounds, 4 or More Rings
- Immunity, Innate
- Indenes
- Inflammasomes/physiology
- Interleukin-4/pharmacology
- Lectins/biosynthesis
- Lectins/genetics
- Lung/pathology
- Lung/physiology
- Lung Diseases, Parasitic/complications
- Lung Diseases, Parasitic/immunology
- Lung Diseases, Parasitic/pathology
- Lung Diseases, Parasitic/physiopathology
- Macrophages, Alveolar/enzymology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/physiology
- Neutrophils/immunology
- Nippostrongylus/immunology
- Regeneration
- Strongylida Infections/complications
- Strongylida Infections/immunology
- Strongylida Infections/pathology
- Strongylida Infections/physiopathology
- Sulfonamides/pharmacology
- Sulfones
- Transcription, Genetic
- beta-N-Acetylhexosaminidases/biosynthesis
- beta-N-Acetylhexosaminidases/genetics
Collapse
Affiliation(s)
- Alistair L Chenery
- Wellcome Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Rafid Alhallaf
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - Zainab Agha
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - Jesuthas Ajendra
- Wellcome Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - James E Parkinson
- Wellcome Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - Brian H K Chan
- Wellcome Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Ramon M Eichenberger
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - Lindsay A Dent
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia; and
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - David Brough
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - Tara E Sutherland
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Judith E Allen
- Wellcome Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom;
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia;
| |
Collapse
|
18
|
Tartey S, Kanneganti TD. Inflammasomes in the pathophysiology of autoinflammatory syndromes. J Leukoc Biol 2019; 107:379-391. [PMID: 31608507 DOI: 10.1002/jlb.3mir0919-191r] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammasomes are a specialized group of intracellular sensors that are key components of the host innate immune system. Autoinflammatory diseases are disorders of the innate immune system that are characterized by recurrent inflammation and serious complications. Dysregulation of the inflammasome is associated with the onset and progression of several autoinflammatory and autoimmune diseases, including cryopyrin-associated periodic fever syndrome, familial Mediterranean fever, rheumatoid arthritis, and systemic lupus erythematosus. In this review, we discuss the involvement of various inflammasome components in the regulation of autoinflammatory disorders and describe the manifestations of these autoinflammatory diseases caused by inflammasome activation.
Collapse
Affiliation(s)
- Sarang Tartey
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
19
|
Curcumin inhibits poly(dA:dT)-induced IL-18 secretion by inhibiting the ASC oligomerization in human keratinocytes. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Yao X, Jiang Q, Ding W, Yue P, Wang J, Zhao K, Zhang H. Interleukin 4 inhibits high mobility group box-1 protein-mediated NLRP3 inflammasome formation by activating peroxisome proliferator-activated receptor-γ in astrocytes. Biochem Biophys Res Commun 2018; 509:624-631. [PMID: 30606476 DOI: 10.1016/j.bbrc.2018.11.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/21/2018] [Indexed: 11/27/2022]
Abstract
High mobility group box-1 protein (HMGB-1) is one of the most important DAMPs and has been previously shown to promote the formation of the NOD-like receptor with pyrin domain containing-3 (NLRP3) inflammasome in microglia. Interleukin 4 (IL4) is a Th2-derived cytokine that plays a significant role in the function of various immune cells. However, the underlying molecular mechanism by which IL4 signaling antagonizes NLRP3 inflammasome is poorly characterized. In particular, whether IL4 could modulate NLRP3 inflammasome in astrocytes remains unknown. In the present study, we elucidated this phenomenon and the mechanism by which IL4 inhibits HMGB1-mediated NLRP3 inflammasome formation in astrocytes. For this purpose, we cultured and extracted primary astrocytes, setup different concentrations of HMGB1, and used immunofluorescence and western blotting to detect NLRP3 inflammasome formation, including NLRP3, ASC and caspase-1, and signaling changes in the nuclear factor κB (NF-κB). Meanwhile, BAY 11-7082 and IL4 were added with HMGB1 to observe the NLRP3 inflammasome and changes in NF-κB expression. Our data showed that HMGB1 could effectively promote NLRP3 inflammasome formation by activating NF-κB in astrocytes. This effect can be inhibited by BAY 11-7082, a NF-κB inhibitor. Meanwhile, IL4 could activate PPARγ via the STAT6 singling pathway and inhibit NF-κB activation, significantly decreasing formation of the NLRP3 inflammasome complex. Our study demonstrated that the NLRP3 inflammasome complex is also expressed in astrocytes, and IL4 could inhibit HMGB1-mediated NLRP3 inflammasome formation, through negative regulation of NF-κB activity and promotion of PPARγ activation.
Collapse
Affiliation(s)
- Xiaolong Yao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China; Department of Neurosurgery, Taikang Tongji (Wuhan) Hospital, Wuhan, 430030, PR China
| | - Qian Jiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Wei Ding
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Pengjie Yue
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Junwen Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
21
|
Sho T, Xu J. Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation. Biotechnol Appl Biochem 2018; 66:4-13. [PMID: 30315709 DOI: 10.1002/bab.1700] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023]
Abstract
Inflammation, as a common immune response to various infections or injuries, can cause many dangerous and complicated diseases. Inflammasome is a protein complex playing a vital role in an inflammation process, and the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been the most-widely studied one. Recent evidence suggests the reactive oxygen species (ROS)-NLRP3 signaling pathway to be a possible NLRP3 inflammasome regulation model. Numerous recent preclinical reports indicate that application of antioxidants could scavenge excessive ROS and attenuate inflammatory responses through suppressing NLRP3 inflammasome activation. This article, at first, briefly overviews how ROS may mediate the regulation of NLRP3 inflammasome activation. Then, preclinical researches of various ROS scavengers for treating NLRP3 inflammasome-associated diseases are focused on and critically analyzed. Finally, the potential of antioxidant treatment as a therapy for inflammation is to be discussed, and perspectives on future research directions will be shared.
Collapse
Affiliation(s)
- Takami Sho
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - JianXiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
22
|
NLRP3: A promising therapeutic target for autoimmune diseases. Autoimmun Rev 2018; 17:694-702. [PMID: 29729449 DOI: 10.1016/j.autrev.2018.01.020] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 01/26/2018] [Indexed: 12/12/2022]
Abstract
NLRP3, a member of nucleotide-binding domain-(NOD) like receptor family, can be found in large varieties of immune and non-immune cells. Upon activation, the NLRP3, apoptosis-associated speck-like protein (ASC) and pro-caspase-1 would assemble into a multimeric protein, called the NLRP3 inflammasome. Then the inflammasome promotes inflammation (through specific cleavage and production of bioactive IL-1β and IL-18) and pyroptotic cell death. Previous studies have indicated the importance of NLRP3 in regulating innate immunity. Recently, numerous studies have revealed their significance in autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc) and inflammatory bowel disease (IBD). In this review, we will briefly discuss the biological features of NLRP3 and summarize the recent progression of the involvement of NLRP3 in the development and pathogenesis of autoimmune diseases, as well as its clinical implications and therapeutic potential.
Collapse
|
23
|
Poudel B, Gurung P. An update on cell intrinsic negative regulators of the NLRP3 inflammasome. J Leukoc Biol 2018; 103:10.1002/JLB.3MIR0917-350R. [PMID: 29377242 PMCID: PMC6202258 DOI: 10.1002/jlb.3mir0917-350r] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
Inflammasomes are multimeric protein complexes that promote inflammation (through specific cleavage and production of bioactive IL-1β and IL-18) and pyroptotic cell death. The central role of inflammasomes in combating infection and maintaining homeostasis has been studied extensively. Although inflammasome-mediated inflammation and cell death are vital to limit pathogenic insults and to promote wound healing/tissue regeneration, unchecked/uncontrolled inflammation, and cell death can cause cytokine storm, tissue damage, autoinflammatory and autoimmune diseases, and even death in the afflicted individuals. NLRP3 is one of the major cytosolic sensors that assemble an inflammasome. Given the adverse consequences of uncontrolled inflammasome activation, our immune system has developed tiered mechanisms to inhibit NLRP3 inflammasome activation. In this review, we highlight and discuss recent advances and our current understanding of mechanisms by which NLRP3 inflammasome can be negatively regulated.
Collapse
Affiliation(s)
- Barun Poudel
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
- Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
- Center for Immunology and Immune-Based Disease, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
24
|
Feriotti C, de Araújo EF, Loures FV, da Costa TA, Galdino NADL, Zamboni DS, Calich VLG. NOD-Like Receptor P3 Inflammasome Controls Protective Th1/Th17 Immunity against Pulmonary Paracoccidioidomycosis. Front Immunol 2017; 8:786. [PMID: 28740491 PMCID: PMC5502381 DOI: 10.3389/fimmu.2017.00786] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/21/2017] [Indexed: 12/18/2022] Open
Abstract
The NOD-like receptor P3 (NLRP3) inflammasome is an intracellular multimeric complex that triggers the activation of inflammatory caspases and the maturation of IL-1β and IL-18, important cytokines for the innate immune response against pathogens. The functional NLRP3 inflammasome complex consists of NLRP3, the adaptor protein apoptosis-associated speck-like protein, and caspase-1. Various molecular mechanisms were associated with NLRP3 activation including the presence of extracellular ATP, recognized by the cell surface P2X7 receptor (P2X7R). Several pattern recognition receptors on innate immune cells recognize Paracoccidioides brasiliensis components resulting in diverse responses that influence adaptive immunity and disease outcome. However, the role of NLRP3 inflammasome was scantily investigated in pulmonary paracoccidioidomycosis (PCM), leading us to use an intratracheal (i.t.) model of infection to study the influence of this receptor in anti-fungal immunity and severity of infection. For in vivo studies, C57BL/6 mice deficient for several NLRP3 inflammasome components (Nlrp3−/−, Casp1/11−/−, Asc−/−) as well as deficient for ATP receptor (P2x7r−/−) were infected via i.t. with P. brasiliensis and several parameters of immunity and disease severity analyzed at the acute and chronic periods of infection. Pulmonary PCM was more severe in Nlrp3−/−, Casp1/11−/−, Asc−/−, and P2x7r−/− mice as demonstrated by the increased fungal burdens, mortality rates and tissue pathology developed. The more severe disease developed by NLRP3, ASC, and Caspase-1/11 deficient mice was associated with decreased production of IL-1β and IL-18 and reduced inflammatory reactions mediated by PMN leukocytes and activated CD4+ and CD8+ T cells. The decreased T cell immunity was concomitant with increased expansion of CD4+CD25+Foxp3 regulatory T (Treg) cells. Characterization of intracellular cytokines showed a persistent reduction of CD4+ and CD8+ T cells expressing IFN-γ and IL-17 whereas those producing IL-4 and TGF-β appeared in increased frequencies. Histopathological studies showed that all deficient mouse strains developed more severe lesions containing elevated numbers of budding yeast cells resulting in increased mortality rates. Altogether, these findings led us to conclude that the activation of the NLRP3 inflammasome has a crucial role in the immunoprotection against pulmonary PCM by promoting the expansion of Th1/Th17 immunity and reducing the suppressive control mediated by Treg cells.
Collapse
Affiliation(s)
- Claudia Feriotti
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Dario Simões Zamboni
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
25
|
IL-4 mediated by HSV vector suppresses morphine withdrawal response and decreases TNFα, NR2B, and pC/EBPβ in the periaqueductal gray in rats. Gene Ther 2017; 24:224-233. [DOI: 10.1038/gt.2017.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/19/2016] [Accepted: 02/06/2017] [Indexed: 02/07/2023]
|
26
|
Bryant AH, Spencer-Harty S, Owens SE, Jones RH, Thornton CA. Interleukin 4 and interleukin 13 downregulate the lipopolysaccharide-mediated inflammatory response by human gestation-associated tissues. Biol Reprod 2017; 96:576-586. [PMID: 28203703 DOI: 10.1095/biolreprod.116.145680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/20/2016] [Accepted: 01/17/2017] [Indexed: 11/01/2022] Open
Abstract
Inflammation is a key feature of preterm and term labor. Proinflammatory mediators are produced by gestation-associated tissues in response to pathogen-associated molecular patterns and damage-associated molecular patterns. Interleukin (IL)4, IL10, and IL13 are anti-inflammatory cytokines with potential as anti-inflammatory therapies to prevent preterm birth. The objective of this study was to determine if IL4 and IL13 exert anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated production of proinflammatory cytokines produced by human term gestation-associated tissues (placenta, choriodecidua, and amnion). Both IL4 and IL13 reduced LPS-stimulated IL1B and macrophage inflammatory protein1A; this effect diminished with delay to exposure to either cytokine. There was no effect on LPS-stimulated prostaglandin production. Interleukin 4 receptor alpha (IL4RA) was expressed throughout the placenta, choriodecidua, and amnion, and the inhibitory effects of IL4 and IL13 were IL4RA dependent. Combined IL4 and IL13 did not enhance the anti-inflammatory potential of either cytokine; however, a combination of IL4 and IL10 had a greater anti-inflammatory effect than either cytokine alone. These findings demonstrate that human term gestation-associated tissues are responsive to the anti-inflammatory cytokines IL4 and IL13, which could downregulate LPS-induced cytokine production in these tissues. Anti-inflammatory cytokines might offer an adjunct to existing therapeutics to prevent adverse obstetric outcome.
Collapse
Affiliation(s)
- Aled H Bryant
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Samantha Spencer-Harty
- Histopathology Department, Abertawe Bro Morgannwg University Health Board, Swansea, Wales, UK
| | - Siân-Eleri Owens
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Ruth H Jones
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | | |
Collapse
|
27
|
Jang J, Park S, Jin Hur H, Cho HJ, Hwang I, Pyo Kang Y, Im I, Lee H, Lee E, Yang W, Kang HC, Won Kwon S, Yu JW, Kim DW. 25-hydroxycholesterol contributes to cerebral inflammation of X-linked adrenoleukodystrophy through activation of the NLRP3 inflammasome. Nat Commun 2016; 7:13129. [PMID: 27779191 PMCID: PMC5093305 DOI: 10.1038/ncomms13129] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/06/2016] [Indexed: 12/16/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD), caused by an ABCD1 mutation, is a progressive neurodegenerative disorder associated with the accumulation of very long-chain fatty acids (VLCFA). Cerebral inflammatory demyelination is the major feature of childhood cerebral ALD (CCALD), the most severe form of ALD, but its underlying mechanism remains poorly understood. Here, we identify the aberrant production of cholesterol 25-hydroxylase (CH25H) and 25-hydroxycholesterol (25-HC) in the cellular context of CCALD based on the analysis of ALD patient-derived induced pluripotent stem cells and ex vivo fibroblasts. Intriguingly, 25-HC, but not VLCFA, promotes robust NLRP3 inflammasome assembly and activation via potassium efflux-, mitochondrial reactive oxygen species (ROS)- and liver X receptor (LXR)-mediated pathways. Furthermore, stereotaxic injection of 25-HC into the corpus callosum of mouse brains induces microglial recruitment, interleukin-1β production, and oligodendrocyte cell death in an NLRP3 inflammasome-dependent manner. Collectively, our results indicate that 25-HC mediates the neuroinflammation of X-ALD via activation of the NLRP3 inflammasome. The mechanism underlying neuroinflammation in X-linked adrenoleukodystrophy (ALD) is poorly understood. Here authors identify aberrant production of 25-hydroxycholesterol (25-HC) in ALD patient-derived cells, and show that 25-HC mediates neuroinflammation via activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jiho Jang
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sangjun Park
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hye Jin Hur
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyun-Ju Cho
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yun Pyo Kang
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Isak Im
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyunji Lee
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eunju Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Wonsuk Yang
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Epilepsy Research Institute, Seoul 03722, Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Dong-Wook Kim
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
28
|
Eichholz K, Bru T, Tran TTP, Fernandes P, Welles H, Mennechet FJD, Manel N, Alves P, Perreau M, Kremer EJ. Immune-Complexed Adenovirus Induce AIM2-Mediated Pyroptosis in Human Dendritic Cells. PLoS Pathog 2016; 12:e1005871. [PMID: 27636895 PMCID: PMC5026364 DOI: 10.1371/journal.ppat.1005871] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
Human adenoviruses (HAdVs) are nonenveloped proteinaceous particles containing a linear double-stranded DNA genome. HAdVs cause a spectrum of pathologies in all populations regardless of health standards. Following repeat exposure to multiple HAdV types, we develop robust and long-lived humoral and cellular immune responses that provide life-long protection from de novo infections and persistent HAdV. How HAdVs, anti-HAdV antibodies and antigen presenting cells (APCs) interact to influence infection is still incompletely understood. In our study, we used physical, pharmacological, biochemical, fluorescence and electron microscopy, molecular and cell biology approaches to dissect the impact of immune-complexed HAdV (IC-HAdV) on human monocyte-derived dendritic cells (MoDCs). We show that IC-HAdV generate stabilized complexes of ~200 nm that are efficiently internalized by, and aggregate in, MoDCs. By comparing IC-HAdV, IC-empty capsid, IC-Ad2ts1 (a HAdV-C2 impaired in endosomal escape due to a mutation that impacts protease encapsidation) and IC-AdL40Q (a HAdV-C5 impaired in endosomal escape due to a mutation in protein VI), we demonstrate that protein VI-dependent endosomal escape is required for the HAdV genome to engage the DNA pattern recognition receptor AIM2 (absent in melanoma 2). AIM2 engagement induces pyroptotic MoDC death via ASC (apoptosis-associated speck protein containing a caspase activation/recruitment domain) aggregation, inflammasome formation, caspase 1 activation, and IL-1β and gasdermin D (GSDMD) cleavage. Our study provides mechanistic insight into how humoral immunity initiates an innate immune response to HAdV-C5 in human professional APCs.
Collapse
Affiliation(s)
- Karsten Eichholz
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Thierry Bru
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Thi Thu Phuong Tran
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Paulo Fernandes
- iBET- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Hugh Welles
- Division of Immunology and Allergy, University of Lausanne, Lausanne, Switzerland
| | - Franck J. D. Mennechet
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Université de Montpellier, Montpellier, France
| | | | - Paula Alves
- iBET- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Matthieu Perreau
- Division of Immunology and Allergy, University of Lausanne, Lausanne, Switzerland
| | - Eric J. Kremer
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Université de Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
29
|
Targeting the inflammasome in rheumatic diseases. Transl Res 2016; 167:125-37. [PMID: 26118952 PMCID: PMC4487391 DOI: 10.1016/j.trsl.2015.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/13/2022]
Abstract
Activation of the inflammasome, a protein complex responsible for many cellular functions, including the activation of the proinflammatory cytokines interleukin (IL)-1β and IL-18, has been identified as a key participant in many rheumatic diseases including autoimmune, inflammatory, and autoinflammatory syndromes. This review will discuss the recent advances in understanding the role of this complex in various rheumatic diseases. Furthermore, it will focus on available therapies, which directly and indirectly target the inflammasome and its downstream cytokines to quiet inflammation and possibly dampen autoimmune processes.
Collapse
|
30
|
Hwang I, Lee E, Jeon SA, Yu JW. Histone deacetylase 6 negatively regulates NLRP3 inflammasome activation. Biochem Biophys Res Commun 2015; 467:973-8. [DOI: 10.1016/j.bbrc.2015.10.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/07/2015] [Indexed: 11/15/2022]
|
31
|
Park S, Won JH, Hwang I, Hong S, Lee HK, Yu JW. Defective mitochondrial fission augments NLRP3 inflammasome activation. Sci Rep 2015; 5:15489. [PMID: 26489382 PMCID: PMC4614538 DOI: 10.1038/srep15489] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/28/2015] [Indexed: 02/08/2023] Open
Abstract
Despite the fact that deregulated NLRP3 inflammasome activation contributes to the pathogenesis of chronic inflammatory or metabolic disorders, the underlying mechanism by which NLRP3 inflammasome signaling is initiated or potentiated remains poorly understood. Much attention is being paid to mitochondria as a regulator of NLRP3 inflammasome activation, but little is known about the role of mitochondrial dynamics for the inflammasome pathway. Here, we present evidence that aberrant mitochondrial elongation caused by the knockdown of dynamin-related protein 1 (Drp1) lead to a marked increase in NLRP3-dependent caspase-1 activation and interleukin-1-beta secretion in mouse bone marrow-derived macrophages. Conversely, carbonyl cyanide m-chlorophenyl hydrazone, a chemical inducer of mitochondrial fission, clearly attenuated NLRP3 inflammasome assembly and activation. Augmented activation of NLRP3 inflammasome by mitochondrial elongation is not resulted from the increased mitochondrial damages of Drp1-knockdown cells. Notably, enhanced extracellular signal-regulated kinase (ERK) signaling in Drp1-knockdown macrophages is implicated in the potentiation of NLRP3 inflammasome activation, possibly via mediating mitochondrial localization of NLRP3 to facilitate the assembly of NLRP3 inflammasome. Taken together, our results provide a molecular insight into the importance of mitochondrial dynamics in potentiating NLRP3 inflammasome activation, leading to aberrant inflammation.
Collapse
Affiliation(s)
- Sangjun Park
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Ji-Hee Won
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Inhwa Hwang
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Sujeong Hong
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Heung Kyu Lee
- Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Je-Wook Yu
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
32
|
Zhao H, Li C, Beck BH, Zhang R, Thongda W, Davis DA, Peatman E. Impact of feed additives on surface mucosal health and columnaris susceptibility in channel catfish fingerlings, Ictalurus punctatus. FISH & SHELLFISH IMMUNOLOGY 2015; 46:624-637. [PMID: 26164837 DOI: 10.1016/j.fsi.2015.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/26/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
One of the highest priority areas for improvement in aquaculture is the development of dietary additives and formulations which provide for complete mucosal health and protection of fish raised in intensive systems. Far greater attention has been paid to dietary impact on gut health than to protective effects at other mucosal surfaces such as skin and gill. These exterior surfaces, however, are important primary targets for pathogen attachment and invasion. Flavobacterium columnare, the causative agent of columnaris disease, is among the most prevalent of all freshwater disease-causing bacteria, impacting global aquaculture of catfish, salmonids, baitfish and aquaria-trade species among others. This study evaluated whether the feeding of a standard catfish diet supplemented with Alltech dietary additives Actigen(®), a concentrated source of yeast cell wall-derived material and/or Allzyme(®) SSF, a fermented strain of Aspergillus niger, could offer protection against F. columnare mortality. A nine-week feeding trial of channel catfish fingerlings with basal diet (B), B + Allzyme(®) SSF, B + Actigen(®) and B + Actigen(®)+Allzyme(®) SSF revealed good growth in all conditions (FCR < 1.0), but no statistical differences in growth between the treatments were found. At nine weeks, based on pre-challenge trial results, basal, B + Actigen(®), and B + Allzyme(®) SSF groups of fish were selected for further challenges with F. columnare. Replicated challenge with a virulent F. columnare strain, revealed significantly longer median days to death in B + Allzyme(®) SSF and B + Actigen(®) when compared with the basal diet (P < 0.05) and significantly higher survival following the eight day challenge period in B + Actigen(®) when compared with the other two diets (P < 0.05). Given the superior protection provided by the B + Actigen(®) diet, we carried out transcriptomic comparison of gene expression of fish fed that diet and the basal diet before and after columnaris challenge using high-throughput RNA-seq. Pathway and enrichment analyses revealed changes in mannose receptor DEC205 and IL4 signaling at 0 h (prior to challenge) which likely explain a dramatic divergence in expression profiles between the two diets soon after pathogen challenge (8 h). Dietary mannose priming resulted in reduced expression of inflammatory cytokines, shifting response patterns instead to favor resolution and repair. Our results indicate that prebiotic dietary additives may provide protection extending beyond the gut to surface mucosa.
Collapse
Affiliation(s)
- Honggang Zhao
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Benjamin H Beck
- United States Department of Agriculture, Agricultural Research Service, Stuttgart National Aquaculture Research Center, Stuttgart, AR 72160, USA
| | - Ran Zhang
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wilawan Thongda
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - D Allen Davis
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
33
|
Won JH, Park S, Hong S, Son S, Yu JW. Rotenone-induced Impairment of Mitochondrial Electron Transport Chain Confers a Selective Priming Signal for NLRP3 Inflammasome Activation. J Biol Chem 2015; 290:27425-27437. [PMID: 26416893 DOI: 10.1074/jbc.m115.667063] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial dysfunction is considered crucial for NLRP3 inflammasome activation partly through its release of mitochondrial toxic products, such as mitochondrial reactive oxygen species (mROS)(2) and mitochondrial DNA (mtDNA). Although previous studies have shown that classical NLRP3-activating stimulations lead to mROS generation and mtDNA release, it remains poorly understood whether and how mitochondrial damage-derived factors may contribute to NLRP3 inflammasome activation. Here, we demonstrate that impairment of the mitochondrial electron transport chain by rotenone primes NLRP3 inflammasome activation only upon costimulation with ATP and not with nigericin or alum. Rotenone-induced priming of NLRP3 in the presence of ATP triggered the formation of specklike NLRP3 or ASC aggregates and the association of NLRP3 with ASC, resulting in NLRP3-dependent caspase-1 activation. Mechanistically, rotenone confers a priming signal for NLRP3 inflammasome activation only in the context of aberrant high-grade, but not low-grade, mROS production and mitochondrial hyperpolarization. By contrast, rotenone/ATP-mediated mtDNA release and mitochondrial depolarization are likely to be merely an indication of mitochondrial damage rather than triggering factors for NLRP3 inflammasome activation. Our results provide a molecular insight into the selective contribution made by mitochondrial dysfunction to the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Ji-Hee Won
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Sangjun Park
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Sujeong Hong
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Seunghwan Son
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Je-Wook Yu
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea.
| |
Collapse
|