1
|
Jain M, Jadhav IM, Dangat SV, Singuru SR, Sethi G, Yuba E, Gupta RK. Overcoming the novel glycan-lectin checkpoints in tumor microenvironments for the success of the cross-presentation-based immunotherapy. Biomater Sci 2025. [PMID: 40421610 DOI: 10.1039/d4bm01732c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
In pursuit of meeting the ever-rising demand for cancer therapies, cross-presentation-based glyconanovaccines (GNVs) targeting C-type lectin receptors (CLRs) on DCs have shown significant potential as cutting-edge cancer immunotherapy. GNVs are an attractive approach to induce anti-cancer cytotoxic T lymphocyte responses. Despite immune checkpoints (ICs) being well established and an obstacle to the success of GNVs, glycan-lectin circuits are emerging as unique checkpoints due to their immunomodulatory functions. Given the role of aberrant tumor glycosylation in promoting immune evasion, mitigating these effects is crucial for the efficacy of GNVs. Lectins, such as siglecs and galectins, are detrimental to the tumor immune landscape as they promote an immunosuppressive TME. From this perspective, this review aims to explore glycan-lectin ICs and their influence on the efficacy of GNVs. We aim to discuss various ICs in the TME followed by drawbacks of immune checkpoint inhibitors (ICIs). We will also emphasize the altered glycosylation profile of tumors, addressing their immunosuppressive nature along with ways in which CLRs, siglecs, and galectins contribute to immune evasion and cancer progression. Considering the resistance towards ICIs, current and prospective approaches for targeting glycan-lectin circuits and future prospects of these endeavors in harnessing the full potential of GNVs will also be highlighted.
Collapse
Affiliation(s)
- Mannat Jain
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune-411033, Maharashtra, India.
| | - Isha M Jadhav
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune-411033, Maharashtra, India.
| | - Suyash Vinayak Dangat
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune-411033, Maharashtra, India.
| | - Srinivasa Rao Singuru
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune-411033, Maharashtra, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Eiji Yuba
- Department of Chemistry & Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka-city, Osaka 558-8585, Japan.
| | - Rajesh Kumar Gupta
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune-411033, Maharashtra, India.
| |
Collapse
|
2
|
Abreu C, Di Carluccio C, Ječmen T, Skořepa O, Bláha J, Marchetti R, Silipo A, Vaněk O. Insights into stability, dimerisation, and ligand binding properties of Siglec-7: Isotope labelling in HEK293 cells for protein characterisation by NMR spectroscopy. Int J Biol Macromol 2025; 309:142672. [PMID: 40164254 DOI: 10.1016/j.ijbiomac.2025.142672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Siglec-7, an immune checkpoint receptor, has emerged as a promising target for cancer immunotherapy due to its involvement in the regulation of immune and inflammatory responses. However, while its participation in immunoediting and immune evasion is well established, understanding its biological context, relevant ligands, and associated signalling pathways remains limited. Understanding these aspects is crucial for the development of effective immunotherapies targeting Siglec-7. In this study, three expression constructs of Siglec-7 were designed, expressed, and characterised, including an analysis of the oligomeric state of its extracellular domain. The N-terminal V-set Ig carbohydrate recognition domain was also produced in an isotopically double-labelled (13C,15N) mammalian cell growth medium. Two stable constructs suitable for biophysical and structural studies were identified. These findings reveal the noncovalent dimerisation of Siglec-7, offering new insights into its possible ligand interactions, signal transduction mechanisms, or receptor/ligand clustering. The dimerisation of Siglec-7 may be essential to achieve multivalent, high-avidity interactions with glycoconjugates, which may result in enhanced or alternative signalling processes within the NK cell immune synapse. In addition, a detailed protocol for generating double-labelled Siglec-7 in HEK293 cells, which may apply to other proteins under similar conditions, was described. These findings contribute to a better understanding of the biophysical and structural properties of Siglec-7 and are key to the design of more precise and effective cancer immunotherapies targeting Siglec-7.
Collapse
Affiliation(s)
- Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic
| | - Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Tomáš Ječmen
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic
| | - Jan Bláha
- EMBL, Hamburg Unit c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore 486, 80145 Napoli, Italy; Department of Chemistry, School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043 Osaka, Japan
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic.
| |
Collapse
|
3
|
Silva Z, Rabaça JA, Luz V, Lourenço RA, Salio M, Oliveira AC, Bule P, Springer S, Videira PA. New insights into the immunomodulatory potential of sialic acid on monocyte-derived dendritic cells. Cancer Immunol Immunother 2024; 74:9. [PMID: 39487861 PMCID: PMC11531459 DOI: 10.1007/s00262-024-03863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Sialic acids at the cell surface of dendritic cells (DCs) play an important immunomodulatory role, and their manipulation enhances DC maturation, leading to heightened T cell activation. Particularly, at the molecular level, the increased stability of surface MHC-I molecules in monocyte-derived DCs (MoDCs) underpins an improved DC: T cell interaction. In this study, we focused on the impact of sialic acid remodelling by treatment with Clostridium perfringens sialidase on MoDCs' phenotypic and functional characteristics. Our investigation juxtaposes this novel approach with the conventional cytokine-based maturation regimen commonly employed in clinical settings.Notably, C. perfringens sialidase remarkably increased MHC-I levels compared to other sialidases having different specificities, supporting the idea that higher MHC-I is due to the cleavage of specific sialoglycans on cell surface proteins. Sialidase treatment induced rapid elevated surface expression of MHC-I, MHC-II and CD40 within an hour, a response not fully replicated by 48 h cytokine cocktail treatment. These increases were also observable 48 h post sialidase treatment. While CD86 and PD-L1 showed significant increases after 48 h of cytokine maturation, 48 h post sialidase treatment showed a higher increase in CD86 and shorter increase in PD-L1. CCR-7 expression was significantly increased 48 h after sialidase treatment but not significantly affected by cytokine maturation. Both treatments promoted higher secretion of the IL-12 cytokine. However, the cytokine cocktail induced a more pronounced IL-12 production. SNA lectin staining analysis demonstrated that the sialic acid profile is significantly altered by sialidase treatment, but not by the cytokine cocktail, which causes only slight sialic acid upregulation. Notably, the lipid-presenting molecules CD1a, CD1b and CD1c remained unaffected by sialidase treatment in MoDCs, a finding also further supported by experiments performed on C1R cells. Inhibition of endogenous sialidases Neu1 and Neu3 during MoDC differentiation did not affect surface MHC-I expression and cytokine secretion. Yet, sialidase activity in MoDCs was minimal, suggesting that sialidase inhibition does not significantly alter MHC-I-related functions. Our study highlights the unique maturation profile induced by sialic acid manipulation in MoDCs. These findings provide insights into the potential of sialic acid manipulation as a rapid immunomodulatory strategy, offering promising avenues for targeted interventions in inflammatory contexts.
Collapse
Affiliation(s)
- Zélia Silva
- Associate Laboratory i4HB, NOVA School of Science and Technology, Institute for Health and Bioeconomy, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Department of Life Sciences, Applied Molecular Biosciences Unit, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - João Amorim Rabaça
- Associate Laboratory i4HB, NOVA School of Science and Technology, Institute for Health and Bioeconomy, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Department of Life Sciences, Applied Molecular Biosciences Unit, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Vanessa Luz
- Associate Laboratory i4HB, NOVA School of Science and Technology, Institute for Health and Bioeconomy, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Department of Life Sciences, Applied Molecular Biosciences Unit, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Rita Adubeiro Lourenço
- Associate Laboratory i4HB, NOVA School of Science and Technology, Institute for Health and Bioeconomy, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Department of Life Sciences, Applied Molecular Biosciences Unit, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Mariolina Salio
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX39DS, UK
| | - Alexandra Couto Oliveira
- CIISA‑Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300‑477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300‑477, Lisbon, Portugal
| | - Pedro Bule
- CIISA‑Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300‑477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300‑477, Lisbon, Portugal
| | | | - Paula Alexandra Videira
- Associate Laboratory i4HB, NOVA School of Science and Technology, Institute for Health and Bioeconomy, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- Department of Life Sciences, Applied Molecular Biosciences Unit, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- Department of Life Sciences, CDG & Allies Professionals and Patient Associations International Network (CDG & Allies-PPAIN), NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
4
|
Tian W, Blomberg AL, Steinberg KE, Henriksen BL, Jørgensen JS, Skovgaard K, Skovbakke SL, Goletz S. Novel genetically glycoengineered human dendritic cell model reveals regulatory roles of α2,6-linked sialic acids in DC activation of CD4+ T cells and response to TNFα. Glycobiology 2024; 34:cwae042. [PMID: 38873803 DOI: 10.1093/glycob/cwae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Dendritic cells (DCs) are central for the initiation and regulation of appropriate immune responses. While several studies suggest important regulatory roles of sialoglycans in DC biology, our understanding is still inadequate primarily due to a lack of appropriate models. Previous approaches based on enzymatic- or metabolic-glycoengineering and primary cell isolation from genetically modified mice have limitations related to specificity, stability, and species differences. This study addresses these challenges by introducing a workflow to genetically glycoengineer the human DC precursor cell line MUTZ-3, described to differentiate and maturate into fully functional dendritic cells, using CRISPR-Cas9, thereby providing and validating the first isogenic cell model for investigating glycan alteration on human DC differentiation, maturation, and activity. By knocking out (KO) the ST6GAL1 gene, we generated isogenic cells devoid of ST6GAL1-mediated α(2,6)-linked sialylation, allowing for a comprehensive investigation into its impact on DC function. Glycan profiling using lectin binding assay and functional studies revealed that ST6GAL1 KO increased the expression of important antigen presenting and co-stimulatory surface receptors and a specifically increased activation of allogenic human CD4 + T cells. Additionally, ST6GAL1 KO induces significant changes in surface marker expression and cytokine response to TNFα-induced maturation, and it affects migration and the endocytic capacity. These results indicate that genetic glycoengineering of the isogenic MUTZ-3 cellular model offers a valuable tool to study how specific glycan structures influence human DC biology, contributing to our understanding of glycoimmunology.
Collapse
Affiliation(s)
- Weihua Tian
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Anne Louise Blomberg
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Kaylin Elisabeth Steinberg
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Betina Lyngfeldt Henriksen
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Josefine Søborg Jørgensen
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Kerstin Skovgaard
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Sarah Line Skovbakke
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Steffen Goletz
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| |
Collapse
|
5
|
Ayyalasomayajula R, Cudic M. Targeting Siglec-Sialylated MUC1 Immune Axis in Cancer. Cancers (Basel) 2024; 16:1334. [PMID: 38611013 PMCID: PMC11011055 DOI: 10.3390/cancers16071334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Siglecs play a key role in mediating cell-cell interactions via the recognition of different sialylated glycoconjugates, including tumor-associated MUC1, which can lead to the activation or inhibition of the immune response. The activation occurs through the signaling of Siglecs with the cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins, while the inhibition signal is a result of the interaction of intracellular immunoreceptor tyrosine-based inhibition motif (ITIM)-bearing receptors. The interaction of tumor-associated MUC1 sialylated glycans with Siglecs via ITIM motifs decreases antitumor immunity. Consequently, these interactions are expected to play a key role in tumor evasion. Efforts to modulate the response of immune cells by blocking the immune-suppressive effects of inhibitory Siglecs, driving immune-activating Siglecs, and/or altering the synthesis and expression of the sialic acid glycocalyx are new therapeutic strategies deserving further investigation. We will highlight the role of Siglec's family receptors in immune evasion through interactions with glycan ligands in their natural context, presented on the protein such as MUC1, factors affecting their fine binding specificities, such as the role of multivalency either at the ligand or receptor side, their spatial organization, and finally the current and future therapeutic interventions targeting the Siglec-sialylated MUC1 immune axis in cancer.
Collapse
Affiliation(s)
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA;
| |
Collapse
|
6
|
Boelaars K, van Kooyk Y. Targeting myeloid cells for cancer immunotherapy: Siglec-7/9/10/15 and their ligands. Trends Cancer 2024; 10:230-241. [PMID: 38160071 DOI: 10.1016/j.trecan.2023.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Advances in immunotherapy have revolutionized cancer treatment, yet many patients do not show clinical responses. While most immunotherapies target T cells, myeloid cells are the most abundant cell type in solid tumors and are key orchestrators of the immunosuppressive tumor microenvironment (TME), hampering effective T cell responses. Therefore, unraveling the immune suppressive pathways within myeloid cells could unveil new avenues for cancer immunotherapy. Over the past decade, Siglec receptors and their ligand, sialic acids, have emerged as a novel immune checkpoint on myeloid cells. In this review, we highlight key findings on how sialic acids modify immunity in the TME through engagement of Siglec-7/9/10/15 expressed on myeloid cells, and how the sialic acid-Siglec axis can be targeted for future cancer immunotherapies.
Collapse
Affiliation(s)
- Kelly Boelaars
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, De Boelelaan, 1117, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Cao Y, Rische CH, Bochner BS, O’Sullivan JA. Interactions between Siglec-8 and endogenous sialylated cis ligands restrain cell death induction in human eosinophils and mast cells. Front Immunol 2023; 14:1283370. [PMID: 37928558 PMCID: PMC10623328 DOI: 10.3389/fimmu.2023.1283370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is a sialoside-binding receptor expressed by eosinophils and mast cells that exhibits priming status- and cell type-dependent inhibitory activity. On eosinophils that have been primed with IL-5, GM-CSF, or IL-33, antibody ligation of Siglec-8 induces cell death through a pathway involving the β2 integrin-dependent generation of reactive oxygen species (ROS) via NADPH oxidase. In contrast, Siglec-8 engagement on mast cells inhibits cellular activation and mediator release but reportedly does not impact cell viability. The differences in responses between cytokine-primed and unprimed eosinophils, and between eosinophils and mast cells, to Siglec-8 ligation are not understood. We previously found that Siglec-8 binds to sialylated ligands present on the surface of the same cell (so-called cis ligands), preventing Siglec-8 ligand binding in trans. However, the functional relevance of these cis ligands has not been elucidated. We therefore explored the potential influence of cis ligands of Siglec-8 on both eosinophils and mast cells. De-sialylation using exogenous sialidase profoundly altered the consequences of Siglec-8 antibody engagement on both cell types, eliminating the need for cytokine priming of eosinophils to facilitate cell death and enabling Siglec-8-dependent mast cell death without impacting anti-Siglec-8 antibody binding. The cell death process licensed by de-sialylation resembled that characterized in IL-5-primed eosinophils, including CD11b upregulation, ROS production, and the activities of Syk, PI3K, and PLC. These results implicate cis ligands in restraining Siglec-8 function on eosinophils and mast cells and reveal a promising approach to the selective depletion of mast cells in patients with mast cell-mediated diseases.
Collapse
Affiliation(s)
- Yun Cao
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Clayton H. Rische
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL, United States
| | - Bruce S. Bochner
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jeremy A. O’Sullivan
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
8
|
Miralda I, Samanas NB, Seo AJ, Foronda JS, Sachen J, Hui Y, Morrison SD, Oskeritzian CA, Piliponsky AM. Siglec-9 is an inhibitory receptor on human mast cells in vitro. J Allergy Clin Immunol 2023; 152:711-724.e14. [PMID: 37100120 PMCID: PMC10524464 DOI: 10.1016/j.jaci.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Mast cell activation is critical for the development of allergic diseases. Ligation of sialic acid-binding immunoglobin-like lectins (Siglecs), such as Siglec-6, -7, and -8 as well as CD33, have been shown to inhibit mast cell activation. Recent studies showed that human mast cells express Siglec-9, an inhibitory receptor also expressed by neutrophils, monocytes, macrophages, and dendritic cells. OBJECTIVE We aimed to characterize Siglec-9 expression and function in human mast cells in vitro. METHODS We assessed the expression of Siglec-9 and Siglec-9 ligands on human mast cell lines and human primary mast cells by real-time quantitative PCR, flow cytometry, and confocal microscopy. We used a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing approach to disrupt the SIGLEC9 gene. We evaluated Siglec-9 inhibitory activity on mast cell function by using native Siglec-9 ligands, glycophorin A (GlycA), and high-molecular-weight hyaluronic acid, a monoclonal antibody against Siglec-9, and coengagement of Siglec-9 with the high-affinity receptor for IgE (FcεRI). RESULTS Human mast cells express Siglec-9 and Siglec-9 ligands. SIGLEC9 gene disruption resulted in increased expression of activation markers at baseline and increased responsiveness to IgE-dependent and IgE-independent stimulation. Pretreatment with GlycA or high-molecular-weight hyaluronic acid followed by IgE-dependent or -independent stimulation had an inhibitory effect on mast cell degranulation. Coengagement of Siglec-9 with FcεRI in human mast cells resulted in reduced degranulation, arachidonic acid production, and chemokine release. CONCLUSIONS Siglec-9 and its ligands play an important role in limiting human mast cell activation in vitro.
Collapse
Affiliation(s)
- Irina Miralda
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Nyssa B Samanas
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Albert J Seo
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Jake S Foronda
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Josie Sachen
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Yvonne Hui
- University of South Carolina School of Medicine, Columbia, SC
| | - Shane D Morrison
- Department of Surgery, Division of Plastic Surgery, Seattle Children's Hospital, Seattle, Wash
| | | | - Adrian M Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash; Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Department of Pathology, University of Washington School of Medicine, Seattle, Wash; Department of Global Health, University of Washington School of Medicine, Seattle, Wash.
| |
Collapse
|
9
|
Tsubata T. Siglec cis-ligands and their roles in the immune system. Glycobiology 2023; 33:532-544. [PMID: 37154567 DOI: 10.1093/glycob/cwad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins are a family of membrane molecules primarily expressed in immune cells. Most of them are inhibitory receptors containing immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic tail. On the cell surface, sialic acid-binding immunoglobulin-like lectins are mostly bound by sialylated glycans on membrane molecules expressed in the same cell (cis-ligands). Although ligands of sialic acid-binding immunoglobulin-like lectins are not efficiently identified by conventional methods such as immunoprecipitation, in situ labeling including proximity labeling is useful in identifying both cis-ligands and the sialylated ligands expressed by other cells (trans-ligands) of sialic acid-binding immunoglobulin-like lectins. Interaction of the inhibitory sialic acid-binding immunoglobulin-like lectins with cis-ligands including both those with and without signaling function modulates the inhibitory activity of sialic acid-binding immunoglobulin-like lectins by multiple different ways. This interaction also modulates signaling function of the cis-ligands. So far, little is known about the role of the interaction between sialic acid-binding immunoglobulin-like lectins and the cis-ligands. Nonetheless, recent studies showed that the inhibitory activity of CD22 (also known as Siglec-2) is regulated by endogenous ligands, most likely cis-ligands, differentially in resting B cells and those in which B-cell antigen receptor is ligated. This differential regulation plays a role in quality control of signaling-competent B cells and also partial restoration of B-cell antigen receptor signaling in immunodeficient B cells.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Pathology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| |
Collapse
|
10
|
Stanczak MA, Läubli H. Siglec receptors as new immune checkpoints in cancer. Mol Aspects Med 2023; 90:101112. [PMID: 35948467 DOI: 10.1016/j.mam.2022.101112] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy in the form of immune checkpoint inhibitors and cellular therapies has improved the treatment and prognosis of many patients. Nevertheless, most cancers are still resistant to currently approved cancer immunotherapies. New approaches and rational combinations are needed to overcome these resistances. There is emerging evidence that Siglec receptors could be regarded as new immune checkpoints and targets for cancer immunotherapy. In this review, we summarize the experimental evidence supporting Siglec receptors as new immune checkpoints in cancer and discuss their mechanisms of action, as well as current efforts to target Siglec receptors and their interactions with sialoglycan Siglec-ligands.
Collapse
Affiliation(s)
- Michal A Stanczak
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, 21287, USA
| | - Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University of Basel, Division of Oncology, University Hospital Basel, Switzerland.
| |
Collapse
|
11
|
Wang X, Dai J, Xia J, Ye Z, Huang X, Cao W, Xiao R, He L. Pomalidomide enhances the maturation of dendritic cells derived from healthy donors and multiple myeloma patients. Front Pharmacol 2022; 13:1076096. [PMID: 36545316 PMCID: PMC9760666 DOI: 10.3389/fphar.2022.1076096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/18/2022] [Indexed: 12/09/2022] Open
Abstract
Objective: To explore the effect of pomalidomide on the maturation of monocyte-derived dendritic cells (moDCs) from healthy donors (HDs) and multiple myeloma (MM) patients. Methods: MoDCs were generated by the incubation of monocytes from peripheral blood mononuclear cells (PBMCs) for 7 days in a medium consisting of 800 U/ml granulocyte-macrophage colony stimulating factor (GM-CSF), 500 U/ml interleukin-4 (IL-4), RPMI 1,640 medium, 5% human serum, 100 U/ml penicillin and 0.1 mg/ml streptomycin. Meanwhile, the incubation system was administrated with 10 µM pomalidomide or 1 × PBS as the control group. On the eighth day, cells were harvested and analyzed by flow cytometry. The CD80+CD86+ cell population in total cells was gated as moDCs in the FACS analyzing system. After that, the expression of CD40 and HLA-DR on moDCs was analyzed. Meanwhile, the supernatant from the incubation system was evaluated for the secretion of cytokines interleukin-12 (IL-12), tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein 1α (MIP-1α) by enzyme-linked immunosorbent assay (ELISA). Results: When analyzing all the HD-moDCs together (n = 15), pomalidomide significantly increased the mean fluorescence intensity (MFI) of CD40 expression and HLA-DR expression on moDCs compared with the control group (p = 0.003, p = 0.040). Meanwhile, the proportion of CD40+ moDCs and HLA-DR+ moDCs in total moDCs was significantly higher in the pomalidomide group than in the control group (p = 0.008, p = 0.032). When analyzing all MM patient-moDCs together (n = 11), pomalidomide significantly increased the MFI of CD40 expression and HLA-DR expression on moDCs compared with the control group (p = 0.047, p = 0.006). Meanwhile, the proportion of HLA-DR+ moDCs in total DCs was significantly higher in the pomalidomide group than in the control group (p < 0.001). Moreover, HD-moDCs (n = 8) treated with pomalidomide secreted 192% IL-12, 110% TNF-α, and 112% MIP-1α of the untreated moDCs (p = 0.020, p = 0.006, p = 0.055). However, when analyzing MM patient-moDCs (n = 10) together, the secretion of IL-12, TNF-α and MIP-1α from moDCs showed no significant difference between the pomalidomide group and the control group (p = 0.458, p = 0.377, p = 0.248). Conclusion: In vitro, 10 µM pomalidomide enhances the maturation of moDCs derived from both HDs and MM patients. Pomalidomide shows potential to be applied as a DC adjuvant for DC-based immunotherapy, such as the DC vaccine and DC cell therapy in MM.
Collapse
Affiliation(s)
- Xi Wang
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingying Dai
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingyi Xia
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zichen Ye
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobing Huang
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wanjun Cao
- Department of Pharmacy, Nanchong Central Hospital, Nanchong, China
| | - Rong Xiao
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Rong Xiao, ; Lin He,
| | - Lin He
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Rong Xiao, ; Lin He,
| |
Collapse
|
12
|
Rossing E, Pijnenborg JFA, Boltje TJ. Chemical tools to track and perturb the expression of sialic acid and fucose monosaccharides. Chem Commun (Camb) 2022; 58:12139-12150. [PMID: 36222364 PMCID: PMC9623448 DOI: 10.1039/d2cc04275d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022]
Abstract
The biosynthesis of glycans is a highly conserved biological process and found in all domains of life. The expression of cell surface glycans is increasingly recognized as a target for therapeutic intervention given the role of glycans in major pathologies such as cancer and microbial infection. Herein, we summarize our contributions to the development of unnatural monosaccharide derivatives to infiltrate and alter the expression of both mammalian and bacterial glycans and their therapeutic application.
Collapse
Affiliation(s)
- Emiel Rossing
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| | - Johan F A Pijnenborg
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| | - Thomas J Boltje
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Huang J, Li M, Mei B, Li J, Zhu Y, Guo Q, Huang J, Zhang G. Whole-cell tumor vaccines desialylated to uncover tumor antigenic Gal/GalNAc epitopes elicit anti-tumor immunity. J Transl Med 2022; 20:496. [PMID: 36316782 PMCID: PMC9620617 DOI: 10.1186/s12967-022-03714-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Aberrant sialoglycans on the surface of tumor cells shield potential tumor antigen epitopes, escape recognition, and suppress activation of immunocytes. α2,3/α2,6Gal- and α2,6GalNAc (Gal/GalNAc)-linked sialic acid residues of sialoglycans could affect macrophage galactose-type lectins (MGL) mediated-antigen uptake and presentation and promote sialic acid-binding immunoglobulin-like lectins (Siglecs) mediated-immunosuppression. Desialylating sialoglycans on tumor cells could present tumor antigens with Gal/GalNAc residues and overcome glyco-immune checkpoints. Thus, we explored whether vaccination with desialylated whole-cell tumor vaccines (DWCTVs) triggers anti-tumor immunity in ovarian cancer (OC). METHODS Sialic acid (Sia) and Gal/GalNAc residues on OC A2780, OVCAR3, and ID8 cells treated with α2-3 neuraminidase (α2-3NA) and α2-6NA, and Sigec-9 or Siglec-E and MGL on DCs pulsed with desialylated OC cells were identified using flow cytometry (FCM); RT-qPCR determined IFNG expression of T cells, TRBV was sequenced using Sanger sequencing and cytotoxicity of αβ T cells was measured with LDH assay; Anti-tumor immunity in vivo was validated via vaccination with desialylated whole-cell ID8 vaccine (ID8 DWCTVs). RESULTS Gal/GalNAc but not Sia residues were significantly increased in the desialylated OC cells. α2-3NA-modified DWCTV increased MGL but decreased Siglec-9 or Siglec E expression on DCs. MGLbright/Siglec-9dim DCs significantly up-regulated IFNG expression and CD4/CD8 ratio of T cells and diversified the TCR repertoire of αβ T-cells that showed enhanced cytotoxic activity. Vaccination with α2-3NA-modified ID8 DWCTVs increased MGLbright/Siglec-Edim DCs in draining lymph nodes, limited tumor growth, and extended survival in tumor-challenged mice. CONCLUSION Desialylated tumor cell vaccine could promote anti-tumor immunity and provide a strategy for OC immunotherapy in a clinical setting.
Collapse
Affiliation(s)
- Jianmei Huang
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Meiying Li
- grid.415880.00000 0004 1755 2258Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Bingjie Mei
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Junyang Li
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Zhu
- grid.54549.390000 0004 0369 4060Department of Ultrasound, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiaoshan Guo
- grid.415880.00000 0004 1755 2258Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Jianming Huang
- grid.415880.00000 0004 1755 2258Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Guonan Zhang
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China ,grid.54549.390000 0004 0369 4060Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Rosa P, Scibetta S, Pepe G, Mangino G, Capocci L, Moons SJ, Boltje TJ, Fazi F, Petrozza V, Di Pardo A, Maglione V, Calogero A. Polysialic Acid Sustains the Hypoxia-Induced Migration and Undifferentiated State of Human Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms23179563. [PMID: 36076963 PMCID: PMC9455737 DOI: 10.3390/ijms23179563] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/15/2022] Open
Abstract
Gliomas are the most common primary malignant brain tumors. Glioblastoma, IDH-wildtype (GBM, CNS WHO grade 4) is the most aggressive form of glioma and is characterized by extensive hypoxic areas that strongly correlate with tumor malignancy. Hypoxia promotes several processes, including stemness, migration, invasion, angiogenesis, and radio- and chemoresistance, that have direct impacts on treatment failure. Thus, there is still an increasing need to identify novel targets to limit GBM relapse. Polysialic acid (PSA) is a carbohydrate composed of a linear polymer of α2,8-linked sialic acids, primarily attached to the Neural Cell Adhesion Molecule (NCAM). It is considered an oncodevelopmental antigen that is re-expressed in various tumors. High levels of PSA-NCAM are associated with high-grade and poorly differentiated tumors. Here, we investigated the effect of PSA inhibition in GBM cells under low oxygen concentrations. Our main results highlight the way in which hypoxia stimulates polysialylation in U87-MG cells and in a GBM primary culture. By lowering PSA levels with the sialic acid analog, F-NANA, we also inhibited GBM cell migration and interfered with their differentiation influenced by the hypoxic microenvironment. Our findings suggest that PSA may represent a possible molecular target for the development of alternative pharmacological strategies to manage a devastating tumor like GBM.
Collapse
Affiliation(s)
- Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy
- Correspondence:
| | - Sofia Scibetta
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy
| | - Giuseppe Pepe
- IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, Italy
| | - Giorgio Mangino
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy
| | - Luca Capocci
- IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, Italy
| | - Sam J. Moons
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Thomas J. Boltje
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, University of Rome “Sapienza”, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Vincenzo Petrozza
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy
- ICOT, Istituto Chirurgico Ortopedico Traumatologico, Via F. Faggiana 1668, 04100 Latina, Italy
| | - Alba Di Pardo
- IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, Italy
| | | | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy
- ICOT, Istituto Chirurgico Ortopedico Traumatologico, Via F. Faggiana 1668, 04100 Latina, Italy
| |
Collapse
|
15
|
Islam M, Arlian BM, Pfrengle F, Duan S, Smith SA, Paulson JC. Suppressing Immune Responses Using Siglec Ligand-Decorated Anti-receptor Antibodies. J Am Chem Soc 2022; 144:9302-9311. [PMID: 35593593 DOI: 10.1021/jacs.2c00922] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed predominantly on white blood cells and participate in immune cell recognition of self. Most Siglecs contain cytoplasmic inhibitory immunoreceptor tyrosine-based inhibitory motifs characteristic of inhibitory checkpoint co-receptors that suppress cell signaling when they are recruited to the immunological synapse of an activating receptor. Antibodies to activatory receptors typically activate immune cells by ligating the receptors on the cell surface. Here, we report that the conjugation of high affinity ligands of Siglecs to antibodies targeting activatory immune receptors can suppress receptor-mediated activation of immune cells. Indeed, B-cell activation by antibodies to the B-cell receptor IgD is dramatically suppressed by conjugation of anti-IgD with high affinity ligands of a B-cell Siglec CD22/Siglec-2. Similarly, degranulation of mast cells induced by antibodies to IgE, which ligate the IgE/FcεR1 receptor complex, is suppressed by conjugation of anti-IgE to high affinity ligands of a mast cell Siglec, CD33/Siglec-3 (CD33L). Moreover, the anti-IgE-CD33L suppresses anti-IgE-mediated systemic anaphylaxis of sensitized humanized mice and prevents anaphylaxis upon subsequent challenge with anti-IgE. The results demonstrate that attachment of ligands of inhibitory Siglecs to anti-receptor antibodies can suppress the activation of immune cells and modulate unwanted immune responses.
Collapse
Affiliation(s)
- Maidul Islam
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Britni M Arlian
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Fabian Pfrengle
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shiteng Duan
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Scott A Smith
- Department of Medicine, and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - James C Paulson
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
16
|
Moons SJ, Rossing E, Janssen MACH, Heise T, Büll C, Adema GJ, Boltje TJ. Structure-Activity Relationship of Metabolic Sialic Acid Inhibitors and Labeling Reagents. ACS Chem Biol 2022; 17:590-597. [PMID: 35179348 PMCID: PMC8938927 DOI: 10.1021/acschembio.1c00868] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Sialic acids cap
the glycans of cell surface glycoproteins and
glycolipids. They are involved in a multitude of biological processes,
and aberrant sialic acid expression is associated with several pathologies,
such as cancer. Strategies to interfere with the sialic acid biosynthesis
can potentially be used for anticancer therapy. One well-known class
of sialylation inhibitors is peracetylated 3-fluorosialic acids. We
synthesized 3-fluorosialic acid derivatives modified at the C-4, C-5,
C-8, and C-9 position and tested their inhibitory potency in vitro.
Modifications at C-5 lead to increased inhibition, compared to the
natural acetamide at this position. These structure–activity
relationships could also be applied to improve the efficiency of sialic
acid metabolic labeling reagents by modification of the C-5 position.
Hence, these results improve our understanding of the structure–activity
relationships of sialic acid glycomimetics and their metabolic processing.
Collapse
Affiliation(s)
- Sam J. Moons
- Cluster of Molecular Chemistry, Institue for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| | - Emiel Rossing
- Cluster of Molecular Chemistry, Institue for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| | - Mathilde A. C. H. Janssen
- Cluster of Molecular Chemistry, Institue for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| | - Torben Heise
- Cluster of Molecular Chemistry, Institue for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| | - Christian Büll
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525 GA, The Netherlands
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Thomas J. Boltje
- Cluster of Molecular Chemistry, Institue for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
17
|
Balneger N, Cornelissen LAM, Wassink M, Moons SJ, Boltje TJ, Bar-Ephraim YE, Das KK, Søndergaard JN, Büll C, Adema GJ. Sialic acid blockade in dendritic cells enhances CD8 + T cell responses by facilitating high-avidity interactions. Cell Mol Life Sci 2022; 79:98. [PMID: 35089436 PMCID: PMC8799591 DOI: 10.1007/s00018-021-04027-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Sialic acids are negatively charged carbohydrates that cap the glycans of glycoproteins and glycolipids. Sialic acids are involved in various biological processes including cell-cell adhesion and immune recognition. In dendritic cells (DCs), the major antigen-presenting cells of the immune system, sialic acids emerge as important regulators of maturation and interaction with other lymphocytes including T cells. Many aspects of how sialic acids regulate DC functions are not well understood and tools and model systems to address these are limited. Here, we have established cultures of murine bone marrow-derived DCs (BMDCs) that lack sialic acid expression using a sialic acid-blocking mimetic Ac53FaxNeu5Ac. Ac53FaxNeu5Ac treatment potentiated BMDC activation via toll-like receptor (TLR) stimulation without affecting differentiation and viability. Sialic acid blockade further increased the capacity of BMDCs to induce antigen-specific CD8+ T cell proliferation. Transcriptome-wide gene expression analysis revealed that sialic acid mimetic treatment of BMDCs induces differential expression of genes involved in T cell activation, cell-adhesion, and cell-cell interactions. Subsequent cell clustering assays and single cell avidity measurements demonstrated that BMDCs with reduced sialylation form higher avidity interactions with CD8+ T cells. This increased avidity was detectable in the absence of antigens, but was especially pronounced in antigen-dependent interactions. Together, our data show that sialic acid blockade in BMDCs ameliorates maturation and enhances both cognate T cell receptor-MHC-dependent and independent T cell interactions that allow for more robust CD8+ T cell responses.
Collapse
Affiliation(s)
- N Balneger
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - L A M Cornelissen
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - M Wassink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - S J Moons
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - T J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Y E Bar-Ephraim
- LUMICKS, Pilotenstraat 41, 1059 CH, Amsterdam, The Netherlands
| | - K K Das
- LUMICKS, Pilotenstraat 41, 1059 CH, Amsterdam, The Netherlands
| | - J N Søndergaard
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| | - C Büll
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
- Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - G J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
19
|
Tseng YW, Chang CC, Chang YC. Novel Virulence Role of Pneumococcal NanA in Host Inflammation and Cell Death Through the Activation of Inflammasome and the Caspase Pathway. Front Cell Infect Microbiol 2021; 11:613195. [PMID: 33777832 PMCID: PMC7991587 DOI: 10.3389/fcimb.2021.613195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/05/2021] [Indexed: 01/15/2023] Open
Abstract
Streptococcus pneumoniae is one of most deadly Gram-positive bacterium that causes significant mortality and morbidity worldwide. Intense inflammation and cytotoxicity is a hallmark of invasive pneumococcal disease. Pneumococcal NanA has been shown to exaggerate the production of inflammatory cytokines via unmasking of inhibitory Siglec-5 from its sialyl cis-ligands. To further investigate the mechanistic role of NanA and Siglec-5 in pneumococccal diseases, we systemically analyzed genes and signaling pathways differentially regulated in macrophages infected with wild type and NanA-deficient pneumococcus. We found that NanA-mediated desialylation impairs the Siglec-5-TLR-2 interaction and reduces the recruitment of phosphatase SHP-1 to Siglec-5. This dysregulated crosstalk between TLR-2 and inhibitory Siglec-5 exaggerated multiple inflammatory and death signaling pathways and consequently caused excessive inflammation and cytotoxicity in the infected macrophage. Collectively, our results reveal a novel virulence role of NanA in pneumococcal pathogenesis and suggest that targeting NanA activity may ameliorate the pneumococcus-mediated inflammation and cytotoxicity in severe invasive pneumococcal diseases.
Collapse
Affiliation(s)
- Yu-Wen Tseng
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Chi Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Chi Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Delaveris CS, Chiu SH, Riley NM, Bertozzi CR. Modulation of immune cell reactivity with cis-binding Siglec agonists. Proc Natl Acad Sci U S A 2021; 118:e2012408118. [PMID: 33431669 PMCID: PMC7826350 DOI: 10.1073/pnas.2012408118] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inflammatory pathologies caused by phagocytes lead to numerous debilitating conditions, including chronic pain and blindness due to age-related macular degeneration. Many members of the sialic acid-binding immunoglobulin-like lectin (Siglec) family are immunoinhibitory receptors whose agonism is an attractive approach for antiinflammatory therapy. Here, we show that synthetic lipid-conjugated glycopolypeptides can insert into cell membranes and engage Siglec receptors in cis, leading to inhibitory signaling. Specifically, we construct a cis-binding agonist of Siglec-9 and show that it modulates mitogen-activated protein kinase (MAPK) signaling in reporter cell lines, immortalized macrophage and microglial cell lines, and primary human macrophages. Thus, these cis-binding agonists of Siglecs present a method for therapeutic suppression of immune cell reactivity.
Collapse
Affiliation(s)
- Corleone S Delaveris
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Shannon H Chiu
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305;
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| |
Collapse
|
21
|
van de Wall S, Santegoets KC, van Houtum EJ, Büll C, Adema GJ. Sialoglycans and Siglecs Can Shape the Tumor Immune Microenvironment. Trends Immunol 2020; 41:274-285. [DOI: 10.1016/j.it.2020.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022]
|
22
|
Abstract
Sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed on the majority of white blood cells of the immune system and play critical roles in immune cell signaling. Through recognition of sialic acid-containing glycans as ligands, they help the immune system distinguish between self and nonself. Because of their restricted cell type expression and roles as checkpoints in immune cell responses in human diseases such as cancer, asthma, allergy, neurodegeneration, and autoimmune diseases they have gained attention as targets for therapeutic interventions. In this review we describe the Siglec family, its roles in regulation of immune cell signaling, current efforts to define its roles in disease processes, and approaches to target Siglecs for treatment of human disease.
Collapse
Affiliation(s)
- Shiteng Duan
- Departments of Molecular Medicine, and Immunology and Microbiology, Scripps Research, La Jolla, California 92037, USA;
| | - James C Paulson
- Departments of Molecular Medicine, and Immunology and Microbiology, Scripps Research, La Jolla, California 92037, USA;
| |
Collapse
|
23
|
Swan D, Lynch K, Gurney M, O’Dwyer M. Current and emerging immunotherapeutic approaches to the treatment of multiple myeloma. Ther Adv Hematol 2019; 10:2040620719854171. [PMID: 31244984 PMCID: PMC6582283 DOI: 10.1177/2040620719854171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/09/2019] [Indexed: 11/17/2022] Open
Abstract
Multiple myeloma (MM) has a worldwide incidence of 1-5/100,000/year. Outcomes have improved significantly in recent years following incorporation of immunomodulatory drugs and proteasome inhibitors into standard-of-care regimes. MM is profoundly immunosuppressive, enabling immune evasion, proliferation and disease progression. The role of the immune system in MM is becoming increasingly characterized and understood, and numerous therapies are under development or in routine clinical use targeting these elements of MM pathogenesis. In this review we discuss the immunosuppressive effects of MM, then the therapies targeting these defects. Specifically, we review the monoclonal and bispecific antibodies, alongside adoptive cellular therapies currently under investigation.
Collapse
Affiliation(s)
- Dawn Swan
- Clinical Research Facility, University Hospital Galway, Newcastle Road, Galway, H91 YR71, Ireland
| | - Kevin Lynch
- National University of Ireland, Galway, Ireland
| | - Mark Gurney
- University Hospital Galway, Ireland
- National University of Ireland, Galway, Ireland
| | - Michael O’Dwyer
- University Hospital Galway, Ireland
- National University of Ireland, Galway, Ireland
| |
Collapse
|
24
|
Santegoets KCM, Gielen PR, Büll C, Schulte BM, Kers-Rebel ED, Küsters B, Bossman SAJFH, Ter Laan M, Wesseling P, Adema GJ. Expression profiling of immune inhibitory Siglecs and their ligands in patients with glioma. Cancer Immunol Immunother 2019; 68:937-949. [PMID: 30953118 PMCID: PMC6529385 DOI: 10.1007/s00262-019-02332-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/24/2019] [Indexed: 12/22/2022]
Abstract
Gliomas appear to be highly immunosuppressive tumors, with a strong myeloid component. This includes MDSCs, which are a heterogeneous, immature myeloid cell population expressing myeloid markers Siglec-3 (CD33) and CD11b and lacking markers of mature myeloid cells including MHC II. Siglec-3 is a member of the sialic acid-binding immunoglobulin-like lectin (Siglec) family and has been suggested to promote MDSC expansion and suppression. Siglecs form a recently defined family of receptors with potential immunoregulatory functions but only limited insight in their expression on immune regulatory cell subsets, prompting us to investigate Siglec expression on MDSCs. We determined the expression of different Siglec family members on monocytic-MDSCs (M-MDSCs) and polymorphnuclear-MDSCs (PMN-MDSCs) from blood of glioma patients and healthy donors, as well as from patient-derived tumor material. Furthermore, we investigated the presence of sialic acid ligands for these Siglecs on MDSCs and in the glioma tumor microenvironment. Both MDSC subsets express Siglec-3, -5, -7 and -9, with higher levels of Siglec-3, -7 and -9 on M-MDSCs and higher Siglec-5 levels on PMN-MDSCs. Similar Siglec expression profiles were found on MDSCs from healthy donors. Furthermore, the presence of Siglec-5 and -9 was also confirmed on PMN-MDSCs from glioma tissue. Interestingly, freshly isolated glioma cells predominantly expressed sialic acid ligands for Siglec-7 and -9, which was confirmed in situ. In conclusion, our data show a distinct Siglec expression profile for M- and PMN-MDSCs and propose possible sialic acid-Siglec interactions between glioma cells and MDSCs in the tumor microenvironment.
Collapse
Affiliation(s)
- Kim C M Santegoets
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Paul R Gielen
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Christian Büll
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Barbara M Schulte
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Esther D Kers-Rebel
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Benno Küsters
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sandra A J F H Bossman
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
- Prinses Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
25
|
van den Bijgaart RJE, Kroesen M, Wassink M, Brok IC, Kers-Rebel ED, Boon L, Heise T, van Scherpenzeel M, Lefeber DJ, Boltje TJ, den Brok MH, Hoogerbrugge PM, Büll C, Adema GJ. Combined sialic acid and histone deacetylase (HDAC) inhibitor treatment up-regulates the neuroblastoma antigen GD2. J Biol Chem 2019; 294:4437-4449. [PMID: 30670592 DOI: 10.1074/jbc.ra118.002763] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma cells highly express the disialoganglioside GD2, a tumor-associated carbohydrate antigen, which is only sparsely expressed on healthy tissue. GD2 is a primary target for the development of immunotherapy for neuroblastoma. Immunotherapy with monoclonal anti-GD2 antibodies has proven safety and efficacy in clinical trials and is included in the standard treatment for children with high-risk neuroblastoma. Strategies to modulate GD2 expression in neuroblastoma could further improve anti-GD2-targeted immunotherapy. Here, we report that the cellular sialylation pathway, as well as epigenetic reprogramming, strongly modulates GD2 expression in human and mouse neuroblastoma cell lines. Recognition of GD2 by the 14G2a antibody is sialic acid-dependent and was blocked with the fluorinated sialic acid mimetic Ac53FaxNeu5Ac. Interestingly, sialic acid supplementation using a cell-permeable sialic acid analogue (Ac5Neu5Ac) boosted GD2 expression without or with minor alterations in overall cell surface sialylation. Furthermore, sialic acid supplementation with Ac5Neu5Ac combined with various histone deacetylase (HDAC) inhibitors, including vorinostat, enhanced GD2 expression in neuroblastoma cells beyond their individual effects. Mechanistic studies revealed that Ac5Neu5Ac supplementation increased intracellular CMP-Neu5Ac concentrations, thereby providing higher substrate levels for sialyltransferases. Furthermore, HDAC inhibitor treatment increased mRNA expression of the sialyltransferases GM3 synthase (ST3GAL5) and GD3 synthase (ST8SIA1), both of which are involved in GD2 biosynthesis. Our findings reveal that sialic acid analogues and HDAC inhibitors enhance GD2 expression and could potentially be employed to boost anti-GD2 targeted immunotherapy in neuroblastoma patients.
Collapse
Affiliation(s)
- Renske J E van den Bijgaart
- From the Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Michiel Kroesen
- the Department of Radiotherapy, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Melissa Wassink
- From the Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ingrid C Brok
- From the Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Esther D Kers-Rebel
- From the Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Louis Boon
- Bioceros, 3584 CM Utrecht, The Netherlands
| | - Torben Heise
- the Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Monique van Scherpenzeel
- the Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, 6525 DA Nijmegen, the Netherlands, and
| | - Dirk J Lefeber
- the Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, 6525 DA Nijmegen, the Netherlands, and
| | - Thomas J Boltje
- the Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Martijn H den Brok
- From the Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- the Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Christian Büll
- From the Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Gosse J Adema
- From the Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands,
| |
Collapse
|
26
|
Dagur RS, Branch-Woods A, Mathews S, Joshi PS, Quadros RM, Harms DW, Cheng Y, Miles SM, Pirruccello SJ, Gurumurthy CB, Gorantla S, Poluektova LY. Human-like NSG mouse glycoproteins sialylation pattern changes the phenotype of human lymphocytes and sensitivity to HIV-1 infection. BMC Immunol 2019; 20:2. [PMID: 30616506 PMCID: PMC6322283 DOI: 10.1186/s12865-018-0279-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/30/2018] [Indexed: 01/14/2023] Open
Abstract
Background The use of immunodeficient mice transplanted with human hematopoietic stem cells is an accepted approach to study human-specific infectious diseases such as HIV-1 and to investigate multiple aspects of human immune system development. However, mouse and human are different in sialylation patterns of proteins due to evolutionary mutations of the CMP-N-acetylneuraminic acid hydroxylase (CMAH) gene that prevent formation of N-glycolylneuraminic acid from N-acetylneuraminic acid. How changes in the mouse glycoproteins’ chemistry affect phenotype and function of transplanted human hematopoietic stem cells and mature human immune cells in the course of HIV-1 infection are not known. Results We mutated mouse CMAH in the NOD/scid-IL2Rγc−/− (NSG) mouse strain, which is widely used for the transplantation of human cells, using the CRISPR/Cas9 system. The new strain provides a better environment for human immune cells. Transplantation of human hematopoietic stem cells leads to broad B cells repertoire, higher sensitivity to HIV-1 infection, and enhanced proliferation of transplanted peripheral blood lymphocytes. The mice showed no effect on the clearance of human immunoglobulins and enhanced transduction efficiency of recombinant adeno-associated viral vector rAAV2/DJ8. Conclusion NSG-cmah−/− mice expand the mouse models suitable for human cells transplantation, and this new model has advantages in generating a human B cell repertoire. This strain is suitable to study different aspects of the human immune system development, provide advantages in patient-derived tissue and cell transplantation, and could allow studies of viral vectors and infectious agents that are sensitive to human-like sialylation of mouse glycoproteins. Electronic supplementary material The online version of this article (10.1186/s12865-018-0279-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raghubendra Singh Dagur
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Amanda Branch-Woods
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Saumi Mathews
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Poonam S Joshi
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, Omaha, NE, USA
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, Omaha, NE, USA
| | - Donald W Harms
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, Omaha, NE, USA
| | - Yan Cheng
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | | | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, Omaha, NE, USA.,Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, of University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
27
|
Lübbers J, Rodríguez E, van Kooyk Y. Modulation of Immune Tolerance via Siglec-Sialic Acid Interactions. Front Immunol 2018; 9:2807. [PMID: 30581432 PMCID: PMC6293876 DOI: 10.3389/fimmu.2018.02807] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
One of the key features of the immune system is its extraordinary capacity to discriminate between self and non-self and to respond accordingly. Several molecular interactions allow the induction of acquired immune responses when a foreign antigen is recognized, while others regulate the resolution of inflammation, or the induction of tolerance to self-antigens. Post-translational signatures, such as glycans that are part of proteins (glycoproteins) and lipids (glycolipids) of host cells or pathogens, are increasingly appreciated as key molecules in regulating immunity vs. tolerance. Glycans are sensed by glycan binding receptors expressed on immune cells, such as C-type lectin receptors (CLRs) and Sialic acid binding immunoglobulin type lectins (Siglecs), that respond to specific glycan signatures by triggering tolerogenic or immunogenic signaling pathways. Glycan signatures present on healthy tissue, inflamed and malignant tissue or pathogens provide signals for “self” or “non-self” recognition. In this review we will focus on sialic acids that serve as “self” molecular pattern ligands for Siglecs. We will emphasize on the function of Siglec-expressing mononuclear phagocytes as sensors for sialic acids in tissue homeostasis and describe how the sialic acid-Siglec axis is exploited by tumors and pathogens for the induction of immune tolerance. Furthermore, we highlight how the sialic acid-Siglec axis can be utilized for clinical applications to induce or inhibit immune tolerance.
Collapse
Affiliation(s)
- Joyce Lübbers
- Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ernesto Rodríguez
- Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| |
Collapse
|
28
|
Zhang Y, Zheng Y, Li J, Nie L, Hu Y, Wang F, Liu H, Fernandes SM, Zhong Q, Li X, Schnaar RL, Jia Y. Immunoregulatory Siglec ligands are abundant in human and mouse aorta and are up-regulated by high glucose. Life Sci 2018; 216:189-199. [PMID: 30471282 DOI: 10.1016/j.lfs.2018.11.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
AIM Inflammation is a driving force in development of atherosclerosis, and hyperglycemia is a significant risk factor for angiopathy. Siglec-9, expressed on human neutrophils and macrophages, engages specific glycan ligands on tissues to diminish ongoing inflammation. MATERIALS AND METHOD Siglec-9 ligands on human aorta were characterized and the effects of high glucose exposure on the expression of ligands for Siglec-9 on human umbilical vein endothelial cells (HUV-EC-C) in vitro and ligands for the comparable siglec (Siglec-E) on mouse aorta in vivo were studied. KEY FINDINGS Siglec-9 ligands were expressed broadly on human aorta, as well as on HUV-EC-C. Siglec-9 ligands on HUV-EC-C were sharply up-regulated under high glucose exposure in vitro, as were Siglec-E ligands on the aortas of hyperglycemic mice. Exposure of HUV-EC-C to high-glucose resulted in consistent inhibitory changes in co-cultured macrophages including increased apoptosis and decreased phagocytosis. Control of Siglec-9 ligand expression on HUV-EC-C was downstream of changes in an enzyme involved in their biosynthesis, UDP-galactose-4-epimerase (GALE) and increased cellular N-acetylgalactosamine. The alteration of GALE was associated with the regulatory microRNA hsa-let-7f. SIGNIFICANCE We conclude that exposure to high-glucose results in up-regulation of immune inhibitory Siglec-9 sialoglycan ligands on aorta and HUV-EC-C cells downstream of altered GALE and GalNAc expression, resulting in up-regulation of apoptosis and decrease of phagocytic activity of macrophages. Changes in Siglec-9 sialoglycan ligand expression on vascular endothelial cells may be a natural response to the initial steps of atherosclerosis and might be a potential target to regulate inflammation in diabetic angiopathy.
Collapse
Affiliation(s)
- Yingxian Zhang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, ChongQing 400038, China; Department of Pharmacy, The Third Affiliated Hospital, ChongQing Medical University, Yubei, Chongqing 401120, China
| | - Yu Zheng
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, ChongQing 400038, China; Department of Pharmacy, Hainan Western Central Hospital, Danzhou, Hainan 571799, China
| | - Jin Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, ChongQing 400038, China
| | - Ling Nie
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, ChongQing 400037, China
| | - Yijie Hu
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, ChongQing 400042, China
| | - Fangjie Wang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, ChongQing 400038, China
| | - Hongmei Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, ChongQing 400038, China
| | - Steve M Fernandes
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qianjin Zhong
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, ChongQing 400042, China
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, ChongQing 400038, China.
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Yi Jia
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, ChongQing 400038, China.
| |
Collapse
|
29
|
Büll C, Boltje TJ, Balneger N, Weischer SM, Wassink M, van Gemst JJ, Bloemendal VR, Boon L, van der Vlag J, Heise T, den Brok MH, Adema GJ. Sialic Acid Blockade Suppresses Tumor Growth by Enhancing T-cell-Mediated Tumor Immunity. Cancer Res 2018; 78:3574-3588. [PMID: 29703719 DOI: 10.1158/0008-5472.can-17-3376] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/14/2018] [Accepted: 04/16/2018] [Indexed: 11/16/2022]
Abstract
Sialic acid sugars on the surface of cancer cells have emerged as potent immune modulators that contribute to the immunosuppressive microenvironment and tumor immune evasion. However, the mechanisms by which these sugars modulate antitumor immunity as well as therapeutic strategies directed against them are limited. Here we report that intratumoral injections with a sialic acid mimetic Ac53FaxNeu5Ac block tumor sialic acid expression in vivo and suppress tumor growth in multiple tumor models. Sialic acid blockade had a major impact on the immune cell composition of the tumor, enhancing tumor-infiltrating natural killer cell and CD8+ T-cell numbers while reducing regulatory T-cell and myeloid regulatory cell numbers. Sialic acid blockade enhanced cytotoxic CD8+ T-cell-mediated killing of tumor cells in part by facilitating antigen-specific T-cell-tumor cell clustering. Sialic acid blockade also synergized with adoptive transfer of tumor-specific CD8+ T cells in vivo and enhanced CpG immune adjuvant therapy by increasing dendritic cell activation and subsequent CD8+ T-cell responses. Collectively, these data emphasize the crucial role of sialic acids in tumor immune evasion and provide proof of concept that sialic acid blockade creates an immune-permissive tumor microenvironment for CD8+ T-cell-mediated tumor immunity, either as single treatment or in combination with other immune-based intervention strategies.Significance: Sialic acid sugars function as important modulators of the immunosuppressive tumor microenvironment that limit potent antitumor immunity.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/13/3574/F1.large.jpg Cancer Res; 78(13); 3574-88. ©2018 AACR.
Collapse
Affiliation(s)
- Christian Büll
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Natasja Balneger
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sarah M Weischer
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Melissa Wassink
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jasper J van Gemst
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Victor R Bloemendal
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands
| | | | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Torben Heise
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Martijn H den Brok
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
30
|
Li RE, van Vliet SJ, van Kooyk Y. Using the glycan toolbox for pathogenic interventions and glycan immunotherapy. Curr Opin Biotechnol 2017; 51:24-31. [PMID: 29175707 DOI: 10.1016/j.copbio.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/29/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Glycans play a crucial role to discern between self and foreign entities by providing key recognition elements for C-type lectin receptors (CLRs) and Siglec receptors expressed on immune cells. The glycan recognition of CLRs has illustrated a potent immune modulatory role affecting not only innate pathogen binding and immune signalling, but also Thelper differentiation, cytokine production and antigen presentation. This broad range of influence has implicated glycans in the pathogenesis of infectious diseases but also revealed their extraordinary properties in cancer. Glycan binding by CLRs and Siglecs can be exploited for immunotherapy and the design of glycan-based therapeutics and their multivalent requirements will aspire new biotechnological approaches to effectively interfere in immunological processes in cancer and infectious diseases.
Collapse
Affiliation(s)
- Rj Eveline Li
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Y van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Lundahl MLE, Scanlan EM, Lavelle EC. Therapeutic potential of carbohydrates as regulators of macrophage activation. Biochem Pharmacol 2017; 146:23-41. [PMID: 28893617 DOI: 10.1016/j.bcp.2017.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
Abstract
It is well established for a broad range of disease states, including cancer and Mycobacterium tuberculosis infection, that pathogenesis is bolstered by polarisation of macrophages towards an anti-inflammatory phenotype, known as M2. As these innate immune cells are relatively long-lived, their re-polarisation to pro-inflammatory, phagocytic and bactericidal "classically activated" M1 macrophages is an attractive therapeutic approach. On the other hand, there are scenarios where the resolving inflammation, wound healing and tissue remodelling properties of M2 macrophages are beneficial - for example the successful introduction of biomedical implants. Although there are numerous endogenous and exogenous factors that have an impact on the macrophage polarisation spectrum, this review will focus specifically on prominent macrophage-modulating carbohydrate motifs with a view towards highlighting structure-function relationships and therapeutic potential.
Collapse
Affiliation(s)
- Mimmi L E Lundahl
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin 2, Ireland; School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland
| | - Eoin M Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin 2, Ireland.
| |
Collapse
|