1
|
Ho BHT, Spicer BA, Dunstone MA. Action of the Terminal Complement Pathway on Cell Membranes. J Membr Biol 2025:10.1007/s00232-025-00343-6. [PMID: 40122920 DOI: 10.1007/s00232-025-00343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The complement pathway is one of the most ancient elements of the host's innate response and includes a set of protein effectors that rapidly react against pathogens. The late stages of the complement reaction are broadly categorised into two major outcomes. Firstly, C5a receptors, expressed on membranes of host cells, are activated by C5a to generate pro-inflammatory responses. Secondly, target cells are lysed by a hetero-oligomeric pore known as the membrane attack complex (MAC) that punctures the cellular membrane, causing ion and osmotic flux. Generally, several membrane-bound and soluble inhibitors protect the host membrane from complement damage. This includes inhibitors against the MAC, such as clusterin and CD59. This review addresses the most recent molecular and structural insights behind the activation and modulation of the integral membrane proteins, the C5a receptors (C5aR1 and C5aR2), as well as the regulation of MAC assembly. The second aspect of the review focuses on the molecular basis behind inflammatory diseases that are reflective of failure to regulate the terminal complement effectors. Although each arm is unique in its function, both pathways may share similar outcomes in these diseases. As such, the review outlines potential synergy and crosstalk between C5a receptor activation and MAC-mediated cellular responses.
Collapse
Affiliation(s)
- Bill H T Ho
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Bradley A Spicer
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Michelle A Dunstone
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Li XX, Fung JN, Clark RJ, Lee JD, Woodruff TM. Cell-intrinsic C5a synergizes with Dectin-1 in macrophages to mediate fungal killing. Proc Natl Acad Sci U S A 2024; 121:e2314627121. [PMID: 38252818 PMCID: PMC10835034 DOI: 10.1073/pnas.2314627121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The complement factor C5a is a core effector product of complement activation. C5a, acting through its receptors C5aR1 and C5aR2, exerts pleiotropic immunomodulatory functions in myeloid cells, which is vital for host defense against pathogens. Pattern-recognition receptors (PRRs) are similarly expressed by immune cells as detectors of pathogen-associated molecular patterns. Although there is evidence of cross talk between complement and PRR signaling pathways, knowledge of the full potential for C5a-PRR interaction is limited. In this study, we comprehensively investigated how C5a signaling through C5a receptors can modulate diverse PRR-mediated cytokine responses in human primary monocyte-derived macrophages and observed a powerful, concentration-dependent bidirectional effect of C5a on PRR activities. Unexpectedly, C5a synergized with Dectin-1, Mincle, and STING in macrophages to a much greater extent than TLRs. Notably, we also identified that selective Dectin-1 activation using depleted zymosan triggered macrophages to generate cell-intrinsic C5a, which acted on intracellular and cell surface C5aR1, to help sustain mitochondrial ROS generation, up-regulate TNFα production, and enhance fungal killing. This study adds further evidence to the holistic functions of C5a as a central immunomodulator and important orchestrator of pathogen sensing and killing by phagocytes.
Collapse
Affiliation(s)
- Xaria X. Li
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - Jenny N. Fung
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - Richard J. Clark
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - John D. Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| |
Collapse
|
3
|
Maharana J, Sano FK, Sarma P, Yadav MK, Duan L, Stepniewski TM, Chaturvedi M, Ranjan A, Singh V, Saha S, Mahajan G, Chami M, Shihoya W, Selent J, Chung KY, Banerjee R, Nureki O, Shukla AK. Molecular insights into atypical modes of β-arrestin interaction with seven transmembrane receptors. Science 2024; 383:101-108. [PMID: 38175886 PMCID: PMC7615931 DOI: 10.1126/science.adj3347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
β-arrestins (βarrs) are multifunctional proteins involved in signaling and regulation of seven transmembrane receptors (7TMRs), and their interaction is driven primarily by agonist-induced receptor activation and phosphorylation. Here, we present seven cryo-electron microscopy structures of βarrs either in the basal state, activated by the muscarinic receptor subtype 2 (M2R) through its third intracellular loop, or activated by the βarr-biased decoy D6 receptor (D6R). Combined with biochemical, cellular, and biophysical experiments, these structural snapshots allow the visualization of atypical engagement of βarrs with 7TMRs and also reveal a structural transition in the carboxyl terminus of βarr2 from a β strand to an α helix upon activation by D6R. Our study provides previously unanticipated molecular insights into the structural and functional diversity encoded in 7TMR-βarr complexes with direct implications for exploring novel therapeutic avenues.
Collapse
Affiliation(s)
- Jagannath Maharana
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Fumiya K. Sano
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Parishmita Sarma
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manish K. Yadav
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Longhan Duan
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tomasz M. Stepniewski
- Research Program on Biomedical Informatics, Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain
| | - Madhu Chaturvedi
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Ashutosh Ranjan
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Vinay Singh
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sayantan Saha
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Gargi Mahajan
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, Basel, Switzerland
| | - Wataru Shihoya
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Jana Selent
- Research Program on Biomedical Informatics, Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ramanuj Banerjee
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Osamu Nureki
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Arun K. Shukla
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
4
|
Wright O, Harris A, Nguyen VD, Zhou Y, Durand M, Jayyaratnam A, Gormley D, O'Neill LAJ, Triantafilou K, Nichols EM, Booty LM. C5aR2 Regulates STING-Mediated Interferon Beta Production in Human Macrophages. Cells 2023; 12:2707. [PMID: 38067135 PMCID: PMC10706378 DOI: 10.3390/cells12232707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The complement system mediates diverse regulatory immunological functions. C5aR2, an enigmatic receptor for anaphylatoxin C5a, has been shown to modulate PRR-dependent pro-inflammatory cytokine secretion in human macrophages. However, the specific downstream targets and underlying molecular mechanisms are less clear. In this study, CRISPR-Cas9 was used to generate macrophage models lacking C5aR2, which were used to probe the role of C5aR2 in the context of PRR stimulation. cGAS and STING-induced IFN-β secretion was significantly increased in C5aR2 KO THP-1 cells and C5aR2-edited primary human monocyte-derived macrophages, and STING and IRF3 expression were increased, albeit not significantly, in C5aR2 KO cell lines implicating C5aR2 as a regulator of the IFN-β response to cGAS-STING pathway activation. Transcriptomic analysis by RNAseq revealed that nucleic acid sensing and antiviral signalling pathways were significantly up-regulated in C5aR2 KO THP-1 cells. Altogether, these data suggest a link between C5aR2 and nucleic acid sensing in human macrophages. With further characterisation, this relationship may yield therapeutic options in interferon-related pathologies.
Collapse
Affiliation(s)
- Oliver Wright
- Immunology Network, GSK, Stevenage SG1 2NY, UK
- School of Biochemistry and Immunology, Trinity College Dublin, D02 VR66 Dublin, Ireland
| | - Anna Harris
- Immunology Network, GSK, Stevenage SG1 2NY, UK
| | - Van Dien Nguyen
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XW, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XW, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK
| | - Maxim Durand
- Immunology Research Unit, GSK, Stevenage SG1 2NY, UK
| | | | | | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, D02 VR66 Dublin, Ireland
| | - Kathy Triantafilou
- Immunology Network, GSK, Stevenage SG1 2NY, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK
| | | | - Lee M Booty
- Immunology Network, GSK, Stevenage SG1 2NY, UK
| |
Collapse
|
5
|
Yadav MK, Maharana J, Yadav R, Saha S, Sarma P, Soni C, Singh V, Saha S, Ganguly M, Li XX, Mohapatra S, Mishra S, Khant HA, Chami M, Woodruff TM, Banerjee R, Shukla AK, Gati C. Molecular basis of anaphylatoxin binding, activation, and signaling bias at complement receptors. Cell 2023; 186:4956-4973.e21. [PMID: 37852260 PMCID: PMC7615941 DOI: 10.1016/j.cell.2023.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
The complement system is a critical part of our innate immune response, and the terminal products of this cascade, anaphylatoxins C3a and C5a, exert their physiological and pathophysiological responses primarily via two GPCRs, C3aR and C5aR1. However, the molecular mechanism of ligand recognition, activation, and signaling bias of these receptors remains mostly elusive. Here, we present nine cryo-EM structures of C3aR and C5aR1 activated by their natural and synthetic agonists, which reveal distinct binding pocket topologies of complement anaphylatoxins and provide key insights into receptor activation and transducer coupling. We also uncover the structural basis of a naturally occurring mechanism to dampen the inflammatory response of C5a via proteolytic cleavage of the terminal arginine and the G-protein signaling bias elicited by a peptide agonist of C3aR identified here. In summary, our study elucidates the innerworkings of the complement anaphylatoxin receptors and should facilitate structure-guided drug discovery to target these receptors in a spectrum of disorders.
Collapse
Affiliation(s)
- Manish K Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ravi Yadav
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Shirsha Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Chahat Soni
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Vinay Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sayantan Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Manisankar Ganguly
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Xaria X Li
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samanwita Mohapatra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sudha Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Htet A Khant
- USC Center of Excellence for Nano-Imaging, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Mohamed Chami
- BioEM Lab, Biozentrum, Universität Basel, Basel, Switzerland
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Cornelius Gati
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA; Department of Chemistry, Department of Quantitative and Computational Biology, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Laumonnier Y, Korkmaz RÜ, Nowacka AA, Köhl J. Complement-mediated immune mechanisms in allergy. Eur J Immunol 2023; 53:e2249979. [PMID: 37381711 DOI: 10.1002/eji.202249979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Allergic conditions are associated with canonical and noncanonical activation of the complement system leading to the release of several bioactive mediators with inflammatory and immunoregulatory properties that regulate the immune response in response to allergens during the sensitization and/or the effector phase of allergic diseases. Further, immune sensors of complement and regulator proteins of the cascade impact on the development of allergies. These bioactive mediators comprise the small and large cleavage fragments of C3 and C5. Here, we provide an update on the multiple roles of immune sensors, regulators, and bioactive mediators of complement in allergic airway diseases, food allergies, and anaphylaxis. A particular emphasis is on the anaphylatoxins C3a and C5a and their receptors, which are expressed on many of the effector cells in allergy such as mast cells, eosinophils, basophils, macrophages, and neutrophils. Also, we will discuss the multiple pathways, by which the anaphylatoxins initiate and control the development of maladaptive type 2 immunity including their impact on innate lymphoid cell recruitment and activation. Finally, we briefly comment on the potential to therapeutically target the complement system in different allergic conditions.
Collapse
Affiliation(s)
- Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Institute for Nutritional Medicine, University of Lübeck, Lübeck, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Rabia Ülkü Korkmaz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Alicja A Nowacka
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, USA
| |
Collapse
|
7
|
Santos-López J, de la Paz K, Fernández FJ, Vega MC. Structural biology of complement receptors. Front Immunol 2023; 14:1239146. [PMID: 37753090 PMCID: PMC10518620 DOI: 10.3389/fimmu.2023.1239146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The complement system plays crucial roles in a wide breadth of immune and inflammatory processes and is frequently cited as an etiological or aggravating factor in many human diseases, from asthma to cancer. Complement receptors encompass at least eight proteins from four structural classes, orchestrating complement-mediated humoral and cellular effector responses and coordinating the complex cross-talk between innate and adaptive immunity. The progressive increase in understanding of the structural features of the main complement factors, activated proteolytic fragments, and their assemblies have spurred a renewed interest in deciphering their receptor complexes. In this review, we describe what is currently known about the structural biology of the complement receptors and their complexes with natural agonists and pharmacological antagonists. We highlight the fundamental concepts and the gray areas where issues and problems have been identified, including current research gaps. We seek to offer guidance into the structural biology of the complement system as structural information underlies fundamental and therapeutic research endeavors. Finally, we also indicate what we believe are potential developments in the field.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Karla de la Paz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Research & Development, Abvance Biotech SL, Madrid, Spain
| | | | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Schanzenbacher J, Hendrika Kähler K, Mesler E, Kleingarn M, Marcel Karsten C, Leonard Seiler D. The role of C5a receptors in autoimmunity. Immunobiology 2023; 228:152413. [PMID: 37598588 DOI: 10.1016/j.imbio.2023.152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 08/22/2023]
Abstract
The complement system is an essential component of the innate immune response and plays a vital role in host defense and inflammation. Dysregulation of the complement system, particularly involving the anaphylatoxin C5a and its receptors (C5aR1 and C5aR2), has been linked to several autoimmune diseases, indicating the potential for targeted therapies. C5aR1 and C5aR2 are seven-transmembrane receptors with distinct signaling mechanisms that play both partially overlapping and opposing roles in immunity. Both receptors are expressed on a broad spectrum of immune and non-immune cells and are involved in cellular functions and physiological processes during homeostasis and inflammation. Dysregulated C5a-mediated inflammation contributes to autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, epidermolysis bullosa acquisita, antiphospholipid syndrome, and others. Therefore, targeting C5a or its receptors may yield therapeutic innovations in these autoimmune diseases by reducing the recruitment and activation of immune cells that lead to tissue inflammation and injury, thereby exacerbating the autoimmune response. Clinical trials focused on the inhibition of C5 cleavage or the C5a/C5aR1-axis using small molecules or monoclonal antibodies hold promise for bringing novel treatments for autoimmune diseases into practice. However, given the heterogeneous nature of (systemic) autoimmune diseases, there are still several challenges, such as patient selection, optimal dosing, and treatment duration, that require further investigation and development to realize the full therapeutic potential of C5a receptor inhibition, ideally in the context of a personalized medicine approach. Here, we aim to provide a brief overview of the current knowledge on the function of C5a receptors, the involvement of C5a receptors in autoimmune disorders, the molecular mechanisms underlying C5a receptor-mediated autoimmunity, and the potential for targeted therapies to modulate their activity.
Collapse
Affiliation(s)
- Jovan Schanzenbacher
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja Hendrika Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Evelyn Mesler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | | | - Daniel Leonard Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
9
|
Trambas IA, Coughlan MT, Tan SM. Therapeutic Potential of Targeting Complement C5a Receptors in Diabetic Kidney Disease. Int J Mol Sci 2023; 24:ijms24108758. [PMID: 37240105 DOI: 10.3390/ijms24108758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) affects 30-40% of patients with diabetes and is currently the leading cause of end-stage renal disease (ESRD). The activation of the complement cascade, a highly conserved element of the innate immune system, has been implicated in the pathogenesis of diabetes and its complications. The potent anaphylatoxin C5a is a critical effector of complement-mediated inflammation. Excessive activation of the C5a-signalling axis promotes a potent inflammatory environment and is associated with mitochondrial dysfunction, inflammasome activation, and the production of reactive oxygen species. Conventional renoprotective agents used in the treatment of diabetes do not target the complement system. Mounting preclinical evidence indicates that inhibition of the complement system may prove protective in DKD by reducing inflammation and fibrosis. Targeting the C5a-receptor signaling axis is of particular interest, as inhibition at this level attenuates inflammation while preserving the critical immunological defense functions of the complement system. In this review, the important role of the C5a/C5a-receptor axis in the pathogenesis of diabetes and kidney injuries will be discussed, and an overview of the status and mechanisms of action of current complement therapeutics in development will be provided.
Collapse
Affiliation(s)
- Inez A Trambas
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sih Min Tan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
10
|
Li XX, Lee JD, Lee HS, Clark RJ, Woodruff TM. TLQP-21 is a low potency partial C3aR activator on human primary macrophages. Front Immunol 2023; 14:1086673. [PMID: 36776827 PMCID: PMC9909341 DOI: 10.3389/fimmu.2023.1086673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
TLQP-21 is a 21-amino acid neuropeptide derived from the VGF precursor protein. TLQP-21 is expressed in the nervous system and neuroendocrine glands, and demonstrates pleiotropic roles including regulating metabolism, nociception and microglial functions. Several possible receptors for TLQP-21 have been identified, with complement C3a receptor (C3aR) being the most commonly reported. However, few studies have characterised the activity of TLQP-21 in immune cells, which represent the major cell type expressing C3aR. In this study, we therefore aimed to define the activity of both human and mouse TLQP-21 on cell signalling in primary human and mouse macrophages. We first confirmed that TLQP-21 induced ERK signalling in CHO cells overexpressing human C3aR, and did not activate human C5aR1 or C5aR2. TLQP-21 mediated ERK signalling was also observed in primary human macrophages. However, the potency for human TLQP-21 was 135,000-fold lower relative to C3a, and only reached 45% at the highest dose tested (10 μM). Unlike in humans, mouse TLQP-21 potently triggered ERK signalling in murine macrophages, reaching near full activation, but at ~10-fold reduced potency compared to C3a. We further confirmed the C3aR dependency of the TLQP-21 activities. Our results reveal significant discrepancy in TLQP-21 C3aR activity between human and murine receptors, with mouse TLQP-21 being consistently more potent than the human counterpart in both systems. Considering the supraphysiological concentrations of hTLQP-21 needed to only partially activate macrophages, it is likely that the actions of TLQP-21, at least in these immune cells, may not be mediated by C3aR in humans.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Han S Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
11
|
Landsem A, Emblem Å, Lau C, Christiansen D, Gerogianni A, Karlsen BO, Mollnes TE, Nilsson PH, Brekke OL. Complement C3b contributes to Escherichia coli-induced platelet aggregation in human whole blood. Front Immunol 2022; 13:1020712. [PMID: 36591264 PMCID: PMC9797026 DOI: 10.3389/fimmu.2022.1020712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Platelets have essential functions as first responders in the immune response to pathogens. Activation and aggregation of platelets in bacterial infections can lead to life-threatening conditions such as arterial thromboembolism or sepsis-associated coagulopathy. Methods In this study, we investigated the role of complement in Escherichia coli (E. coli)-induced platelet aggregation in human whole blood, using Multiplate® aggregometry, flow cytometry, and confocal microscopy. Results and Discussion We found that compstatin, which inhibits the cleavage of complement component C3 to its components C3a and C3b, reduced the E. coli-induced platelet aggregation by 42%-76% (p = 0.0417). This C3-dependent aggregation was not C3a-mediated as neither inhibition of C3a using a blocking antibody or a C3a receptor antagonist, nor the addition of purified C3a had any effects. In contrast, a C3b-blocking antibody significantly reduced the E. coli-induced platelet aggregation by 67% (p = 0.0133). We could not detect opsonized C3b on platelets, indicating that the effect of C3 was not dependent on C3b-fragment deposition on platelets. Indeed, inhibition of glycoprotein IIb/IIIa (GPIIb/IIIa) and complement receptor 1 (CR1) showed that these receptors were involved in platelet aggregation. Furthermore, aggregation was more pronounced in hirudin whole blood than in hirudin platelet-rich plasma, indicating that E. coli-induced platelet aggregation involved other blood cells. In conclusion, the E. coli-induced platelet aggregation in human whole blood is partly C3b-dependent, and GPIIb/IIIa and CR1 are also involved in this process.
Collapse
Affiliation(s)
- Anne Landsem
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,*Correspondence: Anne Landsem,
| | - Åse Emblem
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Corinna Lau
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Dorte Christiansen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Alexandra Gerogianni
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden,Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Bård Ove Karlsen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Tom Eirik Mollnes
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway,Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Per H. Nilsson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden,Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden,Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ole-Lars Brekke
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
12
|
Das A, Gupta PK, Rana S. C5aR2 receptor: The genomic twin of the flamboyant C5aR1. J Cell Biochem 2022; 123:1841-1856. [PMID: 35977039 DOI: 10.1002/jcb.30320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
The complement fragment C5a is one of the most potent proinflammatory glycoproteins liberated by the activation of the biochemical cascade of the complement system. C5a is established to interact with a set of genomically related transmembrane receptors, like C5aR1 (CD88, C5aR) and C5aR2 (GPR77, C5L2) with comparable affinity. The C5aR1 is a classical G-protein-coupled receptor (GPCR), whereas C5aR2 is a nonclassical GPCR that tailors immune cell activity potentially through β-arrestins rather than G-proteins. Currently, the exact function of the C5aR2 is actively debated in the context of C5aR1, even though both C5aR1 and C5aR2 are coexpressed on myriads of tissues. The functional relevance of C5aR2 appears to be context-dependent compared to the C5aR1, which has received enormous attention for its role in both acute and chronic inflammatory diseases. In addition, the structure of C5aR2 and its interaction specificity toward C5a is not structurally elucidated in the literature so far. The current study has attempted to close the gap by generating highly refined model structures of C5aR2, respectively in free (inactive), complexed to C-terminal peptide of C5a (meta-active) and the C5a (active), embedded to a model palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer. The computational modeling and the 1.5-μs molecular dynamics data presented in the current study are expected to further enrich the understanding of C5a-C5aR2 interaction compared to C5a-C5aR1, which will surely help in elaborating the currently debated biological function of C5aR2 better in the foreseeable future.
Collapse
Affiliation(s)
- Aurosikha Das
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, Bhubaneswar, India
| | - Pulkit K Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, Bhubaneswar, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, Bhubaneswar, India
| |
Collapse
|
13
|
Carvalho K, Schartz ND, Balderrama-Gutierrez G, Liang HY, Chu SH, Selvan P, Gomez-Arboledas A, Petrisko TJ, Fonseca MI, Mortazavi A, Tenner AJ. Modulation of C5a-C5aR1 signaling alters the dynamics of AD progression. J Neuroinflammation 2022; 19:178. [PMID: 35820938 PMCID: PMC9277945 DOI: 10.1186/s12974-022-02539-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The complement system is part of the innate immune system that clears pathogens and cellular debris. In the healthy brain, complement influences neurodevelopment and neurogenesis, synaptic pruning, clearance of neuronal blebs, recruitment of phagocytes, and protects from pathogens. However, excessive downstream complement activation that leads to generation of C5a, and C5a engagement with its receptor C5aR1, instigates a feed-forward loop of inflammation, injury, and neuronal death, making C5aR1 a potential therapeutic target for neuroinflammatory disorders. C5aR1 ablation in the Arctic (Arc) model of Alzheimer's disease protects against cognitive decline and neuronal injury without altering amyloid plaque accumulation. METHODS To elucidate the effects of C5a-C5aR1 signaling on AD pathology, we crossed Arc mice with a C5a-overexpressing mouse (ArcC5a+) and tested hippocampal memory. RNA-seq was performed on hippocampus and cortex from Arc, ArcC5aR1KO, and ArcC5a+ mice at 2.7-10 months and age-matched controls to assess mechanisms involved in each system. Immunohistochemistry was used to probe for protein markers of microglia and astrocytes activation states. RESULTS ArcC5a+ mice had accelerated cognitive decline compared to Arc. Deletion of C5ar1 delayed or prevented the expression of some, but not all, AD-associated genes in the hippocampus and a subset of pan-reactive and A1 reactive astrocyte genes, indicating a separation between genes induced by amyloid plaques alone and those influenced by C5a-C5aR1 signaling. Biological processes associated with AD and AD mouse models, including inflammatory signaling, microglial cell activation, and astrocyte migration, were delayed in the ArcC5aR1KO hippocampus. Interestingly, C5a overexpression also delayed the increase of some AD-, complement-, and astrocyte-associated genes, suggesting the possible involvement of neuroprotective C5aR2. However, these pathways were enhanced in older ArcC5a+ mice compared to Arc. Immunohistochemistry confirmed that C5a-C5aR1 modulation in Arc mice delayed the increase in CD11c-positive microglia, while not affecting other pan-reactive microglial or astrocyte markers. CONCLUSION C5a-C5aR1 signaling in AD largely exerts its effects by enhancing microglial activation pathways that accelerate disease progression. While C5a may have neuroprotective effects via C5aR2, engagement of C5a with C5aR1 is detrimental in AD models. These data support specific pharmacological inhibition of C5aR1 as a potential therapeutic strategy to treat AD.
Collapse
Affiliation(s)
- Klebea Carvalho
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697 USA
| | - Nicole D. Schartz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | | | - Heidi Y. Liang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697 USA
| | - Shu-Hui Chu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Purnika Selvan
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Angela Gomez-Arboledas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Tiffany J. Petrisko
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Maria I. Fonseca
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Ali Mortazavi
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697 USA
| | - Andrea J. Tenner
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA USA
| |
Collapse
|
14
|
Seiler DL, Kleingarn M, Kähler KH, Gruner C, Schanzenbacher J, Ehlers-Jeske E, Kenno S, Sadik CD, Schmidt E, Bieber K, Köhl J, Ludwig RJ, Karsten CM. C5aR2 deficiency ameliorates inflammation in murine epidermolysis bullosa acquisita by regulating FcγRIIb expression on neutrophils. J Invest Dermatol 2022; 142:2715-2723.e2. [PMID: 35007559 DOI: 10.1016/j.jid.2021.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
Epidermolysis bullosa acquisita (EBA) is a rare blistering skin disease induced by autoantibodies directed against type VII collagen (COL7). Transfer of antibodies against murine COL7 (mCOL7) into mice mimics the effector phase of EBA and results in a subepidermal blistering phenotype. Activation of the complement system, and especially the C5a/C5aR1 axis driving neutrophil activation, are critical for EBA pathogenesis. However, the role of the alternative C5a receptor, C5aR2, which is commonly thought to be more immunosuppressive, in the pathogenesis of EBA is still elusive. Therefore, we sought to delineate the functional relevance of C5aR2 during the effector phase of EBA. Unexpectedly, C5aR2-deficient (C5ar2-/-) mice showed an attenuated disease phenotype, suggesting a pathogenic contribution of C5aR2 to disease progression. In vitro, C5ar2-/- neutrophils exhibited significantly reduced (Ca2+)i flux, reactive oxygen species release, and migratory capacity when activated with immune complexes or exposed to C5a. These functions were completely absent when C5ar1-/- neutrophils were activated. Moreover, C5aR2 deficiency more than tripled FcγRIIb expression on neutrophils thus lowering the A/I ratio of FcγRs and impeding the sustainment of inflammation. Collectively, we demonstrate here a pro-inflammatory contribution of C5aR2 to the pathogenesis of antibody-induced tissue damage in experimental EBA.
Collapse
Affiliation(s)
- Daniel L Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany; Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja H Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Caroline Gruner
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Jovan Schanzenbacher
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Elvira Ehlers-Jeske
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Samyr Kenno
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Christian D Sadik
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ralf J Ludwig
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
15
|
Li XX, Gorman DM, Lee JD, Clark RJ, Woodruff TM. Unexpected Off-Target Activities for Recombinant C5a in Human Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:133-142. [PMID: 34853076 DOI: 10.4049/jimmunol.2100444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The anaphylatoxin C5a is core effector of complement activation. C5a exerts potent proinflammatory and immunomodulatory actions through interacting with its C5a receptors, C5aR1 and C5aR2, modulating multiple signaling and functional activities of immune cells. Native C5a contains a large N-linked glycosylation site at Asn64, which accounts for up to 25% of its m.w. To date, the vast majority of published studies examining C5a are performed using Escherichia coli-generated recombinant C5a, which is readily available from numerous commercial suppliers, but lacks this glycosylation moiety. However, a plasma-purified "native" form of C5a is also commercially available. The different size and glycosylation of these two C5a versions could have functional implications. Therefore, the current study aimed to compare recombinant human C5a to purified plasma-derived human C5a in driving the signaling and functional activities of human primary macrophages. We found that both versions of C5a displayed similar potencies at triggering C5aR1- and C5aR2-mediated cell signaling, but elicited distinct functional responses in primary human monocyte-derived macrophages. Multiple commercial sources of recombinant C5a, but not the plasma-purified or a synthetic C5a version, induced human monocyte-derived macrophages to produce IL-6 and IL-10 in a C5a receptor-independent manner, which was driven through Syk and NF-κB signaling and apparently not due to endotoxin contamination. Our results, therefore, offer caution against the sole use of recombinant human C5a, particularly in functional/cytokine assays conducted in human primary immune cells, and suggest studies using recombinant human C5a should be paired with C5aR1 inhibitors or purified/synthetic human C5a to confirm relevant findings.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Declan M Gorman
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
16
|
Niyonzima N, Rahman J, Kunz N, West EE, Freiwald T, Desai JV, Merle NS, Gidon A, Sporsheim B, Lionakis MS, Evensen K, Lindberg B, Skagen K, Skjelland M, Singh P, Haug M, Ruseva MM, Kolev M, Bibby J, Marshall O, O’Brien B, Deeks N, Afzali B, Clark RJ, Woodruff TM, Pryor M, Yang ZH, Remaley AT, Mollnes TE, Hewitt SM, Yan B, Kazemian M, Kiss MG, Binder CJ, Halvorsen B, Espevik T, Kemper C. Mitochondrial C5aR1 activity in macrophages controls IL-1β production underlying sterile inflammation. Sci Immunol 2021; 6:eabf2489. [PMID: 34932384 PMCID: PMC8902698 DOI: 10.1126/sciimmunol.abf2489] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While serum-circulating complement destroys invading pathogens, intracellularly active complement, termed the “complosome,” functions as a vital orchestrator of cell-metabolic events underlying T cell effector responses. Whether intracellular complement is also nonredundant for the activity of myeloid immune cells is currently unknown. Here, we show that monocytes and macrophages constitutively express complement component (C) 5 and generate autocrine C5a via formation of an intracellular C5 convertase. Cholesterol crystal sensing by macrophages induced C5aR1 signaling on mitochondrial membranes, which shifted ATP production via reverse electron chain flux toward reactive oxygen species generation and anaerobic glycolysis to favor IL-1β production, both at the transcriptional level and processing of pro–IL-1β. Consequently, atherosclerosis-prone mice lacking macrophage-specific C5ar1 had ameliorated cardiovascular disease on a high-cholesterol diet. Conversely, inflammatory gene signatures and IL-1β produced by cells in unstable atherosclerotic plaques of patients were normalized by a specific cell-permeable C5aR1 antagonist. Deficiency of the macrophage cell-autonomous C5 system also protected mice from crystal nephropathy mediated by folic acid. These data demonstrate the unexpected intracellular formation of a C5 convertase and identify C5aR1 as a direct modulator of mitochondrial function and inflammatory output from myeloid cells. Together, these findings suggest that the complosome is a contributor to the biologic processes underlying sterile inflammation and indicate that targeting this system could be beneficial in macrophage-dependent diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Nathalie Niyonzima
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jubayer Rahman
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Natalia Kunz
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Erin E. West
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - Jigar V. Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas S. Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Alexandre Gidon
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bjørnar Sporsheim
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Central Administration, St. Olavs Hospital, University Hospital in Trondheim, Trondheim, Norway
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristin Evensen
- Department of Neurology, Vestre Viken, Drammen Hospital, Drammen, Norway
| | - Beate Lindberg
- Department of Cardiothoracic Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Karolina Skagen
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Mona Skjelland
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Parul Singh
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Markus Haug
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Marieta M. Ruseva
- BG2, Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Martin Kolev
- BG2, Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Jack Bibby
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Olivia Marshall
- Discovery DMPK Bioanalysis Unit, GlaxoSmithKline, Stevenage, UK
| | - Brett O’Brien
- Discovery DMPK Bioanalysis Unit, GlaxoSmithKline, Stevenage, UK
| | - Nigel Deeks
- Discovery DMPK Bioanalysis Unit, GlaxoSmithKline, Stevenage, UK
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - Richard J. Clark
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Milton Pryor
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Tom E. Mollnes
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- K.G. Jebsen TREC, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Stephen M. Hewitt
- Laboratory of Pathology, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Bingyu Yan
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Máté G. Kiss
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bente Halvorsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Terje Espevik
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
17
|
Gorman D, Li XX, Payne CD, Cui CS, Lee JD, Rosengren KJ, Woodruff TM, Clark RJ. Development of Synthetic Human and Mouse C5a: Application to Binding and Functional Assays In Vitro and In Vivo. ACS Pharmacol Transl Sci 2021; 4:1808-1817. [PMID: 34927012 PMCID: PMC8669711 DOI: 10.1021/acsptsci.1c00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 11/28/2022]
Abstract
The complement activation peptide C5a is a key mediator of inflammation that is associated with numerous immune disorders. C5a binds and activates two seven-transmembrane receptors, C5aR1 and C5aR2. Experimentally, C5a is utilized to investigate C5a receptor biology and to screen for potential C5aR1/C5aR2 therapeutics. Currently, laboratory sources of C5a stem from either isolation of endogenous C5a from human serum or most predominantly via recombinant expression. An alternative approach to C5a production is chemical synthesis, which has several advantages, including the ability to introduce non-natural amino acids and site-specific modifications whilst also maintaining a lower probability of C5a being contaminated with microbial molecules or other endogenous proteins. Here, we describe the efficient synthesis of both human (hC5a) and mouse C5a (mC5a) without the need for ligation chemistry. We validate the synthetic peptides by comparing pERK1/2 signaling in CHO-hC5aR1 cells and primary human macrophages (for hC5a) and in RAW264.7 cells (for mC5a). C5aR2 activation was confirmed by measuring β-arrestin recruitment in C5aR2-transfected HEK293 cells. We also demonstrate the functionalization of synthetic C5a through the introduction of a lanthanide chelating cage to facilitate a screen for the binding of ligands to C5aR1. Finally, we verify that the synthetic ligands are functionally similar to recombinant or native C5a by assessing hC5a-induced neutrophil chemotaxis in vitro and mC5a-mediated neutrophil mobilization in vivo. We propose that the synthetic hC5a and mC5a described herein are valuable alternatives to recombinant or purified C5a for in vitro and in vivo applications and add to the growing complement reagent toolbox.
Collapse
Affiliation(s)
- Declan
M. Gorman
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Xaria X. Li
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Colton D. Payne
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Cedric S. Cui
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - John D. Lee
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - K. Johan Rosengren
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Trent M. Woodruff
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
- Queensland
Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard J. Clark
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
18
|
Pandey S, Kumari P, Baidya M, Kise R, Cao Y, Dwivedi-Agnihotri H, Banerjee R, Li XX, Cui CS, Lee JD, Kawakami K, Maharana J, Ranjan A, Chaturvedi M, Jhingan GD, Laporte SA, Woodruff TM, Inoue A, Shukla AK. Intrinsic bias at non-canonical, β-arrestin-coupled seven transmembrane receptors. Mol Cell 2021; 81:4605-4621.e11. [PMID: 34582793 PMCID: PMC7612807 DOI: 10.1016/j.molcel.2021.09.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/13/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022]
Abstract
G-protein-coupled receptors (GPCRs), also known as seven transmembrane receptors (7TMRs), typically interact with two distinct signal-transducers, i.e., G proteins and β-arrestins (βarrs). Interestingly, there are some non-canonical 7TMRs that lack G protein coupling but interact with barrs, although an understanding of their transducer coupling preference, downstream signaling, and structural mechanism remains elusive. Here, we characterize two such non-canonical 7TMRs, namely, the decoy D6 receptor (D6R) and the complement C5a receptor subtype 2 (C5aR2), in parallel with their canonical GPCR counterparts. We discover that D6R and C5aR2 efficiently couple to βarrs, exhibit distinct engagement of GPCR kinases (GRKs), and activate non-canonical downstream signaling pathways. We also observe that βarrs adopt distinct conformations for D6R and C5aR2, compared to their canonical GPCR counterparts, in response to common natural agonists. Our study establishes D6R and C5aR2 as βarr-coupled 7TMRs and provides key insights into their regulation and signaling with direct implication for biased agonism.
Collapse
Affiliation(s)
- Shubhi Pandey
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Punita Kumari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Mithu Baidya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Yubo Cao
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Hemlata Dwivedi-Agnihotri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Xaria X Li
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia
| | - Cedric S Cui
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ashutosh Ranjan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Madhu Chaturvedi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | | | - Stéphane A Laporte
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada; Department of Medicine, McGill University Health Center, McGill University, Montréal, QC H4A 3J1, Canada
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
19
|
Anaphylatoxin receptor promiscuity for commonly used complement C5a peptide agonists. Int Immunopharmacol 2021; 100:108074. [PMID: 34454293 DOI: 10.1016/j.intimp.2021.108074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Abstract
The complement system is an essential component of innate immunity. Its activation generates the effector cleavage proteins, anaphylatoxins C3a and C5a, that exert activity by interacting with three structurally related seven-transmembrane receptors. C3a activates C3aR, whilst C5a interacts with both C5aR1 and C5aR2 with equal potency. Of the three receptors, C5aR1 in particular is considered the most functionally potent inflammatory driver and has been the major target for pharmacological development. Multiple peptidic C5a agonists have been developed to target C5aR1, with the full agonists EP54 (YSFKPMPLaR) and EP67 (YSFKDMP(MeL)aR), and the partial agonist C028 (C5apep, NMe-FKPdChaChadR) being the most commonly utilised in research. Recent studies have indicated that small complement peptide ligands may lack selectivity amongst the three anaphylatoxin receptors, however this has not been uniformly confirmed for these commonly used C5a agonists. In the present study, we therefore characterised the pharmacological activity of EP54, EP67, and C5apep at human C5aR1, C5aR2 and C3aR, by conducting signalling assays in transfected cell lines, and in human primary macrophages. Our results revealed that none of the compounds tested were selective for human C5aR1. Both EP54 and EP67 were potent, full C3aR agonists, and EP54 and C5apep potently and partially activated human C5aR2. Therefore, we caution against the usage of these ligands, particularly EP54 and EP67, as C5a surrogates in C5a/ C5aR research.
Collapse
|
20
|
Nording H, Baron L, Haberthür D, Emschermann F, Mezger M, Sauter M, Sauter R, Patzelt J, Knoepp K, Nording A, Meusel M, Meyer-Saraei R, Hlushchuk R, Sedding D, Borst O, Eitel I, Karsten CM, Feil R, Pichler B, Erdmann J, Verschoor A, Chavakis E, Chavakis T, von Hundelshausen P, Köhl J, Gawaz M, Langer HF. The C5a/C5a receptor 1 axis controls tissue neovascularization through CXCL4 release from platelets. Nat Commun 2021; 12:3352. [PMID: 34099640 PMCID: PMC8185003 DOI: 10.1038/s41467-021-23499-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Platelets contribute to the regulation of tissue neovascularization, although the specific factors underlying this function are unknown. Here, we identified the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) on platelets as a negative regulatory mechanism of vessel formation. We showed that platelets expressing C5aR1 exert an inhibitory effect on endothelial cell functions such as migration and 2D and 3D tube formation. Growth factor- and hypoxia-driven vascularization was markedly increased in C5ar1-/- mice. Platelet-specific deletion of C5aR1 resulted in a proangiogenic phenotype with increased collateralization, capillarization and improved pericyte coverage. Mechanistically, we found that C5a induced preferential release of CXC chemokine ligand 4 (CXCL4, PF4) from platelets as an important antiangiogenic paracrine effector molecule. Interfering with the C5aR1-CXCL4 axis reversed the antiangiogenic effect of platelets both in vitro and in vivo.In conclusion, we identified a mechanism for the control of tissue neovascularization through C5a/C5aR1 axis activation in platelets and subsequent induction of the antiangiogenic factor CXCL4.
Collapse
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - David Haberthür
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Frederic Emschermann
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Matthias Mezger
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Johannes Patzelt
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Kai Knoepp
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Anne Nording
- grid.10392.390000 0001 2190 1447Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | - Moritz Meusel
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Roza Meyer-Saraei
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Ruslan Hlushchuk
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Daniel Sedding
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Oliver Borst
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Ingo Eitel
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Robert Feil
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Bernd Pichler
- grid.10392.390000 0001 2190 1447Institute for Preclinical Imaging, Eberhard Karls University, Tübingen, Germany
| | - Jeanette Erdmann
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Admar Verschoor
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Emmanouil Chavakis
- grid.411088.40000 0004 0578 8220Department for Internal Medicine III/Cardiology, University Hospital of the Johann-Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Triantafyllos Chavakis
- grid.4488.00000 0001 2111 7257Department of Clinical Pathobiochemistry, Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Philipp von Hundelshausen
- grid.5252.00000 0004 1936 973XInstitute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich, Germany
| | - Jörg Köhl
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany ,grid.239573.90000 0000 9025 8099Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Meinrad Gawaz
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
21
|
Silva de França F, Villas-Boas IM, Cogliati B, Woodruff TM, Reis EDS, Lambris JD, Tambourgi DV. C5a-C5aR1 Axis Activation Drives Envenomation Immunopathology by the Snake Naja annulifera. Front Immunol 2021; 12:652242. [PMID: 33936074 PMCID: PMC8082402 DOI: 10.3389/fimmu.2021.652242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/03/2022] Open
Abstract
Systemic complement activation drives a plethora of pathological conditions, but its role in snake envenoming remains obscure. Here, we explored complement's contribution to the physiopathogenesis of Naja annulifera envenomation. We found that N. annulifera venom promoted the generation of C3a, C4a, C5a, and the soluble Terminal Complement Complex (sTCC) mediated by the action of snake venom metalloproteinases. N. annulifera venom also induced the release of lipid mediators and chemokines in a human whole-blood model. This release was complement-mediated, since C3/C3b and C5a Receptor 1 (C5aR1) inhibition mitigated the effects. In an experimental BALB/c mouse model of envenomation, N. annulifera venom promoted lipid mediator and chemokine production, neutrophil influx, and swelling at the injection site in a C5a-C5aR1 axis-dependent manner. N. annulifera venom induced systemic complementopathy and increased interleukin and chemokine production, leukocytosis, and acute lung injury (ALI). Inhibition of C5aR1 with the cyclic peptide antagonist PMX205 rescued mice from these systemic reactions and abrogated ALI development. These data reveal hitherto unrecognized roles for complement in envenomation physiopathogenesis, making complement an interesting therapeutic target in envenomation by N. annulifera and possibly by other snake venoms.
Collapse
Affiliation(s)
| | | | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Trent M. Woodruff
- Neuroinflammation Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Edimara da Silva Reis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | |
Collapse
|
22
|
Emerging Role of C5 Complement Pathway in Peripheral Neuropathies: Current Treatments and Future Perspectives. Biomedicines 2021; 9:biomedicines9040399. [PMID: 33917266 PMCID: PMC8067968 DOI: 10.3390/biomedicines9040399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
The complement system is a key component of innate immunity since it plays a critical role in inflammation and defense against common pathogens. However, an inappropriate activation of the complement system is involved in numerous disorders, including peripheral neuropathies. Current strategies for neuropathy-related pain fail to achieve adequate pain relief, and although several therapies are used to alleviate symptoms, approved disease-modifying treatments are unavailable. This urgent medical need is driving the development of therapeutic agents for this condition, and special emphasis is given to complement-targeting approaches. Recent evidence has underscored the importance of complement component C5a and its receptor C5aR1 in inflammatory and neuropathic pain, indicating that C5a/C5aR1 axis activation triggers a cascade of events involved in pathophysiology of peripheral neuropathy and painful neuro-inflammatory states. However, the underlying pathophysiological mechanisms of this signaling in peripheral neuropathy are not fully known. Here, we provide an overview of complement pathways and major components associated with dysregulated complement activation in peripheral neuropathy, and of drugs under development targeting the C5 system. C5/C5aR1 axis modulators could represent a new strategy to treat complement-related peripheral neuropathies. Specifically, we describe novel C5aR allosteric modulators, which may potentially become new tools in the therapeutic armory against neuropathic pain.
Collapse
|
23
|
Li XX, Kumar V, Clark RJ, Lee JD, Woodruff TM. The "C3aR Antagonist" SB290157 is a Partial C5aR2 Agonist. Front Pharmacol 2021; 11:591398. [PMID: 33551801 PMCID: PMC7859635 DOI: 10.3389/fphar.2020.591398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022] Open
Abstract
Innate immune complement activation generates the C3 and C5 protein cleavage products C3a and C5a, defined classically as anaphylatoxins. C3a activates C3aR, while C5a activates two receptors (C5aR1 and C5aR2) to exert their immunomodulatory activities. The non-peptide compound, SB290157, was originally reported in 2001 as the first C3aR antagonist. In 2005, the first report on the non-selective nature of SB290157 was published, where the compound exerted clear agonistic, not antagonistic, activity in variety of cells. Other studies also documented the non-selective activities of this drug in vivo. These findings severely hamper data interpretation regarding C3aR when using this compound. Unfortunately, given the dearth of C3aR inhibitors, SB290157 still remains widely used to explore C3aR biology (>70 publications to date). Given these issues, in the present study we aimed to further explore SB290157's pharmacological selectivity by screening the drug against three human anaphylatoxin receptors, C3aR, C5aR1 and C5aR2, using cell models. We identified that SB290157 exerts partial agonist activity at C5aR2 by mediating β-arrestin recruitment at higher compound doses. This translated to a functional outcome in both human and mouse primary macrophages, where SB290157 significantly dampened C5a-induced ERK signaling. We also confirmed that SB290157 acts as a potent agonist at human C3aR in transfected cells, but as an antagonist in primary human macrophages. Our results therefore provide even more caution against using SB290157 as a research tool to explore C3aR function. Given the reported immunomodulatory and anti-inflammatory activities of C5aR2 agonism, any function observed with SB290157 could be due to these off-target activities.
Collapse
Affiliation(s)
| | | | | | | | - Trent M. Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Laumonnier Y, Karsten CM, Köhl G, Köhl J. Characterization of Anaphylatoxin Receptor Expression and C3a/C5a Functions in Anaphylatoxin Receptor Reporter Mice. ACTA ACUST UNITED AC 2020; 130:e100. [PMID: 32710701 DOI: 10.1002/cpim.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The anaphylatoxins (AT) C3a and C5a are effector molecules of C3 and C5 exerting multiple biologic functions through binding and activation of their cognate G protein-coupled receptors. C3a interacts with the C3a receptor (C3aR), whereas C5a and its primary degradation product C5a-desArg engage C5aR1 and C5aR2. In the past, analysis of AT expression has been hampered by cross reaction of antibodies designed to recognize the different AT receptors. Furthermore, assessment of effects mediated by cell-specific activation has been difficult. Here, floxed AT receptor reporter mice are described as tools to monitor AT receptor expression in cells and tissues and to study the functions of C3a and C5a by cell-specific deletion of their cognate AT receptors. © 2020 The Authors. Basic Protocol 1: Genotyping of floxed GFP-C5aR1 knockin mice Support Protocol 1: Genotyping of LysMcre-C5ar1-/- mice Basic Protocol 2: Genotyping of floxed tdTomato-C3aR and -tdTomato-C5aR2 knockin mice Support Protocol 2: Preparation of genomic DNA Basic Protocol 3: Determination of C5aR1, C5aR2, and C3aR expression using floxed AT receptor reporter mice Support Protocol 3: Determination of C3aR expression using a C3aR-specific antibody Support Protocol 4: Determination of C5aR1, C5aR2, and C3aR mRNA expression in floxed GFP-C5aR1, floxed tdTomato-C5aR2 or -tdTomato C3aR positive cells Basic Protocol 4: Analysis of C5aR1-driven ERK1/2 phosphorylation in GFP-C5aR1+ cells Basic Protocol 5: Assessment of C3aR functions in cells obtained from floxed tdTomato-C3aR knockin mice- Determination of C3aR internalization Alternate Protocol: C3a-induced increase in intracellular Ca2+ Basic Protocol 6: C5aR2-driven IFN-γ production from NK cells Support Protocol 5: Isolation of splenic NK cells by FACS.
Collapse
Affiliation(s)
- Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Gabriele Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
25
|
Li XX, Lee JD, Massey NL, Guan C, Robertson AAB, Clark RJ, Woodruff TM. Pharmacological characterisation of small molecule C5aR1 inhibitors in human cells reveals biased activities for signalling and function. Biochem Pharmacol 2020; 180:114156. [PMID: 32682759 DOI: 10.1016/j.bcp.2020.114156] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
The complement fragment C5a is a core effector of complement activation. C5a, acting through its major receptor C5aR1, exerts powerful pro-inflammatory and immunomodulatory functions. Dysregulation of the C5a-C5aR1 axis has been implicated in numerous immune disorders, and the therapeutic inhibition of this axis is therefore imperative for the treatment of these diseases. A myriad of small-molecule C5aR1 inhibitors have been developed and independently characterised over the past two decades, however the pharmacological properties of these compounds has been difficult to directly compare due to the wide discrepancies in the model, read-out, ligand dose and instrumentation implemented across individual studies. Here, we performed a systematic characterisation of the most commonly reported and clinically advanced small-molecule C5aR1 inhibitors (peptidic: PMX53, PMX205 and JPE1375; non-peptide: W545011, NDT9513727, DF2593A and CCX168). Through signalling assays measuring C5aR1-mediated cAMP and ERK1/2 signalling, and β-arrestin 2 recruitment, this study highlighted the signalling-pathway dependence of the rank order of potencies of the C5aR1 inhibitors. Functional experiments performed in primary human macrophages demonstrated the high insurmountable antagonistic potencies for the peptidic inhibitors as compared to the non-peptide compounds. Finally, wash-out studies provided novel insights into the duration of inhibition of the C5aR1 inhibitors, and confirmed the long-lasting antagonistic properties of PMX53 and CCX168. Overall, this study revealed the potent and prolonged antagonistic activities of selected peptidic C5aR1 inhibitors and the unique pharmacological profile of CCX168, which thus represent ideal candidates to fulfil diverse C5aR1 research and clinical therapeutic needs.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, Australia
| | - John D Lee
- School of Biomedical Sciences, Australia
| | | | - Carolyn Guan
- The University of Queensland, St Lucia 4072, Australia; Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | | | | | - Trent M Woodruff
- School of Biomedical Sciences, Australia; Queensland Brain Institute, Australia.
| |
Collapse
|
26
|
Li XX, Clark RJ, Woodruff TM. C5aR2 Activation Broadly Modulates the Signaling and Function of Primary Human Macrophages. THE JOURNAL OF IMMUNOLOGY 2020; 205:1102-1112. [PMID: 32611725 DOI: 10.4049/jimmunol.2000407] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
The complement activation fragment C5a is a potent proinflammatory mediator that is increasingly recognized as an immune modulator. C5a acts through two C5a receptors, C5aR1 (C5aR, CD88) and C5aR2 (C5L2, GPR77), to powerfully modify multiple aspects of immune cell function. Although C5aR1 is generally acknowledged to be proinflammatory and immune-activating, the potential roles played by C5aR2 remain poorly defined. Despite studies demonstrating C5aR2 can modulate C5aR1 in human cells, it is not yet known whether C5aR2 functionality is limited to, or requires, C5aR1 activation or influences immune cells more broadly. The present study, therefore, aimed to characterize the roles of C5aR2 on the signaling and function of primary human monocyte-derived macrophages, using a C5aR2 agonist (Ac-RHYPYWR-OH; P32) to selectively activate the receptor. We found that although C5aR2 activation with P32 by itself was devoid of any detectable MAPK signaling activities, C5aR2 agonism significantly dampened C5aR1-, C3aR-, and chemokine-like receptor 1 (CMKLR1)-mediated ERK signaling and altered intracellular calcium mobilization mediated by these receptors. Functionally, selective C5aR2 activation also downregulated cytokine production triggered by various TLRs (TLR2, TLR3, TLR4, and TLR7), C-type lectin receptors (Dectin-1, Dectin-2, and Mincle), and the cytosolic DNA sensor stimulator of IFN genes (STING). Surprisingly, activity at the C-type lectin receptors was particularly powerful, with C5aR2 activation reducing Mincle-mediated IL-6 and TNF-α generation by 80-90%. In sum, this study demonstrates that C5aR2 possesses pleiotropic functions in primary human macrophages, highlighting the role of C5aR2 as a powerful regulator of innate immune function.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
27
|
Pandey S, Maharana J, Li XX, Woodruff TM, Shukla AK. Emerging Insights into the Structure and Function of Complement C5a Receptors. Trends Biochem Sci 2020; 45:693-705. [PMID: 32402749 DOI: 10.1016/j.tibs.2020.04.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Complement factor C5a is an integral constituent of the complement cascade critically involved in the innate immune response, and it exerts its functions via two distinct receptors, C5aR1 and C5aR2. While C5aR1 is a prototypical G-protein-coupled receptor (GPCR), C5aR2 lacks functional coupling to heterotrimeric G proteins, although both receptors efficiently recruit β arrestins (βarrs). Here, we discuss the recent studies providing direct structural details of ligand-receptor interactions, and a framework of functional bias in this system, including the differences in terms of structural motifs and transducer coupling. We also discuss the functional analogy of C5aR2 with the atypical chemokine receptors (ACKRs), and highlight the future directions to elucidate the mechanistic basis of the functional divergence of these receptors activated by a common natural agonist.
Collapse
Affiliation(s)
- Shubhi Pandey
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Xaria X Li
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia
| | - Trent M Woodruff
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
28
|
Li XX, Lee JD, Kemper C, Woodruff TM. The Complement Receptor C5aR2: A Powerful Modulator of Innate and Adaptive Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 202:3339-3348. [PMID: 31160390 DOI: 10.4049/jimmunol.1900371] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 01/01/2023]
Abstract
Complement activation generates the core effector protein C5a, a potent immune molecule that is linked to multiple inflammatory diseases. Two C5a receptors, C5aR1 (C5aR, CD88) and C5aR2 (C5L2, GPR77), mediate the biological activities of C5a. Although C5aR1 has broadly acknowledged proinflammatory roles, C5aR2 remains at the center of controversy, with existing findings supporting both immune-activating and immune-dampening functions. Recent progress has been made toward resolving these issues. Instead of being a pure recycler and sequester of C5a, C5aR2 is capable of mediating its own set of signaling events and through these events exerting significant immunomodulatory effects not only toward C5aR1 but also other pattern recognition receptors and innate immune systems, such as NLRP3 inflammasomes. This review highlights the existing knowns and unknowns concerning C5aR2 and provides a timely update on recent breakthroughs which are expected to have a substantial impact on future fundamental and translational C5aR2 research.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; and
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; and
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; and
| |
Collapse
|
29
|
Holt M, Seim BE, Øgaard J, Olsen MB, Woldbæk PR, Kvitting JP, Aukrust P, Yndestad A, Mollnes TE, Nilsson PH, Louwe MC, Ranheim T. Selective and marked decrease of complement receptor C5aR2 in human thoracic aortic aneurysms: a dysregulation with potential inflammatory effects. Open Heart 2019; 6:e001098. [PMID: 31798913 PMCID: PMC6861114 DOI: 10.1136/openhrt-2019-001098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/03/2019] [Indexed: 12/23/2022] Open
Abstract
Objective The aetiology of thoracic aortic aneurysm (TAA) is largely unknown, but inflammation is
likely to play a central role in the pathogenesis. In this present study, we aim to
investigate the complement receptors in TAA. Methods Aortic tissue and blood from 31 patients with non-syndromic TAA undergoing thoracic
aortic repair surgery were collected. Aortic tissue and blood from 36 patients with
atherosclerosis undergoing coronary artery bypass surgery or aortic valve replacement
were collected and served as control material. The expression of the complement
anaphylatoxin receptors C3aR1, C5aR1 and C5aR2 in aortic tissue were examined by
quantitative RT-PCR and C5aR2 protein by immunohistochemistry. Colocalisation of C5aR2
to different cell types was analysed by immunofluorescence. Complement activation
products C3bc and sC5b-9 were measured in plasma. Results Compared with controls, TAA patients had substantial (73%) downregulated gene
expression of C5aR2 as seen both at the mRNA (p=0.005) level and protein (p=0.03) level.
In contrast, there were no differences in the expression of C3aR1 and C5aR1 between the
two groups. Immunofluorescence examination showed that C5aR2 was colocalised to
macrophages and T cells in the aortic media. There were no differences in the degree of
systemic complement activation between the two groups. Conclusion Our findings suggest downregulation of the C5aR2, regarded to act mainly
anti-inflammatory, in electively operated TAA as compared with non-aneurysmatic aortas
of patients with aortic stenosis and/or coronary artery disease. This may tip the
balance towards a relative increase in the inflammatory responses induced by C5aR1 and
thus enhance the inflammatory processes in TAA.
Collapse
Affiliation(s)
- Margrethe Holt
- Institute of Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Bjørn E Seim
- Institute of Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jonas Øgaard
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Maria B Olsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Per R Woldbæk
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital Ullevål, Oslo, Norway
| | - J P Kvitting
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Arne Yndestad
- Institute of Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tom Eirik Mollnes
- Institute of Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway.,Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Research Laboratory and Faculty of Health Sciences, Nordland Hospital, Bodø, Norway.,K.G. Jebsen TREC - Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Per H Nilsson
- Institute of Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway.,Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Mieke C Louwe
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Trine Ranheim
- Institute of Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
30
|
Ajona D, Zandueta C, Corrales L, Moreno H, Pajares MJ, Ortiz-Espinosa S, Martínez-Terroba E, Perurena N, de Miguel FJ, Jantus-Lewintre E, Camps C, Vicent S, Agorreta J, Montuenga LM, Pio R, Lecanda F. Blockade of the Complement C5a/C5aR1 Axis Impairs Lung Cancer Bone Metastasis by CXCL16-mediated Effects. Am J Respir Crit Care Med 2019; 197:1164-1176. [PMID: 29327939 DOI: 10.1164/rccm.201703-0660oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RATIONALE C5aR1 (CD88), a receptor for complement anaphylatoxin C5a, is a potent immune mediator. Its impact on malignant growth and dissemination of non-small cell lung cancer cells is poorly understood. OBJECTIVES To investigate the contribution of the C5a/C5aR1 axis to the malignant phenotype of non-small cell lung cancer cells, particularly in skeletal colonization, a preferential lung metastasis site. METHODS Association between C5aR1 expression and clinical outcome was assessed in silico and validated by immunohistochemistry. Functional significance was evaluated by lentiviral gene silencing and ligand l-aptamer inhibition in in vivo models of lung cancer bone metastasis. In vitro functional assays for signaling, migration, invasion, metalloprotease activity, and osteoclastogenesis were also performed. MEASUREMENTS AND MAIN RESULTS High levels of C5aR1 in human lung tumors were significantly associated with shorter recurrence-free survival, overall survival, and bone metastasis. Silencing of C5aR1 in lung cancer cells led to a substantial reduction in skeletal metastatic burden and osteolysis in in vivo models. Furthermore, metalloproteolytic, migratory, and invasive tumor cell activities were modulated in vitro by C5aR1 stimulation or gene silencing. l-Aptamer blockade or C5aR1 silencing significantly reduced the osseous metastatic activity of lung cancer cells in vivo. This effect was associated with decreased osteoclastogenic activity in vitro and was rescued by the exogenous addition of the chemokine CXCL16. CONCLUSIONS Disruption of C5aR1 signaling in lung cancer cells abrogates their tumor-associated osteoclastogenic activity, impairing osseous colonization. This study unveils the role played by the C5a/C5aR1 axis in lung cancer dissemination and supports its potential use as a novel therapeutic target.
Collapse
Affiliation(s)
- Daniel Ajona
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,4 Department of Biochemistry and Genetics, School of Sciences, and
| | - Carolina Zandueta
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain
| | - Leticia Corrales
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain
| | - Haritz Moreno
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - María J Pajares
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,5 Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Sergio Ortiz-Espinosa
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,4 Department of Biochemistry and Genetics, School of Sciences, and
| | - Elena Martínez-Terroba
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,5 Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Naiara Perurena
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain
| | - Fernando J de Miguel
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,4 Department of Biochemistry and Genetics, School of Sciences, and
| | - Eloisa Jantus-Lewintre
- 3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,6 Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain.,7 Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Carlos Camps
- 3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,6 Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain.,8 Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain; and.,9 Department of Medicine, Universitat de València, Valencia, Spain
| | - Silvestre Vicent
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,5 Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Jackeline Agorreta
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,5 Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Luis M Montuenga
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,5 Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Ruben Pio
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,4 Department of Biochemistry and Genetics, School of Sciences, and
| | - Fernando Lecanda
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,5 Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
31
|
Nabizadeh JA, Manthey HD, Panagides N, Steyn FJ, Lee JD, Li XX, Akhir FNM, Chen W, Boyle GM, Taylor SM, Woodruff TM, Rolfe BE. C5a receptors C5aR1 and C5aR2 mediate opposing pathologies in a mouse model of melanoma. FASEB J 2019; 33:11060-11071. [PMID: 31298935 DOI: 10.1096/fj.201800980rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The canonical complement component 5a (C5a) receptor (C5aR) 1 has well-described roles in tumorigenesis but the contribution of the second receptor, C5aR2, is unclear. The present study demonstrates that B16.F0 melanoma cells express mRNA for both C5aR1 and C5aR2 and signal through ERK and p38 MAPKs in response to C5a. Despite this, C5a had no impact on melanoma cell proliferation or migration in vitro. In vivo studies demonstrated that the growth of B16.F0 melanoma tumors was increased in C5aR2-/- mice but reduced in C5aR1-/- mice and wild-type mice treated with a C5aR1 antagonist. Analysis of tumor-infiltrating leukocyte populations showed no significant differences between wild-type and C5aR2-/- mice. Conversely, percentages of myeloid-derived suppressor cells, macrophages, and regulatory T lymphocytes were lower in tumors from C5aR1-/- mice, whereas total (CD3+) T lymphocytes and CD4+ subsets were higher. Analysis of cytokine and chemokine levels also showed plasma IFN-γ was higher and tumor C-C motif chemokine ligand 2 was lower in the absence of C5aR1. The results suggest that C5aR1 signaling supports melanoma growth by promoting infiltration of immunosuppressive leukocyte populations into the tumor microenvironment, whereas C5aR2 has a more restricted but beneficial role in limiting tumor growth. Overall, these data support the potential of C5aR1-inhibitory therapies for melanoma.-Nabizadeh, J. A., Manthey, H. D., Panagides, N., Steyn, F. J., Lee, J. D., Li, X. X., Akhir, F. N. M., Chen, W., Boyle, G. M., Taylor, S. M., Woodruff, T. M., Rolfe, B. E. C5a receptors C5aR1 and C5aR2 mediate opposing pathologies in a mouse model of melanoma.
Collapse
Affiliation(s)
- Jamileh A Nabizadeh
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Helga D Manthey
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Nadya Panagides
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - John D Lee
- School of Biomedical Science, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Xaria X Li
- School of Biomedical Science, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Fazrena N M Akhir
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Weiyu Chen
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Glen M Boyle
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Stephen M Taylor
- School of Biomedical Science, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Science, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Barbara E Rolfe
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
32
|
Parker SE, Hanton AM, Stefanou SN, Noakes PG, Woodruff TM, Lee JD. Revisiting the role of the innate immune complement system in ALS. Neurobiol Dis 2019; 127:223-232. [DOI: 10.1016/j.nbd.2019.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
|
33
|
Phagocytosis of live and dead Escherichia coli and Staphylococcus aureus in human whole blood is markedly reduced by combined inhibition of C5aR1 and CD14. Mol Immunol 2019; 112:131-139. [PMID: 31102985 DOI: 10.1016/j.molimm.2019.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/26/2019] [Accepted: 03/30/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Sepsis is a dysregulated host response to infection. The aim of this study was to investigate the effects of complement- and CD14 inhibition on phagocytosis of live and dead Gram-negative and Gram-positive bacteria in human whole blood. METHODS Lepirudin-anticoagulated blood was incubated with live or dead E. coli or S. aureus at 37 °C for 120 min with or without the C5aR1 antagonist PMX53 and/or anti-CD14. Granulocyte and monocyte phagocytosis were measured by flow cytometry, and five plasma cytokines by multiplex, yielding a total of 28 mediators of inflammation tested for. RESULTS 16/28 conditions were reduced by PMX53, 7/28 by anti-CD14, and 24/28 by combined PMX53 and CD14 inhibition. The effect of complement inhibition was quantitatively more pronounced, in particular for the responses to S. aureus. The effect of anti-CD14 was modest, except for a marked reduction in INF-β. The responses to live and dead S. aureus were equally inhibited, whereas the responses to live E. coli were inhibited less than those to dead E. coli. CONCLUSION C5aR1 inhibited phagocytosis-induced inflammation by live and dead E. coli and S. aureus. CD14 blockade potentiated the effect of C5aR1 blockade, thus attenuating inflammation.
Collapse
|
34
|
Pandey S, Li XX, Srivastava A, Baidya M, Kumari P, Dwivedi H, Chaturvedi M, Ghosh E, Woodruff TM, Shukla AK. Partial ligand-receptor engagement yields functional bias at the human complement receptor, C5aR1. J Biol Chem 2019; 294:9416-9429. [PMID: 31036565 DOI: 10.1074/jbc.ra119.007485] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/17/2019] [Indexed: 12/25/2022] Open
Abstract
The human complement component, C5a, binds two different seven-transmembrane receptors termed C5aR1 and C5aR2. C5aR1 is a prototypical G-protein-coupled receptor that couples to the Gαi subfamily of heterotrimeric G-proteins and β-arrestins (βarrs) following C5a stimulation. Peptide fragments derived from the C terminus of C5a can still interact with the receptor, albeit with lower affinity, and can act as agonists or antagonists. However, whether such fragments might display ligand bias at C5aR1 remains unexplored. Here, we compare C5a and a modified C-terminal fragment of C5a, C5apep, in terms of G-protein coupling, βarr recruitment, endocytosis, and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase activation at the human C5aR1. We discover that C5apep acts as a full agonist for Gαi coupling as measured by cAMP response and extracellular signal-regulated kinase 1/2 phosphorylation, but it displays partial agonism for βarr recruitment and receptor endocytosis. Interestingly, C5apep exhibits full-agonist efficacy with respect to inhibiting lipopolysaccharide-induced interleukin-6 secretion in human macrophages, but its ability to induce human neutrophil migration is substantially lower compared with C5a, although both these responses are sensitive to pertussis toxin treatment. Taken together, our data reveal that compared with C5a, C5apep exerts partial efficacy for βarr recruitment, receptor trafficking, and neutrophil migration. Our findings therefore uncover functional bias at C5aR1 and also provide a framework that can potentially be extended to chemokine receptors, which also typically interact with chemokines through a biphasic mechanism.
Collapse
Affiliation(s)
- Shubhi Pandey
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Xaria X Li
- the School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane 4072, Australia
| | - Ashish Srivastava
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Mithu Baidya
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Punita Kumari
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Hemlata Dwivedi
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Madhu Chaturvedi
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Eshan Ghosh
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Trent M Woodruff
- the School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane 4072, Australia
| | - Arun K Shukla
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| |
Collapse
|
35
|
Zaal A, van Ham SM, Ten Brinke A. Differential effects of anaphylatoxin C5a on antigen presenting cells, roles for C5aR1 and C5aR2. Immunol Lett 2019; 209:45-52. [PMID: 30959077 DOI: 10.1016/j.imlet.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022]
Abstract
The anaphylatoxin C5a is well-known for its role as chemoattractant and contributes to immune cell recruitment into inflamed tissue and local inflammation. C5a has recently been implicated in modulation of antigen presenting cell function, such as macrophages and dendritic cells, which are pivotal for T cell activation and final T cell effector function. The published data on the effect of C5a on APC function and subsequent adaptive immune responses are in part conflicting, as both pro and anti-inflammatory effects have been described. In this review the opposing effects of C5a on APC function in mice and human are summarized and discussed in relation to origin of the involved APC subset, being either of the monocyte-derived lineage or dendritic cell lineage. In addition, the current knowledge on the expression of C5aR1 and C5aR2 on the different APC subsets is summarized. Based on the combined data, we propose that the differential effects of C5a on APC function may be attributed to absence or presence of co-expression of C5aR2 and C5aR1 on the specific APC.
Collapse
Affiliation(s)
- Anouk Zaal
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, the Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
36
|
Chun N, Horwitz J, Heeger PS. Role of Complement Activation in Allograft Inflammation. CURRENT TRANSPLANTATION REPORTS 2019; 6:52-59. [PMID: 31673484 PMCID: PMC6822566 DOI: 10.1007/s40472-019-0224-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Novel paradigms have broadened our understanding of mechanisms through which complement mediates allograft inflammation/injury. Herein we review advances in the field and highlight therapeutic implications. RECENT FINDINGS Pre-clinical and translational human trials have elucidated complement-dependent mechanisms of post-transplant ischemia-reperfusion (I/R) injury. Immune cell-derived, and intracellular, complement activation are newly linked to proinflammatory T cell immunity relevant to allograft rejection. Complement-induced immune regulation, including C5a ligation of C5a receptor 2 on T cells, C5a/C5a receptor 1 interactions on regulatory myeloid cells, and C1q binding to CD8+ T cells can inhibit proinflammatory T cells and/or prolong murine allograft survival. Pilot trials of complement inhibition to treat/prevent human I/R- or antibody-initiated allograft injury show promise. SUMMARY The complement system participates in allograft injury through multiple context- dependent mechanisms involving various components and receptors. These new insights along with development and implementation of individualized complement inhibitory strategies have potential to improve transplant outcomes.
Collapse
Affiliation(s)
- Nicholas Chun
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai
- Division of Nephrology in the Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Julian Horwitz
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai
- The Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai
| | - Peter S Heeger
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai
- Division of Nephrology in the Department of Medicine, Icahn School of Medicine at Mount Sinai
- The Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
37
|
Verghese DA, Chun N, Paz K, Fribourg M, Woodruff TM, Flynn R, Hu Y, Xiong H, Zhang W, Yi Z, Du J, Blazar BR, Heeger PS. C5aR1 regulates T follicular helper differentiation and chronic graft-versus-host disease bronchiolitis obliterans. JCI Insight 2018; 3:124646. [PMID: 30568034 DOI: 10.1172/jci.insight.124646] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/06/2018] [Indexed: 01/17/2023] Open
Abstract
CD4+ follicular helper T (Tfh) cells are specialized providers of T cell help to B cells and can function as pathogenic mediators of murine antibody-dependent chronic graft-versus-host disease (GvHD). Using a parent→F1 model of lupus-like chronic GvHD, in which Tfh cell and germinal center (GC) B cell differentiation occurs over 14 days, we demonstrate that absence of CD4+ T cell-expressed C5a receptor 1 (C5ar1) or pharmacological C5aR1 blockade abrogated generation/expansion of Tfh cells, GC B cells, and autoantibodies. In a Tfh cell-dependent model of chronic GvHD manifested by bronchiolitis obliterans syndrome (BOS), C5aR1 antagonism initiated in mice with established disease ameliorated BOS and abolished the associated differentiation of Tfh and GC B cells. Guided by RNA-sequencing data, mechanistic studies performed using murine and human T cells showed that C5aR1 signaling amplifies IL-6-dependent expression of the transcription factor c-MAF and the cytokine IL-21 via phosphorylating phosphokinase B (AKT) and activating the mammalian target of rapamycin (mTOR). In addition to linking C5aR1-initiated signaling to Tfh cell differentiation, our findings suggest that C5aR1 may be a useful therapeutic target for prevention and/or treatment of individuals with Tfh cell-dependent diseases, including those chronic GvHD patients who have anti-host reactive antibodies.
Collapse
Affiliation(s)
- Divya A Verghese
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicholas Chun
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Katelyn Paz
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Miguel Fribourg
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Brisbane, Australia
| | - Ryan Flynn
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuan Hu
- Precision Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Huabao Xiong
- Precision Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhengzi Yi
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jing Du
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter S Heeger
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Precision Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
38
|
ATF4 Involvement in TLR4 and LOX-1-Induced Host Inflammatory Response to Aspergillus fumigatus Keratitis. J Ophthalmol 2018; 2018:5830202. [PMID: 30647960 PMCID: PMC6311808 DOI: 10.1155/2018/5830202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022] Open
Abstract
Purpose Activating transcription factor 4 (ATF4) is induced by various stressors. Here, we investigated the expression of ATF4 in the host inflammatory response to Aspergillus fumigatus (A. fumigatus) keratitis. Methods A. fumigatus keratitis mouse models developed by intrastromal injection as well as corneal epithelium scratching were examined daily with a slit lamp microscope for corneal opacification and ulceration. Subsequent in vitro experimentation was carried out in human corneal epithelial cells (HCECs) as well as THP-1 macrophages infected with A. fumigatus. Inhibitors, including CLI-095, Poly (I), SCH772984, and SP600125, were used to assess the role of proteins like toll-like receptor 4 (TLR4), lectin-type oxidized LDL receptor 1 (LOX-1), extracellular signal-regulated kinases (ERK1/2), and c-Jun N-terminal kinase (JNK) in ATF4 expression as a response to A. fumigatus infection. This assessment was made in both mouse models and HCECs using western blot. Results Compared to the controls, ATF4 was increased in corneas from two kinds of A. fumigatus keratitis models at 3 days after infection. ATF4 expression was upregulated with A. fumigatus conidia both in HCECs and THP-1 macrophages 16 hours after stimulation. Furthermore, ATF4 expression in response to A. fumigatus infection was shown to be dependent on TLR4 and LOX-1 expression, and ERK1/2 and JNK contributed to the expression of ATF4 in response to A. fumigatus. Conclusion Our results clearly indicate that ATF4 was involved in the host antifungal immune response to A. fumigatus keratitis; expression was found to be dependent on TLR4, LOX-1 expression, and MAPKs pathway.
Collapse
|
39
|
Wood AJT, Vassallo A, Summers C, Chilvers ER, Conway-Morris A. C5a anaphylatoxin and its role in critical illness-induced organ dysfunction. Eur J Clin Invest 2018; 48:e13028. [PMID: 30229880 DOI: 10.1111/eci.13028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022]
Abstract
Critical illness is an aetiologically and clinically heterogeneous syndrome that is characterised by organ failure and immune dysfunction. Mortality in critically ill patients is driven by inflammation-associated organ damage and a profound vulnerability to nosocomial infection. Both factors are influenced by the activated complement protein C5a, released by unbridled activation of the complement system during critical illness. C5a exerts deleterious effects on organ systems directly and suppresses antimicrobial functions of key immune cells. Whilst several recent reports have added key knowledge of the cellular signalling pathways triggered by C5a, there remain a number of areas that are incompletely understood and therapeutic opportunities are still being evaluated. In this review, we summarise the cellular basis for C5a-induced vulnerability to nosocomial infection and organ dysfunction. We focus on cells of the innate immune system, highlighting the major areas in need of further research and potential avenues for targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | - Andrew Conway-Morris
- Department of Medicine, University of Cambridge, Cambridge, UK.,Signaling Programme, Babraham Institute, Cambridge, UK
| |
Collapse
|
40
|
Arbore G, West EE, Rahman J, Le Friec G, Niyonzima N, Pirooznia M, Tunc I, Pavlidis P, Powell N, Li Y, Liu P, Servais A, Couzi L, Fremeaux-Bacchi V, Placais L, Ferraro A, Walsh PR, Kavanagh D, Afzali B, Lavender P, Lachmann HJ, Kemper C. Complement receptor CD46 co-stimulates optimal human CD8 + T cell effector function via fatty acid metabolism. Nat Commun 2018; 9:4186. [PMID: 30305631 PMCID: PMC6180132 DOI: 10.1038/s41467-018-06706-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
The induction of human CD4+ Th1 cells requires autocrine stimulation of the complement receptor CD46 in direct crosstalk with a CD4+ T cell-intrinsic NLRP3 inflammasome. However, it is unclear whether human cytotoxic CD8+ T cell (CTL) responses also rely on an intrinsic complement-inflammasome axis. Here we show, using CTLs from patients with CD46 deficiency or with constitutively-active NLRP3, that CD46 delivers co-stimulatory signals for optimal CTL activity by augmenting nutrient-influx and fatty acid synthesis. Surprisingly, although CTLs express NLRP3, a canonical NLRP3 inflammasome is not required for normal human CTL activity, as CTLs from patients with hyperactive NLRP3 activity function normally. These findings establish autocrine complement and CD46 activity as integral components of normal human CTL biology, and, since CD46 is only present in humans, emphasize the divergent roles of innate immune sensors between mice and men.
Collapse
Affiliation(s)
- Giuseppina Arbore
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Erin E West
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jubayer Rahman
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Gaelle Le Friec
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Nathalie Niyonzima
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mehdi Pirooznia
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ilker Tunc
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Nicholas Powell
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Yuesheng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Poching Liu
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Aude Servais
- Service de Néphrologie adulte, Hôpital Necker, Paris, France
| | - Lionel Couzi
- Nephrologie,Transplantation, Dialyse, CHU Bordeaux, and CNRS-UMR 5164 Immuno ConcEpT, Université de Bordeaux, Bordeaux, France
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, and INSERM UMR S1138, Centre de Recherche des Cordeliers, Paris, France
| | - Leo Placais
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alastair Ferraro
- Department of Renal Medicine, Nottingham University Hospitals, NHS Trust, Nottingham, UK
| | - Patrick R Walsh
- National Renal Complement Therapeutics Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - David Kavanagh
- National Renal Complement Therapeutics Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Behdad Afzali
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
- Immunoregulation Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Paul Lavender
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Helen J Lachmann
- UK National Amyloidosis Centre, Division of Medicine, University College London, Royal Free Campus, London, UK.
| | - Claudia Kemper
- School of Immunology and Microbial Sciences, King's College London, London, UK.
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
41
|
Thorenz A, Derlin K, Schröder C, Dressler L, Vijayan V, Pradhan P, Immenschuh S, Jörns A, Echtermeyer F, Herzog C, Chen R, Rong S, Bräsen JH, van Kooten C, Kirsch T, Klemann C, Meier M, Klos A, Haller H, Hensen B, Gueler F. Enhanced activation of interleukin-10, heme oxygenase-1, and AKT in C5aR2-deficient mice is associated with protection from ischemia reperfusion injury-induced inflammation and fibrosis. Kidney Int 2018; 94:741-755. [PMID: 29935951 DOI: 10.1016/j.kint.2018.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023]
Abstract
Severe ischemia reperfusion injury (IRI) results in rapid complement activation, acute kidney injury and progressive renal fibrosis. Little is known about the roles of the C5aR1 and C5aR2 complement receptors in IRI. In this study C5aR1-/- and C5aR2-/- mice were compared to the wild type in a renal IRI model leading to renal fibrosis. C5a receptor expression, kidney morphology, inflammation, and fibrosis were measured in different mouse strains one, seven and 21 days after IRI. Renal perfusion was evaluated by functional magnetic resonance imaging. Protein abundance and phosphorylation were assessed with high content antibody microarrays and Western blotting. C5aR1 and C5aR2 were increased in damaged tubuli and even more in infiltrating leukocytes after IRI in kidneys of wild-type mice. C5aR1-/- and C5aR2-/- animals developed less IRI-induced inflammation and showed better renal perfusion than wild-type mice following IRI. C5aR2-/- mice, in particular, had enhanced tubular and capillary regeneration with less renal fibrosis. Anti-inflammatory IL-10 and the survival/growth kinase AKT levels were especially high in kidneys of C5aR2-/- mice following IRI. LPS caused bone marrow-derived macrophages from C5aR2-/- mice to release IL-10 and to express the stress response enzyme heme oxygenase-1. Thus, C5aR1 and C5aR2 have overlapping actions in which the kidneys of C5aR2-/- mice regenerate better than those in C5aR1-/- mice following IRI. This is mediated, at least in part, by differential production of IL-10, heme oxygenase-1 and AKT.
Collapse
Affiliation(s)
- Anja Thorenz
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Katja Derlin
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | | | - Vijith Vijayan
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Pooja Pradhan
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Anne Jörns
- Department of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Frank Echtermeyer
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Christine Herzog
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Rongjun Chen
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | | | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Torsten Kirsch
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Christian Klemann
- Department of Pediatric Surgery, Center of Surgery, Hannover Medical School, Hannover, Germany; Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Martin Meier
- Imaging Center of the Institute of Laboratory Animal Sciences, Hannover Medical School, Hannover, Germany
| | - Andreas Klos
- Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Bennet Hensen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
42
|
Skjeflo EW, Christiansen D, Fure H, Ludviksen JK, Woodruff TM, Espevik T, Nielsen EW, Brekke OL, Mollnes TE. Staphylococcus aureus-induced complement activation promotes tissue factor-mediated coagulation. J Thromb Haemost 2018; 16:905-918. [PMID: 29437288 DOI: 10.1111/jth.13979] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Indexed: 12/13/2022]
Abstract
Essentials Complement, Toll-like receptors and coagulation cross-talk in the process of thromboinflammation. This is explored in a unique human whole-blood model of S. aureus bacteremia. Coagulation is here shown as a downstream event of C5a-induced tissue factor (TF) production. Combined inhibition of C5 and CD14 efficiently attenuated TF and coagulation. SUMMARY Background There is extensive cross-talk between the complement system, the Toll-like receptors (TLRs), and hemostasis. Consumptive coagulopathy is a hallmark of sepsis, and is often mediated through increased tissue factor (TF) expression. Objectives To study the relative roles of complement, TLRs and TF in Staphylococcus aureus-induced coagulation. Methods Lepirudin-anticoagulated human whole blood was incubated with the three S. aureus strains Cowan, Wood, and Newman. C3 was inhibited with compstatin, C5 with eculizumab, C5a receptor 1 (C5aR1) and activated factor XII with peptide inhibitors, CD14, TLR2 and TF with neutralizing antibodies, and TLR4 with eritoran. Complement activation was measured by ELISA. Coagulation was measured according to prothrombin fragment 1 + 2 (PTF1 + 2 ) determined with ELISA, and TF mRNA, monocyte surface expression and functional activity were measured with quantitative PCR, flow cytometry, and ELISA, respectively. Results All three strains generated substantial and statistically significant amounts of C5a, terminal complement complex, PTF1 + 2 , and TF mRNA, and showed substantial TF surface expression on monocytes and TF functional activity. Inhibition of C5 cleavage most efficiently and significantly inhibited all six markers in strains Cowan and Wood, and five markers in Newman. The effect of complement inhibition was shown to be completely dependent on C5aR1. The C5 blocking effect was equally potentiated when combined with blocking of CD14 or TLR2, but not TLR4. TF blocking significantly reduced PTF1 + 2 levels to baseline levels. Conclusions S. aureus-induced coagulation in human whole blood was mainly attributable to C5a-induced mRNA upregulation, monocyte TF expression, and plasma TF activity, thus underscoring complement as a key player in S. aureus-induced coagulation.
Collapse
Affiliation(s)
- E W Skjeflo
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K. G. Jebsen TREC, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | - H Fure
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - J K Ludviksen
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - T M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - T Espevik
- Center of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - E W Nielsen
- Faculty of Health Sciences, K. G. Jebsen TREC, UiT - The Arctic University of Norway, Tromsø, Norway
- Department of Anesthesiology, Nordland Hospital, Bodø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - O L Brekke
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K. G. Jebsen TREC, UiT - The Arctic University of Norway, Tromsø, Norway
| | - T E Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K. G. Jebsen TREC, UiT - The Arctic University of Norway, Tromsø, Norway
- Center of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Immunology, Oslo University Hospital and K. G. Jebsen IRC, University of Oslo, Oslo, Norway
| |
Collapse
|
43
|
Karsten CM, Beckmann T, Holtsche MM, Tillmann J, Tofern S, Schulze FS, Heppe EN, Ludwig RJ, Zillikens D, König IR, Köhl J, Schmidt E. Tissue Destruction in Bullous Pemphigoid Can Be Complement Independent and May Be Mitigated by C5aR2. Front Immunol 2018; 9:488. [PMID: 29599777 PMCID: PMC5862877 DOI: 10.3389/fimmu.2018.00488] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/23/2018] [Indexed: 12/12/2022] Open
Abstract
Bullous pemphigoid (BP), the most frequent autoimmune bullous disorder, is a paradigmatic autoantibody-mediated disease associated with autoantibodies against BP180 (type XVII collagen, Col17). Several animal models have been developed that reflect important clinical and immunological features of human BP. Complement activation has been described as a prerequisite for blister formation, however, the recent finding that skin lesions can be induced by anti-Col17 F(ab')2 fragments indicates complement-independent mechanisms to contribute to blister formation in BP. Here, C5-/- mice injected with anti-Col17 IgG showed a reduction of skin lesions by about 50% associated with significantly less skin-infiltrating neutrophils compared to wild-type mice. Reduction of skin lesions and neutrophil infiltration was seen independently of the employed anti-Col17 IgG dose. Further, C5ar1-/- mice were protected from disease development, whereas the extent of skin lesions was increased in C5ar2-/- animals. Pharmacological inhibition of C5a receptor 1 (C5aR1) by PMX53 led to reduced disease activity when applied in a prophylactic setting. In contrast, PMX-53 treatment had no effect when first skin lesions had already developed. While C5aR1 was critically involved in neutrophil migration in vitro, its role for Col17-anti-Col17 IgG immune complex-mediated release of reactive oxygen species from neutrophils was less pronounced. Our data demonstrate that complement-dependent and -independent mechanisms coexist in anti-Col17-autoantibody-mediated tissue destruction. C5aR1 and C5aR2 seem to play opposing roles in this process with C5aR1 exerting its primary effect in recruiting inflammatory cells to the skin during the early phase of the disease. Further studies are required to fully understand the role of C5aR2 in autoantibody-mediated skin inflammation.
Collapse
MESH Headings
- Animals
- Autoantibodies/genetics
- Autoantibodies/immunology
- Autoantigens/genetics
- Autoantigens/immunology
- Complement C5/genetics
- Complement C5/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Neutrophil Infiltration
- Neutrophils/immunology
- Neutrophils/pathology
- Non-Fibrillar Collagens/genetics
- Non-Fibrillar Collagens/immunology
- Pemphigoid, Bullous/chemically induced
- Pemphigoid, Bullous/genetics
- Pemphigoid, Bullous/immunology
- Pemphigoid, Bullous/pathology
- Peptides, Cyclic/pharmacology
- Reactive Oxygen Species/immunology
- Receptor, Anaphylatoxin C5a/antagonists & inhibitors
- Receptor, Anaphylatoxin C5a/genetics
- Receptor, Anaphylatoxin C5a/immunology
- Skin/immunology
- Skin/pathology
- Collagen Type XVII
Collapse
Affiliation(s)
| | - Tina Beckmann
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | | | - Jenny Tillmann
- Institute of Systemic Inflammation, University of Lübeck, Lübeck, Germany
| | - Sabrina Tofern
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Franziska S. Schulze
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Eva Nina Heppe
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Inke R. König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute of Systemic Inflammation, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital and College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
44
|
Pandey MK, Grabowski GA, Köhl J. An unexpected player in Gaucher disease: The multiple roles of complement in disease development. Semin Immunol 2018; 37:30-42. [PMID: 29478824 DOI: 10.1016/j.smim.2018.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/14/2022]
Abstract
The complement system is well appreciated for its role as an important effector of innate immunity that is activated by the classical, lectin or alternative pathway. C5a is one important mediator of the system that is generated in response to canonical and non-canonical C5 cleavage by circulating or cell-derived proteases. In addition to its function as a chemoattractant for neutrophils and other myeloid effectors, C5a and its sister molecule C3a have concerted roles in cell homeostasis and surveillance. Through activation of their cognate G protein coupled receptors, C3a and C5a regulate multiple intracellular pathways within the mitochondria and the lysosomal compartments that harbor multiple enzymes critical for protein, carbohydrate and lipid metabolism. Genetic mutations of such lysosomal enzymes or their receptors can result in the compartmental accumulation of specific classes of substrates in this organelle summarized as lysosomal storage diseases (LSD). A frequent LSD is Gaucher disease (GD), caused by autosomal recessively inherited mutations in GBA1, resulting in functional defects of the encoded enzyme, acid β-glucosidase (glucocerebrosidase, GCase). Such mutations promote excessive accumulation of β-glucosylceramide (GC or GL1) in innate and adaptive immune cells frequently associated with chronic inflammation. Recently, we uncovered an unexpected link between the C5a and C5a receptor 1 (C5aR1) axis and the accumulation of GL1 in experimental and clinical GD. Here, we will review the pathways of complement activation in GD, its role as a mediator of the inflammatory response, and its impact on glucosphingolipid metabolism. Further, we will discuss the potential role of the C5a/C5aR1 axis in GL1-specific autoantibody formation and as a novel therapeutic target in GD.
Collapse
Affiliation(s)
- Manoj K Pandey
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; The Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Gregory A Grabowski
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; The Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Jörg Köhl
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; The Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Institute for Systemic Inflammation Research, University of Lübeck, 23562, Lübeck, Germany.
| |
Collapse
|
45
|
A Verghese D, Demir M, Chun N, Fribourg M, Cravedi P, Llaudo I, Woodruff TM, Yadav P, Lira SA, Medof ME, Heeger PS. T Cell Expression of C5a Receptor 2 Augments Murine Regulatory T Cell (T REG) Generation and T REG-Dependent Cardiac Allograft Survival. THE JOURNAL OF IMMUNOLOGY 2018; 200:2186-2198. [PMID: 29436411 DOI: 10.4049/jimmunol.1701638] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/11/2018] [Indexed: 12/26/2022]
Abstract
C5aR2 (C5L2/gp77) is a seven-transmembrane spanning receptor that binds to C5a but lacks motifs essential for G protein coupling and associated signal transduction. C5aR2 is expressed on immune cells, modulates various inflammatory diseases in mice, and has been shown to facilitate murine and human regulatory T cell (TREG) generation in vitro. Whether and how C5aR2 impacts in vivo TREG generation and pathogenic T cell-dependent disease models have not been established. In this article, we show that murine T cells express and upregulate C5aR2 during induced TREG (iTREG) generation and that the absence of T cell-expressed C5aR2 limits in vivo iTREG generation following adoptive transfer of naive CD4+ T cells into Rag1-/- recipients. Using newly generated C5aR2-transgenic mice, we show that overexpression of C5aR2 in naive CD4+ T cells augments in vivo iTREG generation. In a model of TREG-dependent cardiac allograft survival, recipient C5aR2 deficiency accelerates graft rejection associated with lower TREG/effector T cell ratios, whereas overexpression of C5aR2 in immune cells prolongs graft survival associated with an increase in TREG/effector T cell ratios. T cell-expressed C5aR2 modulates TREG induction without altering effector T cell proliferation or cytokine production. Distinct from reported findings in neutrophils and macrophages, TREG-expressed C5aR2 does not interact with β-arrestin or inhibit ERK1/2 signaling. Rather, cumulative evidence supports the conclusion that C5aR2 limits C5aR1-initiated signals known to inhibit TREG induction. Together, the data expand the role of C5aR2 in adaptive immunity by providing in vivo evidence that T cell-expressed C5aR2 physiologically modulates iTREG generation and iTREG-dependent allograft survival.
Collapse
Affiliation(s)
- Divya A Verghese
- Nephrology Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Translational Transplant Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Markus Demir
- Nephrology Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Translational Transplant Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nicholas Chun
- Nephrology Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Translational Transplant Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Miguel Fribourg
- Nephrology Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Paolo Cravedi
- Nephrology Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Translational Transplant Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ines Llaudo
- Nephrology Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Translational Transplant Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane St. Lucia, Brisbane, Queensland 4072, Australia; and
| | - Pragya Yadav
- Nephrology Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Translational Transplant Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sergio A Lira
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - M Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Peter S Heeger
- Nephrology Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029; .,Translational Transplant Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
46
|
Morgan M, Deuis JR, Woodruff TM, Lewis RJ, Vetter I. Role of complement anaphylatoxin receptors in a mouse model of acute burn-induced pain. Mol Immunol 2018; 94:68-74. [DOI: 10.1016/j.molimm.2017.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/21/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023]
|
47
|
Syed SN, Rau E, Ziegelmann M, Sogkas G, Brüne B, Schmidt RE. C5aR activation in the absence of C5a: A new disease mechanism of autoimmune hemolytic anemia in mice. Eur J Immunol 2018; 48:696-704. [PMID: 29277896 DOI: 10.1002/eji.201747238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/17/2017] [Accepted: 12/19/2017] [Indexed: 01/19/2023]
Abstract
IgG Fc receptors (FcγRs) and the C5a anaphylatoxin receptor (C5aR) were identified as key regulators of type II autoimmune injury in mice. However, and with respect to C5aR, the relative importance of C5a for IgG autoantibody-induced cellular destruction remained unclear. Using an experimental model of autoimmune hemolytic anemia (AIHA), we here report marked differences in the development of AIHA between mice lacking C5aR and C5-deficient (Hc0 ) strain, indicating a limited role of C5 in this type of C5aR-regulated disease. Ex-vivo-analyses of liver homogenates from anemic Hc0 mice demonstrate C5a-independent C5aR activation, upregulation of FcγR expression and amplification of erythrophagocytosis by macrophages. As assessed by pharmacological inhibition studies, targeting of C5aR, but not of C5, is effective in treating experimental AIHA. Collectively, these results define a previously unrecognized disease mechanism of C5aR activation in AIHA that does not necessarily involve C5 and C5a.
Collapse
Affiliation(s)
- Shahzad N Syed
- Molecular Immunology Research Unit, Division of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany.,Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Eduard Rau
- Molecular Immunology Research Unit, Division of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Mareen Ziegelmann
- Molecular Immunology Research Unit, Division of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Georgios Sogkas
- Molecular Immunology Research Unit, Division of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Reinhold E Schmidt
- Molecular Immunology Research Unit, Division of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
48
|
Colley CS, Popovic B, Sridharan S, Debreczeni JE, Hargeaves D, Fung M, An L, Edwards B, Arnold J, England E, Eghobamien L, Sivars U, Flavell L, Renshaw J, Wickson K, Warrener P, Zha J, Bonnell J, Woods R, Wilkinson T, Dobson C, Vaughan TJ. Structure and characterization of a high affinity C5a monoclonal antibody that blocks binding to C5aR1 and C5aR2 receptors. MAbs 2018; 10:104-117. [PMID: 28952876 PMCID: PMC5800367 DOI: 10.1080/19420862.2017.1384892] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
C5a is a potent anaphylatoxin that modulates inflammation through the C5aR1 and C5aR2 receptors. The molecular interactions between C5a-C5aR1 receptor are well defined, whereas C5a-C5aR2 receptor interactions are poorly understood. Here, we describe the generation of a human antibody, MEDI7814, that neutralizes C5a and C5adesArg binding to the C5aR1 and C5aR2 receptors, without affecting complement-mediated bacterial cell killing. Unlike other anti-C5a mAbs described, this antibody has been shown to inhibit the effects of C5a by blocking C5a binding to both C5aR1 and C5aR2 receptors. The crystal structure of the antibody in complex with human C5a reveals a discontinuous epitope of 22 amino acids. This is the first time the epitope for an antibody that blocks C5aR1 and C5aR2 receptors has been described, and this work provides a basis for molecular studies aimed at further understanding the C5a-C5aR2 receptor interaction. MEDI7814 has therapeutic potential for the treatment of acute inflammatory conditions in which both C5a receptors may mediate inflammation, such as sepsis or renal ischemia-reperfusion injury.
Collapse
MESH Headings
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibody Affinity
- Antibody Specificity
- Binding Sites, Antibody
- Complement C5a/antagonists & inhibitors
- Complement C5a/chemistry
- Complement C5a/immunology
- Complement C5a/metabolism
- Epitope Mapping/methods
- Epitopes
- HEK293 Cells
- Humans
- Protein Binding
- Protein Conformation
- Protein Engineering
- Receptor, Anaphylatoxin C5a/antagonists & inhibitors
- Receptor, Anaphylatoxin C5a/chemistry
- Receptor, Anaphylatoxin C5a/immunology
- Receptor, Anaphylatoxin C5a/metabolism
- Receptors, Chemokine/antagonists & inhibitors
- Receptors, Chemokine/chemistry
- Receptors, Chemokine/immunology
- Receptors, Chemokine/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Caroline S. Colley
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
- CONTACT Caroline S. Colley Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge, CB21 6GH, UK
| | - Bojana Popovic
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | | | | | | | - Michael Fung
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA
| | - Ling–Ling An
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA
| | - Bryan Edwards
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | - Joanne Arnold
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | - Elizabeth England
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | - Laura Eghobamien
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd, Cambridge, UK
| | - Ulf Sivars
- Translational Biology, IMED RIA Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Liz Flavell
- Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | | | - Kate Wickson
- Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Paul Warrener
- Infectious Diseases, MedImmune LLC, Gaithersburg, MD, USA
| | - Jingying Zha
- Infectious Diseases, MedImmune LLC, Gaithersburg, MD, USA
| | | | - Rob Woods
- Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, MD, USA
| | - Trevor Wilkinson
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | - Claire Dobson
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | - Tristan J. Vaughan
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| |
Collapse
|
49
|
Ye Z, Li ZH, He SZ. miRNA-1273g-3p Involvement in Development of Diabetic Retinopathy by Modulating the Autophagy-Lysosome Pathway. Med Sci Monit 2017; 23:5744-5751. [PMID: 29197896 PMCID: PMC5724349 DOI: 10.12659/msm.905336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Diabetic retinopathy (DR) is one of the most common and serious complications of diabetes mellitus (DM). The autophagy-lysosome pathway (ALP) is one of the main intracellular self-digestive degradation systems. Lysosomal impairment and autophagic dysfunction are early events in the pathogenesis of DR, suggesting autophagy might be a novel therapeutic strategy for DR treatment. Material/Methods In our study, we screened a differentially expressed miRNA, miR-1273g-3p, in streptozotocin (STZ)-injected DR rat retinal pigment epithelial (RPE) cells. miR-1273g-3p inhibitor and mimic were employed to treat RPE cells to assess the role of miR-1273g-3p. QRT-PCR and Western blot analysis were performed to examine the function of miR-1273g-3p on ALP-related and DR-related proteins. Results miR-1273g-3p was highly expressed in STZ-induced DM RPE cells. miR-1273g-3p mimic promoted the expression of DR-related MMP-2, MMP-9, and TNF-α proteins, and ALP-related LC3, cathepsin B, and cathepsin L factors, but miR-1273g-3p inhibitor suppressed the levels of these factors. Conclusions miR-1273g-3p is involved in the progression of DR by modulating the autophagy-lysosome pathway. These findings provided new evidence of the close relationship between DR and ALP, and reveal a new target for DR therapy.
Collapse
Affiliation(s)
- Zi Ye
- Department of Ophthalmology, The PLA General Hospital, Beijing, China (mainland)
| | - Zhao-Hui Li
- Department of Ophthalmology, The PLA General Hospital, Beijing, China (mainland)
| | - Shou-Zhi He
- Department of Ophthalmology, The PLA General Hospital, Beijing, China (mainland)
| |
Collapse
|
50
|
Karsten CM, Wiese AV, Mey F, Figge J, Woodruff TM, Reuter T, Scurtu O, Kordowski A, Almeida LN, Briukhovetska D, Quell KM, Sun J, Ender F, Schmudde I, Vollbrandt T, Laumonnier Y, Köhl J. Monitoring C5aR2 Expression Using a Floxed tdTomato-C5aR2 Knock-In Mouse. THE JOURNAL OF IMMUNOLOGY 2017; 199:3234-3248. [PMID: 28864475 DOI: 10.4049/jimmunol.1700710] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/10/2017] [Indexed: 12/23/2022]
Abstract
The biological significance of C5a receptor [(C5aR)2/C5L2], a seven-transmembrane receptor binding C5a and C5adesArg, remains ill-defined. Specific ligation of C5aR2 inhibits C5a-induced ERK1/2 activation, strengthening the view that C5aR2 regulates C5aR1-mediated effector functions. Although C5aR2 and C5aR1 are often coexpressed, a detailed picture of C5aR2 expression in murine cells and tissues is still lacking. To close this gap, we generated a floxed tandem dye (td)Tomato-C5aR2 knock-in mouse that we used to track C5aR2 expression in tissue-residing and circulating immune cells. We found the strongest C5aR2 expression in the brain, bone marrow, and airways. All myeloid-derived cells expressed C5aR2, although with different intensities. C5aR2 expression in blood and tissue neutrophils was strong and homogeneous. Specific ligation of C5aR2 in neutrophils from tdTomato-C5aR2 mice blocked C5a-driven ERK1/2 phosphorylation, demonstrating functionality of C5aR2 in the reporter mice. In contrast to neutrophils, we found tissue-specific differences in C5aR2 expression in eosinophils, macrophages, and dendritic cell subsets. Naive and activated T cells stained negative for C5aR2, whereas B cells from different tissues homogeneously expressed C5aR2. Also, NK cell subsets in blood and spleen strongly expressed C5aR2. Activation of C5aR2 in NK cells suppressed IL-12/IL-18-induced IFN-γ production. Intratracheal IL-33 challenge resulted in decreased C5aR2 expression in pulmonary eosinophils and monocyte-derived dendritic cells. In summary, we provide a detailed map of murine C5aR2 immune cell expression in different tissues under steady-state conditions and upon pulmonary inflammation. The C5aR2 knock-in mouse will help to reliably track and conditionally delete C5aR2 expression in experimental models of inflammation.
Collapse
Affiliation(s)
- Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany;
| | - Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Fabian Mey
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Julia Figge
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tom Reuter
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Olga Scurtu
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Anna Kordowski
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Larissa N Almeida
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Daria Briukhovetska
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Katharina M Quell
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Jing Sun
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Inken Schmudde
- Institute of Anatomy, University of Lübeck, Lübeck 23562, Germany
| | - Tillman Vollbrandt
- Cell Analysis Core Facility, University of Lübeck, Lübeck 23562, Germany; and
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany; .,Division of Immunobiology, Cincinnati Children's Hospital and College of Medicine, University of Cincinnati, Cincinnati, OH 45229
| |
Collapse
|