1
|
Colom-Pellicer M, de Assis LVM, Rodríguez RM, Suárez M, Mulero M, Arola-Arnal A, Oster H, Aragonès G, Calvo E. Grape seed procyanidins modulate PER2 circadian rhythm and lipid metabolism of white adipose tissue explants in a time-dependent manner. Int J Food Sci Nutr 2025:1-13. [PMID: 40300822 DOI: 10.1080/09637486.2025.2494151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 05/01/2025]
Abstract
The consumption of grape seed procyanidin extract (GSPE) may improve metabolic alterations and molecular clock desynchrony in white adipose tissue (WAT), depending on administration timing and metabolic status. To test this hypothesis, inguinal WAT explants from lean and obese PERIOD2::LUCIFERASE (PER2::LUC) circadian reporter mice were treated at the peak or trough of the PER2 luminescence rhythm with metabolites present in the serum of GSPE-administered rats (GSPM). PER2::LUC rhythms of explants from obese animals presented a lower amplitude, longer period and a phase delay. GSPM treatment increased luminescence amplitude and period compared to untreated explants, but only when it was given at the trough of PER2::LUC luminescence. GSPM upregulated lipogenesis and lipolysis genes in explants from lean mice, mostly when given at the luminescence peak. This study provides a valuable platform for testing the effects of natural products ex vivo and warrants further investigation into the chrono-utilisation of plant bioactive compounds.
Collapse
Affiliation(s)
- Marina Colom-Pellicer
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
| | | | - Romina M Rodríguez
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
| | - Manuel Suárez
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, Spain
| | - Miquel Mulero
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Arola-Arnal
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, Spain
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism, University of Lübeck, Institute of Neurobiology, Lübeck, Germany
| | - Gerard Aragonès
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, Spain
| | - Enrique Calvo
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
2
|
Zhang Y, Li M, Liu H, Fan Y, Liu HH. The application of procyanidins in diabetes and its complications: a review of preclinical studies. Front Pharmacol 2025; 16:1532246. [PMID: 39995417 PMCID: PMC11847907 DOI: 10.3389/fphar.2025.1532246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
Diabetes mellitus (DM) and its various complications, including diabetic nephropathy, retinopathy, neuropathy, cardiovascular disease, and ulcers, pose significant challenges to global health. This review investigates the potential of procyanidins (PCs), a natural polyphenolic compound, in preventing and managing diabetes and its complications. PCs, recognized for their strong antioxidant, anti-inflammatory, and anti-hyperglycemic properties, play a crucial role in reducing oxidative stress and enhancing endothelial function, which are essential for managing diabetic complications. This review elucidates the molecular mechanisms by which PCs improve insulin sensitivity and endothelial health, thereby providing protection against the various complications of diabetes. The comprehensive analysis underscores the promising therapeutic role of PCs in diabetes care, indicating the need for further clinical studies to confirm and leverage their potential in comprehensive diabetes management strategies.
Collapse
Affiliation(s)
- Yongchuang Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengna Li
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Haoyuan Liu
- Rehabilitation Department, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Yongfu Fan
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Huan Huan Liu
- International institute for Traditional Chinese Medicine, Guanzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Hernandez-Baixauli J, Chomiciute G, Alcaide-Hidalgo JM, Crescenti A, Baselga-Escudero L, Palacios-Jordan H, Foguet-Romero E, Pedret A, Valls RM, Solà R, Mulero M, Del Bas JM. Developing a model to predict the early risk of hypertriglyceridemia based on inhibiting lipoprotein lipase (LPL): a translational study. Sci Rep 2023; 13:22646. [PMID: 38114521 PMCID: PMC10730820 DOI: 10.1038/s41598-023-49277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Hypertriglyceridemia (HTG) is an independent risk factor for atherosclerotic cardiovascular disease (ASCVD). One of the multiple origins of HTG alteration is impaired lipoprotein lipase (LPL) activity, which is an emerging target for HTG treatment. We hypothesised that early, even mild, alterations in LPL activity might result in an identifiable metabolomic signature. The aim of the present study was to assess whether a metabolic signature of altered LPL activity in a preclinical model can be identified in humans. A preclinical LPL-dependent model of HTG was developed using a single intraperitoneal injection of poloxamer 407 (P407) in male Wistar rats. A rat metabolomics signature was identified, which led to a predictive model developed using machine learning techniques. The predictive model was applied to 140 humans classified according to clinical guidelines as (1) normal, less than 1.7 mmol/L; (2) risk of HTG, above 1.7 mmol/L. Injection of P407 in rats induced HTG by effectively inhibiting plasma LPL activity. Significantly responsive metabolites (i.e. specific triacylglycerols, diacylglycerols, phosphatidylcholines, cholesterol esters and lysophospholipids) were used to generate a predictive model. Healthy human volunteers with the impaired predictive LPL signature had statistically higher levels of TG, TC, LDL and APOB than those without the impaired LPL signature. The application of predictive metabolomic models based on mechanistic preclinical research may be considered as a strategy to stratify subjects with HTG of different origins. This approach may be of interest for precision medicine and nutritional approaches.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204, Reus, Spain
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204, Reus, Spain
| | | | - Anna Crescenti
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204, Reus, Spain
| | | | - Hector Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204, Reus, Spain
| | - Elisabet Foguet-Romero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204, Reus, Spain
| | - Anna Pedret
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira I Virgili, C/Sant Llorenç, 21, 43201, Reus, Spain
| | - Rosa M Valls
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira I Virgili, C/Sant Llorenç, 21, 43201, Reus, Spain
| | - Rosa Solà
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira I Virgili, C/Sant Llorenç, 21, 43201, Reus, Spain
- Internal Medicine Service, Hospital Universitari Sant Joan de Reus, Av/del Doctor Josep Laporte, 2, 43204, Reus, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007, Tarragona, Spain.
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Àrea Biotecnologia, Reus, Spain.
| |
Collapse
|
4
|
Quesada-Vázquez S, Castells-Nobau A, Latorre J, Oliveras-Cañellas N, Puig-Parnau I, Tejera N, Tobajas Y, Baudin J, Hildebrand F, Beraza N, Burcelin R, Martinez-Gili L, Chilloux J, Dumas ME, Federici M, Hoyles L, Caimari A, Del Bas JM, Escoté X, Fernández-Real JM, Mayneris-Perxachs J. Potential therapeutic implications of histidine catabolism by the gut microbiota in NAFLD patients with morbid obesity. Cell Rep Med 2023; 4:101341. [PMID: 38118419 PMCID: PMC10772641 DOI: 10.1016/j.xcrm.2023.101341] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/18/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023]
Abstract
The gut microbiota contributes to the pathophysiology of non-alcoholic fatty liver disease (NAFLD). Histidine is a key energy source for the microbiota, scavenging it from the host. Its role in NAFLD is poorly known. Plasma metabolomics, liver transcriptomics, and fecal metagenomics were performed in three human cohorts coupled with hepatocyte, rodent, and Drosophila models. Machine learning analyses identified plasma histidine as being strongly inversely associated with steatosis and linked to a hepatic transcriptomic signature involved in insulin signaling, inflammation, and trace amine-associated receptor 1. Circulating histidine was inversely associated with Proteobacteria and positively with bacteria lacking the histidine utilization (Hut) system. Histidine supplementation improved NAFLD in different animal models (diet-induced NAFLD in mouse and flies, ob/ob mouse, and ovariectomized rats) and reduced de novo lipogenesis. Fecal microbiota transplantation (FMT) from low-histidine donors and mono-colonization of germ-free flies with Enterobacter cloacae increased triglyceride accumulation and reduced histidine content. The interplay among microbiota, histidine catabolism, and NAFLD opens therapeutic opportunities.
Collapse
Affiliation(s)
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain
| | - Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Puig-Parnau
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Noemi Tejera
- Microbes in the Food Chain, Institute Strategic Program, Microbes and Gut Health, Institute Strategic Program - Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Yaiza Tobajas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - Julio Baudin
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - Falk Hildebrand
- Microbes in the Food Chain, Institute Strategic Program, Microbes and Gut Health, Institute Strategic Program - Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Digital Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk NR4 7UZ, UK
| | - Naiara Beraza
- Microbes in the Food Chain, Institute Strategic Program, Microbes and Gut Health, Institute Strategic Program - Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR), Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, and Heart Failure', F-31432 Toulouse Cedex 4, France
| | - Laura Martinez-Gili
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Julien Chilloux
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, UK; Section of Genomic and Environmental Medicine, National Heart & Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK; European Genomic Institute for Diabetes, CNRS UMR 8199, INSERM UMR 1283, Institut Pasteur de Lille, Lille University Hospital, University of Lille, 59045 Lille, France; McGill Genome Centre, McGill University, 740 Doctor Penfield Avenue, Montréal, QC H3A 0G1, Canada
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Lesley Hoyles
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain.
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Feng Y, Chen X, Chen D, He J, Zheng P, Luo Y, Yu B, Huang Z. Dietary grape seed proanthocyanidin extract supplementation improves antioxidant capacity and lipid metabolism in finishing pigs. Anim Biotechnol 2023; 34:4021-4031. [PMID: 37647084 DOI: 10.1080/10495398.2023.2252012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Grape seed proanthocyanidin extract (GSPE) plays a significant role in body health, including improving antioxidant capacity and maintaining lipid metabolism stability. However, whether dietary GSPE supplementation can improve lipid metabolism in finishing pigs remains unclear. Here 18 castrated male Duroc × Landrace × Yorkshire finishing pigs were randomly divided into three groups with six replicates and one pig per replicate. Pigs were fed a basal diet (control), a basal diet supplemented with 100 mg/kg GSPE, or a basal diet supplemented with 200 mg/kg GSPE for 30 days. Antioxidant analysis showed that dietary 200 mg/kg GSPE supplementation increased glutathione, total antioxidant capacity and glutathione peroxidase levels, and reduced malondialdehyde levels in serum, muscle and liver. Dietary 200 mg/kg GSPE supplementation also upregulated the mRNA and protein levels of nuclear-related factor 2 (Nrf2). Lipid metabolism analysis showed that dietary GSPE supplementation increased serum high-density lipoprotein cholesterol levels and reduced serum triglyceride and total cholesterol levels. Besides, GPSE upregulated the mRNA expression of lipolysis- and fatty acid oxidation-related genes downregulated the mRNA expression of lipogenesis-related genes, and activated the AMPK signal in finishing pigs. Together, we provided evidence that dietary GSPE supplementation improved the antioxidant capacity and lipid metabolism in finishing pigs.
Collapse
Affiliation(s)
- Yadi Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
6
|
Photoperiod Conditions Modulate Serum Oxylipins Levels in Healthy and Obese Rats: Impact of Proanthocyanidins and Gut Microbiota. Nutrients 2023; 15:nu15030707. [PMID: 36771413 PMCID: PMC9920779 DOI: 10.3390/nu15030707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Seasonal rhythms are emerging as a key factor influencing gut microbiota and bioactive compounds functionality as well as several physiological processes such as inflammation. In this regard, their impact on the modulation of oxylipins (OXLs), which are important lipid mediators of inflammatory processes, has not been investigated yet. Hence, we aimed to investigate the effects of photoperiods on OXLs metabolites in healthy and obesogenic conditions. Moreover, we evaluated if the impact of proanthocyanidins and gut microbiota on OXLs metabolism is influenced by photoperiod in obesity. To this purpose, Fischer 344 rats were housed under different photoperiod conditions (L6: 6 h light, L12: 12 h light or L18:18 h light) and fed either a standard chow diet (STD) or a cafeteria diet (CAF) for 9 weeks. During the last 4 weeks, obese rats were daily administered with an antibiotic cocktail (ABX), an oral dose of a grape seed proanthocyanidin extract (GSPE), or with their combination. CAF feeding and ABX treatment affected OXLs in a photoperiod dependent-manner. GSPE significantly altered prostaglandin E2 (PGE2) levels, only under L6 and mitigated ABX-mediated effects only under L18. In conclusion, photoperiods affect OXLs levels influenced by gut microbiota. This is the first time that the effects of photoperiod on OXLs metabolites have been demonstrated.
Collapse
|
7
|
Estanyol-Torres N, Domenech-Coca C, González-Domínguez R, Miñarro A, Reverter F, Moreno-Muñoz JA, Jiménez J, Martín-Palomas M, Castellano-Escuder P, Mostafa H, García-Vallvé S, Abasolo N, Rodríguez MA, Torrell H, Del Bas JM, Sanchez-Pla A, Caimari A, Mas-Capdevila A, Andres-Lacueva C, Crescenti A. A mixture of four dietary fibres ameliorates adiposity and improves metabolic profile and intestinal health in cafeteria-fed obese rats: an integrative multi-omics approach. J Nutr Biochem 2023; 111:109184. [PMID: 36265688 DOI: 10.1016/j.jnutbio.2022.109184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/17/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022]
Abstract
The aim of this study was to assess the effects of a mixture of four dietary fibers on obese rats. Four groups of male Wistar rats were fed with either standard chow (STD) or cafeteria diet (CAF) and were orally supplemented with either fibre mixture (2 g kg-1 of body weight) (STD+F or CAF+F groups) or vehicle (STD+VH or CAF+VH groups). We studied a wide number of biometric, biochemical, transcriptomic, metagenomic and metabolomic variables and applied an integrative multivariate approach based on multiple factor analysis and Pearson's correlation analysis. A significant reduction in body weight, adiposity, HbA1c and HDL-cholesterol serum levels, and colon MPO activity was observed, whereas cecal weight and small intestine length:weight ratio were significantly increased in F-treated groups compared to control animals. CAF+F rats displayed a significant enhancement in energy expenditure, fat oxidation and fresh stool weight, and a significant reduction in adiponectin and LPS serum levels, compared to control group. Animals in STD+F group showed reduced serum LDL-cholesterol levels and a significant reduction in total cholesterol levels in the liver compared to STF+VH group. The intervention effect was reflected at the metabolomic (i.e., production of short-chain fatty acids, phenolic acids, and amino acids), metagenomic (i.e., modulation of Ruminococcus and Lactobacillus genus) and transcriptomic (i.e., expression of tight junctions and proteolysis) levels. Altogether, our integrative multi-omics approach highlights the potential of supplementation with a mixture of fibers to ameliorate the impairments triggered by obesity in terms of adiposity, metabolic profile, and intestinal health.
Collapse
Affiliation(s)
- Núria Estanyol-Torres
- Biomarkers and Nutrimetabolomics Laboratory, Faculty of Pharmacy and Food Sciences, University of Barcelona, Food Innovation Network (XIA), Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Raúl González-Domínguez
- Biomarkers and Nutrimetabolomics Laboratory, Faculty of Pharmacy and Food Sciences, University of Barcelona, Food Innovation Network (XIA), Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Miñarro
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Ferran Reverter
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | | | - Jesús Jiménez
- Laboratorios Ordesa, Scientific Department, Parc Científic Barcelona, Barcelona, Spain
| | - Manel Martín-Palomas
- Laboratorios Ordesa, Scientific Department, Parc Científic Barcelona, Barcelona, Spain
| | - Pol Castellano-Escuder
- Biomarkers and Nutrimetabolomics Laboratory, Faculty of Pharmacy and Food Sciences, University of Barcelona, Food Innovation Network (XIA), Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Hamza Mostafa
- Biomarkers and Nutrimetabolomics Laboratory, Faculty of Pharmacy and Food Sciences, University of Barcelona, Food Innovation Network (XIA), Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | - Santi García-Vallvé
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Tarragona, Spain
| | - Nerea Abasolo
- Eurecat, Technology Centre of Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Miguel A Rodríguez
- Eurecat, Technology Centre of Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Helena Torrell
- Eurecat, Technology Centre of Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Josep M Del Bas
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, Reus, Spain
| | - Alex Sanchez-Pla
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Antoni Caimari
- Eurecat, Technology Centre of Catalunya, Biotechnology Area and Technological Unit of Nutrition and Health, Reus, Spain
| | - Anna Mas-Capdevila
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, Reus, Spain.
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Faculty of Pharmacy and Food Sciences, University of Barcelona, Food Innovation Network (XIA), Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain.
| | - Anna Crescenti
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, Reus, Spain.
| |
Collapse
|
8
|
TetraSOD®, a Unique Marine Microalgae Ingredient, Promotes an Antioxidant and Anti-Inflammatory Status in a Metabolic Syndrome-Induced Model in Rats. Nutrients 2022; 14:nu14194028. [PMID: 36235679 PMCID: PMC9571776 DOI: 10.3390/nu14194028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Increased oxidative stress has been linked to the pathogenic process of obesity and can trigger inflammation, which is often linked with the risk factors that make up metabolic syndrome (MetS), including obesity, insulin resistance, dyslipidaemia and hypertension. TetraSOD®, a natural marine vegan ingredient derived from the microalgae Tetraselmis chuii that is high in the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) has recently demonstrated in vitro increased activity of these key antioxidant enzymes. In the present study, the potential bioactive effects of three dietary dosages of TetraSOD® in enhancing antioxidant and anti-inflammatory mechanisms to combat the metabolic disturbances that compose MetS were assessed in rats given a cafeteria (CAF) diet. Chronic supplementation with 0.17, 1.7, and 17 mg kg−1 day−1 of TetraSOD® for 8 weeks ameliorated the abnormalities associated with MetS, including oxidative stress and inflammation, promoting endogenous antioxidant defence mechanisms in the liver (GPx and GSH), modulating oxidative stress and inflammatory markers in plasma (NOx, oxLDL and IL-10), and regulating genes involved in antioxidant, anti-inflammatory and immunomodulatory pathways in the liver, mesenteric white adipose tissue (MWAT), thymus, and spleen. Overall, TetraSOD® appears to be a potential therapeutic option for the management of MetS.
Collapse
|
9
|
Ferreira YAM, Jamar G, Estadella D, Pisani LP. Proanthocyanidins in grape seeds and their role in gut microbiota-white adipose tissue axis. Food Chem 2022; 404:134405. [DOI: 10.1016/j.foodchem.2022.134405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022]
|
10
|
Arreaza-Gil V, Escobar-Martínez I, Muguerza B, Aragonès G, Suárez M, Torres-Fuentes C, Arola-Arnal A. The effects of grape seed proanthocyanidins in cafeteria diet-induced obese Fischer 344 rats are influenced by faecal microbiota in a photoperiod dependent manner. Food Funct 2022; 13:8363-8374. [PMID: 35916585 DOI: 10.1039/d2fo01206e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyphenols are of high interest due to their beneficial health effects, including anti-obesity properties. The gut microbiota may play an important role in polyphenol-mediated effects as these bacteria are significantly involved in the metabolism of polyphenols. Moreover, seasonal rhythms have been demonstrated to influence both the gut microbiota composition and polyphenol bioavailability. Thus, the goal of this study was to evaluate the impact of photoperiods and microbiota on polyphenol functionality in an obesogenic context. Towards this aim, cafeteria diet-fed Fischer 344 rats were housed under three different photoperiod conditions (L6: 6 h of light, L12: 12 h of light and L18: 18 h of light) for 9 weeks. During the last 4 weeks of the experiment, rats were daily administered with an oral dose of a grape seed proanthocyanidin extract (GSPE) (25 mg per kg body weight). Additionally, rats treated with GSPE and an antibiotic cocktail (ABX) in their drinking water were included for a better understanding of the gut microbiota role in GSPE functionality. Vehicle and non-ABX treated rats were included as controls. GSPE decreased body weight gain and fat depots only under L18 conditions. Interestingly, the gut microbiota composition was strongly altered in this photoperiod. GSPE + ABX-treated rats gained significantly less body weight compared to the rats of the rest of the treatments under L18 conditions. These results suggest that GSPE functionality is modulated by the gut microbiota in a photoperiod dependent manner. These novel findings corroborate seasonal rhythms as key factors that must be taken into account when investigating the effects of polyphenols in the treatment or prevention of chronic diseases.
Collapse
Affiliation(s)
- Verónica Arreaza-Gil
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Iván Escobar-Martínez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Gerard Aragonès
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Manuel Suárez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Cristina Torres-Fuentes
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| |
Collapse
|
11
|
Colom-Pellicer M, Rodríguez RM, Navarro-Masip È, Bravo FI, Mulero M, Arola L, Aragonès G. Time-of-day dependent effect of proanthocyanidins on adipose tissue metabolism in rats with diet-induced obesity. Int J Obes (Lond) 2022; 46:1394-1402. [PMID: 35523954 DOI: 10.1038/s41366-022-01132-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Grape-seed proanthocyanidin extract (GSPE) improve white adipose tissue (WAT) expansion during diet-induced obesity. However, because adipose metabolism is synchronized by circadian rhythms, it is plausible to speculate that the bioactivity of dietary proanthocyanidins could be influenced by the time-of-day in which they are consumed. Therefore, the aim of the present study was to determine the interaction between zeitgeber time (ZT) and GSPE consumption on the functionality of WAT in rats with diet-induced obesity. METHODS Male Wistar rats were fed a cafeteria diet for 9 weeks. After 5 weeks, the animals were supplemented with 25 mg GSPE/kg for 4 weeks at the beginning of the light/rest phase (ZT0) or of the dark/active phase (ZT12). Body fat content was determined by nuclear magnetic resonance and histological analyses were performed in the epididymal (EWAT) and inguinal (IWAT) fat depots to determine adipocyte size and number. In addition, the expression of genes related to adipose metabolism and circadian clock function were analyzed by qPCR. RESULTS GSPE consumption at ZT0 was associated with a potential antidiabetic effect without affecting adiposity and energy intake and downregulating the gene expression of inflammatory markers in EWAT. In contrast, GSPE consumption at ZT12 improved adipose tissue expansion decreasing adipocyte size in IWAT. In accordance with this adipogenic activity, the expression of genes involved in fatty acid metabolism were downregulated at ZT12 in IWAT. In turn, GSPE consumption at ZT12, but not at ZT0, repressed the expression of the clock gene Cry1 in IWAT. CONCLUSIONS The interaction between ZT and GSPE consumption influenced the metabolic response of WAT in a tissue-specific manner. Understanding the impact of circadian clock on adipose metabolism and how this is regulated by polyphenols will provide new insights for the management of obesity.
Collapse
Affiliation(s)
- Marina Colom-Pellicer
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Tarragona, Spain
| | - Romina M Rodríguez
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Tarragona, Spain
| | - Èlia Navarro-Masip
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Tarragona, Spain
| | - Francisca Isabel Bravo
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Tarragona, Spain
| | - Miquel Mulero
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Tarragona, Spain
| | - Lluís Arola
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Tarragona, Spain
| | - Gerard Aragonès
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Tarragona, Spain.
| |
Collapse
|
12
|
Zineb OY, Rashwan AK, Karim N, Lu Y, Tangpong J, Chen W. Recent Developments in Procyanidins on Metabolic Diseases, Their Possible Sources, Pharmacokinetic Profile, and Clinical Outcomes. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ould Yahia Zineb
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Naymul Karim
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Lu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| |
Collapse
|
13
|
Wang R, Zhu W, Dang M, Deng X, Shi X, Zhang Y, Li K, Li C. Targeting Lipid Rafts as a Rapid Screening Strategy for Potential Antiadipogenic Polyphenols along with the Structure-Activity Relationship and Mechanism Elucidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3872-3885. [PMID: 35302782 DOI: 10.1021/acs.jafc.2c00444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Obesity is a global public health problem that endangers human health, and a rapid search for compounds with antiadipogenic activity could provide solutions to overcome this problem. Polyphenols are potential antiadipogenic compounds, but the screening strategy, structure-activity relationship (SAR), and elucidation of their mechanisms of action remain poorly understood because of the high diversity of polyphenols. Lipid rafts, enriched with sphingolipids and cholesterol, are considered a potential target of polyphenols for the regulation of cellular processes and diseases. Here, a novel rapid screening active polyphenol strategy that targets the lipid rafts using molecular dynamic simulation was developed and validated by 3T3-L1 preadipocyte assay. The screening strategy is high-throughput, inexpensive, reagent-free, and effort saving. In addition, the SAR and mechanisms of action mediating the differentiation-inhibition of the preadipocyte by polyphenols were well elucidated by utilizing multiple technologies, such as "raft-like liposomes" systems, giant plasma membrane vesicles, noninvasive lipid raft probes, and ultrahigh-resolution microscopy. High inhibitory-activity polyphenols could penetrate deeper into the hydrophobic lipid center, in an inverted V-shaped manner or by insertion of galloyl groups into rafts, thus disrupting the ordered domain of lipid rafts. In contrast, the medium and low inhibitory-activity polyphenols could only localize on the surface of lipid rafts, exerting slight and the weakest interference with a lipid raft structure, respectively. The combined use of reliable technologies could yield new knowledge on the SAR and the molecular mechanisms of polyphenols.
Collapse
Affiliation(s)
- Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Zhu
- Department of Nutrition, University of California, Davis, California 95616-5270, United States
| | - Meizhu Dang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiangyi Deng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yajie Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Food Science, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
14
|
Hernandez-Baixauli J, Abasolo N, Palacios-Jordan H, Foguet-Romero E, Suñol D, Galofré M, Caimari A, Baselga-Escudero L, Del Bas JM, Mulero M. Imbalances in TCA, Short Fatty Acids and One-Carbon Metabolisms as Important Features of Homeostatic Disruption Evidenced by a Multi-Omics Integrative Approach of LPS-Induced Chronic Inflammation in Male Wistar Rats. Int J Mol Sci 2022; 23:ijms23052563. [PMID: 35269702 PMCID: PMC8910732 DOI: 10.3390/ijms23052563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic inflammation is an important risk factor in a broad variety of physical and mental disorders leading to highly prevalent non-communicable diseases (NCDs). However, there is a need for a deeper understanding of this condition and its progression to the disease state. For this reason, it is important to define metabolic pathways and complementary biomarkers associated with homeostatic disruption in chronic inflammation. To achieve that, male Wistar rats were subjected to intraperitoneal and intermittent injections with saline solution or increasing lipopolysaccharide (LPS) concentrations (0.5, 5 and 7.5 mg/kg) thrice a week for 31 days. Biochemical and inflammatory parameters were measured at the end of the study. To assess the omics profile, GC-qTOF and UHPLC-qTOF were performed to evaluate plasma metabolome; 1H-NMR was used to evaluate urine metabolome; additionally, shotgun metagenomics sequencing was carried out to characterize the cecum microbiome. The chronicity of inflammation in the study was evaluated by the monitoring of monocyte chemoattractant protein-1 (MCP-1) during the different weeks of the experimental process. At the end of the study, together with the increased levels of MCP-1, levels of interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α) and prostaglandin E2 (PGE2) along with 8-isoprostanes (an indicative of oxidative stress) were significantly increased (p-value < 0.05). The leading features implicated in the current model were tricarboxylic acid (TCA) cycle intermediates (i.e., alpha-ketoglutarate, aconitic acid, malic acid, fumaric acid and succinic acid); lipids such as specific cholesterol esters (ChoEs), lysophospholipids (LPCs) and phosphatidylcholines (PCs); and glycine, as well as N, N-dimethylglycine, which are related to one-carbon (1C) metabolism. These metabolites point towards mitochondrial metabolism through TCA cycle, β-oxidation of fatty acids and 1C metabolism as interconnected pathways that could reveal the metabolic effects of chronic inflammation induced by LPS administration. These results provide deeper knowledge concerning the impact of chronic inflammation on the disruption of metabolic homeostasis.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (A.C.); (L.B.-E.)
| | - Nerea Abasolo
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Hector Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Elisabet Foguet-Romero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - David Suñol
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Mar Galofré
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (A.C.); (L.B.-E.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (A.C.); (L.B.-E.)
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (A.C.); (L.B.-E.)
- Correspondence: (J.M.D.B.); (M.M.)
| | - Miquel Mulero
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence: (J.M.D.B.); (M.M.)
| |
Collapse
|
15
|
Quesada-Vázquez S, Colom-Pellicer M, Navarro-Masip È, Aragonès G, Del Bas JM, Caimari A, Escoté X. Supplementation with a Specific Combination of Metabolic Cofactors Ameliorates Non-Alcoholic Fatty Liver Disease, Hepatic Fibrosis, and Insulin Resistance in Mice. Nutrients 2021; 13:3532. [PMID: 34684533 PMCID: PMC8541294 DOI: 10.3390/nu13103532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have emerged as the leading causes of chronic liver disease in the world. Obesity, insulin resistance, and dyslipidemia are multifactorial risk factors strongly associated with NAFLD/NASH. Here, a specific combination of metabolic cofactors (a multi-ingredient; MI) containing precursors of glutathione (GSH) and nicotinamide adenine dinucleotide (NAD+) (betaine, N-acetyl-cysteine, L-carnitine and nicotinamide riboside) was evaluated as effective treatment for the NAFLD/NASH pathophysiology. Six-week-old male mice were randomly divided into control diet animals and animals exposed to a high fat and high fructose/sucrose diet to induce NAFLD. After 16 weeks, diet-induced NAFLD mice were distributed into two groups, treated with the vehicle (HFHFr group) or with a combination of metabolic cofactors (MI group) for 4 additional weeks, and blood and liver were obtained from all animals for biochemical, histological, and molecular analysis. The MI treatment reduced liver steatosis, decreasing liver weight and hepatic lipid content, and liver injury, as evidenced by a pronounced decrease in serum levels of liver transaminases. Moreover, animals supplemented with the MI cocktail showed a reduction in the gene expression of some proinflammatory cytokines when compared with their HFHFr counterparts. In addition, MI supplementation was effective in decreasing hepatic fibrosis and improving insulin sensitivity, as observed by histological analysis, as well as a reduction in fibrotic gene expression (Col1α1) and improved Akt activation, respectively. Taken together, supplementation with this specific combination of metabolic cofactors ameliorates several features of NAFLD, highlighting this treatment as a potential efficient therapy against this disease in humans.
Collapse
Affiliation(s)
- Sergio Quesada-Vázquez
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| | - Marina Colom-Pellicer
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (M.C.-P.); (È.N.-M.); (G.A.)
| | - Èlia Navarro-Masip
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (M.C.-P.); (È.N.-M.); (G.A.)
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (M.C.-P.); (È.N.-M.); (G.A.)
| | - Josep M. Del Bas
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain;
| | - Xavier Escoté
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| |
Collapse
|
16
|
Yang H, Xie J, Wang N, Zhou Q, Lu Y, Qu Z, Wang H. Effects of Miao sour soup on hyperlipidemia in high-fat diet-induced obese rats via the AMPK signaling pathway. Food Sci Nutr 2021; 9:4266-4277. [PMID: 34401077 PMCID: PMC8358355 DOI: 10.1002/fsn3.2394] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/16/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022] Open
Abstract
Hyperlipidemia is a common characteristic of obese animals. Identifying the factors involved in the regulation of dietary lipid metabolism is the most beneficial way to improve health. Miao sour soup (MSS) is a fermented food made from tomato and red pepper that contains lycopene, capsaicin, and organic acids. We conducted this study to investigate the regulatory functions and mechanisms of MSS on the blood lipid levels of high-fat diet-induced obese rats. In our preventive study, rats were fed normal diet (ND1), high-fat diet (HFD1), HFD + 4 g/kg BW MSS (HFD + LS1), and HFD + 8 g/kg BW MSS (HFD + HS1). We found that MSS significantly reduced the body weight and fat accumulation and improved the blood lipid levels of rats. MSS significantly increased the expression of AMP-activated protein kinase-alpha (AMPKα), attenuated the expression of the adipogenic transcription factor sterol regulatory element-binding protein-1c (SREBP-1c), and suppressed the expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase alpha (ACCα), the critical regulators of hepatic lipid metabolism. Additionally, we also conducted a treatment study, and we grouped rats to receive ND2, HFD2, PC2, HFD + LS2, and HFD + HS2 for another 10 weeks. MSS treatment reduced the body weight, fat deposition, and percentage of lipid droplets and regulated the plasma lipid content. MSS significantly increased the expression of AMPK and alleviated the expression of SREBP-1c, ACC, and FAS. Taken together, these findings suggest that MSS prevents and treats hyperlipidemia in obese rats by regulating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Hongmei Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| | - Jiao Xie
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| | - Nanlan Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| | - Qianqian Zhou
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| | - Yang Lu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
- Guiyang Maternal and Child Healthcare HospitalGuiyangChina
| | - Zihan Qu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
- Laishan District Center for Disease Control and PreventionYantaiChina
| | - Huiqun Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
17
|
Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants (Basel) 2021; 10:antiox10081229. [PMID: 34439477 PMCID: PMC8389005 DOI: 10.3390/antiox10081229] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.
Collapse
|
18
|
Yang S, Zhang Y, Li W, You B, Yu J, Huang X, Yang R. Gut Microbiota Composition Affects Procyanidin A2-Attenuated Atherosclerosis in ApoE -/- Mice by Modulating the Bioavailability of Its Microbial Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6989-6999. [PMID: 34142543 DOI: 10.1021/acs.jafc.1c00430] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Procyanidin A2 (PCA2) has been shown to improve lipid metabolism. However, it remains to know whether it can play a role in preventing atherosclerosis (AS) through gut microbiota. This study examined the effect of PCA2 on high fat diet (HFD)-induced AS in ApoE-/- mice with an intact and antibiotic-depleted microbiota. PCA2 administration for 12 weeks attenuated HFD-induced AS in ApoE-/- mice, evidenced by obviously alleviating the histological abnormalities of the aorta, lipid accumulation, oxidative stress, and inflammation, which were accompanied by downregulating the expression of vascular cell adhesion molecule-1 and intracellular adhesion molecule-1 and upregulating peroxisome proliferator-activated receptor gamma, cholesterol 7 alpha-hydroxylase, and ATP-binding cassette transporter A1. Moreover, PCA2 treatment reshaped the gut microbiota imbalance caused by HFD, especially reducing the ratio of Firmicutes/Bacteroidetes and increasing the abundance of Verrucomicrobia. However, antibiotic intervention almost offset the alleviation of AS by PCA2 and prevented the biotransformation of PCA2 by gut microbiota, thus resulting in a 2327.21-6.27-fold decrease in its microbial metabolites of plasma. There was a marked correlation among the microbiota composition, the bioavailability of PCA2-derived microbial metabolites, and AS indicators. The findings indicate that the gut microbiota robustly influences the bioavailability of microbial metabolites that may partially drive the AS resilience property of PCA2.
Collapse
Affiliation(s)
- Shiying Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuying Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wu Li
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Bangyan You
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiawen Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Huang
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Ruili Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
19
|
Hernandez-Baixauli J, Puigbò P, Torrell H, Palacios-Jordan H, Ripoll VJR, Caimari A, Del Bas JM, Baselga-Escudero L, Mulero M. A Pilot Study for Metabolic Profiling of Obesity-Associated Microbial Gut Dysbiosis in Male Wistar Rats. Biomolecules 2021; 11:303. [PMID: 33670496 PMCID: PMC7922951 DOI: 10.3390/biom11020303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is one of the most incident and concerning disease worldwide. Definite strategies to prevent obesity and related complications remain elusive. Among the risk factors of the onset of obesity, gut microbiota might play an important role in the pathogenesis of the disease, and it has received extensive attention because it affects the host metabolism. In this study, we aimed to define a metabolic profile of the segregated obesity-associated gut dysbiosis risk factor. The study of the metabolome, in an obesity-associated gut dysbiosis model, provides a relevant way for the discrimination on the different biomarkers in the obesity onset. Thus, we developed a model of this obesity risk factors through the transference of gut microbiota from obese to non-obese male Wistar rats and performed a subsequent metabolic analysis in the receptor rats. Our results showed alterations in the lipid metabolism in plasma and in the phenylalanine metabolism in urine. In consequence, we have identified metabolic changes characterized by: (1) an increase in DG:34:2 in plasma, a decrease in hippurate, (2) an increase in 3-HPPA, and (3) an increase in o-coumaric acid. Hereby, we propose these metabolites as a metabolic profile associated to a segregated dysbiosis state related to obesity disease.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Pere Puigbò
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Helena Torrell
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili−EURECAT, 43204 Reus, Spain; (H.T.); (H.P.-J.)
| | - Hector Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili−EURECAT, 43204 Reus, Spain; (H.T.); (H.P.-J.)
| | | | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
20
|
Fraga-Corral M, Otero P, Cassani L, Echave J, Garcia-Oliveira P, Carpena M, Chamorro F, Lourenço-Lopes C, Prieto MA, Simal-Gandara J. Traditional Applications of Tannin Rich Extracts Supported by Scientific Data: Chemical Composition, Bioavailability and Bioaccessibility. Foods 2021; 10:251. [PMID: 33530516 PMCID: PMC7912241 DOI: 10.3390/foods10020251] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tannins are polyphenolic compounds historically utilized in textile and adhesive industries, but also in traditional human and animal medicines or foodstuffs. Since 20th-century, advances in analytical chemistry have allowed disclosure of the chemical nature of these molecules. The chemical profile of extracts obtained from previously selected species was investigated to try to establish a bridge between traditional background and scientific data. The study of the chemical composition of these extracts has permitted us to correlate the presence of tannins and other related molecules with the effectiveness of their apparent uses. The revision of traditional knowledge paired with scientific evidence may provide a supporting background on their use and the basis for developing innovative pharmacology and food applications based on formulations using natural sources of tannins. This traditional-scientific approach can result useful due to the raising consumers' demand for natural products in markets, to which tannin-rich extracts may pose an attractive alternative. Therefore, it is of interest to back traditional applications with accurate data while meeting consumer's acceptance. In this review, several species known to contain high amounts of tannins have been selected as a starting point to establish a correlation between their alleged traditional use, tannins content and composition and potential bioaccessibility.
Collapse
Affiliation(s)
- Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain
| | - Lucia Cassani
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Research Group of Food Engineering, Faculty of Engineering, National University of Mar del Plata, Mar del Plata RA7600, Argentina
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| |
Collapse
|
21
|
Wen K, Fang X, Yang J, Yao Y, Nandakumar KS, Salem ML, Cheng K. Recent Research on Flavonoids and their Biomedical Applications. Curr Med Chem 2021; 28:1042-1066. [PMID: 32660393 DOI: 10.2174/0929867327666200713184138] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, commonly found in various plants, are a class of polyphenolic compounds having a basic structural unit of 2-phenylchromone. Flavonoid compounds have attracted much attention due to their wide biological applications. In order to facilitate further research on the biomedical application of flavonoids, we surveyed the literature published on the use of flavonoids in medicine during the past decade, documented the commonly found structures in natural flavonoids, and summarized their pharmacological activities as well as associated mechanisms of action against a variety of health disorders including chronic inflammation, cancer, cardiovascular complications and hypoglycemia. In this mini-review, we provide suggestions for further research on the biomedical applications of flavonoids.
Collapse
Affiliation(s)
- Kangmei Wen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochuan Fang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junli Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongfang Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | | | | | - Kui Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
22
|
Muñoz-Bernal ÓA, Coria-Oliveros AJ, de la Rosa LA, Rodrigo-García J, Del Rocío Martínez-Ruiz N, Sayago-Ayerdi SG, Alvarez-Parrilla E. Cardioprotective effect of red wine and grape pomace. Food Res Int 2020; 140:110069. [PMID: 33648292 DOI: 10.1016/j.foodres.2020.110069] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/03/2020] [Accepted: 12/20/2020] [Indexed: 02/02/2023]
Abstract
Several studies have related moderate consumption of red wine with prevention of cardiovascular diseases (CVD). According to epidemiological studies, those regions with high consumption of red wine and a Mediterranean diet show a low prevalence of CVD. Such an effect has been attributed to phenolic compounds present in red wines. On the other hand, by-products obtained during winemaking are also a significant source of phenolic compounds but have been otherwise overlooked. The cardioprotective effect of red wine and its byproducts is related to their ability to prevent platelet aggregation, modify the lipid profile, and promote vasorelaxation. Phenolic content and profile seem to play an important role in these beneficial effects. Inhibition of platelet aggregation is dose-dependent and more efficient against ADP. The antioxidant capacity of phenolic compounds from red wine and its by-products, is involved in preventing the generation of ROS and the modification of the lipid profile, to prevent LDL oxidation. Phenolic compounds can also, modulate the activity of specific enzymes to promote NO production and vasorelaxation. Specific phenolic compounds like resveratrol are related to promote NO, and quercetin to inhibit platelet aggregation. Nevertheless, concentration that causes those effects is far from that in red wines. Synergic and additive effects of a mix of phenolic compounds could explain the cardioprotective effects of red wine and its byproducts.
Collapse
Affiliation(s)
- Óscar A Muñoz-Bernal
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Alma J Coria-Oliveros
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Laura A de la Rosa
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Joaquín Rodrigo-García
- Department of Health Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Nina Del Rocío Martínez-Ruiz
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Sonia G Sayago-Ayerdi
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico No 2595, Col. Lagos del Country, CP 63175, Tepic, Nayarit, Mexico
| | - Emilio Alvarez-Parrilla
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico.
| |
Collapse
|
23
|
Docampo-Palacios ML, Alvarez-Hernández A, de Fátima Â, Lião LM, Pasinetti GM, Dixon RA. Efficient Chemical Synthesis of (Epi)catechin Glucuronides: Brain-Targeted Metabolites for Treatment of Alzheimer's Disease and Other Neurological Disorders. ACS OMEGA 2020; 5:30095-30110. [PMID: 33251444 PMCID: PMC7689943 DOI: 10.1021/acsomega.0c04512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 05/03/2023]
Abstract
Grape seed extract (GSE) is rich in flavonoids and has been recognized to possess human health benefits. Our group and others have demonstrated that GSE is able to attenuate the development of Alzheimer's disease (AD). Moreover, our results have disclosed that the anti-Alzheimer's benefits are not directly/solely related to the dietary flavonoids themselves, but rather to their metabolites, particularly to the glucuronidated ones. To facilitate the understanding of regioisomer/stereoisomer-specific biological effects of (epi)catechin glucuronides, we here describe a concise chemical synthesis of authentic standards of catechin and epicatechin metabolites 3-12. The synthesis of glucuronides 9 and 12 is described here for the first time. The key reactions employed in the synthesis of the novel glucuronides 9 and 12 include the regioselective methylation of the 4'-hydroxyl group of (epi)catechin (≤1.0/99.0%; 3'-OMe/4'-OMe) and the regioselective deprotection of the tert-butyldimethylsilyl (TBS) group at position 5 (yielding up to 79%) over the others (3, 7 and 3' or 4').
Collapse
Affiliation(s)
- Maite L. Docampo-Palacios
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
- . Phone: +1-214-601-5892. Fax: +1-580-224-6692
| | - Anislay Alvarez-Hernández
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
| | - Ângelo de Fátima
- Department
of Chemistry, Universidade Federal de Minas
Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Luciano Morais Lião
- Institute
of Chemistry, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Giulio M. Pasinetti
- Department
of Psychiatry, The Mount Sinai School of
Medicine, New York, New York 10029, United States
| | - Richard A. Dixon
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
- . Phone: +1-940-565-2308
| |
Collapse
|
24
|
Health Effects of Grape Seed and Skin Extracts and Their Influence on Biochemical Markers. Molecules 2020; 25:molecules25225311. [PMID: 33202575 PMCID: PMC7696942 DOI: 10.3390/molecules25225311] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022] Open
Abstract
This review is focused on the study of the effects of grape seed and skin extract (GSSE) on human health. GSSE contains high concentrations of important polyphenolic substances with high biological activity. This review is a summary of studies that investigate the effects of GSSE on diabetes mellitus, cardiovascular disease and cancer, its neuroprotective effect, and its effects on the gastrointestinal tract and other health complications related to these diseases. The results of the studies confirm that the anti-inflammatory, antiapoptotic, and pro-proliferative effects of “Vitis vinifera L.” seed extract reduce the level of oxidative stress and improve the overall lipid metabolism.
Collapse
|
25
|
A Mix of Natural Bioactive Compounds Reduces Fat Accumulation and Modulates Gene Expression in the Adipose Tissue of Obese Rats Fed a Cafeteria Diet. Nutrients 2020; 12:nu12113251. [PMID: 33114190 PMCID: PMC7690777 DOI: 10.3390/nu12113251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 12/02/2022] Open
Abstract
Scientists are focusing on bioactive ingredients to counteract obesity. We evaluated whether a mix containing grape seed proanthocyanidin extract (GSPE), anthocyanins, conjugated linoleic acid (CLA), and chicken feet hydrolysate (CFH) could reduce body fat mass and also determined which mechanisms in the white adipose tissue (WAT) and the brown adipose tissue (BAT) were affected by the treatment. The mix or vehicle (VH) were administered for three weeks to obese rats fed a cafeteria (CAF) diet. Biometric measures, indirect calorimetry, and gene expression in WAT and BAT were analyzed as was the histology of the inguinal WAT (IWAT). The individual compounds were also tested in the 3T3-L1 cell line. The mix treatment resulted in a significant 15% reduction in fat (25.01 ± 0.91 g) compared to VH treatment (21.19 ± 1.59 g), and the calorimetry results indicated a significant increase in energy expenditure and fat oxidation. We observed a significant downregulation of Fasn mRNA and an upregulation of Atgl and Hsl mRNA in adipose depots in the group treated with the mix. The IWAT showed a tendency of reduction in the number of adipocytes, although no differences in the total adipocyte area were found. GSPE and anthocyanins modulated the lipid content and downregulated the gene and protein levels of Fasn compared to the untreated group in 3T3-L1 cells. In conclusion, this mix is a promising treatment against obesity, reducing the WAT of obese rats fed a CAF diet, increasing energy expenditure and fat oxidation, and modifying the expression of genes involved in lipid metabolism of the adipose tissue.
Collapse
|
26
|
Rodríguez-Daza MC, Roquim M, Dudonné S, Pilon G, Levy E, Marette A, Roy D, Desjardins Y. Berry Polyphenols and Fibers Modulate Distinct Microbial Metabolic Functions and Gut Microbiota Enterotype-Like Clustering in Obese Mice. Front Microbiol 2020; 11:2032. [PMID: 32983031 PMCID: PMC7479096 DOI: 10.3389/fmicb.2020.02032] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Berries are rich in polyphenols and plant cell wall polysaccharides (fibers), including cellulose, hemicellulose, arabinans and arabino-xyloglucans rich pectin. Most of polyphenols and fibers are known to be poorly absorbed in the small intestine and reach the colon where they interact with the gut microbiota, conferring health benefits to the host. This study assessed the contribution of polyphenol-rich whole cranberry and blueberry fruit powders (CP and BP), and that of their fibrous fractions (CF and BF) on modulating the gut microbiota, the microbial functional profile and influencing metabolic disorders induced by high-fat high-sucrose (HFHS) diet for 8 weeks. Lean mice-associated taxa, including Akkermansia muciniphila, Dubosiella newyorkensis, and Angelakisella, were selectively induced by diet supplementation with polyphenol-rich CP and BP. Fiber-rich CF also triggered polyphenols-degrading families Coriobacteriaceae and Eggerthellaceae. Diet supplementation with polyphenol-rich CP, but not with its fiber-rich CF, reduced fat mass depots, body weight and energy efficiency in HFHS-fed mice. However, CF reduced liver triglycerides in HFHS-fed mice. Importantly, polyphenol-rich CP-diet normalized microbial functions to a level comparable to that of Chow-fed controls. Using multivariate association modeling, taxa and predicted functions distinguishing an obese phenotype from healthy controls and berry-treated mice were identified. The enterotype-like clustering analysis underlined the link between a long-term diet intake and the functional stratification of the gut microbiota. The supplementation of a HFHS-diet with polyphenol-rich CP drove mice gut microbiota from Firmicutes/Ruminococcus enterotype into an enterotype linked to healthier host status, which is Prevotella/Akkermansiaceae. This study highlights the prebiotic role of polyphenols, and their contribution to the compositional and functional modulation of the gut microbiota, counteracting obesity.
Collapse
Affiliation(s)
- Maria-Carolina Rodríguez-Daza
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Marcela Roquim
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of Quebec Heart and Lung Institute, Laval University, Québec, QC, Canada
| | - Emile Levy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of Quebec Heart and Lung Institute, Laval University, Québec, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
27
|
Barbe A, Mellouk N, Ramé C, Grandhaye J, Staub C, Venturi E, Cirot M, Petit A, Anger K, Chahnamian M, Ganier P, Callut O, Cailleau-Audouin E, Metayer-Coustard S, Riva A, Froment P, Dupont J. A grape seed extract maternal dietary supplementation in reproductive hens reduces oxidative stress associated to modulation of plasma and tissue adipokines expression and improves viability of offsprings. PLoS One 2020; 15:e0231131. [PMID: 32282838 PMCID: PMC7153862 DOI: 10.1371/journal.pone.0231131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/17/2020] [Indexed: 01/06/2023] Open
Abstract
In reproductive hens, a feed restriction is an usual practice to improve metabolic and reproductive disorders. However, it acts a stressor on the animal. In mammals, grape seed extracts (GSE) reduces oxidative stress. However, their effect on endocrine and tissue response need to be deepened in reproductive hens. Here, we evaluated the effects of time and level of GSE dietary supplementation on growth performance, viability, oxidative stress and metabolic parameters in plasma and metabolic tissues in reproductive hens and their offsprings. We designed an in vivo trial using 4 groups of feed restricted hens: A (control), B and C (supplemented with 0.5% and 1% of the total diet composition in GSE since week 4, respectively) and D (supplemented with 1% of GSE since the hatch). In hens from hatch to week 40, GSE supplementation did not affect food intake and fattening whatever the time and dose of supplementation. Body weight was significantly reduced in D group as compared to control. In all hen groups, GSE supplementation decreased plasma oxidative stress index associated to a decrease in the mRNA expression of the NOX4 and 5 oxidant genes in liver and muscle and an increase in SOD mRNA expression. This was also associated to decreased plasma chemerin and increased plasma adiponectin and visfatin levels. Interestingly, maternal GSE supplementation increased the live body weight and viability of chicks at hatching and 10 days of age. This was associated to a decrease in plasma and liver oxidative stress parameters. Taken together, GSE maternal dietary supplementation reduces plasma and tissue oxidative stress associated to modulation of adipokines without affecting fattening in reproductive hens. A 1% GSE maternal dietary supplementation increased offspring viability and reduced oxidative stress suggesting a beneficial transgenerational effect and a potential use to improve the quality of the progeny in reproductive hens.
Collapse
Affiliation(s)
- Alix Barbe
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,IFCE, Nouzilly, France
| | - Namya Mellouk
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,IFCE, Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,IFCE, Nouzilly, France
| | - Jérémy Grandhaye
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,IFCE, Nouzilly, France
| | - Christophe Staub
- INRAE - Unité Expérimentale de Physiologie Animale de l'Orfrasière UEPAO 1297, Nouzilly, France
| | - Eric Venturi
- INRAE - Unité Expérimentale de Physiologie Animale de l'Orfrasière UEPAO 1297, Nouzilly, France
| | - Marine Cirot
- INRAE - Unité Expérimentale de Physiologie Animale de l'Orfrasière UEPAO 1297, Nouzilly, France
| | - Angélique Petit
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,IFCE, Nouzilly, France
| | - Karine Anger
- INRAE - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, France
| | - Marine Chahnamian
- INRAE - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, France
| | - Patrice Ganier
- INRAE - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, France
| | - Olivier Callut
- INRAE - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, France
| | | | | | | | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,IFCE, Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,IFCE, Nouzilly, France
| |
Collapse
|
28
|
Liu M, Yun P, Hu Y, Yang J, Khadka RB, Peng X. Effects of Grape Seed Proanthocyanidin Extract on Obesity. Obes Facts 2020; 13:279-291. [PMID: 32114568 PMCID: PMC7250358 DOI: 10.1159/000502235] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
Obesity is a chronic metabolic disease resulting from excessive fat accumulation and/or abnormal distribution caused by multiple factors. As a major component of metabolic syndrome, obesity is closely related to many diseases such as type 2 diabetes mellitus, hyperlipidemia, hypertension, coronary heart disease, stroke and cancer. Hence, the problem of obesity cannot be ignored, and recent studies have shown that grape seed proanthocyanidin extract (GSPE) has an antiobesity effect. This paper systematically reviews the research progress and potential mechanism of GSPE emphasizing on obesity prevention and treatment.
Collapse
Affiliation(s)
- Miao Liu
- Medical School of Yangtze University, Jingzhou, China
| | - Peng Yun
- Department of Endocrinology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ying Hu
- Medical School of Yangtze University, Jingzhou, China
| | - Jiao Yang
- Medical School of Yangtze University, Jingzhou, China
| | | | - Xiaochun Peng
- Medical School of Yangtze University, Jingzhou, China,
| |
Collapse
|
29
|
Protective effects of grape seed procyanidin extract on intestinal barrier dysfunction induced by a long-term high-fat diet. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
30
|
Zeng YX, Wang S, Wei L, Cui YY, Chen YH. Proanthocyanidins: Components, Pharmacokinetics and Biomedical Properties. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:813-869. [PMID: 32536248 DOI: 10.1142/s0192415x2050041x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Proanthocyanidins (PAs) are a group of polyphenols enriched in plant and human food. In recent decades, epidemiological studies have upheld the direct relationship between PA consumption and health benefits; therefore, studies on PAs have become a research hotspot. Although the oral bioavailability of PAs is quite low, pharmacokinetics data revealed that some small molecules and colonic microbial metabolites of PAs could be absorbed and exert their health beneficial effects. The pharmacological effects of PAs mainly include anti-oxidant, anticancer, anti-inflammation, antimicrobial, cardiovascular protection, neuroprotection, and metabolism-regulation behaviors. Moreover, current toxicological studies show that PAs have no observable toxicity to humans. This review summarizes the resources, extraction, structures, pharmacokinetics, pharmacology, and toxicology of PAs and discusses the limitations of current studies. Areas for further research are also proposed.
Collapse
Affiliation(s)
- Yan-Xi Zeng
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Sen Wang
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Lu Wei
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Ying-Yu Cui
- Key Laboratory of Arrhythmias, Ministry of Education (Tongji University), Shanghai 200120, P. R. China
- Heart Health Centre, Tongji University School of Medicine, Shanghai 200120, P. R. China
- Institute of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, P. R. China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Yi-Han Chen
- Key Laboratory of Arrhythmias, Ministry of Education (Tongji University), Shanghai 200120, P. R. China
- Heart Health Centre, Tongji University School of Medicine, Shanghai 200120, P. R. China
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
- Institute of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, P. R. China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| |
Collapse
|
31
|
Rodríguez-Pérez C, García-Villanova B, Guerra-Hernández E, Verardo V. Grape Seeds Proanthocyanidins: An Overview of In Vivo Bioactivity in Animal Models. Nutrients 2019; 11:E2435. [PMID: 31614852 PMCID: PMC6835351 DOI: 10.3390/nu11102435] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
Over the last decade, proanthocyanidins (PACs) are attracting attention not only from the food industry but also from public health organizations due to their health benefits. It is well-known that grapes are a good source of PACs and for that reason, the industry is also focused on grape by-products identification and bioactivity evaluation. Grape seeds extract (GSPE) is a rich source of PACs, mainly composed of monomeric catechin and epicatechin, gallic acid and polymeric and oligomeric proanthocyanidins. Thus, this review encompasses the state-of-art structure and the most recent evidence about the impact of GSPE on chronic diseases, with a focus on oxidative stress, inflammation and metabolic syndrome (MeS)-related disorders such as obesity, diabetes and cardiovascular risk disease in vivo to offer new perspectives in the field that allow further research. Despite the controversial results, is undeniable that PACs from grape seeds are highly antioxidants, thus, the capacity of GSPE to improve oxidative stress might mediate the inflammation process and the progress of MeS-related pathologies. However, further well-design animal studies with standardized dosages and GSPE composition are necessary to shed light into the cause-effect relationship in a more accurate way to later allow a deeper study of the effect of GSPE in humans.
Collapse
Affiliation(s)
- Celia Rodríguez-Pérez
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology (INYTA) 'José Mataix', Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, E-18071 Granada, Spain.
| | - Belén García-Villanova
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
| | - Eduardo Guerra-Hernández
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology (INYTA) 'José Mataix', Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, E-18071 Granada, Spain.
| |
Collapse
|
32
|
Gupta M, Dey S, Marbaniang D, Pal P, Ray S, Mazumder B. Grape seed extract: having a potential health benefits. Journal of Food Science and Technology 2019; 57:1205-1215. [PMID: 32180617 DOI: 10.1007/s13197-019-04113-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022]
Abstract
Grapes are one of the most highly consumed fruits across the world. In ancient Europe the leaves and the sap of grape plants has been used in traditional treatment for ages. Besides being a wellspring for vitamins and fibre, the skin and seeds of grapes are highly rich in Polyphenols specifically proanthocyanidins, which can be used as a functional ingredient to address various health issues by boosting the natural bio-processes of the body. Since, grape seeds are by product of wine making companies therefore can be easily procured. The present review article briefly describes the various pharmacological activities of grape seed extract and different experimental studies were done which supports the beneficial health qualities of the extract. Through different and various studies, it was proved that the proanthocyanidin rich grape seed extract provides benefits against many diseases i.e. inflammation, cardiovascular disease, hypertension, diabetes, cancer, peptic ulcer, microbial infections, etc. Therefore, beside from using it as a nutraceutical or cosmeceutical, as a result they may have a potential to substitute or complement in currently used drugs in the treatment of diseases by developing it into other successful pharmaceutical formulations for better future prospective.
Collapse
Affiliation(s)
- Madhavi Gupta
- 1Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam India
| | - Sanjay Dey
- Division of Pharmaceutics, Calcutta Institute of Pharmaceutical Technology and Allied Health Sciences, Banitabla, Ulberia, Howrah, West Bengal India
| | - Daphisha Marbaniang
- 1Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam India
| | - Paulami Pal
- 1Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam India
| | - Subhabrata Ray
- B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal India
| | - Bhaskar Mazumder
- 1Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam India
| |
Collapse
|
33
|
Nie Y, Stürzenbaum SR. Proanthocyanidins of Natural Origin: Molecular Mechanisms and Implications for Lipid Disorder and Aging-Associated Diseases. Adv Nutr 2019; 10:464-478. [PMID: 30926997 PMCID: PMC6520035 DOI: 10.1093/advances/nmy118] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/06/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022] Open
Abstract
Proanthocyanidins are phytonutrients formed by oligomerization or polymerization of subunits catechin, epicatechin, and their gallic acid esters. Proanthocyanidins are a component of many plants and thus form an integral part of the human diet. Oligomeric proanthocyanidins are currently marketed as medicinal products that target vascular disorders and chronic pathological conditions, many of which are age-associated. Proanthocyanidins are also characterized by their effects on energy homeostasis. Not dissimilar to their chemically synthesized counterparts, naturally extracted proanthocyanidins act via inhibition of lipases, stimulation of energy expenditure, or suppression of appetite. Here we review the current knowledge-base and highlight challenges and future impacts regarding involvement of proanthocyanidins in global lipid metabolism, with a focus on the molecular mechanisms and pathological conditions that progress with aging.
Collapse
Affiliation(s)
- Yu Nie
- Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Stephen R Stürzenbaum
- Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
34
|
Li X, Chen Y, Li S, Chen M, Xiao J, Xie B, Sun Z. Oligomer Procyanidins from Lotus Seedpod Regulate Lipid Homeostasis Partially by Modifying Fat Emulsification and Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4524-4534. [PMID: 30945544 DOI: 10.1021/acs.jafc.9b01469] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dietary polyphenols have shown hypolipidemic effects by reducing triglyceride absorption. The mechanisms may involve modifying fat emulsion during digestion in the gastrointestinal tract and suppressing lipase during hydrolysis in the small intestine. In an in vivo study, lotus seedpod oligomeric procyanidin (LSOPC) decreased total serum triglyceride and total cholesterol and elevated the high-density lipoprotein level in the hyperlipidemic rat model. In addition, LSOPC suppressed de novo lipogenesis-related gene expressions. In an in vitro study, the LSOPC-enriched emulsion decreased the mean droplet size from 0.36 to 0.33 μm and increased the viscosity of the emulsion. Moreover, the LSOPC-enriched emulsion improved the antioxidant properties. A digestion model was developed and showed that the particle size of the LSOPC-enriched emulsion increased in the oral cavity. However, an increase and then a significant drop of the particle size was measured in the stomach and small intestine. The free fatty acid release rate was decreased in the LSOPC-enriched emulsion partly ascribed to the inhibition of lipase by LSOPC.
Collapse
Affiliation(s)
| | | | - Shuyi Li
- College of Food Science and Engineering , Wuhan Polytechnic University , Wuhan , Hubei 430023 , People's Republic of China
| | | | - Juan Xiao
- College of Food Science and Technology , Hainan University , Haikou , Hainan 570228 , People's Republic of China
| | | | | |
Collapse
|
35
|
Li L, Song L, Sun X, Yan S, Huang W, Liu P. Characterisation of phenolics in fruit septum of Juglans regia Linn. by ultra performance liquid chromatography coupled with Orbitrap mass spectrometer. Food Chem 2019; 286:669-677. [PMID: 30827662 DOI: 10.1016/j.foodchem.2019.02.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/22/2022]
Abstract
Walnut (Juglans regia L.) is an abundant source of polyphenols. Although phenolic species in the walnut kernel have been studied comprehensively, their compositional profile in the internal fruit septum, a traditional nutraceutical material in China, has been rarely explored. In the current study, the methanolic extract of the walnut septum was analysed by Ultra-performance liquid chromatography coupled with Orbitrap mass spectrometry. Totally seventy-five phenolics belonging to flavonoids, tannins and phenolic acids were identified based on mass spectra, references and literatures. Among them, quercetin-3-O-galactoside, quercetin-rhamnose-pentoside, quercetin-3-O-glucoside, quercetin-rhamnose-hexoside, kaempferol-rhamnoside, and two isomers of quercetin-rhamnoside were reported for the first time in walnut. The total polyphenol content was found to be 122.78 ± 2.55 mg GAE/g dry weight in septum. This study is the first to comprehensively investigate and identify phenolic compounds in the fruit septum of walnut and indicates that the septum to be a rich resource of polyphenols.
Collapse
Affiliation(s)
- Linlin Li
- School of Food Science and Engineering & Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Lijun Song
- School of Food Science and Engineering & Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, Guangdong 510641, China; College of Life Science, Tarim University, Alar, Xinjiang 843300, China.
| | - Xiaotao Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Shijuan Yan
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Wenjie Huang
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Pengzhan Liu
- School of Food Science and Engineering & Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, Guangdong 510641, China.
| |
Collapse
|
36
|
Hepatic accumulation of S-adenosylmethionine in hamsters with non-alcoholic fatty liver disease associated with metabolic syndrome under selenium and vitamin E deficiency. Clin Sci (Lond) 2019; 133:409-423. [PMID: 29122967 DOI: 10.1042/cs20171039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/27/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
Progression of non-alcoholic fatty liver disease (NAFLD) in the context of metabolic syndrome (MetS) is only partially explored due to the lack of preclinical models. In order to study the alterations in hepatic metabolism that accompany this condition, we developed a model of MetS accompanied by the onset of steatohepatitis (NASH) by challenging golden hamsters with a high-fat diet low in vitamin E and selenium (HFD), since combined deficiency results in hepatic necroinflammation in rodents. Metabolomics and transcriptomics integrated analyses of livers revealed an unexpected accumulation of hepatic S-Adenosylmethionine (SAM) when compared with healthy livers likely due to diminished methylation reactions and repression of GNMT. SAM plays a key role in the maintenance of cellular homeostasis and cell cycle control. In agreement, analysis of over-represented transcription factors revealed a central role of c-myc and c-Jun pathways accompanied by negative correlations between SAM concentration, MYC expression and AMPK phosphorylation. These findings point to a drift of cell cycle control toward senescence in livers of HFD animals, which could explain the onset of NASH in this model. In contrast, hamsters with NAFLD induced by a conventional high-fat diet did not show SAM accumulation, suggesting a key role of selenium and vitamin E in SAM homeostasis. In conclusion, our results suggest that progression of NAFLD in the context of MetS can take place even in a situation of hepatic SAM excess and that selenium and vitamin E status might be considered in current therapies against NASH based on SAM supplementation.
Collapse
|
37
|
Zein-polysaccharide nanoparticles as matrices for antioxidant compounds: A strategy for prevention of chronic degenerative diseases. Food Res Int 2018; 111:451-471. [DOI: 10.1016/j.foodres.2018.05.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023]
|
38
|
Leonetti D, Soleti R, Clere N, Vergori L, Jacques C, Duluc L, Dourguia C, Martínez MC, Andriantsitohaina R. Extract Enriched in Flavan-3-ols and Mainly Procyanidin Dimers Improves Metabolic Alterations in a Mouse Model of Obesity-Related Disorders Partially via Estrogen Receptor Alpha. Front Pharmacol 2018; 9:406. [PMID: 29740325 PMCID: PMC5928481 DOI: 10.3389/fphar.2018.00406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/09/2018] [Indexed: 01/21/2023] Open
Abstract
Red wine polyphenol extracts improve cardiovascular and metabolic disorders linked to obesity. Their vascular protection is mediated by the activation of the alpha isoform of the estrogen receptor (ERα). In the present study, we explored the effects of a grape seed extract (GSE) enriched in the flavan-3-ols procyanidin dimers on obesity-related cardiovascular and metabolic disorders; with a particular interest in the role/contribution of ERα. Ovariectomized wild type or ERα knockout (KO) mice were fed with standard or western diet, supplemented or not with GSE, for 12 weeks. Their body weight was monitored throughout the study, and an echocardiography was performed at the end of the treatment. Blood and tissues were collected for biochemical and functional analysis, including nitric oxide and oxidative stress measurement. Vascular reactivity and liver mitochondrial complexes activity were also analyzed. In western diet-fed mice, GSE reduced adiposity, plasma triglycerides, and oxidative stress in the heart, liver, adipose and skeletal tissues; but did not improve the vascular dysfunction. In western diet-fed mice, ERα deletion prevented or reduced the beneficial effects of GSE on plasma triglycerides and visceral adiposity. ERα deletion also prevented/reduced the anti-oxidant effect of GSE in the liver, but did not affect its capacity to reduce oxidative stress in the heart and adipose tissue. In conclusion, dietary supplementation of GSE attenuated features of metabolic syndrome partially through ERα-dependent mechanisms. This report highlights the therapeutic potential of polyphenols, and especially extract enriched in procyanidin dimers, against the metabolic disorders associated with excessive energy intake.
Collapse
Affiliation(s)
- Daniela Leonetti
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Raffaella Soleti
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Nicolas Clere
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Luisa Vergori
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Caroline Jacques
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Lucie Duluc
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Catherine Dourguia
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Maria C Martínez
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France.,Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Ramaroson Andriantsitohaina
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France.,Centre Hospitalier Universitaire d'Angers, Angers, France
| |
Collapse
|
39
|
Effects of an Intermittent Grape-Seed Proanthocyanidin (GSPE) Treatment on a Cafeteria Diet Obesogenic Challenge in Rats. Nutrients 2018. [PMID: 29518911 PMCID: PMC5872733 DOI: 10.3390/nu10030315] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Obesity is highly associated with the pathologies included in the concept of the Metabolic Syndrome. Grape-seed proanthocyanins (GSPE) have showed very positive effects against all these metabolic disruptions; however, there is, as yet, no consensus about their effectiveness against an obesogenic challenge, such as a cafeteria diet. We determined the effectiveness of a dose of 500 mg GSPE/kg b.w. (body weight) against the obesogenic effects of a 17-week cafeteria diet, administered as a sub-chronic treatment, 10–15 days before, intermittently and at the end of the diet, in Wistar rats. Body weight, adiposity, indirect calorimetry and plasma parameters were analyzed. GSPE pre-treatment showed a long-lasting effect on body weight and adiposity that was maintained for seven weeks after the last dose. A corrective treatment was administered for the last two weeks of the cafeteria diet intervention; however, it did not effectively correct any of the parameters assessed. The most effective treatment was an intermittent GSPE dosage, administered every second week during the cafeteria diet. This limited body weight gain, adiposity and most lipotoxic effects. Our results support the administration of this GSPE dose, keeping an intermittent interval between dosages longer than every second week, to improve obesogenic disruptions produced by a cafeteria diet.
Collapse
|
40
|
Alfaro-Viquez E, Roling BF, Krueger CG, Rainey CJ, Reed JD, Ricketts ML. An extract from date palm fruit (Phoenix dactylifera) acts as a co-agonist ligand for the nuclear receptor FXR and differentially modulates FXR target-gene expression in vitro. PLoS One 2018; 13:e0190210. [PMID: 29293579 PMCID: PMC5749773 DOI: 10.1371/journal.pone.0190210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023] Open
Abstract
Date palm fruit (Phoenix dactylifera) consumption reduces serum triglyceride levels in human subjects. The objective of this study was to prepare an extract from dates and determine whether it acts as a ligand for the farnesoid x receptor (FXR), a nuclear receptor important for maintaining triglyceride and cholesterol homeostasis. Freeze-dried extracts were isolated from California-grown dates (Deglet Noor and Medjool) from the 2014 and 2015 harvests, by means of liquid extraction and solid phase separation. Each date palm extract (DPE) was characterized via HPLC and MALDI-TOF mass spectrometry, and the procyanidin content was qualitatively determined. Extracts were tested to determine their ability to modulate nuclear receptor-mediated transactivation using transient transfection. The effect of DPE on FXR-target genes regulating bile acid absorption and transport was then assessed in vitro, in Caco-2 cells. Characterization reveals that DPE is a rich source of polyphenols including hydroxycinnamic acids, proanthocyanidins, and lipohilic polyphenols, and comprises 13% proanthocyanidins. Transactivation results show that DPE acts as a co-agonist ligand for both mouse and human FXR, wherein it activates bile acid-bound FXR greater than that seen with bile acid alone. Additionally, DPE alone activated a peroxisome proliferator activated receptor alpha (PPARα) chimera in a dose-dependent manner. Consistent with DPE as a co-agonist ligand for FXR, studies in Caco-2 cells reveal that co-incubation with bile acid, dose-dependently enhances the expression of fibroblast growth factor 19 (FGF19), compared to treatment with bile acid alone. In contrast, DPE inhibited bile acid-induced expression of ileal bile acid binding protein (IBABP). Our results demonstrate that DPE acts as a potent co-agonist ligand for FXR, and that it differentially regulates FXR-target gene expression in vitro in human intestinal cells. This study provides novel insight into a potential mechanism by which dates may exert a hypotriglyceridemic effect via FXR and modulation of bile acid homeostasis.
Collapse
Affiliation(s)
- Emilia Alfaro-Viquez
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Brent F. Roling
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, Reno, NV, United States of America
| | - Christian G. Krueger
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Complete Phytochemical Solutions, Cambridge, WI, United States of America
| | - Charlene J. Rainey
- Date Research Institute, San Juan Capistrano, CA, United States of America
| | - Jess D. Reed
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Complete Phytochemical Solutions, Cambridge, WI, United States of America
| | - Marie-Louise Ricketts
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, Reno, NV, United States of America
- * E-mail:
| |
Collapse
|
41
|
Mahmoudi M, Charradi K, Limam F, Aouani E. Grape seed and skin extract as an adjunct to xenical therapy reduces obesity, brain lipotoxicity and oxidative stress in high fat diet fed rats. Obes Res Clin Pract 2018; 12:115-126. [DOI: 10.1016/j.orcp.2016.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 11/25/2022]
|
42
|
Alterations in gut microbiota associated with a cafeteria diet and the physiological consequences in the host. Int J Obes (Lond) 2017; 42:746-754. [PMID: 29167556 DOI: 10.1038/ijo.2017.284] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/17/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Gut microbiota have been described as key factors in the pathophysiology of obesity and different components of metabolic syndrome (MetS). The cafeteria diet (CAF)-fed rat is a preclinical model that reproduces most of the alterations found in human MetS by simulating a palatable human unbalanced diet. Our objective was to assess the effects of CAF on gut microbiota and their associations with different components of MetS in Wistar rats. METHODS Animals were fed a standard diet or CAF for 12 weeks. A partial least square-based methodology was used to reveal associations between gut microbiota, characterized by 16S ribosomal DNA gene sequencing, and biochemical, nutritional and physiological parameters. RESULTS CAF feeding resulted in obesity, dyslipidemia, insulin resistance and hepatic steatosis. These changes were accompanied by a significant decrease in gut bacterial diversity, decreased Firmicutes and an increase in Actinobacteria and Proteobacteria abundances, which were concomitant with increased endotoxemia. Associations of different genera with the intake of lipids and carbohydrates were opposed from those associated with the intake of fiber. Changes in gut microbiota were also associated with the different physiological effects of CAF, mainly increased adiposity and altered levels of plasma leptin and glycerol, consistent with altered adipose tissue metabolism. Also hepatic lipid accretion was associated with changes in microbiota, highlighting the relevance of gut microbiota homeostasis in the adipose-liver axis. CONCLUSIONS Overall, our results suggest that CAF feeding has a profound impact on the gut microbiome and, in turn, that these changes may be associated with important features of MetS.
Collapse
|
43
|
Heat-killed Bifidobacterium animalis subsp. Lactis CECT 8145 increases lean mass and ameliorates metabolic syndrome in cafeteria-fed obese rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
44
|
Caimari A, Mariné-Casadó R, Boqué N, Crescenti A, Arola L, Del Bas JM. Maternal intake of grape seed procyanidins during lactation induces insulin resistance and an adiponectin resistance-like phenotype in rat offspring. Sci Rep 2017; 7:12573. [PMID: 28974704 PMCID: PMC5626783 DOI: 10.1038/s41598-017-12597-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022] Open
Abstract
Previously, we demonstrated that a grape seed procyanidin extract (GSPE) supplementation in pregnant and lactating rats exerted both healthy and deleterious programming effects on their offspring. Here, we evaluated whether the administration of GSPE during lactation (100 mg.kg−1.day−1) in rats elicited beneficial effects in their normoweight (STD-GSPE group) and cafeteria-fed obese (CAF-GSPE group) adult male offspring. STD-GSPE and CAF-GSPE offspring showed increased energy expenditure and circulating total and high-molecular-weight adiponectin. However, these rats showed hyperinsulinemia, decreased insulin sensitivity, increased insulin resistance, down-regulated mRNA levels of adiponectin receptors in inguinal white adipose tissue (Adipor1 and Adipor2) and soleus muscle (Adipor2), and decreased levels of phosphorylated AMPK, the downstream post-receptor target of adiponectin, in the soleus muscle. These deleterious effects could be related to an increased lipid transfer to the pups through the milk, since GSPE-supplemented dams displayed decreased fat content and increased expression of lipogenic genes in their mammary glands, in addition to increased circulating total adiponectin and non-esterified free fatty acids. In conclusion, maternal intake of GSPE during lactation induced insulin resistance and an adiponectin resistance-like phenotype in their normoweight and obese offspring. These findings raise concerns about the possibility of using GSPE as a nutraceutical supplement during this period.
Collapse
Affiliation(s)
- Antoni Caimari
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain. .,Nutrition and Health Research Group, EURECAT-Technology Centre of Catalonia, Reus, Spain.
| | - Roger Mariné-Casadó
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain
| | - Noemí Boqué
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain.,Nutrition and Health Research Group, EURECAT-Technology Centre of Catalonia, Reus, Spain
| | - Anna Crescenti
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain.,Nutrition and Health Research Group, EURECAT-Technology Centre of Catalonia, Reus, Spain
| | - Lluís Arola
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain.,Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep Maria Del Bas
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain.,Nutrition and Health Research Group, EURECAT-Technology Centre of Catalonia, Reus, Spain
| |
Collapse
|
45
|
Suárez-García S, Caimari A, Del Bas JM, Suárez M, Arola L. Serum lysophospholipid levels are altered in dyslipidemic hamsters. Sci Rep 2017; 7:10431. [PMID: 28874705 PMCID: PMC5585394 DOI: 10.1038/s41598-017-10651-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Dyslipidemias are common disorders that predispose individuals to severe diseases. It is known that healthy living habits can prevent dyslipidemias if they are diagnosed properly. Therefore, biomarkers that assist in diagnosis are essential. The aim of this study was to identify biomarkers of dyslipidemia progression, which in turn disclose its etiology. These findings will pave the way for examinations of the regulatory mechanisms involved in dyslipidemias. Hamsters were fed either a normal-fat diet (NFD) or a high-fat diet. Some of the NFD-fed animals were further treated with the hyperlipidemic agent Poloxamer 407. Non-targeted metabolomics was used to investigate progressive changes in unknown serum metabolites. The hepatic expression of putative biomarker-related genes was also analyzed. The serum levels of lysophospholipids (Lyso-PLs) and their related enzymes lecithin-cholesterol acyltransferase (LCAT), secreted phospholipase A2 (sPLA2) and paraoxonase-1 were altered in dyslipidemic hamsters. Lysophosphatidylcholine levels were increased in diet-induced dyslipidemic groups, whereas lysophosphatidylethanolamine levels increased in response to the chemical treatment. The liver was significantly involved in regulating the levels of these molecules, based on the modified expression of endothelial lipase (Lipg), sPLA2 (Pla2g2a) and acyltransferases (Lcat and Lpcat3). We concluded that Lyso-PL evaluation could aid in the comprehensive diagnosis and management of lipid disorders.
Collapse
Affiliation(s)
- Susana Suárez-García
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Tarragona, 43007, Spain
| | - Antoni Caimari
- Technological Unit of Nutrition and Health. EURECAT-Technological Center of Catalonia, Reus, 43204, Spain
| | - Josep Maria Del Bas
- Technological Unit of Nutrition and Health. EURECAT-Technological Center of Catalonia, Reus, 43204, Spain
| | - Manuel Suárez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Tarragona, 43007, Spain.
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Tarragona, 43007, Spain
- Technological Unit of Nutrition and Health. EURECAT-Technological Center of Catalonia, Reus, 43204, Spain
| |
Collapse
|
46
|
Yu J, Bansode RR, Smith IN, Hurley SL. Impact of grape pomace consumption on the blood lipid profile and liver genes associated with lipid metabolism of young rats. Food Funct 2017; 8:2731-2738. [PMID: 28725902 DOI: 10.1039/c7fo00542c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herein, we investigated the effects of grape pomace (GP) in diet on body weight, blood lipid profile, and expression of liver genes associated with lipid metabolism using a young rat model. In this study, twenty female Sprague-Dawley rats at 7 weeks of age were randomly divided into 4 groups, which were fed modified AIN-93G diets containing 0% (control), 6.9%, 13.8%, and 20.7% of GP for 10 weeks. Feed consumption and body weight were weekly determined. Blood samples were obtained at the beginning and end of the feeding period for cholesterol, alanine aminotransferase (ALT), and glucose analysis. At the end of the feeding period, all rats were fasted overnight and euthanized. Heart, kidney, and liver samples were obtained and weighed. Liver tissues were used for gene expression analysis. GP-containing diet did not influence the body weight of the rats. As GP content increased, blood triglyceride and very low density lipoprotein (VLDL) decreased (P < 0.05), high density lipoprotein (HDL) slightly increased but was not statistically significant, total cholesterol (TC) and low density lipoprotein (LDL) significantly increased (P < 0.05), blood glucose decreased, and ALT level slightly increased. The expressions of liver genes associated with fatty acid synthesis and lipid hydrolysis/metabolism were moderately downregulated by the GP diet. The study suggests that regular consumption of a diet containing appropriate amount of GP may help in the reduction of body fat accumulation and prevention of obesity. This is the first study revealing the change in gene expression caused by long-term consumption of GP-containing diet.
Collapse
Affiliation(s)
- Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA.
| | - Rishipal R Bansode
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Suite 4222, Kannapolis, NC 28081, USA
| | - Ivy N Smith
- Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA.
| | - Steven L Hurley
- Department of Animal Science, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
47
|
Zhao CN, Meng X, Li Y, Li S, Liu Q, Tang GY, Li HB. Fruits for Prevention and Treatment of Cardiovascular Diseases. Nutrients 2017; 9:E598. [PMID: 28608832 PMCID: PMC5490577 DOI: 10.3390/nu9060598] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are leading global health problems. Accumulating epidemiological studies have indicated that consuming fruits was inversely related to the risk of CVDs. Moreover, substantial experimental studies have supported the protective role of fruits against CVDs, and several fruits (grape, blueberry, pomegranate, apple, hawthorn, and avocado) have been widely studied and have shown potent cardiovascular protective action. Fruits can prevent CVDs or facilitate the restoration of morphology and functions of heart and vessels after injury. The involved mechanisms included protecting vascular endothelial function, regulating lipids metabolism, modulating blood pressure, inhibiting platelets function, alleviating ischemia/reperfusion injury, suppressing thrombosis, reducing oxidative stress, and attenuating inflammation. The present review summarizes recent discoveries about the effects of fruits on CVDs and discusses potential mechanisms of actions based on evidence from epidemiological, experimental, and clinical studies.
Collapse
Affiliation(s)
- Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
48
|
Smith I, Yu J, Hurley SL, Hanner T. Impact of Diet Containing Grape Pomace on Growth Performance and Blood Lipid Profile of Young Rats. J Med Food 2017; 20:550-556. [DOI: 10.1089/jmf.2016.0117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ivy Smith
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Steven L. Hurley
- Department of Animal Science, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Tracy Hanner
- Department of Animal Science, North Carolina A&T State University, Greensboro, North Carolina, USA
| |
Collapse
|
49
|
Mele L, Carobbio S, Brindani N, Curti C, Rodriguez-Cuenca S, Bidault G, Mena P, Zanotti I, Vacca M, Vidal-Puig A, Del Rio D. Phenyl-γ-valerolactones, flavan-3-ol colonic metabolites, protect brown adipocytes from oxidative stress without affecting their differentiation or function. Mol Nutr Food Res 2017; 61. [PMID: 28276197 DOI: 10.1002/mnfr.201700074] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 01/09/2023]
Abstract
SCOPE Consumption of products rich in flavan-3-ols, such as tea and cocoa, has been associated with decreased obesity, partially dependent on their capacity to enhance energy expenditure. Despite these phenolics having been reported to increase the thermogenic program in brown and white adipose tissue, flavan-3-ols are vastly metabolised in vivo to phenyl-γ-valerolactones. Therefore, we hypothesize that phenyl-γ-valerolactones may directly stimulate the differentiation and the activation of brown adipocytes. METHODS AND RESULTS Immortalized brown pre-adipocytes were differentiated in presence of (R)-5-(3',4'-dihydroxyphenyl)-γ-valerolactone (VL1), (R)-5-(3´-hydroxyphenyl)-γ-valerolactone-4'-O-sulphate (VL2), (R)-5-phenyl-γ-valerolactone-3´,4´-di-O-sulphate (VL3), at concentrations of 2 or 10μM, whereas fully differentiated brown adipocyte were treated acutely (6-24h). None of the treatments regulated the expression levels of the uncouple protein 1, nor of the main transcription factors involved in brown adipogenesis. Similarly, mitochondrial content was unchanged after treatments. Moreover these compounds did not display peroxisome proliferator-activated receptor γ-agonist activity, as evaluated by luciferase assay, and did not enhance norepinephrine-stimulated lipolysis in mature adipocytes. However, both VL1 and VL2 prevented oxidative stress caused by H2 O2 . CONCLUSION Phenyl-γ-valerolactones and their sulphated forms do not influence brown adipocyte development or function at physiological or supraphysiological doses in vitro, but they are active protecting brown adipocytes from increased reactive oxygen species production.
Collapse
Affiliation(s)
- Laura Mele
- The Laboratory of Phytochemicals in Physiology, Department of Food & Drug, University of Parma, Parma, Italy
| | - Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Nicoletta Brindani
- The Laboratory of Phytochemicals in Physiology, Department of Food & Drug, University of Parma, Parma, Italy.,Department of Pharmacy, University of Parma, Parma, Italy
| | - Claudio Curti
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Sergio Rodriguez-Cuenca
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Pedro Mena
- The Laboratory of Phytochemicals in Physiology, Department of Food & Drug, University of Parma, Parma, Italy
| | - Ilaria Zanotti
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Michele Vacca
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Department of Food & Drug, University of Parma, Parma, Italy.,NNEdPro Global Centre for Nutrition and, St John's Innovation Centre, Cowley Road, Cambridge
| |
Collapse
|
50
|
Fernandes I, Pérez-Gregorio R, Soares S, Mateus N, de Freitas V. Wine Flavonoids in Health and Disease Prevention. Molecules 2017; 22:molecules22020292. [PMID: 28216567 PMCID: PMC6155685 DOI: 10.3390/molecules22020292] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 02/06/2023] Open
Abstract
Wine, and particularly red wine, is a beverage with a great chemical complexity that is in continuous evolution. Chemically, wine is a hydroalcoholic solution (~78% water) that comprises a wide variety of chemical components, including aldehydes, esters, ketones, lipids, minerals, organic acids, phenolics, soluble proteins, sugars and vitamins. Flavonoids constitute a major group of polyphenolic compounds which are directly associated with the organoleptic and health-promoting properties of red wine. However, due to the insufficient epidemiological and in vivo evidences on this subject, the presence of a high number of variables such as human age, metabolism, the presence of alcohol, the complex wine chemistry, and the wide array of in vivo biological effects of these compounds suggest that only cautious conclusions may be drawn from studies focusing on the direct effect of wine and any specific health issue. Nevertheless, there are several reports on the health protective properties of wine phenolics for several diseases such as cardiovascular diseases, some cancers, obesity, neurodegenerative diseases, diabetes, allergies and osteoporosis. The different interactions that wine flavonoids may have with key biological targets are crucial for some of these health-promoting effects. The interaction between some wine flavonoids and some specific enzymes are one example. The way wine flavonoids may be absorbed and metabolized could interfere with their bioavailability and therefore in their health-promoting effect. Hence, some reports have focused on flavonoids absorption, metabolism, microbiota effect and overall on flavonoids bioavailability. This review summarizes some of these major issues which are directly related to the potential health-promoting effects of wine flavonoids. Reports related to flavonoids and health highlight some relevant scientific information. However, there is still a gap between the knowledge of wine flavonoids bioavailability and their health-promoting effects. More in vivo results as well as studies focused on flavonoid metabolites are still required. Moreover, it is also necessary to better understand how biological interactions (with microbiota and cells, enzymes or general biological systems) could interfere with flavonoid bioavailability.
Collapse
Affiliation(s)
- Iva Fernandes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Rosa Pérez-Gregorio
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Susana Soares
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Nuno Mateus
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Victor de Freitas
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| |
Collapse
|