1
|
Sawane K, Takahashi I, Ishikuro M, Takumi H, Orui M, Noda A, Shinoda G, Ohseto H, Onuma T, Ueno F, Murakami K, Higuchi N, Furuyashiki T, Nakamura T, Koshiba S, Ohneda K, Kumada K, Ogishima S, Hozawa A, Sugawara J, Kuriyama S, Obara T. Exploring the association between human breast milk lipids and early adiposity rebound in children: A case-control study. Nutrition 2025; 135:112739. [PMID: 40220431 DOI: 10.1016/j.nut.2025.112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 04/14/2025]
Abstract
OBJECTIVES Adiposity rebound (AR) corresponds to the start of the second rise in the body mass index curve during infant growth. Early AR (before age 5) confers increased risk of adiposity and metabolic disorders but is less likely to occur in breastfed infants. Although lipids in breast milk are important in child growth, information is limited regarding which lipids are involved in AR. The object of this study was to explore the association between breast milk lipids and AR status in children. METHODS We designed a case-control study of 184 mother-child pairs (AR cases: n = 93; controls: n = 91) included from the Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study. Breast milk was collected 1 month postpartum and comprehensive lipid analysis was performed. Partial least square-discriminant analysis was used to explore candidate lipids, and multivariable logistic regression analysis was used to evaluate associations with the AR status of children. RESULTS We detected 667 lipid molecules in 12 lipid classes in breast milk. Partial least square-discriminant analysis revealed the association of fatty acid-hydroxy fatty acid (FAHFA) and cholesterol ester (ChE) with AR status. Multivariable logistic regression analysis showed that in pairs with exclusive breastfeeding at 1 month postpartum, FAHFA (odds ratio 1.57 [95% confidence interval, 1.06-2.32]) was positively associated with early AR, and ChE (odds ratio 0.55 [95% confidence interval, 0.36-0.86]) was negatively associated. CONCLUSIONS Breast milk lipids (FAHFA, ChE) associated with the AR status of children, indicating the potential to regulate a child's adiposity and possible metabolic disorders in adulthood.
Collapse
Affiliation(s)
| | - Ippei Takahashi
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Mami Ishikuro
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | | | - Masatsugu Orui
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Aoi Noda
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Genki Shinoda
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hisashi Ohseto
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tomomi Onuma
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Fumihiko Ueno
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Keiko Murakami
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | | | | | - Tomohiro Nakamura
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Faculty of Data Science, Kyoto Women's University, Kyoto, Japan
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Kinuko Ohneda
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan; Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kazuki Kumada
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan; Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Soichi Ogishima
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Division of Epidemiology, School of Public Health, Graduate School of Medicine, Tohoku University, Sendai, Japan; Division of Personalized Prevention and Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Shinichi Kuriyama
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Division of Disaster Public Health, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Taku Obara
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan.
| |
Collapse
|
2
|
Csatári-Kovács R, Röszer T, Csősz É. Comparative Analysis of Omega-3, Omega-6, and Endocannabinoid Content of Human, Cattle, Goat, and Formula Milk. Foods 2025; 14:1786. [PMID: 40428565 PMCID: PMC12110994 DOI: 10.3390/foods14101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/09/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Human milk is the primary source of infant nutrition, although breastfeeding rates are declining today, and human milk is often replaced by animal milk-based infant formula. Infant formula is intended to replicate the composition of human milk, albeit significant differences remain in the physiological responses to breastfeeding and formula feeding in offspring. More research is needed on the composition of human milk and other milk types, especially regarding their lipid content. A comparative analysis of different milk samples was carried out in this study. The amount of omega-3 fatty acids, omega-6 fatty acids, and endocannabinoids was measured in human, cattle, and goat milk as well as in goat milk- and cow milk-based infant formulas using chromatography coupled to mass spectrometry. Significant differences between the human and animal milks were observed in the case of omega-6 fatty acid and endocannabinoid content, with higher omega-6 fatty acid and lower endocannabinoid levels in human milk than in animal milk samples and infant formulas. Goat milk shares the highest similarity to human milk in terms of the analyzed lipid species. However, our results indicate that the levels of the examined bioactive lipid species in human milk failed to be replaced by goat milk- and cow milk-derived infant formulas.
Collapse
Affiliation(s)
- Renáta Csatári-Kovács
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Metabolomics Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Tamás Röszer
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Metabolomics Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Sawane K, Takahashi I, Ishikuro M, Takumi H, Orui M, Noda A, Shinoda G, Ohseto H, Onuma T, Ueno F, Murakami K, Higuchi N, Tanaka T, Furuyashiki T, Nakamura T, Koshiba S, Ohneda K, Kumada K, Ogishima S, Hozawa A, Sugawara J, Kuriyama S, Obara T. Association Between Human Milk Oligosaccharides and Early Adiposity Rebound in Children: A Case-Control Study of the Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study. J Nutr 2025; 155:1498-1507. [PMID: 40058699 DOI: 10.1016/j.tjnut.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/15/2025] [Accepted: 02/11/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Adiposity rebound (AR) is the point when the BMI begins to rise again during early childhood. Early AR (before age 5) is associated with higher risk of lifelong obesity and metabolic disorders and may be influenced by breastfeeding. Although human milk oligosaccharides (HMOs) in breast milk are crucial for child growth, their association with AR status has not been studied. OBJECTIVES This study aimed to explore the association between breast milk HMOs and AR status in children. METHODS In this case-control study, we included 184 mother-child pairs from the Tohoku Medical Megabank Project Birth and Three-Generation (TMM BirThree) Cohort Study (93 AR cases, 91 controls). Breast milk was collected 1 mo postpartum, and the concentration of 15 HMO molecules and α-diversity index (Inverse Simpson index) were quantified. Wilcoxon rank-sum test and partial least squares-discriminant analysis identified candidate HMOs, and multivariable logistic regression analysis evaluated associations between candidate HMOs and AR status. Analyses were stratified by maternal secretor status (secretor or nonsecretor). RESULTS In secretor mothers, multivariable logistic regression showed that the inverse Simpson index [odds ratio (OR): 0.54; 95% CI: 0.36, 0.82), the sum of sialic acid-bound HMOs (OR: 0.61; 95% CI: 0.41, 0.91), and 3'-sialyllactose (OR: 0.67; 95% CI: 0.46, 0.98) were inversely associated with early AR in the fully adjusted model. A trend of interaction between sialyl-lacto-N-tetraose-a (LSTa) and maternal secretor status regarding AR was observed in the fully adjusted model (P-interaction = 0.051). CONCLUSIONS α-Diversity, sialic acid-bound HMOs, and 3'-sialyllactose may involved in inhibiting AR in children of secretor mothers, and a trend of interactive effect between LSTa and maternal secretor status regarding AR is indicated. These findings offer novel perspectives on the associations between breastfeeding and a childhood adiposity as well as potential metabolic disorders later in life. This trial is registered at https://www.umin.ac.jp/ as UMIN000047160.
Collapse
Affiliation(s)
| | - Ippei Takahashi
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Mami Ishikuro
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | | | - Masatsugu Orui
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Aoi Noda
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Genki Shinoda
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hisashi Ohseto
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tomomi Onuma
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Fumihiko Ueno
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Keiko Murakami
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | | | | | | | - Tomohiro Nakamura
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Faculty of Data Science, Kyoto Women's University, Kyoto, Japan
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Kinuko Ohneda
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan; Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kazuki Kumada
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan; Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Soichi Ogishima
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Division of Epidemiology, School of Public Health, Graduate School of Medicine, Tohoku University, Sendai, Japan; Division of Personalized Prevention and Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Shinichi Kuriyama
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Division of Disaster Public Health, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Taku Obara
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan.
| |
Collapse
|
4
|
Hashemi Javaheri FS, Karbin K, Senobari MA, Hakim HG, Hashemi M. The association between maternal body mass index and breast milk composition: a systematic review. Nutr Rev 2025; 83:83-111. [PMID: 38273741 DOI: 10.1093/nutrit/nuad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
CONTEXT Breast milk composition is influenced by many factors, ranging from maternal nutritional status to infant sex. Previous studies have explored the relationship between maternal body mass index (BMI) and breast milk composition; however, the findings have been inconsistent and controversial. OBJECTIVE To systematically review the evidence on the association of maternal weight and BMI with breast milk composition. DATA SOURCES The PubMed and Scopus databases were searched up to May 3, 2023, using the following search strategy: ("maternal weight" OR "maternal BMI" OR "mother's weight" OR "mother's BMI") AND ("maternal milk" OR "human milk" OR "breast milk"). DATA EXTRACTION A total of 83 publications, involving data from more than 11 310 lactating women, were identified. All extracted data were compiled, compared, and critically analyzed. DATA ANALYSIS Overall, maternal BMI was associated with higher levels of leptin and insulin, and the ratio of omega-6 to omega-3 polyunsaturated fatty acids in breast milk. However, no conclusive associations were found between maternal BMI and the levels of energy, macronutrients, micronutrients, and other components of breast milk. CONCLUSIONS This systematic review provides robust evidence supporting a positive correlation between maternal BMI and breast milk concentrations of leptin, insulin, and the omega-6 to omega-3 polyunsaturated fatty acid ratio. Nevertheless, disparities in findings are noticeable for other constituents of breast milk. To comprehensively grasp the influence of maternal weight and BMI on breast milk composition, further research endeavors are imperative. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023458667.
Collapse
Affiliation(s)
- Fatemeh Sadat Hashemi Javaheri
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Karbin
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mohammad Amin Senobari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hakime Ghadiri Hakim
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Hill KB, Mullen GP, Nagareddy PR, Zimmerman KA, Rudolph MC. Key questions and gaps in understanding adipose tissue macrophages and early-life metabolic programming. Am J Physiol Endocrinol Metab 2024; 327:E478-E497. [PMID: 39171752 PMCID: PMC11482221 DOI: 10.1152/ajpendo.00140.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
The global obesity epidemic, with its associated comorbidities and increased risk of early mortality, underscores the urgent need for enhancing our understanding of the origins of this complex disease. It is increasingly clear that metabolism is programmed early in life and that metabolic programming can have life-long health consequences. As a critical metabolic organ sensitive to early-life stimuli, proper development of adipose tissue (AT) is crucial for life-long energy homeostasis. Early-life nutrients, especially fatty acids (FAs), significantly influence the programming of AT and shape its function and metabolism. Of growing interest are the dynamic responses during pre- and postnatal development to proinflammatory omega-6 (n6) and anti-inflammatory omega-3 (n3) FA exposures in AT. In the US maternal diet, the ratio of "pro-inflammatory" n6- to "anti-inflammatory" n3-FAs has grown dramatically due to the greater prevalence of n6-FAs. Notably, AT macrophages (ATMs) form a significant population within adipose stromal cells, playing not only an instrumental role in AT formation and maintenance but also acting as key mediators of cell-to-cell lipid and cytokine signaling. Despite rapid advances in ATM and immunometabolism fields, research has focused on responses to obesogenic diets and during adulthood. Consequently, there is a significant gap in identifying the mechanisms contributing metabolic health, especially regarding lipid exposures during the establishment of ATM physiology. Our review highlights the current understanding of ATM diversity, their critical role in AT, their potential role in early-life metabolic programming, and the broader implications for metabolism and health.
Collapse
Affiliation(s)
- Kaitlyn B Hill
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Gregory P Mullen
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Cardiovascular Section, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Kurt A Zimmerman
- Department of Internal Medicine, Division of Nephrology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michael C Rudolph
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
6
|
Das S, Varshney R, Farriester JW, Kyere-Davies G, Martinez AE, Hill K, Kinter M, Mullen GP, Nagareddy PR, Rudolph MC. NR2F2 Reactivation in Early-life Adipocyte Stem-like Cells Rescues Adipocyte Mitochondrial Oxidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611047. [PMID: 39314382 PMCID: PMC11419096 DOI: 10.1101/2024.09.09.611047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In humans, perinatal exposure to an elevated omega-6 (n6) relative to omega-3 (n3) Fatty Acid (FA) ratio is associated with the likelihood of childhood obesity. In mice, we show perinatal exposure to excessive n6-FA programs neonatal Adipocyte Stem-like cells (ASCs) to differentiate into adipocytes with lower mitochondrial nutrient oxidation and a propensity for nutrient storage. Omega-6 FA exposure reduced fatty acid oxidation (FAO) capacity, coinciding with impaired induction of beige adipocyte regulatory factors PPARγ, PGC1α, PRDM16, and UCP1. ASCs from n6-FA exposed pups formed adipocytes with increased lipogenic genes in vitro, consistent with an in vivo accelerated adipocyte hypertrophy, greater triacylglyceride accumulation, and increased % body fat. Conversely, n6-FA exposed pups had impaired whole animal 13C-palmitate oxidation. The metabolic nuclear receptor, NR2F2, was suppressed in ASCs by excess n6-FA intake preceding adipogenesis. ASC deletion of NR2F2, prior to adipogenesis, mimicked the reduced FAO capacity observed in ASCs from n6-FA exposed pups, suggesting that NR2F2 is required in ASCs for robust beige regulator expression and downstream nutrient oxidation in adipocytes. Transiently re-activating NR2F2 with ligand prior to differentiation in ASCs from n6-FA exposed pups, restored their FAO capacity as adipocytes by increasing the PPARγ-PGC1α axis, mitochondrial FA transporter CPT1A, ATP5 family synthases, and NDUF family Complex I proteins. Our findings suggest that excessive n6-FA exposure early in life dampens an NR2F2-mediated induction of beige adipocyte regulators, resulting in metabolic programming that is shifted towards nutrient storage.
Collapse
Affiliation(s)
- Snehasis Das
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Rohan Varshney
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Jacob W. Farriester
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Gertrude Kyere-Davies
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Alexandrea E. Martinez
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Kaitlyn Hill
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Gregory P. Mullen
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Prabhakara R. Nagareddy
- Deptartment of Internal Medicine, Cardiovascular Section, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Michael C. Rudolph
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
7
|
Lu D, Yao D, Hu G, Zhou J, Shen X, Qian L. Maternal docosahexaenoic acid supplementation during lactation improves exercise performance, enhances intestinal glucose absorption and modulates gut microbiota in weaning offspring mice. Front Nutr 2024; 11:1423576. [PMID: 39036494 PMCID: PMC11258037 DOI: 10.3389/fnut.2024.1423576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Intestinal dysfunction induced by weaning stress is common during breastfeeding period. Docosahexaenoic acid (DHA) is well known for promoting visual and brain development, but its effects on early intestinal development remain unknown. This study investigated the impact of maternal DHA supplementation during lactation on intestinal glucose absorption and gut microbiota in weaning offspring mice. Materials and methods Dams were supplemented with vehicle (control), 150 mg/(kg body weight · day) DHA (L-DHA), or 450 mg/(kg body weight · day) DHA (H-DHA) throughout lactation by oral administration. After weaning, pups were randomly divided into three groups for athletic analysis, microbial and proteomic analysis, biochemical analysis, 4-deoxy-4-fluoro-D-glucose (4-FDG) absorption test, and gene expression quantitation of glucose transport-associated proteins and mTOR signaling components. Results The H-DHA group exhibited enhanced grip strength and prolonged swimming duration compared to the control group. Additionally, there were significant increases in jejunal and ileal villus height, and expanded surface area of jejunal villi in the H-DHA group. Microbial analyses revealed that maternal DHA intake increased the abundance of beneficial gut bacteria and promoted metabolic pathways linked to carbohydrate and energy metabolism. Proteomic studies indicated an increased abundance of nutrient transport proteins and enrichment of pathways involved in absorption and digestion in the H-DHA group. This group also showed higher concentrations of glucose in the jejunum and ileum, as well as elevated glycogen levels in the liver and muscles, in contrast to lower glucose levels in the intestinal contents and feces compared to the control group. The 4-FDG absorption test showed more efficient absorption after oral 4-FDG gavage in the H-DHA group. Moreover, the expressions of glucose transport-associated proteins, GLUT2 and SGLT1, and the activation of mTOR pathway were enhanced in the H-DHA group compared to the control group. The L-DHA group also showed similar but less pronounced improvements in these aspects relative to the H-DHA group. Conclusion Our findings suggested that maternal DHA supplementation during lactation improves the exercise performance, enhances the intestinal glucose absorption by increasing the expressions of glucose transporters, and beneficially alters the structure of gut microbiome in weaning offspring mice.
Collapse
Affiliation(s)
- Dalu Lu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Die Yao
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gaoli Hu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiefei Zhou
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuhua Shen
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linxi Qian
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Bonet ML, Ribot J, Sánchez J, Palou A, Picó C. Early Life Programming of Adipose Tissue Remodeling and Browning Capacity by Micronutrients and Bioactive Compounds as a Potential Anti-Obesity Strategy. Cells 2024; 13:870. [PMID: 38786092 PMCID: PMC11120104 DOI: 10.3390/cells13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.
Collapse
Affiliation(s)
- M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
9
|
Kearns ML, Reynolds CM. Developmentally programmed obesity: Is there a role for anti-inflammatory nutritional strategies? Exp Physiol 2024; 109:633-646. [PMID: 38031876 PMCID: PMC11061634 DOI: 10.1113/ep091209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Pregnancy represents a period of immense maternal physiological adaptation, with progressive increases in lipid storage potential and insulin resistance to support fetal/placental growth. This requires significant change in the adipose tissue. Women living with obesity/overweight are more susceptible to these changes causing complications such as gestational diabetes. This is particularly worrying as up to 60% of European women are living with overweight/obesity at the onset of pregnancy. Furthermore, less than 1% meet all nutrition guidelines. There is now evidence that these deep metabolic changes can result in a predisposition to metabolic disease in both the mother and child in later life. Health and nutrition status during this period therefore represents a window to future health. This period offers a valuable opportunity for intervention to prevent the negative consequences of poor in utero environments and increases the long-term quality of life for mother and offspring. This review will examine a range of in utero factors which determine adipose tissue development, the impact of these factors on later-life obesity and metabolic health and the therapeutic value of dietary anti-inflammatory nutritional interventions during pregnancy and early life. When it comes to early life nutrition, a 'one size fits all' approach is not always appropriate. Understanding the mechanisms of adipose tissue development in response to differing nutritional strategies may be important in the context of complicated or adverse in utero environments and represents a substantial step towards a more personalised nutritional approach for the prevention of obesity, metabolic syndrome and related non-communicable diseases in future generations.
Collapse
Affiliation(s)
- Michelle L. Kearns
- Conway Institute/School of Public Health Physiotherapy and Sports Science/Institute of Food and Health/Diabetes Complications Research CentreUniversity College DublinDublin 4Ireland
| | - Clare M. Reynolds
- Conway Institute/School of Public Health Physiotherapy and Sports Science/Institute of Food and Health/Diabetes Complications Research CentreUniversity College DublinDublin 4Ireland
| |
Collapse
|
10
|
Suwaydi MA, Lai CT, Gridneva Z, Perrella SL, Wlodek ME, Geddes DT. Sampling Procedures for Estimating the Infant Intake of Human Milk Leptin, Adiponectin, Insulin, Glucose, and Total Lipid. Nutrients 2024; 16:331. [PMID: 38337616 PMCID: PMC10857176 DOI: 10.3390/nu16030331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Limited attention is given to the efficacy of protocols for the estimation of infant intake of milk components when investigating their impact on infant outcomes. We compared the actual measured intake of human milk components with estimations derived from 15 protocols to determine the most reliable approach for estimating intake of HM leptin, adiponectin, insulin, glucose, and total lipid. Twenty mothers who were 3-5 months postpartum completed a 24 h milk profile study with pre-/post-feed milk samples collection. The true infant intake (control group) based on 24 h milk intake (MI) was compared to estimated infant intakes using concentrations from five sampling protocols that were multiplied by one of true infant MI, considered mean MI (800 mL), or global mean MI (766 mL). The mean measured concentrations of six samples (three sets of pre- and post-feed samples, from morning (06:00-09:00), afternoon (13:00-16:00), and evening (19:00-22:00)) multiplied by the true infant MI, mean considered MI, and global mean MI produced the most accurate estimates of infant intake of these components. Therefore, in the absence of 24 h measurements and sampling, a sampling protocol comprising three sets of pre-/post-feed samples provides the most reliable infant intake estimates of HM leptin, adiponectin, insulin, glucose, and total lipid.
Collapse
Affiliation(s)
- Majed A. Suwaydi
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia or (M.A.S.); (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
- School of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia or (M.A.S.); (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia or (M.A.S.); (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Sharon L. Perrella
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia or (M.A.S.); (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Mary E. Wlodek
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia or (M.A.S.); (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia or (M.A.S.); (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| |
Collapse
|
11
|
Hua MC, Su HM, Yao TC, Liao SL, Tsai MH, Su KW, Chen LC, Lai SH, Chiu CY, Yeh KW, Huang JL. The association between human milk fatty acid composition in mothers with an elevated body mass index and infant growth changes. Clin Nutr 2024; 43:203-210. [PMID: 38071941 DOI: 10.1016/j.clnu.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND & AIMS Few studies have investigated alternations in human milk polyunsaturated fatty acid (PUFA) composition in the context of maternal obesity and its effects on infant growth trajectories. This study explored whether maternal weight status and breastfeeding type influence human milk FA composition and infant anthropometry during the first six months of life. METHODS Mother-infant dyads were enrolled from the Prediction of Allergies in Taiwanese Children birth cohort study. Data concerning maternal pre-pregnancy weight, infants' breastfeeding practices, and anthropometric data were obtained regularly. We identified and compared between the composition of 30 FAs in the colostrum and 2-month milk, respectively, in obese/overweight (OB/OW) and normal-weight (NW) mothers. Multiple linear regression analyses were performed to determine the association between PUFA composition at different lactation stages and infant anthropometric parameter changes and to identify the independent variables for body mass index (BMI) z-scores by six months of age. RESULTS We included 338 mother-infant dyads (OB/OW mothers, 16.9 %). OB/OW mothers exhibited lower total n-3 PUFAs (P = 0.035), higher ratios of arachidonic acid (C20:4n-6)/eicosapentaenoic acid (C20:5n-3) + docosahexaenoic acid (C22:6n-3), and n-6/n-3 PUFA in colostrum (P = 0.037 and 0.011, respectively), and their offspring had higher body weight and BMI z-scores. Nevertheless, no PUFA composition or n-6/n-3 PUFA ratios in colostrum and 2-month milk were associated with anthropometric parameter changes by age 6 months. Infant birth weight z-scores were independently associated with BMI outcomes at age 6 months (adjusted β = 0.16, 95 % confidence interval (0.05-0.35), P = 0.010) CONCLUSION: Neither n-3 nor n-6 PUFA profiles nor n-6/n-3 PUFA ratios at different lactation stages were found to be associated with anthropometric changes by age 6 months, suggesting that human milk PUFA composition may not be an important determinant of early infant growth trajectories.
Collapse
Affiliation(s)
- Man-Chin Hua
- Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan; Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Hui-Min Su
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tsung-Chieh Yao
- Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sui-Ling Liao
- Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan; Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Han Tsai
- Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan; Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kuan-Wen Su
- Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Li-Chen Chen
- Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Pediatrics, Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, Taiwan
| | - Shen-Hao Lai
- Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Chest, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Yung Chiu
- Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Chest, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Wei Yeh
- Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jing-Long Huang
- Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Pediatrics, Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, Taiwan.
| |
Collapse
|
12
|
Brockway MM, Daniel AI, Reyes SM, Granger M, McDermid JM, Chan D, Refvik R, Sidhu KK, Musse S, Patel PP, Monnin C, Lotoski L, Geddes D, Jehan F, Kolsteren P, Allen LH, Hampel D, Eriksen KG, Rodriguez N, Azad MB. Human Milk Macronutrients and Child Growth and Body Composition in the First Two Years: A Systematic Review. Adv Nutr 2024; 15:100149. [PMID: 37981047 PMCID: PMC10831902 DOI: 10.1016/j.advnut.2023.100149] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
Among exclusively breastfed infants, human milk (HM) provides complete nutrition in the first mo of life and remains an important energy source as long as breastfeeding continues. Consisting of digestible carbohydrates, proteins, and amino acids, as well as fats and fatty acids, macronutrients in human milk have been well studied; however, many aspects related to their relationship to growth in early life are still not well understood. We systematically searched Medline, EMBASE, the Cochrane Library, Scopus, and Web of Science to synthesize evidence published between 1980 and 2022 on HM components and anthropometry through 2 y of age among term-born healthy infants. From 9992 abstracts screened, 57 articles reporting observations from 5979 dyads were included and categorized based on their reporting of HM macronutrients and infant growth. There was substantial heterogeneity in anthropometric outcome measurement, milk collection timelines, and HM sampling strategies; thus, meta-analysis was not possible. In general, digestible carbohydrates were positively associated with infant weight outcomes. Protein was positively associated with infant length, but no associations were reported for infant weight. Finally, HM fat was not consistently associated with any infant growth metrics, though various associations were reported in single studies. Fatty acid intakes were generally positively associated with head circumference, except for docosahexaenoic acid. Our synthesis of the literature was limited by differences in milk collection strategies, heterogeneity in anthropometric outcomes and analytical methodologies, and by insufficient reporting of results. Moving forward, HM researchers should accurately record and account for breastfeeding exclusivity, use consistent sampling protocols that account for the temporal variation in HM macronutrients, and use reliable, sensitive, and accurate techniques for HM macronutrient analysis.
Collapse
Affiliation(s)
- Meredith Merilee Brockway
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Canada; Department of Pediatrics and Child Health, University of Manitoba, Canada; Faculty of Nursing, University of Calgary, Canada
| | - Allison I Daniel
- Centre for Global Child Health, Hospital for Sick Children, Canada; Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Sarah M Reyes
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Canada
| | - Matthew Granger
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | | | - Deborah Chan
- Department of Pediatrics and Child Health, University of Manitoba, Canada; Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Canada
| | - Rebecca Refvik
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Karanbir K Sidhu
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Suad Musse
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Pooja P Patel
- Department of Public Health and Community Medicine, Tufts University School of Medicine, USA
| | - Caroline Monnin
- Neil John Maclean Health Sciences Library, University of Manitoba, Canada
| | - Larisa Lotoski
- Department of Pediatrics and Child Health, University of Manitoba, Canada
| | - Donna Geddes
- School of Molecular Sciences, The University of Western Australia, Australia
| | - Fyezah Jehan
- Department of Pediatrics, Aga Khan University, Pakistan
| | - Patrick Kolsteren
- Department of Food Safety and Food Quality, Ghent University, Belgium
| | - Lindsay H Allen
- Western Human Nutrition Research Center, Agriculture Research Service, United States Department of Agriculture, USA; Department of Nutrition, University of California, Davis, USA
| | - Daniela Hampel
- Western Human Nutrition Research Center, Agriculture Research Service, United States Department of Agriculture, USA; Department of Nutrition, University of California, Davis, USA
| | - Kamilla G Eriksen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Natalie Rodriguez
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Canada; Department of Pediatrics and Child Health, University of Manitoba, Canada
| | - Meghan B Azad
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Canada; Department of Pediatrics and Child Health, University of Manitoba, Canada.
| |
Collapse
|
13
|
Khandelwal S, Kondal D, Gupta R, Chaudhry M, Dutta S, Ramakrishnan L, Patil K, Swamy M, Prabhakaran D, Tandon N, Ramakrishnan U, Stein AD. Docosahexaenoic Acid Supplementation in Lactating Women Increases Breast Milk and Erythrocyte Membrane Docosahexaenoic Acid Concentrations and Alters Infant n-6:n-3 Fatty Acid Ratio. Curr Dev Nutr 2023; 7:102010. [PMID: 37877035 PMCID: PMC10590723 DOI: 10.1016/j.cdnut.2023.102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023] Open
Abstract
Background Low concentrations of docosahexaenoic acid (DHA) or high n-6 (ω-6):n-3 ratio in pregnant women is associated with poor fetal growth velocity and suboptimal neurodevelopment. However, there is a lack of data on levels of important n-6 and n-3 fatty acids (FAs) at different time points during pregnancy and lactation from India. Data on how much DHA is transferred during actual supplementation are also scarce. Objectives We report the concentrations of n-6 and n-3 FAs in maternal and infant blood and in breast milk following maternal supplementation with DHA or placebo. Methods A total of 957 pregnant women (≤20 wk) from Belagavi, Karnataka, were randomly assigned to receive either 400 mg/d of algal DHA or placebo through 6 mo postpartum. Blood samples were collected from the mother at recruitment/baseline, delivery, and 6 mo postpartum and from the infant at birth (cord) and 12 mo (venous). Breast milk samples were collected from a subsample at delivery, 1 mo and 6 mo postpartum. The FA profile was analyzed using gas chromatography. Results The concentration of DHA appeared to be higher in erythrocyte and breast milk samples of the DHA-supplemented group at all subsequent time points. The n-6:n-3 ratio was lower among women in the DHA group at delivery [DHA: 4.08 (1.79); placebo: 5.84 (3.57); P < 0.001] and at 6 mo postpartum [DHA: 5.34 (2.64); placebo: 7.69 (2.9); P < 0.001]. Infants of DHA-supplemented mothers also had a lower n-6:n-3 ratio at delivery and 12 mo. The n-6:n-3 ratio of breast milk increased from delivery through 1 to 6 mo but remained lower in the DHA-supplemented group than in the placebo. Conclusions Maternal DHA supplementation with 400 mg/d from early pregnancy through 6 mo postpartum significantly increased circulating DHA in breast milk and infant erythrocyte, whereas decreased erythrocyte and breast milk n-6:n-3 ratio. However, maternal supplementation did not get the ratio to the recommended levels.
Collapse
Affiliation(s)
- Shweta Khandelwal
- Department of Public Health Nutrition, Public Health Foundation of India, Gurugram, India
- Department of Biostatistics, Centre for Chronic Disease Control, Gurugram, India
| | - Dimple Kondal
- Department of Biostatistics, Centre for Chronic Disease Control, Gurugram, India
| | - Ruby Gupta
- Department of Biostatistics, Centre for Chronic Disease Control, Gurugram, India
| | - Monica Chaudhry
- Department of Public Health Nutrition, Public Health Foundation of India, Gurugram, India
| | - Soumam Dutta
- Department of Home Science, University of Calcutta, Kolkata, India
- Department of Nutrition, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Lakshmy Ramakrishnan
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kamal Patil
- Department of Obstetrics and Gynaecology, KLE’s J.N. Medical College Belagavi, Karnataka, India
| | - M.K. Swamy
- Department of Obstetrics and Gynaecology, KLE’s J.N. Medical College Belagavi, Karnataka, India
| | - Dorairaj Prabhakaran
- Department of Public Health Nutrition, Public Health Foundation of India, Gurugram, India
- Department of Biostatistics, Centre for Chronic Disease Control, Gurugram, India
| | - Nikhil Tandon
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Usha Ramakrishnan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Aryeh D. Stein
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Gómez-Vilarrubla A, Mas-Parés B, Carreras-Badosa G, Jové M, Berdún R, Bonmatí-Santané A, de Zegher F, Ibañez L, López-Bermejo A, Bassols J. Placental AA/EPA Ratio Is Associated with Obesity Risk Parameters in the Offspring at 6 Years of Age. Int J Mol Sci 2023; 24:10087. [PMID: 37373236 DOI: 10.3390/ijms241210087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
During pregnancy, maternal polyunsaturated fatty acids (PUFA) are transferred to the fetus through the placenta by specific FA transporters (FATP). A higher perinatal exposure to n-6 over n-3 PUFA could be linked to excess fat mass and obesity development later in life. In this context, we aimed to assess the associations between long chain PUFAs (LC-PUFAs) (n-6, n-3, and n-6/n-3 ratios) measured in the placenta at term birth with obesity-related parameters in the offspring at 6 years of age and assess whether these associations are dependent on the placental relative expression of fatty acid transporters. As results, the PUFAn-6/PUFAn-3 ratio was 4/1, which scaled up to 15/1 when considering only the arachidonic acid/eicosapentaenoic acid ratio (AA/EPA ratio). Positive associations between the AA/EPA ratio and offspring's obesity risk parameters were found with weight-SDS, BMI-SDS, percent fat mass-SDS, visceral fat, and HOMA-IR (r from 0.204 to 0.375; all p < 0.05). These associations were more noticeable in those subjects with higher expression of fatty acid transporters. Therefore, in conclusion, a higher placental AA/EPA ratio is positively associated with offspring's visceral adiposity and obesity risk parameters, which become more apparent in subjects with higher expressions of placental FATPs. Our results support the potential role of n-6 and n-3 LC-PUFA in the fetal programming of obesity risk in childhood. For the present study, 113 healthy pregnant women were recruited during the first trimester of pregnancy and their offspring were followed up at 6 years of age. The fatty acid profiles and the expression of fatty acid transporters (FATP1 and FATP4) were analyzed from placental samples at birth. Associations between LC-PUFA (n-6, n-3, and n-6/n-3 ratios) and obesity risk parameters (weight, body mass index (BMI), percent fat mass, visceral fat, and homeostatic model assessment of insulin resistance (HOMA-IR)) in the offspring at 6 years of age were examined.
Collapse
Affiliation(s)
- Ariadna Gómez-Vilarrubla
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | - Berta Mas-Parés
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25008 Lleida, Spain
| | - Rebeca Berdún
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25008 Lleida, Spain
| | | | - Francis de Zegher
- Department of Development & Regeneration, University of Leuven, 3000 Leuven, Belgium
| | - Lourdes Ibañez
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children's Hospital, 08950 Esplugues de Llobregat, Spain
- CIBERDEM (Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders), ISCIII, 28029 Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
- Department of Pediatrics, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Department of Medical Sciences, University of Girona, 17003 Girona, Spain
| | - Judit Bassols
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| |
Collapse
|
15
|
Srinivas V, Varma S, Kona SR, Ibrahim A, Duttaroy AK, Basak S. Dietary omega-3 fatty acid deficiency from pre-pregnancy to lactation affects expression of genes involved in hippocampal neurogenesis of the offspring. Prostaglandins Leukot Essent Fatty Acids 2023; 191:102566. [PMID: 36924605 DOI: 10.1016/j.plefa.2023.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Maternal n-3 PUFA (omega-3) deficiency can affect brain development in utero and postnatally. Despite the evidence, the impacts of n-3 PUFA deficiency on the expression of neurogenesis genes in the postnatal hippocampus remained elusive. Since postnatal brain development requires PUFAs via breast milk, we examined the fatty acid composition of breast milk and hippocampal expression of neurogenesis genes in n-3 PUFA deficient 21d mice. In addition, the expression of fatty acid desaturases, elongases, free fatty acids signaling receptors, insulin and leptin, and glucose transporters were measured. Among the genes involved in neurogenesis, the expression of brain-specific tenascin-R (TNR) was downregulated to a greater extent (∼31 fold), followed by adenosine A2A receptor (A2AAR), dopamine receptor D2 (DRD2), glial cell line-derived neurotrophic factor (GDNF) expression in the n-3 PUFA deficient hippocampus. Increasing dietary LA to ALA (50:1) elevated the ARA to DHA ratio by ∼8 fold in the n-3 PUFA deficient breast milk, with an overall increase of total n-6/n-3 PUFAs by ∼15:1 (p<0.05) compared to n-3 PUFA sufficient (LA to ALA: 2:1) diet. The n-3 PUFA deficient mice exhibited upregulation of FADS1, FADS2, ELOVL2, ELOVL5, ELOVL6, GPR40, GPR120, LEPR, IGF1 and downregulation of GLUT1, GLUT3, and GLUT4 mRNA expression in hippocampus (p<0.05). Maternal n-3 PUFA deficiency affects the hippocampal expression of key neurogenesis genes in the offspring with concomitant expression of desaturase and elongase genes, suggesting the importance of dietary n-3 PUFA for neurodevelopment.
Collapse
Affiliation(s)
- Vilasagaram Srinivas
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Saikanth Varma
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Suryam Reddy Kona
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Ahamed Ibrahim
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India.
| |
Collapse
|
16
|
Varshney R, Das S, Trahan GD, Farriester JW, Mullen GP, Kyere-Davies G, Presby DM, Houck JA, Webb PG, Dzieciatkowska M, Jones KL, Rodeheffer MS, Friedman JE, MacLean PS, Rudolph MC. Neonatal intake of Omega-3 fatty acids enhances lipid oxidation in adipocyte precursors. iScience 2023; 26:105750. [PMID: 36590177 PMCID: PMC9800552 DOI: 10.1016/j.isci.2022.105750] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Establishing metabolic programming begins during fetal and postnatal development, and early-life lipid exposures play a critical role during neonatal adipogenesis. We define how neonatal consumption of a low omega-6 to -3 fatty acid ratio (n6/n3 FA ratio) establishes FA oxidation in adipocyte precursor cells (APCs) before they become adipocytes. In vivo, APCs isolated from mouse pups exposed to the low n6/n3 FA ratio had superior FA oxidation capacity, elevated beige adipocyte mRNAs Ppargc1α, Ucp2, and Runx1, and increased nuclear receptor NR2F2 protein. In vitro, APC treatment with NR2F2 ligand-induced beige adipocyte mRNAs and increased mitochondrial potential but not mass. Single-cell RNA-sequencing analysis revealed low n6/n3 FA ratio yielded more mitochondrial-high APCs and linked APC NR2F2 levels with beige adipocyte signatures and FA oxidation. Establishing beige adipogenesis is of clinical relevance, because fat depots with energetically active, smaller, and more numerous adipocytes improve metabolism and delay metabolic dysfunction.
Collapse
Affiliation(s)
- Rohan Varshney
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Snehasis Das
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - G. Devon Trahan
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob W. Farriester
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gregory P. Mullen
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gertrude Kyere-Davies
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David M. Presby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Julie A. Houck
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Patricia G. Webb
- Department of Reproductive Science, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Kenneth L. Jones
- Department of Cell Biology and Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Matthew S. Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Department of Comparative Medicine, Yale University, New Haven, CT, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Paul S. MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Michael C. Rudolph
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
17
|
Infant Red Blood Cell Arachidonic to Docosahexaenoic Acid Ratio Inversely Associates with Fat-Free Mass Independent of Breastfeeding Exclusivity. Nutrients 2022; 14:nu14204238. [PMID: 36296922 PMCID: PMC9608835 DOI: 10.3390/nu14204238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
The prevalence of childhood obesity has increased nearly ten times over the last 40 years, influenced by early life nutrients that have persistent effects on life-long metabolism. During the first six months, infants undergo accelerated adipose accumulation, but little is known regarding infant fatty acid status and its relationship to infant body composition. We tested the hypothesis that a low arachidonic to docosahexaenoic acid ratio (AA/DHA) in infant red blood cells (RBCs), a long-term indicator of fatty acid intake, would associate with more infant fat-free mass (FFM) and/or less adipose accumulation over the first 4 months of life. The fatty acid and composition of breastmilk and infant RBCs, as well as the phospholipid composition of infant RBCs, were quantified using targeted and unbiased lipid mass spectrometry from infants predominantly breastfed or predominantly formula-fed. Regardless of feeding type, FFM accumulation was inversely associated with the infant’s RBC AA/DHA ratio (p = 0.029, R2 = 0.216). Infants in the lowest AA/DHA ratio tertile had significantly greater FFM when controlling for infant sex, adiposity at 2 weeks, and feeding type (p < 0.0001). Infant RBC phospholipid analyses revealed greater peroxisome-derived ether lipids in the low AA/DHA group, primarily within the phosphatidylethanolamines. Our findings support a role for a low AA/DHA ratio in promoting FFM accrual and identify peroxisomal activity as a target of DHA in the growing infant. Both FFM abundance and peroxisomal activity may be important determinants of infant metabolism during development.
Collapse
|
18
|
Robinson DT, Josefson J, Balmert LC, Van Horn L, Silton RL. Early Growth and Cognitive Development in Children Born Preterm: Relevance of Maternal Body Mass Index. Am J Perinatol 2022; 29:1555-1562. [PMID: 33592668 DOI: 10.1055/s-0041-1723828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Maternal prepregnancy body mass index (BMI) represents a surrogate marker of fetal exposures to the maternal metabolism during pregnancy. Yet, it remains poorly understood whether this marker indicates risk of altered trajectories in postnatal growth and development in children born preterm. This study aimed to determine whether maternal prepregnancy BMI is associated with altered growth and development in children born preterm. STUDY DESIGN A retrospective cohort study evaluated prepregnancy BMI as the exposure for childhood outcomes using linear regression and mixed effects models. The 38 children included in this follow-up evaluation originally participated in a prospective, observational cohort study to determine longitudinal levels of lipid species in preterm human milk expressed by women who delivered prior to 32 weeks. Childhood outcomes in this study were anthropometric measures during hospitalization (n = 38), after discharge through 36 months (n = 34) and Bayley-III developmental scores through 18 months corrected age (n = 26). RESULTS In 38 children born prior to 32 weeks, higher maternal prepregnancy BMI was independently associated with higher preterm infant growth velocity during hospitalization, but not associated with in-hospital change in length or head circumference and/or postdischarge growth. In univariate linear regression models, higher maternal BMI was associated with lower cognitive scores at 18 months corrected age. This significant association remained in an adjusted model accounting for relevant influences on early childhood development. CONCLUSION Increasing maternal prepregnancy BMI may reflect risk of altered growth and cognitive development in children born preterm. KEY POINTS · Maternal BMI was associated with early preterm infant weight gain.. · Maternal BMI was not associated with postdischarge growth.. · Increased maternal BMI may be associated with lower cognitive function scores in offspring..
Collapse
Affiliation(s)
- Daniel T Robinson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Jami Josefson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Lauren C Balmert
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rebecca L Silton
- Department of Psychology, Loyola University Chicago, Chicago, Illinois
| |
Collapse
|
19
|
Maternal Aerobic Exercise, but Not Blood Docosahexaenoic Acid and Eicosapentaenoic Acid Concentrations, during Pregnancy Influence Infant Body Composition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148293. [PMID: 35886147 PMCID: PMC9316153 DOI: 10.3390/ijerph19148293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Although discrete maternal exercise and polyunsaturated fatty acid (PUFA) supplementation individually are beneficial for infant body composition, the effects of exercise and PUFA during pregnancy on infant body composition have not been studied. This study evaluated the body composition of infants born to women participating in a randomized control exercise intervention study. Participants were randomized to aerobic exercise (n = 25) or control (stretching and breathing) groups (n = 10). From 16 weeks of gestation until delivery, the groups met 3×/week. At 16 and 36 weeks of gestation, maternal blood was collected and analyzed for Docosahexaenoic Acid (DHA) and Eicosapentaenoic Acid (EPA). At 1 month postnatal, infant body composition was assessed via skinfolds (SFs) and circumferences. Data from 35 pregnant women and infants were analyzed via t-tests, correlations, and regression. In a per protocol analysis, infants born to aerobic exercisers exhibited lower SF thicknesses of triceps (p = 0.008), subscapular (p = 0.04), SF sum (p = 0.01), and body fat (BF) percentage (%) (p = 0.006) compared with controls. After controlling for 36-week DHA and EPA levels, exercise dose was determined to be a negative predictor for infant skinfolds of triceps (p = 0.001, r2 = 0.27), subscapular (p = 0.008, r2 = 0.19), SF sum (p = 0.001, r2 = 0.28), mid-upper arm circumference (p = 0.049, r2 = 0.11), and BF% (p = 0.001, r2 = 0.32). There were no significant findings for PUFAs and infant measures: during pregnancy, exercise dose, but not blood DHA or EPA levels, reduces infant adiposity.
Collapse
|
20
|
The Role of Human Milk Lipids and Lipid Metabolites in Protecting the Infant against Non-Communicable Disease. Int J Mol Sci 2022; 23:ijms23147490. [PMID: 35886839 PMCID: PMC9315603 DOI: 10.3390/ijms23147490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
Non-communicable diseases continue to increase globally and have their origins early in life. Early life obesity tracks from childhood to adulthood, is associated with obesity, inflammation, and metabolic dysfunction, and predicts non-communicable disease risk in later life. There is mounting evidence that these factors are more prevalent in infants who are formula-fed compared to those who are breastfed. Human milk provides the infant with a complex formulation of lipids, many of which are not present in infant formula, or are present in markedly different concentrations, and the plasma lipidome of breastfed infants differs significantly from that of formula-fed infants. With this knowledge, and the knowledge that lipids have critical implications in human health, the lipid composition of human milk is a promising approach to understanding how breastfeeding protects against obesity, inflammation, and subsequent cardiovascular disease risk. Here we review bioactive human milk lipids and lipid metabolites that may play a protective role against obesity and inflammation in later life. We identify key knowledge gaps and highlight priorities for future research.
Collapse
|
21
|
Castillo P, Kuda O, Kopecky J, Pomar CA, Palou A, Palou M, Picó C. Reverting to a healthy diet during lactation normalizes maternal milk lipid content of diet-induced obese rats and prevents early alterations in the plasma lipidome of the offspring. Mol Nutr Food Res 2022; 66:e2200204. [PMID: 35772018 PMCID: PMC9541142 DOI: 10.1002/mnfr.202200204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/25/2022] [Indexed: 11/10/2022]
Abstract
Scope This study aims to assess in rats whether normalizing maternal diet during lactation prevents the harmful effects of western diet (WD) consumption during the whole perinatal period on the lipidomic profile in maternal milk and offspring plasma. Methods and Results Control dams (CON‐dams), fed with standard diet (SD); WD‐dams, fed with WD prior and during gestation and lactation; and reversion dams (REV‐dams), fed as WD‐dams but moved to SD during lactation are followed. Lipidomic analysis is performed in milk and plasma samples from pups. Milk of WD‐dams presents a different triacylglycerol composition and free fatty acid (FA) profile compared to CON‐dams, including an increased ratio of pro‐inflammatory to anti‐inflammatory long‐chain polyunsaturated FA. Such alterations, which are also present in the plasma of their offspring, are widely reversed in the milk of REV‐dams and the plasma of their pups. This is related with the recovery of control adiponectin expression levels in the mammary gland, and the presence of decreased expression of pro‐inflammatory factors. Conclusion Implementing a healthy diet during lactation prevents early alterations in the plasma lipidome of pups associated to the maternal intake of an obesogenic diet, which may be related to the normalization of milk lipid content and the inflammatory state in the mammary gland.
Collapse
Affiliation(s)
- Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Jan Kopecky
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
22
|
Yu HT, Xu WH, Chen YR, Ji Y, Tang YW, Li YT, Gong JY, Chen YF, Liu GL, Xie L. Association of Prepregnancy Obesity and Remodeled Maternal-Fetal Plasma Fatty Acid Profiles. Front Nutr 2022; 9:897059. [PMID: 35651505 PMCID: PMC9149296 DOI: 10.3389/fnut.2022.897059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Fatty acids, especially polyunsaturated fatty acid (PUFA), are found abundantly in the brain and are fundamental for a fetus's growth. The fatty acid profiles of mothers and fetuses may be affected by maternal prepregnancy body mass index (pre-BMI), thus affecting fetal growth and development. Methods A total of 103 mother-fetus pairs were divided into overweight/obese (OW, n = 26), normal weight (NW, n = 60), and underweight (UW, n = 17) groups according to pre-BMI. Fatty acid profiles in maternal and umbilical cord plasma were analyzed by gas chromatography. Results The infant birth BMI z-score of the OW group was higher than that of the NW and UW groups (p < 0.05). The OW mothers had significantly higher plasma n-6 PUFA and n-6/n-3, but lower docosahexaenoic acid (DHA) and n-3 PUFA (p < 0.05). In cord plasma, the proportions of DHA and n-3 PUFA were lower in the OW group (p < 0.05), whereas the n-6/n-3 ratio was higher in the OW group (p < 0.05). The pre-BMI was negatively correlated with cord plasma DHA in all subjects (r = −0.303, p = 0.002), and the same negative correlation can be observed in the OW group (r = −0.561, p = 0.004), but not in the NW and UW groups (p > 0.05). The pre-BMI was positively correlated with cord plasma n-6/n-3 in all subjects (r = 0.325, p = 0.001), and the same positive correlation can be found in the OW group (r = 0.558, p = 0.004), but not in NW and UW groups (p > 0.05). Conclusions Maternal pre-BMI was associated with the maternal-fetal plasma fatty acid profiles, whereas the adverse fatty acid profiles are more noticeable in the prepregnancy OW mothers.
Collapse
Affiliation(s)
- Hai-Tao Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Wen-Hui Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yi-Ru Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Ye Ji
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yi-Wei Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yue-Ting Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Jia-Yu Gong
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yi-Fei Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Guo-Liang Liu
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Lin Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
23
|
Isesele P, Enstad S, Huong P, Thomas R, Wagner CL, Sen S, Cheema SK. Breast Milk from Non-Obese Women with a High Omega-6 to Omega-3 Fatty Acid Ratio, but Not from Women with Obesity, Increases Lipogenic Gene Expression in 3T3-L1 Preadipocytes, Suggesting Adipocyte Dysfunction. Biomedicines 2022; 10:biomedicines10051129. [PMID: 35625866 PMCID: PMC9138889 DOI: 10.3390/biomedicines10051129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 12/10/2022] Open
Abstract
Maternal body mass index is associated with breast milk (BM) fatty acid composition. This study investigated the effects of BM omega (n)-6:n-3 polyunsaturated fatty acids (PUFAs) from non-obese women and women with obesity on the process of adipogenesis in 3T3-L1 preadipocytes. BM samples were collected from non-obese women (BMNO) and women with obesity (BMO) at one month postpartum. The fatty acid composition was measured, and BMNO and BMO groups with the lowest (Q1) and highest (Q4) quartiles of n-6:n-3 PUFA ratios were identified. 3T3-L1 preadipocytes were differentiated in the presence or absence of BM. Lipid accumulation and the expression of genes involved in lipogenesis and lipolysis were measured. Treatment with BMNO containing high (vs. low) n-6:n-3 PUFA ratios significantly increased the mRNA expression of lipogenic genes (acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase); however, there was no effect when cells were treated with BMO (with either low or high n-6:n-3 PUFA ratios). Treatment with BMO (high n-6:n-3 PUFA ratio) caused larger lipid droplets. Our findings demonstrated that BMNO with a high n-6:n-3 PUFA ratio was associated with a higher expression of lipogenic genes, while BMO with a high n-6:n-3 PUFA ratio showed larger lipid droplets, suggesting adipocyte dysfunction. These findings may have implications in the BM-mediated programming of childhood obesity.
Collapse
Affiliation(s)
- Peter Isesele
- Department of Biochemistry, Memorial University, St. John’s, NL A1C 5S7, Canada;
| | - Samantha Enstad
- Winnie Palmer Hospital for Women and Babies, Orlando, FL 32806, USA;
| | - Pham Huong
- School of Science/Boreal Ecosystems and Agriculture Sciences, Memorial University, Corner Brook, NL A2H 5G4, Canada; (P.H.); (R.T.)
| | - Raymond Thomas
- School of Science/Boreal Ecosystems and Agriculture Sciences, Memorial University, Corner Brook, NL A2H 5G4, Canada; (P.H.); (R.T.)
| | - Carol L. Wagner
- Department of Pediatrics, Division of Neonatology, Shawn Jenkins Children’s Hospital, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Sarbattama Sen
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Sukhinder K. Cheema
- Department of Biochemistry, Memorial University, St. John’s, NL A1C 5S7, Canada;
- Correspondence: ; Tel.: +1-7-09-864-3987
| |
Collapse
|
24
|
The importance of nutrition in pregnancy and lactation: lifelong consequences. Am J Obstet Gynecol 2022; 226:607-632. [PMID: 34968458 PMCID: PMC9182711 DOI: 10.1016/j.ajog.2021.12.035] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
Most women in the United States do not meet the recommendations for healthful nutrition and weight before and during pregnancy. Women and providers often ask what a healthy diet for a pregnant woman should look like. The message should be “eat better, not more.” This can be achieved by basing diet on a variety of nutrient-dense, whole foods, including fruits, vegetables, legumes, whole grains, healthy fats with omega-3 fatty acids that include nuts and seeds, and fish, in place of poorer quality highly processed foods. Such a diet embodies nutritional density and is less likely to be accompanied by excessive energy intake than the standard American diet consisting of increased intakes of processed foods, fatty red meat, and sweetened foods and beverages. Women who report “prudent” or “health-conscious” eating patterns before and/or during pregnancy may have fewer pregnancy complications and adverse child health outcomes. Comprehensive nutritional supplementation (multiple micronutrients plus balanced protein energy) among women with inadequate nutrition has been associated with improved birth outcomes, including decreased rates of low birthweight. A diet that severely restricts any macronutrient class should be avoided, specifically the ketogenic diet that lacks carbohydrates, the Paleo diet because of dairy restriction, and any diet characterized by excess saturated fats. User-friendly tools to facilitate a quick evaluation of dietary patterns with clear guidance on how to address dietary inadequacies and embedded support from trained healthcare providers are urgently needed. Recent evidence has shown that although excessive gestational weight gain predicts adverse perinatal outcomes among women with normal weight, the degree of prepregnancy obesity predicts adverse perinatal outcomes to a greater degree than gestational weight gain among women with obesity. Furthermore, low body mass index and insufficient gestational weight gain are associated with poor perinatal outcomes. Observational data have shown that first-trimester gain is the strongest predictor of adverse outcomes. Interventions beginning in early pregnancy or preconception are needed to prevent downstream complications for mothers and their children. For neonates, human milk provides personalized nutrition and is associated with short- and long-term health benefits for infants and mothers. Eating a healthy diet is a way for lactating mothers to support optimal health for themselves and their infants.
Collapse
|
25
|
Morton SU, Leyshon BJ, Tamilia E, Vyas R, Sisitsky M, Ladha I, Lasekan JB, Kuchan MJ, Grant PE, Ou Y. A Role for Data Science in Precision Nutrition and Early Brain Development. Front Psychiatry 2022; 13:892259. [PMID: 35815018 PMCID: PMC9259898 DOI: 10.3389/fpsyt.2022.892259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Multimodal brain magnetic resonance imaging (MRI) can provide biomarkers of early influences on neurodevelopment such as nutrition, environmental and genetic factors. As the exposure to early influences can be separated from neurodevelopmental outcomes by many months or years, MRI markers can serve as an important intermediate outcome in multivariate analyses of neurodevelopmental determinants. Key to the success of such work are recent advances in data science as well as the growth of relevant data resources. Multimodal MRI assessment of neurodevelopment can be supplemented with other biomarkers of neurodevelopment such as electroencephalograms, magnetoencephalogram, and non-imaging biomarkers. This review focuses on how maternal nutrition impacts infant brain development, with three purposes: (1) to summarize the current knowledge about how nutrition in stages of pregnancy and breastfeeding impact infant brain development; (2) to discuss multimodal MRI and other measures of early neurodevelopment; and (3) to discuss potential opportunities for data science and artificial intelligence to advance precision nutrition. We hope this review can facilitate the collaborative march toward precision nutrition during pregnancy and the first year of life.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | | | - Eleonora Tamilia
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Rutvi Vyas
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States
| | - Michaela Sisitsky
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States
| | - Imran Ladha
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States
| | | | | | - P Ellen Grant
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Boston Children's Hospital, Boston, MA, United States
| | - Yangming Ou
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
26
|
Zambrano E, Rodríguez-González GL, Reyes-Castro LA, Bautista CJ, Castro-Rodríguez DC, Juárez-Pilares G, Ibáñez CA, Hernández-Rojas A, Nathanielsz PW, Montaño S, Arredondo A, Huang F, Bolaños-Jiménez F. DHA Supplementation of Obese Rats throughout Pregnancy and Lactation Modifies Milk Composition and Anxiety Behavior of Offspring. Nutrients 2021; 13:nu13124243. [PMID: 34959795 PMCID: PMC8706754 DOI: 10.3390/nu13124243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 01/07/2023] Open
Abstract
We investigated if supplementing obese mothers (MO) with docosahexaenoic acid (DHA) improves milk long-chain polyunsaturated fatty acid (LCPUFA) composition and offspring anxiety behavior. From weaning throughout pregnancy and lactation, female Wistar rats ate chow (C) or a high-fat diet (MO). One month before mating and through lactation, half the mothers received 400 mg DHA kg−1 d−1 orally (C+DHA or MO+DHA). Offspring ate C after weaning. Maternal weight, total body fat, milk hormones, and milk nutrient composition were determined. Pups’ milk nutrient intake was evaluated, and behavioral anxiety tests were conducted. MO exhibited increased weight and total fat, and higher milk corticosterone, leptin, linoleic, and arachidonic acid (AA) concentrations, and less DHA content. MO male and female offspring had higher ω-6/ ω-3 milk consumption ratios. In the elevated plus maze, female but not male MO offspring exhibited more anxiety. MO+DHA mothers exhibited lower weight, total fat, milk leptin, and AA concentrations, and enhanced milk DHA. MO+DHA offspring had a lower ω-6/ω-3 milk intake ratio and reduced anxiety vs. MO. DHA content was greater in C+DHA milk vs. C. Supplementing MO mothers with DHA improves milk composition, especially LCPUFA content and ω-6/ω-3 ratio reducing offspring anxiety in a sex-dependent manner.
Collapse
Affiliation(s)
- Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
- Correspondence: ; Tel.: +52-55-5487-0900 (ext. 2417)
| | - Guadalupe L. Rodríguez-González
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Luis A. Reyes-Castro
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Claudia J. Bautista
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Diana C. Castro-Rodríguez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
- CONACyT-Cátedras, Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Gimena Juárez-Pilares
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Carlos A. Ibáñez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Alejandra Hernández-Rojas
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | | | - Sara Montaño
- Department of Animal Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Armando Arredondo
- Center for Health Systems Research, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Fengyang Huang
- Laboratory of Pharmacology and Toxicology, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Francisco Bolaños-Jiménez
- INRAE, UMR1280 Physiologie des Adaptations Nutritionnelles, Université de Nantes, Nantes Atlantique Université, 44096 Nantes, France;
| |
Collapse
|
27
|
The Fatty Acid Species and Quantity Consumed by the Breastfed Infant Are Important for Growth and Development. Nutrients 2021; 13:nu13114183. [PMID: 34836439 PMCID: PMC8621480 DOI: 10.3390/nu13114183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
The fatty acids (FAs) of human milk (HM) are the building blocks of the HM lipidome, contributing to infant health and development; however, this has not been comprehensively characterised with respect to infant intake. Eighteen Western Australian mother-infant dyads provided monthly longitudinal HM samples during six months of exclusive breastfeeding. Monthly anthropometric measurements, health data and basic maternal food frequency data were also collected. At three months, infant 24 h milk intake and total lipid intake were measured. The FA profile was analysed using gas chromatography-mass spectrometry. Linear regression and Pearson's correlation were used to identify associations between HM FA composition, HM FA intake, maternal characteristics and infant growth and developmental outcomes. Mean infant intake of total lipids was 29.7 ± 9.4 g/day. HM FA composition exhibited wide variation between dyads and throughout lactation. Infant intake of a number of FAs, including C15:0, C18:1, C18:2 and C20:3, was positively related to infant growth (all p < 0.001). There were no relationships detected between C22:5 and C20:5 and infant head circumference. Infant total lipid intake and the infant intake of many FAs play essential roles in infant growth and development. This study highlights the important relationships of many HM FAs not previously described, including C15:0 and C18:2 species. Infant outcomes should be considered in the context of intake in future HM studies.
Collapse
|
28
|
Röszer T. Co-Evolution of Breast Milk Lipid Signaling and Thermogenic Adipose Tissue. Biomolecules 2021; 11:1705. [PMID: 34827703 PMCID: PMC8615456 DOI: 10.3390/biom11111705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
Breastfeeding is a unique and defining behavior of mammals and has a fundamental role in nourishing offspring by supplying a lipid-rich product that is utilized to generate heat and metabolic fuel. Heat generation from lipids is a feature of newborn mammals and is mediated by the uncoupling of mitochondrial respiration in specific fat depots. Breastfeeding and thermogenic adipose tissue have a shared evolutionary history: both have evolved in the course of homeothermy evolution; breastfeeding mammals are termed "thermolipials", meaning "animals with warm fat". Beyond its heat-producing capacity, thermogenic adipose tissue is also necessary for proper lipid metabolism and determines adiposity in offspring. Recent advances have demonstrated that lipid metabolism in infants is orchestrated by breast milk lipid signals, which establish mother-to-child signaling and control metabolic development in the infant. Breastfeeding rates are declining worldwide, and are paralleled by an alarming increase in childhood obesity, which at least in part may have its roots in the impaired metabolic control by breast milk lipid signals.
Collapse
Affiliation(s)
- Tamás Röszer
- Institute of Neurobiology, Faculty of Science, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
29
|
Frost BL, Patel AL, Robinson DT, Berseth CL, Cooper T, Caplan M. Randomized Controlled Trial of Early Docosahexaenoic Acid and Arachidonic Acid Enteral Supplementation in Very Low Birth Weight Infants. J Pediatr 2021; 232:23-30.e1. [PMID: 33358843 DOI: 10.1016/j.jpeds.2020.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To determine feasibility of providing a concentrated emulsified long-chain polyunsaturated fatty acids (LCPUFA) supplement to very low birth weight infants, and to evaluate blood LCPUFA concentrations at 2 and 8 weeks of study supplementation. STUDY DESIGN This prospective, randomized, double-blind, placebo-controlled trial randomized infants to receive (1) LCPUFA-120 (a supplement of 40 mg/kg/day docosahexaenoic acid [DHA] and 80 mg/kg/day arachidonic acid [ARA]; DHA:ARA at 1:2 ratio), (2) LCPUFA-360 (a supplement of 120 mg/kg/day DHA and 240 mg/kg/day ARA), or (3) sunflower oil (placebo control). Infants received supplement daily for 8 weeks or until discharge, whichever came first. Whole blood LCPUFA levels (wt%; g/100 g) were measured at baseline, 2 weeks, and 8 weeks. RESULTS Infants were 28 weeks of gestation (IQR, 27-30 weeks of gestation) and weighed 1040 g (IQR, 910-1245 g). At 2 weeks, the change in blood DHA (wt%) from baseline differed significantly among groups (sunflower oil, n = 6; -0.63 [IQR, -0.96 to -0.55]; LCPUFA-120: n = 12; -0.14 [IQR, -0.72 to -0.26]; LCPUFA-360, n = 12; 0.46 [IQR, 0.17-0.81]; P = .002 across groups). Change in blood ARA (wt%) also differed by group (sunflower oil: -2.2 [IQR, -3.9 to -1.7]; LCPUFA-120: 0.1 [IQR, -2.1 to 1.1] vs LCPUFA-360: 2.9 IQR, 1.5 to 4.5]; P = .0002). Change from baseline to 8 weeks significantly differed between groups for DHA (P = .02) and ARA (P = .003). CONCLUSIONS Enteral LCPUFA supplementation supported higher blood DHA by 2 weeks. LCPUFA supplementation at 360 mg of combined DHA and ARA is likely necessary to reduce declines as well as allow increases in whole blood concentrations in the first 8 weeks of life. TRIAL REGISTRATION Clinicaltrials.gov: NCT03192839.
Collapse
Affiliation(s)
- Brandy L Frost
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL; Department of Pediatrics, University of Chicago Pritzker School of Medicine, Chicago, IL.
| | - Aloka L Patel
- Department of Pediatrics, Rush University Medical Center, Chicago, IL
| | - Daniel T Robinson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Carol Lynn Berseth
- Clinical Research, Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN
| | - Timothy Cooper
- Clinical Research, Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN
| | - Michael Caplan
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL; Department of Pediatrics, University of Chicago Pritzker School of Medicine, Chicago, IL
| |
Collapse
|
30
|
Verduci E, Calcaterra V, Di Profio E, Fiore G, Rey F, Magenes VC, Todisco CF, Carelli S, Zuccotti GV. Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity. A Narrative Review. Nutrients 2021; 13:1450. [PMID: 33923364 PMCID: PMC8145569 DOI: 10.3390/nu13051450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric obesity remains a challenge in modern society. Recently, research has focused on the role of the brown adipose tissue (BAT) as a potential target of intervention. In this review, we revised preclinical and clinical works on factors that may promote BAT or browning of white adipose tissue (WAT) from fetal age to adolescence. Maternal lifestyle, type of breastfeeding and healthy microbiota can affect the thermogenic activity of BAT. Environmental factors such as exposure to cold or physical activity also play a role in promoting and activating BAT. Most of the evidence is preclinical, although in clinic there is some evidence on the role of omega-3 PUFAs (EPA and DHA) supplementation on BAT activation. Clinical studies are needed to dissect the early factors and their modulation to allow proper BAT development and functions and to prevent onset of childhood obesity.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Animal Sciences for Health, Animal Production and Food Safety, University of Milan, 20133 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Carolina Federica Todisco
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| |
Collapse
|
31
|
Comparisons of Breast Milk Fatty Acid Profiles in Overweight and Obese Women. NUTRITION AND FOOD SCIENCES RESEARCH 2021. [DOI: 10.52547/nfsr.8.2.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
Monnard CR, Dulloo AG. Polyunsaturated fatty acids as modulators of fat mass and lean mass in human body composition regulation and cardiometabolic health. Obes Rev 2021; 22 Suppl 2:e13197. [PMID: 33471425 DOI: 10.1111/obr.13197] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
It is now recognized that the amount and type of dietary fat consumed play an important role in metabolic health. In humans, high intake of polyunsaturated fatty acids (PUFAs) has been associated with reductions in cardiovascular disease risk, improvements in glucose homeostasis, and changes in body composition that involve reductions in central adiposity and, more recently, increases in lean body mass. There is also emerging evidence, which suggests that high intakes of the plant-based essential fatty acids (ePUFAs)-n-6 linoleic acid (LA) and n-3 α-linolenic acid (ALA)-have a greater impact on body composition (fat mass and lean mass) and on glucose homeostasis than the marine-derived long-chain n-3 PUFA-eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In addition, high intake of both ePUFAs (LA and ALA) may also have anti-inflammatory effects in humans. The purpose of this review is to highlight the emerging evidence, from both epidemiological prospective studies and clinical intervention trials, of a role for PUFA, in particular ePUFA, in the long-term regulation of body weight and body composition, and their impact on cardiometabolic health. It also discusses current notions about the mechanisms by which PUFAs modulate fat mass and lean mass through altered control of energy intake, thermogenesis, or lean-fat partitioning.
Collapse
Affiliation(s)
- Cathriona R Monnard
- Faculty of Science and Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland
| | - Abdul G Dulloo
- Faculty of Science and Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
33
|
Martin Carli JF, Trahan GD, Jones KL, Hirsch N, Rolloff KP, Dunn EZ, Friedman JE, Barbour LA, Hernandez TL, MacLean PS, Monks J, McManaman JL, Rudolph MC. Single Cell RNA Sequencing of Human Milk-Derived Cells Reveals Sub-Populations of Mammary Epithelial Cells with Molecular Signatures of Progenitor and Mature States: a Novel, Non-invasive Framework for Investigating Human Lactation Physiology. J Mammary Gland Biol Neoplasia 2020; 25:367-387. [PMID: 33216249 PMCID: PMC8016415 DOI: 10.1007/s10911-020-09466-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Cells in human milk are an untapped source, as potential "liquid breast biopsies", of material for investigating lactation physiology in a non-invasive manner. We used single cell RNA sequencing (scRNA-seq) to identify milk-derived mammary epithelial cells (MECs) and their transcriptional signatures in women with diet-controlled gestational diabetes (GDM) with normal lactation. Methodology is described for coordinating milk collections with single cell capture and library preparation via cryopreservation, in addition to scRNA-seq data processing and analyses of MEC transcriptional signatures. We comprehensively characterized 3740 cells from milk samples from two mothers at two weeks postpartum. Most cells (>90%) were luminal MECs (luMECs) expressing lactalbumin alpha and casein beta and positive for keratin 8 and keratin 18. Few cells were keratin 14+ basal MECs and a small immune cell population was present (<10%). Analysis of differential gene expression among clusters identified six potentially distinct luMEC subpopulation signatures, suggesting the potential for subtle functional differences among luMECs, and included one cluster that was positive for both progenitor markers and mature milk transcripts. No expression of pluripotency markers POU class 5 homeobox 1 (POU5F1, encoding OCT4) SRY-box transcription factor 2 (SOX2) or nanog homeobox (NANOG), was observed. These observations were supported by flow cytometric analysis of MECs from mature milk samples from three women with diet-controlled GDM (2-8 mo postpartum), indicating a negligible basal/stem cell population (epithelial cell adhesion molecule (EPCAM)-/integrin subunit alpha 6 (CD49f)+, 0.07%) and a small progenitor population (EPCAM+/CD49f+, 1.1%). We provide a computational framework for others and future studies, as well as report the first milk-derived cells to be analyzed by scRNA-seq. We discuss the clinical potential and current limitations of using milk-derived cells as material for characterizing human mammary physiology.
Collapse
Affiliation(s)
- Jayne F Martin Carli
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - G Devon Trahan
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Nicole Hirsch
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristy P Rolloff
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily Z Dunn
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob E Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Physiology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Linda A Barbour
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Teri L Hernandez
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul S MacLean
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jenifer Monks
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James L McManaman
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael C Rudolph
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Physiology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
34
|
Maternal Linoleic Acid Overconsumption Alters Offspring Gut and Adipose Tissue Homeostasis in Young but Not Older Adult Rats. Nutrients 2020; 12:nu12113451. [PMID: 33187208 PMCID: PMC7697261 DOI: 10.3390/nu12113451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal n-6 polyunsaturated fatty acids (PUFA) consumption during gestation and lactation can predispose offspring to the development of metabolic diseases such as obesity later in life. However, the mechanisms underlying the potential programming effect of n-6 PUFA upon offspring physiology are not yet all established. Herein, we investigated the effects of maternal and weaning linoleic acid (LA)-rich diet interactions on gut intestinal and adipose tissue physiology in young (3-month-old) and older (6-month-old) adult offspring. Pregnant rats were fed a control diet (2% LA) or an LA-rich diet (12% LA) during gestation and lactation. At weaning, offspring were either maintained on the maternal diet or fed the other diet for 3 or 6 months. At 3 months of age, the maternal LA-diet favored low-grade inflammation and greater adiposity, while at 6 months of age, offspring intestinal barrier function, adipose tissue physiology and hepatic conjugated linoleic acids were strongly influenced by the weaning diet. The maternal LA-diet impacted offspring cecal microbiota diversity and composition at 3 months of age, but had only few remnant effects upon cecal microbiota composition at 6 months of age. Our study suggests that perinatal exposure to high LA levels induces a differential metabolic response to weaning diet exposure in adult life. This programming effect of a maternal LA-diet may be related to the alteration of offspring gut microbiota.
Collapse
|
35
|
Peng X, Li J, Yan S, Chen J, Lane J, Malard P, Liu F. Xiang Study: an association of breastmilk composition with maternal body mass index and infant growth during the first 3 month of life. Nutr Res Pract 2020; 15:367-381. [PMID: 34093977 PMCID: PMC8155227 DOI: 10.4162/nrp.2021.15.3.367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/02/2020] [Accepted: 08/25/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to establish a mother and child cohort in the Chinese population, and investigate human breastmilk (HBM) composition and its relationship with maternal body mass index (BMI) and infant growth during the first 3 mon of life. SUBJECTS/METHODS A total of 101 Chinese mother and infant pairs were included in this prospective cohort. Alterations in the milk macronutrients of Chinese mothers at 1 mon (T1), 2 mon (T2), and 3 mon (T3) lactation were analyzed. HBM fatty acid (FA) profiles were measured by gas chromatography (GC), and HBM proteomic profiling was achieved by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). RESULTS During the first 3 mon of lactation (P < 0.05), significant decreases were determined in the levels of total energy, fat, protein, and osteopontin (OPN), as well as ratios of long-chain saturated FA (including C16:0, C22:0 and C24:0), monounsaturated FA (including C16:1), and n-6 poly unsaturated FA (PUFA) (including C20:3n-6 and C20:4n-6, and n-6/n-3). Conversely, butyrate, C6:0 and n-3 PUFA C18:3n-3 (α-linolenic acid, ALA) were significantly increased during the first 3 mon (P < 0.05). HBM proteomic analyses distinguished compositional protein differences over time (P = 0.001). Personalized mother-infant analyses demonstrated that HBM from high BMI mothers presented increased total energy, fat, protein and OPN, and increased content of n-6 PUFA (including C18:3n-6, C20:3n-6 and n-6/n-3 ratio) as compared with low BMI mothers (P < 0.05). Furthermore, BMI of the mothers positively correlated with the head circumference (HC) of infants as well as the specific n-6 PUFA C20:3n-6 over the 3 time points examined. Infant HC was negatively associated with C18:0. CONCLUSION This study provides additional evidence to the Chinese HBM database, and further knowledge of FA function. It also helps to establish future maternal strategies that support the healthy growth and development of Chinese infants.
Collapse
Affiliation(s)
- Xuyi Peng
- H&H Group, Global Research and Technology Center, Guangzhou 510700, China.,School of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Li
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shuyuan Yan
- Child Health Care Center, Changsha Hospital for Maternal and Child Care, Changsha 410007, China
| | - Juchun Chen
- H&H Group, Global Research and Technology Center, Guangzhou 510700, China
| | - Jonathan Lane
- H&H Group, Global Research and Technology Center, Cork, P61 C996, Ireland
| | - Patrice Malard
- H&H Group, Global Research and Technology Center, Guangzhou 510700, China
| | - Feitong Liu
- H&H Group, Global Research and Technology Center, Guangzhou 510700, China
| |
Collapse
|
36
|
Kalupahana NS, Goonapienuwala BL, Moustaid-Moussa N. Omega-3 Fatty Acids and Adipose Tissue: Inflammation and Browning. Annu Rev Nutr 2020; 40:25-49. [DOI: 10.1146/annurev-nutr-122319-034142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) are involved in whole-body energy homeostasis and metabolic regulation. Changes to mass and function of these tissues impact glucose homeostasis and whole-body energy balance during development of obesity, weight loss, and subsequent weight regain. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), which have known hypotriglyceridemic and cardioprotective effects, can also impact WAT and BAT function. In rodent models, these fatty acids alleviate obesity-associated WAT inflammation, improve energy metabolism, and increase thermogenic markers in BAT. Emerging evidence suggests that ω-3 PUFAs can also modulate gut microbiota impacting WAT function and adiposity. This review discusses molecular mechanisms, implications of these findings, translation to humans, and future work, especially with reference to the potential of these fatty acids in weight loss maintenance.
Collapse
Affiliation(s)
- Nishan Sudheera Kalupahana
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, 20400, Sri Lanka
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| | - Bimba Lakmini Goonapienuwala
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| |
Collapse
|
37
|
Orsso CE, Colin-Ramirez E, Field CJ, Madsen KL, Prado CM, Haqq AM. Adipose Tissue Development and Expansion from the Womb to Adolescence: An Overview. Nutrients 2020; 12:E2735. [PMID: 32911676 PMCID: PMC7551046 DOI: 10.3390/nu12092735] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Prevalence rates of pediatric obesity continue to rise worldwide. Adipose tissue (AT) development and expansion initiate in the fetus and extend throughout the lifespan. This paper presents an overview of the AT developmental trajectories from the intrauterine period to adolescence; factors determining adiposity expansion are also discussed. The greatest fetal increases in AT were observed in the third pregnancy trimester, with growing evidence suggesting that maternal health and nutrition, toxin exposure, and genetic defects impact AT development. From birth up to six months, healthy term newborns experience steep increases in AT; but a subsequent reduction in AT is observed during infancy. Important determinants of AT in infancy identified in this review included feeding practices and factors shaping the gut microbiome. Low AT accrual rates are maintained up to puberty onset, at which time, the pattern of adiposity expansion becomes sex dependent. As girls experience rapid increases and boys experience decreases in AT, sexual dimorphism in hormone secretion can be considered the main contributor for changes. Eating patterns/behaviors and interactions between dietary components, gut microbiome, and immune cells also influence AT expansion. Despite the plasticity of this tissue, substantial evidence supports that adiposity at birth and infancy highly influences its levels across subsequent life stages. Thus, a unique window of opportunity for the prevention and/or slowing down of the predisposition toward obesity, exists from pregnancy through childhood.
Collapse
Affiliation(s)
- Camila E. Orsso
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (C.E.O.); (C.J.F.); (C.M.P.)
| | | | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (C.E.O.); (C.J.F.); (C.M.P.)
| | - Karen L. Madsen
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2C2, Canada;
| | - Carla M. Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (C.E.O.); (C.J.F.); (C.M.P.)
| | - Andrea M. Haqq
- Department of Pediatrics and Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R7, Canada
| |
Collapse
|
38
|
Suarez-Trujillo A, Huff K, Ramires Ferreira C, Paschoal Sobreira TJ, Buhman KK, Casey T. High-fat-diet induced obesity increases the proportion of linoleic acyl residues in dam serum and milk and in suckling neonate circulation. Biol Reprod 2020; 103:736-749. [DOI: 10.1093/biolre/ioaa103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/13/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
AbstractMaternal obesity increases the risk of offspring to become obese and develop related pathologies. Exposure to maternal high-fat diet (HFD) only during lactation increases the risk of obesity-related diseases, suggesting that factors in milk affect long-term health. We hypothesized that prepregnancy obesity induced by HFD alters milk lipidome, and in turn, alterations may affect neonate serum lipidome. The objective of this study was to determine the effect of prepregnancy obesity induced by HFD on circulating lipids in dams and neonates and in milk. Female mice were fed an HFD (60% kcal fat) or control diet (CON, 10% kcal fat) beginning 4 weeks before breeding. On postnatal day 2 (PND2), pups were cross-fostered to create pup groups exposed to HFD during pregnancy, lactation, or both or exposed to CON. On PND12, dams were milked and then euthanized along with pups to collect blood. Serum and milk were processed for multiple reaction monitoring (MRM) lipidomics profiling to quantify the relative expression of lipid classes. Lipidome of HFD dam serum and milk had increased proportion of C18:2 free fatty acid and fatty acyl residues in all lipid classes. Lipidome of serum from pups exposed to maternal HFD during lactation was similarly affected. Thus, maternal HFD induced redistribution of fatty acyl residues in the dam’s circulation, which was associated with modification in milk and suckling neonate’s lipidome. Further studies are needed to determine if increased circulating levels of C18:2 in neonate affects development and predisposes offspring to obesity and metabolic syndrome.
Collapse
Affiliation(s)
| | - Katelyn Huff
- Animal Sciences Department, Purdue University, Indiana, USA
- Biological & Biomedical Sciences Program, University of North Carolina-Chapel Hill, North Carolina, USA
| | - Christina Ramires Ferreira
- Department of Chemistry, Purdue University, Indiana, USA
- Bindley Bioscience Center, Purdue University, Indiana, USA
| | | | | | - Theresa Casey
- Animal Sciences Department, Purdue University, Indiana, USA
| |
Collapse
|
39
|
Shook BA, Wasko RR, Mano O, Rutenberg-Schoenberg M, Rudolph MC, Zirak B, Rivera-Gonzalez GC, López-Giráldez F, Zarini S, Rezza A, Clark DA, Rendl M, Rosenblum MD, Gerstein MB, Horsley V. Dermal Adipocyte Lipolysis and Myofibroblast Conversion Are Required for Efficient Skin Repair. Cell Stem Cell 2020; 26:880-895.e6. [PMID: 32302523 PMCID: PMC7853423 DOI: 10.1016/j.stem.2020.03.013] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 11/20/2019] [Accepted: 03/18/2020] [Indexed: 12/26/2022]
Abstract
Mature adipocytes store fatty acids and are a common component of tissue stroma. Adipocyte function in regulating bone marrow, skin, muscle, and mammary gland biology is emerging, but the role of adipocyte-derived lipids in tissue homeostasis and repair is poorly understood. Here, we identify an essential role for adipocyte lipolysis in regulating inflammation and repair after injury in skin. Genetic mouse studies revealed that dermal adipocytes are necessary to initiate inflammation after injury and promote subsequent repair. We find through histological, ultrastructural, lipidomic, and genetic experiments in mice that adipocytes adjacent to skin injury initiate lipid release necessary for macrophage inflammation. Tamoxifen-inducible genetic lineage tracing of mature adipocytes and single-cell RNA sequencing revealed that dermal adipocytes alter their fate and generate ECM-producing myofibroblasts within wounds. Thus, adipocytes regulate multiple aspects of repair and may be therapeutic for inflammatory diseases and defective wound healing associated with aging and diabetes.
Collapse
Affiliation(s)
- Brett A Shook
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Renee R Wasko
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Omer Mano
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Michael Rutenberg-Schoenberg
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Michael C Rudolph
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Denver Anschutz Medical Campus, CO 80045, USA
| | - Bahar Zirak
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Simona Zarini
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Amélie Rezza
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 11766, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 11766, USA
| | - Damon A Clark
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 11766, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 11766, USA
| | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark B Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Valerie Horsley
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Dermatology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
40
|
Daneshzad E, Moradi M, Maracy MR, Brett NR, Bellissimo N, Azadbakht L. The association of maternal plant-based diets and the growth of breastfed infants. Health Promot Perspect 2020; 10:152-161. [PMID: 32296629 PMCID: PMC7146038 DOI: 10.34172/hpp.2020.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 12/01/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Studies are needed to further understand how different plant-based dietary patterns of mothers relate to infant growth. Thus, we investigated the association between maternal plant-based diets and infant growth in breastfed infants during the first 4 months of life. Methods: This cross-sectional study included 290 Iranian mothers and infants. Maternal dietary intake was assessed using a 168-question validated semi-quantitative food frequency questionnaire (FFQ). Three plant-based diet indices (PDIs) were then created to evaluate dietary intakes. Eighteen food groups were classified in three main categories by scoring method: wholeplant diet, healthy plant diet, and animal and unhealthy plant diet. Results: Participants in the top tertile of unhealthy PDI (uPDI) had a lower intake of potassium,phosphorus, zinc, magnesium, calcium, folate and vitamin C, B1, B2, and B3. The upper tertileof uPDI was associated with stunting at 4-month in infants (uPDI: odds ratio [OR] = 3.27, 95%CI= 1.32, 8.10). There were no significant associations between plant-based diet scores and anthropometric indices, including weight, weight status and head circumference (P > 0.05). Conclusion: In conclusion, higher adherence to uPDI may be associated with stuntingamong Iranian infants. Other PDIs were not associated with anthropometric measures. Future studies are needed to further understand the association between plant-based diets and infant growth.
Collapse
Affiliation(s)
- Elnaz Daneshzad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Moradi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad R Maracy
- Department of Epidemiology & Biostatistics, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neil R Brett
- School of Nutrition, Ryerson University, Toronto, Ontario, Canada
| | - Nick Bellissimo
- School of Nutrition, Ryerson University, Toronto, Ontario, Canada
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Abstract
Milk-secreting epithelial cells of the mammary gland are functionally specialized for the synthesis and secretion of large quantities of neutral lipids, a major macronutrient in milk from most mammals. Milk lipid synthesis and secretion are hormonally regulated and secretion occurs by a unique apocrine mechanism. Neutral lipids are synthesized and packaged into perilipin-2 (PLIN2) coated cytoplasmic lipid droplets within specialized cisternal domains of rough endoplasmic reticulum (ER). Continued lipid synthesis by ER membrane enzymes and lipid droplet fusion contribute to the large size of these cytoplasmic lipid droplets (5–15 μm in diameter). Lipid droplets are directionally trafficked within the epithelial cell to the apical plasma membrane. Upon contact, a molecular docking complex assembles to tether the droplet to the plasma membrane and facilitate its membrane envelopment. This docking complex consists of the transmembrane protein, butyrophilin, the cytoplasmic housekeeping protein, xanthine dehydrogenase/oxidoreductase, the lipid droplet coat proteins, PLIN2, and cell death-inducing DFFA-like effector A. Interactions of mitochondria, Golgi, and secretory vesicles with docked lipid droplets have also been reported and may supply membrane phospholipids, energy, or scaffold cytoskeleton for apocrine secretion of the lipid droplet. Final secretion of lipid droplets into the milk occurs in response to oxytocin-stimulated contraction of myoepithelial cells that surround milk-secreting epithelial cells. The mechanistic details of lipid droplet release are unknown at this time. The final secreted milk fat globule consists of a triglyceride core coated with a phospholipid monolayer and various coat proteins, fully encased in a membrane bilayer.
Collapse
Affiliation(s)
- Jenifer Monks
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark S Ladinsky
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - James L McManaman
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
42
|
Leghi GE, Netting MJ, Middleton PF, Wlodek ME, Geddes DT, Muhlhausler BS. The impact of maternal obesity on human milk macronutrient composition: A systematic review and meta-analysis. Nutrients 2020; 12:nu12040934. [PMID: 32230952 PMCID: PMC7231188 DOI: 10.3390/nu12040934] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Maternal obesity has been associated with changes in the macronutrient concentration of human milk (HM), which have the potential to promote weight gain and increase the long-term risk of obesity in the infant. This article aimed to provide a synthesis of studies evaluating the effects of maternal overweight and obesity on the concentrations of macronutrients in HM. EMBASE, MEDLINE/PubMed, Cochrane Library, Scopus, Web of Science, and ProQuest databases were searched for relevant articles. Two authors conducted screening, data extraction, and quality assessment independently. A total of 31 studies (5078 lactating women) were included in the qualitative synthesis and nine studies (872 lactating women) in the quantitative synthesis. Overall, maternal body mass index (BMI) and adiposity measurements were associated with higher HM fat and lactose concentrations at different stages of lactation, whereas protein concentration in HM did not appear to differ between overweight and/or obese and normal weight women. However, given the considerable variability in the results between studies and low quality of many of the included studies, further research is needed to establish the impact of maternal overweight and obesity on HM composition. This is particularly relevant considering potential implications of higher HM fat concentration on both growth and fat deposition during the first few months of infancy and long-term risk of obesity.
Collapse
Affiliation(s)
- Gabriela E. Leghi
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5064, Australia;
| | - Merryn J. Netting
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (M.J.N.); (P.F.M.)
- Discipline of Paediatrics, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Philippa F. Middleton
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (M.J.N.); (P.F.M.)
| | - Mary E. Wlodek
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Beverly S. Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5064, Australia;
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA 5000, Australia
- Correspondence: ; Tel.: +61-8-8305-0697
| |
Collapse
|
43
|
Associations of Breast Milk Microbiota, Immune Factors, and Fatty Acids in the Rat Mother-Offspring Pair. Nutrients 2020; 12:nu12020319. [PMID: 31991792 PMCID: PMC7071194 DOI: 10.3390/nu12020319] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to analyze the rat breast milk profile of fatty acids (FA), immunoglobulins (Ig), microbiota, and their relationship, and to further assess their associations in the mother–offspring pair. Dams were monitored during the three weeks of gestation, allowed to deliver at term, and followed during two weeks of lactation. At the end of the study, milk was obtained from the dams for the analysis of fatty acids, microbiota composition, immunoglobulins, and cytokines. Moreover, the cecal content and plasma were obtained from both the dams and pups to study the cecal microbiota composition and the plasmatic levels of fatty acids, immunoglobulins, and cytokines. Rat breast milk lipid composition was ~65% saturated FA, ~15% monounsaturated FA, and ~20% polyunsaturated FA. Moreover, the proportions of IgM, IgG, and IgA were ~2%, ~88%, and ~10%, respectively. Breast milk was dominated by members of Proteobacteria, Firmicutes, and Bacteroidetes phyla. In addition, forty genera were shared between the milk and cecal content of dams and pups. The correlations performed between variables showed, for example, that all IgGs subtypes correlated between the three compartments, evidencing their association in the mother-milk-pup line. We established the profile of FA, Ig, and the microbiota composition of rat breast milk. Several correlations in these variables evidenced their association through the mother-milk-pup line. Therefore, it would be interesting to perform dietary interventions during pregnancy and/or lactation that influence the quality of breast milk and have an impact on the offspring.
Collapse
|
44
|
Pekmez CT, Larsson MW, Lind MV, Vazquez Manjarrez N, Yonemitsu C, Larnkjaer A, Bode L, Mølgaard C, Michaelsen KF, Dragsted LO. Breastmilk Lipids and Oligosaccharides Influence Branched Short-Chain Fatty Acid Concentrations in Infants with Excessive Weight Gain. Mol Nutr Food Res 2020; 64:e1900977. [PMID: 31801176 DOI: 10.1002/mnfr.201900977] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/16/2019] [Indexed: 01/04/2023]
Abstract
SCOPE The aim is to identify breastmilk components associated with fecal concentration of SCFAs and to investigate whether they differ between infants with high weight gain (HW) and normal weight gain (NW). METHODS AND RESULTS Breastmilk and fecal samples are collected from mother-infant dyads with HW (n = 11) and NW (n = 15) at 5 and 9 months of age. Breastmilk is profiled on ultra-performance LC-quadrupole TOF-MS platform. Fecal SCFAs are quantified using an isotope-labeled chemical derivatization method. Human milk oligosaccharides (HMOs) are quantified using HPLC after fluorescent derivatization. Lower levels of α-linolenic acid, oleic acid, 3-oxohexadecanoic acid, LPE (P-16:0), LPC (16:0), LPC (18:0), PC (36:2) in breastmilk from mothers from the HW-group at 5 months of age is found. Fecal SCFA concentrations are increased during the transition period from breastfeeding to complementary feeding. Fecal butyrate concentration is higher in the NW-group at 9 months of age. Fecal branched SCFAs are positively associated with breastmilk phospholipid levels, free-fatty acid levels, HMO-diversity, sialylated-HMOs, 6'-sialyllactose, and disialyl-lacto-N-hexaose. CONCLUSION Fecal branched SCFA concentrations seem to be affected by breastmilk lipid and HMO composition. These differences in breastmilk metabolites may partially explain the excessive weight gain in early life.
Collapse
Affiliation(s)
- Ceyda Tugba Pekmez
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, 1958, Denmark.,Department of Nutrition and Dietetics, Hacettepe University, Ankara, 06100, Turkey
| | - Melanie Wange Larsson
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, 1958, Denmark.,Department of Nursing and Nutrition, University College Copenhagen, Copenhagen, 2200, Denmark
| | - Mads Vendelbo Lind
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, 1958, Denmark
| | - Natalia Vazquez Manjarrez
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, 1958, Denmark
| | - Chloe Yonemitsu
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anni Larnkjaer
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, 1958, Denmark
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christian Mølgaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, 1958, Denmark
| | - Kim F Michaelsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, 1958, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, 1958, Denmark
| |
Collapse
|
45
|
Marousez L, Lesage J, Eberlé D. Epigenetics: Linking Early Postnatal Nutrition to Obesity Programming? Nutrients 2019; 11:E2966. [PMID: 31817318 PMCID: PMC6950532 DOI: 10.3390/nu11122966] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/16/2019] [Indexed: 12/22/2022] Open
Abstract
Despite constant research and public policy efforts, the obesity epidemic continues to be a major public health threat, and new approaches are urgently needed. It has been shown that nutrient imbalance in early life, from conception to infancy, influences later obesity risk, suggesting that obesity could result from "developmental programming". In this review, we evaluate the possibility that early postnatal nutrition programs obesity risk via epigenetic mechanisms, especially DNA methylation, focusing on four main topics: (1) the dynamics of epigenetic processes in key metabolic organs during the early postnatal period; (2) the epigenetic effects of alterations in early postnatal nutrition in animal models or breastfeeding in humans; (3) current limitations and remaining outstanding questions in the field of epigenetic programming; (4) candidate pathways by which early postnatal nutrition could epigenetically program adult body weight set point. A particular focus will be given to the potential roles of breast milk fatty acids, neonatal metabolic and hormonal milieu, and gut microbiota. Understanding the mechanisms by which early postnatal nutrition can promote lifelong metabolic modifications is essential to design adequate recommendations and interventions to "de-program" the obesity epidemic.
Collapse
Affiliation(s)
| | | | - Delphine Eberlé
- University Lille, EA4489 Environnement Périnatal et Santé, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| |
Collapse
|
46
|
Young BE, Borman LL, Heinrich R, Long J, Pinney S, Westcott J, Krebs NF. Effect of Pooling Practices and Time Postpartum of Milk Donations on the Energy, Macronutrient, and Zinc Concentrations of Resultant Donor Human Milk Pools. J Pediatr 2019; 214:54-59. [PMID: 31558278 PMCID: PMC6886691 DOI: 10.1016/j.jpeds.2019.07.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/21/2019] [Accepted: 07/15/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To characterize the macronutrient, energy, and zinc composition of pasteurized donor human milk pools and evaluate how composition varies based on pooling practices and "time postpartum" (ie, elapsed time from parturition to expression date) of individual milk donations. STUDY DESIGN The Mothers' Milk Bank (Arvada, Colorado) donated 128 donor human milk pools. Caloric density was assessed via mid-infrared spectroscopy, and zinc concentration was measured by atomic absorption spectroscopy. Pool time postpartum was calculated as the unweighted average of the time postpartum of all milk donations included in any given pool. RESULTS Time postpartum of donor human milk pools ranged from 3 days to 9.8 months. The majority (91%) of donor human milk pools included milk from either 1 donor or 2 donors. Pool energy density ranged from 14.7 to 23.1 kcal/oz, and protein ranged from 0.52 to 1.43 g/dL. Milk zinc concentrations were higher in preterm pools and were negatively correlated with pool time postpartum. We present an equation that estimates donor human milk pool zinc content based on time postpartum and explains 49% of the variability in zinc concentrations (P < .0001). Including more donors in donor human milk pools decreased the variability in protein, but not zinc, concentrations. CONCLUSIONS Donor human milk pools were lower in calories than is normally assumed in standard human milk fortification practices. Zinc concentrations were related to donor human milk time postpartum and were on average insufficient to meet preterm and term infants' needs without fortification or supplementation.
Collapse
Affiliation(s)
- Bridget E Young
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO; Department of Pediatrics Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| | - Laraine L Borman
- Mothers' Milk Bank, Rocky Mountain Children's Health Foundation, Arvada, CO
| | - Rebecca Heinrich
- Mothers' Milk Bank, Rocky Mountain Children's Health Foundation, Arvada, CO
| | - Julie Long
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO
| | - Sarah Pinney
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO
| | - Jamie Westcott
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO
| | - Nancy F Krebs
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
47
|
Marchix J, Catheline D, Duby C, Monthéan-Boulier N, Boissel F, Pédrono F, Boudry G, Legrand P. Interactive effects of maternal and weaning high linoleic acid intake on hepatic lipid metabolism, oxylipins profile and hepatic steatosis in offspring. J Nutr Biochem 2019; 75:108241. [PMID: 31715523 DOI: 10.1016/j.jnutbio.2019.108241] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/12/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been described as a hepatic manifestation of the metabolic syndrome. When several studies correlated maternal linoleic acid (LA) intake with the development of obesity, only few links have been made between n-6 fatty acid (FA) and NAFLD. Herein, we investigated the influence of both maternal and weaning high LA intake on lipid metabolism and susceptibility to develop later metabolic diseases in offspring. Pregnant rats were fed a control-diet (2% LA) or a LA-rich diet (12% LA) during gestation and lactation. At weaning, offspring was assigned to one of the two diets, i.e., either maintained on the same maternal diet or fed the other diet for 6 months. Physiological, biochemical parameters and hepatic FA metabolism were analyzed. We demonstrated that the interaction between the maternal and weaning LA intake altered metabolism in offspring and could lead to hepatic steatosis. This phenotype was associated with altered hepatic FA content and lipid metabolism. Interaction between maternal and weaning LA intake led to a specific pattern of n-6 and n-3 oxylipins that could participate to the development of hepatic steatosis in offspring. Our findings highlight the significant interaction between maternal and weaning high LA intake to predispose offspring to later metabolic disease and support the predictive adaptive response hypothesis.
Collapse
Affiliation(s)
- Justine Marchix
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 1378, Agrocampus Ouest, Rennes, France.
| | - Daniel Catheline
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 1378, Agrocampus Ouest, Rennes, France.
| | - Cécile Duby
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 1378, Agrocampus Ouest, Rennes, France.
| | | | - Francoise Boissel
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 1378, Agrocampus Ouest, Rennes, France.
| | - Frédérique Pédrono
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 1378, Agrocampus Ouest, Rennes, France.
| | - Gaëlle Boudry
- Institut NuMeCan INRA, INSERM, Univ Rennes, Rennes, France.
| | - Philippe Legrand
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 1378, Agrocampus Ouest, Rennes, France.
| |
Collapse
|
48
|
de la Garza Puentes A, Martí Alemany A, Chisaguano AM, Montes Goyanes R, Castellote AI, Torres-Espínola FJ, García-Valdés L, Escudero-Marín M, Segura MT, Campoy C, López-Sabater MC. The Effect of Maternal Obesity on Breast Milk Fatty Acids and Its Association with Infant Growth and Cognition-The PREOBE Follow-Up. Nutrients 2019; 11:nu11092154. [PMID: 31505767 PMCID: PMC6770754 DOI: 10.3390/nu11092154] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 02/02/2023] Open
Abstract
This study analyzed how maternal obesity affected fatty acids (FAs) in breast milk and their association with infant growth and cognition to raise awareness about the programming effect of maternal health and to promote a healthy prenatal weight. Mother–child pairs (n = 78) were grouped per maternal pre-pregnancy body mass index (BMI): normal-weight (BMI = 18.5–24.99), overweight (BMI = 25–29.99) and obese (BMI > 30). Colostrum and mature milk FAs were determined. Infant anthropometry at 6, 18 and 36 months of age and cognition at 18 were analyzed. Mature milk exhibited lower arachidonic acid (AA) and docosahexaenoic acid (DHA), among others, than colostrum. Breast milk of non-normal weight mothers presented increased saturated FAs and n6:n3 ratio and decreased α-linolenic acid (ALA), DHA and monounsaturated FAs. Infant BMI-for-age at 6 months of age was inversely associated with colostrum n6 (e.g., AA) and n3 (e.g., DHA) FAs and positively associated with n6:n3 ratio. Depending on the maternal weight, infant cognition was positively influenced by breast milk linoleic acid, n6 PUFAs, ALA, DHA and n3 LC-PUFAs, and negatively affected by n6:n3 ratio. In conclusion, this study shows that maternal pre-pregnancy BMI can influence breast milk FAs and infant growth and cognition, endorsing the importance of a healthy weight in future generations.
Collapse
Affiliation(s)
- Andrea de la Garza Puentes
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària UB (INSA-UB), 08921 Barcelona, Spain.
- Teaching, Research & Innovation Unit, Parc Sanitari Sant Joan de Déu, 08830 Sant Boi, Spain.
| | - Adrià Martí Alemany
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Aida Maribel Chisaguano
- Nutrition, Faculty of Health Sciences, University of San Francisco de Quito, 170157 Quito, Ecuador
| | - Rosa Montes Goyanes
- Food Research and Analysis Institute, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Ana I Castellote
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària UB (INSA-UB), 08921 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition CIBERobn, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Franscisco J Torres-Espínola
- Centre of Excellence for Paediatric Research EURISTIKOS, University of Granada, 18071 Granada, Spain
- Department of Paediatrics, University of Granada, 18071 Granada, Spain
| | - Luz García-Valdés
- Centre of Excellence for Paediatric Research EURISTIKOS, University of Granada, 18071 Granada, Spain
- Department of Paediatrics, University of Granada, 18071 Granada, Spain
| | - Mireia Escudero-Marín
- Centre of Excellence for Paediatric Research EURISTIKOS, University of Granada, 18071 Granada, Spain
- Department of Paediatrics, University of Granada, 18071 Granada, Spain
| | - Maria Teresa Segura
- Centre of Excellence for Paediatric Research EURISTIKOS, University of Granada, 18071 Granada, Spain
- Department of Paediatrics, University of Granada, 18071 Granada, Spain
| | - Cristina Campoy
- Centre of Excellence for Paediatric Research EURISTIKOS, University of Granada, 18071 Granada, Spain
- Department of Paediatrics, University of Granada, 18071 Granada, Spain
- CIBER Epidemiology and Public Health CIBEResp, Institute of Health Carlos III, 28029 Madrid, Spain
| | - M Carmen López-Sabater
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària UB (INSA-UB), 08921 Barcelona, Spain.
- CIBER Physiopathology of Obesity and Nutrition CIBERobn, Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
49
|
Xiao Y, Li X, Zeng X, Wang H, Mai Q, Cheng Y, Li J, Tang L, Ding H. A Low ω-6/ω-3 Ratio High-Fat Diet Improves Rat Metabolism via Purine and Tryptophan Metabolism in the Intestinal Tract, While Reversed by Inulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7315-7324. [PMID: 31184122 DOI: 10.1021/acs.jafc.9b02110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A high-fat diet (HFD) is the main cause of metabolic diseases. However, HFD in previous studies consists of much lard, which contains a large amount of omega-6 (ω-6) polyunsaturated fatty acid (PUFA) and little omega-3 (ω-3) PUFA. The role of ω-6/ω-3 ratio of HFD in the development of metabolic diseases remains incompletely discussed. In this study, rats were fed with either a low or a high ω-6/ω-3 ratio HFD singly or combined with inulin. Metabolism state was valued and metabolomics of cecal content were detected. Results show that HFD with low ω-6/ω-3 ratio promotes the glucose utilization in rats. However, inulin had different effects on metabolism with different diets. Xanthosine and kynurenic acid in cecum were positively related to epididymal white adipose tissues (eWAT) mass. The present study indicates the beneficial effects of low ω-6/ω-3 ratio HFD (LRD) on the metabolic state of rats. Moreover, xanthosine and kynurenic acid were closely related to the development of metabolic diseases.
Collapse
Affiliation(s)
- Yao Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| | - Xiaolei Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| | - Xin Zeng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| | - Huiling Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| | - Qianting Mai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| | - Yahong Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| | - Jing Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| | - Liu Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| |
Collapse
|
50
|
Grinman DY, Careaga VP, Wellberg EA, Dansey MV, Kordon EC, Anderson SM, Maier MS, Burton G, MacLean PS, Rudolph MC, Pecci A. Liver X receptor-α activation enhances cholesterol secretion in lactating mammary epithelium. Am J Physiol Endocrinol Metab 2019; 316:E1136-E1145. [PMID: 30964702 PMCID: PMC6620573 DOI: 10.1152/ajpendo.00548.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/22/2022]
Abstract
Liver X receptors (LXRs) are ligand-dependent transcription factors activated by cholesterol metabolites. These receptors induce a suite of target genes required for de novo synthesis of triglycerides and cholesterol transport in many tissues. Two different isoforms, LXRα and LXRβ, have been well characterized in liver, adipocytes, macrophages, and intestinal epithelium among others, but their contribution to cholesterol and fatty acid efflux in the lactating mammary epithelium is poorly understood. We hypothesize that LXR regulates lipogenesis during milk fat production in lactation. Global mRNA analysis of mouse mammary epithelial cells (MECs) revealed multiple LXR/RXR targets upregulated sharply early in lactation compared with midpregnancy. LXRα is the primary isoform, and its protein levels increase throughout lactation in MECs. The LXR agonist GW3965 markedly induced several genes involved in cholesterol transport and lipogenesis and enhanced cytoplasmic lipid droplet accumulation in the HC11 MEC cell line. Importantly, in vivo pharmacological activation of LXR increased the milk cholesterol percentage and induced sterol regulatory element-binding protein 1c (Srebp1c) and ATP-binding cassette transporter a7 (Abca7) expression in MECs. Cumulatively, our findings identify LXRα as an important regulator of cholesterol incorporation into the milk through key nodes of de novo lipogenesis, suggesting a potential therapeutic target in women with difficulty initiating lactation.
Collapse
Affiliation(s)
- Diego Y Grinman
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Valeria P Careaga
- Unidad De Microanálisis Y Métodos Físicos Aplicados a la Química Orgánica, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Buenos Aires , Argentina
| | - Elizabeth A Wellberg
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - María V Dansey
- Unidad De Microanálisis Y Métodos Físicos Aplicados a la Química Orgánica, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Edith C Kordon
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Steven M Anderson
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - Marta S Maier
- Unidad De Microanálisis Y Métodos Físicos Aplicados a la Química Orgánica, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Buenos Aires , Argentina
| | - Gerardo Burton
- Unidad De Microanálisis Y Métodos Físicos Aplicados a la Química Orgánica, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Buenos Aires , Argentina
| | - Paul S MacLean
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - Michael C Rudolph
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - Adali Pecci
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|