1
|
Bustos-Caparros E, Viver T, Gago JF, Rodriguez-R LM, Hatt JK, Venter SN, Fuchs BM, Amann R, Bosch R, Konstantinidis KT, Rossello-Mora R. Ecological success of extreme halophiles subjected to recurrent osmotic disturbances is primarily driven by congeneric species replacement. THE ISME JOURNAL 2024; 18:wrae215. [PMID: 39441989 PMCID: PMC11544370 DOI: 10.1093/ismejo/wrae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
To understand how extreme halophiles respond to recurrent disturbances, we challenged the communities thriving in salt-saturated (~36% salts) ~230 L brine mesocosms to repeated dilutions down to 13% (D13 mesocosm) or 20% (D20 mesocosm) salts each time mesocosms reached salt saturation due to evaporation (for 10 and 17 cycles, respectively) over 813 days. Depending on the magnitude of dilution, the most prevalent species, Haloquadratum walsbyi and Salinibacter ruber, either increased in dominance by replacing less competitive populations (for D20, moderate stress conditions), or severely decreased in abundance and were eventually replaced by other congeneric species better adapted to the higher osmotic stress (for D13, strong stress conditions). Congeneric species replacement was commonly observed within additional abundant genera in response to changes in environmental or biological conditions (e.g. phage predation) within the same system and under a controlled perturbation of a relevant environmental parameter. Therefore, a genus is an ecologically important level of diversity organization, not just a taxonomic rank, that persists in the environment based on congeneric species replacement due to relatively high functional overlap (gene sharing), with important consequences for the success of the lineage, and similar to the success of a species via strain-replacement. Further, our results showed that successful species were typically accompanied by the emergence of their own viral cohorts, whose intra-cohort diversity appeared to strongly covary with, and likely drive, the intra-host diversity. Collectively, our results show that brine communities are ecologically resilient and continuously adapting to changing environments by transitioning to alternative stable states.
Collapse
Affiliation(s)
- Esteban Bustos-Caparros
- Marine Microbiology Group (MMG), Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), 07190 Esporles, Spain
| | - Tomeu Viver
- Marine Microbiology Group (MMG), Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), 07190 Esporles, Spain
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Juan F Gago
- Marine Microbiology Group (MMG), Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), 07190 Esporles, Spain
| | - Luis M Rodriguez-R
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria
- Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, 30332 GA, United States
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, 0002 Pretoria, South Africa
| | - Bernhard M Fuchs
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Rafael Bosch
- Marine Microbiology Group (MMG), Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), 07190 Esporles, Spain
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain
| | | | - Ramon Rossello-Mora
- Marine Microbiology Group (MMG), Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), 07190 Esporles, Spain
| |
Collapse
|
2
|
Ramos-Barbero MD, Aldeguer-Riquelme B, Viver T, Villamor J, Carrillo-Bautista M, López-Pascual C, Konstantinidis KT, Martínez-García M, Santos F, Rossello-Mora R, Antón J. Experimental evolution at ecological scales allows linking of viral genotypes to specific host strains. THE ISME JOURNAL 2024; 18:wrae208. [PMID: 39579348 PMCID: PMC11631230 DOI: 10.1093/ismejo/wrae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Viruses shape microbial community structure and activity through the control of population diversity and cell abundances. Identifying and monitoring the dynamics of specific virus-host pairs in nature is hampered by the limitations of culture-independent approaches such as metagenomics, which do not always provide strain-level resolution, and culture-based analyses, which eliminate the ecological background and in-situ interactions. Here, we have explored the interaction of a specific "autochthonous" host strain and its viruses within a natural community. Bacterium Salinibacter ruber strain M8 was spiked into its environment of isolation, a crystallizer pond from a coastal saltern, and the viral and cellular communities were monitored for one month using culture, metagenomics, and microscopy. Metagenome sequencing indicated that the M8 abundance decreased sharply after being added to the pond, likely due to forces other than viral predation. However, the presence of M8 selected for two species of a new viral genus, Phoenicisalinivirus, for which 120 strains were isolated. During this experiment, an assemblage of closely related viral genomic variants was replaced by a single population with the ability to infect M8, a scenario which was compatible with the selection of a genomic variant from the rare biosphere. Further analysis implicated a viral genomic region putatively coding for a tail fiber protein to be responsible for M8 specificity. Our results indicate that low abundance viral genotypes provide a viral seed bank that allows for a highly specialized virus-host response within a complex ecological background.
Collapse
Affiliation(s)
- María Dolores Ramos-Barbero
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643. Annex. Floor 0, Barcelona E-08028, Spain
| | - Borja Aldeguer-Riquelme
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332, GA, United States
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Esporles 07190, Spain
| | - Judith Villamor
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Miryam Carrillo-Bautista
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Cristina López-Pascual
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | | | - Manuel Martínez-García
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Fernando Santos
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Esporles 07190, Spain
| | - Josefa Antón
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- Multidisciplinary Institute of Environmental Studies Ramon Margalef, Alicante 03690, Spain
| |
Collapse
|
3
|
Liao J, Guo X, Li S, Anupoju SMB, Cheng RA, Weller DL, Sullivan G, Zhang H, Deng X, Wiedmann M. Comparative genomics unveils extensive genomic variation between populations of Listeria species in natural and food-associated environments. ISME COMMUNICATIONS 2023; 3:85. [PMID: 37598265 PMCID: PMC10439904 DOI: 10.1038/s43705-023-00293-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023]
Abstract
Comprehending bacterial genomic variation linked to distinct environments can yield novel insights into mechanisms underlying differential adaptation and transmission of microbes across environments. Gaining such insights is particularly crucial for pathogens as it benefits public health surveillance. However, the understanding of bacterial genomic variation is limited by a scarcity of investigations in genomic variation coupled with different ecological contexts. To address this limitation, we focused on Listeria, an important bacterial genus for food safety that includes the human pathogen L. monocytogenes, and analyzed a large-scale genomic dataset collected by us from natural and food-associated environments across the United States. Through comparative genomics analyses on 449 isolates from the soil and 390 isolates from agricultural water and produce processing facilities representing L. monocytogenes, L. seeligeri, L. innocua, and L. welshimeri, we find that the genomic profiles strongly differ by environments within each species. This is supported by the environment-associated subclades and differential presence of plasmids, stress islands, and accessory genes involved in cell envelope biogenesis and carbohydrate transport and metabolism. Core genomes of Listeria species are also strongly associated with environments and can accurately predict isolation sources at the lineage level in L. monocytogenes using machine learning. We find that the large environment-associated genomic variation in Listeria appears to be jointly driven by soil property, climate, land use, and accompanying bacterial species, chiefly representing Actinobacteria and Proteobacteria. Collectively, our data suggest that populations of Listeria species have genetically adapted to different environments, which may limit their transmission from natural to food-associated environments.
Collapse
Affiliation(s)
- Jingqiu Liao
- Department of Food Science, Cornell University, Ithaca, NY, USA.
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Xiaodong Guo
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Shaoting Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | | | - Rachel A Cheng
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
| | - Daniel L Weller
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Hailong Zhang
- Department of Business Information Technology, Virginia Tech, Blacksburg, VA, USA
| | - Xiangyu Deng
- Center for Food Safety, University of Georgia, Griffin, GA, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Viver T, Conrad RE, Lucio M, Harir M, Urdiain M, Gago JF, Suárez-Suárez A, Bustos-Caparros E, Sanchez-Martinez R, Mayol E, Fassetta F, Pang J, Mădălin Gridan I, Venter S, Santos F, Baxter B, Llames ME, Cristea A, Banciu HL, Hedlund BP, Stott MB, Kämpfer P, Amann R, Schmitt-Kopplin P, Konstantinidis KT, Rossello-Mora R. Description of two cultivated and two uncultivated new Salinibacter species, one named following the rules of the bacteriological code: Salinibacter grassmerensis sp. nov.; and three named following the rules of the SeqCode: Salinibacter pepae sp. nov., Salinibacter abyssi sp. nov., and Salinibacter pampae sp. nov. Syst Appl Microbiol 2023; 46:126416. [PMID: 36965279 DOI: 10.1016/j.syapm.2023.126416] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Current -omics methods allow the collection of a large amount of information that helps in describing the microbial diversity in nature. Here, and as a result of a culturomic approach that rendered the collection of thousands of isolates from 5 different hypersaline sites (in Spain, USA and New Zealand), we obtained 21 strains that represent two new Salinibacter species. For these species we propose the names Salinibacter pepae sp. nov. and Salinibacter grassmerensis sp. nov. (showing average nucleotide identity (ANI) values < 95.09% and 87.08% with Sal. ruber M31T, respectively). Metabolomics revealed species-specific discriminative profiles. Sal. ruber strains were distinguished by a higher percentage of polyunsaturated fatty acids and specific N-functionalized fatty acids; and Sal. altiplanensis was distinguished by an increased number of glycosylated molecules. Based on sequence characteristics and inferred phenotype of metagenome-assembled genomes (MAGs), we describe two new members of the genus Salinibacter. These species dominated in different sites and always coexisted with Sal. ruber and Sal. pepae. Based on the MAGs from three Argentinian lakes in the Pampa region of Argentina and the MAG of the Romanian lake Fără Fund, we describe the species Salinibacter pampae sp. nov. and Salinibacter abyssi sp. nov. respectively (showing ANI values 90.94% and 91.48% with Sal. ruber M31T, respectively). Sal. grassmerensis sp. nov. name was formed according to the rules of the International Code for Nomenclature of Prokaryotes (ICNP), and Sal. pepae, Sal. pampae sp. nov. and Sal. abyssi sp. nov. are proposed following the rules of the newly published Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). This work constitutes an example on how classification under ICNP and SeqCode can coexist, and how the official naming a cultivated organism for which the deposit in public repositories is difficult finds an intermediate solution.
Collapse
Affiliation(s)
- Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain; Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Roth E Conrad
- Ocean Science & Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Marianna Lucio
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, 85764 Neuherberg, Germany; Chair of Analytical Food Chemistry, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Mercedes Urdiain
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Juan F Gago
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Ana Suárez-Suárez
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Esteban Bustos-Caparros
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Rodrigo Sanchez-Martinez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690, San Vicent del Raspeig, Alicante, Spain
| | - Eva Mayol
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690, San Vicent del Raspeig, Alicante, Spain
| | - Federico Fassetta
- Laboratorio de Ecología Acuática, Instituto Tecnológico Chascomús (INTECH)-CONICET-UNSAM, Escuela de Bio y Nanotecnologías -UNSAM, Buenos Aires, Argentina
| | - Jinfeng Pang
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154-4004, USA
| | - Ionuț Mădălin Gridan
- Doctoral School of Integrative Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Stephanus Venter
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Fernando Santos
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690, San Vicent del Raspeig, Alicante, Spain
| | - Bonnie Baxter
- Great Salt Lake Institute, Westminster College, Salt Lake City, UT, 84105, USA
| | - María E Llames
- Laboratorio de Ecología Acuática, Instituto Tecnológico Chascomús (INTECH)-CONICET-UNSAM, Escuela de Bio y Nanotecnologías -UNSAM, Buenos Aires, Argentina
| | - Adorján Cristea
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj‑Napoca, Romania
| | - Horia L Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj‑Napoca, Romania; Emil G. Racoviță Institute, Babeș-Bolyai University, Cluj‑Napoca, Romania
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154-4004, USA
| | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Peter Kämpfer
- Institute of Applied Microbiology (IFZ), Justus Liebig Universität Giessen, Giessen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, 85764 Neuherberg, Germany; Chair of Analytical Food Chemistry, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Konstantinos T Konstantinidis
- Ocean Science & Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain.
| |
Collapse
|
5
|
Conrad RE, Viver T, Gago JF, Hatt JK, Venter SN, Rossello-Mora R, Konstantinidis KT. Toward quantifying the adaptive role of bacterial pangenomes during environmental perturbations. THE ISME JOURNAL 2022; 16:1222-1234. [PMID: 34887548 PMCID: PMC9039077 DOI: 10.1038/s41396-021-01149-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 05/03/2023]
Abstract
Metagenomic surveys have revealed that natural microbial communities are predominantly composed of sequence-discrete, species-like populations but the genetic and/or ecological processes that maintain such populations remain speculative, limiting our understanding of population speciation and adaptation to perturbations. To address this knowledge gap, we sequenced 112 Salinibacter ruber isolates and 12 companion metagenomes from four adjacent saltern ponds in Mallorca, Spain that were experimentally manipulated to dramatically alter salinity and light intensity, the two major drivers of this ecosystem. Our analyses showed that the pangenome of the local Sal. ruber population is open and similar in size (~15,000 genes) to that of randomly sampled Escherichia coli genomes. While most of the accessory (noncore) genes were isolate-specific and showed low in situ abundances based on the metagenomes compared to the core genes, indicating that they were functionally unimportant and/or transient, 3.5% of them became abundant when salinity (but not light) conditions changed and encoded for functions related to osmoregulation. Nonetheless, the ecological advantage of these genes, while significant, was apparently not strong enough to purge diversity within the population. Collectively, our results provide an explanation for how this immense intrapopulation gene diversity is maintained, which has implications for the prokaryotic species concept.
Collapse
Affiliation(s)
- Roth E Conrad
- Ocean Science & Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Juan F Gago
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Janet K Hatt
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain.
| | - Konstantinos T Konstantinidis
- Ocean Science & Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
6
|
Hobmeier K, Cantone M, Nguyen QA, Pflüger-Grau K, Kremling A, Kunte HJ, Pfeiffer F, Marin-Sanguino A. Adaptation to Varying Salinity in Halomonas elongata: Much More Than Ectoine Accumulation. Front Microbiol 2022; 13:846677. [PMID: 35432243 PMCID: PMC9006882 DOI: 10.3389/fmicb.2022.846677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The halophilic γ-proteobacterium Halomonas elongata DSM 2581 T thrives at salt concentrations well above 10 % NaCl (1.7 M NaCl). A well-known osmoregulatory mechanism is the accumulation of the compatible solute ectoine within the cell in response to osmotic stress. While ectoine accumulation is central to osmoregulation and promotes resistance to high salinity in halophilic bacteria, ectoine has this effect only to a much lesser extent in non-halophiles. We carried out transcriptome analysis of H. elongata grown on two different carbon sources (acetate or glucose), and low (0.17 M NaCl), medium (1 M), and high salinity (2 M) to identify additional mechanisms for adaptation to high saline environments. To avoid a methodological bias, the transcripts were evaluated by applying two methods, DESeq2 and Transcripts Per Million (TPM). The differentially transcribed genes in response to the available carbon sources and salt stress were then compared to the transcriptome profile of Chromohalobacter salexigens, a closely related moderate halophilic bacterium. Transcriptome profiling supports the notion that glucose is degraded via the cytoplasmic Entner-Doudoroff pathway, whereas the Embden-Meyerhoff-Parnas pathway is employed for gluconeogenesis. The machinery of oxidative phosphorylation in H. elongata and C. salexigens differs greatly from that of non-halophilic organisms, and electron flow can occur from quinone to oxygen along four alternative routes. Two of these pathways via cytochrome bo' and cytochrome bd quinol oxidases seem to be upregulated in salt stressed cells. Among the most highly regulated genes in H. elongata and C. salexigens are those encoding chemotaxis and motility proteins, with genes for chemotaxis and flagellar assembly severely downregulated at low salt concentrations. We also compared transcripts at low and high-salt stress (low growth rate) with transcripts at optimal salt concentration and found that the majority of regulated genes were down-regulated in stressed cells, including many genes involved in carbohydrate metabolism, while ribosome synthesis was up-regulated, which is in contrast to what is known from non-halophiles at slow growth. Finally, comparing the acidity of the cytoplasmic proteomes of non-halophiles, extreme halophiles and moderate halophiles suggests adaptation to an increased cytoplasmic ion concentration of H. elongata. Taken together, these results lead us to propose a model for salt tolerance in H. elongata where ion accumulation plays a greater role in salt tolerance than previously assumed.
Collapse
Affiliation(s)
- Karina Hobmeier
- Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Martina Cantone
- Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Quynh Anh Nguyen
- Systems Biotechnology, Technical University of Munich, Garching, Germany
| | | | - Andreas Kremling
- Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Hans Jörg Kunte
- Division Biodeterioration and Reference Organisms, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Alberto Marin-Sanguino
- Systems Biotechnology, Technical University of Munich, Garching, Germany.,Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| |
Collapse
|
7
|
Konstantinidis KT, Viver T, Conrad RE, Venter SN, Rossello-Mora R. Solar salterns as model systems to study the units of bacterial diversity that matter for ecosystem functioning. Curr Opin Biotechnol 2021; 73:151-157. [PMID: 34438234 DOI: 10.1016/j.copbio.2021.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/03/2022]
Abstract
Microbial communities often harbor overwhelming species and gene diversity, making it challenging to determine the important units to study this diversity. We argue that the reduced, and thus tractable, microbial diversity of manmade salterns provides an ideal system to advance this cornerstone issue. We review recent time-series genomic and metagenomic studies of the saltern-dominating bacterial and archaeal taxa to show that these taxa form persistent, sequence-discrete, species-like populations. While these populations harbor extensive intra-population gene diversity, even within a single saltern site, only a small minority of these genes appear to be functionally important during environmental perturbations. We outline an approach to detect and track such populations and their ecologically important genes that should be broadly applicable.
Collapse
Affiliation(s)
- Konstantinos T Konstantinidis
- Ocean Science & Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institutes for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Roth E Conrad
- Ocean Science & Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institutes for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain.
| |
Collapse
|
8
|
Grettenberger CL, Havig JR, Hamilton TL. Metabolic diversity and co-occurrence of multiple Ferrovum species at an acid mine drainage site. BMC Microbiol 2020; 20:119. [PMID: 32423375 PMCID: PMC7236192 DOI: 10.1186/s12866-020-01768-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ferrovum spp. are abundant in acid mine drainage sites globally where they play an important role in biogeochemical cycling. All known taxa in this genus are Fe(II) oxidizers. Thus, co-occurring members of the genus could be competitors within the same environment. However, we found multiple, co-occurring Ferrovum spp. in Cabin Branch, an acid mine drainage site in the Daniel Boone National Forest, KY. RESULTS Here we describe the distribution of Ferrovum spp. within the Cabin Branch communities and metagenome assembled genomes (MAGs) of two new Ferrovum spp. In contrast to previous studies, we recovered multiple 16S rRNA gene sequence variants suggesting the commonly used 97% cutoff may not be appropriate to differentiate Ferrovum spp. We also retrieved two nearly-complete Ferrovum spp. genomes from metagenomic data. The genomes of these taxa differ in several key ways relating to nutrient cycling, motility, and chemotaxis. CONCLUSIONS Previously reported Ferrovum genomes are also diverse with respect to these categories suggesting that the genus Ferrovum contains substantial metabolic diversity. This diversity likely explains how the members of this genus successfully co-occur in Cabin Branch and why Ferrovum spp. are abundant across geochemical gradients.
Collapse
Affiliation(s)
| | - Jeff R Havig
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Trinity L Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, 218 Cargill Building, St. Paul, MN, 55108, USA.
- The BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
9
|
Ramos‐Barbero MD, Martínez JM, Almansa C, Rodríguez N, Villamor J, Gomariz M, Escudero C, Rubin SDC, Antón J, Martínez‐García M, Amils R. Prokaryotic and viral community structure in the singular chaotropic salt lake Salar de Uyuni. Environ Microbiol 2019; 21:2029-2042. [DOI: 10.1111/1462-2920.14549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/19/2019] [Accepted: 01/29/2019] [Indexed: 02/01/2023]
Affiliation(s)
| | - José M. Martínez
- Department of Virology and Microbiology, Centro de Biología Molecular Severo OchoaUniversidad Autónoma de Madrid (CBMSO, CSIC‐UAM) Cantoblanco, 28049 Madrid Spain
| | - Cristina Almansa
- Department of Physiology, Genetics and MicrobiologyUniversidad de Alicante Alicante Spain
| | - Nuria Rodríguez
- Department of Planetology and HabitabilityCentro de Astrobiología (CAB, INTA‐CSIC) 28055 Torrejón de Ardoz Spain
| | - Judith Villamor
- Department of Physiology, Genetics and MicrobiologyUniversidad de Alicante Alicante Spain
| | - María Gomariz
- Department of Physiology, Genetics and MicrobiologyUniversidad de Alicante Alicante Spain
| | - Cristina Escudero
- Department of Virology and Microbiology, Centro de Biología Molecular Severo OchoaUniversidad Autónoma de Madrid (CBMSO, CSIC‐UAM) Cantoblanco, 28049 Madrid Spain
| | - Sergio dC Rubin
- Department of Virology and Microbiology, Centro de Biología Molecular Severo OchoaUniversidad Autónoma de Madrid (CBMSO, CSIC‐UAM) Cantoblanco, 28049 Madrid Spain
- Université catholique de LouvainEarth and Life Institute, Georges Lemaître Centre for Earth and Climate Research Belgium
| | - Josefa Antón
- Department of Physiology, Genetics and MicrobiologyUniversidad de Alicante Alicante Spain
| | - Manuel Martínez‐García
- Department of Physiology, Genetics and MicrobiologyUniversidad de Alicante Alicante Spain
| | - Ricardo Amils
- Department of Virology and Microbiology, Centro de Biología Molecular Severo OchoaUniversidad Autónoma de Madrid (CBMSO, CSIC‐UAM) Cantoblanco, 28049 Madrid Spain
- Department of Planetology and HabitabilityCentro de Astrobiología (CAB, INTA‐CSIC) 28055 Torrejón de Ardoz Spain
| |
Collapse
|
10
|
Ramos-Barbero MD, Martin-Cuadrado AB, Viver T, Santos F, Martinez-Garcia M, Antón J. Recovering microbial genomes from metagenomes in hypersaline environments: The Good, the Bad and the Ugly. Syst Appl Microbiol 2018; 42:30-40. [PMID: 30528276 DOI: 10.1016/j.syapm.2018.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
Current metagenomic tools allow the recovery of microbial genomes directly from the environment. This can be accomplished by binning metagenomic contigs according to their coverage and tetranucleotide frequency, followed by an estimation of the bin quality. The public availability of bioinformatics tools, together with the decreasing cost of next generation sequencing, are democratizing this powerful approach that is spreading from specialized research groups to the general public. Using metagenomes from hypersaline environments, as well as mock metagenomes composed of Archaea and Bacteria frequently found in these systems, we have analyzed the advantages and difficulties of the binning process in these extreme environments to tackle microbial population diversity. These extreme systems harbor relatively low species diversity but high intraspecific diversity, which can compromise metagenome assembly and therefore the whole binning process. The main goal is to compare the output of the binning process with what is previously known from the analyzed samples, based on years of study using different approaches. Several scenarios have been analyzed in detail: (i) a good quality bin from a species highly abundant in the environment; (ii) an intermediate quality bin with incongruences that can be solved by further analyses and manual curation, and (iii) a low-quality bin to investigate the failure to recover a very abundant microbial genome as well as some possible solutions. The latter can be considered the "great metagenomics anomaly" and is mainly due to assembly problems derived from the microdiversity of naturally co-existing populations in nature.
Collapse
Affiliation(s)
| | - Ana-B Martin-Cuadrado
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Tomeu Viver
- Department of Animal and Microbial Biodiversity, Marine Microbiology Group, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Fernando Santos
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Josefa Antón
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain; Multidisciplinary Institute of Environmental Studies Ramon Margalef, University of Alicante, Alicante, Spain.
| |
Collapse
|
11
|
González-Torres P, Gabaldón T. Genome Variation in the Model Halophilic Bacterium Salinibacter ruber. Front Microbiol 2018; 9:1499. [PMID: 30072959 PMCID: PMC6060240 DOI: 10.3389/fmicb.2018.01499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/18/2018] [Indexed: 01/08/2023] Open
Abstract
The halophilic bacterium Salinibacter ruber is an abundant and ecologically important member of halophilic communities worldwide. Given its broad distribution and high intraspecific genetic diversity, S. ruber is considered one of the main models for ecological and evolutionary studies of bacterial adaptation to hypersaline environments. However, current insights on the genomic diversity of this species is limited to the comparison of the genomes of two co-isolated strains. Here, we present a comparative genomic analysis of eight S. ruber strains isolated at two different time points in each of two different Mediterranean solar salterns. Our results show an open pangenome with contrasting evolutionary patterns in the core and accessory genomes. We found that the core genome is shaped by extensive homologous recombination (HR), which results in limited sequence variation within population clusters. In contrast, the accessory genome is modulated by horizontal gene transfer (HGT), with genomic islands and plasmids acting as gateways to the rest of the genome. In addition, both types of genetic exchange are modulated by restriction and modification (RM) or CRISPR-Cas systems. Finally, genes differentially impacted by such processes reveal functional processes potentially relevant for environmental interactions and adaptation to extremophilic conditions. Altogether, our results support scenarios that conciliate “Neutral” and “Constant Diversity” models of bacterial evolution.
Collapse
Affiliation(s)
- Pedro González-Torres
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain.,Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
12
|
Tschitschko B, Erdmann S, DeMaere MZ, Roux S, Panwar P, Allen MA, Williams TJ, Brazendale S, Hancock AM, Eloe-Fadrosh EA, Cavicchioli R. Genomic variation and biogeography of Antarctic haloarchaea. MICROBIOME 2018; 6:113. [PMID: 29925429 PMCID: PMC6011602 DOI: 10.1186/s40168-018-0495-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/06/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND The genomes of halophilic archaea (haloarchaea) often comprise multiple replicons. Genomic variation in haloarchaea has been linked to viral infection pressure and, in the case of Antarctic communities, can be caused by intergenera gene exchange. To expand understanding of genome variation and biogeography of Antarctic haloarchaea, here we assessed genomic variation between two strains of Halorubrum lacusprofundi that were isolated from Antarctic hypersaline lakes from different regions (Vestfold Hills and Rauer Islands). To assess variation in haloarchaeal populations, including the presence of genomic islands, metagenomes from six hypersaline Antarctic lakes were characterised. RESULTS The sequence of the largest replicon of each Hrr. lacusprofundi strain (primary replicon) was highly conserved, while each of the strains' two smaller replicons (secondary replicons) were highly variable. Intergenera gene exchange was identified, including the sharing of a type I-B CRISPR system. Evaluation of infectivity of an Antarctic halovirus provided experimental evidence for the differential susceptibility of the strains, bolstering inferences that strain variation is important for modulating interactions with viruses. A relationship was found between genomic structuring and the location of variation within replicons and genomic islands, demonstrating that the way in which haloarchaea accommodate genomic variability relates to replicon structuring. Metagenome read and contig mapping and clustering and scaling analyses demonstrated biogeographical patterning of variation consistent with environment and distance effects. The metagenome data also demonstrated that specific haloarchaeal species dominated the hypersaline systems indicating they are endemic to Antarctica. CONCLUSION The study describes how genomic variation manifests in Antarctic-lake haloarchaeal communities and provides the basis for future assessments of Antarctic regional and global biogeography of haloarchaea.
Collapse
Affiliation(s)
- Bernhard Tschitschko
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Present Address: Climate Change Cluster, Department of Environmental Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Susanne Erdmann
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Matthew Z DeMaere
- i3 Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Simon Roux
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Pratibha Panwar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Sarah Brazendale
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- , Present Address: 476 Lancaster Rd, Pegarah, Australia
| | - Alyce M Hancock
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Present Address: University of Tasmania Institute of Marine and Antarctic Studies, Antarctic Gateway Partnership and Antarctic Climate and Ecosystem Research Centre, Battery Point, Tasmania, Australia
| | | | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
13
|
Viver T, Orellana L, González-Torres P, Díaz S, Urdiain M, Farías ME, Benes V, Kaempfer P, Shahinpei A, Ali Amoozegar M, Amann R, Antón J, Konstantinidis KT, Rosselló-Móra R. Genomic comparison between members of the Salinibacteraceae family, and description of a new species of Salinibacter (Salinibacter altiplanensis sp. nov.) isolated from high altitude hypersaline environments of the Argentinian Altiplano. Syst Appl Microbiol 2018; 41:198-212. [DOI: 10.1016/j.syapm.2017.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 01/08/2023]
|
14
|
Anderson RE, Kouris A, Seward CH, Campbell KM, Whitaker RJ. Structured Populations of Sulfolobus acidocaldarius with Susceptibility to Mobile Genetic Elements. Genome Biol Evol 2018. [PMID: 28633403 PMCID: PMC5554439 DOI: 10.1093/gbe/evx104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The impact of a structured environment on genome evolution can be determined through comparative population genomics of species that live in the same habitat. Recent work comparing three genome sequences of Sulfolobus acidocaldarius suggested that highly structured, extreme, hot spring environments do not limit dispersal of this thermoacidophile, in contrast to other co-occurring Sulfolobus species. Instead, a high level of conservation among these three S. acidocaldarius genomes was hypothesized to result from rapid, global-scale dispersal promoted by low susceptibility to viruses that sets S. acidocaldarius apart from its sister Sulfolobus species. To test this hypothesis, we conducted a comparative analysis of 47 genomes of S. acidocaldarius from spatial and temporal sampling of two hot springs in Yellowstone National Park. While we confirm the low diversity in the core genome, we observe differentiation among S. acidocaldarius populations, likely resulting from low migration among hot spring “islands” in Yellowstone National Park. Patterns of genomic variation indicate that differing geological contexts result in the elimination or preservation of diversity among differentiated populations. We observe multiple deletions associated with a large genomic island rich in glycosyltransferases, differential integrations of the Sulfolobus turreted icosahedral virus, as well as two different plasmid elements. These data demonstrate that neither rapid dispersal nor lack of mobile genetic elements result in low diversity in the S. acidocaldarius genomes. We suggest instead that significant differences in the recent evolutionary history, or the intrinsic evolutionary rates, of sister Sulfolobus species result in the relatively low diversity of the S. acidocaldarius genome.
Collapse
Affiliation(s)
- Rika E Anderson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign.,Biology Department, Carleton College, Northfield, Minnesota
| | - Angela Kouris
- Energy, Bioengineering and Geomicrobiology Group, University of Calgary, Alberta, Canada
| | - Christopher H Seward
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign
| | - Kate M Campbell
- U.S. Geological Survey National Research Program, Boulder, Colorado
| | - Rachel J Whitaker
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign.,Department of Microbiology, University of Illinois at Urbana-Champaign
| |
Collapse
|
15
|
Characterization of ecologically diverse viruses infecting co-occurring strains of cosmopolitan hyperhalophilic Bacteroidetes. ISME JOURNAL 2017; 12:424-437. [PMID: 29099492 PMCID: PMC5776456 DOI: 10.1038/ismej.2017.175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
Hypersaline environments close to saturation harbor the highest density of virus-like particles reported for aquatic systems as well as low microbial diversity. Thus, they offer unique settings for studying virus–host interactions in nature. However, no viruses have been isolated so far infecting the two most abundant inhabitants of these systems (that is, the euryarchaeon Haloquadratum walsbyi and the bacteroidetes Salinibacter ruber). Here, using three different co-occurring strains, we have isolated eight viruses infecting the ubiquitous S. ruber that constitute three new different genera (named as ‘Holosalinivirus’, ‘Kryptosalinivirus’ and ‘Kairosalinivirus’) according to their genomic traits, different host range, virus–host interaction capabilities and abundances in natural systems worldwide. Furthermore, to get a more complete and comprehensive view of S. ruber virus assemblages in nature, a microcosm experiment was set with a mixture of S. ruber strains challenged with a brine virus concentrate, and changes of viral populations were monitored by viral metagenomics. Only viruses closely related to kairosalinivirus (strictly lytic and wide host range) were enriched, despite their low initial abundance in the natural sample. Metagenomic analyses of the mesocosms allowed the complete recovery of kairosalinivirus genomes using an ad hoc assembly strategy as common viral metagenomic assembly tools failed despite their abundance, which underlines the limitations of current approaches. The increase of this type of viruses was accompanied by an increase in the diversity of the group, as shown by contig recruitment. These results are consistent with a scenario in which host range, not only virus and host abundances, is a key factor in determining virus fate in nature.
Collapse
|
16
|
Anderson RE, Reveillaud J, Reddington E, Delmont TO, Eren AM, McDermott JM, Seewald JS, Huber JA. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nat Commun 2017; 8:1114. [PMID: 29066755 PMCID: PMC5655027 DOI: 10.1038/s41467-017-01228-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/30/2017] [Indexed: 02/01/2023] Open
Abstract
Little is known about evolutionary drivers of microbial populations in the warm subseafloor of deep-sea hydrothermal vents. Here we reconstruct 73 metagenome-assembled genomes (MAGs) from two geochemically distinct vent fields in the Mid-Cayman Rise to investigate patterns of genomic variation within subseafloor populations. Low-abundance populations with high intra-population diversity coexist alongside high-abundance populations with low genomic diversity, with taxonomic differences in patterns of genomic variation between the mafic Piccard and ultramafic Von Damm vent fields. Populations from Piccard are significantly enriched in nonsynonymous mutations, suggesting stronger purifying selection in Von Damm relative to Piccard. Comparison of nine Sulfurovum MAGs reveals two high-coverage, low-diversity MAGs from Piccard enriched in unique genes related to the cellular membrane, suggesting these populations were subject to distinct evolutionary pressures that may correlate with genes related to nutrient uptake, biofilm formation, or viral invasion. These results are consistent with distinct evolutionary histories between geochemically different vent fields, with implications for understanding evolutionary processes in subseafloor microbial populations.
Collapse
Affiliation(s)
- Rika E Anderson
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
- Department of Biology, Carleton College, Northfield, MN, 55057, USA.
| | - Julie Reveillaud
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Cirad UMR 117, Inra UMR 1309 ASTRE, Cirad Campus International de Baillarguet, Montpellier, France
| | - Emily Reddington
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Great Pond Foundation, Edgartown, MA, 02539, USA
| | - Tom O Delmont
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - A Murat Eren
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Jill M McDermott
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA, 18015, USA
| | - Jeff S Seewald
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Julie A Huber
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| |
Collapse
|
17
|
Barbeyron T, Thomas F, Barbe V, Teeling H, Schenowitz C, Dossat C, Goesmann A, Leblanc C, Oliver Glöckner F, Czjzek M, Amann R, Michel G. Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algae-associated bacterium Zobellia galactanivorans Dsij T. Environ Microbiol 2016; 18:4610-4627. [PMID: 27768819 DOI: 10.1111/1462-2920.13584] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 11/30/2022]
Abstract
The marine flavobacterium Zobellia galactanivorans DsijT was isolated from a red alga and by now constitutes a model for studying algal polysaccharide bioconversions. We present an in-depth analysis of its complete genome and link it to physiological traits. Z. galactanivorans exhibited the highest gene numbers for glycoside hydrolases, polysaccharide lyases and carbohydrate esterases and the second highest sulfatase gene number in a comparison to 125 other marine heterotrophic bacteria (MHB) genomes. Its genome contains 50 polysaccharide utilization loci, 22 of which contain sulfatase genes. Catabolic profiling confirmed a pronounced capacity for using algal polysaccharides and degradation of most polysaccharides could be linked to dedicated genes. Physiological and biochemical tests revealed that Z. galactanivorans stores and recycles glycogen, despite loss of several classic glycogen-related genes. Similar gene losses were observed in most Flavobacteriia, suggesting presence of an atypical glycogen metabolism in this class. Z. galactanivorans features numerous adaptive traits for algae-associated life, such as consumption of seaweed exudates, iodine metabolism and methylotrophy, indicating that this bacterium is well equipped to form profitable, stable interactions with macroalgae. Finally, using statistical and clustering analyses of the MHB genomes we show that their carbohydrate catabolism correlates with both taxonomy and habitat.
Collapse
Affiliation(s)
- Tristan Barbeyron
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, Bretagne, CS 90074, France
| | - François Thomas
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, Bretagne, CS 90074, France
| | - Valérie Barbe
- Commissariat à l'énergie atomique (CEA), institut de génomique (IG), Génoscope, 2, rue Gaston Crémieux, BP5706, 91057, Évry, France
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, Bremen, Germany
| | - Chantal Schenowitz
- Commissariat à l'énergie atomique (CEA), institut de génomique (IG), Génoscope, 2, rue Gaston Crémieux, BP5706, 91057, Évry, France
| | - Carole Dossat
- Commissariat à l'énergie atomique (CEA), institut de génomique (IG), Génoscope, 2, rue Gaston Crémieux, BP5706, 91057, Évry, France
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, Gießen, Germany
| | - Catherine Leblanc
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, Bretagne, CS 90074, France
| | - Frank Oliver Glöckner
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, Bremen, Germany.,Jacobs University Bremen gGmbH, Campusring 1, Bremen, Germany
| | - Mirjam Czjzek
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, Bretagne, CS 90074, France
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, Bremen, Germany
| | - Gurvan Michel
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, Bretagne, CS 90074, France
| |
Collapse
|
18
|
DeBlasio DF, Wisecaver JH. SICLE: a high-throughput tool for extracting evolutionary relationships from phylogenetic trees. PeerJ 2016; 4:e2359. [PMID: 27635331 PMCID: PMC5012314 DOI: 10.7717/peerj.2359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/23/2016] [Indexed: 11/25/2022] Open
Abstract
We present the phylogeny analysis software SICLE (Sister Clade Extractor), an easy-to-use, high-throughput tool to describe the nearest neighbors to a node of interest in a phylogenetic tree as well as the support value for the relationship. The application is a command line utility that can be embedded into a phylogenetic analysis pipeline or can be used as a subroutine within another C++ program. As a test case, we applied this new tool to the published phylome of Salinibacter ruber, a species of halophilic Bacteriodetes, identifying 13 unique sister relationships to S. ruber across the 4,589 gene phylogenies. S. ruber grouped with bacteria, most often other Bacteriodetes, in the majority of phylogenies, but 91 phylogenies showed a branch-supported sister association between S. ruber and Archaea, an evolutionarily intriguing relationship indicative of horizontal gene transfer. This test case demonstrates how SICLE makes it possible to summarize the phylogenetic information produced by automated phylogenetic pipelines to rapidly identify and quantify the possible evolutionary relationships that merit further investigation. SICLE is available for free for noncommercial use at http://eebweb.arizona.edu/sicle/.
Collapse
Affiliation(s)
- Dan F DeBlasio
- Department of Computer Science, University of Arizona , Tucson , AZ , United States
| | - Jennifer H Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
19
|
Goh KM, Chan KG, Lim SW, Liew KJ, Chan CS, Shamsir MS, Ee R, Adrian TGS. Genome Analysis of a New Rhodothermaceae Strain Isolated from a Hot Spring. Front Microbiol 2016; 7:1109. [PMID: 27471502 PMCID: PMC4943939 DOI: 10.3389/fmicb.2016.01109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/04/2016] [Indexed: 11/21/2022] Open
Abstract
A bacterial strain, designated RA, was isolated from water sample of a hot spring on Langkawi Island of Malaysia using marine agar. Strain RA is an aerophilic and thermophilic microorganism that grows optimally at 50–60°C and is capable of growing in marine broth containing 1–10% (w/v) NaCl. 16S rRNA gene sequence analysis demonstrated that this strain is most closely related (<90% sequence identity) to Rhodothermaceae, which currently comprises of six genera: Rhodothermus (two species), Salinibacter (three species), Salisaeta (one species), Rubricoccus (one species), Rubrivirga (one species), and Longimonas (one species). Notably, analysis of average nucleotide identity (ANI) values indicated that strain RA may represent the first member of a novel genus of Rhodothermaceae. The draft genome of strain RA is 4,616,094 bp with 3630 protein-coding gene sequences. Its GC content is 68.3%, which is higher than that of most other genomes of Rhodothermaceae. Strain RA has genes for sulfate permease and arylsulfatase to withstand the high sulfur and sulfate contents of the hot spring. Putative genes encoding proteins involved in adaptation to osmotic stress were identified which encode proteins namely Na+/H+ antiporters, a sodium/solute symporter, a sodium/glutamate symporter, trehalose synthase, malto-oligosyltrehalose synthase, choline-sulfatase, potassium uptake proteins (TrkA and TrkH), osmotically inducible protein C, and the K+ channel histidine kinase KdpD. Furthermore, genome description of strain RA and comparative genome studies in relation to other related genera provide an overview of the uniqueness of this bacterium.
Collapse
Affiliation(s)
- Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia Skudai, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Soon Wee Lim
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia Skudai, Malaysia
| | - Kok Jun Liew
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia Skudai, Malaysia
| | - Chia Sing Chan
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia Skudai, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia Skudai, Malaysia
| | - Robson Ee
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Tan-Guan-Sheng Adrian
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Gómez-Lunar Z, Hernández-González I, Rodríguez-Torres MD, Souza V, Olmedo-Álvarez G. Microevolution Analysis of Bacillus coahuilensis Unveils Differences in Phosphorus Acquisition Strategies and Their Regulation. Front Microbiol 2016; 7:58. [PMID: 26903955 PMCID: PMC4744853 DOI: 10.3389/fmicb.2016.00058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/13/2016] [Indexed: 11/27/2022] Open
Abstract
Bacterial genomes undergo numerous events of gene losses and gains that generate genome variability among strains of the same species (microevolution). Our aim was to compare the genomes and relevant phenotypes of three Bacillus coahuilensis strains from two oligotrophic hydrological systems in the Cuatro Ciénegas Basin (México), to unveil the environmental challenges that this species cope with, and the microevolutionary differences in these genotypes. Since the strains were isolated from a low P environment, we placed emphasis on the search of different phosphorus acquisition strategies. The three B. coahuilensis strains exhibited similar numbers of coding DNA sequences, of which 82% (2,893) constituted the core genome, and 18% corresponded to accessory genes. Most of the genes in this last group were associated with mobile genetic elements (MGEs) or were annotated as hypothetical proteins. Ten percent of the pangenome consisted of strain-specific genes. Alignment of the three B. coahuilensis genomes indicated a high level of synteny and revealed the presence of several genomic islands. Unexpectedly, one of these islands contained genes that encode the 2-keto-3-deoxymannooctulosonic acid (Kdo) biosynthesis enzymes, a feature associated to cell walls of Gram-negative bacteria. Some microevolutionary changes were clearly associated with MGEs. Our analysis revealed inconsistencies between phenotype and genotype, which we suggest result from the impossibility to map regulatory features to genome analysis. Experimental results revealed variability in the types and numbers of auxotrophies between the strains that could not consistently be explained by in silico metabolic models. Several intraspecific differences in preferences for carbohydrate and phosphorus utilization were observed. Regarding phosphorus recycling, scavenging, and storage, variations were found between the three genomes. The three strains exhibited differences regarding alkaline phosphatase that revealed that in addition to gene gain and loss, regulation adjustment of gene expression also has contributed to the intraspecific diversity of B. coahuilensis.
Collapse
Affiliation(s)
- Zulema Gómez-Lunar
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| | - Ismael Hernández-González
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| | - María-Dolores Rodríguez-Torres
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| | - Valeria Souza
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México México City, Mexico
| | - Gabriela Olmedo-Álvarez
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| |
Collapse
|
21
|
Oren A. Life in Hypersaline Environments. THEIR WORLD: A DIVERSITY OF MICROBIAL ENVIRONMENTS 2016. [DOI: 10.1007/978-3-319-28071-4_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Interactions between closely related bacterial strains are revealed by deep transcriptome sequencing. Appl Environ Microbiol 2015; 81:8445-56. [PMID: 26431969 DOI: 10.1128/aem.02690-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/27/2015] [Indexed: 01/15/2023] Open
Abstract
Comparative genomics, metagenomics, and single-cell technologies have shown that populations of microbial species encompass assemblages of closely related strains. This raises the question of whether individual bacterial lineages respond to the presence of their close relatives by modifying their gene expression or, instead, whether assemblages simply act as the arithmetic addition of their individual components. Here, we took advantage of transcriptome sequencing to address this question. For this, we analyzed the transcriptomes of two closely related strains of the extremely halophilic bacterium Salinibacter ruber grown axenically and in coculture. These organisms dominate bacterial assemblages in hypersaline environments worldwide. The strains used here cooccurred in the natural environment and are 100% identical in their 16S rRNA genes, and each strain harbors an accessory genome representing 10% of its complete genome. Overall, transcriptomic patterns from pure cultures were very similar for both strains. Expression was detected along practically the whole genome albeit with some genes at low levels. A subset of genes was very highly expressed in both strains, including genes coding for the light-driven proton pump xanthorhodopsin, genes involved in the stress response, and genes coding for transcriptional regulators. Expression differences between pure cultures affected mainly genes involved in environmental sensing. When the strains were grown in coculture, there was a modest but significant change in their individual transcription patterns compared to those in pure culture. Each strain sensed the presence of the other and responded in a specific manner, which points to fine intraspecific transcriptomic modulation.
Collapse
|
23
|
Stevenson A, Cray JA, Williams JP, Santos R, Sahay R, Neuenkirchen N, McClure CD, Grant IR, Houghton JDR, Quinn JP, Timson DJ, Patil SV, Singhal RS, Antón J, Dijksterhuis J, Hocking AD, Lievens B, Rangel DEN, Voytek MA, Gunde-Cimerman N, Oren A, Timmis KN, McGenity TJ, Hallsworth JE. Is there a common water-activity limit for the three domains of life? THE ISME JOURNAL 2015; 9:1333-51. [PMID: 25500507 PMCID: PMC4438321 DOI: 10.1038/ismej.2014.219] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/07/2014] [Accepted: 10/16/2014] [Indexed: 01/09/2023]
Abstract
Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (a(w)) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650-0.605 a(w). Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 a(w)). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 aw for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (∼0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 a(w) for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life.
Collapse
Affiliation(s)
- Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jonathan A Cray
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jim P Williams
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ricardo Santos
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
- Laboratório de Análises, Instituto Superior Técnico, Lisboa, Portugal
| | - Richa Sahay
- University of Essex, School of Biological Sciences, Colchester, Essex, UK
| | - Nils Neuenkirchen
- University of Essex, School of Biological Sciences, Colchester, Essex, UK
| | - Colin D McClure
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Irene R Grant
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jonathan DR Houghton
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - John P Quinn
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - David J Timson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Satish V Patil
- School of Life Sciences, North Maharashtra University, Jalgaon, Maharashtra, India
| | - Rekha S Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Josefa Antón
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | | | - Ailsa D Hocking
- CSIRO Food and Nutrition, North Ryde, New South Wales, Australia
| | - Bart Lievens
- Microbial Ecology and Biorational Control, Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Drauzio E N Rangel
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | | | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Aharon Oren
- Hebrew University of Jerusalem, Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Kenneth N Timmis
- University of Essex, School of Biological Sciences, Colchester, Essex, UK
- Institute of Microbiology, Technical University Braunschweig, Braunschweig, Germany
| | - Terry J McGenity
- University of Essex, School of Biological Sciences, Colchester, Essex, UK
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
- University of Essex, School of Biological Sciences, Colchester, Essex, UK
| |
Collapse
|
24
|
Delmont TO, Eren AM, Maccario L, Prestat E, Esen ÖC, Pelletier E, Le Paslier D, Simonet P, Vogel TM. Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics. Front Microbiol 2015; 6:358. [PMID: 25983722 PMCID: PMC4415585 DOI: 10.3389/fmicb.2015.00358] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/09/2015] [Indexed: 01/09/2023] Open
Abstract
Despite extensive direct sequencing efforts and advanced analytical tools, reconstructing microbial genomes from soil using metagenomics have been challenging due to the tremendous diversity and relatively uniform distribution of genomes found in this system. Here we used enrichment techniques in an attempt to decrease the complexity of a soil microbiome prior to sequencing by submitting it to a range of physical and chemical stresses in 23 separate microcosms for 4 months. The metagenomic analysis of these microcosms at the end of the treatment yielded 540 Mb of assembly using standard de novo assembly techniques (a total of 559,555 genes and 29,176 functions), from which we could recover novel bacterial genomes, plasmids and phages. The recovered genomes belonged to Leifsonia (n = 2), Rhodanobacter (n = 5), Acidobacteria (n = 2), Sporolactobacillus (n = 2, novel nitrogen fixing taxon), Ktedonobacter (n = 1, second representative of the family Ktedonobacteraceae), Streptomyces (n = 3, novel polyketide synthase modules), and Burkholderia (n = 2, includes mega-plasmids conferring mercury resistance). Assembled genomes averaged to 5.9 Mb, with relative abundances ranging from rare (<0.0001%) to relatively abundant (>0.01%) in the original soil microbiome. Furthermore, we detected them in samples collected from geographically distant locations, particularly more in temperate soils compared to samples originating from high-latitude soils and deserts. To the best of our knowledge, this study is the first successful attempt to assemble multiple bacterial genomes directly from a soil sample. Our findings demonstrate that developing pertinent enrichment conditions can stimulate environmental genomic discoveries that would have been impossible to achieve with canonical approaches that focus solely upon post-sequencing data treatment.
Collapse
Affiliation(s)
- Tom O Delmont
- Environmental Microbial Genomics, Laboratoire Ampere, Centre National de la Recherche Scientifique, Ecole Centrale de Lyon, Université de Lyon Ecully, France ; Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole MA, USA
| | - A Murat Eren
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole MA, USA
| | - Lorrie Maccario
- Environmental Microbial Genomics, Laboratoire Ampere, Centre National de la Recherche Scientifique, Ecole Centrale de Lyon, Université de Lyon Ecully, France
| | - Emmanuel Prestat
- Environmental Microbial Genomics, Laboratoire Ampere, Centre National de la Recherche Scientifique, Ecole Centrale de Lyon, Université de Lyon Ecully, France
| | - Özcan C Esen
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole MA, USA
| | - Eric Pelletier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Genoscope Evry, France ; UMR8030, Centre National de la Recherche Scientifique Evry, France ; Université d'Evry Val d'Essonne Evry, France
| | - Denis Le Paslier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Genoscope Evry, France ; UMR8030, Centre National de la Recherche Scientifique Evry, France ; Université d'Evry Val d'Essonne Evry, France
| | - Pascal Simonet
- Environmental Microbial Genomics, Laboratoire Ampere, Centre National de la Recherche Scientifique, Ecole Centrale de Lyon, Université de Lyon Ecully, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampere, Centre National de la Recherche Scientifique, Ecole Centrale de Lyon, Université de Lyon Ecully, France
| |
Collapse
|
25
|
Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME JOURNAL 2014; 9:643-55. [PMID: 25148481 DOI: 10.1038/ismej.2014.156] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/28/2014] [Accepted: 07/18/2014] [Indexed: 11/08/2022]
Abstract
Nitrospira are chemolithoautotrophic nitrite-oxidizing bacteria that catalyze the second step of nitrification in most oxic habitats and are important for excess nitrogen removal from sewage in wastewater treatment plants (WWTPs). To date, little is known about their diversity and ecological niche partitioning within complex communities. In this study, the fine-scale community structure and function of Nitrospira was analyzed in two full-scale WWTPs as model ecosystems. In Nitrospira-specific 16S rRNA clone libraries retrieved from each plant, closely related phylogenetic clusters (16S rRNA identities between clusters ranged from 95.8% to 99.6%) within Nitrospira lineages I and II were found. Newly designed probes for fluorescence in situ hybridization (FISH) allowed the specific detection of several of these clusters, whose coexistence in the WWTPs was shown for prolonged periods of several years. In situ ecophysiological analyses based on FISH, relative abundance and spatial arrangement quantification, as well as microautoradiography revealed functional differences of these Nitrospira clusters regarding the preferred nitrite concentration, the utilization of formate as substrate and the spatial coaggregation with ammonia-oxidizing bacteria as symbiotic partners. Amplicon pyrosequencing of the nxrB gene, which encodes subunit beta of nitrite oxidoreductase of Nitrospira, revealed in one of the WWTPs as many as 121 species-level nxrB operational taxonomic units with highly uneven relative abundances in the amplicon library. These results show a previously unrecognized high diversity of Nitrospira in engineered systems, which is at least partially linked to niche differentiation and may have important implications for process stability.
Collapse
|
26
|
López-Pérez M, Martin-Cuadrado AB, Rodriguez-Valera F. Homologous recombination is involved in the diversity of replacement flexible genomic islands in aquatic prokaryotes. Front Genet 2014; 5:147. [PMID: 24904647 PMCID: PMC4033161 DOI: 10.3389/fgene.2014.00147] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/06/2014] [Indexed: 01/22/2023] Open
Abstract
Different strains of the same prokaryotic species, even very similar ones, vary in large regions of their genomes. This flexible genome represents a huge reservoir of diversity that allows prokaryotes to exploit their environment efficiently. Most of the flexible genome is concentrated in genomic islands, some of which are present in all the strains and coding for similar functions but containing different genes. These replacement genomic islands are typically involved in exposed cellular structures, and their diversity has been connected to their recognition as targets by prokaryotic viruses (phages). We have compared genomes of closely related aquatic microbes from different origins and found examples of recent replacement of some of these flexible genomic islands. In all cases, that include Gram positive and negative bacteria and one archaeon, the replaced regions boundaries contain tell-tale peaks of increased, mostly synonymous, nucleotide substitutions. They tended to be sharper at the boundary closest to the origin of replication of the island. We will present the hypothesis that replacement flexible genomic islands are often exchanged by homologous recombination between different clonal frames. These recombination events are possibly selected due to the immediate reward provided by a change in the phage sensitivity spectrum.
Collapse
Affiliation(s)
- Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández Alicante, Spain
| | - Ana-Belen Martin-Cuadrado
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández Alicante, Spain
| | | |
Collapse
|
27
|
The impact of automated filtering of BLAST-determined homologs in the phylogenetic detection of horizontal gene transfer from a transcriptome assembly. Mol Phylogenet Evol 2014; 71:184-92. [DOI: 10.1016/j.ympev.2013.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 10/09/2013] [Accepted: 11/25/2013] [Indexed: 12/24/2022]
|
28
|
Huerta-Cepas J, Capella-Gutiérrez S, Pryszcz LP, Marcet-Houben M, Gabaldón T. PhylomeDB v4: zooming into the plurality of evolutionary histories of a genome. Nucleic Acids Res 2013; 42:D897-902. [PMID: 24275491 PMCID: PMC3964985 DOI: 10.1093/nar/gkt1177] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phylogenetic trees representing the evolutionary relationships of homologous genes are the entry point for many evolutionary analyses. For instance, the use of a phylogenetic tree can aid in the inference of orthology and paralogy relationships, and in the detection of relevant evolutionary events such as gene family expansions and contractions, horizontal gene transfer, recombination or incomplete lineage sorting. Similarly, given the plurality of evolutionary histories among genes encoded in a given genome, there is a need for the combined analysis of genome-wide collections of phylogenetic trees (phylomes). Here, we introduce a new release of PhylomeDB (http://phylomedb.org), a public repository of phylomes. Currently, PhylomeDB hosts 120 public phylomes, comprising >1.5 million maximum likelihood trees and multiple sequence alignments. In the current release, phylogenetic trees are annotated with taxonomic, protein-domain arrangement, functional and evolutionary information. PhylomeDB is also a major source for phylogeny-based predictions of orthology and paralogy, covering >10 million proteins across 1059 sequenced species. Here we describe newly implemented PhylomeDB features, and discuss a benchmark of the orthology predictions provided by the database, the impact of proteome updates and the use of the phylome approach in the analysis of newly sequenced genomes and transcriptomes.
Collapse
Affiliation(s)
- Jaime Huerta-Cepas
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader, 88. 08003 Barcelona, Spain, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain and Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | | | | | | | | |
Collapse
|
29
|
Meyer JL, Huber JA. Strain-level genomic variation in natural populations of Lebetimonas from an erupting deep-sea volcano. ISME JOURNAL 2013; 8:867-80. [PMID: 24257443 DOI: 10.1038/ismej.2013.206] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/02/2013] [Accepted: 10/13/2013] [Indexed: 11/09/2022]
Abstract
Chemolithoautotrophic Epsilonproteobacteria are ubiquitous in sulfidic, oxygen-poor habitats, including hydrothermal vents, marine oxygen minimum zones, marine sediments and sulfidic caves and have a significant role in cycling carbon, hydrogen, nitrogen and sulfur in these environments. The isolation of diverse strains of Epsilonproteobacteria and the sequencing of their genomes have revealed that this group has the metabolic potential to occupy a wide range of niches, particularly at dynamic deep-sea hydrothermal vents. We expand on this body of work by examining the population genomics of six strains of Lebetimonas, a vent-endemic, thermophilic, hydrogen-oxidizing Epsilonproteobacterium, from a single seamount in the Mariana Arc. Using Lebetimonas as a model for anaerobic, moderately thermophilic organisms in the warm, anoxic subseafloor environment, we show that genomic content is highly conserved and that recombination is limited between closely related strains. The Lebetimonas genomes are shaped by mobile genetic elements and gene loss as well as the acquisition of novel functional genes by horizontal gene transfer, which provide the potential for adaptation and microbial speciation in the deep sea. In addition, these Lebetimonas genomes contain two operons of nitrogenase genes with different evolutionary origins. Lebetimonas expressed nifH during growth with nitrogen gas as the sole nitrogen source, thus providing the first evidence of nitrogen fixation in any Epsilonproteobacteria from deep-sea hydrothermal vents. In this study, we provide a comparative overview of the genomic potential within the Nautiliaceae as well as among more distantly related hydrothermal vent Epsilonproteobacteria to broaden our understanding of microbial adaptation and diversity in the deep sea.
Collapse
Affiliation(s)
- Julie L Meyer
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, USA
| | - Julie A Huber
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, USA
| |
Collapse
|
30
|
Antón J, Lucio M, Peña A, Cifuentes A, Brito-Echeverría J, Moritz F, Tziotis D, López C, Urdiain M, Schmitt-Kopplin P, Rosselló-Móra R. High metabolomic microdiversity within co-occurring isolates of the extremely halophilic bacterium Salinibacter ruber. PLoS One 2013; 8:e64701. [PMID: 23741374 PMCID: PMC3669384 DOI: 10.1371/journal.pone.0064701] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/17/2013] [Indexed: 11/29/2022] Open
Abstract
Salinibacter ruber is an extremely halophilic member of the Bacteroidetes that thrives in crystallizer ponds worldwide. Here, we have analyzed two sets of 22 and 35 co-occurring S. ruber strains, newly isolated respectively, from 100 microliters water samples from crystalizer ponds in Santa Pola and Mallorca, located in coastal and inland Mediterranean Spain and 350 km apart from each other. A set of old strains isolated from the same setting were included in the analysis. Genomic and taxonomy relatedness of the strains were analyzed by means of PFGE and MALDI-TOF, respectively, while their metabolomic potential was explored with high resolution ion cyclotron resonance Fourier transform mass spectrometry (ICR-FT/MS). Overall our results show a phylogenetically very homogeneous species expressing a very diverse metabolomic pool. The combination of MALDI-TOF and PFGE provides, for the newly isolated strains, the same scenario presented by the previous studies of intra-specific diversity of S. ruber using a more restricted number of strains: the species seems to be very homogeneous at the ribosomal level while the genomic diversity encountered was rather high since no identical genome patterns could be retrieved from each of the samples. The high analytical mass resolution of ICR-FT/MS enabled the description of thousands of putative metabolites from which to date only few can be annotated in databases. Some metabolomic differences, mainly related to lipid metabolism and antibiotic-related compounds, provided enough specificity to delineate different clusters within the co-occurring strains. In addition, metabolomic differences were found between old and new strains isolated from the same ponds that could be related to extended exposure to laboratory conditions.
Collapse
Affiliation(s)
- Josefa Antón
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Marianna Lucio
- Helmholtz Zentrum Munich, German Research Center for Environmental Health, Analytical BioGeoChemistry, Neuherberg, Germany
| | - Arantxa Peña
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Ana Cifuentes
- Marine Microbiology Group, Departament of Ecology and Marine Resources, Institut Mediterrani d’Estudis Avançats IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain
| | - Jocelyn Brito-Echeverría
- Marine Microbiology Group, Departament of Ecology and Marine Resources, Institut Mediterrani d’Estudis Avançats IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain
| | - Franco Moritz
- Helmholtz Zentrum Munich, German Research Center for Environmental Health, Analytical BioGeoChemistry, Neuherberg, Germany
| | - Dimitrios Tziotis
- Helmholtz Zentrum Munich, German Research Center for Environmental Health, Analytical BioGeoChemistry, Neuherberg, Germany
| | - Cristina López
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Mercedes Urdiain
- Marine Microbiology Group, Departament of Ecology and Marine Resources, Institut Mediterrani d’Estudis Avançats IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain
| | - Philippe Schmitt-Kopplin
- Marine Microbiology Group, Departament of Ecology and Marine Resources, Institut Mediterrani d’Estudis Avançats IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan, Germany
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Departament of Ecology and Marine Resources, Institut Mediterrani d’Estudis Avançats IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain
| |
Collapse
|
31
|
Podell S, Ugalde JA, Narasingarao P, Banfield JF, Heidelberg KB, Allen EE. Assembly-driven community genomics of a hypersaline microbial ecosystem. PLoS One 2013; 8:e61692. [PMID: 23637883 PMCID: PMC3630111 DOI: 10.1371/journal.pone.0061692] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/13/2013] [Indexed: 01/10/2023] Open
Abstract
Microbial populations inhabiting a natural hypersaline lake ecosystem in Lake Tyrrell, Victoria, Australia, have been characterized using deep metagenomic sampling, iterative de novo assembly, and multidimensional phylogenetic binning. Composite genomes representing habitat-specific microbial populations were reconstructed for eleven different archaea and one bacterium, comprising between 0.6 and 14.1% of the planktonic community. Eight of the eleven archaeal genomes were from microbial species without previously cultured representatives. These new genomes provide habitat-specific reference sequences enabling detailed, lineage-specific compartmentalization of predicted functional capabilities and cellular properties associated with both dominant and less abundant community members, including organisms previously known only by their 16S rRNA sequences. Together, these data provide a comprehensive, culture-independent genomic blueprint for ecosystem-wide analysis of protein functions, population structure, and lifestyles of co-existing, co-evolving microbial groups within the same natural habitat. The “assembly-driven” community genomic approach demonstrated in this study advances our ability to push beyond single gene investigations, and promotes genome-scale reconstructions as a tangible goal in the quest to define the metabolic, ecological, and evolutionary dynamics that underpin environmental microbial diversity.
Collapse
Affiliation(s)
- Sheila Podell
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Juan A. Ugalde
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Priya Narasingarao
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Jillian F. Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, California, United States of America
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, United States of America
| | - Karla B. Heidelberg
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Eric E. Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Oren A. Salinibacter: an extremely halophilic bacterium with archaeal properties. FEMS Microbiol Lett 2013; 342:1-9. [PMID: 23373661 DOI: 10.1111/1574-6968.12094] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 12/17/2022] Open
Abstract
The existence of large number of a member of the Bacteroidetes in NaCl-saturated brines in saltern crystallizer ponds was first documented in 1999 based on fluorescence in situ hybridization studies. Isolation of the organism and its description as Salinibacter ruber followed soon. It is a rod-shaped, red-orange pigmented, extreme halophile that grows optimally at 20-30% salt. The genus is distributed worldwide in hypersaline environments. Today, the genus Salinibacter includes three species, and a somewhat less halophilic relative, Salisaeta longa, has also been documented. Although belonging to the Bacteria, Salinibacter shares many features with the Archaea of the family Halobacteriaceae that live in the same habitat. Both groups use KCl for osmotic adjustment of their cytoplasm, both mainly possess salt-requiring enzymes with a large excess of acidic amino acids, and both contain different retinal pigments: light-driven proton pumps, chloride pumps, and light sensors. Salinibacter produces an unusual carotenoid, salinixanthin that forms a light antenna and transfers energy to the retinal group of xanthorhodopsin, a light-driven proton pump. Other unusual features of Salinibacter and Salisaeta include the presence of novel sulfonolipids (halocapnine derivatives). Salinibacter has become an excellent model for metagenomic, biogeographic, ecological, and evolutionary studies.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
33
|
Pearce DA, Newsham KK, Thorne MAS, Calvo-Bado L, Krsek M, Laskaris P, Hodson A, Wellington EM. Metagenomic analysis of a southern maritime antarctic soil. Front Microbiol 2012; 3:403. [PMID: 23227023 PMCID: PMC3514609 DOI: 10.3389/fmicb.2012.00403] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 11/02/2012] [Indexed: 02/01/2023] Open
Abstract
Our current understanding of Antarctic soils is derived from direct culture on selective media, biodiversity studies based on clone library construction and analysis, quantitative PCR amplification of specific gene sequences and the application of generic microarrays for microbial community analysis. Here, we investigated the biodiversity and functional potential of a soil community at Mars Oasis on Alexander Island in the southern Maritime Antarctic, by applying 454 pyrosequencing technology to a metagenomic library constructed from soil genomic DNA. The results suggest that the commonly cited range of phylotypes used in clone library construction and analysis of 78–730 OTUs (de-replicated to 30–140) provides low coverage of the major groups present (∼5%). The vast majority of functional genes (>77%) were for structure, carbohydrate metabolism, and DNA/RNA processing and modification. This study suggests that prokaryotic diversity in Antarctic terrestrial environments appears to be limited at the generic level, with Proteobacteria, Actinobacteria being common. Cyanobacteria were surprisingly under-represented at 3.4% of sequences, although ∼1% of the genes identified were involved in CO2 fixation. At the sequence level there appeared to be much greater heterogeneity, and this might be due to high divergence within the relatively restricted lineages which have successfully colonized Antarctic terrestrial environments.
Collapse
Affiliation(s)
- David A Pearce
- Ecosystems Programme, Natural Environment Research Council, British Antarctic Survey Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Teeling H, Glöckner FO. Current opportunities and challenges in microbial metagenome analysis--a bioinformatic perspective. Brief Bioinform 2012; 13:728-42. [PMID: 22966151 PMCID: PMC3504927 DOI: 10.1093/bib/bbs039] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/09/2012] [Indexed: 12/21/2022] Open
Abstract
Metagenomics has become an indispensable tool for studying the diversity and metabolic potential of environmental microbes, whose bulk is as yet non-cultivable. Continual progress in next-generation sequencing allows for generating increasingly large metagenomes and studying multiple metagenomes over time or space. Recently, a new type of holistic ecosystem study has emerged that seeks to combine metagenomics with biodiversity, meta-expression and contextual data. Such 'ecosystems biology' approaches bear the potential to not only advance our understanding of environmental microbes to a new level but also impose challenges due to increasing data complexities, in particular with respect to bioinformatic post-processing. This mini review aims to address selected opportunities and challenges of modern metagenomics from a bioinformatics perspective and hopefully will serve as a useful resource for microbial ecologists and bioinformaticians alike.
Collapse
|
35
|
Boujelben I, Yarza P, Almansa C, Villamor J, Maalej S, Antón J, Santos F. Virioplankton community structure in Tunisian solar salterns. Appl Environ Microbiol 2012; 78:7429-37. [PMID: 22904045 PMCID: PMC3457115 DOI: 10.1128/aem.01793-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/06/2012] [Indexed: 11/20/2022] Open
Abstract
The microbial community inhabiting Sfax solar salterns on the east coast of Tunisia has been studied by means of different molecular and culture-dependent tools that have unveiled the presence of novel microbial groups as well as a community structure different from that of other coastal hypersaline environments. We have focused on the study of the viral assemblages of these salterns and their changes along the salinity gradient and over time. Viruses from three ponds (C4, M1, and TS) encompassing salinities from moderately hypersaline to saturated (around 14, 19, and 35%, respectively) were sampled in May and October 2009 and analyzed by transmission electron microscopy (TEM) and pulsed-field gel electrophoresis (PFGE). Additionally, for all three October samples and the May TS sample, viral metagenomic DNA was cloned in fosmids, end sequenced, and analyzed. Viral concentration, as well as virus-to-cell ratios, increased along the salinity gradient, with around 10(10) virus-like particles (VLPs)/ml in close-to-saturation ponds, which represents the highest viral concentration reported so far for aquatic systems. Four distinct morphologies could be observed with TEM (spherical, tailed, spindled, and filamentous) but with various proportions in the different samples. Metagenomic analyses indicated that every pond harbored a distinct viral assemblage whose G+C content could be roughly correlated with that of the active part of the microbial community that may have constituted the putative hosts. As previously reported for hypersaline metaviromes, most sequences did not have matches in the databases, although some were conserved among the Sfax metaviromes. BLASTx, BLASTp, and dinucleotide frequency analyses indicated that (i) factors additional to salinity could be structuring viral communities and (ii) every metavirome had unique gene contents and dinucleotide frequencies. Comparison with hypersaline metaviromes available in the databases indicated that the viral assemblages present in close-to-saturation environments located thousands of kilometers apart presented some common traits among them in spite of their differences regarding the putative hosts. A small core metavirome for close-to-saturation systems was found that contained 7 sequences of around 100 nucleotides (nt) whose function was not hinted at by in silico search results, although it most likely represents properties essential for hyperhalophilic viruses.
Collapse
Affiliation(s)
- Ines Boujelben
- Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Pablo Yarza
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Cristina Almansa
- Servicios Técnicos de Investigación (SSTTI), Unidad de Microscopía, Universidad de Alicante, Alicante, Spain
| | - Judith Villamor
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Sami Maalej
- Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Josefa Antón
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
- Instituto Multidisciplinar para el Estudio del Medio Ramón Margalef, Universidad de Alicante, Alicante, Spain
| | - Fernando Santos
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
36
|
Long RA, Eveillard D, Franco SLM, Reeves E, Pinckney JL. Antagonistic interactions between heterotrophic bacteria as a potential regulator of community structure of hypersaline microbial mats. FEMS Microbiol Ecol 2012; 83:74-81. [PMID: 22809069 DOI: 10.1111/j.1574-6941.2012.01457.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/02/2012] [Accepted: 07/08/2012] [Indexed: 11/28/2022] Open
Abstract
Microbial mats are laminae of self-sustaining microbial communities with a high level of competition for resources. We tested the hypothesis that chemically mediated antagonism is a potential mechanism for structuring the bacterial community. In the co-culturing assay, 57% of the isolates expressed antagonistic behavior toward one or more isolates and 5% of the isolates inhibited more than 80% of the isolates. We observed greater levels of antagonism between isolates from adjacent laminae than within. The bacterial isolate library derived from the mat was predominately Gram-positive, and inhibition within this group was greater than against the few Gram-negative isolates. Microdiversity of 16S rRNA gene was observed for Bacillus marisflavi isolates, which represented 23 of the 75 isolates in the library. Within this and other groups, the patterns of inhibition and sensitivity varied greatly, suggesting rapid gain and loss of the ability to produce antagonistic secondary metabolites and resistance toward such molecules. Our observations are consistent with the hypothesis that antagonistic interactions are a potential mechanism in addition to physiochemical properties that regulate the vertical distribution of aerobic heterotrophic bacteria in hypersaline microbial mats.
Collapse
Affiliation(s)
- Richard A Long
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
37
|
Fernández-Gómez B, Fernàndez-Guerra A, Casamayor EO, González JM, Pedrós-Alió C, Acinas SG. Patterns and architecture of genomic islands in marine bacteria. BMC Genomics 2012; 13:347. [PMID: 22839777 PMCID: PMC3478194 DOI: 10.1186/1471-2164-13-347] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic Islands (GIs) have key roles since they modulate the structure and size of bacterial genomes displaying a diverse set of laterally transferred genes. Despite their importance, GIs in marine bacterial genomes have not been explored systematically to uncover possible trends and to analyze their putative ecological significance. RESULTS We carried out a comprehensive analysis of GIs in 70 selected marine bacterial genomes detected with IslandViewer to explore the distribution, patterns and functional gene content in these genomic regions. We detected 438 GIs containing a total of 8152 genes. GI number per genome was strongly and positively correlated with the total GI size. In 50% of the genomes analyzed the GIs accounted for approximately 3% of the genome length, with a maximum of 12%. Interestingly, we found transposases particularly enriched within Alphaproteobacteria GIs, and site-specific recombinases in Gammaproteobacteria GIs. We described specific Homologous Recombination GIs (HR-GIs) in several genera of marine Bacteroidetes and in Shewanella strains among others. In these HR-GIs, we recurrently found conserved genes such as the β-subunit of DNA-directed RNA polymerase, regulatory sigma factors, the elongation factor Tu and ribosomal protein genes typically associated with the core genome. CONCLUSIONS Our results indicate that horizontal gene transfer mediated by phages, plasmids and other mobile genetic elements, and HR by site-specific recombinases play important roles in the mobility of clusters of genes between taxa and within closely related genomes, modulating the flexible pool of the genome. Our findings suggest that GIs may increase bacterial fitness under environmental changing conditions by acquiring novel foreign genes and/or modifying gene transcription and/or transduction.
Collapse
Affiliation(s)
- Beatriz Fernández-Gómez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Pg Marítim de la Barceloneta 37-49, ES-08003 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T, Liesegang H, Wollherr A, Kjelleberg S, Daniel R, Simon M, Thomas T, Brinkhoff T. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME JOURNAL 2012; 6:2229-44. [PMID: 22717884 DOI: 10.1038/ismej.2012.62] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phaeobacter gallaeciensis, a member of the abundant marine Roseobacter clade, is known to be an effective colonizer of biotic and abiotic marine surfaces. Production of the antibiotic tropodithietic acid (TDA) makes P. gallaeciensis a strong antagonist of many bacteria, including fish and mollusc pathogens. In addition to TDA, several other secondary metabolites are produced, allowing the mutualistic bacterium to also act as an opportunistic pathogen. Here we provide the manually annotated genome sequences of the P. gallaeciensis strains DSM 17395 and 2.10, isolated at the Atlantic coast of north western Spain and near Sydney, Australia, respectively. Despite their isolation sites from the two different hemispheres, the genome comparison demonstrated a surprisingly high level of synteny (only 3% nucleotide dissimilarity and 88% and 93% shared genes). Minor differences in the genomes result from horizontal gene transfer and phage infection. Comparison of the P. gallaeciensis genomes with those of other roseobacters revealed unique genomic traits, including the production of iron-scavenging siderophores. Experiments supported the predicted capacity of both strains to grow on various algal osmolytes. Transposon mutagenesis was used to expand the current knowledge on the TDA biosynthesis pathway in strain DSM 17395. This first comparative genomic analysis of finished genomes of two closely related strains belonging to one species of the Roseobacter clade revealed features that provide competitive advantages and facilitate surface attachment and interaction with eukaryotic hosts.
Collapse
Affiliation(s)
- Sebastian Thole
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Santos F, Yarza P, Parro V, Meseguer I, Rosselló-Móra R, Antón J. Culture-independent approaches for studying viruses from hypersaline environments. Appl Environ Microbiol 2012; 78:1635-43. [PMID: 22247131 PMCID: PMC3298169 DOI: 10.1128/aem.07175-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hypersaline close-to-saturation environments harbor an extremely high concentration of virus-like particles, but the number of haloviruses isolated so far is still very low. Haloviruses can be directly studied from natural samples by using different culture-independent techniques that include transmission electron microscopy, pulsed-field gel electrophoresis, and different metagenomic approaches. Here, we review the findings of these studies, with a main focus on the metagenomic approaches. The analysis of bulk viral nucleic acids directly retrieved from the environment allows estimations of viral diversity, activity, and dynamics and tentative host assignment. Results point to a diverse and active viral community in constant interplay with its hosts and to a "hypersalineness" quality common to viral assemblages present in hypersaline environments that are thousands of kilometers away from each other.
Collapse
Affiliation(s)
- Fernando Santos
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Pablo Yarza
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
- Marine Microbiology Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Esporles (Mallorca), Spain
| | - Víctor Parro
- Departamento de Evolución Molecular, Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | - Inmaculada Meseguer
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
- Departamento de Producción vegetal y Microbiología, Universidad Miguel Hernández, Elche, Spain
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Esporles (Mallorca), Spain
| | - Josefa Antón
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
- Instituto Multidisciplinar para el Estudio del Medio Ramón Margalef, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
40
|
Meyer TE, Kyndt JA, Memmi S, Moser T, Colón-Acevedo B, Devreese B, Van Beeumen JJ. The growing family of photoactive yellow proteins and their presumed functional roles. Photochem Photobiol Sci 2012; 11:1495-514. [DOI: 10.1039/c2pp25090j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
Gonzaga A, Martin-Cuadrado AB, López-Pérez M, Megumi Mizuno C, García-Heredia I, Kimes NE, Lopez-García P, Moreira D, Ussery D, Zaballos M, Ghai R, Rodriguez-Valera F. Polyclonality of concurrent natural populations of Alteromonas macleodii. Genome Biol Evol 2012; 4:1360-74. [PMID: 23212172 PMCID: PMC3542563 DOI: 10.1093/gbe/evs112] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2012] [Indexed: 01/28/2023] Open
Abstract
We have analyzed a natural population of the marine bacterium, Alteromonas macleodii, from a single sample of seawater to evaluate the genomic diversity present. We performed full genome sequencing of four isolates and 161 metagenomic fosmid clones, all of which were assigned to A. macleodii by sequence similarity. Out of the four strain genomes, A. macleodii deep ecotype (AltDE1) represented a different genome, whereas AltDE2 and AltDE3 were identical to the previously described AltDE. Although the core genome (~80%) had an average nucleotide identity of 98.51%, both AltDE and AltDE1 contained flexible genomic islands (fGIs), that is, genomic islands present in both genomes in the same genomic context but having different gene content. Some of the fGIs encode cell surface receptors known to be phage recognition targets, such as the O-chain of the lipopolysaccharide, whereas others have genes involved in physiological traits (e.g., nutrient transport, degradation, and metal resistance) denoting microniche specialization. The presence in metagenomic fosmids of genomic fragments differing from the sequenced strain genomes, together with the presence of new fGIs, indicates that there are at least two more A. macleodii clones present. The availability of three or more sequences overlapping the same genomic region also allowed us to estimate the frequency and distribution of recombination events among these different clones, indicating that these clustered near the genomic islands. The results indicate that this natural A. macleodii population has multiple clones with a potential for different phage susceptibility and exploitation of resources, within a seemingly unstructured habitat.
Collapse
Affiliation(s)
- Aitor Gonzaga
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Ana-Belen Martin-Cuadrado
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Carolina Megumi Mizuno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Inmaculada García-Heredia
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Nikole E. Kimes
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | | | - David Moreira
- Unité d’Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Orsay, France
| | - David Ussery
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
- Present address: Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Mila Zaballos
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Rohit Ghai
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | | |
Collapse
|
42
|
Zhi XY, Zhao W, Li WJ, Zhao GP. Prokaryotic systematics in the genomics era. Antonie van Leeuwenhoek 2011; 101:21-34. [PMID: 22116211 DOI: 10.1007/s10482-011-9667-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/24/2011] [Indexed: 11/29/2022]
Abstract
As an essential and basic biological discipline, prokaryotic systematics is entering the era of genomics. This paradigmatic shift is significant not only for understanding molecular phylogeny at the whole genome level but also in revealing the genetic or epigenetic basis that accounts for the phenotypic criteria used to classify and identify species. These developments provide an opportunity and a challenge for systematists to reanalyze the molecular mechanisms underlying the taxonomic characteristics of prokaryotes by drawing the knowledge from studies of genomics and/or functional genomics employing platform technologies and related bioinformatics tools. It is expected that taxonomic books, such as Bergey's Manual of Systematic Bacteriology may evolve into a systematics library indexed by phylogenomic information with an comprehensive understanding of prokaryotic speciation and associated increasing knowledge of biological phenomena.
Collapse
Affiliation(s)
- Xiao-Yang Zhi
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | | | | | | |
Collapse
|
43
|
Santos F, Moreno-Paz M, Meseguer I, López C, Rosselló-Mora R, Parro V, Antón J. Metatranscriptomic analysis of extremely halophilic viral communities. THE ISME JOURNAL 2011; 5:1621-33. [PMID: 21490689 PMCID: PMC3176508 DOI: 10.1038/ismej.2011.34] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/04/2011] [Accepted: 02/21/2011] [Indexed: 11/09/2022]
Abstract
Hypersaline environments harbour the highest number of viruses reported for aquatic environments. In crystallizer ponds from solar salterns, haloviruses coexist with extremely halophilic Archaea and Bacteria and present a high diversity although little is known about their activity. In this work, we analyzed the viral expression in one crystallizer using a metatranscriptomic approach in which clones from a metaviromic library were immobilized in a microarray and used as probes against total mRNA extracted from the hypersaline community. This approach has two advantages: (i) it overcomes the fact that there is no straightforward, unambiguous way to extract viral mRNA from bulk mRNAs and (ii) it makes the sequencing of all mRNAs unnecessary. Transcriptomic data indicated that the halovirus assemblage was highly active at the time of sampling and the viral groups with the highest expression levels were those related to high GC content haloarchaea and Salinibacter representatives, which are minor components in the environment. Moreover, the changes in the viral expression pattern and in the numbers of free viral particles were analyzed after submitting the samples to two stress conditions: ultraviolet-radiation and dilution. Results showed that Archaea were more sensitive than Bacteria to these stress conditions. The overexpression in the predicted archaeal virus fraction raised and the total numbers of free viruses increased. Furthermore, we identified some very closely related viral clones, displaying single-nucleotide polymorphisms, which were expressed only under certain conditions. These clones could be part of very closely related virus genomes for which we propose the term 'ecoviriotypes'.
Collapse
Affiliation(s)
- Fernando Santos
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Mercedes Moreno-Paz
- Departamento de Evolución Molecular, Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | - Inmaculada Meseguer
- Departamento de Producción vegetal y Microbiología, Universidad Miguel Hernández, Elche, Spain
| | - Cristina López
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Ramon Rosselló-Mora
- Marine Microbiology Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Esporles (Mallorca), Spain
| | - Víctor Parro
- Departamento de Evolución Molecular, Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | - Josefa Antón
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
- Instituto Multidisciplinar para el Estudio del Medio Ramón Margalef, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
44
|
Gómez-Pereira PR, Schüler M, Fuchs BM, Bennke C, Teeling H, Waldmann J, Richter M, Barbe V, Bataille E, Glöckner FO, Amann R. Genomic content of uncultured Bacteroidetes from contrasting oceanic provinces in the North Atlantic Ocean. Environ Microbiol 2011; 14:52-66. [DOI: 10.1111/j.1462-2920.2011.02555.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Verbeke TJ, Dumonceaux TJ, Wushke S, Cicek N, Levin DB, Sparling R. Isolates of Thermoanaerobacter thermohydrosulfuricus from decaying wood compost display genetic and phenotypic microdiversity. FEMS Microbiol Ecol 2011; 78:473-87. [PMID: 22066958 DOI: 10.1111/j.1574-6941.2011.01181.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/21/2011] [Accepted: 07/24/2011] [Indexed: 11/28/2022] Open
Abstract
In this study, 12 strains of Thermoanaerobacter were isolated from a single decaying wood compost sample and subjected to genetic and phenotypic profiling. The 16S rRNA encoding gene sequences suggested that the isolates were most similar to strains of either Thermoanaerobacter pseudethanolicus or Thermoanaerobacter thermohydrosulfuricus. Examination of the lesser conserved chaperonin-60 (cpn60) universal target showed that some isolates shared the highest sequence identity with T. thermohydrosulfuricus; however, others to Thermoanaerobacter wiegelii and Thermoanaerobacter sp. Rt8.G4 (formerly Thermoanaerobacter brockii Rt8.G4). BOX-PCR fingerprinting profiles identified differences in the banding patterns not only between the isolates and the reference strains, but also among the isolates themselves. To evaluate the extent these genetic differences were manifested phenotypically, the utilization patterns of 30 carbon substrates were examined and the niche overlap indices (NOI) calculated. Despite showing a high NOI (> 0.9), significant differences existed in the substrate utilization capabilities of the isolates suggesting that either a high degree of niche specialization or mechanisms allowing for non-competitive co-existence, were present within this ecological context. Growth studies showed that the isolates were physiologically distinct in both growth rate and the fermentation product ratios. Our data indicate that phenotypic diversity exists within genetically microdiverse Thermoanaerobacter isolates from a common environment.
Collapse
Affiliation(s)
- Tobin J Verbeke
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Kalhoefer D, Thole S, Voget S, Lehmann R, Liesegang H, Wollher A, Daniel R, Simon M, Brinkhoff T. Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis. BMC Genomics 2011; 12:324. [PMID: 21693016 PMCID: PMC3141670 DOI: 10.1186/1471-2164-12-324] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/21/2011] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis. RESULTS The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype. CONCLUSIONS The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability.
Collapse
Affiliation(s)
- Daniela Kalhoefer
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Sebastian Thole
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Sonja Voget
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Rüdiger Lehmann
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Heiko Liesegang
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Antje Wollher
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
48
|
Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G. Environmental and gut bacteroidetes: the food connection. Front Microbiol 2011; 2:93. [PMID: 21747801 PMCID: PMC3129010 DOI: 10.3389/fmicb.2011.00093] [Citation(s) in RCA: 739] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/14/2011] [Indexed: 12/21/2022] Open
Abstract
Members of the diverse bacterial phylum Bacteroidetes have colonized virtually all types of habitats on Earth. They are among the major members of the microbiota of animals, especially in the gastrointestinal tract, can act as pathogens and are frequently found in soils, oceans and freshwater. In these contrasting ecological niches, Bacteroidetes are increasingly regarded as specialists for the degradation of high molecular weight organic matter, i.e., proteins and carbohydrates. This review presents the current knowledge on the role and mechanisms of polysaccharide degradation by Bacteroidetes in their respective habitats. The recent sequencing of Bacteroidetes genomes confirms the presence of numerous carbohydrate-active enzymes covering a large spectrum of substrates from plant, algal, and animal origin. Comparative genomics reveal specific Polysaccharide Utilization Loci shared between distantly related members of the phylum, either in environmental or gut-associated species. Moreover, Bacteroidetes genomes appear to be highly plastic and frequently reorganized through genetic rearrangements, gene duplications and lateral gene transfers (LGT), a feature that could have driven their adaptation to distinct ecological niches. Evidence is accumulating that the nature of the diet shapes the composition of the intestinal microbiota. We address the potential links between gut and environmental bacteria through food consumption. LGT can provide gut bacteria with original sets of utensils to degrade otherwise refractory substrates found in the diet. A more complete understanding of the genetic gateways between food-associated environmental species and intestinal microbial communities sheds new light on the origin and evolution of Bacteroidetes as animals’ symbionts. It also raises the question as to how the consumption of increasingly hygienic and processed food deprives our microbiota from useful environmental genes and possibly affects our health.
Collapse
Affiliation(s)
- François Thomas
- UMR 7139, Marine Plants and Biomolecules, Station Biologique de Roscoff, UPMC University Paris 6, Roscoff, France
| | | | | | | | | |
Collapse
|
49
|
Santos F, Yarza P, Parro V, Briones C, Antón J. The metavirome of a hypersaline environment. Environ Microbiol 2011; 12:2965-76. [PMID: 20561021 DOI: 10.1111/j.1462-2920.2010.02273.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hypersaline environments harbour the highest number of virus-like particles reported for planktonic systems. However, very little is known about the genomic diversity of these virus assemblages since most of the knowledge on halophages is based on the analysis of a few isolates infecting strains of hyperhalophilic Archaea that may not be representatives of the natural microbiota. Here, we report the characterization, through a metagenomic approach, of the viral assemblage inhabiting a crystallizer pond (CR30) from a multi-pond solar saltern in Santa Pola (SE Spain). A total of 1.35 Mbp were cloned that yielded a total of 620 kb sequenced viral DNA. The metavirome was highly diverse and different from virus communities of marine and other aquatic environments although it showed some similarities with metaviromes from high-salt ponds in solar salterns in San Diego (SW USA), indicating some common traits between high-salt viromes. A high degree of diversity was found in the halophages as revealed by the presence of 2479 polymorphic nucleotides. Dinucleotide frequency analysis of the CR30 metavirome showed a good correlation with GC content and enabled the establishment of different groups, and even the assignment of their putative hosts: the archaeon Haloquadratum walsbyi and the bacterium Salinibacter ruber.
Collapse
Affiliation(s)
- Fernando Santos
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03080, Alicante, Spain
| | | | | | | | | |
Collapse
|
50
|
van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, Van der Gucht K, Debeer AE, Lacerot G, De Meester L, Vyverman W. Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS One 2011; 6:e19561. [PMID: 21573169 PMCID: PMC3088681 DOI: 10.1371/journal.pone.0019561] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 04/11/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Free-living microorganisms have long been assumed to have ubiquitous distributions with little biogeographic signature because they typically exhibit high dispersal potential and large population sizes. However, molecular data provide contrasting results and it is far from clear to what extent dispersal limitation determines geographic structuring of microbial populations. We aimed to determine biogeographical patterns of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. Being widely distributed on a global scale but patchily on a regional scale, this prokaryote is an ideal model organism to study microbial dispersal and biogeography. METHODOLOGY/PRINCIPAL FINDINGS The phylogeography of M. aeruginosa was studied based on a dataset of 311 rDNA internal transcribed spacer (ITS) sequences sampled from six continents. Richness of ITS sequences was high (239 ITS types were detected). Genetic divergence among ITS types averaged 4% (maximum pairwise divergence was 13%). Preliminary analyses revealed nearly completely unresolved phylogenetic relationships and a lack of genetic structure among all sequences due to extensive homoplasy at multiple hypervariable sites. After correcting for this, still no clear phylogeographic structure was detected, and no pattern of isolation by distance was found on a global scale. Concomitantly, genetic differentiation among continents was marginal, whereas variation within continents was high and was mostly shared with all other continents. Similarly, no genetic structure across climate zones was detected. CONCLUSIONS/SIGNIFICANCE The high overall diversity and wide global distribution of common ITS types in combination with the lack of phylogeographic structure suggest that intercontinental dispersal of M. aeruginosa ITS types is not rare, and that this species might have a truly cosmopolitan distribution.
Collapse
Affiliation(s)
- Ineke van Gremberghe
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
| | | | - Joachim Mergeay
- Laboratory of Aquatic Ecology and Evolutionary Biology, Katholieke Universiteit Leuven, Leuven, Belgium
- Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Pieter Vanormelingen
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
| | | | - Ann-Eline Debeer
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Gissell Lacerot
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen, The Netherlands
- Facultad de Ciencias, Sección Limnología, Universidad de la República, Montevideo, Uruguay
| | - Luc De Meester
- Laboratory of Aquatic Ecology and Evolutionary Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|