1
|
Chen S, Dan L, Xiang L, He Q, Hu D, Gao Y. The role of gut flora-driven Th cell responses in preclinical rheumatoid arthritis. J Autoimmun 2025; 154:103426. [PMID: 40300482 DOI: 10.1016/j.jaut.2025.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/24/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disorder with an immune pathogenesis that evolves over decades. Preclinical RA (PreRA) represents a dynamic immune phase preceding clinical RA, marked by the loss of autoimmune tolerance, the appearance of tissue-invasive effector T cells, and the production of autoantibodies (such as antibodies against citrullinated proteins and rheumatoid factors). Extensive research has demonstrated that gut microbiota influence mucosal T-cell responses, driving the progression of PreRA through multiple mechanisms, including altered intestinal permeability, gene-environment interactions, bacterial antigenic specificity, molecular mimicry, and metabolite production. Environmental risk factors such as smoking, hormonal changes, and high-sodium (Na) diets, may contribute to RA pathogenesis via the gut microbiome. The next challenge in RA research lies in developing therapeutic strategies to intervene during the asymptomatic autoimmune phase, where dietary adjustments, natural compounds, probiotics, and other approaches could effectively modulate gut flora to prevent or delay RA onset.
Collapse
Affiliation(s)
- Shuanglan Chen
- Department of Rheumatology and Immunology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lijuan Dan
- Department of Infection, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Li Xiang
- Department of Rheumatology and Immunology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Qingman He
- Department of Rheumatology and Immunology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Dongsen Hu
- Sichuan Jinxin Xi'nan Women's and Children's Hospital Co., Ltd, Chengdu, 610023, China
| | - Yongxiang Gao
- Department of Rheumatology and Immunology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
2
|
Stephens M, Keane K, Roizes S, Defaye M, Altier C, von der Weid PY. Uncovering the therapeutic potential of anti-tuberculoid agent Isoniazid in a model of microbial-driven Crohn's disease. J Crohns Colitis 2025; 19:jjaf032. [PMID: 39987456 PMCID: PMC11920797 DOI: 10.1093/ecco-jcc/jjaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 02/24/2025]
Abstract
AIMS TNFα has long stood as a hallmark feature of both inflammatory bowel disease and arthritis with its therapeutic potential demonstrated in neutralizing monoclonal antibody treatments such as Infliximab. Due to the high global burden of latent Mycobacterium tuberculosis (TB) infections, prior to receiving anti-TNF therapy, patients testing positive for latent TB are given prophylactic treatment with anti-tuberculoid medications including the first described TB-selective antibiotic, Isoniazid. While this is common clinical practice to prevent the emergence of TB, little is known about whether Isoniazid modifies intestinal inflammation alone. The aim of this study, therefore, was to determine whether Isoniazid presents a novel TB-independent therapeutic option for the treatment of Crohn's disease (CD)-like ileitis and uncover new mechanisms predisposing the host to intestinal inflammation. METHODS The transgenic TNFΔARE mouse model of Crohn's-like terminal ileitis was used. The impact of Isoniazid administration (10 mg/kg/day dose in drinking water) on disease development was monitored between 8 and 12 weeks of age using a variety of behavioral and serological assays. Behavioral and motor functions were assessed using the LABORAS automated monitoring system while systemic and local tissue inflammation were determined at experimental termination using multiplex cytokine analysis. Whole-mount tissue immunofluorescence and fluorescent in situ hybridization were used to qualify changes within the host as well as the microbial compartment of the ileum and associated mesentery. Proposed cellular mechanisms of altered cytokine decay were performed on isolated primary splenocytes in vitro using selective pharmacological agents. RESULTS Compared to age-matched wild-type littermates, TNFΔARE mice display prominent progressive sickness behaviors from 8 through 12 weeks of age indicated by reduced movement, climbing, and rearing. Prophylactic administration of Isoniazid (10 mg/kg/day) is effectively able to protect TNFΔARE mice from this loss of function during the same period. Analysis revealed that Isoniazid was able to significantly reduce both systemic and intestinal inflammation compared to untreated vehicle controls impacting the epithelial colonization of known pathobiont segmented filamentous bacteria (SFB). Reduction in terminal ileal inflammation was also associated to the diminished formation of precursor-tertiary lymphoid organs within the associated ileal mesentery which were found to be associated with endospores derived SFB itself. Finally, we reveal that due to their genetic manipulation, TNFΔARE mice display accelerated posttranscriptional decay of IL-22 mRNA resulting in diminished IL-22 protein production and associated downstream antimicrobial peptide production. CONCLUSIONS Isoniazid protects against the development of intestinal and systemic inflammation in the TNFΔARE model of terminal ileitis by limiting the expansion of mucosal SFB and progression of the associated microbial-driven inflammation. This work highlights a possible mycobacterial-independent function of Isoniazid in limiting CD pathophysiology through limiting the mucosal establishment of pathobionts such as SFB and the association of such microbe-derived endospores linked to the formation of ectopic tertiary lymphoid organs seen commonly in patients.
Collapse
Affiliation(s)
- Matthew Stephens
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Inflammation Research Network Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, HS 1665, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Keith Keane
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Inflammation Research Network Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, HS 1665, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Simon Roizes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Inflammation Research Network Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, HS 1665, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Inflammation Research Network Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, HS 1665, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Inflammation Research Network Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, HS 1665, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Pierre-Yves von der Weid
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Inflammation Research Network Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, HS 1665, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| |
Collapse
|
3
|
Yang S, Liu H, Liu Y. Advances in intestinal epithelium and gut microbiota interaction. Front Microbiol 2025; 16:1499202. [PMID: 40104591 PMCID: PMC11914147 DOI: 10.3389/fmicb.2025.1499202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
The intestinal epithelium represents a critical interface between the host and external environment, serving as the second largest surface area in the human body after the lungs. This dynamic barrier is sustained by specialized epithelial cell types and their complex interactions with the gut microbiota. This review comprehensively examines the recent advances in understanding the bidirectional communication between intestinal epithelial cells and the microbiome. We briefly highlight the role of various intestinal epithelial cell types, such as Paneth cells, goblet cells, and enteroendocrine cells, in maintaining intestinal homeostasis and barrier function. Gut microbiota-derived metabolites, particularly short-chain fatty acids and bile acids, influence epithelial cell function and intestinal barrier integrity. Additionally, we highlight emerging evidence of the sophisticated cooperation between different epithelial cell types, with special emphasis on the interaction between tuft cells and Paneth cells in maintaining microbial balance. Understanding these complex interactions has important implications for developing targeted therapeutic strategies for various gastrointestinal disorders, including inflammatory bowel disease, metabolic disorders, and colorectal cancer.
Collapse
Affiliation(s)
- Sen Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, The Fifth Peoples Hospital of Chengdu, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Donald K, Serapio-Palacios A, Gerbec Z, Bozorgmehr T, Holani R, Cruz AR, Schnupf P, Finlay BB. Secretory IgA in breast milk protects against asthma through modulation of the gut microbiota. Cell Rep 2024; 43:114835. [PMID: 39368092 DOI: 10.1016/j.celrep.2024.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
Asthma susceptibility is linked to dysbiosis in early-life gut microbiota, and the antibody secretory immunoglobulin (Ig)A (SIgA) is a key determinant of gut microbiota composition. SIgA is obtained through breast milk during the critical early-life window. We use a mouse model of SIgA deficiency and the house dust mite (HDM) model of asthma to elucidate the role of maternal SIgA in modulating the early-life gut microbiota and asthma protection. Mice that do not receive maternal SIgA display a transient bloom of segmented filamentous bacteria (SFB) in the small intestine during the early post-weaning period. Mice that do not receive maternal SIgA also display elevated T helper type 17 (Th17) cell activation in the intestine, which persists into adulthood and is associated with more severe inflammation in response to the HDM model of asthma. This study demonstrates a mechanism by which breast-milk-derived SIgA influences immune development and asthma susceptibility by modulating the early-life gut microbiota.
Collapse
Affiliation(s)
- Katherine Donald
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Antonio Serapio-Palacios
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Zachary Gerbec
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Tahereh Bozorgmehr
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ravi Holani
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ana Raquel Cruz
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Laboratory of Host-Microbiota Interaction, 75015 Paris, France
| | - Pamela Schnupf
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Laboratory of Host-Microbiota Interaction, 75015 Paris, France
| | - B Brett Finlay
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
5
|
Ashonibare VJ, Akorede BA, Ashonibare PJ, Akhigbe TM, Akhigbe RE. Gut microbiota-gonadal axis: the impact of gut microbiota on reproductive functions. Front Immunol 2024; 15:1346035. [PMID: 38482009 PMCID: PMC10933031 DOI: 10.3389/fimmu.2024.1346035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/30/2024] [Indexed: 04/12/2024] Open
Abstract
The influence of gut microbiota on physiological processes is rapidly gaining attention globally. Despite being under-studied, there are available data demonstrating a gut microbiota-gonadal cross-talk, and the importance of this axis in reproduction. This study reviews the impacts of gut microbiota on reproduction. In addition, the possible mechanisms by which gut microbiota modulates male and female reproduction are presented. Databases, including Embase, Google scholar, Pubmed/Medline, Scopus, and Web of Science, were explored using relevant key words. Findings showed that gut microbiota promotes gonadal functions by modulating the circulating levels of steroid sex hormones, insulin sensitivity, immune system, and gonadal microbiota. Gut microbiota also alters ROS generation and the activation of cytokine accumulation. In conclusion, available data demonstrate the existence of a gut microbiota-gonadal axis, and role of this axis on gonadal functions. However, majority of the data were compelling evidences from animal studies with a great dearth of human data. Therefore, human studies validating the reports of experimental studies using animal models are important.
Collapse
Affiliation(s)
- Victory J. Ashonibare
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Bolaji A. Akorede
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Biomedical Sciences, University of Wyoming, Laramie, WY, United States
| | - Precious J. Ashonibare
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Tunmise M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Breeding and Genetic Unit, Department of Agronomy, Osun State University, Ejigbo, Osun State, Nigeria
| | - Roland Eghoghosoa Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
6
|
Wen Y, Wang H, Tian D, Wang G. TH17 cell: a double-edged sword in the development of inflammatory bowel disease. Therap Adv Gastroenterol 2024; 17:17562848241230896. [PMID: 38390028 PMCID: PMC10883129 DOI: 10.1177/17562848241230896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic nonspecific inflammatory disease of the gastrointestinal tract, and its pathogenesis has not been fully understood. Extensive dysregulation of the intestinal mucosal immune system is critical in the development and progression of IBD. T helper (Th) 17 cells have the characteristics of plasticity. They can transdifferentiate into subpopulations with different functions in response to different factors in the surrounding environment, thus taking on different roles in regulating the intestinal immune responses. In this review, we will focus on the plasticity of Th17 cells as well as the function of Th17 cells and their related cytokines in IBD. We will summarize their pathogenic and protective roles in IBD under different conditions, respectively, hoping to further deepen the understanding of the pathological mechanisms underlying IBD and provide insights for future treatment.
Collapse
Affiliation(s)
- Yue Wen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ge Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
7
|
Jank L, Bhargava P. Relationship Between Multiple Sclerosis, Gut Dysbiosis, and Inflammation: Considerations for Treatment. Neurol Clin 2024; 42:55-76. [PMID: 37980123 DOI: 10.1016/j.ncl.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Multiple sclerosis is associated with gut dysbiosis, marked by changes in the relative abundances of specific microbes, circulating gut-derived metabolites, and altered gut permeability. This gut dysbiosis promotes disease pathology by increasing circulating proinflammatory bacterial factors, reducing tolerogenic factors, inducing molecular mimicry, and changing microbial nutrient metabolism. Beneficial antiinflammatory effects of the microbiome can be harnessed in therapeutic interventions. In the future, it is essential to assess the efficacy of these therapies in randomized controlled clinical trials to help make dietary and gut dysbiosis management an integral part of multiple sclerosis care.
Collapse
Affiliation(s)
- Larissa Jank
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Meyer 6-144, Baltimore, MD 21287, USA
| | - Pavan Bhargava
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Meyer 6-144, Baltimore, MD 21287, USA.
| |
Collapse
|
8
|
Metwaly A, Haller D. The TNF∆ARE Model of Crohn's Disease-like Ileitis. Inflamm Bowel Dis 2024; 30:132-145. [PMID: 37756666 DOI: 10.1093/ibd/izad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Indexed: 09/29/2023]
Abstract
Crohn's disease (CD) is one of the 2 main phenotypes of inflammatory bowel diseases (IBDs); CD ischaracterized by a discontinuous, spontaneously recurring, transmural immunopathology that largely affects the terminal ileum. Crohn's disease exhibits both a relapsing and progressive course, and its prevalence is on the rise globally, mirroring the trends of industrialization. While the precise pathogenesis of CD remains unknown, various factors including immune cell dysregulation, microbial dysbiosis, genetic susceptibility, and environmental factors have been implicated in disease etiology. Animal models, particularly ileitis mouse models, have provided valuable tools for studying the specific mechanisms underlying CD, allowing longitudinal assessment and sampling in interventional preclinical studies. Furthermore, animal models assess to evaluate the distinct role that bacterial and dietary antigens play in causing inflammation, using germ-free animals, involving the introduction of individual bacteria (monoassociation studies), and experimenting with well-defined dietary components. An ideal animal model for studying IBD, specifically CD, should exhibit an inherent intestinal condition that arises spontaneously and closely mimics the distinct transmural inflammation observed in the human disease, particularly in the terminal ileum. We have recently characterized the impact of disease-relevant, noninfectious microbiota and specific bacteria in a mouse model that replicates CD-like ileitis, capturing the intricate nature of human CD, namely the TNF∆ARE mouse model. Using germ-free mice, we studied the impact of different diets on the expansion of disease-relevant pathobionts and on the severity of inflammation. In this review article, we review some of the currently available ileitis mouse models and discuss in detail the TNF∆ARE model of CD-like Ileitis.
Collapse
Affiliation(s)
- Amira Metwaly
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
9
|
Brabec T, Schwarzer M, Kováčová K, Dobešová M, Schierová D, Březina J, Pacáková I, Šrůtková D, Ben-Nun O, Goldfarb Y, Šplíchalová I, Kolář M, Abramson J, Filipp D, Dobeš J. Segmented filamentous bacteria-induced epithelial MHCII regulates cognate CD4+ IELs and epithelial turnover. J Exp Med 2024; 221:e20230194. [PMID: 37902602 PMCID: PMC10615894 DOI: 10.1084/jem.20230194] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
Intestinal epithelial cells have the capacity to upregulate MHCII molecules in response to certain epithelial-adhesive microbes, such as segmented filamentous bacteria (SFB). However, the mechanism regulating MHCII expression as well as the impact of epithelial MHCII-mediated antigen presentation on T cell responses targeting those microbes remains elusive. Here, we identify the cellular network that regulates MHCII expression on the intestinal epithelium in response to SFB. Since MHCII on the intestinal epithelium is dispensable for SFB-induced Th17 response, we explored other CD4+ T cell-based responses induced by SFB. We found that SFB drive the conversion of cognate CD4+ T cells to granzyme+ CD8α+ intraepithelial lymphocytes. These cells accumulate in small intestinal intraepithelial space in response to SFB. Yet, their accumulation is abrogated by the ablation of MHCII on the intestinal epithelium. Finally, we show that this mechanism is indispensable for the SFB-driven increase in the turnover of epithelial cells in the ileum. This study identifies a previously uncharacterized immune response to SFB, which is dependent on the epithelial MHCII function.
Collapse
Affiliation(s)
- Tomáš Brabec
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Katarína Kováčová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martina Dobešová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dagmar Schierová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Březina
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Iva Pacáková
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Dagmar Šrůtková
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Osher Ben-Nun
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Iva Šplíchalová
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Rosell-Mases E, Santiago A, Corral-Pujol M, Yáñez F, Varela E, Egia-Mendikute L, Arpa B, Cosovanu C, Panosa A, Serrano-Gómez G, Mora C, Verdaguer J, Manichanh C. Mutual modulation of gut microbiota and the immune system in type 1 diabetes models. Nat Commun 2023; 14:7770. [PMID: 38012160 PMCID: PMC10682479 DOI: 10.1038/s41467-023-43652-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
The transgenic 116C-NOD mouse strain exhibits a prevalent Th17 phenotype, and reduced type 1 diabetes (T1D) compared to non-obese diabetic (NOD) mice. A cohousing experiment between both models revealed lower T1D incidence in NOD mice cohoused with 116C-NOD, associated with gut microbiota changes, reduced intestinal permeability, shifts in T and B cell subsets, and a transition from Th1 to Th17 responses. Distinct gut bacterial signatures were linked to T1D in each group. Using a RAG-2-/- genetic background, we found that T cell alterations promoted segmented filamentous bacteria proliferation in young NOD and 116C-NOD, as well as in immunodeficient NOD.RAG-2-/- and 116C-NOD.RAG-2-/- mice across all ages. Bifidobacterium colonization depended on lymphocytes and thrived in a non-diabetogenic environment. Additionally, 116C-NOD B cells in 116C-NOD.RAG-2-/- mice enriched the gut microbiota in Adlercreutzia and reduced intestinal permeability. Collectively, these results indicate reciprocal modulation between gut microbiota and the immune system in rodent T1D models.
Collapse
Affiliation(s)
- Estela Rosell-Mases
- Immunology and Immunopathology Group, Department of Experimental Medicine, Faculty of Medicine, Universitat de Lleida (UdL) and Institut de Recerca Biomèdica de Lleida (IRBLleida), 25198, Lleida, Spain
| | - Alba Santiago
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain
| | - Marta Corral-Pujol
- Immunology and Immunopathology Group, Department of Experimental Medicine, Faculty of Medicine, Universitat de Lleida (UdL) and Institut de Recerca Biomèdica de Lleida (IRBLleida), 25198, Lleida, Spain
| | - Francisca Yáñez
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain
| | - Encarna Varela
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain
| | - Leire Egia-Mendikute
- Immunology and Immunopathology Group, Department of Experimental Medicine, Faculty of Medicine, Universitat de Lleida (UdL) and Institut de Recerca Biomèdica de Lleida (IRBLleida), 25198, Lleida, Spain
| | - Berta Arpa
- Immunology and Immunopathology Group, Department of Experimental Medicine, Faculty of Medicine, Universitat de Lleida (UdL) and Institut de Recerca Biomèdica de Lleida (IRBLleida), 25198, Lleida, Spain
| | - Catalina Cosovanu
- Immunology and Immunopathology Group, Department of Experimental Medicine, Faculty of Medicine, Universitat de Lleida (UdL) and Institut de Recerca Biomèdica de Lleida (IRBLleida), 25198, Lleida, Spain
| | - Anaïs Panosa
- Flow Cytometry Facility, Universitat de Lleida (UdL) and Institut de Recerca Biomèdica de Lleida (IRBLleida), 25198, Lleida, Spain
| | - Gerard Serrano-Gómez
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain
| | - Conchi Mora
- Immunology and Immunopathology Group, Department of Experimental Medicine, Faculty of Medicine, Universitat de Lleida (UdL) and Institut de Recerca Biomèdica de Lleida (IRBLleida), 25198, Lleida, Spain
| | - Joan Verdaguer
- Immunology and Immunopathology Group, Department of Experimental Medicine, Faculty of Medicine, Universitat de Lleida (UdL) and Institut de Recerca Biomèdica de Lleida (IRBLleida), 25198, Lleida, Spain.
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| | - Chaysavanh Manichanh
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain.
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| |
Collapse
|
11
|
Koyama M, Hippe DS, Srinivasan S, Proll SC, Miltiadous O, Li N, Zhang P, Ensbey KS, Hoffman NG, Schmidt CR, Yeh AC, Minnie SA, Strenk SM, Fiedler TL, Hattangady N, Kowalsky J, Grady WM, Degli-Esposti MA, Varelias A, Clouston AD, van den Brink MRM, Dey N, Randolph TW, Markey KA, Fredricks DN, Hill GR. Intestinal microbiota controls graft-versus-host disease independent of donor-host genetic disparity. Immunity 2023; 56:1876-1893.e8. [PMID: 37480848 PMCID: PMC10530372 DOI: 10.1016/j.immuni.2023.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 07/24/2023]
Abstract
Acute graft-versus-host disease (aGVHD) remains a major limitation of allogeneic stem cell transplantation (SCT), and severe intestinal manifestation is the major cause of early mortality. Intestinal microbiota control MHC class II (MHC-II) expression by ileal intestinal epithelial cells (IECs) that promote GVHD. Here, we demonstrated that genetically identical mice of differing vendor origins had markedly different intestinal microbiota and ileal MHC-II expression, resulting in discordant GVHD severity. We utilized cohousing and antibiotic treatment to characterize the bacterial taxa positively and negatively associated with MHC-II expression. A large proportion of bacterial MHC-II inducers were vancomycin sensitive, and peri-transplant oral vancomycin administration attenuated CD4+ T cell-mediated GVHD. We identified a similar relationship between pre-transplant microbes, HLA class II expression, and both GVHD and mortality in a large clinical SCT cohort. These data highlight therapeutically tractable mechanisms by which pre-transplant microbial taxa contribute to GVHD independently of genetic disparity.
Collapse
Affiliation(s)
- Motoko Koyama
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center (FHCC), Seattle, WA 98109, USA.
| | - Daniel S Hippe
- Clinical Research Division, FHCC, Seattle, WA 98109, USA
| | | | - Sean C Proll
- Vaccine and Infectious Disease Division, FHCC, Seattle, WA 98109, USA
| | - Oriana Miltiadous
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Naisi Li
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center (FHCC), Seattle, WA 98109, USA
| | - Ping Zhang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center (FHCC), Seattle, WA 98109, USA
| | - Kathleen S Ensbey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center (FHCC), Seattle, WA 98109, USA
| | - Noah G Hoffman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Christine R Schmidt
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center (FHCC), Seattle, WA 98109, USA
| | - Albert C Yeh
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center (FHCC), Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Simone A Minnie
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center (FHCC), Seattle, WA 98109, USA
| | - Susan M Strenk
- Vaccine and Infectious Disease Division, FHCC, Seattle, WA 98109, USA
| | - Tina L Fiedler
- Vaccine and Infectious Disease Division, FHCC, Seattle, WA 98109, USA
| | - Namita Hattangady
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center (FHCC), Seattle, WA 98109, USA
| | - Jacob Kowalsky
- Vaccine and Infectious Disease Division, FHCC, Seattle, WA 98109, USA
| | - Willian M Grady
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center (FHCC), Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Antiopi Varelias
- Transplantation Immunology Laboratory, Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Faculty of Medicine, University of Queensland, St Lucia, QLD 4067, Australia
| | - Andrew D Clouston
- Molecular and Cellular Pathology, University of Queensland, Brisbane, QLD 4006, Australia
| | - Marcel R M van den Brink
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA; Department of Immunology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Neelendu Dey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center (FHCC), Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Timothy W Randolph
- Clinical Research Division, FHCC, Seattle, WA 98109, USA; Public Health Sciences Division, FHCC, WA 98109, USA
| | - Kate A Markey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center (FHCC), Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - David N Fredricks
- Vaccine and Infectious Disease Division, FHCC, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center (FHCC), Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
12
|
Gerasco JE, Hathaway‐Schrader JD, Poulides NA, Carson MD, Okhura N, Westwater C, Hatch NE, Novince CM. Commensal Microbiota Effects on Craniofacial Skeletal Growth and Morphology. JBMR Plus 2023; 7:e10775. [PMID: 37614301 PMCID: PMC10443078 DOI: 10.1002/jbm4.10775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 08/25/2023] Open
Abstract
Microbes colonize anatomical sites in health to form commensal microbial communities (e.g., commensal gut microbiota, commensal skin microbiota, commensal oral microbiota). Commensal microbiota has indirect effects on host growth and maturation through interactions with the host immune system. The commensal microbiota was recently introduced as a novel regulator of skeletal growth and morphology at noncraniofacial sites. Further, we and others have shown that commensal gut microbes, such as segmented filamentous bacteria (SFB), contribute to noncraniofacial skeletal growth and maturation. However, commensal microbiota effects on craniofacial skeletal growth and morphology are unclear. To determine the commensal microbiota's role in craniofacial skeletal growth and morphology, we performed craniometric and bone mineral density analyses on skulls from 9-week-old female C57BL/6T germ-free (GF) mice (no microbes), excluded-flora (EF) specific-pathogen-free mice (commensal microbiota), and murine-pathogen-free (MPF) specific-pathogen-free mice (commensal microbiota with SFB). Investigations comparing EF and GF mice revealed that commensal microbiota impacted the size and shape of the craniofacial skeleton. EF versus GF mice exhibited an elongated gross skull length. Cranial bone length analyses normalized to skull length showed that EF versus GF mice had enhanced frontal bone length and reduced cranial base length. The shortened cranial base in EF mice was attributed to decreased presphenoid, basisphenoid, and basioccipital bone lengths. Investigations comparing MPF mice and EF mice demonstrated that commensal gut microbes played a role in craniofacial skeletal morphology. Cranial bone length analyses normalized to skull length showed that MPF versus EF mice had reduced frontal bone length and increased cranial base length. The elongated cranial base in MPF mice was due to enhanced presphenoid bone length. This work, which introduces the commensal microbiota as a contributor to craniofacial skeletal growth, underscores that noninvasive interventions in the gut microbiome could potentially be employed to modify craniofacial skeletal morphology. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joy E. Gerasco
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Orthodontics, Adam's School of DentistryUniversity of North CarolinaChapel HillNCUSA
| | - Jessica D. Hathaway‐Schrader
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| | - Nicole A. Poulides
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| | - Matthew D. Carson
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| | - Naoto Okhura
- Department of Orthodontics and Pediatric Dentistry, School of DentistryUniversity of MichiganAnn ArborMIUSA
| | - Caroline Westwater
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Microbiology and Immunology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of DentistryUniversity of MichiganAnn ArborMIUSA
| | - Chad M. Novince
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| |
Collapse
|
13
|
Metwaly A, Jovic J, Waldschmitt N, Khaloian S, Heimes H, Häcker D, Ahmed M, Hammoudi N, Le Bourhis L, Mayorgas A, Siebert K, Basic M, Schwerd T, Allez M, Panes J, Salas A, Bleich A, Zeissig S, Schnupf P, Cominelli F, Haller D. Diet prevents the expansion of segmented filamentous bacteria and ileo-colonic inflammation in a model of Crohn's disease. MICROBIOME 2023; 11:66. [PMID: 37004103 PMCID: PMC10064692 DOI: 10.1186/s40168-023-01508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/25/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Crohn's disease (CD) is associated with changes in the microbiota, and murine models of CD-like ileo-colonic inflammation depend on the presence of microbial triggers. Increased abundance of unknown Clostridiales and the microscopic detection of filamentous structures close to the epithelium of Tnf ΔARE mice, a mouse model of CD-like ileitis pointed towards segmented filamentous bacteria (SFB), a commensal mucosal adherent bacterium involved in ileal inflammation. RESULTS We show that the abundance of SFB strongly correlates with the severity of CD-like ileal inflammation in two mouse models of ileal inflammation, including Tnf ΔARE and SAMP/Yit mice. SFB mono-colonization of germ-free Tnf ΔARE mice confirmed the causal link and resulted in severe ileo-colonic inflammation, characterized by elevated tissue levels of Tnf and Il-17A, neutrophil infiltration and loss of Paneth and goblet cell function. Co-colonization of SFB in human-microbiota associated Tnf ΔARE mice confirmed that SFB presence is indispensable for disease development. Screening of 468 ileal and colonic mucosal biopsies from adult and pediatric IBD patients, using previously published and newly designed human SFB-specific primer sets, showed no presence of SFB in human tissue samples, suggesting a species-specific functionality of the pathobiont. Simulating the human relevant therapeutic effect of exclusive enteral nutrition (EEN), EEN-like purified diet antagonized SFB colonization and prevented disease development in Tnf ΔARE mice, providing functional evidence for the protective mechanism of diet in modulating microbiota-dependent inflammation in IBD. CONCLUSIONS We identified a novel pathogenic role of SFB in driving severe CD-like ileo-colonic inflammation characterized by loss of Paneth and goblet cell functions in Tnf ΔARE mice. A purified diet antagonized SFB colonization and prevented disease development in Tnf ΔARE mice in contrast to a fiber-containing chow diet, clearly demonstrating the important role of diet in modulating a novel IBD-relevant pathobiont and supporting a direct link between diet and microbial communities in mediating protective functions. Video Abstract.
Collapse
Affiliation(s)
- Amira Metwaly
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Jelena Jovic
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Nadine Waldschmitt
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Sevana Khaloian
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Helena Heimes
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Deborah Häcker
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Mohamed Ahmed
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Nassim Hammoudi
- APHP, Hôpital Saint Louis, Department of Gastroenterology, INSERM UMRS 1160, Paris Diderot, Sorbonne Paris-Cité University, Paris, France
- Université Paris Cité, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Lionel Le Bourhis
- Université Paris Cité, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Aida Mayorgas
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona CSIC, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Kolja Siebert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Marijana Basic
- Hannover Medical School, Institute for Laboratory Animal Science, Hannover, Germany
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Matthieu Allez
- APHP, Hôpital Saint Louis, Department of Gastroenterology, INSERM UMRS 1160, Paris Diderot, Sorbonne Paris-Cité University, Paris, France
- Université Paris Cité, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Julian Panes
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona CSIC, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Azucena Salas
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona CSIC, IDIBAPS, CIBERehd, Barcelona, Spain
| | - André Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Hannover, Germany
| | - Sebastian Zeissig
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Pamela Schnupf
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany.
- ZIEL-Institute for Food and Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
14
|
Zhu L, Guo F, Guo Z, Chen X, Qian X, Li X, Li X, Li J, Wang X, Jia W. Potential health benefits of lowering gas production and bifidogenic effect of the blends of polydextrose with inulin in a human gut model. Front Nutr 2022; 9:934621. [PMID: 35967807 PMCID: PMC9372503 DOI: 10.3389/fnut.2022.934621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Polydextrose is a nutrient supplement, which is widely applied in the food industry. The use of polydextrose in combination with prebiotics and probiotics has recently increased, whereas the fermentation properties of its blend have not yet been fully revealed. We evaluated the metabolic profile of polydextrose, inulin, and their blends by a batch in vitro fermentation of fifteen human fecal inocula. After 24 h of fermentation, polydextrose increased the production of gas, ammonia, and several short chain fatty acids, including propionate and butyrate, when compared to its blends, inulin, and fructo-oligosaccharides. Furthermore, polydextrose had the slowest degradation rate of all the carbohydrates tested, consistent with its partial fermentation in the distal colon. The 16S rRNA gene sequencing analysis of the gut microbiome exhibited significantly increased relative abundance of Clostridium_XVIII, Megamonas, Mitsuokella, and Erysipelotrichaceae_incertae_sedis in polydextrose compared to other carbohydrates. On the other hand, the blends of polydextrose and inulin (1:1 or 2:1) showed reduced gas production and similar bifidogenicity to inulin alone. The blends not only had similar alpha-diversity and PCoA to inulin but also had a similar abundance of beneficial bacteria, such as Faecalibacterium and Roseburia, suggesting potential health benefits. Also their low gas production was likely due to the abundance of Faecalibacterium and Anaerostipes, which were negatively correlated with gas production. Additionally, our in vitro fermentation model shows advantages in the large-scale assessment of fermentation performance.
Collapse
Affiliation(s)
- Liying Zhu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fangjie Guo
- Henan Tailijie Biotech Co., Ltd., Mengzhou, China
| | - Zeyu Guo
- Henan Tailijie Biotech Co., Ltd., Mengzhou, China
| | - Xiaoqiang Chen
- Fengning Pingan High-Tech Industrial Co., Ltd., Chengde, China
| | - Xiaoguo Qian
- Fengning Pingan High-Tech Industrial Co., Ltd., Chengde, China
| | | | - Xiaoqiong Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinjun Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Wang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weiguo Jia
- The Center of Gerontology and Geriatrics, National Clinical Research Center of Geriatrics, Sichuan University West China Hospital, Chengdu, China
| |
Collapse
|
15
|
Wang X, Tang J, Zhang S, Zhang N. Effects of Lactiplantibacillus plantarum 19-2 on immunomodulatory function and gut microbiota in mice. Front Microbiol 2022; 13:926756. [PMID: 35992718 PMCID: PMC9386500 DOI: 10.3389/fmicb.2022.926756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
This study aims to evaluate the effects of Lactiplantibacillus plantarum 19-2 (L. plantarum 19-2) on mice treated with the alkylating agent cyclophosphamide (CTX). Our findings show that L. plantarum 19-2 restored the spleen and thymus index and the number of white blood cells and lymphocytes% in CTX treated mice. Serum immunoglobulin levels in CTX-treated mice were increased by L. plantarum 19-2. In addition, as compared to the model group, L. plantarum 19-2 upregulated the content of SIgA, while L. plantarum 19-2 regulates the mRNA and protein expression levels of GATA-3, T-bet, IFN-γ, and IL-4 in small intestinal tissues, which adjusted mucosal barriers, structural status, and the balance of Helper T-cell 1 and Helper T-cell 2. Lactiplantibacillus plantarum 19-2 regulated the distribution of intestinal flora in mice, promoting the growth of Bacteroides and Proteobacteria. In addition, L. plantarum 19-2 inhibited the growth of several harmful bacteria, including Actinobacteria and Firmicutes.
Collapse
Affiliation(s)
- Xiaoran Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jilang Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shixia Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- *Correspondence: Shixia Zhang,
| | - Nuannuan Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
16
|
Li X, Liu D. Effects of wheat bran co-fermentation on the quality and bacterial community succession during radish fermentation. Food Res Int 2022; 157:111229. [DOI: 10.1016/j.foodres.2022.111229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/04/2022]
|
17
|
Chen J, Li X, Zeng P, Zhang X, Bi K, Lin C, Jiang J, Diao H. Lamina propria interleukin 17 A aggravates natural killer T-cell activation in autoimmune hepatitis. FASEB J 2022; 36:e22346. [PMID: 35583908 DOI: 10.1096/fj.202101734rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Autoimmune hepatitis is an interface hepatitis characterized by the progressive destruction of the liver parenchyma, the cause of which is still obscure. Interleukin (IL)-17A is a major driver of autoimmunity, which can be produced by innate immune cells against several intracellular pathogens. Here, we investigated the involvement of IL-17A in a mice model of immune-mediated hepatitis with the intestine exposed to Salmonella typhimurium. Our results showed more severe Concanavalin (Con) A-induced liver injury and gut microbiome dysbiosis when the mice were treated with a gavage of S. typhimurium. Then, the natural killer (NK) T cells were overactivated by the accumulated IL-17A in the liver in the Con A and S. typhimurium administration group. IL-17A could activate NKT cells by inducing CD178 expression via IL-4/STAT6 signaling. Furthermore, via the portal tract, the laminae propria mucosal-associated invariant T (MAIT)-cell-derived IL-17A could be the original driver of NKT cell overactivation in intragastric administration of S. typhimurium and Con A injection. In IL-17A-deficient mice, Con A-induced liver injury and NKT cell activation were alleviated. However, when AAV-sh-mIL-17a was used to specifically knock down IL-17A in liver, it seemed that hepatic IL-17a knock down did not significantly influence the liver injury. Our results suggested that, under Con A-induction, laminae propria MAIT-derived IL-17A activated hepatic NKT, and this axis could be a therapeutic target in autoimmune liver disease.
Collapse
Affiliation(s)
- Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xuehui Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenhong Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Effects of Different Feeding Methods on the Structure, Metabolism, and Gas Production of Infant and Toddler Intestinal Flora and Their Mechanisms. Nutrients 2022; 14:nu14081568. [PMID: 35458130 PMCID: PMC9027170 DOI: 10.3390/nu14081568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, we evaluated the effects of different feeding methods on the characteristics of intestinal flora and gas production in infants and toddlers by using an in vitro simulated intestinal microecology fermentation and organoid model. We found that the feeding method influences intestinal gas and fecal ammonia production in infants and toddlers. Supplementation with milk powder for infants in the late lactation period could promote the proliferation of beneficial bacteria, including Bifidobacteria. Intestinal flora gas production in a culture medium supplemented with fucosyllactose (2′-FL) was significantly lower than that in media containing other carbon sources. In conclusion, 2′-FL may reduce gas production in infant and toddler guts through two mechanisms: first, it cannot be used by harmful intestinal bacteria to produce gas; second, it can inhibit intestinal mucosa colonization by harmful bacteria by regulating the expression of intestinal epithelial pathogenic genes/signaling pathways, thus reducing the proliferation of gas-producing harmful bacteria in the gut.
Collapse
|
19
|
Commensal gut bacterium critically regulates alveolar bone homeostasis. J Transl Med 2022; 102:363-375. [PMID: 34934182 PMCID: PMC8967765 DOI: 10.1038/s41374-021-00697-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
The alveolar bone is a unique osseous tissue due to the presence of the teeth and the proximity of commensal oral microbes. Commensal microbe effects on alveolar bone homeostasis have been attributed to the oral microbiota, yet the impact of commensal gut microbes is unknown. Study purpose was to elucidate whether commensal gut microbes regulate osteoimmune mechanisms and skeletal homeostasis in alveolar bone. Male C57BL/6T germfree (GF) littermate mice were maintained as GF or monoassociated with segmented filamentous bacteria (SFB), a commensal gut bacterium. SFB has been shown to elicit broad immune response effects, including the induction of TH17/IL17A immunity, which impacts the development and homeostasis of host tissues. SFB colonized the gut, but not oral cavity, and increased IL17A levels in the ileum and serum. SFB had catabolic effects on alveolar bone and non-oral skeletal sites, which was attributed to enhanced osteoclastogenesis. The alveolar bone marrow of SFB vs. GF mice had increased dendritic cells, activated helper T-cells, TH1 cells, TH17 cells, and upregulated Tnf. Primary osteoblast cultures from SFB and GF mice were stimulated with vehicle-control, IL17A, or TNF to elucidate osteoblast-derived signaling factors contributing to the pro-osteoclastic phenotype in SFB mice. Treatment of RAW264.7 osteoclastic cells with supernatants from vehicle-stimulated SFB vs. GF osteoblasts recapitulated the osteoclast phenotype found in vivo. Supernatants from TNF-stimulated osteoblasts normalized RAW264.7 osteoclast endpoints across SFB and GF cultures, which was dependent on the induction of CXCL1 and CCL2. This report reveals that commensal gut microbes have the capacity to regulate osteoimmune processes in alveolar bone. Outcomes from this investigation challenge the current paradigm that alveolar bone health and homeostasis is strictly regulated by oral microbes.
Collapse
|
20
|
Elekhnawy E, Negm WA. The potential application of probiotics for the prevention and treatment of COVID-19. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022; 23:36. [PMID: 37521835 PMCID: PMC8947857 DOI: 10.1186/s43042-022-00252-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/25/2022] [Indexed: 12/27/2022] Open
Abstract
Background Given the severe infection, poor prognosis, and the low number of available effective drugs, potential prevention and treatment strategies for COVID-19 need to be urgently developed. Main body Herein, we present and discuss the possible protective and therapeutic mechanisms of human microbiota and probiotics based on the previous and recent findings. Microbiota and probiotics consist of mixed cultures of living microorganisms that can positively affect human health through their antiviral, antibacterial, anti-inflammatory, and immunomodulatory effect. In the current study, we address the promising advantages of microbiota and probiotics in decreasing the risk of COVID-19. Conclusions Thus, we recommend further studies be conducted for assessing and evaluating the capability of these microbes in the battle against COVID-19.
Collapse
Affiliation(s)
- Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, El-Geish Street, Medical Campus, Tanta, 31111 Egypt
| | - Walaa A. Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
21
|
Díaz-Díaz LM, Rodríguez-Villafañe A, García-Arrarás JE. The Role of the Microbiota in Regeneration-Associated Processes. Front Cell Dev Biol 2022; 9:768783. [PMID: 35155442 PMCID: PMC8826689 DOI: 10.3389/fcell.2021.768783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota, the set of microorganisms associated with a particular environment or host, has acquired a prominent role in the study of many physiological and developmental processes. Among these, is the relationship between the microbiota and regenerative processes in various organisms. Here we introduce the concept of the microbiota and its involvement in regeneration-related cellular events. We then review the role of the microbiota in regenerative models that extend from the repair of tissue layers to the regeneration of complete organs or animals. We highlight the role of the microbiota in the digestive tract, since it accounts for a significant percentage of an animal microbiota, and at the same time provides an outstanding system to study microbiota effects on regeneration. Lastly, while this review serves to highlight echinoderms, primarily holothuroids, as models for regeneration studies, it also provides multiple examples of microbiota-related interactions in other processes in different organisms.
Collapse
Affiliation(s)
- Lymarie M Díaz-Díaz
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| | | | - José E García-Arrarás
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| |
Collapse
|
22
|
George S, Aguilera X, Gallardo P, Farfán M, Lucero Y, Torres JP, Vidal R, O'Ryan M. Bacterial Gut Microbiota and Infections During Early Childhood. Front Microbiol 2022; 12:793050. [PMID: 35069488 PMCID: PMC8767011 DOI: 10.3389/fmicb.2021.793050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota composition during the first years of life is variable, dynamic and influenced by both prenatal and postnatal factors, such as maternal antibiotics administered during labor, delivery mode, maternal diet, breastfeeding, and/or antibiotic consumption during infancy. Furthermore, the microbiota displays bidirectional interactions with infectious agents, either through direct microbiota-microorganism interactions or indirectly through various stimuli of the host immune system. Here we review these interactions during childhood until 5 years of life, focusing on bacterial microbiota, the most common gastrointestinal and respiratory infections and two well characterized gastrointestinal diseases related to dysbiosis (necrotizing enterocolitis and Clostridioides difficile infection). To date, most peer-reviewed studies on the bacterial microbiota in childhood have been cross-sectional and have reported patterns of gut dysbiosis during infections as compared to healthy controls; prospective studies suggest that most children progressively return to a "healthy microbiota status" following infection. Animal models and/or studies focusing on specific preventive and therapeutic interventions, such as probiotic administration and fecal transplantation, support the role of the bacterial gut microbiota in modulating both enteric and respiratory infections. A more in depth understanding of the mechanisms involved in the establishment and maintenance of the early bacterial microbiota, focusing on specific components of the microbiota-immunity-infectious agent axis is necessary in order to better define potential preventive or therapeutic tools against significant infections in children.
Collapse
Affiliation(s)
- Sergio George
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ximena Aguilera
- School of Medicine, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pablo Gallardo
- Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mauricio Farfán
- Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yalda Lucero
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Roberto del Río Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Pablo Torres
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roberto Vidal
- Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Miguel O'Ryan
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
23
|
Oemcke LA, Anderson RC, Altermann E, Roy NC, McNabb WC. The Role of Segmented Filamentous Bacteria in Immune Barrier Maturation of the Small Intestine at Weaning. Front Nutr 2021; 8:759137. [PMID: 34869529 PMCID: PMC8637878 DOI: 10.3389/fnut.2021.759137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
The microbiological, physical, chemical, and immunological barriers of the gastrointestinal tract (GIT) begin developing in utero and finish maturing postnatally. Maturation of these barriers is essential for the proper functioning of the GIT. Maturation, particularly of the immunological barrier, involves stimulation by bacteria. Segmented filamentous bacteria (SFB) which are anaerobic, spore-forming commensals have been linked to immune activation. The presence and changes in SFB abundance have been positively correlated to immune markers (cytokines and immunoglobulins) in the rat ileum and stool samples, pre- and post-weaning. The abundance of SFB in infant stool increases from 6 months, peaks around 12 months and plateaus 25 months post-weaning. Changes in SFB abundance at these times correlate positively and negatively with the production of interleukin 17 (IL 17) and immunoglobulin A (IgA), respectively, indicating involvement in immune function and maturation. Additionally, the peak in SFB abundance when a human milk diet was complemented by solid foods hints at a diet effect. SFB genome analysis revealed enzymes involved in metabolic pathways for survival, growth and development, host mucosal attachment and substrate acquisition. This narrative review discusses the current knowledge of SFB and their suggested effects on the small intestine immune system. Referencing the published genomes of rat and mouse SFB, the use of food substrates to modulate SFB abundance is proposed while considering their effects on other microbes. Changes in the immune response caused by the interaction of food substrate with SFB may provide insight into their role in infant immunological barrier maturation.
Collapse
Affiliation(s)
- Linda A Oemcke
- Riddet Institute, Massey University, Palmerston North, New Zealand.,School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand
| | - Rachel C Anderson
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand
| | - Eric Altermann
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Consumer Interface Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
24
|
Klüber P, Meurer SK, Lambertz J, Schwarz R, Zechel-Gran S, Braunschweig T, Hurka S, Domann E, Weiskirchen R. Depletion of Lipocalin 2 (LCN2) in Mice Leads to Dysbiosis and Persistent Colonization with Segmented Filamentous Bacteria. Int J Mol Sci 2021; 22:ijms222313156. [PMID: 34884961 PMCID: PMC8658549 DOI: 10.3390/ijms222313156] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Lipocalin 2 (LCN2) mediates key roles in innate immune responses. It has affinity for many lipophilic ligands and binds various siderophores, thereby limiting bacterial growth by iron sequestration. Furthermore, LCN2 protects against obesity and metabolic syndrome by interfering with the composition of gut microbiota. Consequently, complete or hepatocyte-specific ablation of the Lcn2 gene is associated with higher susceptibility to bacterial infections. In the present study, we comparatively profiled microbiota in fecal samples of wild type and Lcn2 null mice and show, in contrast to previous reports, that the quantity of DNA in feces of Lcn2 null mice is significantly lower than that in wild type mice (p < 0.001). By using the hypervariable V4 region of the 16S rDNA gene and Next-Generation Sequencing methods, we found a statistically significant change in 16 taxonomic units in Lcn2-/- mice, including eight gender-specific deviations. In particular, members of Clostridium, Escherichia, Helicobacter, Lactococcus, Prevotellaceae_UCG-001 and Staphylococcus appeared to expand in the intestinal tract of knockout mice. Interestingly, the proportion of Escherichia (200-fold) and Staphylococcus (10-fold) as well as the abundance of intestinal bacteria encoding the LCN2-sensitive siderphore enterobactin (entA) was significantly increased in male Lcn2 null mice (743-fold, p < 0.001). This was accompanied by significant higher immune cell infiltration in the ileum as demonstrated by increased immunoreactivity against the pan-leukocyte protein CD45, the lymphocyte transcription factor MUM-1/IRF4, and the macrophage antigen CD68/Macrosialin. In addition, we found a higher expression of mucosal mast cell proteases indicating a higher number of those innate immune cells. Finally, the ileum of Lcn2 null mice displayed a high abundance of segmented filamentous bacteria, which are intimately associated with the mucosal cell layer, provoking epithelial antimicrobial responses and affecting T-helper cell polarization.
Collapse
Affiliation(s)
- Patrick Klüber
- German Centre for Infection Research, Institute of Medical Microbiology, Justus-Liebig-University, D-35392 Giessen, Germany; (P.K.); (S.Z.-G.)
| | - Steffen K. Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074 Aachen, Germany; (S.K.M.); (J.L.)
| | - Jessica Lambertz
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074 Aachen, Germany; (S.K.M.); (J.L.)
| | - Roman Schwarz
- Labor Mönchengladbach, Medical Care Centre, D-41169 Mönchengladbach, Germany;
| | - Silke Zechel-Gran
- German Centre for Infection Research, Institute of Medical Microbiology, Justus-Liebig-University, D-35392 Giessen, Germany; (P.K.); (S.Z.-G.)
| | - Till Braunschweig
- Institute of Pathology, RWTH Aachen University Hospital, D-52074 Aachen, Germany;
| | - Sabine Hurka
- Institute for Insect Biotechnology, Justus-Liebig-University, D-35392 Giessen, Germany;
| | - Eugen Domann
- German Centre for Infection Research, Institute of Hygiene and Environmental Medicine, Justus-Liebig-University, D-35392 Giessen, Germany
- Correspondence: (E.D.); (R.W.); Tel.: +49-(0)641-99-41280 (E.D.); +49-(0)241-80-88683 (R.W.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074 Aachen, Germany; (S.K.M.); (J.L.)
- Correspondence: (E.D.); (R.W.); Tel.: +49-(0)641-99-41280 (E.D.); +49-(0)241-80-88683 (R.W.)
| |
Collapse
|
25
|
Grześkowiak Ł, Martínez-Vallespín B, Zentek J, Vahjen W. A Preliminary Survey of the Distribution of Segmented Filamentous Bacteria in the Porcine Gastrointestinal Tract. Curr Microbiol 2021; 78:3757-3761. [PMID: 34476557 PMCID: PMC8435515 DOI: 10.1007/s00284-021-02636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022]
Abstract
Segmented filamentous bacteria (SFB) are present in various animal species including pigs. The aim of this work was to analyze the occurrence of SFB in different parts of the gastrointestinal tract of piglets of different ages. A total of 377 DNA extracts from stomach, jejunum, ileum, cecum and colon digesta, and from feces collected on different time points, originating from 155 animals, were screened by qPCR method with primers specific for the SFB. SFB sequences were detected in 74 of 377 samples (19.6%) from 155 animals in total. SFB were most abundant in ileum (50.0%), cecum (45.0%), and colon (37.0%), followed by feces (14.6%). SFB prevalence in sows was 12.9% (13/101) and 75.9% (41/54) in individual piglets. Of the 41 SFB-positive piglets, only two samples were from pre-weaning animals, while the rest of samples originated from post-weaning piglets. SFB sequences are abundant in post-weaning piglets, but not in suckling or adult animals. They are most abundant in the ileum and cecum of pigs. Further studies are warranted to reveal the role of SFB in pigs.
Collapse
Affiliation(s)
- Łukasz Grześkowiak
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany.
| | | | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
26
|
Smee MR, Raines SA, Ferrari J. Genetic identity and genotype × genotype interactions between symbionts outweigh species level effects in an insect microbiome. THE ISME JOURNAL 2021; 15:2537-2546. [PMID: 33712703 PMCID: PMC8397793 DOI: 10.1038/s41396-021-00943-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Microbial symbionts often alter the phenotype of their host. Benefits and costs to hosts depend on many factors, including host genotype, symbiont species and genotype, and environmental conditions. Here, we present a study demonstrating genotype-by-genotype (G×G) interactions between multiple species of endosymbionts harboured by an insect, and the first to quantify the relative importance of G×G interactions compared with species interactions in such systems. In the most extensive study to date, we microinjected all possible combinations of five Hamiltonella defensa and five Fukatsuia symbiotica (X-type; PAXS) isolates into the pea aphid, Acyrthosiphon pisum. We applied several ecological challenges: a parasitoid wasp, a fungal pathogen, heat shock, and performance on different host plants. Surprisingly, genetic identity and genotype × genotype interactions explained far more of the phenotypic variation (on average 22% and 31% respectively) than species identity or species interactions (on average 12% and 0.4%, respectively). We determined the costs and benefits associated with co-infection, and how these compared to corresponding single infections. All phenotypes were highly reliant on individual isolates or interactions between isolates of the co-infecting partners. Our findings highlight the importance of exploring the eco-evolutionary consequences of these highly specific interactions in communities of co-inherited species.
Collapse
Affiliation(s)
- Melanie R. Smee
- grid.5685.e0000 0004 1936 9668Department of Biology, University of York, York, UK ,grid.5386.8000000041936877XPresent Address: Microbiology Department, Cornell University, Ithaca, NY USA
| | - Sally A. Raines
- grid.5685.e0000 0004 1936 9668Department of Biology, University of York, York, UK
| | - Julia Ferrari
- grid.5685.e0000 0004 1936 9668Department of Biology, University of York, York, UK
| |
Collapse
|
27
|
Brooks JF, Behrendt CL, Ruhn KA, Lee S, Raj P, Takahashi JS, Hooper LV. The microbiota coordinates diurnal rhythms in innate immunity with the circadian clock. Cell 2021; 184:4154-4167.e12. [PMID: 34324837 PMCID: PMC8967342 DOI: 10.1016/j.cell.2021.07.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023]
Abstract
Environmental light cycles entrain circadian feeding behaviors in animals that produce rhythms in exposure to foodborne bacteria. Here, we show that the intestinal microbiota generates diurnal rhythms in innate immunity that synchronize with feeding rhythms to anticipate microbial exposure. Rhythmic expression of antimicrobial proteins was driven by daily rhythms in epithelial attachment by segmented filamentous bacteria (SFB), members of the mouse intestinal microbiota. Rhythmic SFB attachment was driven by the circadian clock through control of feeding rhythms. Mechanistically, rhythmic SFB attachment activated an immunological circuit involving group 3 innate lymphoid cells. This circuit triggered oscillations in epithelial STAT3 expression and activation that produced rhythmic antimicrobial protein expression and caused resistance to Salmonella Typhimurium infection to vary across the day-night cycle. Thus, host feeding rhythms synchronize with the microbiota to promote rhythms in intestinal innate immunity that anticipate exogenous microbial exposure.
Collapse
Affiliation(s)
- John F Brooks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cassie L Behrendt
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kelly A Ruhn
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Syann Lee
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lora V Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
28
|
Abstract
Despite identification of numerous associations between microbiomes and diseases, the complexity of the human microbiome has hindered identification of individual species and strains that are causative in host phenotype or disease. Uncovering causative microbes is vital to fully understand disease processes and to harness the potential therapeutic benefits of microbiota manipulation. Developments in sequencing technology, animal models, and bacterial culturing have facilitated the discovery of specific microbes that impact the host and are beginning to advance the characterization of host-microbiome interaction mechanisms. We summarize the historical and contemporary experimental approaches taken to uncover microbes from the microbiota that affect host biology and describe examples of commensals that have specific effects on the immune system, inflammation, and metabolism. There is still much to learn, and we lay out challenges faced by the field and suggest potential remedies for common pitfalls encountered in the hunt for causative commensal microbes. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Graham J Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; .,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; .,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
29
|
Oemcke LA, Anderson RC, Rakonjac J, McNabb WC, Roy NC. Whole tissue homogenization preferable to mucosal scraping in determining the temporal profile of segmented filamentous bacteria in the ileum of weanling rats. Access Microbiol 2021; 3:000218. [PMID: 34151170 PMCID: PMC8209713 DOI: 10.1099/acmi.0.000218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/04/2021] [Indexed: 01/12/2023] Open
Abstract
Segmented filamentous bacteria (SFB) are thought to play a role in small intestine immunological maturation. Studies in weanling mice have shown a positive correlation between ileal SFB abundance and plasma and faecal interleukin 17 (IL-17) and immunoglobulin A (IgA) concentrations. Although the first observation of SFB presence was reported in rats, most studies use mice. The size of the mouse ileum is a limitation whereas the rat could be a suitable alternative for sufficient samples. Changes in SFB abundance over time in rats were hypothesized to follow the pattern reported in mice and infants. We characterized the profile of SFB colonization in the ileum tissue and contents and its correlation with two immune markers of gastrointestinal tract (GIT) maturation. We also compared two published ileum collection techniques to determine which yields data on SFB abundance with least variability. Whole ileal tissue and ileal mucosal scrapings were collected from 20- to 32-day-old Sprague-Dawley rats. SFB abundance was quantified from proximal, middle and distal ileal tissues, contents and faeces by quantitative PCR using SFB-specific primers. Antibody-specific ELISAs were used to determine IL-17 and IgA concentrations. Significant differences in SFB abundance were observed from whole and scraped tissues peaking at day 22. Variability in whole ileum data was less, favouring it as a better collection technique. A similar pattern of SFB abundance was observed in ileum contents and faeces peaking at day 24, suggesting faeces can be a proxy for ileal SFB abundance. SFB abundance at day 26 was higher in females than males across all samples. There were significant differences in IgA concentration between days 20, 30 and 32 and none in IL-17 concentration, which was different from reports in mice and infants.
Collapse
Affiliation(s)
- Linda A. Oemcke
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Rachel C. Anderson
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Jasna Rakonjac
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Warren C. McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C. Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Gut Microbiota-Host Interactions in Inborn Errors of Immunity. Int J Mol Sci 2021; 22:ijms22031416. [PMID: 33572538 PMCID: PMC7866830 DOI: 10.3390/ijms22031416] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Inborn errors of immunity (IEI) are a group of disorders that are mostly caused by genetic mutations affecting immune host defense and immune regulation. Although IEI present with a wide spectrum of clinical features, in about one third of them various degrees of gastrointestinal (GI) involvement have been described and for some IEI the GI manifestations represent the main and peculiar clinical feature. The microbiome plays critical roles in the education and function of the host's innate and adaptive immune system, and imbalances in microbiota-immunity interactions can contribute to intestinal pathogenesis. Microbial dysbiosis combined to the impairment of immunosurveillance and immune dysfunction in IEI, may favor mucosal permeability and lead to inflammation. Here we review how immune homeostasis between commensals and the host is established in the gut, and how these mechanisms can be disrupted in the context of primary immunodeficiencies. Additionally, we highlight key aspects of the first studies on gut microbiome in patients affected by IEI and discuss how gut microbiome could be harnessed as a therapeutic approach in these diseases.
Collapse
|
31
|
Stavropoulou E, Kantartzi K, Tsigalou C, Konstantinidis T, Voidarou C, Konstantinidis T, Bezirtzoglou E. Unraveling the Interconnection Patterns Across Lung Microbiome, Respiratory Diseases, and COVID-19. Front Cell Infect Microbiol 2021; 10:619075. [PMID: 33585285 PMCID: PMC7876344 DOI: 10.3389/fcimb.2020.619075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023] Open
Abstract
Albeit the lungs were thought to be sterile, recent scientific data reported a microbial microbiota in the lungs of healthy individuals. Apparently, new developments in technological approachesincluding genome sequencing methodologies contributed in the identification of the microbiota and shed light on the role of the gut and lung microbiomes in the development of respiratory diseases. Moreover, knowledge of the human microbiome in health may act as a tool for evaluating characteristic shifts in the case of disease. This review paper discusses the development of respiratory disease linked to the intestinal dysbiosis which influences the lung immunity and microbiome. The gastrointestinal-lung dialogue provides interesting aspects in the pathogenesis of the respiratory diseases. Lastly, we were further interested on the role of this interconnection in the progression and physiopathology of newly emergedCOVID-19.
Collapse
Affiliation(s)
- Elisavet Stavropoulou
- CHUV (Centre HospitalierUniversitaire Vaudois), Lausanne, Switzerland
- Department of Infectious Diseases, Central Institute, Valais Hospital, Sion, Switzerland
| | - Konstantia Kantartzi
- Nephrology Clinic, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Tsigalou
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theocharis Konstantinidis
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Theodoros Konstantinidis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
32
|
Shini S, Aland RC, Bryden WL. Avian intestinal ultrastructure changes provide insight into the pathogenesis of enteric diseases and probiotic mode of action. Sci Rep 2021; 11:167. [PMID: 33420315 PMCID: PMC7794591 DOI: 10.1038/s41598-020-80714-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/24/2020] [Indexed: 01/27/2023] Open
Abstract
Epithelial damage and loss of barrier integrity occur following intestinal infections in humans and animals. Gut health was evaluated by electron microscopy in an avian model that exposed birds to subclinical necrotic enteritis (NE) and fed them a diet supplemented with the probiotic Bacillus amyloliquefaciens strain H57 (H57). Scanning electron microscopy of ileal mucosa revealed significant villus damage, including focal erosions of epithelial cells and villous atrophy, while transmission electron microscopy demonstrated severe enterocyte damage and loss of cellular integrity in NE-exposed birds. In particular, mitochondria were morphologically altered, appearing irregular in shape or swollen, and containing electron-lucent regions of matrix and damaged cristae. Apical junctional complexes between adjacent enterocytes were significantly shorter, and the adherens junction was saccular, suggesting loss of epithelial integrity in NE birds. Segmented filamentous bacteria attached to villi, which play an important role in intestinal immunity, were more numerous in birds exposed to NE. The results suggest that mitochondrial damage may be an important initiator of NE pathogenesis, while H57 maintains epithelium and improves the integrity of intestinal mucosa. Potential actions of H57 are discussed that further define the mechanisms responsible for probiotic bacteria’s role in maintaining gut health.
Collapse
Affiliation(s)
- Shaniko Shini
- School of Agriculture and Food Sciences, University of Queensland, Gatton, QLD, 4343, Australia.
| | - R Claire Aland
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, 4071, Australia
| | - Wayne L Bryden
- School of Agriculture and Food Sciences, University of Queensland, Gatton, QLD, 4343, Australia
| |
Collapse
|
33
|
Ericsson AC, Franklin CL. The gut microbiome of laboratory mice: considerations and best practices for translational research. Mamm Genome 2021; 32:239-250. [PMID: 33689000 PMCID: PMC8295156 DOI: 10.1007/s00335-021-09863-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
Just as the gut microbiota (GM) is now recognized as an integral mediator of environmental influences on human physiology, susceptibility to disease, and response to pharmacological intervention, so too does the GM of laboratory mice affect the phenotype of research using mouse models. Multiple experimental factors have been shown to affect the composition of the GM in research mice, as well as the model phenotype, suggesting that the GM represents a major component in experimental reproducibility. Moreover, several recent studies suggest that manipulation of the GM of laboratory mice can substantially improve the predictive power or translatability of data generated in mouse models to the human conditions under investigation. This review provides readers with information related to these various factors and practices, and recommendations regarding methods by which issues with poor reproducibility or translatability can be transformed into discoveries.
Collapse
Affiliation(s)
- Aaron C Ericsson
- University of Missouri Metagenomics Center (MUMC), MU Mutant Mouse Resource and Research Center (MU MMRRC), Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| | - Craig L Franklin
- University of Missouri Metagenomics Center (MUMC), MU Mutant Mouse Resource and Research Center (MU MMRRC), Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
34
|
Daniel N, Lécuyer E, Chassaing B. Host/microbiota interactions in health and diseases-Time for mucosal microbiology! Mucosal Immunol 2021; 14:1006-1016. [PMID: 33772148 PMCID: PMC8379076 DOI: 10.1038/s41385-021-00383-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/04/2023]
Abstract
During the last 20 years, a new field of research delineating the importance of the microbiota in health and diseases has emerged. Inappropriate host-microbiota interactions have been shown to trigger a wide range of chronic inflammatory diseases, and defining the exact mechanisms behind perturbations of such relationship, as well as ways by which these disturbances can lead to disease states, both remain to be fully elucidated. The mucosa-associated microbiota constitutes a recently studied microbial population closely linked with the promotion of chronic intestinal inflammation and associated disease states. This review will highlight seminal works that have brought into light the importance of the mucosa-associated microbiota in health and diseases, emphasizing the challenges and promises of expending the mucosal microbiology field of research.
Collapse
Affiliation(s)
- Noëmie Daniel
- grid.508487.60000 0004 7885 7602INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université de Paris, Paris, France
| | - Emelyne Lécuyer
- grid.428999.70000 0001 2353 6535Microenvironment & Immunity Unit, Pasteur Institute, INSERM U1224, Paris, France
| | - Benoit Chassaing
- grid.508487.60000 0004 7885 7602INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université de Paris, Paris, France
| |
Collapse
|
35
|
Aguirre García MM, Mancilla-Galindo J, Paredes-Paredes M, Tiburcio ÁZ, Ávila-Vanzzini N. Mechanisms of infection by SARS-CoV-2, inflammation and potential links with the microbiome. Future Virol 2021. [PMCID: PMC7876557 DOI: 10.2217/fvl-2020-0310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pandemic SARS coronavirus 2 utilizes efficient mechanisms to establish infection and evade the immune system. Established infection leads to severe inflammation in susceptible patients, the main hallmark of progression to severe coronavirus disease (COVID-19). Knowledge of the mechanisms of disease has expanded rapidly. As inflammation emerges as the central pathophysiological feature in COVID-19, elucidating how the immune system, lungs and gut communicate and interact with microbial components of the ecological niches that conform the human microbiome will shed light on how inflammation and disease progression are promoted. Studying the microbiome in COVID-19 could allow scientists to identify novel approaches to prevent severe inflammation by targeting components of the human microbiome. Innovation in the aforementioned is needed to combat this pandemic.
Collapse
Affiliation(s)
- María Magdalena Aguirre García
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan C.P. 14080, Ciudad de México, Mexico
| | - Javier Mancilla-Galindo
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan C.P. 14080, Ciudad de México, Mexico
| | - Mercedes Paredes-Paredes
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan C.P. 14080, Ciudad de México, Mexico
| | - Álvaro Zamudio Tiburcio
- Departamento de Gastroenterología, Unidad de Trasplante de Microbiota Intestinal, Especialidades Médicas Nápoles, Oficina 12, Pennsylvania No. 209 Esq. Kansas, Col. Nápoles, Benito Juárez C.P 03810, Ciudad de México, Mexico
| | - Nydia Ávila-Vanzzini
- Departamento de Consulta Externa, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan C.P. 14080, Ciudad de México, Mexico
| |
Collapse
|
36
|
Battaglia M, Garrett-Sinha LA. Bacterial infections in lupus: Roles in promoting immune activation and in pathogenesis of the disease. J Transl Autoimmun 2020; 4:100078. [PMID: 33490939 PMCID: PMC7804979 DOI: 10.1016/j.jtauto.2020.100078] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bacterial infections of the lung, skin, bloodstream and other tissues are common in patients with systemic lupus erythematosus (lupus) and are often more severe and invasive than similar infections in control populations. A variety of studies have explored the changes in bacterial abundance in lupus patients, the rates of infection and the influence of particular bacterial species on disease progression, using both human patient samples and mouse models of lupus. OBJECTIVE The aim of this review is to summarize human and mouse studies that describe changes in the bacterial microbiome in lupus, the role of a leaky gut in stimulating inflammation, identification of specific bacterial species associated with lupus, and the potential roles of certain common bacterial infections in promoting lupus progression. METHODS Information was collected using searches of the Pubmed database for articles relevant to bacterial infections in lupus and to microbiome changes associated with lupus. RESULTS The reviewed studies demonstrate significant changes in the bacterial microbiome of lupus patients as compared to control subjects and in lupus-prone mice compared to control mice. Furthermore, there is evidence supporting the existence of a leaky gut in lupus patients and in lupus-prone mice. This leaky gut may allow live bacteria or bacterial components to enter the circulation and cause inflammation. Invasive bacterial infections are more common and often more severe in lupus patients. These include infections caused by Staphylococcus aureus, Salmonella enterica, Escherichia coli, Streptococcus pneumoniae and mycobacteria. These bacterial infections can trigger increased immune activation and inflammation, potentially stimulating activation of autoreactive lymphocytes and leading to worsening of lupus symptoms. CONCLUSIONS Together, the evidence suggests that lupus predisposes to infection, while infection may trigger worsening lupus, leading to a feedback loop that may reinforce autoimmune symptoms.
Collapse
Affiliation(s)
- Michael Battaglia
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| |
Collapse
|
37
|
Exploring the impact of intestinal ion transport on the gut microbiota. Comput Struct Biotechnol J 2020; 19:134-144. [PMID: 33425246 PMCID: PMC7773683 DOI: 10.1016/j.csbj.2020.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota and the host are intimately connected. The host physiology dictates the intestinal environment through regulation of pH, ion concentration, mucus production, etc., all of which exerts a selective pressure on the gut microbiota. Since different regions of the gastrointestinal tract are characterized by their own physicochemical conditions, distinct microbial communities are present in these locations. While it is widely accepted that the intestinal microbiome influences the host (tight junctions, cytokine/immune responses, diarrhea, etc.), the reciprocal interaction of the host on the microbiome is under-explored. This review aims to address these gaps in knowledge by focusing on how the host intestinal ion transport influences the luminal environment and thereby modulates the gut microbiota composition.
Collapse
Key Words
- CFTR
- CFTR, cystic fibrosis transmembrane regulator
- ClC, chloride channel
- DRA
- DRA, down-regulated in adenoma
- ENaC, epithelial Na+ channel
- GI, gastrointestinal
- GLUT2
- GLUT2, glucose transporter 2
- Gastrointestinal
- Ion transport
- Microbiome
- Microbiota
- NHE2
- NHE2, sodium-hydrogen exchanger isoform 2
- NHE3
- NHE3, sodium-hydrogen exchanger isoform 3
- NKCC1, Na+-K+-2Cl− co-transporter
- OTUs, operational taxonomic units
- SGLT1, sodium glucose co-transporter 1
Collapse
|
38
|
Genome sequence of segmented filamentous bacteria present in the human intestine. Commun Biol 2020; 3:485. [PMID: 32887924 PMCID: PMC7474095 DOI: 10.1038/s42003-020-01214-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Segmented filamentous bacteria (SFB) are unique immune modulatory bacteria colonizing the small intestine of a variety of animals in a host-specific manner. SFB exhibit filamentous growth and attach to the host’s intestinal epithelium, offering a physical route of interaction. SFB affect functions of the host immune system, among them IgA production and T-cell maturation. Until now, no human-specific SFB genome has been reported. Here, we report the metagenomic reconstruction of an SFB genome from a human ileostomy sample. Phylogenomic analysis clusters the genome with SFB genomes from mouse, rat and turkey, but the genome is genetically distinct, displaying 65–71% average amino acid identity to the others. By screening human faecal metagenomic datasets, we identified individuals carrying sequences identical to the new SFB genome. We thus conclude that a unique SFB variant exists in humans and foresee a renewed interest in the elucidation of SFB functionality in this environment. Hans Jonsson et al. report the metagenomic reconstruction of the genome of a potentially immune modulatory segmented filamentous bacteria (SFB) from a human ileostomy sample. They demonstrate that the genome clusters closely with SFB genomes from other species. They also detect the unique SFB variant in human faecal metagenomics datasets.
Collapse
|
39
|
Zhou X, Johnson JS, Spakowicz D, Zhou W, Zhou Y, Sodergren E, Snyder M, Weinstock GM. Longitudinal Analysis of Serum Cytokine Levels and Gut Microbial Abundance Links IL-17/IL-22 With Clostridia and Insulin Sensitivity in Humans. Diabetes 2020; 69:1833-1842. [PMID: 32366680 PMCID: PMC7372073 DOI: 10.2337/db19-0592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 04/29/2020] [Indexed: 01/13/2023]
Abstract
Recent studies using mouse models suggest that interaction between the gut microbiome and IL-17/IL-22-producing cells plays a role in the development of metabolic diseases. We investigated this relationship in humans using data from the prediabetes study of the Integrated Human Microbiome Project (iHMP). Specifically, we addressed the hypothesis that early in the onset of metabolic diseases there is a decline in serum levels of IL-17/IL-22, with concomitant changes in the gut microbiome. Clustering iHMP study participants on the basis of longitudinal IL-17/IL-22 profiles identified discrete groups. Individuals distinguished by low levels of IL-17/IL-22 were linked to established markers of metabolic disease, including insulin sensitivity. These individuals also displayed gut microbiome dysbiosis, characterized by decreased diversity, and IL-17/IL-22-related declines in the phylum Firmicutes, class Clostridia, and order Clostridiales This ancillary analysis of the iHMP data therefore supports a link between the gut microbiome, IL-17/IL-22, and the onset of metabolic diseases. This raises the possibility for novel, microbiome-related therapeutic targets that may effectively alleviate metabolic diseases in humans as they do in animal models.
Collapse
Affiliation(s)
- Xin Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
- Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | | | - Daniel Spakowicz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Yanjiao Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
- Department of Medicine, University of Connecticut Health Center, Farmington, CT
| | | | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
40
|
Effect of chitooligosaccharides on human gut microbiota and antiglycation. Carbohydr Polym 2020; 242:116413. [PMID: 32564858 DOI: 10.1016/j.carbpol.2020.116413] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
Chitooligosaccharides (COS) have garnered great attention in the field of human healthcare. The prebiotic activities and antiglycation of COS were investigated using a combination of in vitro and in vivo studies. COS supplementation dramatically increased the levels of acetic acid, while reducing the concentrations of propionic and butyric acids. It also decreased the total bacterial population; however, it did not affect diversity and richness of the gut microbiota. In addition, COS modulated the gut microbiota composition by increasing Bacteroidetes, decreasing Proteobacteria and Actinobacteria, and lowering the Firmicutes/Bacteroidetes ratio. COS promoted the generation of beneficial Bacteroides and Faecalibacterium genera, while suppressing the pathogenic Klebsiella genus. The antiglycation activity of COS and acetic acid was dose-dependent. Furthermore, COS prevented the decrease of serum Nε-(carboxymethyl) lysine (CML) level caused by CML ingestion in a mouse model of diet-induced obesity. To improve host health, COS could be potential prebiotics in food products.
Collapse
|
41
|
Chen H, Wang L, Wang X, Wang X, Liu H, Yin Y. Distribution and Strain Diversity of Immunoregulating Segmented Filamentous Bacteria in Human Intestinal Lavage Samples. MICROBIAL ECOLOGY 2020; 79:1021-1033. [PMID: 31728601 DOI: 10.1007/s00248-019-01441-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Segmented filamentous bacteria (SFB) are well known for their functions in the immunoregulation of hosts including the promotion of Th17 cell differentiation, B cell maturation, and immune system development. However, most analyses of SFB have focused on animal models, and thus, investigation of SFB prevalence in humans and their roles in human immunoregulation and health is needed. Although little is known overall of SFB prevalence in humans, they are characteristically abundant in animals during weaning. In this study, SFB-like bacteria were detected in ileal lavage samples from human children that were aged between 1 to 17 years old by scanning electron microscopy (SEM) analysis, and their insertion into the mucosa was also observed. In addition, the expression of SFB flagellin at the human bacterial interface was observed by immunohistochemistry (IHC) and western blot. Moreover, two pairs of primers specific for SFB, but targeting different genes, were used to detect SFB in human intestinal lavage samples. These analyses indicated that SFB were present in over 50% of patient ileal samples independent of age. High-throughput gene sequencing indicated that different SFB strains were detected among samples. Between nine and 23 SFB flagellin gene operational taxonomic units were identified. In addition to evaluating the prevalence of SFB in human samples, correlations between SFB presence and chief complaints of clinical symptoms were evaluated, as well as the relationship between SFB and patient serum immunoglobulin concentrations. SFB prevalence was significantly higher in hematochezia patients (68%) than in abdominal pain (56.10%) and diarrhea (43.75%) patients. Furthermore, the concentrations of serum IgA, IgM, and IgE, were similar between SFB-positive and SFB-negative patient groups, although IgG concentrations were significantly higher in the SFB-negative group.
Collapse
Affiliation(s)
- Huahai Chen
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Zhejiang, Hangzhou, China
| | - Ling Wang
- Children's Hospital of Shanghai, Children's Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Xing Wang
- Children's Hospital of Shanghai, Children's Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Xin Wang
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Zhejiang, Hangzhou, China.
| | - Haifeng Liu
- Children's Hospital of Shanghai, Children's Hospital of Shanghai Jiaotong University, Shanghai, China.
| | - Yeshi Yin
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China.
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Zhejiang, Hangzhou, China.
| |
Collapse
|
42
|
Relationship between T cells and microbiota in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:95-129. [PMID: 32475529 DOI: 10.1016/bs.pmbts.2020.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decades, the fields of microbiology and immunology have largely advanced by using germ-free animals and next-generation sequencing. Many studies revealed the relationship among gut microbiota, activation of immune system, and various diseases. Especially, some gut commensals can generate their antigen-specific T cells. It is becoming clear that commensal bacteria have important roles in various autoimmune and inflammatory diseases, such as autism, rheumatoid arthritis (RA), and inflammatory bowel diseases (IBD). Recently, it was reported that commensals contribute to the cancer immune therapy. However, how commensal-specific T cells contribute to the disease development and cancer treatment are not fully understood yet. In this chapter, we will summarize the decade history of the studies associated with commensal-induced T cells and commensal-causing diseases.
Collapse
|
43
|
Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieërs G, Guery B, Delhaes L. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front Cell Infect Microbiol 2020; 10:9. [PMID: 32140452 PMCID: PMC7042389 DOI: 10.3389/fcimb.2020.00009] [Citation(s) in RCA: 446] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The gut and lungs are anatomically distinct, but potential anatomic communications and complex pathways involving their respective microbiota have reinforced the existence of a gut-lung axis (GLA). Compared to the better-studied gut microbiota, the lung microbiota, only considered in recent years, represents a more discreet part of the whole microbiota associated to human hosts. While the vast majority of studies focused on the bacterial component of the microbiota in healthy and pathological conditions, recent works have highlighted the contribution of fungal and viral kingdoms at both digestive and respiratory levels. Moreover, growing evidence indicates the key role of inter-kingdom crosstalks in maintaining host homeostasis and in disease evolution. In fact, the recently emerged GLA concept involves host-microbe as well as microbe-microbe interactions, based both on localized and long-reaching effects. GLA can shape immune responses and interfere with the course of respiratory diseases. In this review, we aim to analyze how the lung and gut microbiota influence each other and may impact on respiratory diseases. Due to the limited knowledge on the human virobiota, we focused on gut and lung bacteriobiota and mycobiota, with a specific attention on inter-kingdom microbial crosstalks which are able to shape local or long-reached host responses within the GLA.
Collapse
Affiliation(s)
- Raphaël Enaud
- CHU de Bordeaux, CRCM Pédiatrique, CIC 1401, Bordeaux, France
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
| | - Renaud Prevel
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
- CHU de Bordeaux, Médecine Intensive Réanimation, Bordeaux, France
| | - Eleonora Ciarlo
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabien Beaufils
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
- CHU de Bordeaux, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Gregoire Wieërs
- Clinique Saint Pierre, Department of Internal Medicine, Ottignies, Belgium
| | - Benoit Guery
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurence Delhaes
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
- CHU de Bordeaux: Laboratoire de Parasitologie-Mycologie, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
44
|
Hathaway-Schrader JD, Poulides NA, Carson MD, Kirkpatrick JE, Warner AJ, Swanson BA, Taylor EV, Chew ME, Reddy SV, Liu B, Westwater C, Novince CM. Specific Commensal Bacterium Critically Regulates Gut Microbiota Osteoimmunomodulatory Actions During Normal Postpubertal Skeletal Growth and Maturation. JBMR Plus 2020; 4:e10338. [PMID: 32161843 PMCID: PMC7059828 DOI: 10.1002/jbm4.10338] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
The commensal gut microbiota critically regulates immunomodulatory processes that influence normal skeletal growth and maturation. However, the influence of specific microbes on commensal gut microbiota osteoimmunoregulatory actions is unknown. We have shown previously that the commensal gut microbiota enhances TH17/IL17A immune response effects in marrow and liver that have procatabolic/antianabolic actions in the skeleton. Segmented filamentous bacteria (SFB), a specific commensal gut bacterium within phylum Firmicutes, potently induces TH17/IL17A‐mediated immunity. The study purpose was to delineate the influence of SFB on commensal gut microbiota immunomodulatory actions regulating normal postpubertal skeletal development. Two murine models were utilized: SFB‐monoassociated mice versus germ‐free (GF) mice and specific‐pathogen‐free (SPF) mice +/− SFB. SFB colonization was validated by 16S rDNA analysis, and SFB‐induced TH17/IL17A immunity was confirmed by upregulation of Il17a in ileum and IL17A in serum. SFB‐colonized mice had an osteopenic trabecular bone phenotype, which was attributed to SFB actions suppressing osteoblastogenesis and enhancing osteoclastogenesis. Intriguingly, SFB‐colonized mice had increased expression of proinflammatory chemokines and acute‐phase reactants in the liver. Lipocalin‐2 (LCN2), an acute‐phase reactant and antimicrobial peptide, was substantially elevated in the liver and serum of SFB‐colonized mice, which supports the notion that SFB regulation of commensal gut microbiota osteoimmunomodulatory actions are mediated in part through a gut–liver–bone axis. Proinflammatory TH17 and TH1 cells were increased in liver‐draining lymph nodes of SFB‐colonized mice, which further substantiates that SFB osteoimmune‐response effects may be mediated through the liver. SFB‐induction of Il17a in the gut and Lcn2 in the liver resulted in increased circulating levels of IL17A and LCN2. Recognizing that IL17A and LCN2 support osteoclastogenesis/suppress osteoblastogenesis, SFB actions impairing postpubertal skeletal development appear to be mediated through immunomodulatory effects in both the gut and liver. This research reveals that specific microbes critically impact commensal gut microbiota immunomodulatory actions regulating normal postpubertal skeletal growth and maturation. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Nicole A Poulides
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Matthew D Carson
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Joy E Kirkpatrick
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Drug Discovery & Biomedical Sciences College of Pharmacy, Medical University of South Carolina Charleston SC USA
| | - Amy J Warner
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Brooks A Swanson
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Eliza V Taylor
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA
| | - Michael E Chew
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA
| | - Sakamuri V Reddy
- Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Bei Liu
- Department of Microbiology and Immunology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Caroline Westwater
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Microbiology and Immunology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Chad M Novince
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| |
Collapse
|
45
|
Spencer SP, Fragiadakis GK, Sonnenburg JL. Pursuing Human-Relevant Gut Microbiota-Immune Interactions. Immunity 2019; 51:225-239. [PMID: 31433970 DOI: 10.1016/j.immuni.2019.08.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The gut microbiota is a complex and plastic network of diverse organisms intricately connected with human physiology. Recent advances in profiling approaches of both the microbiota and the immune system now enable a deeper exploration of immunity-microbiota connections. An important next step is to elucidate a human-relevant "map" of microbial-immune wiring while focusing on animal studies to probe a prioritized subset of interactions. Here, we provide an overview of this field's current status and discuss two approaches for establishing priorities for detailed investigation: (1) longitudinal intervention studies in humans probing the dynamics of both the microbiota and the immune system and (2) the study of traditional populations to assess lost features of human microbial identity whose absence may be contributing to the rise of immunological disorders. These human-centered approaches offer a judicious path forward to understand the impact of the microbiota in immune development and function.
Collapse
Affiliation(s)
- Sean P Spencer
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | | | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Center for Human Microbiome Studies, Stanford University, Stanford, CA, USA.
| |
Collapse
|
46
|
Fetal Weight Outcomes in C57BL/6J and C57BL/6NCrl Mice after Oral Colonization with Porphyromonas gingivalis. Infect Immun 2019; 87:IAI.00280-19. [PMID: 31331955 DOI: 10.1128/iai.00280-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/13/2019] [Indexed: 12/15/2022] Open
Abstract
Porphyromonas gingivalis is considered a keystone pathogen that contributes to the initiation and progression of periodontitis in humans. P. gingivalis has also been detected in human placentas associated with adverse pregnancy outcomes. The spread of P. gingivalis from the oral cavity to the reproductive tract thus represents a potential mechanism whereby periodontitis can lead to adverse pregnancy outcomes. In a murine model of pregnancy and oral infection with P. gingivalis, C57BL/6J mice developed low fetal weight, whereas C57BL/6NCrl mice did not. Although C57BL/6NCrl mice harbor segmented filamentous bacteria that drive a Th17 response, fetal weight was independent of frequency of Th17 or Th1 in either substrain. Low fetal weight was instead correlated with increasing amounts of P. gingivalis DNA in the placentas of the C57BL/6J dams. In contrast, fetal weight in C57BL/6NCrl mice was independent of P. gingivalis in the placenta. Differences in genetics or microbiome that influence the ability of P. gingivalis to colonize the placenta may drive differential fetal weight outcomes between C57BL/6J and C57BL/6NCrl mice and, potentially, between diverse human populations.
Collapse
|
47
|
Cerf-Bensussan N. Microbiology and immunology: An ideal partnership for a tango at the gut surface-A tribute to Philippe Sansonetti. Cell Microbiol 2019; 21:e13097. [PMID: 31414516 PMCID: PMC7027583 DOI: 10.1111/cmi.13097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Over the past 20 years, the highly dynamic interactions that take place between hosts and the gut microbiota have emerged as a major determinant in health and disease. The complexity of the gut microbiota represents, however, a considerable challenge, and reductionist approaches are indispensable to define the contribution of individual bacteria to host responses and to dissect molecular mechanisms. In this tribute to Philippe Sansonetti, I would like to show how rewarding collaborations with microbiologists have guided our team of immunologists in the study of host–microbiota interactions and, thanks to the use of controlled colonisation experiments in gnotobiotic mice, toward the demonstration that segmented filamentous bacteria (SFB) are indispensable to drive the post‐natal maturation of the gut immune barrier in mice. The work led with Philippe Sansonetti to set up in vitro culture conditions has been one important milestone that laid the ground for in‐depth characterization of the molecular attributes of this unusual symbiont. Recent suggestions that SFB may be present in the human microbiota encourage further cross‐fertilising interactions between microbiologists and immunologists to define whether results from mice can be translated to humans and, if so, how SFB may be used to promote human intestinal defences against enteropathogens. Nurturing the competences to pursue this inspiring project is one legacy of Philippe Sansonetti.
Collapse
Affiliation(s)
- Nadine Cerf-Bensussan
- Laboratory of Intestinal Immunity, INSERM UMR 1163, Institut Imagine, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
48
|
[Age distribution characteristics of intestinal segmented filamentous bacteria and their relationship with intestinal mucosal immunity in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21. [PMID: 31208505 PMCID: PMC7389570 DOI: 10.7499/j.issn.1008-8830.2019.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To investigate the age distribution characteristics of intestinal segmented filamentous bacteria (SFB) in children and their relationship with intestinal mucosal immunity. METHODS The fresh feces of 177 children and the ileocecal fluid of 47 children during colonoscopy were collected. The SFB was determined by real-time PCR. The concentration of secretory immunoglobulin A (sIgA) was determined by enzyme-linked immunosorbent assay. The numbers of interleukin 17A (IL-17A) cells and intraepithelial lymphocytes in the terminal ileum mucosa and the expression of transcription factors associated with the differentiation of T helper (Th) cells, T-box transcription factor (T-bet), forkhead box P3 (FOXP3), and retinoid-related orphan receptor gamma t (ROR-γt), were determined by immunohistochemistry. RESULTS The positive rate of intestinal SFB in these children was 19.2% (34/177). Trend analysis showed that the positive rate of SFB was correlated with age: the rates for children aged 0-, 1-, 2-, 3-, 4-, 5-, 6-, and 7-15 years were 40%, 47%, 32%, 15%, 12%, 13%, 15% and 4% respectively (P<0.001). The concentration of sIgA in intestinal fluid was significantly higher in SFB-positive children (n=24) than in SFB-negative children (n=23) (P<0.01). The number of intraepithelial lymphocytes in the terminal ileum mucosa and the expression of T-bet, FOXP3, and ROR-γt were not significantly different between the SFB-positive group (n=12) and the SFB-negative group (n=11), but the number of IL-17A cells in the terminal ileum mucosa was significantly lower in the SFB-positive group than in the SFB-negative group (P<0.05). CONCLUSIONS Intestinal SFB colonization in children is age-related, and the colonization rate is relatively high in children under 3 years old. In SFB-positive children, the secretion of intestinal sIgA is increased, while the number of IL-17A cells in the terminal ileum is reduced.
Collapse
|
49
|
Langan D, Kim EY, Moudgil KD. Modulation of autoimmune arthritis by environmental 'hygiene' and commensal microbiota. Cell Immunol 2019; 339:59-67. [PMID: 30638679 PMCID: PMC8056395 DOI: 10.1016/j.cellimm.2018.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/09/2018] [Accepted: 12/09/2018] [Indexed: 12/20/2022]
Abstract
Observations in patients with autoimmune diseases and studies in animal models of autoimmunity have revealed that external environmental factors including exposure to microbes and the state of the host gut microbiota can influence susceptibility to autoimmunity and subsequent disease development. Mechanisms underlying these outcomes continue to be elucidated. These include deviation of the cytokine response and imbalance between pathogenic versus regulatory T cell subsets. Furthermore, specific commensal organisms are associated with enhanced severity of arthritis in susceptible individuals, while exposure to certain microbes or helminths can afford protection against this disease. In addition, the role of metabolites (e.g., short-chain fatty acids, tryptophan catabolites), produced either by the microbes themselves or from their action on dietary products, in modulation of arthritis is increasingly being realized. In this context, re-setting of the microbial dysbiosis in RA using prebiotics, probiotics, or fecal microbial transplant is emerging as a promising approach for the prevention and treatment of arthritis. It is hoped that advances in defining the interplay between gut microbiota, dietary products, and bioactive metabolites would help in the development of therapeutic regimen customized for the needs of individual patients in the near future.
Collapse
Affiliation(s)
- David Langan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD 21201, United States
| | - Eugene Y Kim
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Biomedical Sciences, Washington State University, Spokane, WA 99224, United States
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Medicine, Division of Rheumatology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD 21201, United States.
| |
Collapse
|
50
|
Brown AS, Meyer U. Maternal Immune Activation and Neuropsychiatric Illness: A Translational Research Perspective. Am J Psychiatry 2018; 175:1073-1083. [PMID: 30220221 PMCID: PMC6408273 DOI: 10.1176/appi.ajp.2018.17121311] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epidemiologic studies, including prospective birth cohort investigations, have implicated maternal immune activation in the etiology of neuropsychiatric disorders. Maternal infectious pathogens and inflammation are plausible risk factors for these outcomes and have been associated with schizophrenia, autism spectrum disorder, and bipolar disorder. Concurrent with epidemiologic research are animal models of prenatal immune activation, which have documented behavioral, neurochemical, neuroanatomic, and neurophysiologic disruptions that mirror phenotypes observed in these neuropsychiatric disorders. Epidemiologic studies of maternal immune activation offer the advantage of directly evaluating human populations but are limited in their ability to uncover pathogenic mechanisms. Animal models, on the other hand, are limited in their generalizability to psychiatric disorders but have made significant strides toward discovering causal relationships and biological pathways between maternal immune activation and neuropsychiatric phenotypes. Incorporating these risk factors in reverse translational animal models of maternal immune activation has yielded a wealth of data supporting the predictive potential of epidemiologic studies. To further enhance the translatability between epidemiology and basic science, the authors propose a complementary approach that includes deconstructing neuropsychiatric outcomes of maternal immune activation into key pathophysiologically defined phenotypes that are identifiable in humans and animals and that evaluate the interspecies concordance regarding interactions between maternal immune activation and genetic and epigenetic factors, including processes involving intergenerational disease transmission. [AJP AT 175: Remembering Our Past As We Envision Our Future October 1857: The Pathology of Insanity J.C. Bucknill: "In the brain the state of inflammation itself either very quickly ceases or very soon causes death; but when it does cease it leaves behind it consequences which are frequently the causes of insanity, and the conditions of cerebral atrophy." (Am J Psychiatry 1857; 14:172-193 )].
Collapse
Affiliation(s)
- Alan S. Brown
- New York State Psychiatric Institute, Columbia University Medical Center, New York, NY
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|