1
|
Raymond WS, DeRoo J, Munsky B. Identification of potential riboswitch elements in Homo sapiens mRNA 5'UTR sequences using positive-unlabeled machine learning. PLoS One 2025; 20:e0320282. [PMID: 40273288 PMCID: PMC12021280 DOI: 10.1371/journal.pone.0320282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/17/2025] [Indexed: 04/26/2025] Open
Abstract
Riboswitches are a class of noncoding RNA structures that interact with target ligands to cause a conformational change that can then execute some regulatory purpose within the cell. Riboswitches are ubiquitous and well characterized in bacteria and prokaryotes, with additional examples also being found in fungi, plants, and yeast. To date, no purely RNA-small molecule riboswitch has been discovered in Homo Sapiens. Several analogous riboswitch-like mechanisms have been described within the H. Sapiens translatome within the past decade, prompting the question: Is there a H. Sapiens riboswitch dependent on only small molecule ligands? In this work, we set out to train positive unlabeled machine learning classifiers on known riboswitch sequences and apply the classifiers to H. Sapiens mRNA 5'UTR sequences found in the 5'UTR database, UTRdb, in the hope of identifying a set of mRNAs to investigate for riboswitch functionality. 67,683 riboswitch sequences were obtained from RNAcentral and sorted for ligand type and used as positive examples and 48,031 5'UTR sequences were used as unlabeled, unknown examples. Positive examples were sorted by ligand, and 20 positive-unlabeled classifiers were trained on sequence and secondary structure features while withholding one or two ligand classes. Cross validation was then performed on the withheld ligand sets to obtain a validation accuracy range of 75%-99%. The joint sets of 5'UTRs identified as potential riboswitches by the 20 classifiers were then analyzed. 1533 sequences were identified as a riboswitch by one or more classifier(s) and 436 of the H. Sapiens 5'UTRs were labeled as harboring potential riboswitch elements by all 20 classifiers. These 436 sequences were mapped back to the most similar riboswitches within the positive data and examined. An online database of identified and ranked 5'UTRs, their features, and their most similar matches to known riboswitches, is provided to guide future experimental efforts to identify H. Sapiens riboswitches.
Collapse
Affiliation(s)
- William S Raymond
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jacob DeRoo
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brian Munsky
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
- Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
2
|
Zhao WB, An JX, Jin YR, Jing CX, Zhang SY, Liang HJ, Dai TL, Luo XF, Zhang BQ, Zhang ZJ, Liu YQ. Indoloquinoline alkaloid neocryptolepine derivative inhibits Botrytis cinerea by targeting thiamine thiazole synthase. SCIENCE ADVANCES 2025; 11:eadq5329. [PMID: 40073123 PMCID: PMC11900860 DOI: 10.1126/sciadv.adq5329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
The emergence and rapid spread of multidrug-resistant Botrytis cinerea strains pose a great challenge to the quality and safety of agricultural products and the efficient use of pesticides. Previously unidentified fungicides and targets are urgently needed to combat B. cinerea-associated infections as alternative therapeutic options. In this study, the promising compound Z24 demonstrated efficacy against all tested plant pathogenic fungi. Thiamine thiazole synthase (Bcthi4) was identified as a target protein of Z24 by drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), and surface plasmon resonance (SPR) assays. Molecular docking and enzyme activity experiments have demonstrated that Z24 can affect the function of Bcthi4. Last, mechanistic studies show that Z24 inhibits thiamine biosynthesis by binding to Bcthi4 and induces up-regulation of alternative splicing [alternative 5' splice site (A5SS)] of the Bcthi4 gene. In conclusion, by targeting Bcthi4, Z24 has the potential to be developed as a previously unidentified anti-B. cinerea candidate.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya-Rui Jin
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Chen-Xin Jing
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Hong-Jie Liang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tian-Li Dai
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, Zhejiang 313000, China
| |
Collapse
|
3
|
Maneira C, Chamas A, Lackner G. Engineering Saccharomyces cerevisiae for medical applications. Microb Cell Fact 2025; 24:12. [PMID: 39789534 PMCID: PMC11720383 DOI: 10.1186/s12934-024-02625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid. MAIN TEXT In this review, we scrutinize the main applications of engineered S. cerevisiae in the medical field focusing on its use as a cell factory for pharmaceuticals and vaccines, a biosensor for diagnostic and biomimetic assays, and as a live biotherapeutic product for the smart in situ treatment of intestinal ailments. An extensive view of these fields' academic and commercial developments as well as main hindrances is presented. CONCLUSION Although the field still faces challenges, the development of yeast-based medical applications is often considered a success story. The rapid advances in synthetic biology strongly support the case for a future where engineered yeasts play an important role in medicine.
Collapse
Affiliation(s)
- Carla Maneira
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany
| | - Alexandre Chamas
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gerald Lackner
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.
| |
Collapse
|
4
|
Raymond WS, DeRoo J, Munsky B. Identification of potential riboswitch elements in Homo SapiensmRNA 5'UTR sequences using Positive-Unlabeled machine learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.23.568398. [PMID: 39677788 PMCID: PMC11642740 DOI: 10.1101/2023.11.23.568398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Riboswitches are a class of noncoding RNA structures that interact with target ligands to cause a conformational change that can then execute some regulatory purpose within the cell. Riboswitches are ubiquitous and well characterized in bacteria and prokaryotes, with additional examples also being found in fungi, plants, and yeast. To date, no purely RNA-small molecule riboswitch has been discovered in Homo Sapiens. Several analogous riboswitch-like mechanisms have been described within the H. Sapiens translatome within the past decade, prompting the question: Is there a H. Sapiens riboswitch dependent on only small molecule ligands? In this work, we set out to train positive unlabeled machine learning classifiers on known riboswitch sequences and apply the classifiers to H. Sapiens mRNA 5'UTR sequences found in the 5'UTR database, UTRdb, in the hope of identifying a set of mRNAs to investigate for riboswitch functionality. 67,683 riboswitch sequences were obtained from RNAcentral and sorted for ligand type and used as positive examples and 48,031 5'UTR sequences were used as unlabeled, unknown examples. Positive examples were sorted by ligand, and 20 positive-unlabeled classifiers were trained on sequence and secondary structure features while withholding one or two ligand classes. Cross validation was then performed on the withheld ligand sets to obtain a validation accuracy range of 75%-99%. The joint sets of 5'UTRs identified as potential riboswitches by the 20 classifiers were then analyzed. 15333 sequences were identified as a riboswitch by one or more classifier(s) and 436 of the H. Sapiens 5'UTRs were labeled as harboring potential riboswitch elements by all 20 classifiers. These 436 sequences were mapped back to the most similar riboswitches within the positive data and examined. An online database of identified and ranked 5'UTRs, their features, and their most similar matches to known riboswitches, is provided to guide future experimental efforts to identify H. Sapiens riboswitches.
Collapse
Affiliation(s)
- William S. Raymond
- School of Biomedical Engineering, Colorado State University Fort Collins, CO 80523, USA
| | - Jacob DeRoo
- School of Biomedical Engineering, Colorado State University Fort Collins, CO 80523, USA
| | - Brian Munsky
- School of Biomedical Engineering, Colorado State University Fort Collins, CO 80523, USA
- Chemical and Biological Engineering, Colorado State University Fort Collins, CO 80523, USA
| |
Collapse
|
5
|
Dias HM, de Toledo NA, Mural RV, Schnable JC, Van Sluys MA. THI1 Gene Evolutionary Trends: A Comprehensive Plant-Focused Assessment via Data Mining and Large-Scale Analysis. Genome Biol Evol 2024; 16:evae212. [PMID: 39400049 PMCID: PMC11521341 DOI: 10.1093/gbe/evae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/01/2024] [Accepted: 08/18/2024] [Indexed: 10/15/2024] Open
Abstract
Molecular evolution analysis typically involves identifying selection pressure and reconstructing evolutionary trends. This process usually requires access to specific data related to a target gene or gene family within a particular group of organisms. While recent advancements in high-throughput sequencing techniques have resulted in the rapid accumulation of extensive genomics and transcriptomics data and the creation of new databases in public repositories, extracting valuable insights from such vast data sets remains a significant challenge for researchers. Here, we elucidated the evolutionary history of THI1, a gene responsible for encoding thiamine thiazole synthase. The thiazole ring is a precursor for vitamin B1 and a crucial cofactor in primary metabolic pathways. A thorough search of complete genomes available within public repositories reveals 702 THI1 homologs of Archaea and Eukarya. Throughout its diversification, the plant lineage has preserved the THI1 gene by incorporating the N-terminus and targeting the chloroplasts. Likewise, evolutionary pressures and lifestyle appear to be associated with retention of TPP riboswitch sites and consequent dual posttranscriptional regulation of the de novo biosynthesis pathway in basal groups. Multicopy retention of THI1 is not a typical plant pattern, even after successive genome duplications. Examining cis-regulatory sites in plants uncovers two shared motifs across all plant lineages. A data mining of 484 transcriptome data sets supports the THI1 homolog expression under a light/dark cycle response and a tissue-specific pattern. Finally, the work presented brings a new look at public repositories as an opportunity to explore evolutionary trends to THI1.
Collapse
Affiliation(s)
- Henrique Moura Dias
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, SP, Brazil
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Naiara Almeida de Toledo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, SP, Brazil
| | - Ravi V Mural
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, SP, Brazil
| |
Collapse
|
6
|
Brennan E, Noell S, Davis EW, Giovannoni SJ, Suffridge CP. Whole cell affinity for 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) in the marine bacterium Candidatus Pelagibacter st. HTCC7211 explains marine dissolved HMP concentrations. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70023. [PMID: 39367564 PMCID: PMC11452348 DOI: 10.1111/1758-2229.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
Vitamin B1 is a universally required coenzyme in carbon metabolism. However, most marine microorganisms lack the complete biosynthetic pathway for this compound and must acquire thiamin, or precursor molecules, from the dissolved pool. The most common version of Vitamin B1 auxotrophy is for thiamin's pyrimidine precursor moiety, 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP). Frequent HMP auxotrophy in plankton and vanishingly low dissolved concentrations (approximately 0.1-50 pM) suggest that high-affinity HMP uptake systems are responsible for maintaining low ambient HMP concentrations. We used tritium-labelled HMP to investigate HMP uptake mechanisms and kinetics in cell cultures of Candidatus Pelagibacter st. HTCC7211, a representative of the globally distributed and highly abundant SAR11 clade. A single protein, the sodium solute symporter ThiV, which is conserved across SAR11 genomes, is the likely candidate for HMP transport. Experimental evidence indicated transport specificity for HMP and mechanistically complex, high-affinity HMP uptake kinetics. Km values ranged from 9.5 pM to 1.2 nM and were dramatically lower when cells were supplied with a carbon source. These results suggest that HMP uptake in HTCC7211 is subject to complex regulation and point to a strategy for high-affinity uptake of this essential growth factor that can explain natural HMP levels in seawater.
Collapse
Affiliation(s)
| | - Stephen Noell
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o WaikatoUniversity of WaikatoHamiltonNew Zealand
| | - Edward W. Davis
- Center for Quantitative Life SciencesOregon State UniversityCorvallisOregonUSA
| | | | | |
Collapse
|
7
|
Suffridge CP, Shannon KC, Matthews H, Johnson RC, Jeffres C, Mantua N, Ward AE, Holmes E, Kindopp J, Aidoo M, Colwell FS. Connecting thiamine availability to the microbial community composition in Chinook salmon spawning habitats of the Sacramento River basin. Appl Environ Microbiol 2024; 90:e0176023. [PMID: 38084986 PMCID: PMC10807462 DOI: 10.1128/aem.01760-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 01/25/2024] Open
Abstract
Thiamine deficiency complex (TDC) is a major emerging threat to global populations of culturally and economically important populations of salmonids. Salmonid eggs and embryos can assimilate exogenous thiamine, and evidence suggests that microbial communities in benthic environments can produce substantial amounts of thiamine. We therefore hypothesize that natural dissolved pools of thiamine exist in the surface water and hyporheic zones of riverine habitats where salmonids with TDC migrate, spawn, and begin their lives. To examine the relationship between dissolved thiamine-related compounds (dTRCs) and their microbial source, we determined the concentrations of these metabolites and the compositions of microbial communities in surface and hyporheic waters of the Sacramento River, California and its tributaries. Here we determine that all dTRCs are present in femto-picomolar concentrations in a range of critically important salmon spawning habitats. We observed that thiamine concentrations in the Sacramento River system are orders of magnitude lower than those of marine waters, indicating substantial differences in thiamine cycling between these two environments. Our data suggest that the hyporheic zone is likely the source of thiamine to the overlying surface water. Temporal variations in dTRC concentrations were observed where the highest concentrations existed when Chinook salmon were actively spawning. Significant correlations were seen between the richness of microbial taxa and dTRC concentrations, particularly in the hyporheic zone, which would influence the conditions where embryonic salmon incubate. Together, these results indicate a connection between microbial communities in freshwater habitats and the availability of thiamine to spawning TDC-impacted California Central Valley Chinook salmon.IMPORTANCEPacific salmon are keystone species with considerable economic importance and immeasurable cultural significance to Pacific Northwest indigenous peoples. Thiamine deficiency complex has recently been diagnosed as an emerging threat to the health and stability of multiple populations of salmonids ranging from California to Alaska. Microbial biosynthesis is the major source of thiamine in marine and aquatic environments. Despite this importance, the concentrations of thiamine and the identities of the microbial communities that cycle it are largely unknown. Here we investigate microbial communities and their relationship to thiamine in Chinook salmon spawning habitats in California's Sacramento River system to gain an understanding of how thiamine availability impacts salmonids suffering from thiamine deficiency complex.
Collapse
Affiliation(s)
| | - Kelly C. Shannon
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - H. Matthews
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - R. C. Johnson
- Fisheries Ecology Division, NOAA Fisheries, Southwest Fisheries Science Center, Santa Cruz, California, USA
- University of California, Center for Watershed Sciences, Davis, California, USA
| | - C. Jeffres
- University of California, Center for Watershed Sciences, Davis, California, USA
| | - N. Mantua
- Fisheries Ecology Division, NOAA Fisheries, Southwest Fisheries Science Center, Santa Cruz, California, USA
| | - A. E. Ward
- University of California, Center for Watershed Sciences, Davis, California, USA
| | - E. Holmes
- University of California, Center for Watershed Sciences, Davis, California, USA
- California Department of Water Resources, West Sacramento, California, USA
| | - J. Kindopp
- California Department of Water Resources, Division of Integrated Science and Engineering, Oroville, California, USA
| | - M. Aidoo
- Bronx Community College, Bronx, New York, USA
| | - F. S. Colwell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
8
|
Paerl RW, Curtis NP, Bittner MJ, Cohn MR, Gifford SM, Bannon CC, Rowland E, Bertrand EM. Use and detection of a vitamin B1 degradation product yields new views of the marine B1 cycle and plankton metabolite exchange. mBio 2023; 14:e0006123. [PMID: 37377416 PMCID: PMC10470507 DOI: 10.1128/mbio.00061-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/17/2023] [Indexed: 06/29/2023] Open
Abstract
Vitamin B1 (thiamin) is a vital nutrient for most cells in nature, including marine plankton. Early and recent experiments show that B1 degradation products instead of B1 can support the growth of marine bacterioplankton and phytoplankton. However, the use and occurrence of some degradation products remains uninvestigated, namely N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine (FAMP), which has been a focus of plant oxidative stress research. We investigated the relevance of FAMP in the ocean. Experiments and global ocean meta-omic data indicate that eukaryotic phytoplankton, including picoeukaryotes and harmful algal bloom species, use FAMP while bacterioplankton appear more likely to use deformylated FAMP, 4-amino-5-aminomethyl-2-methylpyrimidine. Measurements of FAMP in seawater and biomass revealed that it occurs at picomolar concentrations in the surface ocean, heterotrophic bacterial cultures produce FAMP in the dark-indicating non-photodegradation of B1 by cells, and B1-requiring (auxotrophic) picoeukaryotic phytoplankton produce intracellular FAMP. Our results require an expansion of thinking about vitamin degradation in the sea, but also the marine B1 cycle where it is now crucial to consider a new B1-related compound pool (FAMP), as well as generation (dark degradation-likely via oxidation), turnover (plankton uptake), and exchange of the compound within the networks of plankton. IMPORTANCE Results of this collaborative study newly show that a vitamin B1 degradation product, N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine (FAMP), can be used by diverse marine microbes (bacteria and phytoplankton) to meet their vitamin B1 demands instead of B1 and that FAMP occurs in the surface ocean. FAMP has not yet been accounted for in the ocean and its use likely enables cells to avoid B1 growth deficiency. Additionally, we show FAMP is formed in and out of cells without solar irradiance-a commonly considered route of vitamin degradation in the sea and nature. Altogether, the results expand thinking about oceanic vitamin degradation, but also the marine B1 cycle where it is now crucial to consider a new B1-related compound pool (FAMP), as well as its generation (dark degradation-likely via oxidation), turnover (plankton uptake), and exchange within networks of plankton.
Collapse
Affiliation(s)
- Ryan W. Paerl
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Nathaniel P. Curtis
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Meriel J. Bittner
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Melanie R. Cohn
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott M. Gifford
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Elden Rowland
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erin M. Bertrand
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
9
|
Ferrer-González FX, Hamilton M, Smith CB, Schreier JE, Olofsson M, Moran MA. Bacterial transcriptional response to labile exometabolites from photosynthetic picoeukaryote Micromonas commoda. ISME COMMUNICATIONS 2023; 3:5. [PMID: 36690682 PMCID: PMC9870897 DOI: 10.1038/s43705-023-00212-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Dissolved primary production released into seawater by marine phytoplankton is a major source of carbon fueling heterotrophic bacterial production in the ocean. The composition of the organic compounds released by healthy phytoplankton is poorly known and difficult to assess with existing chemical methods. Here, expression of transporter and catabolic genes by three model marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14, and Polaribacter dokdonensis MED152) was used as a biological sensor of metabolites released from the picoeukaryote Micromonas commoda RCC299. Bacterial expression responses indicated that the three species together recognized 38 picoeukaryote metabolites. This was consistent with the Micromonas expression of genes for starch metabolism and synthesis of peptidoglycan-like intermediates. A comparison of the hypothesized Micromonas exometabolite pool with that of the diatom Thalassiosira pseudonana CCMP1335, analyzed previously with the same biological sensor method, indicated that both phytoplankton released organic acids, nucleosides, and amino acids, but differed in polysaccharide and organic nitrogen release. Future ocean conditions are expected to favor picoeukaryotic phytoplankton over larger-celled microphytoplankton. Results from this study suggest that such a shift could alter the substrate pool available to heterotrophic bacterioplankton.
Collapse
Affiliation(s)
| | - Maria Hamilton
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Christa B Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Jeremy E Schreier
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Malin Olofsson
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
10
|
Llavero‐Pasquina M, Geisler K, Holzer A, Mehrshahi P, Mendoza‐Ochoa GI, Newsad SA, Davey MP, Smith AG. Thiamine metabolism genes in diatoms are not regulated by thiamine despite the presence of predicted riboswitches. THE NEW PHYTOLOGIST 2022; 235:1853-1867. [PMID: 35653609 PMCID: PMC9544697 DOI: 10.1111/nph.18296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/20/2022] [Indexed: 05/17/2023]
Abstract
Thiamine pyrophosphate (TPP), an essential co-factor for all species, is biosynthesised through a metabolically expensive pathway regulated by TPP riboswitches in bacteria, fungi, plants and green algae. Diatoms are microalgae responsible for c. 20% of global primary production. They have been predicted to contain TPP aptamers in the 3'UTR of some thiamine metabolism-related genes, but little information is known about their function and regulation. We used bioinformatics, antimetabolite growth assays, RT-qPCR, targeted mutagenesis and reporter constructs to test whether the predicted TPP riboswitches respond to thiamine supplementation in diatoms. Gene editing was used to investigate the functions of the genes with associated TPP riboswitches in Phaeodactylum tricornutum. We found that thiamine-related genes with putative TPP aptamers are not responsive to supplementation with thiamine or its precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), and targeted mutation of the TPP aptamer in the THIC gene encoding HMP-P synthase does not deregulate thiamine biosynthesis in P. tricornutum. Through genome editing we established that PtTHIC is essential for thiamine biosynthesis and another gene, PtSSSP, is necessary for thiamine uptake. Our results highlight the importance of experimentally testing bioinformatic aptamer predictions and provide new insights into the thiamine metabolism shaping the structure of marine microbial communities with global biogeochemical importance.
Collapse
Affiliation(s)
| | - Katrin Geisler
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Andre Holzer
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Payam Mehrshahi
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | | | - Shelby A. Newsad
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Matthew P. Davey
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
- Scottish Association of Marine SciencesObanPA37 1QAUK
| | - Alison G. Smith
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| |
Collapse
|
11
|
Zoccarato L, Sher D, Miki T, Segrè D, Grossart HP. A comparative whole-genome approach identifies bacterial traits for marine microbial interactions. Commun Biol 2022; 5:276. [PMID: 35347228 PMCID: PMC8960797 DOI: 10.1038/s42003-022-03184-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Microbial interactions shape the structure and function of microbial communities with profound consequences for biogeochemical cycles and ecosystem health. Yet, most interaction mechanisms are studied only in model systems and their prevalence is unknown. To systematically explore the functional and interaction potential of sequenced marine bacteria, we developed a trait-based approach, and applied it to 473 complete genomes (248 genera), representing a substantial fraction of marine microbial communities. We identified genome functional clusters (GFCs) which group bacterial taxa with common ecology and life history. Most GFCs revealed unique combinations of interaction traits, including the production of siderophores (10% of genomes), phytohormones (3-8%) and different B vitamins (57-70%). Specific GFCs, comprising Alpha- and Gammaproteobacteria, displayed more interaction traits than expected by chance, and are thus predicted to preferentially interact synergistically and/or antagonistically with bacteria and phytoplankton. Linked trait clusters (LTCs) identify traits that may have evolved to act together (e.g., secretion systems, nitrogen metabolism regulation and B vitamin transporters), providing testable hypotheses for complex mechanisms of microbial interactions. Our approach translates multidimensional genomic information into an atlas of marine bacteria and their putative functions, relevant for understanding the fundamental rules that govern community assembly and dynamics.
Collapse
Affiliation(s)
- Luca Zoccarato
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775, Stechlin, Germany.
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel.
| | - Takeshi Miki
- Faculty of Advanced Science and Technology, Ryukoku University, 520-2194, Otsu, Japan
| | - Daniel Segrè
- Departments of Biology, Biomedical Engineering, Physics, Boston University, 02215, Boston, MA, USA
- Bioinformatics Program & Biological Design Center, Boston University, 02215, Boston, MA, USA
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775, Stechlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany.
- Institute of Biochemistry and Biology, Potsdam University, 14476, Potsdam, Germany.
| |
Collapse
|
12
|
Gann ER, Truchon AR, Papoulis SE, Dyhrman ST, Gobler CJ, Wilhelm SW. Aureococcus anophagefferens (Pelagophyceae) genomes improve evaluation of nutrient acquisition strategies involved in brown tide dynamics. JOURNAL OF PHYCOLOGY 2022; 58:146-160. [PMID: 34773248 DOI: 10.1111/jpy.13221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The pelagophyte Aureococcus anophagefferens causes harmful brown tide blooms in marine embayments on three continents. Aureococcus anophagefferens was the first harmful algal bloom species to have its genome sequenced, an advance that evidenced genes important for adaptation to environmental conditions that prevail during brown tides. To expand the genomic tools available for this species, genomes for four strains were assembled, including three newly sequenced strains and one assembled from publicly available data. These genomes ranged from 57.11 to 73.62 Mb, encoding 13,191-17,404 potential proteins. All strains shared ~90% of their encoded proteins as determined by homology searches and shared most functional orthologs as determined by KEGG, although each strain also possessed coding sequences with unique functions. Like the original reference genome, the genomes assembled in this study possessed genes hypothesized to be important in bloom proliferation, including genes involved in organic compound metabolism and growth at low light. Cross-strain informatics and culture experiments suggest that the utilization of purines is a potentially important source of organic nitrogen for brown tides. Analyses of metatranscriptomes from a brown tide event demonstrated that use of a single genome yielded a lower read mapping percentage (~30% of library reads) as compared to a database generated from all available genomes (~43%), suggesting novel information about bloom ecology can be gained from expanding genomic space. This work demonstrates the continued need to sequence ecologically relevant algae to understand the genomic potential and their ecology in the environment.
Collapse
Affiliation(s)
- Eric R Gann
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Alexander R Truchon
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Spiridon E Papoulis
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Sonya T Dyhrman
- Biology and Paleo Environment Division, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, 10964, USA
- Department of Earth and Environmental Sciences, Columbia University, Palisades, New York, 10964, USA
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, 11790, USA
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
13
|
Aptamers, Riboswitches, and Ribozymes in S. cerevisiae Synthetic Biology. Life (Basel) 2021; 11:life11030248. [PMID: 33802772 PMCID: PMC8002509 DOI: 10.3390/life11030248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
Among noncoding RNA sequences, riboswitches and ribozymes have attracted the attention of the synthetic biology community as circuit components for translation regulation. When fused to aptamer sequences, ribozymes and riboswitches are enabled to interact with chemicals. Therefore, protein synthesis can be controlled at the mRNA level without the need for transcription factors. Potentially, the use of chemical-responsive ribozymes/riboswitches would drastically simplify the design of genetic circuits. In this review, we describe synthetic RNA structures that have been used so far in the yeast Saccharomyces cerevisiae. We present their interaction mode with different chemicals (e.g., theophylline and antibiotics) or proteins (such as the RNase III) and their recent employment into clustered regularly interspaced short palindromic repeats–CRISPR-associated protein 9 (CRISPR-Cas) systems. Particular attention is paid, throughout the whole paper, to their usage and performance into synthetic gene circuits.
Collapse
|
14
|
Choi CJ, Jimenez V, Needham DM, Poirier C, Bachy C, Alexander H, Wilken S, Chavez FP, Sudek S, Giovannoni SJ, Worden AZ. Seasonal and Geographical Transitions in Eukaryotic Phytoplankton Community Structure in the Atlantic and Pacific Oceans. Front Microbiol 2020; 11:542372. [PMID: 33101224 PMCID: PMC7554337 DOI: 10.3389/fmicb.2020.542372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Much is known about how broad eukaryotic phytoplankton groups vary according to nutrient availability in marine ecosystems. However, genus- and species-level dynamics are generally unknown, although important given that adaptation and acclimation processes differentiate at these levels. We examined phytoplankton communities across seasonal cycles in the North Atlantic (BATS) and under different trophic conditions in the eastern North Pacific (ENP), using phylogenetic classification of plastid-encoded 16S rRNA amplicon sequence variants (ASVs) and other methodologies, including flow cytometric cell sorting. Prasinophytes dominated eukaryotic phytoplankton amplicons during the nutrient-rich deep-mixing winter period at BATS. During stratification (‘summer’) uncultured dictyochophytes formed ∼35 ± 10% of all surface plastid amplicons and dominated those from stramenopile algae, whereas diatoms showed only minor, ephemeral contributions over the entire year. Uncultured dictyochophytes also comprised a major fraction of plastid amplicons in the oligotrophic ENP. Phylogenetic reconstructions of near-full length 16S rRNA sequences established 11 uncultured Dictyochophyte Environmental Clades (DEC). DEC-I and DEC-VI dominated surface dictyochophytes under stratification at BATS and in the ENP, and DEC-IV was also important in the latter. Additionally, although less common at BATS, Florenciella-related clades (FC) were prominent at depth in the ENP. In both ecosystems, pelagophytes contributed notably at depth, with PEC-VIII (Pelagophyte Environmental Clade) and (cultured) Pelagomonas calceolata being most important. Q-PCR confirmed the near absence of P. calceolata at the surface of the same oligotrophic sites where it reached ∼1,500 18S rRNA gene copies ml–1 at the DCM. To further characterize phytoplankton present in our samples, we performed staining and at-sea single-cell sorting experiments. Sequencing results from these indicated several uncultured dictyochophyte clades are comprised of predatory mixotrophs. From an evolutionary perspective, these cells showed both conserved and unique features in the chloroplast genome. In ENP metatranscriptomes we observed high expression of multiple chloroplast genes as well as expression of a selfish element (group II intron) in the psaA gene. Comparative analyses across the Pacific and Atlantic sites support the conclusion that predatory dictyochophytes thrive under low nutrient conditions. The observations that several uncultured dictyochophyte lineages are seemingly capable of photosynthesis and predation, raises questions about potential shifts in phytoplankton trophic roles associated with seasonality and long-term ocean change.
Collapse
Affiliation(s)
- Chang Jae Choi
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| | - Valeria Jimenez
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| | - David M Needham
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| | - Camille Poirier
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| | - Charles Bachy
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| | - Harriet Alexander
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States.,Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Susanne Wilken
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Francisco P Chavez
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| | - Stephen J Giovannoni
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Alexandra Z Worden
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| |
Collapse
|
15
|
Subki A, Ho CL, Ismail NFN, Zainal Abidin AA, Balia Yusof ZN. Identification and characterisation of thiamine pyrophosphate (TPP) riboswitch in Elaeis guineensis. PLoS One 2020; 15:e0235431. [PMID: 32726320 PMCID: PMC7390266 DOI: 10.1371/journal.pone.0235431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
The oil palm (Elaeis guineensis) is an important crop in Malaysia but its productivity is hampered by various biotic and abiotic stresses. Recent studies suggest the importance of signalling molecules in plants in coping against stresses, which includes thiamine (vitamin B1). Thiamine is an essential microelement that is synthesized de novo by plants and microorganisms. The active form of thiamine, thiamine pyrophosphate (TPP), plays a prominent role in metabolic activities particularly as an enzymatic cofactor. Recently, thiamine biosynthesis pathways in oil palm have been characterised but the search of novel regulatory element known as riboswitch is yet to be done. Previous studies showed that thiamine biosynthesis pathway is regulated by an RNA element known as riboswitch. Riboswitch binds a small molecule, resulting in a change in production of the proteins encoded by the mRNA. TPP binds specifically to TPP riboswitch to regulate thiamine biosynthesis through a variety of mechanisms found in archaea, bacteria and eukaryotes. This study was carried out to hunt for TPP riboswitch in oil palm thiamine biosynthesis gene. Riboswitch detection software like RiboSW, RibEx, Riboswitch Scanner and Denison Riboswitch Detector were utilised in order to locate putative TPP riboswitch in oil palm ThiC gene sequence that encodes for the first enzyme in the pyrimidine branch of the pathway. The analysis revealed a 192 bp putative TPP riboswitch located at the 3' untranslated region (UTR) of the mRNA. Further comparative gene analysis showed that the 92-nucleotide aptamer region, where the metabolite binds was conserved inter-species. The secondary structure analysis was also carried out using Mfold Web server and it showed a stem-loop structure manifested with stems (P1-P5) with minimum free energy of -12.26 kcal/mol. Besides that, the interaction of riboswitch and its ligand was determined using isothermal titration calorimetry (ITC) and it yielded an exothermic reaction with 1:1 stoichiometry interaction with binding affinities of 0.178 nM, at 30°C. To further evaluate the ability of riboswitch to control the pathway, exogenous thiamine was applied to four months old of oil palm seedlings and sampling of spear leaves tissue was carried out at days 0, 1, 2 and 3 post-treatment for expression analysis of ThiC gene fragment via quantitative polymerase chain reaction (qPCR). Results showed an approximately 5-fold decrease in ThiC gene expression upon application of exogenous thiamine. Quantification of thiamine and its derivatives was carried out via HPLC and the results showed that it was correlated to the down regulation of ThiC gene expression. The application of exogenous thiamine to oil palm affected ThiC gene expression, which supported the prediction of the presence of TPP riboswitch in the gene. Overall, this study provides the first evidence on the presence, binding and the functionality of TPP riboswitch in oil palm. This study is hoped to pave a way for better understanding on the regulation of thiamine biosynthesis pathway in oil palm, which can later be exploited for various purposes especially in manipulation of thiamine biosynthesis pathways in combating stresses in oil palm.
Collapse
Affiliation(s)
- Atiqah Subki
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nur Farhah Nabihan Ismail
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Aisamuddin Ardi Zainal Abidin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Center, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
16
|
Deficiency syndromes in top predators associated with large-scale changes in the Baltic Sea ecosystem. PLoS One 2020; 15:e0227714. [PMID: 31917814 PMCID: PMC6952091 DOI: 10.1371/journal.pone.0227714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/24/2019] [Indexed: 11/20/2022] Open
Abstract
Vitamin B1 (thiamin) deficiency is an issue periodically affecting a wide range of taxa worldwide. In aquatic pelagic systems, thiamin is mainly produced by bacteria and phytoplankton and is transferred to fish and birds via zooplankton, but there is no general consensus on when or why this transfer is disrupted. We focus on the occurrence in salmon (Salmo salar) of a thiamin deficiency syndrome (M74), the incidence of which is highly correlated among populations derived from different spawning rivers. Here, we show that M74 in salmon is associated with certain large-scale abiotic changes in the main common feeding area of salmon in the southern Baltic Sea. Years with high M74 incidence were characterized by stagnant periods with relatively low salinity and phosphate and silicate concentrations but high total nitrogen. Consequently, there were major changes in phytoplankton and zooplankton, with, e.g., increased abundances of Cryptophyceae, Dinophyceae, Diatomophyceae and Euglenophyceae and Acartia spp. during high M74 incidence years. The prey fish communities also had increased stocks of both herring and sprat in these years. Overall, this suggests important changes in the entire food web structure and nutritional pathways in the common feeding period during high M74 incidence years. Previous research has emphasized the importance of the abundance of planktivorous fish for the occurrence of M74. By using this 27-year time series, we expand this analysis to the entire ecosystem and discuss potential mechanisms inducing thiamin deficiency in salmon.
Collapse
|
17
|
Rambo IM, Dombrowski N, Constant L, Erdner D, Baker BJ. Metabolic relationships of uncultured bacteria associated with the microalgae Gambierdiscus. Environ Microbiol 2019; 22:1764-1783. [PMID: 31775181 DOI: 10.1111/1462-2920.14878] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
Microbial communities inhabit algae cell surfaces and produce a variety of compounds that can impact the fitness of the host. These interactions have been studied via culturing, single-gene diversity and metagenomic read survey methods that are limited by culturing biases and fragmented genetic characterizations. Higher-resolution frameworks are needed to resolve the physiological interactions within these algal-bacterial communities. Here, we infer the encoded metabolic capabilities of four uncultured bacterial genomes (reconstructed using metagenomic assembly and binning) associated with the marine dinoflagellates Gambierdiscus carolinianus and G. caribaeus. Phylogenetic analyses revealed that two of the genomes belong to the commonly algae-associated families Rhodobacteraceae and Flavobacteriaceae. The other two genomes belong to the Phycisphaeraceae and include the first algae-associated representative within the uncultured SM1A02 group. Analyses of all four genomes suggest these bacteria are facultative aerobes, with some capable of metabolizing phytoplanktonic organosulfur compounds including dimethylsulfoniopropionate and sulfated polysaccharides. These communities may biosynthesize compounds beneficial to both the algal host and other bacteria, including iron chelators, B vitamins, methionine, lycopene, squalene and polyketides. These findings have implications for marine carbon and nutrient cycling and provide a greater depth of understanding regarding the genetic potential for complex physiological interactions between microalgae and their associated bacteria.
Collapse
Affiliation(s)
- Ian M Rambo
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| | - Nina Dombrowski
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA.,NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands
| | - Lauren Constant
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| | - Deana Erdner
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| | - Brett J Baker
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| |
Collapse
|
18
|
|
19
|
Ejsmond MJ, Blackburn N, Fridolfsson E, Haecky P, Andersson A, Casini M, Belgrano A, Hylander S. Modeling vitamin B 1 transfer to consumers in the aquatic food web. Sci Rep 2019; 9:10045. [PMID: 31296876 PMCID: PMC6624374 DOI: 10.1038/s41598-019-46422-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/26/2019] [Indexed: 11/10/2022] Open
Abstract
Vitamin B1 is an essential exogenous micronutrient for animals. Mass death and reproductive failure in top aquatic consumers caused by vitamin B1 deficiency is an emerging conservation issue in Northern hemisphere aquatic ecosystems. We present for the first time a model that identifies conditions responsible for the constrained flow of vitamin B1 from unicellular organisms to planktivorous fishes. The flow of vitamin B1 through the food web is constrained under anthropogenic pressures of increased nutrient input and, driven by climatic change, increased light attenuation by dissolved substances transported to marine coastal systems. Fishing pressure on piscivorous fish, through increased abundance of planktivorous fish that overexploit mesozooplankton, may further constrain vitamin B1 flow from producers to consumers. We also found that key ecological contributors to the constrained flow of vitamin B1 are a low mesozooplankton biomass, picoalgae prevailing among primary producers and low fluctuations of population numbers of planktonic organisms.
Collapse
Affiliation(s)
- M J Ejsmond
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland.
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden.
| | - N Blackburn
- BIORAS, Hejreskovvej 18B, Copenhagen, Denmark
| | - E Fridolfsson
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| | - P Haecky
- BIORAS, Hejreskovvej 18B, Copenhagen, Denmark
| | - A Andersson
- Department of Ecology and Environmental Science, Umeå University, SE-901 87, Umeå, Sweden
- Umeå Marine Sciences Centre, SE-905 71, Hörnefors, Sweden
| | - M Casini
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, 45330, Lysekil, Sweden
| | - A Belgrano
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, 45330, Lysekil, Sweden
- Swedish Institute for the Marine Environment (SIME), University of Gothenburg, Box 260, SE-405 30, Gothenburg, Sweden
| | - S Hylander
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| |
Collapse
|
20
|
Rodenburg SYA, Seidl MF, Judelson HS, Vu AL, Govers F, de Ridder D. Metabolic Model of the Phytophthora infestans-Tomato Interaction Reveals Metabolic Switches during Host Colonization. mBio 2019; 10:e00454-19. [PMID: 31289172 PMCID: PMC6747730 DOI: 10.1128/mbio.00454-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023] Open
Abstract
The oomycete pathogen Phytophthora infestans causes potato and tomato late blight, a disease that is a serious threat to agriculture. P. infestans is a hemibiotrophic pathogen, and during infection, it scavenges nutrients from living host cells for its own proliferation. To date, the nutrient flux from host to pathogen during infection has hardly been studied, and the interlinked metabolisms of the pathogen and host remain poorly understood. Here, we reconstructed an integrated metabolic model of P. infestans and tomato (Solanum lycopersicum) by integrating two previously published models for both species. We used this integrated model to simulate metabolic fluxes from host to pathogen and explored the topology of the model to study the dependencies of the metabolism of P. infestans on that of tomato. This showed, for example, that P. infestans, a thiamine auxotroph, depends on certain metabolic reactions of the tomato thiamine biosynthesis. We also exploited dual-transcriptome data of a time course of a full late blight infection cycle on tomato leaves and integrated the expression of metabolic enzymes in the model. This revealed profound changes in pathogen-host metabolism during infection. As infection progresses, P. infestans performs less de novo synthesis of metabolites and scavenges more metabolites from tomato. This integrated metabolic model for the P. infestans-tomato interaction provides a framework to integrate data and generate hypotheses about in planta nutrition of P. infestans throughout its infection cycle.IMPORTANCE Late blight disease caused by the oomycete pathogen Phytophthora infestans leads to extensive yield losses in tomato and potato cultivation worldwide. To effectively control this pathogen, a thorough understanding of the mechanisms shaping the interaction with its hosts is paramount. While considerable work has focused on exploring host defense mechanisms and identifying P. infestans proteins contributing to virulence and pathogenicity, the nutritional strategies of the pathogen are mostly unresolved. Genome-scale metabolic models (GEMs) can be used to simulate metabolic fluxes and help in unravelling the complex nature of metabolism. We integrated a GEM of tomato with a GEM of P. infestans to simulate the metabolic fluxes that occur during infection. This yields insights into the nutrients that P. infestans obtains during different phases of the infection cycle and helps in generating hypotheses about nutrition in planta.
Collapse
Affiliation(s)
- Sander Y A Rodenburg
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Andrea L Vu
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
21
|
Nef C, Jung S, Mairet F, Kaas R, Grizeau D, Garnier M. How haptophytes microalgae mitigate vitamin B 12 limitation. Sci Rep 2019; 9:8417. [PMID: 31182768 PMCID: PMC6557843 DOI: 10.1038/s41598-019-44797-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/13/2019] [Indexed: 12/05/2022] Open
Abstract
Vitamin B12 (cobalamin) can control phytoplankton development and community composition, with around half of microalgal species requiring this vitamin for growth. B12 dependency is determined by the absence of cobalamin-independent methionine synthase and is unrelated across lineages. Despite their important role in carbon and sulphur biogeochemistry, little is known about haptophytes utilization of vitamin B12 and their ability to cope with its limitation. Here we report the first evaluation of B12 auxotrophy among this lineage based on molecular data of 19 species from 9 families. We assume that all species encode only a B12-dependent methionine synthase, suggesting ubiquitous B12 auxotrophy in this phylum. We further address the effect of different B12 limitations on the molecular physiology of the model haptophyte Tisochrysis lutea. By coupling growth assays in batch and chemostat to cobalamin quantification and expression analyses, we propose that haptophytes use three strategies to cope with B12 limitation. Haptophytes may assimilate dissolved methionine, finely regulate genes involved in methionine cycle and B12 transport and/or limit B12 transport to the mitochondrion. Taken together, these results provide better understanding of B12 metabolism in haptophytes and represent valuable data for deciphering how B12-producing bacteria shape the structure and dynamics of this important phytoplankton community.
Collapse
Affiliation(s)
- Charlotte Nef
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France.
| | - Sébastien Jung
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| | - Francis Mairet
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| | - Raymond Kaas
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| | | | - Matthieu Garnier
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| |
Collapse
|
22
|
Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity. Front Nutr 2019; 6:48. [PMID: 31058161 PMCID: PMC6478888 DOI: 10.3389/fnut.2019.00048] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Vitamins are micronutrients that have physiological effects on various biological responses, including host immunity. Therefore, vitamin deficiency leads to increased risk of developing infectious, allergic, and inflammatory diseases. Since B vitamins are synthesized by plants, yeasts, and bacteria, but not by mammals, mammals must acquire B vitamins from dietary or microbial sources, such as the intestinal microbiota. Similarly, some intestinal bacteria are unable to synthesize B vitamins and must acquire them from the host diet or from other intestinal bacteria for their growth and survival. This suggests that the composition and function of the intestinal microbiota may affect host B vitamin usage and, by extension, host immunity. Here, we review the immunological functions of B vitamins and their metabolism by intestinal bacteria with respect to the control of host immunity.
Collapse
Affiliation(s)
- Ken Yoshii
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Innovation Center, Nippon Flour Mills Co., Ltd., Atsugi, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Graduate School of Dentistry, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Hyogo, Japan
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Sinumvayo JP, Zhao C, Tuyishime P. Recent advances and future trends of riboswitches: attractive regulatory tools. World J Microbiol Biotechnol 2018; 34:171. [PMID: 30413889 DOI: 10.1007/s11274-018-2554-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023]
Abstract
Bacterial genomes contain a huge amount of different genes. These genes are spatiotemporally expressed to accomplish some required functions within the organism. Inside the cell, any step of gene expression may be modulated at four possible places such as transcription initiation, translation regulation, mRNA stability and protein stability. To achieve this, there is a necessity of strong regulators either natural or synthetic which can fine-tune gene expression regarding the required function. In recent years, riboswitches as metabolite responsive control elements residing in the untranslated regions of certain messenger RNAs, have been known to control gene expression at transcription or translation level. Importantly, these control elements do not prescribe the involvement of protein factors for metabolite binding. However, they own their particular properties to sense intramolecular metabolites (ligands). Herein, we highlighted current important bacterial riboswitches, their applications to support genetic control, ligand-binding domain mechanisms and current progress in synthetic riboswitches.
Collapse
Affiliation(s)
- Jean Paul Sinumvayo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Chunhua Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Philibert Tuyishime
- University of Chinese Academy of Sciences, Beijing, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
24
|
Cohen NR, Gong W, Moran DM, McIlvin MR, Saito MA, Marchetti A. Transcriptomic and proteomic responses of the oceanic diatom
Pseudo‐nitzschia granii
to iron limitation. Environ Microbiol 2018; 20:3109-3126. [DOI: 10.1111/1462-2920.14386] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Natalie R Cohen
- Department of Marine Sciences University of North Carolina at Chapel Hill Chapel Hill NC 27514 USA
- Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Weida Gong
- Department of Marine Sciences University of North Carolina at Chapel Hill Chapel Hill NC 27514 USA
| | - Dawn M. Moran
- Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Matthew R. McIlvin
- Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Mak A. Saito
- Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Adrian Marchetti
- Department of Marine Sciences University of North Carolina at Chapel Hill Chapel Hill NC 27514 USA
| |
Collapse
|
25
|
Cross-exchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae. ISME JOURNAL 2018; 13:334-345. [PMID: 30228381 DOI: 10.1038/s41396-018-0274-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/30/2018] [Accepted: 07/27/2018] [Indexed: 11/09/2022]
Abstract
Ostreococcus tauri, a picoeukaryotic alga that contributes significantly to primary production in oligotrophic waters, has a highly streamlined genome, lacking the genetic capacity to grow without the vitamins thiamine (B1) and cobalamin (B12). Here we demonstrate that the B12 and B1 auxotrophy of O. tauri can be alleviated by co-culturing with a heterotrophic bacterial partner Dinoroseobacter shibae, a member of the Rhodobacteraceae family of alpha-proteobacteria, genera of which are frequently found associated with marine algae. D. shibae lacks the complete pathway to synthesise three other B-vitamins: niacin (B3), biotin (B7), and p-aminobenzoic acid (a precursor for folate, B9), and the alga is in turn able to satisfy the reciprocal vitamin requirements of its bacterial partner in a stable long-term co-culture. Bioinformatics searches of 197 representative marine bacteria with sequenced genomes identified just nine species that had a similar combination of traits (ability to make vitamin B12, but missing one or more genes for niacin and biotin biosynthesis enzymes), all of which were from the Rhodobacteraceae. Further analysis of 70 species from this family revealed the majority encoded the B12 pathway, but only half were able to make niacin, and fewer than 13% biotin. These characteristics may have either contributed to or resulted from the tendency of members of this lineage to adopt lifestyles in close association with algae. This study provides a nuanced view of bacterial-phytoplankton interactions, emphasising the complexity of the sources, sinks and dynamic cycling between marine microbes of these important organic micronutrients.
Collapse
|
26
|
Donovan PD, Holland LM, Lombardi L, Coughlan AY, Higgins DG, Wolfe KH, Butler G. TPP riboswitch-dependent regulation of an ancient thiamin transporter in Candida. PLoS Genet 2018; 14:e1007429. [PMID: 29852014 PMCID: PMC5997356 DOI: 10.1371/journal.pgen.1007429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/12/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022] Open
Abstract
Riboswitches are non-coding RNA molecules that regulate gene expression by binding to specific ligands. They are primarily found in bacteria. However, one riboswitch type, the thiamin pyrophosphate (TPP) riboswitch, has also been described in some plants, marine protists and fungi. We find that riboswitches are widespread in the budding yeasts (Saccharomycotina), and they are most common in homologs of DUR31, originally described as a spermidine transporter. We show that DUR31 (an ortholog of N. crassa gene NCU01977) encodes a thiamin transporter in Candida species. Using an RFP/riboswitch expression system, we show that the functional elements of the riboswitch are contained within the native intron of DUR31 from Candida parapsilosis, and that the riboswitch regulates splicing in a thiamin-dependent manner when RFP is constitutively expressed. The DUR31 gene has been lost from Saccharomyces, and may have been displaced by an alternative thiamin transporter. TPP riboswitches are also present in other putative transporters in yeasts and filamentous fungi. However, they are rare in thiamin biosynthesis genes THI4 and THI5 in the Saccharomycotina, and have been lost from all genes in the sequenced species in the family Saccharomycetaceae, including S. cerevisiae. Thiamin, or Vitamin B1, is an essential requirement in all living organisms because it is a co-factor for many enzymes in metabolism. Unlike animals, many yeasts can synthesize thiamin, or they can import it from the environment. Expression of thiamin biosynthesis genes and of thiamin transporters is strictly regulated in response to the presence of thiamin. In many filamentous fungi, expression of thiamin biosynthesis genes is regulated by TPP riboswitches, RNA regulatory elements that are located within messenger RNA. TPP riboswitches are rare in yeasts. However, we find that TPP riboswitches are conserved in an ancient thiamin transporter, found in filamentous fungi, yeasts and other related organisms. There appears to be a high turnover of thiamin transporters in fungi, and there has been a gradual loss of TPP riboswitches in yeasts.
Collapse
Affiliation(s)
- Paul D. Donovan
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Linda M. Holland
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lisa Lombardi
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aisling Y. Coughlan
- School of Medicine and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Desmond G. Higgins
- School of Medicine and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth H. Wolfe
- School of Medicine and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geraldine Butler
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- * E-mail:
| |
Collapse
|
27
|
Gómez-Consarnau L, Sachdeva R, Gifford SM, Cutter LS, Fuhrman JA, Sañudo-Wilhelmy SA, Moran MA. Mosaic patterns of B-vitamin synthesis and utilization in a natural marine microbial community. Environ Microbiol 2018; 20:2809-2823. [PMID: 29659156 DOI: 10.1111/1462-2920.14133] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 04/05/2018] [Indexed: 12/28/2022]
Abstract
Aquatic environments contain large communities of microorganisms whose synergistic interactions mediate the cycling of major and trace nutrients, including vitamins. B-vitamins are essential coenzymes that many organisms cannot synthesize. Thus, their exchange among de novo synthesizers and auxotrophs is expected to play an important role in the microbial consortia and explain some of the temporal and spatial changes observed in diversity. In this study, we analyzed metatranscriptomes of a natural marine microbial community, diel sampled quarterly over one year to try to identify the potential major B-vitamin synthesizers and consumers. Transcriptomic data showed that the best-represented taxa dominated the expression of synthesis genes for some B-vitamins but lacked transcripts for others. For instance, Rhodobacterales dominated the expression of vitamin-B12 synthesis, but not of vitamin-B7 , whose synthesis transcripts were mainly represented by Flavobacteria. In contrast, bacterial groups that constituted less than 4% of the community (e.g., Verrucomicrobia) accounted for most of the vitamin-B1 synthesis transcripts. Furthermore, ambient vitamin-B1 concentrations were higher in samples collected during the day, and were positively correlated with chlorophyll-a concentrations. Our analysis supports the hypothesis that the mosaic of metabolic interdependencies through B-vitamin synthesis and exchange are key processes that contribute to shaping microbial communities in nature.
Collapse
Affiliation(s)
- Laura Gómez-Consarnau
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, 22860, Mexico
| | - Rohan Sachdeva
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Scott M Gifford
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lynda S Cutter
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sergio A Sañudo-Wilhelmy
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
28
|
Kraft CE, Angert ER. Competition for vitamin B1 (thiamin) structures numerous ecological interactions. QUARTERLY REVIEW OF BIOLOGY 2018; 92:151-68. [PMID: 29562121 DOI: 10.1086/692168] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Thiamin (vitamin B1) is a cofactor required for essential biochemical reactions in all living organisms, yet free thiamin is scarce in the environment. The diversity of biochemical pathways involved in the acquisition, degradation, and synthesis of thiamin indicates that organisms have evolved numerous ecological strategies for meeting this nutritional requirement. In this review we synthesize information from multiple disciplines to show how the complex biochemistry of thiamin influences ecological outcomes of interactions between organisms in environments ranging from the open ocean and the Australian outback to the gastrointestinal tract of animals. We highlight population and ecosystem responses to the availability or absence of thiamin. These include widespread mortality of fishes, birds, and mammals, as well as the thiamin-dependent regulation of ocean productivity. Overall, we portray thiamin biochemistry as the foundation for molecularly mediated ecological interactions that influence survival and abundance of a vast array of organisms.
Collapse
|
29
|
Phylogenomic and comparative analysis of the distribution and regulatory patterns of TPP riboswitches in fungi. Sci Rep 2018; 8:5563. [PMID: 29615754 PMCID: PMC5882874 DOI: 10.1038/s41598-018-23900-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/20/2018] [Indexed: 01/01/2023] Open
Abstract
Riboswitches are metabolite or ion sensing cis-regulatory elements that regulate the expression of the associated genes involved in biosynthesis or transport of the corresponding metabolite. Among the nearly 40 different classes of riboswitches discovered in bacteria so far, only the TPP riboswitch has also been found in algae, plants, and in fungi where their presence has been experimentally validated in a few instances. We analyzed all the available complete fungal and related genomes and identified TPP riboswitch-based regulation systems in 138 fungi and 15 oomycetes. We find that TPP riboswitches are most abundant in Ascomycota and Basidiomycota where they regulate TPP biosynthesis and/or transporter genes. Many of these transporter genes were found to contain conserved domains consistent with nucleoside, urea and amino acid transporter gene families. The genomic location of TPP riboswitches when correlated with the intron structure of the regulated genes enabled prediction of the precise regulation mechanism employed by each riboswitch. Our comprehensive analysis of TPP riboswitches in fungi provides insights about the phylogenomic distribution, regulatory patterns and functioning mechanisms of TPP riboswitches across diverse fungal species and provides a useful resource that will enhance the understanding of RNA-based gene regulation in eukaryotes.
Collapse
|
30
|
Srivastava AK, Lu Y, Zinta G, Lang Z, Zhu JK. UTR-Dependent Control of Gene Expression in Plants. TRENDS IN PLANT SCIENCE 2018; 23:248-259. [PMID: 29223924 PMCID: PMC5828884 DOI: 10.1016/j.tplants.2017.11.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 05/22/2023]
Abstract
Throughout their lives, plants sense many developmental and environmental stimuli, and activation of optimal responses against these stimuli requires extensive transcriptional reprogramming. To facilitate this activation, plant mRNA contains untranslated regions (UTRs) that significantly increase the coding capacity of the genome by producing multiple mRNA variants from the same gene. In this review we compare UTRs of arabidopsis (Arabidopsis thaliana) and rice (Oryza sativum) at the genome scale to highlight their complexity in crop plants. We discuss different modes of UTR-based regulation with emphasis on genes that regulate multiple plant processes, including flowering, stress responses, and nutrient homeostasis. We demonstrate functional specificity in genes with variable UTR length and propose future research directions.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Permanent address: Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gaurav Zinta
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
31
|
Tandon P, Jin Q, Huang L. A promising approach to enhance microalgae productivity by exogenous supply of vitamins. Microb Cell Fact 2017; 16:219. [PMID: 29183381 PMCID: PMC5706373 DOI: 10.1186/s12934-017-0834-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
In order to reduce the consumption of traditional fossil fuels and their impact on the environment, strategies to mitigate greenhouse gas emissions especially carbon dioxide needs exploration. Microalgae-based biofuels can be the best-fit plant based feed-stocks for diminishing a majority of the Universe’s energy problems. Interestingly, the eukaryotic microalgae aid in fixation of almost 50% of the global carbon in the environment. Thus, determination of parameters that will enhance microalgal growth and productivity is crucial, if they are to be used as future renewable energy sources. A large percentage of phytoplankton species are auxotroph for one or more vitamins. These species, in turn, are also dependent upon the vitamin biosynthetic pathways for processing of these vitamins. The present study serves as a base to discuss the prevalence of vitamin auxotrophy in microalgae and the methods of its acquirement from external sources such as heterotrophic bacteria. The next section of the paper sheds light on possible species-specific symbiotic interactions among microalgae and bacteria. Lastly is the discussion on how heterotrophic bacteria can act as a vitamin prototroph for an explicit microalgal vitamin auxotroph. The overall focus is placed upon harnessing these symbiotic interactions with intentions to obtain enhancements in microalgal biomass, lipid productivity, and flocculation rates. Moreover, the growth and distribution of a microalgal cell that thrives on a specific vitamin is perhaps met by growing it with the bacterial communities that nourish it. Thus, possibly by ecologically engineering a potential species-specific microalgal–bacterial consortium, it could tremendously contribute to the acceleration of photosynthetic activity, microalgal productivity, exchange of primary metabolites and other biogeochemical nutrients within the mini ecosystem. ![]()
Collapse
Affiliation(s)
- Puja Tandon
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qiang Jin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Limin Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
32
|
Brodie J, Ball SG, Bouget FY, Chan CX, De Clerck O, Cock JM, Gachon C, Grossman AR, Mock T, Raven JA, Saha M, Smith AG, Vardi A, Yoon HS, Bhattacharya D. Biotic interactions as drivers of algal origin and evolution. THE NEW PHYTOLOGIST 2017; 216:670-681. [PMID: 28857164 DOI: 10.1111/nph.14760] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/10/2017] [Indexed: 05/07/2023]
Abstract
Contents 670 I. 671 II. 671 III. 676 IV. 678 678 References 678 SUMMARY: Biotic interactions underlie life's diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial-algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field.
Collapse
Affiliation(s)
- Juliet Brodie
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Steven G Ball
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille CNRS, F 59000, Lille, France
| | - François-Yves Bouget
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, University Pierre et Marie Curie, University of Paris VI, CNRS, F-66650, Banyuls-sur-Mer, France
| | - Cheong Xin Chan
- Institute for Molecular Bioscience and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Olivier De Clerck
- Phycology Research Group, Ghent University, Krijgslaan 281, S8, 9000, Gent, Belgium
| | - J Mark Cock
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, F-29688, France
| | | | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Mahasweta Saha
- Helmholtz Center for Ocean Research, Kiel, 24105, Germany
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
33
|
Wienhausen G, Noriega-Ortega BE, Niggemann J, Dittmar T, Simon M. The Exometabolome of Two Model Strains of the Roseobacter Group: A Marketplace of Microbial Metabolites. Front Microbiol 2017; 8:1985. [PMID: 29075248 PMCID: PMC5643483 DOI: 10.3389/fmicb.2017.01985] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/27/2017] [Indexed: 12/04/2022] Open
Abstract
Recent studies applying Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) showed that the exometabolome of marine bacteria is composed of a surprisingly high molecular diversity. To shed more light on how this diversity is generated we examined the exometabolome of two model strains of the Roseobacter group, Phaeobacter inhibens and Dinoroseobacter shibae, grown on glutamate, glucose, acetate or succinate by FT-ICR-MS. We detected 2,767 and 3,354 molecular formulas in the exometabolome of each strain and 67 and 84 matched genome-predicted metabolites of P. inhibens and D. shibae, respectively. The annotated compounds include late precursors of biosynthetic pathways of vitamins B1, B2, B5, B6, B7, B12, amino acids, quorum sensing-related compounds, indole acetic acid and methyl-(indole-3-yl) acetic acid. Several formulas were also found in phytoplankton blooms. To shed more light on the effects of some of the precursors we supplemented two B1 prototrophic diatoms with the detected precursor of vitamin B1 HET (4-methyl-5-(β-hydroxyethyl)thiazole) and HMP (4-amino-5-hydroxymethyl-2-methylpyrimidine) and found that their growth was stimulated. Our findings indicate that both strains and other bacteria excreting a similar wealth of metabolites may function as important helpers to auxotrophic and prototrophic marine microbes by supplying growth factors and biosynthetic precursors.
Collapse
Affiliation(s)
- Gerrit Wienhausen
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Beatriz E Noriega-Ortega
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Jutta Niggemann
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
34
|
Abstract
Vitamin B1 (thiamin) is a cofactor for critical enzymatic processes and is scarce in surface oceans. Several eukaryotic marine algal species thought to rely on exogenous thiamin are now known to grow equally well on the precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), including the haptophyte Emiliania huxleyi Because the thiamin biosynthetic capacities of the diverse and ecologically important haptophyte lineage are otherwise unknown, we investigated the pathway in transcriptomes and two genomes from 30 species representing six taxonomic orders. HMP synthase is missing in data from all studied taxa, but the pathway is otherwise complete, with some enzymatic variations. Experiments on axenic species from three orders demonstrated that equivalent growth rates were supported by 1 µM HMP or thiamin amendment. Cellular thiamin quotas were quantified in the oceanic phytoplankter E. huxleyi using the thiochrome assay. E. huxleyi exhibited luxury storage in standard algal medium [(1.16 ± 0.18) × 10-6 pmol thiamin cell-1], whereas quotas in cultures grown under more environmentally relevant thiamin and HMP supplies [(2.22 ± 0.07) × 10-7 or (1.58 ± 0.14) × 10-7 pmol thiamin cell-1, respectively] were significantly lower than luxury values and prior estimates. HMP and its salvage-related analog 4-amino-5-aminomethyl-2-methylpyrimidine (AmMP) supported higher growth than thiamin under environmentally relevant supply levels. These compounds also sustained growth of the stramenopile alga Pelagomonas calceolata Together with identification of a salvage protein subfamily (TENA_E) in multiple phytoplankton, the results indicate that salvaged AmMP and exogenously acquired HMP are used by several groups for thiamin production. Our studies highlight the potential importance of thiamin pathway intermediates and their analogs in shaping phytoplankton community structure.IMPORTANCE The concept that vitamin B1 (thiamin) availability in seawater controls the productivity and structure of eukaryotic phytoplankton communities has been discussed for half a century. We examined B1 biosynthesis and salvage pathways in diverse phytoplankton species. These comparative genomic analyses as well as experiments show that phytoplankton thought to require exogenous B1 not only utilize intermediate compounds to meet this need but also exhibit stronger growth on these compounds than on thiamin. Furthermore, oceanic phytoplankton have lower cellular thiamin quotas than previously reported, and salvage of intermediate compounds is likely a key mechanism for meeting B1 requirements under environmentally relevant scenarios. Thus, several lines of evidence now suggest that availability of specific precursor molecules could be more important in structuring phytoplankton communities than the vitamin itself. This understanding of preferential compound utilization and thiamin quotas will improve biogeochemical model parameterization and highlights interaction networks among ocean microbes.
Collapse
|
35
|
Helliwell KE. The roles of B vitamins in phytoplankton nutrition: new perspectives and prospects. THE NEW PHYTOLOGIST 2017; 216:62-68. [PMID: 28656633 DOI: 10.1111/nph.14669] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
Contents 62 I. 62 II. 63 III. 63 IV. 66 V. 66 VI. 67 67 References 67 SUMMARY: B vitamins play essential roles in central metabolism. These organic water-soluble molecules act as, or as part of, coenzymes within the cell. Unlike land plants, many eukaryotic algae are auxotrophic for certain B vitamins. Recent progress in algal genetic resources and environmental chemistry have promoted a renewal of interest in the role of vitamins in governing phytoplankton dynamics, and illuminated amazing versatility in phytoplankton vitamin metabolism. Accumulating evidence demonstrates metabolic complexity in the production and bioavailability of different vitamin forms, coupled with specialized acquisition strategies to salvage and remodel vitamin precursors. Here, I describe recent advances and discuss how they redefine our view of the way in which vitamins are cycled in aquatic ecosystems and their importance in structuring phytoplankton communities.
Collapse
Affiliation(s)
- Katherine E Helliwell
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
36
|
Villa JK, Amador P, Janovsky J, Bhuyan A, Saldanha R, Lamkin TJ, Contreras LM. A Genome-Wide Search for Ionizing-Radiation-Responsive Elements in Deinococcus radiodurans Reveals a Regulatory Role for the DNA Gyrase Subunit A Gene's 5' Untranslated Region in the Radiation and Desiccation Response. Appl Environ Microbiol 2017; 83:e00039-17. [PMID: 28411225 PMCID: PMC5452802 DOI: 10.1128/aem.00039-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/07/2017] [Indexed: 12/19/2022] Open
Abstract
Tight regulation of gene expression is important for the survival of Deinococcus radiodurans, a model bacterium of extreme stress resistance. Few studies have examined the use of regulatory RNAs as a possible contributing mechanism to ionizing radiation (IR) resistance, despite their proffered efficient and dynamic gene expression regulation under IR stress. This work presents a transcriptome-based approach for the identification of stress-responsive regulatory 5' untranslated region (5'-UTR) elements in D. radiodurans R1 that can be broadly applied to other bacteria. Using this platform and an in vivo fluorescence screen, we uncovered the presence of a radiation-responsive regulatory motif in the 5' UTR of the DNA gyrase subunit A gene. Additional screens under H2O2-induced oxidative stress revealed the specificity of the response of this element to IR stress. Further examination of the sequence revealed a regulatory motif of the radiation and desiccation response (RDR) in the 5' UTR that is necessary for the recovery of D. radiodurans from high doses of IR. Furthermore, we suggest that it is the preservation of predicted RNA structure, in addition to DNA sequence consensus of the motif, that permits this important regulatory ability.IMPORTANCEDeinococcus radiodurans is an extremely stress-resistant bacterium capable of tolerating up to 3,000 times more ionizing radiation than human cells. As an integral part of the stress response mechanism of this organism, we suspect that it maintains stringent control of gene expression. However, understanding of its regulatory pathways remains incomplete to date. Untranslated RNA elements have been demonstrated to play crucial roles in gene regulation throughout bacteria. In this work, we focus on searching for and characterizing responsive RNA elements under radiation stress and propose that multiple levels of gene regulation work simultaneously to enable this organism to efficiently recover from exposure to ionizing radiation. The model we propose serves as a generic template to investigate similar mechanisms of gene regulation under stress that have likely evolved in other bacterial species.
Collapse
Affiliation(s)
- Jordan K Villa
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Paul Amador
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Justin Janovsky
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Arijit Bhuyan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas,USA
| | | | - Thomas J Lamkin
- Air Force Research Laboratory/XPRA Wright-Patterson AFB, Ohio, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas,USA
| |
Collapse
|
37
|
Kazamia E, Helliwell KE, Purton S, Smith AG. How mutualisms arise in phytoplankton communities: building eco-evolutionary principles for aquatic microbes. Ecol Lett 2017; 19:810-22. [PMID: 27282316 PMCID: PMC5103174 DOI: 10.1111/ele.12615] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/03/2016] [Accepted: 04/07/2016] [Indexed: 01/05/2023]
Abstract
Extensive sampling and metagenomics analyses of plankton communities across all aquatic environments are beginning to provide insights into the ecology of microbial communities. In particular, the importance of metabolic exchanges that provide a foundation for ecological interactions between microorganisms has emerged as a key factor in forging such communities. Here we show how both studies of environmental samples and physiological experimentation in the laboratory with defined microbial co‐cultures are being used to decipher the metabolic and molecular underpinnings of such exchanges. In addition, we explain how metabolic modelling may be used to conduct investigations in reverse, deducing novel molecular exchanges from analysis of large‐scale data sets, which can identify persistently co‐occurring species. Finally, we consider how knowledge of microbial community ecology can be built into evolutionary theories tailored to these species’ unique lifestyles. We propose a novel model for the evolution of metabolic auxotrophy in microorganisms that arises as a result of symbiosis, termed the Foraging‐to‐Farming hypothesis. The model has testable predictions, fits several known examples of mutualism in the aquatic world, and sheds light on how interactions, which cement dependencies within communities of microorganisms, might be initiated.
Collapse
Affiliation(s)
- Elena Kazamia
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | - Saul Purton
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alison Gail Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
38
|
Abstract
SAR11 is a group of small, carbon-oxidizing bacteria that reach a global estimated population size of 2.4×1028 cells-approximately 25% of all plankton. They are found throughout the oceans but reach their largest numbers in stratified, oligotrophic gyres, which are an expanding habitat in the warming oceans. SAR11 likely had a Precambrian origin and, over geological time, evolved into the niche of harvesting labile, low-molecular-weight dissolved organic matter (DOM). SAR11 cells are minimal in size and complexity, a phenomenon known as streamlining that is thought to benefit them by lowering the material costs of replication and maximizing transport functions that are essential to competition at ultralow nutrient concentrations. One of the surprises in SAR11 metabolism is their ability to both oxidize and produce a variety of volatile organic compounds that can diffuse into the atmosphere. SAR11 cells divide slowly and lack many forms of regulation commonly used by bacterial cells to adjust to changing environmental conditions. As a result of genome reduction, they require an unusual range of nutrients, which leads to complex biochemical interactions with other plankton. The study of SAR11 is providing insight into the biogeochemistry of labile DOM and is affecting microbiology beyond marine science by providing a model for understanding the evolution and function of streamlined cells.
Collapse
|
39
|
Paerl RW, Bouget FY, Lozano JC, Vergé V, Schatt P, Allen EE, Palenik B, Azam F. Use of plankton-derived vitamin B1 precursors, especially thiazole-related precursor, by key marine picoeukaryotic phytoplankton. ISME JOURNAL 2016; 11:753-765. [PMID: 27935586 PMCID: PMC5322297 DOI: 10.1038/ismej.2016.145] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 08/18/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Several cosmopolitan marine picoeukaryotic phytoplankton are B1 auxotrophs requiring exogenous vitamin B1 or precursor to survive. From genomic evidence, representatives of picoeukaryotic phytoplankton (Ostreococcus and Micromonas spp.) were predicted to use known thiazole and pyrimidine B1 precursors to meet their B1 demands, however, recent culture-based experiments could not confirm this assumption. We hypothesized these phytoplankton strains could grow on precursors alone, but required a thiazole-related precursor other the well-known and extensively tested 4-methyl-5-thiazoleethanol. This hypothesis was tested using bioassays and co-cultures of picoeukaryotic phytoplankton and bacteria. We found that specific B1-synthesizing proteobacteria and phytoplankton are sources of a yet-to-be chemically identified thiazole-related precursor(s) that, along with pyrimidine B1 precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine, can support growth of Ostreococcus spp. (also Micromonas spp.) without B1. We additionally found that the B1-synthesizing plankton do not require contact with picoeukaryotic phytoplankton cells to produce thiazole-related precursor(s). Experiments with wild-type and genetically engineered Ostreococcus lines revealed that the thiazole kinase, ThiM, is required for growth on precursors, and that thiazole-related precursor(s) accumulate to appreciable levels in the euphotic ocean. Overall, our results point to thiazole-related B1 precursors as important micronutrients promoting the survival of abundant phytoplankton influencing surface ocean production and biogeochemical cycling.
Collapse
Affiliation(s)
- Ryan W Paerl
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Francois-Yves Bouget
- Sorbonne Universités, Université Pierre and Marie Curie (Paris 06), UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Jean-Claude Lozano
- Sorbonne Universités, Université Pierre and Marie Curie (Paris 06), UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Valérie Vergé
- Sorbonne Universités, Université Pierre and Marie Curie (Paris 06), UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Philippe Schatt
- Sorbonne Universités, Université Pierre and Marie Curie (Paris 06), UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Eric E Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Brian Palenik
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Farooq Azam
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
40
|
Nguyen GTDT, Scaife MA, Helliwell KE, Smith AG. Role of riboswitches in gene regulation and their potential for algal biotechnology. JOURNAL OF PHYCOLOGY 2016; 52:320-328. [PMID: 27037670 DOI: 10.1111/jpy.12416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
Riboswitches are regulatory elements in messenger RNA to which specific ligands can bind directly in the absence of proteins. Ligand binding alters the mRNA secondary structure, thereby affecting expression of the encoded protein. Riboswitches are widespread in prokaryotes, with over 20 different effector ligands known, including amino acids, cofactors, and Mg(2+) ions, and gene expression is generally regulated by affecting translation or termination of transcription. In plants, fungi, and microalgae, riboswitches have been found, but only those that bind thiamine pyrophosphate. These eukaryotic riboswitches operate by causing alternative splicing of the transcript. Here, we review the current status of riboswitch research with specific emphasis on microalgae. We discuss new riboswitch discoveries and insights into the underlying mechanism of action, and how next generation sequencing technology provides the motivation and opportunity to improve our understanding of these rare but important regulatory elements. We also highlight the potential of microalgal riboswitches as a tool for synthetic biology and industrial biotechnology.
Collapse
Affiliation(s)
- Ginnie T D T Nguyen
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Mark A Scaife
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Katherine E Helliwell
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
41
|
van Baren MJ, Bachy C, Reistetter EN, Purvine SO, Grimwood J, Sudek S, Yu H, Poirier C, Deerinck TJ, Kuo A, Grigoriev IV, Wong CH, Smith RD, Callister SJ, Wei CL, Schmutz J, Worden AZ. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants. BMC Genomics 2016; 17:267. [PMID: 27029936 PMCID: PMC4815162 DOI: 10.1186/s12864-016-2585-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/11/2016] [Indexed: 01/26/2023] Open
Abstract
Background Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification. Results We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share ≤8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 %) GC splice donors. Micromonas has more genus-specific protein families (19 %) than other genome sequenced prasinophytes (11 %). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages. Conclusions Extensive differences in gene loss and architecture between related prasinophytes underscore their divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the plastid, have been selectively retained in multiple plants and algae, implying a biological function. Our studies provide robust genomic resources for emerging model algae, advancing knowledge of marine phytoplankton and plant evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2585-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marijke J van Baren
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Charles Bachy
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Emily Nahas Reistetter
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Samuel O Purvine
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jane Grimwood
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA.,Hudson Alpha, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Hang Yu
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA.,Now at: Ronald and Maxine Linde Center for Global Environmental Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Camille Poirier
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Thomas J Deerinck
- Center for Research in Biological Systems and the National Center for Microscopy and Imaging Research, University of California, La Jolla, San Diego, California, 92093, USA
| | - Alan Kuo
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Igor V Grigoriev
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Chee-Hong Wong
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Stephen J Callister
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Chia-Lin Wei
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Jeremy Schmutz
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA.,Hudson Alpha, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA. .,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, M5G 1Z8, Canada.
| |
Collapse
|
42
|
Kopniczky MB, Moore SJ, Freemont PS. Multilevel Regulation and Translational Switches in Synthetic Biology. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:485-496. [PMID: 26336145 DOI: 10.1109/tbcas.2015.2451707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In contrast to the versatility of regulatory mechanisms in natural systems, synthetic genetic circuits have been so far predominantly composed of transcriptionally regulated modules. This is about to change as the repertoire of foundational tools for post-transcriptional regulation is quickly expanding. We provide an overview of the different types of translational regulators: protein, small molecule and ribonucleic acid (RNA) responsive and we describe the new emerging circuit designs utilizing these tools. There are several advantages of achieving multilevel regulation via translational switches and it is likely that such designs will have the greatest and earliest impact in mammalian synthetic biology for regenerative medicine and gene therapy applications.
Collapse
|
43
|
Simmons MP, Bachy C, Sudek S, van Baren MJ, Sudek L, Ares M, Worden AZ. Intron Invasions Trace Algal Speciation and Reveal Nearly Identical Arctic and Antarctic Micromonas Populations. Mol Biol Evol 2015; 32:2219-35. [PMID: 25998521 PMCID: PMC4540971 DOI: 10.1093/molbev/msv122] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spliceosomal introns are a hallmark of eukaryotic genes that are hypothesized to play important roles in genome evolution but have poorly understood origins. Although most introns lack sequence homology to each other, new families of spliceosomal introns that are repeated hundreds of times in individual genomes have recently been discovered in a few organisms. The prevalence and conservation of these introner elements (IEs) or introner-like elements in other taxa, as well as their evolutionary relationships to regular spliceosomal introns, are still unknown. Here, we systematically investigate introns in the widespread marine green alga Micromonas and report new families of IEs, numerous intron presence–absence polymorphisms, and potential intron insertion hot-spots. The new families enabled identification of conserved IE secondary structure features and establishment of a novel general model for repetitive intron proliferation across genomes. Despite shared secondary structure, the IE families from each Micromonas lineage bear no obvious sequence similarity to those in the other lineages, suggesting that their appearance is intimately linked with the process of speciation. Two of the new IE families come from an Arctic culture (Micromonas Clade E2) isolated from a polar region where abundance of this alga is increasing due to climate induced changes. The same two families were detected in metagenomic data from Antarctica—a system where Micromonas has never before been reported. Strikingly high identity between the Arctic isolate and Antarctic coding sequences that flank the IEs suggests connectivity between populations in the two polar systems that we postulate occurs through deep-sea currents. Recovery of Clade E2 sequences in North Atlantic Deep Waters beneath the Gulf Stream supports this hypothesis. Our research illuminates the dynamic relationships between an unusual class of repetitive introns, genome evolution, speciation, and global distribution of this sentinel marine alga.
Collapse
Affiliation(s)
- Melinda P Simmons
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA Department of Ocean Sciences, University of California Santa Cruz
| | - Charles Bachy
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA
| | | | - Lisa Sudek
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA
| | - Manuel Ares
- Department of Molecular, Cell & Developmental Biology, University of California Santa Cruz
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA Department of Ocean Sciences, University of California Santa Cruz Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
44
|
Monteverde DR, Gómez-Consarnau L, Cutter L, Chong L, Berelson W, Sañudo-Wilhelmy SA. Vitamin B1 in marine sediments: pore water concentration gradient drives benthic flux with potential biological implications. Front Microbiol 2015; 6:434. [PMID: 26029181 PMCID: PMC4428219 DOI: 10.3389/fmicb.2015.00434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/22/2015] [Indexed: 11/26/2022] Open
Abstract
Vitamin B1, or thiamin, can limit primary productivity in marine environments, however the major marine environmental sources of this essential coenzyme remain largely unknown. Vitamin B1 can only be produced by organisms that possess its complete synthesis pathway, while other organisms meet their cellular B1 quota by scavenging the coenzyme from exogenous sources. Due to high bacterial cell density and diversity, marine sediments could represent some of the highest concentrations of putative B1 producers, yet these environments have received little attention as a possible source of B1 to the overlying water column. Here we report the first dissolved pore water profiles of B1 measured in cores collected in two consecutive years from Santa Monica Basin, CA. Vitamin B1 concentrations were fairly consistent between the two years ranging from 30 pM up to 770 pM. A consistent maximum at ~5 cm sediment depth covaried with dissolved concentrations of iron. Pore water concentrations were higher than water column levels and represented some of the highest known environmental concentrations of B1 measured to date, (over two times higher than maximum water column concentrations) suggesting increased rates of cellular production and release within the sediments. A one dimensional diffusion-transport model applied to the B1 profile was used to estimate a diffusive benthic flux of ~0.7 nmol m−2 d−1. This is an estimated flux across the sediment-water interface in a deep sea basin; if similar magnitude B-vitamin fluxes occur in shallow coastal waters, benthic input could prove to be a significant B1-source to the water column and may play an important role in supplying this organic growth factor to auxotrophic primary producers.
Collapse
Affiliation(s)
- Danielle R Monteverde
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| | - Laura Gómez-Consarnau
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Lynda Cutter
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Lauren Chong
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| | - William Berelson
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| | - Sergio A Sañudo-Wilhelmy
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA ; Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
45
|
Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science 2015; 347:1257594. [DOI: 10.1126/science.1257594] [Citation(s) in RCA: 439] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Marine algae and land plants share conserved phytochrome signaling systems. Proc Natl Acad Sci U S A 2014; 111:15827-32. [PMID: 25267653 DOI: 10.1073/pnas.1416751111] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.
Collapse
|