1
|
Li X, Chen X, Zhao S, Jiang H, Cai Y, Bai J, Shao J, Yu H, Chen T. Comparative secretome and proteome analysis unveils the response mechanism in the phosphorus utilization of Alexandrium pacificum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126135. [PMID: 40154869 DOI: 10.1016/j.envpol.2025.126135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Phosphorus (P) acts as a crucial limiting nutrient for the growth of marine phytoplankton cells and the formation of algal blooms. The dinoflagellate Alexandrium pacificum is known for causing frequent and intense blooms in specific estuarine and coastal regions. In this study, we investigated the growth and physiological transformations under conditions characterized by P-deficiency, NaH2PO4, and ATP. For the first time, an integrated comparative analysis of the secretome and proteome was performed to investigate the global protein expression profile of A. pacificum, with 355 and 2308 differentially expressed proteins (DEPs), respectively. The results demonstrated that P-deficiency led to a reduction in growth and notable decreases in metabolic processes in A. pacificum. In P-deficient and ATP groups, the expression of secretory protein alkaline phosphatase A (PhoA) was increased, while intracellular acid phosphatase (ACP) displayed significant upregulation in P-deficient group, indicating that A. pacificum has evolved multiple organic P utilization strategies to adapt to low-P environments. A. pacificum can utilize the intracellular carbohydrate storage pools via glycolysis and the TCA cycle to replenish Calvin cycle intermediates. However, the growth of the ATP and NaH2PO4 groups showed no significant alteration. These results suggest that A. pacificum possesses distinct adaptive strategies towards P-deficiency in the environment and employs specific mechanisms for utilizing organic P, which may be a crucial factor in the formation of blooms in low inorganic P environments.
Collapse
Affiliation(s)
- Xiaohang Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Xi Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shuxue Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Shandong Key Laboratory of Edible Mushroom Technology, Yantai Edible and Medicinal Mushroom Technology Innovation Center, School of Horticulture, Ludong University, Yantai, 264025, China
| | - Hua Jiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Yuqin Cai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Jiajun Shao
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China.
| | - Tiantian Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
2
|
Cheng HM, Ning XL, Zhang SF, Zhang H, Lin L, Liu SQ, Wang DZ. Metaproteomics reveals metabolic activities potentially involved in bloom formation and succession during a mixed dinoflagellate bloom of Prorocentrum obtusidens and Karenia mikimotoi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178479. [PMID: 39848157 DOI: 10.1016/j.scitotenv.2025.178479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
Understanding metabolic activities involved in bloom formation during a single-species algal bloom has improved greatly. However, little is known about metabolic activities during a multi-species algal bloom. Here, we investigated protein expression profiles at different bloom stages of a mixed dinoflagellate bloom caused by Karenia mikimotoi and Prorocentrum obtusidens (syn. Prorocentrum donghaiense) using a metaproteomic approach. Our results indicated that both P. obtusidens and K. mikimotoi cells highly expressed proteins associated with essential cellular metabolisms such as cell growth and nutrient acquisition before their respective bloom occurrence. P. obtusidens preferentially enhanced uptake and utilization of ammonium, amino acid and organophosphorus-like phospholipid at the early bloom stage, and expressed highly abundant chloroplast peridinin-chlorophyll a-binding protein at the early and the P. obtusidens-dominated bloom stages, indicating their important roles in preferential occurrence and maintenance of P. obtusidens bloom. While absorption and utilization of nutrients, especially ammonium, urea, cyanate, phospholipid, and nucleotide, as well as endocytosis, in K. mikimotoi cells, were enhanced. Notably, both species increased photosynthesis, energy generation, cell proliferation, cell motility and cell defense before their respective blooms, which were beneficial to dealing with adverse external stresses, enabling them to be more competitive and advantageous in complex environments. Interestingly, diatom groups (Skeletonema, Pseudo-nitzschia, and Thalassiosira) decreased uptake and utilization of ambient nutrients and cell proliferation during the bloom period. This study demonstrates that niche differentiation and functional complementarity among phytoplankton species regulate bloom formation and succession during the mixed bloom.
Collapse
Affiliation(s)
- Hua-Min Cheng
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xiao-Lian Ning
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Si-Qi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
3
|
Deng Y, Yue C, Yang H, Li F, Hu Z, Shang L, Chai Z, Lin S, Tang YZ. Broad active metabolic pathways, autophagy, and antagonistic hormones regulate dinoflagellate cyst dormancy in marine sediments. SCIENCE ADVANCES 2025; 11:eads7789. [PMID: 39919173 PMCID: PMC11804902 DOI: 10.1126/sciadv.ads7789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025]
Abstract
This work aimed to reveal the molecular machinery regulating the dormancy of dinoflagellate resting cysts buried in marine sediments. Dinoflagellates play pivotal roles in marine ecosystems, particularly as major contributors of harmful algal blooms. Despite vital roles of cysts in blooming cycles and dinoflagellate ecology, the molecular processes controlling cyst dormancy have largely remained unexplored due to technological difficulties. Using DinoSL as a dinoflagellates-specific mRNA "hook" and SMRT sequencing, we analyzed metatranscriptomes of sediment-buried dinoflagellate cyst assemblages. The data show that most major metabolic and regulatory pathways, except photosynthesis, were transcriptionally active. This suggests the crucial importance of broad metabolic pathways in sustaining cyst viability and germination potential. Further expression analyses of 11 genes (relevant to autophagy and phytohormone gibberellin), lysosome/autolysosome staining, and germination experiments revealed vital roles of autophagy in energy generation, nutrient recycling, and of phytohormones abscisic acid/gibberellin in modulating dormancy/germination of resting cysts. Our findings lay a cornerstone for elucidating the molecular machinery regulating dinoflagellate cyst dormancy.
Collapse
Affiliation(s)
- Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Caixia Yue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huijiao Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China
| | - Fengting Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088 China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoyang Chai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
4
|
Perkins JC, Zenger KR, Kjeldsen SR, Liu Y, Strugnell JM. Assessment of dinoflagellate diversity using DNA metabarcoding reveals toxic dinoflagellate species in Australian coastal waters. MARINE POLLUTION BULLETIN 2025; 210:117319. [PMID: 39608089 DOI: 10.1016/j.marpolbul.2024.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024]
Abstract
Harmful algal blooms (HABs) present severe risks to marine ecosystems, wildlife, human health and economies globally. This study investigates the diversity and abundance of the primary HAB group-dinoflagellates-in Hervey Bay, Queensland, Australia, a region notable for its ecological uniqueness and high susceptibility to HABs. By employing DNA metabarcoding targeting the 18S rRNA V8-V9 regions, we aimed to provide a comprehensive overview of dinoflagellate communities across various substrates and locations, identifying both toxic and non-toxic species. Our findings revealed 66 distinct genera, including known toxin producers such as Alexandrium, Gambierdiscus, Karenia and Prorocentrum, with some toxic species detected in Australian waters for the first time. Additionally, we assessed the abundance of these toxic species and examined the influence of environmental factors on their occurrence. This study emphasises the importance of ongoing monitoring and ecological assessments to manage HAB impacts in vulnerable coastal areas such as Hervey Bay.
Collapse
Affiliation(s)
- Joseph C Perkins
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Qld 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.
| | - Kyall R Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Qld 4811, Australia
| | - Shannon R Kjeldsen
- TropWater, James Cook University, Townsville, Qld 4811, Australia; Marine Climate Change Unit, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Qld 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia
| |
Collapse
|
5
|
Zhang WP, Zhang SY, Zhou Y, Sun WJ, Zhang SF, Lee JS, Wang M, Wang DZ. Divergent responses of an armored and an unarmored dinoflagellate to ocean acidification. HARMFUL ALGAE 2025; 141:102772. [PMID: 39645393 DOI: 10.1016/j.hal.2024.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/05/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Dinoflagellates, both armored and unarmored, with distinct cell wall difference, are being affected by elevated CO2-induced ocean acidification (OA). However, their specific responses to OA are not well understood. In this study, we investigated the physiological and molecular response of the armored species Prorocentrum obtusidens and the unarmored species Karenia mikimotoi to OA over a 28-day period. The results show that the two species responded differently to OA. Cell growth rate, particulate organic carbon (POC) content, and the activities of C4 pathway enzymes decreased in P. obtusidens under future acidified ocean condition (pH 7.8, 1000 μatm pCO2), but the activities of carbonic anhydrase (CA), ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), and superoxide dismutase (SOD) increased. Whereas cell growth rate, contents of Chl a and PON, and SOD activity altered insignificantly in K. mikimotoi, but contents of POC and total carbohydrate, and the activity of RubisCO increased while the activities of CA and C4 pathway enzymes decreased. Transcriptomic analysis indicates that genes associated with antioxidative response, heat shock protein, proteasome, signal transduction, ribosome, and pH regulation were up-regulated in P. obtusidens but down-regulated in K. mikimotoi. Notably, the synthesis of soluble organic matter (i.e., spermidine and trehalose) was enhanced in K. mikimotoi, thereby regulating intracellular pH and improving stress resistance. This study highlights the divergent response of the armored and unarmored dinoflagellates to OA, with the unarmored dinoflagellate exhibiting a higher ability to withstand this stressor. Therefore, caution should be exercised when predicting the behavior and the eventual fate of dinoflagellates in the future acidified ocean.
Collapse
Affiliation(s)
- Wei-Ping Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shuo-Yu Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yang Zhou
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Wen-Jing Sun
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Minghua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Perkins JC, Zenger KR, Liu Y, Strugnell JM. Ciguatera poisoning: A review of the ecology and detection methods for Gambierdiscus and Fukuyoa species. HARMFUL ALGAE 2024; 139:102735. [PMID: 39567072 DOI: 10.1016/j.hal.2024.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 11/22/2024]
Abstract
Ciguatera poisoning is the most prevalent non-bacterial seafood illness globally, with an estimated 10,000 to 50,000 human cases reported annually. While most symptoms are generally mild, some cases can result in severe and long-lasting neurological and psychological damage, and in some instances, even death. The known causative agents of ciguatera poisoning are benthic toxic dinoflagellate species belonging to the genera Gambierdiscus and Fukuyoa. These species produce highly potent ciguatoxins that bioaccumulate through the marine food chain, eventually reaching humans through seafood consumption. Although Gambierdiscus and Fukuyoa species are widespread in tropical waters worldwide, the full extent of their distribution remains uncertain. This review provides a detailed examination of the ecological dynamics of these dinoflagellates and explores the diverse range of detection methods used to monitor them. These include a focus on molecular techniques for detection, alongside morphological methods, emerging technologies, and a toxin detection overview. Additionally, we offer recommendations on how the field can advance, highlighting novel solutions and next steps for improving detection and monitoring practices. By assessing the strengths and limitations of current approaches and proposing directions for future research, this review aims to support efforts in better understanding and mitigating the risk of ciguatera poisoning.
Collapse
Affiliation(s)
- Joseph C Perkins
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville 4811, Qld, Australia.
| | - Kyall R Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville 4811, Qld, Australia
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville 4811, Qld, Australia
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville 4811, Qld, Australia
| |
Collapse
|
7
|
Zhu J, Chen G, Tang S, Cheng K, Wu K, Cai Z, Zhou J. The micro-ecological feature of colonies is a potential strategy for Phaeocystis globosa bloom formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174134. [PMID: 38909792 DOI: 10.1016/j.scitotenv.2024.174134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Phaeocystis globosa is among the dominant microalgae associated with harmful algal blooms. P. globosa has a polymorphic life cycle and its ecological success has been attributed to algal colony formation, however, few studies have assessed differences in microbial communities and their functional profiles between intra- and extra-colonies during P. globosa blooms. To address this, environmental and metagenomics tools were used to conduct a time-series analysis of the bacterial composition and metabolic characteristics of intra- and extra-colonies during a natural P. globosa bloom. The results show that bacterial composition, biodiversity, and network interactions differed significantly between intra- and extra-colonies. Dominant extra-colonial bacteria were Bacteroidia and Saccharimonadis, while dominant intra-colonial bacteria included Alphaproteobacteria and Gammaproteobacteria. Despite the lower richness and diversity observed in the intra-colonial bacterial community, relative to extra-colonies, the complexity and interconnectedness of the intra-colonial networks were higher. Regarding bacterial function, more functional genes were enriched in substance metabolism (polysaccharides, iron element and dimethylsulfoniopropionate) and signal communication (quorum sensing, indoleacetic acid-IAA) pathways in intra- than in extra-colonies. Conceptual model construction showed that microbial cooperative synthesis of ammonium, vitamin B12, IAA, and siderophores were strongly related to the P. globosa bloom, particularly in the intra-colonial environment. Overall, our data highlight the differences in bacterial structure and functions within and outside the colony during P. globosa blooms. These findings represent fundamental information indicating that phenotypic heterogeneity is a selective strategy that improves microbial population competitiveness and environmental adaptation, benefiting P. globosa bloom formation and persistence.
Collapse
Affiliation(s)
- Jianming Zhu
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, PR China
| | - Si Tang
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Keke Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Kebi Wu
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
8
|
Xu SY, Mo YH, Liu YJ, Wang X, Li HY, Yang WD. Physiological and genetic responses of the benthic dinoflagellate Prorocentrum lima to polystyrene microplastics. HARMFUL ALGAE 2024; 136:102652. [PMID: 38876530 DOI: 10.1016/j.hal.2024.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Microplastics are well known as contaminants in marine environments. With the development of biofilms, most microplastics will eventually sink and deposit in benthic environment. However, little research has been done on benthic toxic dinoflagellates, and the effects of microplastics on benthic dinoflagellates are unknown. Prorocentrum lima is a cosmopolitan toxic benthic dinoflagellate, which can produce a range of polyether metabolites, such as diarrhetic shellfish poisoning (DSP) toxins. In order to explore the impact of microplastics on marine benthic dinoflagellates, in this paper, we studied the effects of polystyrene (PS) on the growth and toxin production of P. lima. The molecular response of P. lima to microplastic stress was analyzed by transcriptomics. We selected 100 nm, 10 μm and 100 μm PS, and set three concentrations of 1 mg L-1, 10 mg L-1 and 100 mg L-1. The results showed that PS exposure had limited effects on cell growth, but increased the OA and extracellular polysaccharide content at high concentrations. After exposure to PS MPs, genes associated with DSP toxins synthesis, carbohydrate synthesis and energy metabolism, such as glycolysis, TCA cycle and pyruvate metabolism, were significantly up-regulated. We speculated that after exposure to microplastics, P. lima may increase the synthesis of DSP toxins and extracellular polysaccharides, improve the level of energy metabolism and gene expression of ABC transporter, thereby protecting algal cells from damage. Our findings provide new insights into the effects of microplastics on toxic benthic dinoflagellates.
Collapse
Affiliation(s)
- Si-Yuan Xu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yan-Hang Mo
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yu-Jie Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Xiang Wang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
9
|
Yu Z, Wang Z, Liu L. Electrophysiological techniques in marine microalgae study: A new perspective for harmful algal bloom (HAB) research. HARMFUL ALGAE 2024; 134:102629. [PMID: 38705615 DOI: 10.1016/j.hal.2024.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Electrophysiological techniques, by measuring bioelectrical signals and ion channel activities in tissues and cells, are now widely utilized to study ion channel-related physiological functions and their underlying mechanisms. Electrophysiological techniques have been extensively employed in the investigation of animals, plants, and microorganisms; however, their application in marine algae lags behind that in other organisms. In this paper, we present an overview of current electrophysiological techniques applicable to algae while reviewing the historical usage of such techniques in this field. Furthermore, we explore the potential specific applications of electrophysiological technology in harmful algal bloom (HAB) research. The application prospects in the studies of stress tolerance, competitive advantage, nutrient absorption, toxin synthesis and secretion by HAB microalgae are discussed and anticipated herein with the aim of providing novel perspectives on HAB investigations.
Collapse
Affiliation(s)
- Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Zhongshi Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lidong Liu
- The Djavad Mowafaghian Centre for Brian Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Moreno CM, Bernish M, Meyer MG, Li Z, Waite N, Cohen NR, Schofield O, Marchetti A. Molecular physiology of Antarctic diatom natural assemblages and bloom event reveal insights into strategies contributing to their ecological success. mSystems 2024; 9:e0130623. [PMID: 38411098 PMCID: PMC10949512 DOI: 10.1128/msystems.01306-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
The continental shelf of the Western Antarctic Peninsula (WAP) is a highly variable system characterized by strong cross-shelf gradients, rapid regional change, and large blooms of phytoplankton, notably diatoms. Rapid environmental changes coincide with shifts in plankton community composition and productivity, food web dynamics, and biogeochemistry. Despite the progress in identifying important environmental factors influencing plankton community composition in the WAP, the molecular basis for their survival in this oceanic region, as well as variations in species abundance, metabolism, and distribution, remains largely unresolved. Across a gradient of physicochemical parameters, we analyzed the metabolic profiles of phytoplankton as assessed through metatranscriptomic sequencing. Distinct phytoplankton communities and metabolisms closely mirrored the strong gradients in oceanographic parameters that existed from coastal to offshore regions. Diatoms were abundant in coastal, southern regions, where colder and fresher waters were conducive to a bloom of the centric diatom, Actinocyclus. Members of this genus invested heavily in growth and energy production; carbohydrate, amino acid, and nucleotide biosynthesis pathways; and coping with oxidative stress, resulting in uniquely expressed metabolic profiles compared to other diatoms. We observed strong molecular evidence for iron limitation in shelf and slope regions of the WAP, where diatoms in these regions employed iron-starvation induced proteins, a geranylgeranyl reductase, aquaporins, and urease, among other strategies, while limiting the use of iron-containing proteins. The metatranscriptomic survey performed here reveals functional differences in diatom communities and provides further insight into the environmental factors influencing the growth of diatoms and their predicted response to changes in ocean conditions. IMPORTANCE In the Southern Ocean, phytoplankton must cope with harsh environmental conditions such as low light and growth-limiting concentrations of the micronutrient iron. Using metratranscriptomics, we assessed the influence of oceanographic variables on the diversity of the phytoplankton community composition and on the metabolic strategies of diatoms along the Western Antarctic Peninsula, a region undergoing rapid climate change. We found that cross-shelf differences in oceanographic parameters such as temperature and variable nutrient concentrations account for most of the differences in phytoplankton community composition and metabolism. We opportunistically characterized the metabolic underpinnings of a large bloom of the centric diatom Actinocyclus in coastal waters of the WAP. Our results indicate that physicochemical differences from onshore to offshore are stronger than between southern and northern regions of the WAP; however, these trends could change in the future, resulting in poleward shifts in functional differences in diatom communities and phytoplankton blooms.
Collapse
Affiliation(s)
- Carly M. Moreno
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret Bernish
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meredith G. Meyer
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zuchuan Li
- Division of Natural and Applied Science, Duke Kunshan University, Suzhou, Jiangsu, China
| | - Nicole Waite
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Natalie R. Cohen
- Skidaway Institute of Oceanography, University of Georgia, Savannah, Georgia, USA
| | - Oscar Schofield
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Adrian Marchetti
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Alexander H, Hu SK, Krinos AI, Pachiadaki M, Tully BJ, Neely CJ, Reiter T. Eukaryotic genomes from a global metagenomic data set illuminate trophic modes and biogeography of ocean plankton. mBio 2023; 14:e0167623. [PMID: 37947402 PMCID: PMC10746220 DOI: 10.1128/mbio.01676-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Single-celled eukaryotes play ecologically significant roles in the marine environment, yet fundamental questions about their biodiversity, ecological function, and interactions remain. Environmental sequencing enables researchers to document naturally occurring protistan communities, without culturing bias, yet metagenomic and metatranscriptomic sequencing approaches cannot separate individual species from communities. To more completely capture the genomic content of mixed protistan populations, we can create bins of sequences that represent the same organism (metagenome-assembled genomes [MAGs]). We developed the EukHeist pipeline, which automates the binning of population-level eukaryotic and prokaryotic genomes from metagenomic reads. We show exciting insight into what protistan communities are present and their trophic roles in the ocean. Scalable computational tools, like EukHeist, may accelerate the identification of meaningful genetic signatures from large data sets and complement researchers' efforts to leverage MAG databases for addressing ecological questions, resolving evolutionary relationships, and discovering potentially novel biodiversity.
Collapse
Affiliation(s)
- Harriet Alexander
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Sarah K. Hu
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Arianna I. Krinos
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, Massachusetts, USA
| | - Maria Pachiadaki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Benjamin J. Tully
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Christopher J. Neely
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Taylor Reiter
- Population Health and Reproduction, University of California, Davis, Davis, California, USA
| |
Collapse
|
12
|
Wan X, Yao G, Wang K, Liu Y, Wang F, Jiang H. Transcriptomic Analysis of the Response of the Toxic Dinoflagellate Prorocentrum lima to Phosphorous Limitation. Microorganisms 2023; 11:2216. [PMID: 37764060 PMCID: PMC10535992 DOI: 10.3390/microorganisms11092216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Some dinoflagellates cause harmful algal blooms, releasing toxic secondary metabolites, to the detriment of marine ecosystems and human health. Phosphorus (P) is a limiting macronutrient for dinoflagellate growth in the ocean. Previous studies have been focused on the physiological response of dinoflagellates to ambient P changes. However, the whole-genome's molecular mechanisms are poorly understood. In this study, RNA-Seq was utilized to compare the global gene expression patterns of a marine diarrheic shellfish poisoning (DSP) toxin-producing dinoflagellate, Prorocentrum lima, grown in inorganic P-replete and P-deficient conditions. A total of 148 unigenes were significantly up-regulated, and 30 unigenes were down-regulated under 1/4 P-limited conditions, while 2708 unigenes were significantly up-regulated, and 284 unigenes were down-regulated under 1/16 P-limited conditions. KEGG enrichment analysis of the differentially expressed genes shows that genes related to ribosomal proteins, glycolysis, fatty acid biosynthesis, phagosome formation, and ubiquitin-mediated proteolysis are found to be up-regulated, while most of the genes related to photosynthesis are down-regulated. Further analysis shows that genes encoding P transporters, organic P utilization, and endocytosis are significantly up-regulated in the P-limited cells, indicating a strong ability of P. lima to utilize dissolved inorganic P as well as intracellular organic P. These transcriptomic data are further corroborated by biochemical and physiological analyses, which reveals that under P deficiency, cellular contents of starch, lipid, and toxin increase, while photosynthetic efficiency declines. Our results indicate that has P. lima evolved diverse strategies to acclimatize to low P environments. The accumulation of carbon sources and DSP toxins could provide protection for P. lima to cope with adverse environmental conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (X.W.); (G.Y.); (K.W.); (Y.L.); (F.W.)
| |
Collapse
|
13
|
Zheng JW, He GH, Xu RX, Wang X, Li HY, Yang WD. Systematic exploration of transcriptional responses of interspecies interaction between Karenia mikimotoi and Prorocentrum shikokuense. HARMFUL ALGAE 2023; 126:102441. [PMID: 37290889 DOI: 10.1016/j.hal.2023.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 06/10/2023]
Abstract
Karenia mikimotoi and Prorocentrum shikokuense (also identified as P. donghaiense Lu and P. obtusidens Schiller) are two important harmful algal species which often form blooms in the coasts of China. Studies have shown that the allelopathy of K. mikimotoi and P. shikokuense plays an important role in inter-algal competition, though the underlying mechanisms remain largely unclear. Here, we observed reciprocal inhibitory effects between K. mikimotoi and P. shikokuense under co-cultures. Based on the reference sequences, we isolated RNA sequencing reads of K. mikimotoi and P. shikokuense from co-culture metatranscriptome, respectively. We found the genes involved in photosynthesis, carbon fixation, energy metabolism, nutrients absorption and assimilation were significantly up-regulated in K. mikimotoi after co-cultured with P. shikokuense. However, genes involved in DNA replication and cell cycle were significantly down-regulated. These results suggested that co-culture with P. shikokuense stimulated cell metabolism and nutrients competition activity of K. mikimotoi, and inhibited cell cycle. In contrast, genes involved in energy metabolism, cell cycle and nutrients uptake and assimilation were dramatically down-regulated in P. shikokuense under co-culture with K. mikimotoi, indicating that K. mikimotoi could highly affect the cellular activity of P. shikokuense. In addition, the expression of PLA2G12 (Group XII secretory phospholipase A2) that can catalyze the accumulation of linoleic acid or linolenic acid, and nitrate reductase that may be involved in nitric oxide production were significantly increased in K. mikimotoi, suggesting that PLA2G12 and nitrate reductase may play important roles in the allelopathy of K. mikimotoi. Our findings shed new light on the interspecies competition between K. mikimotoi and P. shikokuense, and provide a novel strategy for studying interspecific competition in complex systems.
Collapse
Affiliation(s)
- Jian-Wei Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; College of Food Science and Engineering, Foshan University of Science and Technology, Foshan 528231, China
| | - Guo-Hui He
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rui-Xia Xu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Yu L, Li T, Li H, Ma M, Li L, Lin S. In Situ Molecular Ecological Analyses Illuminate Distinct Factors Regulating Formation and Demise of a Harmful Dinoflagellate Bloom. Microbiol Spectr 2023; 11:e0515722. [PMID: 37074171 PMCID: PMC10269597 DOI: 10.1128/spectrum.05157-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
The development and demise of a harmful algal bloom (HAB) are generally regulated by multiple processes; identifying specific critical drivers for a specific bloom is important yet challenging. Here, we conducted a whole-assemblage molecular ecological study on a dinoflagellate bloom to address the hypothesis that energy and nutrient acquisition, defense against grazing and microbial attacks, and sexual reproduction are critical to the rise and demise of the bloom. Microscopic and molecular analyses identified the bloom-causing species as Karenia longicanalis and showed that the ciliate Strombidinopsis sp. was dominant in a nonbloom plankton community, whereas the diatom Chaetoceros sp. dominated the after-bloom community, along with remarkable shifts in the community structure for both eukaryotes and prokaryotes. Metatranscriptomic analysis indicated that heightened energy and nutrient acquisition in K. longicanalis significantly contributed to bloom development. In contrast, active grazing by the ciliate Strombidinopsis sp. and attacks by algicidal bacteria (Rhodobacteracea, Cryomorphaceae, and Rhodobacteracea) and viruses prevented (at nonbloom stage) or collapsed the bloom (in after-bloom stage). Additionally, nutrition competition by the Chaetoceros diatoms plausibly contributed to bloom demise. The findings suggest the importance of energy and nutrients in promoting this K. longicanalis bloom and the failure of antimicrobial defense and competition of diatoms as the major bloom suppressor and terminator. This study provides novel insights into bloom-regulating mechanisms and the first transcriptomic data set of K. longicanalis, which will be a valuable resource and essential foundation for further elucidation of bloom regulators of this and related species of Kareniaceae in the future. IMPORTANCE HABs have increasingly occurred and impacted human health, aquatic ecosystems, and coastal economies. Despite great efforts, the factors that drive the development and termination of a bloom are poorly understood, largely due to inadequate in situ data about the physiology and metabolism of the causal species and the community. Using an integrative molecular ecological approach, we determined that heightened energy and nutrient acquisition promoted the bloom, while resource allocation in defense and failure to defend against grazing and microbial attacks likely prevented or terminated the bloom. Our findings reveal the differential roles of multiple abiotic and biotic environmental factors in driving the formation or demise of a toxic dinoflagellate bloom, suggesting the importance of a balanced biodiverse ecosystem in preventing a dinoflagellate bloom. The study also demonstrates the power of whole-assemblage metatranscriptomics coupled to DNA barcoding in illuminating plankton ecological processes and the underlying species and functional diversities.
Collapse
Affiliation(s)
- Liying Yu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Central Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Tangcheng Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hongfei Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Minglei Ma
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
15
|
Kang J, Zhang Z, Chen Y, Zhou Z, Zhang J, Xu N, Zhang Q, Lu T, Peijnenburg WJGM, Qian H. Machine learning predicts the impact of antibiotic properties on the composition and functioning of bacterial community in aquatic habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154412. [PMID: 35276139 DOI: 10.1016/j.scitotenv.2022.154412] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In the past decades, hundreds of antibiotics have been isolated from microbial metabolites or have been artificially synthesized for protecting humans, animals and crops from microbial infections. Their everlasting usage results in impacts on the microbial community composition and causes well-known collateral damage to the functioning of microbial communities. Nevertheless, the impact of different antibiotic properties on aquatic microbial communities have so far only poorly been disentangled. Here we characterized the environmental risk of 50 main kinds of antibiotics from 9 classes at a concentration of 10 μg/L for aquatic bacterial communities via metadata analysis combined with machine learning. Metadata analysis showed that the alpha diversity of the bacterial community increased only after treatment with aminoglycoside and β-lactam antibiotics, while its structure was changed by almost all tested antibiotics. The antibiotic treatment also disturbed the functions of the bacterial community, especially with regard to metabolic pathways, including amino acids, cofactors, vitamins, xenobiotics and carbohydrate metabolism. The critical characteristics (atom stereocenter count, number of hydrogen atoms in the antibiotic, and the adipose water coefficient) of antibiotics affecting the composition of the bacterial community in aquatic habitats were screened by machine learning. The key characteristics of antibiotics affecting the function bacterial communities were the number of hydrogen atoms, molecular weight and complexity. In summary, by developing machine learning models and by performing metadata analysis, this study provides the relationship between the properties of antibiotics and their adverse impacts on aquatic microbial communities from a macro perspective. The study also provides guidance for the rational design of antibiotics.
Collapse
Affiliation(s)
- Jian Kang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Yiling Chen
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Jinfeng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300, RA, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
16
|
Li D, He Y, Zheng Y, Zhang S, Zhang H, Lin L, Wang D. Metaproteomics reveals unique metabolic niches of dominant bacterial groups in response to rapid regime shifts during a mixed dinoflagellate bloom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153557. [PMID: 35114235 DOI: 10.1016/j.scitotenv.2022.153557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The dynamics of bacterial composition and metabolic activity during a distinct phytoplankton bloom have been reported. However, there is limited information on the bacterial community response to drastic environmental changes caused by species succession during a mixed-species bloom. This study investigated active bacterial groups and metabolic activity during a mixed bloom formed by dinoflagellates Prorocentrum obtusidens and Karenia mikimotoi using a metaproteomic approach. Bacterial community structure and dominant bacterial groups varied rapidly with the bloom regime shifts caused by species succession. Pseudoalteromonas and Vibrio dominated the bacterial community in the P. obtusidens-dominated regime, while Alteromonas, Cytophaga-Flavobacteria-Bacteroides (CFB) group, and marine Roseobacter clade (MRC) were the major contributors in other regimes, with the most abundant taxa being Alteromonas in the K. mikimotoi-dominated regime and the CFB group in the dissipation regime. Specific metabolic niches and unique substrate specificity of different bacterial groups enabled them to dominate and thrive in different bloom regimes. High metabolic plasticity in signal response, substrate utilization, motility, and adhesion are essential for bacteria to respond to drastic bloom regime shift, and the predominance of specific bacteria under unique bloom regimes may be the result of long-term coevolution between bacteria and bloom-forming phytoplankton species.
Collapse
Affiliation(s)
- Dongxu Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
| | - Yaohui He
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Zheng
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Shufeng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Hao Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
17
|
Pearman JK, Casas L, Michell C, Aldanondo N, Mojib N, Holtermann K, Georgakakis I, Curdia J, Carvalho S, Gusti A, Irigoien X. Comparative metagenomics of phytoplankton blooms after nutrient enrichment of oligotrophic marine waters. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.79208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Increasing anthropogenic pressures on the coastal marine environments impact these ecosystems via a variety of mechanisms including nutrient loading, leading to eutrophication and increases in algal blooms. Here, we use a metagenomics approach to assess the taxonomic and functional changes of the microbial community throughout a nutrient enriched mesocosm phytoplankton bloom. We tested four different nutrient treatments consisting of either nitrate and phosphate or nitrate, phosphate and silicate, administered on the first day or continuously for the first two weeks of the experiment. Our results show a shift in the taxonomic composition of the community over time that is dependent on the nutrient addition regime. Significant differences in the functional potential of the communities were detected, with an interaction between bloom period (pre-bloom, bloom and post-bloom) and nutrient treatment (p = 0.004). A sharp drop in functional similarity was observed in the first week in all treatments and after 20 days had not returned to pre-bloom levels. Changes within energy metabolism pathways showed a remarkable enrichment of the dissimilatory nitrate reduction pathway in the post-bloom period. Eukaryotic oxidative phosphorylation and photosynthetic antenna proteins were more abundant during the bloom, especially in the continuous treatment with silicate. Our results suggest that continuous (i.e. chronic) nutrient enrichment has a larger effect on the functioning of marine systems compared to a single (i.e acute) addition. A deep understanding of the functional and taxonomic shifts in the community during blooms is essential to reverse or mitigate human impacts on coastal environments.
Collapse
|
18
|
Moradinejad S, Trigui H, Maldonado JFG, Shapiro BJ, Terrat Y, Sauvé S, Fortin N, Zamyadi A, Dorner S, Prévost M. Metagenomic study to evaluate functional capacity of a cyanobacterial bloom during oxidation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Garlapati D, Munnooru K, Vinjamuri RR, Karri R, Mallavarapu VR. Distribution patterns and seasonal variations in phytoplankton communities of the hypersaline Pulicat lagoon, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61497-61512. [PMID: 34176045 DOI: 10.1007/s11356-021-15086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Phytoplankton structure and patterns are key components to forecast the net result of the gain and loss process that outline the resilience of the lagoon ecosystem. In order to understand the phytoplankton community structure and its relationship with the environmental variables in the shallow hypersaline Pulicat lagoon, east coast of India, observations were carried out during August 2018-January 2019 covering the three seasons: premonsoon (PrM), monsoon (M), and postmonsoon (PoM). The salinity of the lagoon varied with a minimum of 12.1 for the M and a maximum of 81.65 during the PoM. The clustering analysis performed on the phytoplankton abundance data separated the lagoon into three sectors: north sector (NS), central sector (CS), and south sector (SS). A total of 59 taxa/morphotypes from four taxonomic classes (Bacillariophyceae, Chlorophyceae, Cyanophyceae, and Dinophyceae) were recorded during the study period. The class Bacillariophyceae was dominant in the lagoon both spatially and temporally by 44.06% with Chaetoceros borealis as dominant species. Presence of characteristic species like Dunaliella sp. was observed in the higher salinity, whereas Pediastrum duplex and Scenedesmus sp. were dominant in the freshwater influx areas. The individual-based functional approach allowed grouping these taxa into 11 functional entities based on the derived 4 functional trait values (cell size, trophic regime, mobility, and coloniality). Formation of algal blooms of Protoperidinium sp. (3.3×105ind L-1) and Odentella sp. (2.8×105ind L-1) was observed in the SS during PoM as a result of reduced water exchange in the lagoon. During the same period, toxin-producing strains like Anabaena sp. and Nostoc sp. of Cyanophyceae were also recorded. Correlating the three sectors of the lake (NS, CS, and SS), it is observed that the physical, chemical, and biological properties of the lake varied continuously depending on the season and freshwater availability. Seasonal nutrient stoichiometry played a significant role in regulating the community structure and distribution pattern of phytoplankton communities of the lagoon.
Collapse
Affiliation(s)
- Deviram Garlapati
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Chennai, Tamil Nadu, 600100, India.
| | - Kumaraswami Munnooru
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Chennai, Tamil Nadu, 600100, India
| | - Ranga Rao Vinjamuri
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Chennai, Tamil Nadu, 600100, India
| | - Ramu Karri
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Chennai, Tamil Nadu, 600100, India
| | | |
Collapse
|
20
|
Insights into Alexandrium minutum Nutrient Acquisition, Metabolism and Saxitoxin Biosynthesis through Comprehensive Transcriptome Survey. BIOLOGY 2021; 10:biology10090826. [PMID: 34571703 PMCID: PMC8465370 DOI: 10.3390/biology10090826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Alexandrium minutum is one of the causing organisms for the occurrence of harmful algae bloom (HABs) in marine ecosystems. This species produces saxitoxin, one of the deadliest neurotoxins which can cause human mortality. However, molecular information such as genes and proteins catalog on this species is still lacking. Therefore, this study has successfully characterized several new molecular mechanisms regarding A. minutum environmental adaptation and saxitoxin biosynthesis. Ultimately, this study provides a valuable resource for facilitating future dinoflagellates’ molecular response to environmental changes. Abstract The toxin-producing dinoflagellate Alexandrium minutum is responsible for the outbreaks of harmful algae bloom (HABs). It is a widely distributed species and is responsible for producing paralytic shellfish poisoning toxins. However, the information associated with the environmental adaptation pathway and toxin biosynthesis in this species is still lacking. Therefore, this study focuses on the functional characterization of A. minutum unigenes obtained from transcriptome sequencing using the Illumina Hiseq 4000 sequencing platform. A total of 58,802 (47.05%) unigenes were successfully annotated using public databases such as NCBI-Nr, UniprotKB, EggNOG, KEGG, InterPRO and Gene Ontology (GO). This study has successfully identified key features that enable A. minutum to adapt to the marine environment, including several carbon metabolic pathways, assimilation of various sources of nitrogen and phosphorus. A. minutum was found to encode homologues for several proteins involved in saxitoxin biosynthesis, including the first three proteins in the pathway of saxitoxin biosynthesis, namely sxtA, sxtG and sxtB. The comprehensive transcriptome analysis presented in this study represents a valuable resource for understanding the dinoflagellates molecular metabolic model regarding nutrient acquisition and biosynthesis of saxitoxin.
Collapse
|
21
|
Harke MJ, Frischkorn KR, Hennon GMM, Haley ST, Barone B, Karl DM, Dyhrman ST. Microbial community transcriptional patterns vary in response to mesoscale forcing in the North Pacific Subtropical Gyre. Environ Microbiol 2021; 23:4807-4822. [PMID: 34309154 DOI: 10.1111/1462-2920.15677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
The physical and biological dynamics that influence phytoplankton communities in the oligotrophic ocean are complex, changing across broad temporal and spatial scales. Eukaryotic phytoplankton (e.g., diatoms), despite their relatively low abundance in oligotrophic waters, are responsible for a large component of the organic matter flux to the ocean interior. Mesoscale eddies can impact both microbial community structure and function, enhancing primary production and carbon export, but the mechanisms that underpin these dynamics are still poorly understood. Here, mesoscale eddy influences on the taxonomic diversity and expressed functional profiles of surface communities of microeukaryotes and particle-associated heterotrophic bacteria from the North Pacific Subtropical Gyre were assessed over 2 years (spring 2016 and summer 2017). The taxonomic diversity of the microeukaryotes significantly differed by eddy polarity (cyclonic versus anticyclonic) and between sampling seasons/years and was significantly correlated with the taxonomic diversity of particle-associated heterotrophic bacteria. The expressed functional profile of these taxonomically distinct microeukaryotes varied consistently as a function of eddy polarity, with cyclones having a different expression pattern than anticyclones, and between sampling seasons/years. These data suggest that mesoscale forcing, and associated changes in biogeochemistry, could drive specific physiological responses in the resident microeukaryote community, independent of species composition.
Collapse
Affiliation(s)
- Matthew J Harke
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA.,Gloucester Marine Genomics Institute, Gloucester, MA, USA
| | - Kyle R Frischkorn
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA
| | - Gwenn M M Hennon
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA.,College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, AK, USA
| | - Sheean T Haley
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA
| | - Benedetto Barone
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii at Manoa, Honolulu, HI, USA.,Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii at Manoa, Honolulu, HI, USA.,Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA.,Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
22
|
Wang D, Zhang S, Zhang H, Lin S. Omics study of harmful algal blooms in China: Current status, challenges, and future perspectives. HARMFUL ALGAE 2021; 107:102079. [PMID: 34456014 DOI: 10.1016/j.hal.2021.102079] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In the past two decades, the frequency, scale, and scope of harmful algal blooms (HABs) have increased significantly in the coastal waters of China. HABs have become a major ecological and environmental problem in China that seriously threatens the structure and function of marine ecosystems, the sustainable development of mariculture, and the health of human beings. Much effort has been devoted to studying HABs in China, and great achievements have been made in understanding the oceanographic and ecological mechanisms of HABs as well as the biology and physiological ecology of HAB-causing species. Furthermore, state-of-the-art omics technologies, such as transcriptomics and proteomics, have been used to elucidate the physiological responses of HAB-causing species to environmental changes, the biosynthesis of paralytic shellfish toxin, and the mechanisms underlying the formation of HABs. This review summarizes omics studies of HABs in China over the past few years and discusses challenges and future perspectives of HAB research.
Collapse
Affiliation(s)
- Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Shufeng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Hao Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science/College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
23
|
Zhang H, Xu HK, Zhang SF, Zhou Y, He YB, Amin SA, Chen JW, Yan KQ, Lin L, Liu SQ, Wang DZ. Metaproteomics reveals the molecular mechanism underlying bloom maintenance of a marine dinoflagellate under low ambient CO 2 and inorganic nutrients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144515. [PMID: 33453542 DOI: 10.1016/j.scitotenv.2020.144515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Dinoflagellate blooming periods are paradoxically characterized by high biomass growth rate and low ambient dissolved CO2 and inorganic nutrients, however, the underlying mechanisms linking cell growth and nutrient acquisition are poorly understood. Here, we compared metaproteomes of non-bloom, mid-blooming and late-blooming cells of a marine dinoflagellate Prorocentrum donghaiense. Cell division, metabolism of carbon, nitrogen, phosphorus, lipid, porphyrin and chlorophyll were more active in blooming cells than in non-bloom cells. Up-regulation of carbonic anhydrase, ribulose-1,5-bisphosphate carboxylase/oxygenase II, and C4-cycle proteins enhanced CO2 assimilation of P. donghaiense. Proteins participating in external organic nutrient acquisition and conversion, such as transporters for fatty acids, peptides and amino acids, external- and internal-phosphomonoester hydrolase, and diverse peptidases and amino acid transaminases, exhibited higher expression in blooming cells relative to non-bloom cells. Interestingly, dissolved organic nitrogen (DON) such as urea and aspartate significantly down-regulated expression and activity of carbon assimilation proteins except for RuBisCO form II, suggesting that DON provided sufficient carbon source which reduced the need to concentrate internal CO2. This study demonstrates that coupling of efficient CO2 assimilation with DON utilization are essential for bloom maintenance of P. donghaiense, and future efforts should be devoted to dissolved organic nutrients for prevention and management of dinoflagelllate blooms.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hong-Kai Xu
- BGI-Shenzhen, Beishan Industrial Zone 11(th) Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Youping Zhou
- Isotopomics in Chemical Biology & Shaanxi Key Laboratory of Chemical Additives for Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yan-Bin He
- BGI-Shenzhen, Beishan Industrial Zone 11(th) Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Shady A Amin
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi 129188, United Arab Emirates
| | - Jian-Wei Chen
- BGI-Shenzhen, Beishan Industrial Zone 11(th) Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Ke-Qiang Yan
- BGI-Shenzhen, Beishan Industrial Zone 11(th) Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Si-Qi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11(th) Building, Yantian District, Shenzhen, Guangdong 518083, China.
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
24
|
Zhang H, Zhou Y, Liu TQ, Yin XJ, Lin L, Lin Q, Wang DZ. Initiation of efficient C 4 pathway in response to low ambient CO 2 during the bloom period of a marine dinoflagellate. Environ Microbiol 2021; 23:3196-3211. [PMID: 33938118 DOI: 10.1111/1462-2920.15545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Dinoflagellates are important primary producers and major causative agents of harmful algal blooms in the global ocean. Despite the great ecological significance, the photosynthetic carbon acquisition by dinoflagellates is still poorly understood. The pathways of photosynthetic carbon assimilation in a marine dinoflagellate Prorocentrum donghaiense under both in situ and laboratory-simulated bloom conditions were investigated using a combination of metaproteomics, qPCR, stable carbon isotope and targeted metabolomics approaches. A rapid consumption of dissolved CO2 to generate high biomass was observed as the bloom proceeded. The carbon assimilation genes and proteins including intracellular carbonic anhydrase 2, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase and RubisCO as well as their enzyme activities were all highly expressed at the low CO2 level, indicating that C4 photosynthetic pathway functioned in the blooming P. donghaiense cells. Furthermore, δ13 C values and content of C4 compound (malate) significantly increased with the decreasing CO2 concentration. The transition from C3 to C4 pathway minimizes the internal CO2 leakage and guarantees efficient carbon fixation at the low CO2 level. This study demonstrates the existence of C4 photosynthetic pathway in a marine dinoflagellate and reveals its important complementary role to assist carbon assimilation for cell proliferation during the bloom period.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China.,CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Youping Zhou
- Isotopomics in Chemical Biology & Shaanxi Key Laboratory of Chemical Additives for Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Tian-Qi Liu
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Xi-Jie Yin
- Laboratory of Marine & Coastal Geology, MNR Third Institute of Oceanology, Xiamen, 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
25
|
Cao X, Guo Z, Wang H, Dong Y, Lu S, He QY, Sun X, Zhang G. Autoactivation of Translation Causes the Bloom of Prorocentrum donghaiense in Harmful Algal Blooms. J Proteome Res 2021; 20:3179-3187. [PMID: 33955761 DOI: 10.1021/acs.jproteome.1c00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Harmful algal blooms (HABs) are symptomatic of ecosystem imbalance, leading to major worldwide marine natural disasters, and seriously threaten the human health. Some HAB algae's exceptional genome size prohibited the genomic investigations on molecular mechanisms, for example, Prorocentrum. This study performed translatome sequencing (RNC-seq) for Prorocentrum donghaiense to assemble the translatome reference sequences on appropriate cost to enable the global molecular study at translatome and proteome levels. By analyzing the translatome and proteome of P. donghaiense in phosphor-rich, phosphor-deficient, and phosphor-restored media, we found massive up-regulation of energy and material production pathways in phosphor-rich conditions that enables autoactivation of translation, which is the key to its exponential growth in HABs. To break down the autoactivation, we demonstrated that mild translation delay using very low concentrations of cycloheximide efficiently controls the blooming without harming other aquatic organisms and humans. Our result provides a novel hint for controlling HABs and demonstrated the RNC-seq as an economic strategy on investigating functions of organisms with large and unknown genomes.
Collapse
Affiliation(s)
- Xin Cao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Zhong Guo
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Hualong Wang
- Key Laboratory of Eutrophication and Red Tide Prevention, Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Yuelei Dong
- Key Laboratory of Eutrophication and Red Tide Prevention, Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Songhui Lu
- Key Laboratory of Eutrophication and Red Tide Prevention, Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Gong Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
26
|
Joglar V, Álvarez-Salgado XA, Gago-Martinez A, Leao JM, Pérez-Martínez C, Pontiller B, Lundin D, Pinhassi J, Fernández E, Teira E. Cobalamin and microbial plankton dynamics along a coastal to offshore transect in the Eastern North Atlantic Ocean. Environ Microbiol 2021; 23:1559-1583. [PMID: 33346385 DOI: 10.1111/1462-2920.15367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022]
Abstract
Cobalamin (B12) is an essential cofactor that is exclusively synthesized by some prokaryotes while many prokaryotes and eukaryotes require an external supply of B12. The spatial and temporal availability of B12 is poorly understood in marine ecosystems. Field measurements of B12 along with a large set of ancillary biotic and abiotic factors were obtained during three oceanographic cruises in the NW Iberian Peninsula, covering different spatial and temporal scales. B12 concentrations were remarkably low (<1.5 pM) in all samples, being significantly higher at the subsurface Eastern North Atlantic Central Water than at shallower depths, suggesting that B12 supply in this water mass is greater than demand. Multiple regression models excluded B12 concentration as predictive variable for phytoplankton biomass or production, regardless of the presence of B12-requiring algae. Prokaryote production was the best predictor for primary production, and eukaryote community composition was better correlated with prokaryote community composition than with nutritional resources, suggesting that biotic interactions play a significant role in regulating microbial communities. Interestingly, co-occurrence network analyses based on 16S and 18S rRNA sequences allowed the identification of significant associations between potential B12 producers and consumers (e.g. Thaumarchaeota and Dynophyceae, or Amylibacter and Ostreococcus respectively), which can now be investigated using model systems in the laboratory.
Collapse
Affiliation(s)
- Vanessa Joglar
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVIGO), Spain.,Departamento Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, 36310, Spain
| | | | - Ana Gago-Martinez
- Food and Analytical Chemistry Department, Chemistry Faculty, Department of Analytical and Food Chemistry, University of Vigo, Vigo, Campus Universitario de Vigo, 36310, Spain
| | - Jose M Leao
- Food and Analytical Chemistry Department, Chemistry Faculty, Department of Analytical and Food Chemistry, University of Vigo, Vigo, Campus Universitario de Vigo, 36310, Spain
| | - Clara Pérez-Martínez
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Stuvaregatan 4, 39231, Sweden
| | - Benjamin Pontiller
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Stuvaregatan 4, 39231, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Stuvaregatan 4, 39231, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Stuvaregatan 4, 39231, Sweden
| | - Emilio Fernández
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVIGO), Spain.,Departamento Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, 36310, Spain
| | - Eva Teira
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVIGO), Spain.,Departamento Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, 36310, Spain
| |
Collapse
|
27
|
Paerl RW, Venezia RE, Sanchez JJ, Paerl HW. Picophytoplankton dynamics in a large temperate estuary and impacts of extreme storm events. Sci Rep 2020; 10:22026. [PMID: 33328574 PMCID: PMC7744581 DOI: 10.1038/s41598-020-79157-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/01/2020] [Indexed: 01/10/2023] Open
Abstract
Picophytoplankton (PicoP) are increasingly recognized as significant contributors to primary productivity and phytoplankton biomass in coastal and estuarine systems. Remarkably though, PicoP composition is unknown or not well-resolved in several large estuaries including the semi-lagoonal Neuse River Estuary (NRE), a tributary of the second largest estuary-system in the lower USA, the Pamlico-Albemarle Sound. The NRE is impacted by extreme weather events, including recent increases in precipitation and flooding associated with tropical cyclones. Here we examined the impacts of moderate to extreme (Hurricane Florence, September 2018) precipitation events on NRE PicoP abundances and composition using flow cytometry, over a 1.5 year period. Phycocyanin-rich Synechococcus-like cells were the most dominant PicoP, reaching ~ 106 cells mL-1, which highlights their importance as key primary producers in this relatively long residence-time estuary. Ephemeral "blooms" of picoeukaryotic phytoplankton (PEUK) during spring and after spikes in river flow were also detected, making PEUK periodically major contributors to PicoP biomass (up to ~ 80%). About half of the variation in PicoP abundance was explained by measured environmental variables. Temperature explained the most variation (24.5%). Change in total dissolved nitrogen concentration, an indication of increased river discharge, explained the second-most variation in PicoP abundance (15.9%). The short-term impacts of extreme river discharge from Hurricane Florence were particularly evident as PicoP biomass was reduced by ~ 100-fold for more than 2 weeks. We conclude that precipitation is a highly influential factor on estuarine PicoP biomass and composition, and show how 'wetter' future climate conditions will have ecosystem impacts down to the smallest of phytoplankton.
Collapse
Affiliation(s)
- Ryan W Paerl
- Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 27695-8208, USA.
| | - Rebecca E Venezia
- Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 27695-8208, USA
| | - Joel J Sanchez
- Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 27695-8208, USA
| | - Hans W Paerl
- Institute of Marine Sciences, University of North Carolina At Chapel Hill, Morehead City, NC, 28557, USA
| |
Collapse
|
28
|
Gong W, Hall N, Paerl H, Marchetti A. Phytoplankton composition in a eutrophic estuary: Comparison of multiple taxonomic approaches and influence of environmental factors. Environ Microbiol 2020; 22:4718-4731. [PMID: 32881227 DOI: 10.1111/1462-2920.15221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 01/13/2023]
Abstract
To assess the comparability between taxonomic identification methods for phytoplankton, multiple approaches were used to characterize phytoplankton community composition within the Neuse River Estuary (NRE), North Carolina. Small subunit 18S rRNA gene sequencing and accessory pigment analysis displayed similar trends, indicating chlorophytes were the dominant microalgal group during most of the year, whereas results from microscopic cell counts, biovolume analysis and metatranscriptomics suggested diatom and dinoflagellate-dominated communities. Spatial environmental gradients drove variation in taxonomic composition due to preferences for specific environmental conditions among different microalgal groups. Cryptophytes were a greater proportion of the phytoplankton community within high nutrient, fresher environments whereas diatoms and dinoflagellates dominated higher salinity sections of the estuary. This study provides a detailed examination of phytoplankton communities associated with environmental gradients present in the NRE. The high level of taxonomic resolution offered by DNA sequencing (i.e., species to sub-species level) provides a better understanding of population dynamics at the base of estuarine food webs.
Collapse
Affiliation(s)
- Weida Gong
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Murray Hall, 123 South Rd. Chapel Hill, NC 27514, USA
| | - Nathan Hall
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA
| | - Hans Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA
| | - Adrian Marchetti
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Murray Hall, 123 South Rd. Chapel Hill, NC 27514, USA
| |
Collapse
|
29
|
Zhou J, Lao YM, Song JT, Jin H, Zhu JM, Cai ZH. Temporal heterogeneity of microbial communities and metabolic activities during a natural algal bloom. WATER RESEARCH 2020; 183:116020. [PMID: 32653764 DOI: 10.1016/j.watres.2020.116020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Elucidating the interactions between algae and associated microbial communities is critical for understanding the mechanisms that mediate the dynamic of harmful algal blooms (HABs) in marine environment. However, the microbial functional profiles and their biogeochemical potential in HABs process remains elusive, especially during a complete natural HAB cycle. Here, we used pyrosequencing and functional gene array (GeoChip) to investigate microbial community dynamics and metabolic potential during a natural dinoflagellate (Noctiluca scintillans) bloom. The results shown that bacterioplankton exhibited significant temporal heterogeneity over the course of the bloom stages. Microbial succession was co-driven by environmental parameters and biotic interactions. The functional analysis revealed significant variations in microbial metabolism during matter cycling. At bloom onset-stage, metabolic potential associated with iron oxidation and transport was elevated. Carbon fixation and degradation, denitrification, phosphorus acquisition, and sulfur transfer/oxidation were significantly enhanced at the plateau stage. During the decline and terminal stages, oxidative stress, lysis of compounds, and toxin degradation & protease synthesis increased. This work reveal phycosphere microorganisms can enhanced organic C decomposition capacity, altered N assimilation rate and S/P turnover efficiency, and balancing of the Fe budget during HAB process. The ecological linkage analysis has further shown that microbial composition and functional potential were significantly linked to algal blooms occurrence. It suggest that structural variability and functional plasticity of microbial communities influence HAB trajectory.
Collapse
Affiliation(s)
- Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Yong-Min Lao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Jun-Ting Song
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Hui Jin
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Jian-Ming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China.
| |
Collapse
|
30
|
Zhou J, Zhang BY, Yu K, Du XP, Zhu JM, Zeng YH, Cai ZH. Functional profiles of phycospheric microorganisms during a marine dinoflagellate bloom. WATER RESEARCH 2020; 173:115554. [PMID: 32028248 DOI: 10.1016/j.watres.2020.115554] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/14/2019] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Harmful algal blooms (HABs) are an ecological concern but relatively few studies have investigated the functional potential of bacterioplankton over a complete algal bloom cycle, which is critical for determining their contribution to the fate of algal blooms. To address this point, we carried out a time-series metagenomic analysis of the functional features of microbial communities at three different Gymnodinium catenatum bloom stages (pre-, peak-, and post-bloom). Different microbial composition were observed during the blooming stages. The environmental parameters and correlation networks co-contribute to microbial variability, and the former explained 38.4% of total variations of the bacterioplankton community composition. Functionally, a range of pathways involved in carbon, nitrogen, phosphorus and sulfur cycling were significantly different during the various HAB stages. Genes associated with carbohydrate-active enzymes, denitrification, and iron oxidation were enriched at the pre-bloom stage; genes involved in reductive citrate cycle for carbon fixation, carbon degradation, nitrification and phosphate transport were enhanced at the peak stage; and relative gene abundance related to sulfur oxidation, vitamin synthesis, and iron transport and storage was increased at the post-bloom stage. The ecological linkage analysis has shown that microbial functional potential especially the C/P/Fe metabolism were significantly linked to the fate of the algal blooms. Taken together, our results demonstrated that microorganisms displayed successional patterns not only at the community level, but also in the metabolic potential on HAB's progression. This work contributes to a growing understanding of microbial structural elasticity and functional plasticity and shed light on the potential mechanisms of microbial-mediated HAB trajectory.
Collapse
Affiliation(s)
- Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; The Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Bo-Ya Zhang
- The School of Environment and Energy, Graduate School at Shenzhen, Peking University, Guangdong Province, Shenzhen, China
| | - Ke Yu
- The School of Environment and Energy, Graduate School at Shenzhen, Peking University, Guangdong Province, Shenzhen, China
| | - Xiao-Peng Du
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; The Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jian-Ming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; The Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yan-Hua Zeng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; The Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; The Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
31
|
Lu T, Qu Q, Lavoie M, Pan X, Peijnenburg WJGM, Zhou Z, Pan X, Cai Z, Qian H. Insights into the transcriptional responses of a microbial community to silver nanoparticles in a freshwater microcosm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113727. [PMID: 31838393 DOI: 10.1016/j.envpol.2019.113727] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 05/08/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used because of their excellent antibacterial properties. They are, however, easily discharged into the water environment, causing potential adverse environmental effects. Meta-transcriptomic analyses are helpful to study the transcriptional response of prokaryotic and eukaryotic aquatic microorganisms to AgNPs. In the present study, microcosms were used to investigate the toxicity of AgNPs to a natural aquatic microbial community. It was found that a 7-day exposure to 10 μg L-1 silver nanoparticles (AgNPs) dramatically affected the structure of the microbial community. Aquatic micro eukaryota (including eukaryotic algae, fungi, and zooplankton) and bacteria (i.e., heterotrophic bacteria and cyanobacteria) responded differently to the AgNPs stress. Meta-transcriptomic analyses demonstrated that eukaryota could use multiple cellular strategies to cope with AgNPs stress, such as enhancing nitrogen and sulfur metabolism, over-expressing genes related to translation, amino acids biosynthesis, and promoting bacterial-eukaryotic algae interactions. By contrast, bacteria were negatively affected by AgNPs with less signs of detoxification than in case of eukaryota; various pathways related to energy metabolism, DNA replication and genetic repair were seriously inhibited by AgNPs. As a result, eukaryotic algae (mainly Chlorophyta) dominated over cyanobacteria in the AgNPs treated microcosms over the 7-d exposure. The present study helps to understand the effects of AgNPs on aquatic microorganisms and provides insights into the contrasting AgNPs toxicity in eukaryota and bacteria.
Collapse
Affiliation(s)
- Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Michel Lavoie
- Quebec-Ocean and Takuvik Joint International Research Unit, Université Laval, Québec, G1VOA6, Canada
| | - Xiangjie Pan
- Zhejiang Fangyuan Test Group Co Ltd, Hangzhou, 310013, Zhejiang, PR China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300, RA, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Zhiqiang Cai
- Laboratory of Applied Microbiology and Biotechnology, School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, 213164, PR China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.
| |
Collapse
|
32
|
Pechkovskaya SA, Knyazev NA, Matantseva OV, Emelyanov AK, Telesh IV, Skarlato SO, Filatova NA. Dur3 and nrt2 genes in the bloom-forming dinoflagellate Prorocentrum minimum: Transcriptional responses to available nitrogen sources. CHEMOSPHERE 2020; 241:125083. [PMID: 31683425 DOI: 10.1016/j.chemosphere.2019.125083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/06/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The increasing inflow of nitrogen (N) substrates into marine nearshore ecosystems induces proliferation of harmful algal blooms (HABs) of dinoflagellates, such as potentially toxic invasive species Prorocentrum minimum. In this study, we estimated the influence of NO3-, NH4+ and urea on transcription levels and urea transporter dur3 and nitrate transporter nrt2 genes expression in these dinoflagellates. We identified dur3 and nrt2 genes sequences in unannotated transcriptomes of P. minimum and other dinoflagellates presented in MMETSP database. Phylogenetic analysis showed that these genes of dinoflagellates clustered to the distinct clade demonstrating evolutionary relationship with the other known dur3 and nrt2 genes of microalgae. The evaluation of expression levels of dur3 and nrt2 genes by RT-qPCR revealed their sensitivity to input of the studied N sources. Dur3 expression levels were downregulated after the supplementation of additional N sources and were 1.7-2.6-fold lower than in the nitrate-grown culture. Nrt2 expression levels decreased 1.9-fold in the presence of NH4+. We estimated total RNA and DNA synthesis rates by the analysis of incorporation of 3H-thymidine and 3H-uridine in batch and continuous cultures. Addition of N compounds did not affect the DNA synthesis rates. Transcription levels increased up to 12.5-fold after the N supplementation in urea-limited treatments. Investigation of various nitrogen sources as biomarkers of dinoflagellate proliferation due to their differentiated impact on expression of dur3 and nrt2 genes and transcription rates in P. minimum cells allowed concluding about high potential of the studied parameters for future modeling of HABs under global N pollution.
Collapse
Affiliation(s)
- S A Pechkovskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - N A Knyazev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia; St. Petersburg Academic University of Nanotechnology Research and Education Centre, St. Petersburg, Russia
| | - O V Matantseva
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - A K Emelyanov
- Pavlov First State Medical University of St. Petersburg, St. Petersburg, Russia
| | - I V Telesh
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia; Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia.
| | - S O Skarlato
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - N A Filatova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
33
|
Sprecher BN, Zhang H, Lin S. Nuclear Gene Transformation in the Dinoflagellate Oxyrrhis marina. Microorganisms 2020; 8:E126. [PMID: 31963386 PMCID: PMC7022241 DOI: 10.3390/microorganisms8010126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
The lack of a robust gene transformation tool that allows proper expression of foreign genes and functional testing for the vast number of nuclear genes in dinoflagellates has greatly hampered our understanding of the fundamental biology in this ecologically important and evolutionarily unique lineage of microeukaryotes. Here, we report the development of a dinoflagellate expression vector containing various DNA elements from phylogenetically separate dinoflagellate lineages, an electroporation protocol, and successful expression of introduced genes in an early branching dinoflagellate, Oxyrrhis marina. This protocol, involving the use of Lonza's Nucleofector and a codon-optimized antibiotic resistance gene, has been successfully used to produce consistent results in several independent experiments for O. marina. It is anticipated that this protocol will be adaptable for other dinoflagellates and will allow characterization of many novel dinoflagellate genes.
Collapse
Affiliation(s)
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Rd, Groton, CT 06340, USA;
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Rd, Groton, CT 06340, USA;
| |
Collapse
|
34
|
Yu L, Zhang Y, Li M, Wang C, Lin X, Li L, Shi X, Guo C, Lin S. Comparative metatranscriptomic profiling and microRNA sequencing to reveal active metabolic pathways associated with a dinoflagellate bloom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134323. [PMID: 31522044 DOI: 10.1016/j.scitotenv.2019.134323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Harmful algal blooms (HABs) have increased as a result of global climate and environmental changes, exerting increasing impacts on the aquatic ecosystem, coastal economy, and human health. Despite great research efforts, our understanding on the drivers of HABs is still limited in part because HAB species' physiology is difficult to probe in situ. Here, we used molecular ecological analyses to characterize a dinoflagellate bloom at Xiamen Harbor, China. Prorocentrum donghaiense was identified as the culprit, which nutrient bioassays showed were not nutrient-limited. Metatranscriptome profiling revealed that P. donghaiense highly expressed genes related to N- and P-nutrient uptake, phagotrophy, energy metabolism (photosynthesis, oxidative phophorylation, and rhodopsin) and carbohydrate metabolism (glycolysis/gluconeogenesis, TCA cycle and pentose phosphate) during the bloom. Many genes in P. donghaiense were up-regulated at night, including phagotrophy and environmental communication genes, and showed active expression in mitosis. Eight microbial defense genes were up-regulated in the bloom compared with previously analyzed laboratory cultures. Furthermore, 76 P. donghaiense microRNA were identified from the bloom, and their target genes exhibited marked differences in amino acid metabolism between the bloom and cultures and the potential of up-regulated antibiotic and cell communication capabilities. These findings, consistent with and complementary to recent reports, reveal major metabolic processes in P. donghaiense potentially important for bloom formation and provide a gene repertoire for developing bloom markers in future research.
Collapse
Affiliation(s)
- Liying Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yaqun Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Meizhen Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xinguo Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; College of Biological Science and Engineering, Fuzhou University, Fujian 350116, China
| | - Chentao Guo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| |
Collapse
|
35
|
Hennon GMM, Dyhrman ST. Progress and promise of omics for predicting the impacts of climate change on harmful algal blooms. HARMFUL ALGAE 2020; 91:101587. [PMID: 32057337 DOI: 10.1016/j.hal.2019.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 06/10/2023]
Abstract
Climate change is predicted to increase the severity and prevalence of harmful algal blooms (HABs). In the past twenty years, omics techniques such as genomics, transcriptomics, proteomics and metabolomics have transformed that data landscape of many fields including the study of HABs. Advances in technology have facilitated the creation of many publicly available omics datasets that are complementary and shed new light on the mechanisms of HAB formation and toxin production. Genomics have been used to reveal differences in toxicity and nutritional requirements, while transcriptomics and proteomics have been used to explore HAB species responses to environmental stressors, and metabolomics can reveal mechanisms of allelopathy and toxicity. In this review, we explore how omics data may be leveraged to improve predictions of how climate change will impact HAB dynamics. We also highlight important gaps in our knowledge of HAB prediction, which include swimming behaviors, microbial interactions and evolution that can be addressed by future studies with omics tools. Lastly, we discuss approaches to incorporate current omics datasets into predictive numerical models that may enhance HAB prediction in a changing world. With the ever-increasing omics databases, leveraging these data for understanding climate-driven HAB dynamics will be increasingly powerful.
Collapse
Affiliation(s)
- Gwenn M M Hennon
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States; College of Fisheries and Ocean Sciences University of Alaska Fairbanks Fairbanks, AK, United States
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States; Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States.
| |
Collapse
|
36
|
Zhang SF, Yuan CJ, Chen Y, Lin L, Wang DZ. Transcriptomic response to changing ambient phosphorus in the marine dinoflagellate Prorocentrum donghaiense. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1037-1047. [PMID: 31539936 DOI: 10.1016/j.scitotenv.2019.07.291] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Dinoflagellates represent major contributors to the harmful algal blooms in the oceans. Phosphorus (P) is an essential macronutrient that limits the growth and proliferation of dinoflagellates. However, the specific molecular mechanisms involved in the P acclimation of dinoflagellates remain poorly understood. Here, the transcriptomes of a dinoflagellate Prorocentrum donghaiense grown under inorganic P-replete, P-deficient, and inorganic- and organic P-resupplied conditions were compared. Genes encoding low- and high-affinity P transporters were significantly down-regulated in the P-deficient cells, while organic P utilization genes were significantly up-regulated, indicating strong ability of P. donghaiense to utilize organic P. Up-regulation of membrane phospholipid catabolism and endocytosis provided intracellular and extracellular organic P for the P-deficient cells. Physiological responses of P. donghaiense to dissolved inorganic P (DIP) or dissolved organic P (DOP) resupply exhibited insignificant differences. However, the corresponding transcriptomic responses significantly differed. Although the expression of multiple genes was significantly altered after DIP resupplementation, few biological processes varied. In contrast, various metabolic processes associated with cell growth, such as translation, transport, nucleotide, carbohydrate and lipid metabolisms, were significantly altered in the DOP-resupplied cells. Our results indicated that P. donghaiense evolved diverse DOP utilization strategies to adapt to low P environments, and that DOPs might play critical roles in the P. donghaiense bloom formation.
Collapse
Affiliation(s)
- Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Chun-Juan Yuan
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ying Chen
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
37
|
Du B, Liu G, Ke M, Zhang Z, Zheng M, Lu T, Sun L, Qian H. Proteomic analysis of the hepatotoxicity of Microcystis aeruginosa in adult zebrafish (Danio rerio) and its potential mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113019. [PMID: 31419664 DOI: 10.1016/j.envpol.2019.113019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/03/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Microcystis aeruginosa is one of the main species of cyanobacteria that causes water blooms. M. aeruginosa can release into the water several types of microcystins (MCs), which are harmful to aquatic organisms and even humans. However, few studies have investigated the hepatotoxicity of M. aeruginosa itself in zebrafish in environments that simulate natural aquatic systems. The objective of this study was to evaluate the hepatotoxicity of M. aeruginosa in adult zebrafish (Danio rerio) after short-term (96 h) exposure and to elucidate the potential underlying mechanisms. Distinct histological changes in the liver, such as enlargement of the peripheral nuclei and sinusoids and the appearance of fibroblasts, were observed in zebrafish grown in M. aeruginosa culture. In addition, antioxidant enzyme activity was activated and protein phosphatase (PP) activity was significantly decreased with increasing microalgal density. A proteomic analysis revealed alterations in a number of protein pathways, including ribosome translation, immune response, energy metabolism and oxidative phosphorylation pathways. Western blot and real-time PCR analyses confirmed the results of the proteomic analysis. All results indicated that M. aeruginosa could disrupt hepatic functions in adult zebrafish, thus highlighting the necessity of ecotoxicity assessments for M. aeruginosa at environmentally relevant densities.
Collapse
Affiliation(s)
- Benben Du
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Guangfu Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Meng Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
38
|
Zhang H, He YB, Wu PF, Zhang SF, Xie ZX, Li DX, Lin L, Chen F, Wang DZ. Functional Differences in the Blooming Phytoplankton Heterosigma akashiwo and Prorocentrum donghaiense Revealed by Comparative Metaproteomics. Appl Environ Microbiol 2019; 85:e01425-19. [PMID: 31375486 PMCID: PMC6752027 DOI: 10.1128/aem.01425-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/07/2019] [Indexed: 12/21/2022] Open
Abstract
Phytoplankton blooms are natural phenomena in the ocean, which are the results of rapid cell growth of some phytoplankton species in a unique environment. However, little is known about the molecular events occurring during the bloom. Here, we compared metaproteomes of two phytoplankton Heterosigma akashiwo and Prorocentrum donghaiense in the coastal East China Sea. H. akashiwo and P. donghaiense accounted for 7.82% and 4.74% of the phytoplankton community protein abundances in the nonbloom sample, whereas they contributed to 60.13% and 78.09%, respectively, in their individual blooming samples. Compared with P. donghaiense, H. akashiwo possessed a significantly higher abundance of light-harvesting complex proteins, carbonic anhydrasem and RuBisCO. The blooming H. akashiwo cells expressed more proteins related to external nutrient acquisition, such as bicarbonate transporter SLC4, ammonium transporter, nitrite transporter, and alkaline phosphatase, while the blooming P. donghaiense cells highly expressed proteins related to extra- and intracellular organic nutrient utilization, such as amino acid transporter, 5'-nucleotidase, acid phosphatase, and tripeptidyl-peptidase. The strong capabilities of light harvesting, as well as acquisition and assimilation of inorganic carbon, nitrogen, and phosphorus, facilitated the formation of the H. akashiwo bloom under the high turbidity and inorganic nutrient-sufficient condition, whereas the competitive advantages in organic nutrient acquisition and reallocation guaranteed the occurrence of the P. donghaiense bloom under the inorganic nutrient-insufficient condition. This study highlights the power of metaproteomics for revealing the underlying molecular behaviors of different coexisting phytoplankton species and advances our knowledge on the formation of phytoplankton blooms.IMPORTANCE A deep understanding of the mechanisms driving bloom formation is a prerequisite for effective bloom management. Metaproteomics was applied in this study to reveal the adaptive and responsive strategies of two coexisting phytoplankton species, H. akashiwo and P. donghaiense, during their bloom periods. Metabolic features and niche divergence in light harvesting, as well as carbon, nitrogen, and phosphorus acquisition and assimilation likely promoted the bloom occurrence under different environments. The molecular behaviors of coexisting bloom-causing species will give clues for bloom monitoring and management in the oceans.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yan-Bin He
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Peng-Fei Wu
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dong-Xu Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
39
|
Wang X, Niu X, Chen Y, Sun Z, Han A, Lou X, Ge J, Li X, Yang Y, Jian J, Gonçalves RJ, Guan W. Transcriptome sequencing of a toxic dinoflagellate, Karenia mikimotoi subjected to stress from solar ultraviolet radiation. HARMFUL ALGAE 2019; 88:101640. [PMID: 31582153 DOI: 10.1016/j.hal.2019.101640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Solar ultraviolet radiation (UVR) is a stress factor in aquatic environments and may act directly or indirectly on orgnisms in the upper layers of the water column. However, UVR effects are usually species-specific and difficult to extrapolate. Here we use the HAB-forming, toxic dinoflagellate Karenia mikimotoi (which was found to be relatively resistant in previous studies) to investigate its transcriptional responses to a one-week UVR exposure. For this, batch cultures of K. mikimotoi were grown with and without UVR, and their transcriptomes (generated via RNAseq technology) were compared. RNA-seq generated 45.31 million reads, which were further assembled to 202600 unigenes (>300bp). Among these, ca. 61% were annotated with NCBI, NR, GO, KOG, PFAM, Swiss-Prot, and KEGG database. Transcriptomic analysis revealed 722 differentially expressed unigenes (DEGs, defined as being within a |log2 fold change| ≥ 2 and padj < 0.05) responding to solar UVR, which were only 0.36% of all unigenes. 716 unigenes were down-regulated, and only 6 unigenes were up-regulated in the UVR compared to non-UVR treatment. KEGG pathway further analysis revealed DEGs were involved in the different pathway; genes involved in the ribosome, endocytosis and steroid biosynthesis pathways were highly down-regulated, but this was not the case for those involved in the energy metabolisms (including photosynthesis, oxidative phosphorylation) which may contribute to the sustainable growth observed in UVR treatment. The up-regulated expression of both zinc-finger proteins (ZFPs) and ribosomal protein L11 (RPL11) may be one of the acclimated mechanisms against UVR. In addition, this work identified down-regulated genes involved in fatty acid degradation and the hydrophobic branched chain amino acids (e.g., Valine, leucine, and isoleucine), which act as structural components of cell membranes modulating lipid homeostasis or turnover. In conclusion, the present study suggests that the toxic dinoflagellate K. mikimotoi has limited transcriptomic regulation but confirms that it appears as a tolerant species in response to solar UVR. These findings expand current knowledge of gene expression in HAB-forming species in response to natural environment factors such as solar radiation.
Collapse
Affiliation(s)
- Xinjie Wang
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China; Marine Biology Institute, Shantou University, Shantou, Guangdong 515063 China
| | - Xiaoqin Niu
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Yiji Chen
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Zhewei Sun
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Axiang Han
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Xiayuan Lou
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Jingke Ge
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Xuanwen Li
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Yuqian Yang
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Jianbo Jian
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063 China
| | - Rodrigo J Gonçalves
- Laboratorio de Oceanografía Biológica (LOBio), Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). U9120ACD, Puerto Madryn, Argentina
| | - Wanchun Guan
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China.
| |
Collapse
|
40
|
Strategies among phytoplankton in response to alleviation of nutrient stress in a subtropical gyre. ISME JOURNAL 2019; 13:2984-2997. [PMID: 31439897 DOI: 10.1038/s41396-019-0489-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/07/2019] [Accepted: 08/02/2019] [Indexed: 11/08/2022]
Abstract
Despite generally low primary productivity and diatom abundances in oligotrophic subtropical gyres, the North Atlantic Subtropical Gyre (NASG) exhibits significant diatom-driven carbon export on an annual basis. Subsurface pulses of nutrients likely fuel brief episodes of diatom growth, but the exact mechanisms utilized by diatoms in response to these nutrient injections remain understudied within near-natural settings. Here we simulated delivery of subsurface nutrients and compare the response among eukaryotic phytoplankton using a combination of physiological techniques and metatranscriptomics. We show that eukaryotic phytoplankton groups exhibit differing levels of transcriptional responsiveness and expression of orthologous genes in response to release from nutrient limitation. In particular, strategies for use of newly delivered nutrients are distinct among phytoplankton groups. Diatoms channel new nitrate to growth-related strategies while physiological measurements and gene expression patterns of other groups suggest alternative strategies. The gene expression patterns displayed here provide insights into the cellular mechanisms that underlie diatom subsistence during chronic nitrogen-depleted conditions and growth upon nutrient delivery that can enhance carbon export from the surface ocean.
Collapse
|
41
|
Omics Analysis for Dinoflagellates Biology Research. Microorganisms 2019; 7:microorganisms7090288. [PMID: 31450827 PMCID: PMC6780300 DOI: 10.3390/microorganisms7090288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023] Open
Abstract
Dinoflagellates are important primary producers for marine ecosystems and are also responsible for certain essential components in human foods. However, they are also notorious for their ability to form harmful algal blooms, and cause shellfish poisoning. Although much work has been devoted to dinoflagellates in recent decades, our understanding of them at a molecular level is still limited owing to some of their challenging biological properties, such as large genome size, permanently condensed liquid-crystalline chromosomes, and the 10-fold lower ratio of protein to DNA than other eukaryotic species. In recent years, omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, have been applied to the study of marine dinoflagellates and have uncovered many new physiological and metabolic characteristics of dinoflagellates. In this article, we review recent application of omics technologies in revealing some of the unusual features of dinoflagellate genomes and molecular mechanisms relevant to their biology, including the mechanism of harmful algal bloom formations, toxin biosynthesis, symbiosis, lipid biosynthesis, as well as species identification and evolution. We also discuss the challenges and provide prospective further study directions and applications of dinoflagellates.
Collapse
|
42
|
Lu T, Zhu Y, Ke M, Peijnenburg WJGM, Zhang M, Wang T, Chen J, Qian H. Evaluation of the taxonomic and functional variation of freshwater plankton communities induced by trace amounts of the antibiotic ciprofloxacin. ENVIRONMENT INTERNATIONAL 2019; 126:268-278. [PMID: 30825745 DOI: 10.1016/j.envint.2019.02.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Ciprofloxacin (CIP), one of the most frequently detected antibiotics in water systems, has become an aquatic contaminant because of improper disposal and excretion by humans and animals. It is still unknown how trace amounts of CIP affect the aquatic microbial community diversity and function. We therefore investigated the effects of CIP on the structure and function of freshwater microbial communities via 16S/18S rRNA gene sequencing and metatranscriptomic analyses. CIP treatment (7 μg/L) did not significantly alter the physical and chemical condition of the water body as well as the composition of the main species in the community, but slightly increased the relative abundance of cyanobacteria and decreased the relative abundance of eukaryotes. Metatranscriptomic results showed that bacteria enhanced their phosphorus transport and photosynthesis after CIP exposure. The replication, transcription, translation and cell proliferation were all suppressed in eukaryotes, while the bacteria were not affected in any of these aspects. This interesting phenomenon was the exact opposite to both the antibacterial property of CIP and its safety for eukaryotes. We hypothesize that reciprocal and antagonistic interactions in the microcosm both contribute to this result: cyanobacteria may enhance their tolerance to CIP through benefiting from cross-feeding and some secreted substances that withstand bacterial CIP stress would also affect eukaryotic growth. The present study thus indicates that a detailed assessment of the aquatic ecotoxicity of CIP is essential, as the effects of CIP are much more complicated in microbial communities than in monocultures. CIP will continue to be an environmental contaminant due to its wide usage and production and more attention should be given to the negative effects of antibiotics as well as other bioactive pollutants on aquatic environments.
Collapse
Affiliation(s)
- Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Youchao Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, RA, Leiden 2300, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Meng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tingzhang Wang
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou 310012, China
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
43
|
ABC Transporters in Prorocentrum lima and Their Expression Under Different Environmental Conditions Including Okadaic Acid Production. Mar Drugs 2019; 17:md17050259. [PMID: 31052268 PMCID: PMC6563122 DOI: 10.3390/md17050259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/19/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022] Open
Abstract
Prorocentrum lima is a typical benthic toxic dinoflagellate, which can produce phycotoxins such as okadaic acid (OA). In this study, we identified three ABC transporter genes (ABCB1, ABCC1 and ABCG2) and characterized their expression patterns, as well as OA production under different environmental conditions in P. lima. We found that the three ABC transporters all showed high identity with related ABC proteins from other species, and contained classical features of ABC transport proteins. Among them, ABCG2 was a half size transporter. The three ABC transporter genes displayed various expression profiles under different conditions. The high concentration of Cu2+ could up-regulate ABCB1, ABCC1 and ABCG2 transcripts in P. lima, suggesting the potential defensive role of ABC transporters against metal ions in surrounding waters. Cu2+, in some concentration, could induce OA production; meanwhile, tributyltin inhibited OA accumulation. The grazer Artemia salina could induce OA production, and P. lima displayed some toxicity to the grazer, indicating the possibility of OA as an anti-grazing chemical. Collectively, our results revealed intriguing data about OA production and the expression patterns of three ABC transporter genes. However, we could not find any significant correlation between OA production and expression pattern of the three ABC transporters in P. lima. Our results might provide new molecular insights on the defensive responses of P. lima to the surrounding environment.
Collapse
|
44
|
Lin S, Yu L, Zhang H. Transcriptomic Responses to Thermal Stress and Varied Phosphorus Conditions in Fugacium kawagutii. Microorganisms 2019; 7:microorganisms7040096. [PMID: 30987028 PMCID: PMC6517890 DOI: 10.3390/microorganisms7040096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/18/2019] [Accepted: 03/30/2019] [Indexed: 01/08/2023] Open
Abstract
Coral reef-associated Symbiodiniaceae live in tropical and oligotrophic environments and are prone to heat and nutrient stress. How their metabolic pathways respond to pulses of warming and phosphorus (P) depletion is underexplored. Here, we conducted RNA-seq analysis to investigate transcriptomic responses to thermal stress, phosphate deprivation, and organic phosphorus (OP) replacement in Fugacium kawagutii. Using dual-algorithm (edgeR and NOIseq) to remedy the problem of no replicates, we conservatively found 357 differentially expressed genes (DEGs) under heat stress, potentially regulating cell wall modulation and the transport of iron, oxygen, and major nutrients. About 396 DEGs were detected under P deprivation and 671 under OP utilization, both mostly up-regulated and potentially involved in photosystem and defensome, despite different KEGG pathway enrichments. Additionally, we identified 221 genes that showed relatively stable expression levels across all conditions (likely core genes), mostly catalytic and binding proteins. This study reveals a wide range of, and in many cases previously unrecognized, molecular mechanisms in F. kawagutii to cope with heat stress and phosphorus-deficiency stress. Their quantitative expression dynamics, however, requires further verification with triplicated experiments, and the data reported here only provide clues for generating testable hypotheses about molecular mechanisms underpinning responses and adaptation in F. kawagutii to temperature and nutrient stresses.
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, China.
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| |
Collapse
|
45
|
Zhang SF, Chen Y, Xie ZX, Zhang H, Lin L, Wang DZ. Unraveling the molecular mechanism of the response to changing ambient phosphorus in the dinoflagellate Alexandrium catenella with quantitative proteomics. J Proteomics 2019; 196:141-149. [PMID: 30414514 DOI: 10.1016/j.jprot.2018.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
Abstract
Phosphorus (P) is a key macronutrient limiting cell growth and bloom formation of marine dinoflagellates. Physiological responses to changing ambient P have been investigated in dinoflagellates; however, the molecular mechanisms behind these responses remain limited. Here, we compared the protein expression profiles of a marine dinoflagellate Alexandrium catenella grown in inorganic P-replete, P-deficient, and inorganic- and organic-P resupplied conditions using an iTRAQ-based quantitative proteomic approach. P deficiency inhibited cell growth and enhanced alkaline phosphatase activity (APA) but had no effect on photosynthetic efficiency. After P resupply, the P-deficient cells recovered growth rapidly and APA decreased. Proteins involved in sphingolipid metabolism, organic P utilization, starch and sucrose metabolism, and photosynthesis were up-regulated in the P-deficient cells, while proteins associated with protein synthesis, nutrient assimilation and energy metabolism were down-regulated. The responses of the P-deficient A. catenella to the resupply of organic and inorganic P presented significant differences: more biological processes were enhanced in the organic P-resupplied cells than those in the inorganic P-resupplied cells; A. catenella might directly utilize G-6-P for nucleic acid synthesis through the pentose phosphate pathway. Our results indicate that A. catenella has evolved diverse adaptive strategies to ambient P deficiency and specific mechanisms to utilize dissolved organic P, which might be an important reason resulting in A. catenella bloom in the low inorganic P environment. BIOLOGICAL SIGNIFICANCE: The ability of marine dinoflagellates to utilize different phosphorus (P) species and adapt to ambient P deficiency determines their success in the ocean. In this study, we investigated the response mechanisms of a dinoflagellate Alexandrium catenella to ambient P deficiency, and resupply of inorganic- and organic-P at the proteome level. Our results indicated that A. catenella initiated multiple adaptive strategies to ambient P deficiency, e.g. utilizing nonphospholipids and glycosphingolipids instead of phospholipids, enhancing expression of acid phosphatase to utilize organic P, and reallocating intracellular energy. Proteome responses of the P-deficient A. catenella to resupply of inorganic- and organic-P differed significantly, indicating different utilization pathways of inorganic and organic P, A. catenella might directly utilize low molecular weight organic P, such as G-6-P as both P and carbon sources.
Collapse
Affiliation(s)
- Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Ying Chen
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
46
|
Zhang Y, Lin X, Shi X, Lin L, Luo H, Li L, Lin S. Metatranscriptomic Signatures Associated With Phytoplankton Regime Shift From Diatom Dominance to a Dinoflagellate Bloom. Front Microbiol 2019; 10:590. [PMID: 30967855 PMCID: PMC6439486 DOI: 10.3389/fmicb.2019.00590] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/07/2019] [Indexed: 12/19/2022] Open
Abstract
Diatoms and dinoflagellates dominate coastal marine phytoplankton communities as major players of marine biogeochemical cycles and their seasonal succession often leads to harmful algal blooms (HABs). What regulates their respective dominances and the development of the HABs remains elusive. Here we conducted time-sequential metatranscriptomic profiling on a natural assemblage that evolved from diatom dominance to a dinoflagellate bloom to interrogate the underlying major metabolic and ecological drivers. Data reveals similarity between diatoms and dinoflagellates in exhibiting high capacities of energy production, nutrient acquisition, and stress protection in their respective dominance stages. The diatom-to-dinoflagellate succession coincided with an increase in turbidity and sharp declines in silicate and phosphate availability, concomitant with the transcriptomic shift from expression of silicate uptake and urea utilization genes in diatoms to that of genes for light harvesting, diversified phosphorus acquisition and autophagy-based internal nutrient recycling in dinoflagellates. Furthermore, the diatom-dominant community featured strong potential to carbohydrate metabolism and a strikingly high expression of trypsin potentially promoting frustule building. In contrast, the dinoflagellate bloom featured elevated expression of xanthorhodopsin, and antimicrobial defensin genes, indicating potential importance of energy harnessing and microbial defense in bloom development. This study sheds light on mechanisms potentially governing diatom- and dinoflagellate-dominance and regulating bloom development in the natural environment and raises new questions to be addressed in future studies.
Collapse
Affiliation(s)
- Yaqun Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xinguo Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Lingxiao Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hao Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| |
Collapse
|
47
|
Wurch LL, Alexander H, Frischkorn KR, Haley ST, Gobler CJ, Dyhrman ST. Transcriptional Shifts Highlight the Role of Nutrients in Harmful Brown Tide Dynamics. Front Microbiol 2019; 10:136. [PMID: 30809203 PMCID: PMC6379262 DOI: 10.3389/fmicb.2019.00136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/21/2019] [Indexed: 11/13/2022] Open
Abstract
Harmful algal blooms (HABs) threaten ecosystems and human health worldwide. Controlling nitrogen inputs to coastal waters is a common HAB management strategy, as nutrient concentrations often suggest coastal blooms are nitrogen-limited. However, defining best nutrient management practices is a long-standing challenge: in part, because of difficulties in directly tracking the nutritional physiology of harmful species in mixed communities. Using metatranscriptome sequencing and incubation experiments, we addressed this challenge by assaying the in situ physiological ecology of the ecosystem destructive alga, Aureococcus anophagefferens. Here we show that gene markers of phosphorus deficiency were expressed in situ, and modulated by the enrichment of phosphorus, which was consistent with the observed growth rate responses. These data demonstrate the importance of phosphorus in controlling brown-tide dynamics, suggesting that phosphorus, in addition to nitrogen, should be evaluated in the management and mitigation of these blooms. Given that nutrient concentrations alone were suggestive of a nitrogen-limited ecosystem, this study underscores the value of directly assaying harmful algae in situ for the development of management strategies.
Collapse
Affiliation(s)
- Louie L Wurch
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Harriet Alexander
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Kyle R Frischkorn
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Sheean T Haley
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Sonya T Dyhrman
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| |
Collapse
|
48
|
Riaz S, Sui Z, Niaz Z, Khan S, Liu Y, Liu H. Distinctive Nuclear Features of Dinoflagellates with A Particular Focus on Histone and Histone-Replacement Proteins. Microorganisms 2018; 6:E128. [PMID: 30558155 PMCID: PMC6313786 DOI: 10.3390/microorganisms6040128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 11/30/2022] Open
Abstract
Dinoflagellates are important eukaryotic microorganisms that play critical roles as producers and grazers, and cause harmful algal blooms. The unusual nuclei of dinoflagellates "dinokaryon" have led researchers to investigate their enigmatic nuclear features. Their nuclei are unusual in terms of their permanently condensed nucleosome-less chromatin, immense genome, low protein to DNA ratio, guanine-cytosine rich methylated DNA, and unique mitosis process. Furthermore, dinoflagellates are the only known group of eukaryotes that apparently lack histone proteins. Over the course of evolution, dinoflagellates have recruited other proteins, e.g., histone-like proteins (HLPs), from bacteria and dinoflagellates/viral nucleoproteins (DVNPs) from viruses as histone substitutes. Expression diversity of these nucleoproteins has greatly influenced the chromatin structure and gene expression regulation in dinoflagellates. Histone replacement proteins (HLPs and DVNPs) are hypothesized to perform a few similar roles as histone proteins do in other eukaryotes, i.e., gene expression regulation and repairing DNA. However, their role in bulk packaging of DNA is not significant as low amounts of proteins are associated with the gigantic genome. This review intends to summarize the discoveries encompassing unique nuclear features of dinoflagellates, particularly focusing on histone and histone replacement proteins. In addition, a comprehensive view of the evolution of dinoflagellate nuclei is presented.
Collapse
Affiliation(s)
- Sadaf Riaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Zeeshan Niaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Department of Microbiology, Hazara University, Mansehra 21120, Pakistan.
| | - Sohrab Khan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Department of Microbiology, Hazara University, Mansehra 21120, Pakistan.
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Haoxin Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| |
Collapse
|
49
|
Kang HE, Yoon TH, Yoon S, Kim HJ, Park H, Kang CK, Kim HW. Genomic analysis of red-tide water bloomed with Heterosigma akashiwo in Geoje. PeerJ 2018; 6:e4854. [PMID: 29868269 PMCID: PMC5983014 DOI: 10.7717/peerj.4854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/07/2018] [Indexed: 11/25/2022] Open
Abstract
Microbial community structures of harmful algal bloom (HAB) caused by Heterosigma akashiwo in Geoje were analyzed using the MiSeq platform. To analyze phytoplankton communities without cross-reactivity with predominant bacteria, a new phytoplankton-specific 23S universal primer set was designed by modifying two previously used ones. The new universal primer set turned out to be a useful tool for the analysis of the phytoplankton community; it showed a high specificity for phytoplankton without cross-reactivity to bacterial sequences as well as the wide taxon coverage presenting from prokaryotic cyanobacteria to eukaryotic algae. Next Generation Sequencing (NGS) data generated by two universal primer sets (16S and 23S) provided useful information about the H. akashiwo bloom. According to the 23S universal primer set, proportions of H. akashiwo increased by more than 200-fold as the bloom occurred and its numbers were high enough to detect in control sites. Its operational taxonomic units (OTUs) were detected in the bloom sites at low proportions suggesting that the 16S universal primer set may not be as effective for monitoring harmful algal blooming (HAB) as the 23S universal primer set. In addition, several abundant OTUs in Chlorophyta were not presented by the 16S universal primer set in this study. However, the 16S primer set was useful for detecting decreases in Foraminifera as HAB occurred suggesting that genomic analyses using two universal primer sets would provide more reliable data for understanding microbial community changes by various environmental or ecological events, including HAB. Genomic analyses using two universal primer sets was also useful for determining a correlation between microbial components as HAB occurred. Heterosigma akashiwo was positively correlated with other bloom species, including Karenia mikimotoi, Teleaulax amphioxeia, and bacteria in Verrucomicrobia.
Collapse
Affiliation(s)
- Hye-Eun Kang
- Department of Marine Biology, Pukyong National University, Busan, Republic of Korea
| | - Tae-Ho Yoon
- Interdisciplinary program of Biomedical, Mechanical and Electrical Engineering, Pukyong National University, Busan, Republic of Korea
| | - Sunyoung Yoon
- Interdisciplinary program of Biomedical, Mechanical and Electrical Engineering, Pukyong National University, Busan, Republic of Korea
| | - Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan, Republic of Korea
| | - Hyun Park
- Korea Polar Research Institute, Korea Ocean Research and Development Institute, Busan, Republic of Korea
| | - Chang-Keun Kang
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
50
|
Soto Cárdenas C, Gerea M, Queimaliños C, Ribeiro Guevara S, Diéguez MC. Inorganic mercury (Hg 2+) accumulation in autotrophic and mixotrophic planktonic protists: Implications for Hg trophodynamics in ultraoligotrophic Andean Patagonian lakes. CHEMOSPHERE 2018; 199:223-231. [PMID: 29438950 DOI: 10.1016/j.chemosphere.2018.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/26/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Microbial assemblages are typical of deep ultraoligotrophic Andean Patagonian lakes and comprise picoplankton and protists (phytoflagellates and mixotrophic ciliates), having a central role in the C cycle, primary production and in the incorporation of dissolved inorganic mercury (Hg2+) into lake food webs. In this study we evaluated the mechanisms of Hg2+ incorporation in hetero- and autotrophic bacteria, in the autotrophic dinoflagellate (Gymnodinium paradoxum) and in two mixotrophic ciliates (Stentor araucanus and Ophrydium naumanni) dominating the planktonic microbial assemblage. The radioisotope 197Hg was used to trace the Hg2+ incorporation in microbiota. Hg uptake was analyzed as a function of cell abundance (BCF: bioconcentration factor), cell surface (SCF: surface concentration factor) and cell volume (VCF: volume concentration factor). Overall, the results obtained showed that these organisms incorporate substantial amounts of dissolved Hg2+ passively (adsorption) and actively (bacteria consumption or attachment), displaying different Hg internalization and therefore, varying potential for Hg transfer. Surface area and quality, and surface:volume ratio (S:V) control the passive uptake in all the organisms. Active incorporation depends on bacteria consumption in the mixotrophic ciliates, or on bacteria association to surface in the autotrophic dinoflagellate. Hg bioaccumulated by pelagic protists can be transferred to higher trophic levels through plankton and fish feeding, regenerated to the dissolved phase by excretion, and/or transferred to the sediments by particle sinking. In ultraoligotrophic Andean Patagonian lakes, picoplankton and planktonic protists are key components of lake food webs, linking the pelagic and benthic Hg pathways, and thereby playing a central role in Hg trophodynamics.
Collapse
Affiliation(s)
- Carolina Soto Cárdenas
- Grupo de Ecología de Sistemas Acuáticos a Escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina.
| | - Marina Gerea
- Grupo de Ecología de Sistemas Acuáticos a Escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Claudia Queimaliños
- Grupo de Ecología de Sistemas Acuáticos a Escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Sergio Ribeiro Guevara
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo Km 9.5, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - María C Diéguez
- Grupo de Ecología de Sistemas Acuáticos a Escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|