1
|
Liu J, Ridgway HJ, Jones EE. The use of rifampicin mutants and ERIC-PCR to track plant colonization and in planta efficacy of bacterial biocontrol agents against Neonectria ditissima. J Appl Microbiol 2025; 136:lxaf086. [PMID: 40185698 DOI: 10.1093/jambio/lxaf086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/08/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
AIMS Endophytic colonization of apple shoots by bacterial endophytes with in vitro antagonism against Neonectria ditissima was evaluated. Their biocontrol activity against N. ditissima was assessed. METHODS AND RESULTS Spontaneous mutants resistant to 125 ppm rifampicin produced from three Pseudomonas sp. and three Bacillus sp. strains were used to assess endophytic colonization of detached 'Royal Gala' apple shoots. Re-isolation on rifampicin amended agar followed by enterobacterial repetitive intergenic consensus (ERIC)-polymerase chain reaction (PCR) verified endophytic colonization by three Pseudomonas sp. rifampicin mutants up to 4-5 cm above and below the inoculation point. Colonization ability was not found for the three Bacillus rifampicin mutants. Recovery frequency and total length of detached shoots colonized by N. ditissima was not reduced. In attached shoots, length of shoot tissue colonized by Pseudomonas mutant strains did not differ between treatments at either assessment time. Pseudomonas sp. 1RIF inoculated 14 days before N. ditissima reduced length of shoot colonized by N. ditissima. The other treatments did not reduce length of shoot colonized by N. ditissima indicating no in planta biocontrol activity. CONCLUSION Combination of spontaneous rifampicin resistant bacterial mutants and ERIC-PCR reliably tracked bacteria in planta. Lack of in planta biocontrol activity was not due to absence of endophytic colonization.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Hayley J Ridgway
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
- The New Zealand Institute for Plant and Food Research Ltd,fi Christchurch 8140, New Zealand
| | - E Eirian Jones
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
2
|
Hope W, Nambiar S, O'Brien S, Sharland M, Paterson DL, Yin M, Gilbert IH, Ferguson M, Peacock SJ, Buchan I, Reza N, Dubey V, Darlow CA, Gerada A, Howard A. Combining antibiotics to tackle antimicrobial resistance. Nat Microbiol 2025; 10:813-816. [PMID: 40140704 DOI: 10.1038/s41564-025-01969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Affiliation(s)
- William Hope
- Department of Antimicrobial Pharmacodynamics and Therapeutics, University of Liverpool, Liverpool, UK.
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.
| | - Sumathi Nambiar
- Child Health Innovation and Leadership Department, Johnson & Johnson, Raritan, NJ, USA
| | - Seamus O'Brien
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | | | - David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Mo Yin
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ian H Gilbert
- School of Life Sciences, University of Dundee, Dundee, UK
| | | | | | - Iain Buchan
- Department of Public Health, Policy and Systems, University of Liverpool, Liverpool, UK
- Civic Health Innovation Labs, University of Liverpool, Liverpool, UK
| | - Nada Reza
- Department of Antimicrobial Pharmacodynamics and Therapeutics, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Vineet Dubey
- Department of Antimicrobial Pharmacodynamics and Therapeutics, University of Liverpool, Liverpool, UK
| | - Christopher A Darlow
- Department of Antimicrobial Pharmacodynamics and Therapeutics, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Alessandro Gerada
- Department of Antimicrobial Pharmacodynamics and Therapeutics, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Alex Howard
- Department of Antimicrobial Pharmacodynamics and Therapeutics, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
3
|
O’Neal LG, Drucker MN, Lai NK, Clemente AF, Campbell AP, Way LE, Hong S, Holmes EE, Rancic SJ, Sawyer N, Wang X, Thrall ES. "The B. subtilis replicative polymerases bind the sliding clamp with different strengths to tune replication processivity and fidelity". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642433. [PMID: 40161823 PMCID: PMC11952451 DOI: 10.1101/2025.03.10.642433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Ring-shaped sliding clamp proteins are essential components of the replication machinery, the replisome, across all domains of life. In bacteria, DNA polymerases bind the sliding clamp, DnaN, through conserved short peptide sequences called clamp-binding motifs. Clamp binding increases the processivity and rate of DNA synthesis and is generally required for polymerase activity. The current understanding of clamp-polymerase interactions was elucidated in the model bacterium Escherichia coli, which has a single replicative polymerase, Pol III. However, many bacteria have two essential replicative polymerases, such as PolC and DnaE in Bacillus subtilis. PolC performs the bulk of DNA synthesis whereas the error-prone DnaE only synthesizes short stretches of DNA on the lagging strand. How the clamp interacts with the two polymerases and coordinates their activity is unknown. We investigated this question by combining in vivo single-molecule fluorescence microscopy with biochemical and microbiological assays. We found that PolC-DnaN binding is essential for replication, although weakening the interaction is tolerated with only minimal effects. In contrast, the DnaE-DnaN interaction is dispensable for replication. Altering the clamp-binding strength of DnaE produces only subtle effects on DnaE cellular localization and dynamics, but it has a substantial impact on mutagenesis. Our results support a model in which DnaE acts distributively during replication but can be stabilized on the DNA template by clamp binding. This study provides new insights into the coordination of multiple replicative polymerases in bacteria and the role of the clamp in polymerase processivity, fidelity, and exchange.
Collapse
Affiliation(s)
- Luke G. O’Neal
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458
| | - Madeline N. Drucker
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458
| | - Ngoc Khanh Lai
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Ashley F. Clemente
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458
| | - Alyssa P. Campbell
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458
| | - Lindsey E. Way
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Sinwoo Hong
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458
| | - Emily E. Holmes
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458
| | - Sarah J. Rancic
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458
| | - Nicholas Sawyer
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Elizabeth S. Thrall
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458
| |
Collapse
|
4
|
van Dun SCJ, Verheul M, Pijls BGCW, Scheper H, van der Does AM, Nibbering PH, de Boer MGJ. Effectiveness of clindamycin-based exposure strategies in experimental mature staphylococcal biofilms. Microbiol Spectr 2025; 13:e0194724. [PMID: 39882934 PMCID: PMC11878082 DOI: 10.1128/spectrum.01947-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/22/2024] [Indexed: 01/31/2025] Open
Abstract
Due to increasing antimicrobial resistance and side effects caused by current standard antimicrobial regimens used for treatment of prosthetic joint infection (PJI), alternative options are urgently needed. We aimed to investigate the effect of clindamycin in different exposure strategies against Staphylococcus aureus in an in vitro mature biofilm model. In short, 7-day biofilms were generated on polystyrene plates and titanium-aluminum-vanadium discs using a clinical S. aureus PJI isolate. Next, biofilms were exposed to clindamycin according to four strategies: single 24-h exposure; prolonged 48- or 72-h exposure; repeated 24-h exposures during a 4-day period, and sequential exposures of initial 24-h rifampicin-based therapy followed by 24-h exposure to clindamycin. The remaining bacterial load (colony-forming unit [CFU]/mL) after antibiotic exposure was assessed. Confocal laser scanning and atomic force microscopy were applied to evaluate the biofilm structure. Single exposure to clindamycin for 24 h or prolonged up to 72 h did not result in any relevant reduction in bacterial load. Repeated 24-h exposures demonstrated relevant reductions of >3 log CFU/mL at clindamycin concentrations ≥16 mg/L for the 3rd and 4th consecutive doses. Sequential rifampicin-ciprofloxacin combination exposure followed by clindamycin showed bacterial load reductions of 3- to 4-log CFU/mL, similar to continued rifampicin-ciprofloxacin exposure. This was achieved for concentrations equivalent to levels achieved after standard dosing of clindamycin in clinical practice. These experimental findings support that clindamycin monotherapy is not an optimal choice when starting antimicrobial treatment of PJI but that later on, rifampicin may be safely switched to clindamycin in patients with PJI who do not tolerate prolonged rifampicin-based treatment. IMPORTANCE Rifampicin-in combination with another antibiotics-is recommended in all guidelines as first choice treatment of prosthetic joint infections (PJIs), despite adverse interactions and side effects associated with this antibiotic. In a search for alternative approaches, the switch to clindamycin in patients after rifampicin-based antibiotic treatment was found to be effective in some recent observational clinical studies. In our in vitro study, we determined the effect of clindamycin on Staphylococcus aureus in mature biofilms, to obtain further insight. Our study showed that clindamycin was effective in reducing mature biofilm-residing S. aureus after initial exposure to rifampicin-ciprofloxacin, while it was not effective as first treatment. These in vitro findings provide evidence for the hypothesis that rifampicin-ciprofloxacin can be successfully switched to clindamycin monotherapy in PJI patients in a later phase of treatment.
Collapse
Affiliation(s)
- S. C. J. van Dun
- Center for Infectious Diseases, Lab of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - M. Verheul
- Center for Infectious Diseases, Lab of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
- Department of Orthopaedics, Leiden University Medical Center, Leiden, the Netherlands
| | - B. G. C. W. Pijls
- Department of Orthopaedics, Leiden University Medical Center, Leiden, the Netherlands
| | - H. Scheper
- Center for Infectious Diseases, Lab of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - A. M. van der Does
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - P. H. Nibbering
- Center for Infectious Diseases, Lab of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - M. G. J. de Boer
- Center for Infectious Diseases, Lab of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
5
|
Hughes EM, Hirsch MJ, Huffines JT, Krick S, Kiedrowski MR. Elevated glucose increases methicillin-resistant Staphylococcus aureus antibiotic tolerance in a cystic fibrosis airway epithelial cell infection model. RESEARCH SQUARE 2025:rs.3.rs-5938603. [PMID: 40034435 PMCID: PMC11875303 DOI: 10.21203/rs.3.rs-5938603/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background In a healthy lung, the airway epithelium regulates glucose transport to maintain low glucose concentrations in the airway surface liquid (ASL). However, hyperglycemia and chronic lung diseases, such as cystic fibrosis (CF), can result in increased glucose in bronchial aspirates. People with CF are also at increased risk of lung infections caused by bacterial pathogens, including methicillin-resistant Staphylococcus aureus. Yet, it is not known how increased airway glucose availability affects bacteria in chronic CF lung infections or impacts treatment outcomes. Methods To model the CF airways, we cultured immortalized CF (CFBE41o-) and non-CF (16HBE) human bronchial epithelial cells at air liquid interface (ALI). Glucose concentrations in the basolateral media were maintained at 5.5 mM or 12.5 mM, to mimic a normal and hyperglycemic milieu respectively. 2-deoxyglucose was added to high glucose culture media to restrict glucose availability. We collected ASL, basolateral media, and RNA from ALI cultures to assess the effects of elevated glucose. We also inoculated S. aureus onto the apical surface of normal or high glucose ALI cultures and observed the results of antibiotic treatment post-inoculation. S. aureus growth was measured by enumerating viable colony forming units (CFU) and with fluorescence microscopy. The effects of elevated glucose on in vitro growth and antibiotic treatment were also evaluated in standard bacterial culture medium and synthetic CF medium (SCFM). Results We found that glucose concentrations in the ASL of ALI cultures maintained in normal or high glucose mimicked levels measured in breath condensate assays from people with CF and hyperglycemia. Additionally, we found hyperglycemia increased S. aureus aggregation and antibiotic resistance during infection of cells maintained in high glucose compared to normal glucose conditions. Heightened antibiotic tolerance or resistance as not observed during in vitro growth with elevated glucose. Limiting glucose with 2-deoxyglucose both decreased aggregation and reduced antibiotic resistance back to levels comparable to non-hyperglycemic conditions. Conclusions These data indicate hyperglycemia alters S. aureus growth during infection and may reduce efficacy of antibiotic treatment. Glucose restriction is a potential option that could be explored to limit bacterial growth and improve treatment outcomes in chronic airway infections.
Collapse
|
6
|
Zheng J, Li YY, Lu YS, Wang D, Liu C, Peng HL, Shi CH, Xie KZ, Zhang K, Sun LL, Zhou CM, Gu WJ. Impact of different continuous fertilizations on the antibiotic resistome associated with a subtropical triple-cropping system over one decade. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125564. [PMID: 39716502 DOI: 10.1016/j.envpol.2024.125564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The prevalence of antibiotic resistance genes (ARGs) in agricultural soils has garnered significant attention. However, the long-term impacts of various nitroge (N)-substitution fertilization regimes on the distribution of soil ARGs and their dominant drivers in a subtropical triple-cropping system remain largely unexplored. This study employed a metagenomic approach to analyze soil ARGs, microbial communities, mobile genetic elements (MGEs), and viruses from a maize-maize-cabbage rotation field experiment with five different fertilization regimes. Soil samples were collected in 2012 and 2021. A total of 615 unique ARG subtypes were identified, with multidrug, bacitracin, and rifamycin resistance genes being the most abundant. Notably, ARG types. the continuous application of fresh chicken manure (CM) over 10 years significantly increased both the count of unique ARG subtypes and the total ARG abundance compared to other fertilization regimes, such as inorganic fertilizer and composted chicken manure. Specifically, the abundance of genes associated with antibiotic target replacement (e.g., sul1 and sul2) in the CM-treated soil rose by 8.83-fold from 2021 to 2012. Our random forest analysis revealed that the abundance of three MGEs (QacEdelta, plasmids, and IstB), two viral families (Myoviridae and Podoviridae), two bacterial phyla (Chloroflexi and Planctomycetes), and two environmental factors (pH and soil organic matter (SOM)) significantly influenced the distribution of ARGs. Furthermore, variance decomposition analysis underscored the critical roles of the three MGEs and the two viral families in the dissemination of ARGs, suggesting that horizontal gene transfer (HGT) may play a key role in ARG spread. These findings enhance our understanding of how different fertilization practices influence ARG dissemination in subtropical triple-cropping agroecosystems over the long term and provide valuable insights for optimizing fertilization management strategies.
Collapse
Affiliation(s)
- Jin Zheng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Ya-Ying Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu-Sheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Chong Liu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Huan-Long Peng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Chao-Hong Shi
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Kai-Zhi Xie
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Kun Zhang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Li-Li Sun
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Chang-Min Zhou
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Wen-Jie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| |
Collapse
|
7
|
Arce-Aceves MF, Espinosa-Neira R, Mata-Espinosa DA, Barrios-Payan JA, Castelán-Sánchez HG, Alcaraz-Estrada SL, Castañón-Arreola M, Hernández-Pando R. Fitness costs of Mycobacterium tuberculosis resistant to rifampicin is compensated by rapid Th2 polarization mediated by early and high IL-4 production during mice infection. Sci Rep 2025; 15:2811. [PMID: 39843896 PMCID: PMC11754857 DOI: 10.1038/s41598-024-81446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
It was a general belief that drug resistance in Mycobacterium tuberculosis (Mtb) was associated with lesser virulence, particularly rifampicin resistance, which is usually produced by mutations in the RNA polymerase Beta subunit (RpoB). Interestingly, this kind of bacterial mutations affect gene transcription with significant effects on bacterial physiology and metabolism, affecting also the bacterial antigenic constitution that in consequence can produce diverse immune responses and disease outcome. In the present study, we show the results of the Mtb clinical isolate A96, which is resistant to rifampicin and when used to infect BALB/c mice showed hypervirulence, apparently by rapidly polarization of the Th2 immune response through early and high production of IL-4. The 2D-PAGE analysis of the secretome of Mtb A96 showed 204 spots, and by immunoproteome, seven proteins that were differentially recognized with the sera of infected mice on day 28 were identified by LC-MS/MS. The proteins correspond to surface antigens, virulence factors, and energy metabolism enzymes. Some of them are immunodominant antigens, such as LpqH lipoprotein that induces IL-4 secretion in cell suspensions from the lung and spleen of mice infected with Mtb A96 at 28 days postinfection, suggesting that LpqH could be one of the main antigens involved in the Th2 polarization. The reduction of Mtb A96 hypervirulence in IL-4Rα-/- BALB/c mice highlights the importance of IL-4 induction and Th2 response polarization and the immunopathological response. Thus, high and rapid bias to Th2 response is a mechanism of Mtb virulence, which could be mediated by rifampicin-resistant Mtb isolates, probably by high production and secretion of specific antigens.
Collapse
Affiliation(s)
- Ma Fernanda Arce-Aceves
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Roberto Espinosa-Neira
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Colonia Del Valle Sur, Alcaldía Benito Juárez, Ciudad de México, CP. 03100, Mexico
| | - Dulce A Mata-Espinosa
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Jorge A Barrios-Payan
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Hugo G Castelán-Sánchez
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Sofía L Alcaraz-Estrada
- Virological Analysis and Reference Unit, Institute for Social Security and Services for State Workers, National Medical Center "20 de Noviembre", Mexico City, Mexico
| | - Mauricio Castañón-Arreola
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Colonia Del Valle Sur, Alcaldía Benito Juárez, Ciudad de México, CP. 03100, Mexico.
| | - Rogelio Hernández-Pando
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico.
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Alcaldía Tlalpan, 14080, Ciudad de México, CDMX, Mexico.
| |
Collapse
|
8
|
Wright GD. The Janus Effect: The Biochemical Logic of Antibiotic Resistance. Biochemistry 2025; 64:301-311. [PMID: 39772429 DOI: 10.1021/acs.biochem.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Antibiotics are essential medicines threatened by the emergence of resistance in all relevant bacterial pathogens. The engagement of the molecular targets of antibiotics offers multiple opportunities for resistance to emerge. Successful target engagement often requires passage of the antibiotic from outside into the cell interior through one or two distinct membrane barriers. Resistance can occur by preventing the accumulation of antibiotics in sufficient quantities outside the cell, decreasing the rates of entry into the cell, and modifying the antibiotic or the target once inside the cell. These competing equilibria and rates are the lens through which the balance of antibiotic efficacy or failure can be viewed. The two faces of antibiotics, cell growth inhibition or resistance, are reminiscent of Janus, the Roman god of doorways and beginnings and endings, and offer a framework through which antibiotic discovery, use, and the emergence of resistance can be rationally viewed.
Collapse
Affiliation(s)
- Gerard D Wright
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
9
|
Basile A, Riggio FP, Tescari M, Chebbi A, Sodo A, Bartoli F, Imperi F, Caneva G, Visca P. Metagenome-resolved functional traits of Rubrobacter species implicated in rosy discoloration of ancient frescoes in two Georgian Cathedrals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178135. [PMID: 39705954 DOI: 10.1016/j.scitotenv.2024.178135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Pink biofilm formation on stone monuments and mural paintings poses serious harm to cultural heritage preservation. Pink biofilms are globally widespread and recalcitrant to eradication, often causing recurrences after restoration. Yet, the ecological drivers of pink biofilm formation and the metabolic functions sustaining the growth of pigment-producing biodeteriogens remain unclear. In this study, a combined approach integrating physicochemical investigations, scanning electron microscopy, 16S rRNA sequence-based analysis of the prokaryotic community, metagenomic deep sequencing, and metabolic profiling, was applied to determine the etiology of rosy discoloration of ancient frescoes in the Gelati and the Martvili Cathedrals (Georgia). Martvili samples showed greater diversity than Gelati samples, though Actinomycetota predominated in both samples. Rubrobacter-related sequences were detected in all sampling sites, showing an overwhelming abundance in Gelati samples. Reconstruction of metagenome-assembled genomes (MAGs) and phylogenetic analyses highlighted significant intra-genus diversity for Rubrobacter-related sequences, most of which could not be assigned to any formally described Rubrobacter species. Metabolic profiling of the Gelati metagenomes suggests that carbon-fixing autotrophic bacteria and proteinaceous substances in the plaster could contribute to sustaining the chemoorganotrophic members of the community. Complete pathways for β-carotene and bacterioruberin synthesis were identified in Rubrobacter MAGs, consistent with the Raman spectroscopy-based detection of these pigments in fresco samples. Gene clusters for the synthesis of secondary metabolites endowed with antibiotic activity were predicted from the annotation of Rubrobacter MAGs, along with genes conferring resistance to several antimicrobials and biocides. In conclusion, genome-resolved metagenomics provided robust evidence of a causal relationship between contamination by Rubrobacter-related carotenoid-producing bacteria and the rosy discoloration of Georgian frescoes, with relevant implications for rational biodeteriogen-targeted restoration strategies.
Collapse
Affiliation(s)
- Arianna Basile
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | | | - Marco Tescari
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; Biology Laboratory, Supporto ALES S.p.A. c/o Istituto Centrale per il Restauro (ICR), Via di S. Michele, 25, 00153 Rome, Italy
| | - Alif Chebbi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Armida Sodo
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Flavia Bartoli
- Institute of Heritage Science (ISPC), National Research Center (CNR), SP35d, 9, 00010 Montelibretti, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; NBFC, National Biodiversity Future Center, Piazza Marina, 61, 90133 Palermo, Italy
| | - Giulia Caneva
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; NBFC, National Biodiversity Future Center, Piazza Marina, 61, 90133 Palermo, Italy.
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; NBFC, National Biodiversity Future Center, Piazza Marina, 61, 90133 Palermo, Italy.
| |
Collapse
|
10
|
Vummidi V, Talluri S. Design of RNA Polymerase Inhibitors as Therapeutics for Tuberculous Meningitis. Infect Disord Drug Targets 2025; 25:e18715265341228. [PMID: 39225226 DOI: 10.2174/0118715265341228240827062721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. The current treatment protocols for pulmonary tuberculosis are quite effective, even though the treatment requires 3-6 months. The current treatment protocols for extrapulmonary tuberculosis are based on the same drugs that are used for pulmonary tuberculosis. However, the success rates are much lower for certain types of extrapulmonary tuberculosis, such as tuberculous meningitis. Tuberculous meningitis is one of the very few diseases attributable to bacteria that have a very high short-term mortality rate among diagnosed patients, even after treatment with antibiotics that are effective for pulmonary tuberculosis. For example, rifampicin is highly effective for the treatment of pulmonary tuberculosis, but its effectiveness for the treatment of tuberculous meningitis is much lower. The reason for the lower effectiveness of rifampicin against tuberculous meningitis is that it has low Blood-Brain Barrier (BBB) permeability, which results in lower concentrations of the drug at the required sites in the central nervous system. METHODS In this work, ligands having improved BBB permeability and pharmacokinetic and pharmacodynamic properties, either similar to or better than that of rifampicin, have been designed. The BBB permeability of the designed molecules was assessed by using pkCSM, a machine- learning model. Pharmacokinetic properties, drug-likeness, and synthesizability were assessed by using SWISS-MODEL. The binding affinity of the designed drugs was assessed by using AutoDock Vina. A customized scoring function, StWN score, was used for a quantitative weighted assessment of all the properties of interest to rank the designed molecules. RESULTS In this study, drug-like ligands have been designed that have been predicted to have high BBB permeability as well as high affinity for RNA polymerase β of Mycobacterium tuberculosis. CONCLUSION The best ligands generated by the tools employed were selected as potential drugs to address the current need for better options for the treatment of tuberculous meningitis.
Collapse
Affiliation(s)
- Varalakshmi Vummidi
- Department of Biotechnology, GITAM School of Technology, GITAM, Gandhi Nagar, Rushikonda, 530045, Visakhapatnam, Andhra Pradesh, India
| | - Sekhar Talluri
- Department of Biotechnology, GITAM School of Technology, GITAM, Gandhi Nagar, Rushikonda, 530045, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
11
|
Middendorf PS, Zomer AL, Bergval IL, Jacobs-Reitsma WF, den Besten HMW, Abee T. Host associations of Campylobacter jejuni and Campylobacter coli isolates carrying the L-fucose or d-glucose utilization cluster. Int J Food Microbiol 2024; 425:110855. [PMID: 39191191 DOI: 10.1016/j.ijfoodmicro.2024.110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/06/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
Campylobacter was considered asaccharolytic, but is now known to carry saccharide metabolization pathways for L-fucose and d-glucose. We hypothesized that these clusters are beneficial for Campylobacter niche adaptation and may help establish human infection. We investigated the distribution of d-glucose and L-fucose clusters among ∼9600 C. jejuni and C. coli genomes of different isolation sources in the Netherlands, the United Kingdom, the United States of America and Finland. The L-fucose utilization cluster was integrated at the same location in all C. jejuni and C. coli genomes, and was flanked by the genes rpoB, rpoC, rspL, repsG and fusA, which are associated with functions in transcription as well as translation and in acquired drug resistance. In contrast, the flanking regions of the d-glucose utilization cluster were variable among the isolates, and integration sites were located within one of the three different 16S23S ribosomal RNA areas of the C. jejuni and C. coli genomes. In addition, we investigated whether acquisition of the L-fucose utilization cluster could be due to horizontal gene transfer between the two species and found three isolates for which this was the case: one C. jejuni isolate carrying a C. coli L-fucose cluster, and two C. coli isolates which carried a C. jejuni L-fucose cluster. Furthermore, L-fucose utilization cluster alignments revealed multiple frameshift mutations, most of which were commonly found in the non-essential genes for L-fucose metabolism, namely, Cj0484 and Cj0489. These findings support our hypothesis that the L-fucose cluster was integrated multiple times across the C. coli/C. jejuni phylogeny. Notably, association analysis using the C. jejuni isolates from the Netherlands showed a significant correlation between human C. jejuni isolates and C. jejuni isolates carrying the L-fucose utilization cluster. This correlation was even stronger when the Dutch isolates were combined with the isolates from the UK, the USA and Finland. No such correlations were observed for C. coli or for the d-glucose cluster for both species. This research provides insight into the spread and host associations of the L-fucose and d-glucose utilization clusters in C. jejuni and C. coli, and the potential benefits in human infection and/or proliferation in humans, conceivably after transmission from any reservoir.
Collapse
Affiliation(s)
- Pjotr S Middendorf
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands; National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Aldert L Zomer
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands; WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, Netherlands
| | - Indra L Bergval
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | | | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands.
| |
Collapse
|
12
|
Yildirim M, Ozgeris B, Gormez A. The effect of novel β-lactam derivatives synthesized from substituted phenethylamines on resistance genes of MRSA isolates. J Antibiot (Tokyo) 2024; 77:802-811. [PMID: 39210001 DOI: 10.1038/s41429-024-00769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
This study focuses on the activity of previously reported imine and β-lactam derivatives against methicillin-resistant Staphylococcus aureus (MRSA) isolates. The presence of mecA and blaZ genes in the isolates was determined, and the minimum inhibitory concentration (MIC) values were determined based on the antibacterial activity against these isolates. Active compounds were selected and their ability to act against resistant isolates in vitro was determined. Concurrently, biochemical (nitrocefin) and molecular (qRT-PCR) tests were used to investigate the ability of the compounds to induce resistance genes in MRSA isolates. The cytotoxicity of the compounds on human dermal fibroblasts (HDF) was investigated. The MIC values of compounds (10) and (12) against MSSA and MRSA isolates were 7.81 and 15.62 μg ml-1, respectively. The most active compounds were identified as (10) and (12), and it was observed that the isolates did not develop resistance to these compounds in vitro. These compounds were found to inhibit β-lactamase, reduce the expression of resistance genes, and exhibit reduced HDF cell toxicity in a dose-dependent manner. According to the findings of the study, it can be concluded that these compounds show promise as hits with an interesting mechanism of action for further chemical modifications to develop new MRSA inhibitors.
Collapse
Affiliation(s)
- Merve Yildirim
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, 25050, Turkey
| | - Bunyamin Ozgeris
- Department of Basic Sciences, Faculty of Science, Erzurum Technical University, Erzurum, 25050, Turkey
| | - Arzu Gormez
- Department of Biology, Faculty of Science, Dokuz Eylul University, Izmir, 35390, Turkey.
| |
Collapse
|
13
|
Fan D, Liu L, Yuen B, Sun L, Fu Y, Liu Y, Liao R, Qu Y, Liu C, Zhou Q. An Additional L451G452N453 in the RpoB Protein Suppressed the Synthetic Lethality in Escherichia coli at 37 Degrees Caused by Depletion of DnaK/J and Trigger Factor. J Basic Microbiol 2024; 64:e2400253. [PMID: 39286860 DOI: 10.1002/jobm.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Escherichia coli depletion of chaperone trigger factor and DnaK/J were not viable at 37°C, but viable below 30°C. Among the engineered E. coli depleted of trigger factor and DnaK/J, one strain Z625, exhibited survival at 37°C, while another strain Z629 only survived below 30°C. Comparative analysis of fatty acid profiles of Z625 and Z629 revealed absence of numerous saturated fatty acids in Z625 as compared to the wild-type E. coli BW25113. In addition, increased unsaturated fatty acids were present in Z625, whereas the fatty acids profile of Z629 closely resembled that of BW25113. Whole genome sequencing revealed a 9-bp insertion in rpoB of Z625. Combined structural analysis of simulated RpoB protein bearing the amino acid sequence L451G452N453 insertion and susceptibility analysis to rifampicin suggested that the insertion did not disturb the individual RpoB structure as beta subunit of RNA polymerase. Comparative transcriptomic analysis of Z625 and Z629 suggested that this insertion impacted transcription of the overall RNA polymerase in Z625, leading to potential repression of some genes whose overexpression was toxic to E. coli. Additionally, Z625 exhibited distinctive metabolic adaptations, likely contributing to its survival at 37°C. In summary, our study elucidated one LGN insertion in rpoB that impacts transcriptional regulation in E. coli, thereby explaining the survival of E. coli depletion of trigger factor and DnaK/J at 37°C, and these founding suggested that some simple mutations in critical genes like rpoB might play an important role in driving adaptive evolution.
Collapse
Affiliation(s)
- Dongjie Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lushan Liu
- Emergency Department of China Rehabilitation Research Center, Fengtai District, Capital Medical University, Beijing, China
| | - Bella Yuen
- Faculty of Arts and Science, University of Toronto, Toronto, Ontario, Canada
| | - Lu Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuliang Fu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yan Liu
- Peking University Health Science Center, Beijing, China
| | - Rui Liao
- Beijing Best HealthCare Medical Technology Co. Ltd., Economic and Technological Development Area, Beijing, China
| | - Yanli Qu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qiming Zhou
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Economic and Technological Development Area, Beijing, China
| |
Collapse
|
14
|
Liu Q, Chen X, Hu G, Chu R, Liu J, Li X, Gao C, Liu L, Wei W, Song W, Wu J. Systems metabolic engineering of Escherichia coli for high-yield production of Para-hydroxybenzoic acid. Food Chem 2024; 457:140165. [PMID: 38936118 DOI: 10.1016/j.foodchem.2024.140165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Para-hydroxybenzoic acid (PHBA) is extensively used as an additive in the food and cosmetics industries, significantly enhancing product shelf life and stability. While microbial fermentation offers an environment-friendly and sustainable method for producing PHBA, the titer and productivity are limited due to product toxicity and complex metabolic flux distributions. Here, we initially redesigned a L-phenylalanine-producing Escherichia coli by employing rational metabolic engineering strategies, resulting in the production of PHBA reached the highest reported level of 14.17 g/L. Subsequently, a novel accelerated evolution system was devised comprising deaminase, the alpha subunit of RNA polymerase, an uracil-DNA glycosylase inhibitor, and the PHBA-responsive promoter PyhcN. This system enabled us to obtain a mutant strain exhibiting a 47% increase in the half-inhibitory concentration (IC50) for PHBA within 15 days. Finally, the evolved strain achieved a production of 21.35 g/L PHBA in a 5-L fermenter, with a yield of 0.19 g/g glucose and a productivity rate of 0.44 g/L/h. This engineered strain emerges as a promising candidate for industrial production of PHBA through an eco-friendly approach.
Collapse
Affiliation(s)
- Quan Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Ruyin Chu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Turner AM, Li L, Monk IR, Lee JYH, Ingle DJ, Portelli S, Sherry NL, Isles N, Seemann T, Sharkey LK, Walsh CJ, Reid GE, Nie S, Eijkelkamp BA, Holmes NE, Collis B, Vogrin S, Hiergeist A, Weber D, Gessner A, Holler E, Ascher DB, Duchene S, Scott NE, Stinear TP, Kwong JC, Gorrie CL, Howden BP, Carter GP. Rifaximin prophylaxis causes resistance to the last-resort antibiotic daptomycin. Nature 2024; 635:969-977. [PMID: 39443798 PMCID: PMC11602712 DOI: 10.1038/s41586-024-08095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Multidrug-resistant bacterial pathogens like vancomycin-resistant Enterococcus faecium (VREfm) are a critical threat to human health1. Daptomycin is a last-resort antibiotic for VREfm infections with a novel mode of action2, but for which resistance has been widely reported but is unexplained. Here we show that rifaximin, an unrelated antibiotic used prophylactically to prevent hepatic encephalopathy in patients with liver disease3, causes cross-resistance to daptomycin in VREfm. Amino acid changes arising within the bacterial RNA polymerase in response to rifaximin exposure cause upregulation of a previously uncharacterized operon (prdRAB) that leads to cell membrane remodelling and cross-resistance to daptomycin through reduced binding of the antibiotic. VREfm with these mutations are spread globally, making this a major mechanism of resistance. Rifaximin has been considered 'low risk' for the development of antibiotic resistance. Our study shows that this assumption is flawed and that widespread rifaximin use, particularly in patients with liver cirrhosis, may be compromising the clinical use of daptomycin, a major last-resort intervention for multidrug-resistant pathogens. These findings demonstrate how unanticipated antibiotic cross-resistance can undermine global strategies designed to preserve the clinical use of critical antibiotics.
Collapse
Affiliation(s)
- Adrianna M Turner
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lucy Li
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jean Y H Lee
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - Danielle J Ingle
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Stephanie Portelli
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia Campus, Saint Lucia, Queensland, Australia
| | - Norelle L Sherry
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
| | - Nicole Isles
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Liam K Sharkey
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Calum J Walsh
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bart A Eijkelkamp
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Natasha E Holmes
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brennan Collis
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
| | - Sara Vogrin
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center, Regensburg, Germany
| | - Daniela Weber
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Andre Gessner
- Institute of Clinical Microbiology and Hygiene, University Medical Center, Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia Campus, Saint Lucia, Queensland, Australia
| | - Sebastian Duchene
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- DEMI Unit, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jason C Kwong
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
| | - Claire L Gorrie
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia.
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Glen P Carter
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
16
|
Zhao X, Zhang Z, Liu L, Wang D, Zhang X, Zhao L, Zhao Y, Jin X, Wang L, Liu X. Guanethidine Enhances the Antibacterial Activity of Rifampicin Against Multidrug-Resistant Bacteria. Microorganisms 2024; 12:2207. [PMID: 39597596 PMCID: PMC11596751 DOI: 10.3390/microorganisms12112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The escalating global threat of antibiotic resistance necessitates innovative strategies, such as the combination of antibiotics with adjuvants. Monotherapy with rifampicin is more likely to induce resistance in pathogens compared to other antibiotics. Herein, we found that the antihypertensive drug guanethidine enhanced the activity of rifampicin against certain clinically resistant Gram-negative bacteria, resulting in a reduction of up to 128-fold in the minimum inhibitory concentration. In infected animal models, this combination has achieved treatment benefits, including increased survival and decreased bacterial burden. The antimicrobial mechanism of guanethidine in synergy with rifampicin involves the disruption of the outer membrane of Gram-negative bacteria, leading to dissipation of the proton motive force. This results in an increase in reactive oxygen species and a reduction in ATP synthesis, severely disturbing energy metabolism and ultimately increasing bacterial mortality. In summary, guanethidine has the potential to become a novel adjuvant for rifampicin, offering a new option for the treatment of clinical Gram-negative bacterial infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lei Wang
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No.186, Gongzhuling 136100, China; (X.Z.); (Z.Z.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Xiaoxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No.186, Gongzhuling 136100, China; (X.Z.); (Z.Z.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| |
Collapse
|
17
|
Nandu N, Miller M, Tong Y, Lu ZX. A novel dual probe-based method for mutation detection using isothermal amplification. PLoS One 2024; 19:e0309541. [PMID: 39436873 PMCID: PMC11495626 DOI: 10.1371/journal.pone.0309541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024] Open
Abstract
Cost efficient and rapid detection tools to detect mutations especially those linked to drug-resistance are important to address concerns of the rising multi-drug resistance infections. Here we integrated dual probes, namely a calibrator probe and an indicator probe, into isothermal amplification detection system. These two probes are designed to bind distinct regions on the same amplicon to determine the presence or absence of mutation. The calibrator probe signal is used as an internal signal calibrator for indicator probe which detects the presence or absence of the mutation. As an illustrative example, we evaluated the applicability of this dual probe method for detecting mutations associated with rifampicin (RIF) drug resistance at codons 516, 526 and 531 of the rpoB gene in Mycobacterium tuberculosis. In this assessment, we examined 127 artificial samples comprising wild types and mutants with single or multiple mutations. Our results demonstrated 100% accuracy for both wild types and mutants for mutations at codons 526 and 531. As regards to mutations at codon 516, the wild type was identified with 100% accuracy, while the mutants were identified with 95% accuracy. Moreover, when we extended our evaluation to include clinical MTB strains and the Zeptometrix MTB Verification panel, our method achieved 100% accuracy (5 out of 5) in identifying wild-type strains. Additionally, we successfully detected a RIF-resistant strain with mutations at codon 531 of the rpoB gene in Zeptometrix verification panel. Our isothermal mutation detection system, relying on dual probes exhibits a versatile approach. With the capability to identify mutations without prior knowledge of their specific mutation direction, our dual-probe method shows significant promise for applications in drug resistance nucleic acid testing, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Nidhi Nandu
- Revvity, Inc., Waltham, MA, United States of America
| | | | - Yanhong Tong
- Revvity, Inc., Waltham, MA, United States of America
| | - Zhi-xiang Lu
- Revvity, Inc., Waltham, MA, United States of America
| |
Collapse
|
18
|
Sakalauskienė GV, Radzevičienė A. Antimicrobial Resistance: What Lies Beneath This Complex Phenomenon? Diagnostics (Basel) 2024; 14:2319. [PMID: 39451642 PMCID: PMC11506786 DOI: 10.3390/diagnostics14202319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial Resistance (AMR) has evolved from a mere concern into a significant global threat, with profound implications for public health, healthcare systems, and the global economy. Since the introduction of antibiotics between 1945 and 1963, their widespread and often indiscriminate use in human medicine, agriculture, and animal husbandry has led to the emergence and rapid spread of antibiotic-resistant genes. Bacteria have developed sophisticated mechanisms to evade the effects of antibiotics, including drug uptake limitation, drug degradation, target modification, efflux pumps, biofilm formation, and outer membrane vesicles production. As a result, AMR now poses a threat comparable to climate change and the COVID-19 pandemic, and projections suggest that death rates will be up to 10 million deaths annually by 2050, along with a staggering economic cost exceeding $100 trillion. Addressing AMR requires a multifaceted approach, including the development of new antibiotics, alternative therapies, and a significant shift in antibiotic usage and regulation. Enhancing global surveillance systems, increasing public awareness, and prioritizing investments in research, diagnostics, and vaccines are critical steps. By recognizing the gravity of the AMR threat and committing to collaborative action, its impact can be mitigated, and global health can be protected for future generations.
Collapse
Affiliation(s)
- Giedrė Valdonė Sakalauskienė
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | | |
Collapse
|
19
|
Eoh H, Lee JJ, Swanson D, Lee SK, Dihardjo S, Lee GY, Sree G, Maskill E, Taylor Z, Van Nieuwenhze M, Singh A, Lee JS, Eum SY, Cho SN, Swarts B. Trehalose catalytic shift is an intrinsic factor in Mycobacterium tuberculosis that enhances phenotypic heterogeneity and multidrug resistance. RESEARCH SQUARE 2024:rs.3.rs-4999164. [PMID: 39315249 PMCID: PMC11419184 DOI: 10.21203/rs.3.rs-4999164/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Drug-resistance (DR) in many bacterial pathogens often arises from the repetitive formation of drug-tolerant bacilli, known as persisters. However, it is unclear whether Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), undergoes a similar phenotypic transition. Recent metabolomics studies have identified that a change in trehalose metabolism is necessary for Mtb to develop persisters and plays a crucial role in metabolic networks of DR-TB strains. The present study used Mtb mutants lacking the trehalose catalytic shift and showed that the mutants exhibited a significantly lower frequency of the emergence of DR mutants compared to wildtype, due to reduced persister formation. The trehalose catalytic shift enables Mtb persisters to survive under bactericidal antibiotics by increasing metabolic heterogeneity and drug tolerance, ultimately leading to development of DR. Intriguingly, rifampicin (RIF)-resistant bacilli exhibit cross-resistance to a second antibiotic, due to a high trehalose catalytic shift activity. This phenomenon explains how the development of multidrug resistance (MDR) is facilitated by the acquisition of RIF resistance. In this context, the heightened risk of MDR-TB in the lineage 4 HN878 W-Beijing strain can be attributed to its greater trehalose catalytic shift. Genetic and pharmacological inactivation of the trehalose catalytic shift significantly reduced persister formation, subsequently decreasing the incidence of MDR-TB in HN878 W-Beijing strain. Collectively, the trehalose catalytic shift serves as an intrinsic factor of Mtb responsible for persister formation, cross-resistance to multiple antibiotics, and the emergence of MDR-TB. This study aids in the discovery of new TB therapeutics by targeting the trehalose catalytic shift of Mtb.
Collapse
|
20
|
Marrin ME, Foster MR, Santana CM, Choi Y, Jassal AS, Rancic SJ, Greenwald CR, Drucker MN, Feldman DT, Thrall ES. The translesion polymerase Pol Y1 is a constitutive component of the B. subtilis replication machinery. Nucleic Acids Res 2024; 52:9613-9629. [PMID: 39051562 PMCID: PMC11381352 DOI: 10.1093/nar/gkae637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Unrepaired DNA damage encountered by the cellular replication machinery can stall DNA replication, ultimately leading to cell death. In the DNA damage tolerance pathway translesion synthesis (TLS), replication stalling is alleviated by the recruitment of specialized polymerases to synthesize short stretches of DNA near a lesion. Although TLS promotes cell survival, most TLS polymerases are low-fidelity and must be tightly regulated to avoid harmful mutagenesis. The gram-negative bacterium Escherichia coli has served as the model organism for studies of the molecular mechanisms of bacterial TLS. However, it is poorly understood whether these same mechanisms apply to other bacteria. Here, we use in vivo single-molecule fluorescence microscopy to investigate the TLS polymerase Pol Y1 in the model gram-positive bacterium Bacillus subtilis. We find significant differences in the localization and dynamics of Pol Y1 in comparison to its E. coli homolog, Pol IV. Notably, Pol Y1 is constitutively enriched at or near sites of replication in the absence of DNA damage through interactions with the DnaN clamp; in contrast, Pol IV has been shown to be selectively enriched only upon replication stalling. These results suggest key differences in the roles and mechanisms of regulation of TLS polymerases across different bacterial species.
Collapse
Affiliation(s)
- McKayla E Marrin
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Michael R Foster
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Chloe M Santana
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Yoonhee Choi
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Avtar S Jassal
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Sarah J Rancic
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Carolyn R Greenwald
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Madeline N Drucker
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Denholm T Feldman
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Elizabeth S Thrall
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
21
|
Chen H, Zhou X, Dai W. Identification of antimicrobial-susceptible Pseudomonas aeruginosa RpoA variant strains through positional conservation pattern. J Antimicrob Chemother 2024; 79:2298-2305. [PMID: 38990679 DOI: 10.1093/jac/dkae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Bacterial RNA polymerase (RNAP) is a promising target for antimicrobial chemotherapy due to its indispensable role in bacterial growth and survival. Among its components, only the rpoB gene encoding the β-subunit is known for its association with rifampicin resistance. We recently identified a variant of the RNAP α-subunit (RpoA) in Pseudomonas aeruginosa, conferring heightened bacterial susceptibility to antimicrobials. This susceptibility was attributed to the specific down-regulation of the MexEF-OprN efflux pump. OBJECTIVES We asked how to distinguish antimicrobial-susceptible variant strains from clinical isolates. METHODS In this study, we identified various P. aeruginosa RpoA variants from clinical sources. Using the sequence alignment of different bacterial RpoA species, we computed the positional conservation of substitutions in RpoA variants using Shannon Entropy. RESULTS Our findings revealed that selective RpoA variant strains exhibited distinct profiles of antimicrobial susceptibility. Notably, RpoA variant strains, containing single-substitutions in the C-terminal domain (α-CTD) but not the N-terminal domain (α-NTD), showed attenuated MexEF-OprN expression and increased susceptibility to MexEF-OprN-specific antibiotics. Furthermore, we observed a close correlation between the susceptibility of these α-CTD RpoA variant strains to antibiotics and the conservation degrees of positional substitutions. CONCLUSIONS Our findings demonstrate the prevalence of antimicrobial-susceptible RpoA variant strains among P. aeruginosa clinical isolates. The identified positional conservation pattern in our study facilitates the rapid classification of RpoA variant strains with distinct drug resistances. Given the high conservation of RNAP across bacterial species, our findings open a new therapeutic perspective for precisely and efficiently combating pathogenic RpoA variant strains with specific antimicrobials.
Collapse
Affiliation(s)
- Huali Chen
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqing Zhou
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Weijun Dai
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
22
|
Halder UC. In Silico Drug Repurposing Endorse Amprenavir, Darunavir and Saquinavir to Target Enzymes of Multidrug Resistant Uropathogenic E. Coli. Indian J Microbiol 2024; 64:1153-1214. [PMID: 39282172 PMCID: PMC11399541 DOI: 10.1007/s12088-024-01282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/05/2024] [Indexed: 09/18/2024] Open
Abstract
Multidrug resistance is a paramount impediment to successful treatment of most hospital acquired bacterial infections. A plethora of bacterial genera exhibit differential levels of resistance to the existing antibiotics. Prevalent Uropathogenic Escherichia coli or UPEC conduce high mortality among them. Multi-Drug Resistant bacterial strains utilize precise mechanisms to bypass effects of antibiotics. This is probably due to their familiar genomic origin. In this article drug repositioning method have been utilised to target 23 enzymes of UPEC strains viz. CFT073, 536 and UTI89. 3-D drug binding motifs have been predicted using SPRITE and ASSAM servers that compare amino acid side chain similarities. From the hit results anti-viral drugs have been considered for their uniqueness and specificity. Out of 14 anti-viral drugs 3 anti-HIV drugs viz. Amprenavir, Darunavir and Saquinavir have selected for maximum binding score or drug targetability. Finally, active sites of the enzymes were analyzed using GASS-WEB for eloquent drug interference. Further analyses with the active sites of all the enzymes showed that the three selected anti-HIV drugs were very much potent to inhibit their active sites. Combination or sole application of Amprenavir, Darunavir and Saquinavir to MDR-UPEC infections may leads to cure and inhibition of mortality. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01282-x.
Collapse
Affiliation(s)
- Umesh C Halder
- Department of Zoology, Raniganj Girls' College, Searsole -Rajbari, Raniganj, Paschim Bardhaman, West Bengal 713358 India
| |
Collapse
|
23
|
Xia Z, Li Y, Liu J, Chen Y, Liu C, Hao Y. CRP and IHF act as host regulators in Royal Jelly's antibacterial activity. Sci Rep 2024; 14:19350. [PMID: 39169111 PMCID: PMC11339446 DOI: 10.1038/s41598-024-70164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Royal Jelly (RJ) is a natural substance produced by honeybees, serving not only as nutrition for bee brood and queens but also as a functional food due to its health-promoting properties. Despite its well-known broad-spectrum antibacterial activity, the precise molecular mechanism underlying its antibacterial action has remained elusive. In this study, we investigated the impact of RJ on the bacteria model MG1655 at its half-maximal inhibitory concentration, employing LC-MS/MS to analyze proteomic changes. The differentially expressed proteins were found to primarily contribute to the suppression of gene expression processes, specifically transcription and translation, disrupting nutrition and energy metabolism, and inducing oxidative stress. Notably, RJ treatment led to a marked inhibition of superoxide dismutase and catalase activities, resulting in heightened oxidative damage and lipid peroxidation. Furthermore, through a protein-protein interaction network analysis using the STRING database, we identified CRP and IHF as crucial host regulators responsive to RJ. These regulators were found to play a pivotal role in suppressing essential hub genes associated with energy production and antioxidant capabilities. Our findings significantly contribute to the understanding of RJ's antibacterial mechanism, highlighting its potential as a natural alternative to conventional antibiotics. The identification of CRP and IHF as central players highlights the intricate regulatory networks involved in RJ's action, offering new targets for developing innovative antimicrobial strategies.
Collapse
Affiliation(s)
- Zhenyu Xia
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yunchang Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Jinhao Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanping Chen
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD, 20705, USA
| | - Chenguang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yue Hao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
24
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
25
|
Parkkinen J, Bhowmik R, Tolvanen M, Carta F, Supuran CT, Parkkila S, Aspatwar A. Mycobacterial β-carbonic anhydrases: Molecular biology, role in the pathogenesis of tuberculosis and inhibition studies. Enzymes 2024; 55:343-381. [PMID: 39222997 DOI: 10.1016/bs.enz.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mycobacterium tuberculosis (Mtb), which causes tuberculosis (TB), is still a major global health problem. According to the World Health Organization (WHO), TB still causes more deaths worldwide than any other infectious agent. Drug-sensitive TB is treatable using first-line drugs; treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB requires second- and third-line drugs. However, due to the long duration of treatment, the noncompliance of patients with different levels of resistance of Mtb to these drugs has worsened the situation. Previously developed anti-TB drugs targeted the replication machinery, protein synthesis, and cell wall biosynthesis pathways of Mtb. Therefore, novel drugs targeting alternate pathways crucial for the survival and pathogenesis of Mtb in the human host are needed. The genome of Mtb encodes three β-carbonic anhydrases (CAs) that are fundamental for pH homeostasis, hypoxia, survival, and pathogenesis. Recently, several studies have shown that the β-CAs of Mtb could be inhibited both in vitro and in vivo using small chemical molecules, suggesting that these enzymes could be novel targets for developing anti-TB compounds that are devoid of resistance by Mtb. In addition, homologs of β-CAs are absent in humans; therefore, drugs developed to target these enzymes might have minimal off-target effects. In this work, we describe the roles of β-CAs in Mtb and discuss bioinformatics and cheminformatics tools used in development and discovery of novel inhibitors of these enzymes. In addition, we summarize the in vitro and in vivo studies demonstrating that the β-CAs of Mtb are indeed druggable targets.
Collapse
Affiliation(s)
- Jenny Parkkinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Fabrizio Carta
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Ltd. and Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
26
|
Delahaye A, Eldin C, Bleibtreu A, Djossou F, Marrie TJ, Ghanem-Zoubi N, Roeden S, Epelboin L. Treatment of persistent focalized Q fever: time has come for an international randomized controlled trial. J Antimicrob Chemother 2024; 79:1725-1747. [PMID: 38888195 DOI: 10.1093/jac/dkae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/15/2024] [Indexed: 06/20/2024] Open
Abstract
Q fever is a worldwide zoonosis due to Coxiella burnetii, responsible for endocarditis and endovascular infections. Since the 1990s, the combination hydroxychloroquine + doxycycline has constituted the curative and prophylactic treatment in persistent focalized Q fever. This combination appears to have significantly reduced the treatment's duration (from 60 to 26 months), yet substantial evidence of effectiveness remains lacking. Data are mostly based on in vitro and observational studies. We conducted a literature review to assess the effectiveness of this therapy, along with potential alternatives. The proposed in vitro mechanism of action describes the inhibition of Coxiella replication by doxycycline through the restoration of its bactericidal activity (inhibited in acidic environment) by alkalinization of phagolysosome-like vacuoles with hydroxychloroquine. So far, the rarity and heterogeneous presentation of cases have made it challenging to design prospective studies with statistical power. The main studies supporting this treatment are retrospective cohorts, dating back to the 1990s-2000s. Retrospective studies from the large Dutch outbreak of Q fever (>4000 cases between 2007 and 2010) did not corroborate a clear benefit of this combination, notably in comparison with other regimens. Thus, there is still no consensus among the medical community on this issue. However insufficient the evidence, today the doxycycline + hydroxychloroquine combination remains the regimen with the largest clinical experience in the treatment of 'chronic' Q fever. Reinforcing the guidelines' level of evidence is critical. We herein propose the creation of an extensive international registry, followed by a prospective cohort or ideally a randomized controlled trial.
Collapse
Affiliation(s)
- Audrey Delahaye
- Department of Infectious and Tropical Diseases, Andrée Rosemon Hospital, Cayenne, French Guiana
| | - Carole Eldin
- UMR UVE, Aix Marseille University, IRD 190 Inserm, 1207 EFS-IRBA, Marseille, France
| | - Alexandre Bleibtreu
- Department of Infectious and Tropical Diseases, University Hospitals Pitié Salpêtrière-Charles Foix, AP-HP, Paris, France
| | - Félix Djossou
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel
| | - Thomas J Marrie
- Faculty of Medicine, Dalhousie University, 1459 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Nesrin Ghanem-Zoubi
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Sonja Roeden
- Internal Medicine and Dermatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Loïc Epelboin
- Department of Infectious and Tropical Diseases, Andrée Rosemon Hospital, Cayenne, French Guiana
- Clinical Investigation Center Antilles Guyane, Inserm 1424, Centre Hospitalier de Cayenne Andrée Rosemon, Cayenne, French Guiana
| |
Collapse
|
27
|
Amoros J, Fattar N, Buysse M, Louni M, Bertaux J, Bouchon D, Duron O. Reassessment of the genetic basis of natural rifampin resistance in the genus Rickettsia. Microbiologyopen 2024; 13:e1431. [PMID: 39082505 PMCID: PMC11289727 DOI: 10.1002/mbo3.1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024] Open
Abstract
Rickettsia, a genus of obligate intracellular bacteria, includes species that cause significant human diseases. This study challenges previous claims that the Leucine-973 residue in the RNA polymerase beta subunit is the primary determinant of rifampin resistance in Rickettsia. We investigated a previously untested Rickettsia species, R. lusitaniae, from the Transitional group and found it susceptible to rifampin, despite possessing the Leu-973 residue. Interestingly, we observed the conservation of this residue in several rifampin-susceptible species across most Rickettsia phylogenetic groups. Comparative genomics revealed potential alternative resistance mechanisms, including additional amino acid variants that could hinder rifampin binding and genes that could facilitate rifampin detoxification through efflux pumps. Importantly, the evolutionary history of Rickettsia genomes indicates that the emergence of natural rifampin resistance is phylogenetically constrained within the genus, originating from ancient genetic features shared among a unique set of closely related Rickettsia species. Phylogenetic patterns appear to be the most reliable predictors of natural rifampin resistance, which is confined to a distinct monophyletic subclade known as Massiliae. The distinctive features of the RNA polymerase beta subunit in certain untested Rickettsia species suggest that R. raoultii, R. amblyommatis, R. gravesii, and R. kotlanii may also be naturally rifampin-resistant species.
Collapse
Affiliation(s)
- Julien Amoros
- MIVEGEC, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | - Noor Fattar
- MIVEGEC, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | - Marie Buysse
- MIVEGEC, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | | | | | | | - Olivier Duron
- MIVEGEC, CNRS, IRDUniversity of MontpellierMontpellierFrance
| |
Collapse
|
28
|
Wallimann A, Achermann Y, Ferris C, Morgenstern M, Clauss M, Stadelmann V, Rüdiger H, O'Mahony L, Moriarty T. Emergence of rifampicin-resistant staphylococci on the skin and nose of rifampicin-treated patients with an orthopaedic-device-related infection. J Bone Jt Infect 2024; 9:191-196. [PMID: 39539997 PMCID: PMC11554714 DOI: 10.5194/jbji-9-191-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/02/2024] [Indexed: 11/16/2024] Open
Abstract
Rifampicin is a key antibiotic in the treatment of staphylococcal biofilm infections. In this pilot study, we found that patients who received rifampicin for treatment of an orthopaedic-device-related infection (ODRI) were colonized with rifampicin-resistant staphylococci during treatment and this persisted for up to 2 months after cessation of treatment.
Collapse
Affiliation(s)
- Alexandra Wallimann
- AO Research Institute Davos, Davos, Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yvonne Achermann
- Department of Internal Medicine, Hospital Zollikerberg, Zollikerberg, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University of Zurich, Zurich, Switzerland
| | | | - Mario Morgenstern
- Center for Musculoskeletal Infections (ZMSI), University Hospital Basel, Basel, Switzerland
- Department of Orthopedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| | - Martin Clauss
- Center for Musculoskeletal Infections (ZMSI), University Hospital Basel, Basel, Switzerland
- Department of Orthopedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| | - Vincent Stadelmann
- Department of Research and Development, Schulthess Klinik, Zurich, Switzerland
| | | | - Liam O'Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, College Road, Cork, Ireland
| | - Thomas Fintan Moriarty
- AO Research Institute Davos, Davos, Switzerland
- Center for Musculoskeletal Infections (ZMSI), University Hospital Basel, Basel, Switzerland
| |
Collapse
|
29
|
Poyatos JF. Design principles of multi-map variation in biological systems. Phys Biol 2024; 21:043001. [PMID: 38949447 DOI: 10.1088/1478-3975/ad5d6c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Complexity in biology is often described using a multi-map hierarchical architecture, where the genotype, representing the encoded information, is mapped to the functional level, known as the phenotype, which is then connected to a latent phenotype we refer to as fitness. This underlying architecture governs the processes driving evolution. Furthermore, natural selection, along with other neutral forces, can, in turn, modify these maps. At each level, variation is observed. Here, I propose the need to establish principles that can aid in understanding the transformation of variation within this multi-map architecture. Specifically, I will introduce three, related to the presence of modulators, constraints, and the modular channeling of variation. By comprehending these design principles in various biological systems, we can gain better insights into the mechanisms underlying these maps and how they ultimately contribute to evolutionary dynamics.
Collapse
Affiliation(s)
- Juan F Poyatos
- Logic of Genomic Systems Lab (CNB-CSIC), Madrid 28049, Spain
| |
Collapse
|
30
|
Deshpande A, Likhar R, Khan T, Omri A. Decoding drug resistance in Mycobacterium tuberculosis complex: genetic insights and future challenges. Expert Rev Anti Infect Ther 2024; 22:511-527. [PMID: 39219506 DOI: 10.1080/14787210.2024.2400536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/02/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Tuberculosis (TB), particularly its drug-resistant forms (MDR-TB and XDR-TB), continues to pose a significant global health challenge. Despite advances in treatment and diagnosis, the evolving nature of drug resistance in Mycobacterium tuberculosis (MTB) complicates TB eradication efforts. This review delves into the complexities of anti-TB drug resistance, its mechanisms, and implications on healthcare strategies globally. AREAS COVERED We explore the genetic underpinnings of resistance to both first-line and second-line anti-TB drugs, highlighting the role of mutations in key genes. The discussion extends to advanced diagnostic techniques, such as Whole-Genome Sequencing (WGS), CRISPR-based diagnostics and their impact on identifying and managing drug-resistant TB. Additionally, we discuss artificial intelligence applications, current treatment strategies, challenges in managing MDR-TB and XDR-TB, and the global disparities in TB treatment and control, translating to different therapeutic outcomes and have the potential to revolutionize our understanding and management of drug-resistant tuberculosis. EXPERT OPINION The current landscape of anti-TB drug resistance demands an integrated approach combining advanced diagnostics, novel therapeutic strategies, and global collaborative efforts. Future research should focus on understanding polygenic resistance and developing personalized medicine approaches. Policymakers must prioritize equitable access to diagnosis and treatment, enhancing TB control strategies, and support ongoing research and augmented government funding to address this critical public health issue effectively.
Collapse
Affiliation(s)
- Amey Deshpande
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Rupali Likhar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Department of Pharmaceutical Chemistry, LSHGCT's Gahlot Institute of Pharmacy, Navi Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
31
|
Chioti VT, McWhorter KL, Blue TC, Li Y, Xu F, Jeffrey PD, Davis KM, Seyedsayamdost MR. Potent and specific antibiotic combination therapy against Clostridioides difficile. Nat Chem Biol 2024; 20:924-933. [PMID: 38942968 PMCID: PMC11306116 DOI: 10.1038/s41589-024-01651-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/15/2024] [Indexed: 06/30/2024]
Abstract
Keratinicyclins and keratinimicins are recently discovered glycopeptide antibiotics. Keratinimicins show broad-spectrum activity against Gram-positive bacteria, while keratinicyclins form a new chemotype by virtue of an unusual oxazolidinone moiety and exhibit specific antibiosis against Clostridioides difficile. Here we report the mechanism of action of keratinicyclin B (KCB). We find that steric constraints preclude KCB from binding peptidoglycan termini. Instead, KCB inhibits C. difficile growth by binding wall teichoic acids (WTAs) and interfering with cell wall remodeling. A computational model, guided by biochemical studies, provides an image of the interaction of KCB with C. difficile WTAs and shows that the same H-bonding framework used by glycopeptide antibiotics to bind peptidoglycan termini is used by KCB for interacting with WTAs. Analysis of KCB in combination with vancomycin (VAN) shows highly synergistic and specific antimicrobial activity, and that nanomolar combinations of the two drugs are sufficient for complete growth inhibition of C. difficile, while leaving common commensal strains unaffected.
Collapse
Affiliation(s)
| | | | - Tamra C Blue
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Yuchen Li
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Fei Xu
- Institute of Pharmaceutical Biotechnology and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
32
|
Vadankula GR, Nilkanth VV, Rizvi A, Yandrapally S, Agarwal A, Chirra H, Biswas R, Arifuddin M, Nema V, Mallika A, Mande SC, Banerjee S. Confronting Tuberculosis: A Synthetic Quinoline-Isonicotinic Acid Hydrazide Hybrid Compound as a Potent Lead Molecule Against Mycobacterium tuberculosis. ACS Infect Dis 2024; 10:2288-2302. [PMID: 38717380 DOI: 10.1021/acsinfecdis.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The current tuberculosis (TB) treatment is challenged by a complex first-line treatment for drug-sensitive (DS) TB. Additionally, the prevalence of multidrug (MDR)- and extensively drug (XDR)-resistant TB necessitates the search for new drug prototypes. We synthesized and screened 30 hybrid compounds containing aminopyridine and 2-chloro-3-formyl quinoline to arrive at a compound with potent antimycobacterial activity, UH-NIP-16. Subsequently, antimycobacterial activity against DS and MDR Mycobacterium tuberculosis (M.tb) strains were performed. It demonstrated an MIC50 value of 1.86 ± 0.21 μM for laboratory pathogenic M.tb strain H37Rv and 3.045 ± 0.813 μM for a clinical M.tb strain CDC1551. UH-NIP-16 also decreased the MIC50 values of streptomycin, isoniazid, ethambutol, and bedaquiline to about 45, 55, 68, and 76%, respectively, when used in combination, potentiating their activities. The molecule was active against a clinical MDR M.tb strain. Cytotoxicity on PBMCs from healthy donors and on human cell lines was found to be negligible. Further, blind docking of UH-NIP-16 using Auto Dock Vina and MGL tools onto diverse M.tb proteins showed high binding affinities with multiple M.tb proteins, the top five targets being metabolically critical proteins CelA1, DevS, MmaA4, lysine acetyltransferase, and immunity factor for tuberculosis necrotizing toxin. These bindings were confirmed by fluorescence spectroscopy using a representative protein, MmaA4. Envisaging that a pathogen will have a lower probability of developing resistance to a hybrid molecule with multiple targets, we propose that UH-NIP-16 can be further developed as a lead molecule with the bacteriostatic potential against M.tb, both alone and in combination with first-line drugs.
Collapse
Affiliation(s)
- Govinda Raju Vadankula
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
| | - Vipul V Nilkanth
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India
| | - Arshad Rizvi
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
| | - Sriram Yandrapally
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
| | - Anushka Agarwal
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
| | - Hepshibha Chirra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rashmita Biswas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Vijay Nema
- Molecular Biology Division, ICMR-National Institute for Translational Virology and AIDS Research, Pune 411026, India
| | - Alvala Mallika
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Shekhar C Mande
- National Centre for Cell Science, Pune 411007, India
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India
| | - Sharmistha Banerjee
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
| |
Collapse
|
33
|
Van Eldijk TJB, Sheridan EA, Martin G, Weissing FJ, Kuipers OP, Van Doorn GS. Temperature dependence of the mutation rate towards antibiotic resistance. JAC Antimicrob Resist 2024; 6:dlae085. [PMID: 38847007 PMCID: PMC11154133 DOI: 10.1093/jacamr/dlae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Objectives Environmental conditions can influence mutation rates in bacteria. Fever is a common response to infection that alters the growth conditions of infecting bacteria. Here we examine how a temperature change, such as is associated with fever, affects the mutation rate towards antibiotic resistance. Methods We used a fluctuation test to assess the mutation rate towards antibiotic resistance in Escherichia coli at two different temperatures: 37°C (normal temperature) and 40°C (fever temperature). We performed this measurement for three different antibiotics with different modes of action: ciprofloxacin, rifampicin and ampicillin. Results In all cases, the mutation rate towards antibiotic resistance turned out to be temperature dependent, but in different ways. Fever temperatures led to a reduced mutation rate towards ampicillin resistance and an elevated mutation rate towards ciprofloxacin and rifampicin resistance. Conclusions This study shows that the mutation rate towards antibiotic resistance is impacted by a small change in temperature, such as associated with fever. This opens a new avenue to mitigate the emergence of antibiotic resistance by coordinating the choice of an antibiotic with the decision of whether or not to suppress fever when treating a patient. Hence, optimized combinations of antibiotics and fever suppression strategies may be a new weapon in the battle against antibiotic resistance.
Collapse
Affiliation(s)
- Timo J B Van Eldijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Eleanor A Sheridan
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Guillaume Martin
- Institut des Sciences de l’Evolution de Montpellier UMR5554, Université de Montpellier, CNRS-IRD-EPHE-UM, Montpellier, France
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - G Sander Van Doorn
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Hinz A, Amado A, Kassen R, Bank C, Wong A. Unpredictability of the Fitness Effects of Antimicrobial Resistance Mutations Across Environments in Escherichia coli. Mol Biol Evol 2024; 41:msae086. [PMID: 38709811 PMCID: PMC11110942 DOI: 10.1093/molbev/msae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
The evolution of antimicrobial resistance (AMR) in bacteria is a major public health concern, and antibiotic restriction is often implemented to reduce the spread of resistance. These measures rely on the existence of deleterious fitness effects (i.e. costs) imposed by AMR mutations during growth in the absence of antibiotics. According to this assumption, resistant strains will be outcompeted by susceptible strains that do not pay the cost during the period of restriction. The fitness effects of AMR mutations are generally studied in laboratory reference strains grown in standard growth environments; however, the genetic and environmental context can influence the magnitude and direction of a mutation's fitness effects. In this study, we measure how three sources of variation impact the fitness effects of Escherichia coli AMR mutations: the type of resistance mutation, the genetic background of the host, and the growth environment. We demonstrate that while AMR mutations are generally costly in antibiotic-free environments, their fitness effects vary widely and depend on complex interactions between the mutation, genetic background, and environment. We test the ability of the Rough Mount Fuji fitness landscape model to reproduce the empirical data in simulation. We identify model parameters that reasonably capture the variation in fitness effects due to genetic variation. However, the model fails to accommodate the observed variation when considering multiple growth environments. Overall, this study reveals a wealth of variation in the fitness effects of resistance mutations owing to genetic background and environmental conditions, which will ultimately impact their persistence in natural populations.
Collapse
Affiliation(s)
- Aaron Hinz
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - André Amado
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Division of Theoretical Ecology and Evolution, Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Evolutionary Dynamics Group, Gulbenkian Science Institute, Oeiras, Portugal
| | - Rees Kassen
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Claudia Bank
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Division of Theoretical Ecology and Evolution, Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Evolutionary Dynamics Group, Gulbenkian Science Institute, Oeiras, Portugal
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
35
|
Sunil S, Murphy SI, Orsi RH, Ivanek R, Wiedmann M. Strain-specific Growth Parameters are Important to Accurately Model Bacterial Growth on Baby Spinach in Simulation Models. J Food Prot 2024; 87:100270. [PMID: 38552796 DOI: 10.1016/j.jfp.2024.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024]
Abstract
Digital tools to predict produce shelf life have the potential to reduce food waste and improve consumer satisfaction. To address this need, we (i) performed an observational study on the microbial quality of baby spinach, (ii) completed growth experiments of bacteria that are representative of the baby spinach microbiota, and (iii) developed an initial simulation model of bacterial growth on baby spinach. Our observational data showed that the predominant genera found on baby spinach were Pseudomonas, Pantoea and Exiguobacterium. Rifampicin-resistant mutants (rifR mutants) of representative bacterial subtypes were subsequently generated to obtain strain-specific growth parameters on baby spinach. These experiments showed that: (i) it is difficult to select rifR mutants that do not have fitness costs affecting growth (9 of 15 rifR mutants showed substantial differences in growth, compared to their corresponding wild-type strain) and (ii) based on estimates from primary growth models, the mean (geometric) maximum population of rifR mutants on baby spinach (7.6 log10 CFU/g, at 6°C) appears lower than that of the spinach microbiota (9.6 log10 CFU/g, at 6°C), even if rifR mutants did not have substantial growth-related fitness costs. Thus, a simulation model, parameterized with the data obtained here as well as literature data on home refrigeration temperatures, underestimated bacterial growth on baby spinach. The root mean square error of the simulation's output, compared against data from the observational study, was 1.11 log10 CFU/g. Sensitivity analysis was used to identify key parameters (e.g., strain maximum population) that impact the simulation model's output, allowing for prioritization of future data collection to improve the simulation model. Overall, this study provides a roadmap for the development of models to predict bacterial growth on leafy vegetables with strain-specific parameters and suggests that additional data are required to improve these models.
Collapse
Affiliation(s)
- Sriya Sunil
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Sarah I Murphy
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
36
|
Dyett BP, Sarkar S, Yu H, Strachan J, Drummond CJ, Conn CE. Overcoming Therapeutic Challenges of Antibiotic Delivery with Cubosome Lipid Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38690584 DOI: 10.1021/acsami.4c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Low discovery rates for new antibiotics, commercial disincentives to invest, and inappropriate use of existing drugs have created a perfect storm of antimicrobial resistance (AMR). This "silent pandemic" of AMR looms as an immense, global threat to human health. In tandem, many potential novel drug candidates are not progressed due to elevated hydrophobicity, which may result in poor intracellular internalization and undesirable serum protein binding. With a reducing arsenal of effective antibiotics, enabling technology platforms that improve the outcome of treatments, such as repurposing existing bioactive agents, is a prospective option. Nanocarrier (NC) mediated drug delivery is one avenue for amplifying the therapeutic outcome. Here, the performance of several antibiotic classes encapsulated within the lipid-based cubosomes is examined. The findings demonstrate that encapsulation affords significant improvements in drug concentration:inhibition outcomes and assists in other therapeutic challenges associated with internalization, enzyme degradation, and protein binding. We emphasize that a currently sidelined compound, novobiocin, became active and revealed a significant increase in inhibition against the pathogenic Gram-negative strain, Pseudomonas aeruginosa. Encapsulation affords co-delivery of multiple bioactives as a strategy for mitigating failure of monotherapies and tackling resistance. The rationale in optimized drug selection and nanocarrier choice is examined by transport modeling which agrees with experimental inhibition results. The results demonstrate that lipid nanocarrier encapsulation may alleviate a range of challenges faced by antibiotic therapies and increase the range of antibiotics available to treat bacterial infections.
Collapse
Affiliation(s)
- Brendan P Dyett
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Sampa Sarkar
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Haitao Yu
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Jamie Strachan
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
37
|
Peng R, Song C, Gou S, Liu H, Kang H, Dong Y, Xu Y, Hu P, Cai K, Feng Q, Guan H, Li F. Gut Clostridium sporogenes-derived indole propionic acid suppresses osteoclast formation by activating pregnane X receptor. Pharmacol Res 2024; 202:107121. [PMID: 38431091 DOI: 10.1016/j.phrs.2024.107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Bone homeostasis is maintained by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. A dramatic decrease in estrogen levels in postmenopausal women leads to osteoclast overactivation, impaired bone homeostasis, and subsequent bone loss. Changes in the gut microbiome affect bone mineral density. However, the role of the gut microbiome in estrogen deficiency-induced bone loss and its underlying mechanism remain unknown. In this study, we found that the abundance of Clostridium sporogenes (C. spor.) and its derived metabolite, indole propionic acid (IPA), were decreased in ovariectomized (OVX) mice. In vitro assays suggested that IPA suppressed osteoclast differentiation and function. At the molecular level, IPA suppressed receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced pregnane X receptor (PXR) ubiquitination and degradation, leading to increased binding of remaining PXR with P65. In vivo daily IPA administration or repeated C. spor. colonization protected against OVX-induced bone loss. To protect live bacteria from the harsh gastric environment and delay the emptying of orally administered C. spor. from the intestine, a C. spor.-encapsulated silk fibroin (SF) hydrogel system was developed, which achieved bone protection in OVX mice comparable to that achieved with repeated germ transplantation or daily IPA administration. Overall, we found that gut C. spor.-derived IPA was involved in estrogen deficiency-induced osteoclast overactivation by regulating the PXR/P65 complex. The C. spor.-encapsulated SF hydrogel system is a promising tool for combating postmenopausal osteoporosis without the disadvantages of repeated germ transplantation.
Collapse
Affiliation(s)
- Renpeng Peng
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Song
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuangquan Gou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Haiyang Liu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Xu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peixuan Hu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Hanfeng Guan
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Feng Li
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
38
|
Wang Q, Kline EC, Gilligan-Steinberg SD, Lai JJ, Hull IT, Olanrewaju AO, Panpradist N, Lutz BR. Sensitive Pathogen Detection and Drug Resistance Characterization Using Pathogen-Derived Enzyme Activity Amplified by LAMP or CRISPR-Cas. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.29.24305085. [PMID: 38633802 PMCID: PMC11023665 DOI: 10.1101/2024.03.29.24305085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Pathogens encapsulate or encode their own suite of enzymes to facilitate replication in the host. The pathogen-derived enzymes possess specialized activities that are essential for pathogen replication and have naturally been candidates for drug targets. Phenotypic assays detecting the activities of pathogen-derived enzymes and characterizing their inhibition under drugs offer an opportunity for pathogen detection, drug resistance testing for individual patients, and as a research tool for new drug development. Here, we used HIV as an example to develop assays targeting the reverse transcriptase (RT) enzyme encapsulated in HIV for sensitive detection and phenotypic characterization, with the potential for point-of-care (POC) applications. Specifically, we targeted the complementary (cDNA) generation activity of the HIV RT enzyme by adding engineered RNA as substrates for HIV RT enzyme to generate cDNA products, followed by cDNA amplification and detection facilitated by loop-mediated isothermal amplification (LAMP) or CRISPR-Cas systems. To guide the assay design, we first used qPCR to characterize the cDNA generation activity of HIV RT enzyme. In the LAMP-mediated Product-Amplified RT activity assay (LamPART), the cDNA generation and LAMP amplification were combined into one pot with novel assay designs. When coupled with direct immunocapture of HIV RT enzyme for sample preparation and endpoint lateral flow assays for detection, LamPART detected as few as 20 copies of HIV RT enzyme spiked into 25μL plasma (fingerstick volume), equivalent to a single virion. In the Cas-mediated Product-Amplified RT activity assay (CasPART), we tailored the substrate design to achieve a LoD of 2e4 copies (1.67fM) of HIV RT enzyme. Furthermore, with its phenotypic characterization capability, CasPART was used to characterize the inhibition of HIV RT enzyme under antiretroviral drugs and differentiate between wild-type and mutant HIV RT enzyme for potential phenotypic drug resistance testing. Moreover, the CasPART assay can be readily adapted to target the activity of other pathogen-derived enzymes. As a proof-of-concept, we successfully adapted CasPART to detect HIV integrase with a sensitivity of 83nM. We anticipate the developed approach of detecting enzyme activity with product amplification has the potential for a wide range of pathogen detection and phenotypic characterization.
Collapse
Affiliation(s)
- Qin Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Enos C. Kline
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - James J. Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Ian T. Hull
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ayokunle O. Olanrewaju
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Nuttada Panpradist
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Barry R. Lutz
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Gifford DR, Bhattacharyya A, Geim A, Marshall E, Krašovec R, Knight CG. Environmental and genetic influence on the rate and spectrum of spontaneous mutations in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001452. [PMID: 38687010 PMCID: PMC11084559 DOI: 10.1099/mic.0.001452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Spontaneous mutations are the ultimate source of novel genetic variation on which evolution operates. Although mutation rate is often discussed as a single parameter in evolution, it comprises multiple distinct types of changes at the level of DNA. Moreover, the rates of these distinct changes can be independently influenced by genomic background and environmental conditions. Using fluctuation tests, we characterized the spectrum of spontaneous mutations in Escherichia coli grown in low and high glucose environments. These conditions are known to affect the rate of spontaneous mutation in wild-type MG1655, but not in a ΔluxS deletant strain - a gene with roles in both quorum sensing and the recycling of methylation products used in E. coli's DNA repair process. We find an increase in AT>GC transitions in the low glucose environment, suggesting that processes relating to the production or repair of this mutation could drive the response of overall mutation rate to glucose concentration. Interestingly, this increase in AT>GC transitions is maintained by the glucose non-responsive ΔluxS deletant. Instead, an elevated rate of GC>TA transversions, more common in a high glucose environment, leads to a net non-responsiveness of overall mutation rate for this strain. Our results show how relatively subtle changes, such as the concentration of a carbon substrate or loss of a regulatory gene, can substantially influence the amount and nature of genetic variation available to selection.
Collapse
Affiliation(s)
- Danna R. Gifford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Anish Bhattacharyya
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Alexandra Geim
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Pembroke College, University of Cambridge, Cambridge, UK
| | - Eleanor Marshall
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rok Krašovec
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Christopher G. Knight
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| |
Collapse
|
40
|
Maulina N, Hayati Z, Hasballah K, Zulkarnain Z, Waraztuty I, Defadheandra A. Rifampicin Resistant Tuberculosis Among Presumptive Pulmonary Tuberculosis in Province Referral Hospital, Indonesia: Dynamic Cases of a 7-Year Report. J Res Health Sci 2024; 24:e00601. [PMID: 39072537 PMCID: PMC10999105 DOI: 10.34172/jrhs.2024.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/14/2024] [Accepted: 02/20/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Indonesia has the second highest tuberculosis (TB) cases globally. This study aimed to determine the sociodemographic factors associated with TB and rifampicin-resistant tuberculosis (RR-TB) cases among presumptive pulmonary TB patients in Aceh Referral Hospital. Study Design: A retrospective cross-sectional study. METHODS A retrospective cross-sectional review of presumptive pulmonary TB patients having a sputum test at the clinical microbiology laboratory was conducted from January 2015 to December 2021. Patient characteristics and drug susceptibility data were abstracted from the hospital information system of TB (SITB) and analyzed by univariate and bivariate analysis. RESULTS The Mycobacterium tuberculosis (MTB) was detected in 32.8% sample (1,521/4,637). Of the TB-confirmed cases, 14.1% (215/1,521) were resistant to rifampicin (RR-TB). Most of them were male patients (71.63%), were in the age range of 35-54 years (48.7%), lived in rural areas of the country (56.3%), and were previously TB-treated cases (65.5%). Overall, 35-44-year-old patients (adjusted odds ratio [AOR]=2.11, 95% CI=1.25, 3.5, P<0.05) were more likely to have RR-TB compared to>65-year-old patients. Gender and residence were not associated with RR-TB (P>0.05). Case detection decreased in pandemic conditions (19.5% in 2019 to 13.9% and 7.91% in 2020 and 2021, respectively). CONCLUSION The findings revealed the dynamic cases and sociodemographic factors of TB and RR-TB in a province referral hospital in Indonesia for 7 years. The cases of TB and RR-TB among presumptive TB patients were 32.8% and 14.1%, respectively. The cases were found to be more noticeable in males, adults (45-54 years old), and patients residing in rural areas.
Collapse
Affiliation(s)
- Novi Maulina
- Microbiology Department, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| | - Zinatul Hayati
- Microbiology Department, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| | - Kartini Hasballah
- Pharmacology Department, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| | - Zulkarnain Zulkarnain
- Physiology Department, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| | - Ika Waraztuty
- Anatomy Department, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| | - Azzaura Defadheandra
- Anatomy Department, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| |
Collapse
|
41
|
Almajid A, Almuyidi S, Alahmadi S, Bohaligah S, Alfaqih L, Alotaibi A, Almarzooq A, Alsarihi A, Alrawi Z, Althaqfan R, Alamoudi R, Albaqami S, Alali AH. ''Myth Busting in Infectious Diseases'': A Comprehensive Review. Cureus 2024; 16:e57238. [PMID: 38686221 PMCID: PMC11056812 DOI: 10.7759/cureus.57238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2024] [Indexed: 05/02/2024] Open
Abstract
Antibiotics have played a pivotal role in modern medicine, drastically reducing mortality rates associated with bacterial infections. Despite their significant contributions, the emergence of antibiotic resistance has become a formidable challenge, necessitating a re-evaluation of antibiotic use practices. The widespread belief in clinical practice that bactericidal antibiotics are inherently superior to bacteriostatic ones lacks consistent support from evidence in randomized controlled trials (RCTs). With the latest evidence, certain infections have demonstrated equal or even superior efficacy with bacteriostatic agents. Furthermore, within clinical practice, there is a tendency to indiscriminately order urine cultures for febrile patients, even in cases where alternative etiologies might be present. Consequently, upon obtaining a positive urine culture result, patients often receive antimicrobial prescriptions despite the absence of clinical indications warranting such treatment. Furthermore, it is a prevailing notion among physicians that extended durations of antibiotic therapy confer potential benefits and mitigate the emergence of antimicrobial resistance. Contrary to this belief, empirical evidence refutes such assertions. This article aims to address common myths and misconceptions within the field of infectious diseases.
Collapse
Affiliation(s)
- Ali Almajid
- Internal Medicine, King Fahad Specialist Hospital, Dammam, SAU
| | | | - Shatha Alahmadi
- Medicine, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | - Sarah Bohaligah
- Medicine, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | | | | | | | - Asmaa Alsarihi
- Applied Medical Sciences, Taibah University, AlMadinah, SAU
| | - Zaina Alrawi
- Medicine, King Abdulaziz University, Jeddah, SAU
| | - Rahaf Althaqfan
- Applied Medical Sciences, King Khalid University, Khamis Mushait, SAU
| | - Rahma Alamoudi
- Medicine, Ibn Sina National College for Medical Studies, Jeddah, SAU
| | | | - Alaa H Alali
- Infectious Diseases, King Saud Medical City, Riyadh, SAU
| |
Collapse
|
42
|
Ektefaie Y, Shen A, Bykova D, Marin M, Zitnik M, Farhat M. Evaluating generalizability of artificial intelligence models for molecular datasets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581982. [PMID: 38464295 PMCID: PMC10925170 DOI: 10.1101/2024.02.25.581982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Deep learning has made rapid advances in modeling molecular sequencing data. Despite achieving high performance on benchmarks, it remains unclear to what extent deep learning models learn general principles and generalize to previously unseen sequences. Benchmarks traditionally interrogate model generalizability by generating metadata based (MB) or sequence-similarity based (SB) train and test splits of input data before assessing model performance. Here, we show that this approach mischaracterizes model generalizability by failing to consider the full spectrum of cross-split overlap, i.e., similarity between train and test splits. We introduce Spectra, a spectral framework for comprehensive model evaluation. For a given model and input data, Spectra plots model performance as a function of decreasing cross-split overlap and reports the area under this curve as a measure of generalizability. We apply Spectra to 18 sequencing datasets with associated phenotypes ranging from antibiotic resistance in tuberculosis to protein-ligand binding to evaluate the generalizability of 19 state-of-the-art deep learning models, including large language models, graph neural networks, diffusion models, and convolutional neural networks. We show that SB and MB splits provide an incomplete assessment of model generalizability. With Spectra, we find as cross-split overlap decreases, deep learning models consistently exhibit a reduction in performance in a task- and model-dependent manner. Although no model consistently achieved the highest performance across all tasks, we show that deep learning models can generalize to previously unseen sequences on specific tasks. Spectra paves the way toward a better understanding of how foundation models generalize in biology.
Collapse
Affiliation(s)
- Yasha Ektefaie
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Andrew Shen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Computer Science, Northwestern University, Evanston, IL, USA
| | - Daria Bykova
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Maximillian Marin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Data Science Initiative, Cambridge, MA, USA
| | - Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
43
|
Bhattarai SK, Du M, Zeamer AL, Morzfeld BM, Kellogg TD, Firat K, Benjamin A, Bean JM, Zimmerman M, Mardi G, Vilbrun SC, Walsh KF, Fitzgerald DW, Glickman MS, Bucci V. Commensal antimicrobial resistance mediates microbiome resilience to antibiotic disruption. Sci Transl Med 2024; 16:eadi9711. [PMID: 38232140 PMCID: PMC11017772 DOI: 10.1126/scitranslmed.adi9711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
Despite their therapeutic benefits, antibiotics exert collateral damage on the microbiome and promote antimicrobial resistance. However, the mechanisms governing microbiome recovery from antibiotics are poorly understood. Treatment of Mycobacterium tuberculosis, the world's most common infection, represents the longest antimicrobial exposure in humans. Here, we investigate gut microbiome dynamics over 20 months of multidrug-resistant tuberculosis (TB) and 6 months of drug-sensitive TB treatment in humans. We find that gut microbiome dynamics and TB clearance are shared predictive cofactors of the resolution of TB-driven inflammation. The initial severe taxonomic and functional microbiome disruption, pathobiont domination, and enhancement of antibiotic resistance that initially accompanied long-term antibiotics were countered by later recovery of commensals. This resilience was driven by the competing evolution of antimicrobial resistance mutations in pathobionts and commensals, with commensal strains with resistance mutations reestablishing dominance. Fecal-microbiota transplantation of the antibiotic-resistant commensal microbiome in mice recapitulated resistance to further antibiotic disruption. These findings demonstrate that antimicrobial resistance mutations in commensals can have paradoxically beneficial effects by promoting microbiome resilience to antimicrobials and identify microbiome dynamics as a predictor of disease resolution in antibiotic therapy of a chronic infection.
Collapse
Affiliation(s)
- Shakti K Bhattarai
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Muxue Du
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, NY 10065, USA
| | - Abigail L Zeamer
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Benedikt M Morzfeld
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Tasia D Kellogg
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kaya Firat
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Anna Benjamin
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James M Bean
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Gertrude Mardi
- Haitian Study Group for Kaposi’s Sarcoma and Opportunistic Infections (GHESKIO), Port-au-Prince, Haiti
| | - Stalz Charles Vilbrun
- Haitian Study Group for Kaposi’s Sarcoma and Opportunistic Infections (GHESKIO), Port-au-Prince, Haiti
| | - Kathleen F Walsh
- Center for Global Health, Weill Cornell Medicine, New York, NY 10065, USA
- Division of General Internal Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Michael S Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, NY 10065, USA
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
- Immunology and Microbiology Program, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
44
|
Chen X, Sechi LA, Molicotti P. Evaluation of mycobacteria infection prevalence and optimization of the identification process in North Sardinia, Italy. Microbiol Spectr 2024; 12:e0317923. [PMID: 38059624 PMCID: PMC10783066 DOI: 10.1128/spectrum.03179-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Mycobacterial infection is a major threat to public health worldwide. Accurate identification of infected species and drug resistance detection are critical factors in treatment. We focused on shortening the turn-around time of identifying mycobacteria species and antibiotic resistance tests.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- SC Microbiologia, AOU Sassari, Sassari, Italy
| | - Paola Molicotti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- SC Microbiologia, AOU Sassari, Sassari, Italy
| |
Collapse
|
45
|
Anwar AF, Cain CF, Garza MJ, Degen D, Ebright RH, Del Valle JR. Stabilizing Pseudouridimycin: Synthesis, RNA Polymerase Inhibitory Activity, and Antibacterial Activity of Dipeptide-Modified Analogues. ChemMedChem 2024; 19:e202300474. [PMID: 37751316 PMCID: PMC10843019 DOI: 10.1002/cmdc.202300474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
Pseudouridimycin (PUM) is a microbially produced C-nucleoside dipeptide that selectively targets the nucleotide addition site of bacterial RNA polymerase (RNAP) and that has a lower rate of spontaneous resistance emergence relative to current drugs that target RNAP. Despite its promising biological profile, PUM undergoes relatively rapid decomposition in buffered aqueous solutions. Here, we describe the synthesis, RNAP-inhibitory activity, and antibacterial activity of chemically stabilized analogues of PUM. These analogues feature targeted modifications that mitigate guanidine-mediated hydroxamate bond scission. A subset of analogues in which the central hydroxamate is replaced with amide or hydrazide isosteres retain the antibacterial activity of the natural product.
Collapse
Affiliation(s)
- Avraz F Anwar
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Christopher F Cain
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Michael J Garza
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - David Degen
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ, 08854, USA
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ, 08854, USA
| | - Juan R Del Valle
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
46
|
Asif M, Qusty NF, Alghamdi S. An Overview of Various Rifampicin Analogs against Mycobacterium tuberculosis and their Drug Interactions. Med Chem 2024; 20:268-292. [PMID: 37855280 DOI: 10.2174/0115734064260853230926080134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/14/2023] [Accepted: 08/12/2023] [Indexed: 10/20/2023]
Abstract
The success of the TB control program is hampered by the major issue of drug-resistant tuberculosis (DR-TB). The situation has undoubtedly been made more difficult by the widespread and multidrug-resistant (XDR) strains of TB. The modification of existing anti-TB medications to produce derivatives that can function on resistant TB bacilli is one of the potential techniques to overcome drug resistance affordably and straightforwardly. In comparison to novel pharmaceuticals for drug research and progress, these may have a better half-life and greater bioavailability, be more efficient, and serve as inexpensive alternatives. Mycobacterium tuberculosis, which is drugsusceptible or drug-resistant, is effectively treated by several already prescribed medications and their derivatives. Due to this, the current review attempts to give a brief overview of the rifampicin derivatives that can overcome the parent drug's resistance and could, hence, act as useful substitutes. It has been found that one-third of the global population is affected by M. tuberculosis. The most common cause of infection-related death can range from latent TB to TB illness. Antibiotics in the rifamycin class, including rifampicin or rifampin (RIF), rifapentine (RPT), and others, have a special sterilizing effect on M. tuberculosis. We examine research focused on evaluating the safety, effectiveness, pharmacokinetics, pharmacodynamics, risk of medication interactions, and other characteristics of RIF analogs. Drug interactions are especially difficult with RIF because it must be taken every day for four months to treat latent TB infection. RIF continues to be the gold standard of treatment for drug-sensitive TB illness. RIF's safety profile is well known, and the two medicines' adverse reactions have varying degrees of frequency. The authorized once-weekly RPT regimen is insufficient, but greater dosages of either medication may reduce the amount of time needed to treat TB effectively.
Collapse
Affiliation(s)
- Mohammad Asif
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, 226003, Uttar Pradesh, India
| | - Naeem F Qusty
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al‒Qura University, Makkah, 21955, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al‒Qura University, Makkah, 21955, Saudi Arabia
| |
Collapse
|
47
|
Kumar V, Yasmeen N, Pandey A, Ahmad Chaudhary A, Alawam AS, Ahmad Rudayni H, Islam A, Lakhawat SS, Sharma PK, Shahid M. Antibiotic adjuvants: synergistic tool to combat multi-drug resistant pathogens. Front Cell Infect Microbiol 2023; 13:1293633. [PMID: 38179424 PMCID: PMC10765517 DOI: 10.3389/fcimb.2023.1293633] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
The rise of multi-drug resistant (MDR) pathogens poses a significant challenge to the field of infectious disease treatment. To overcome this problem, novel strategies are being explored to enhance the effectiveness of antibiotics. Antibiotic adjuvants have emerged as a promising approach to combat MDR pathogens by acting synergistically with antibiotics. This review focuses on the role of antibiotic adjuvants as a synergistic tool in the fight against MDR pathogens. Adjuvants refer to compounds or agents that enhance the activity of antibiotics, either by potentiating their effects or by targeting the mechanisms of antibiotic resistance. The utilization of antibiotic adjuvants offers several advantages. Firstly, they can restore the effectiveness of existing antibiotics against resistant strains. Adjuvants can inhibit the mechanisms that confer resistance, making the pathogens susceptible to the action of antibiotics. Secondly, adjuvants can enhance the activity of antibiotics by improving their penetration into bacterial cells, increasing their stability, or inhibiting efflux pumps that expel antibiotics from bacterial cells. Various types of antibiotic adjuvants have been investigated, including efflux pump inhibitors, resistance-modifying agents, and compounds that disrupt bacterial biofilms. These adjuvants can act synergistically with antibiotics, resulting in increased antibacterial activity and overcoming resistance mechanisms. In conclusion, antibiotic adjuvants have the potential to revolutionize the treatment of MDR pathogens. By enhancing the efficacy of antibiotics, adjuvants offer a promising strategy to combat the growing threat of antibiotic resistance. Further research and development in this field are crucial to harness the full potential of antibiotic adjuvants and bring them closer to clinical application.
Collapse
Affiliation(s)
- Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
- Amity Institute of Pharmacy, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Aishwarya Pandey
- INRS, Eau Terre Environnement Research Centre, Québec, QC, Canada
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Asimul Islam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sudarshan S. Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Pushpender K. Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
48
|
Medin S, Dressel A, Specht DA, Sheppard TJ, Holycross ME, Reid MC, Gazel E, Wu M, Barstow B. Multiple Rounds of In Vivo Random Mutagenesis and Selection in Vibrio natriegens Result in Substantial Increases in REE Binding Capacity. ACS Synth Biol 2023; 12:3680-3694. [PMID: 38055772 PMCID: PMC10729037 DOI: 10.1021/acssynbio.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Rare earth elements (REE) are essential ingredients in many modern technologies, yet their purification remains either environmentally harmful or economically unviable. Adsorption, or biosorption, of REE onto bacterial cell membranes offers a sustainable alternative to traditional solvent extraction methods. But in order for biosorption-based REE purification to compete economically, the capacity and specificity of biosorption sites must be enhanced. Although there have been some recent advances in characterizing the genetics of REE-biosorption, the variety and complexity of bacterial membrane surface sites make targeted genetic engineering difficult. Here, we propose using multiple rounds of in vivo random mutagenesis induced by the MP6 plasmid combined with plate-throughput REE-biosorption screening to improve a microbe's capacity and selectivity for biosorbing REE. We engineered a strain of Vibrio natriegens capable of biosorbing 210% more dysprosium compared to the wild-type and produced selectivity improvements of up to 50% between the lightest (lanthanum) and heaviest (lutetium) REE. We believe that mutations we observed in ABC transporters as well as a nonessential protein in the BAM outer membrane β-barrel protein insertion complex likely contribute to some─but almost certainly not all─of the biosorption changes we observed. Given the ease of finding significant biosorption mutants, these results highlight just how many genes likely contribute to biosorption as well as the power of random mutagenesis in identifying genes of interest and optimizing a biological system for a task.
Collapse
Affiliation(s)
- Sean Medin
- Department
of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Anastacia Dressel
- Department
of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - David A. Specht
- Department
of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Timothy J. Sheppard
- Department
of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Megan E. Holycross
- Department
of Earth and Atmospheric Sciences, Cornell
University, Ithaca, New York 14853, United States
| | - Matthew C. Reid
- School
of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Esteban Gazel
- Department
of Earth and Atmospheric Sciences, Cornell
University, Ithaca, New York 14853, United States
| | - Mingming Wu
- Department
of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Buz Barstow
- Department
of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
49
|
Ho CH, Chen CJ, Hsieh CY, Su PY. Amino acid substitutions in the region between RpoB clusters II and III on rifampin susceptibility in Haemophilus influenzae. Eur J Clin Microbiol Infect Dis 2023; 42:1499-1509. [PMID: 37906391 DOI: 10.1007/s10096-023-04689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Rifampin is a potent chemoprophylactic antibiotic for Haemophilus influenzae infection, and the resistance rate in H. influenzae is low. In this study, we assessed rifampin resistance-related genetic variations in H. influenzae. METHODS Rifampin susceptibility testing and whole-genome sequencing were performed in 51 H. influenzae isolates. Variations associated with rifampin resistance were identified using Fisher's exact tests. Functional assays were performed to evaluate the effect of RpoB substitutions on rifampin susceptibility. RESULTS Using the genome of the Rd KW20 H. influenzae strain as the reference, we detected 40 genetic variations in rpoB, which resulted in 39 deduced amino acid substitutions among the isolates. Isolate A0586 was resistant to rifampin, with a minimum inhibitory concentration (MIC) = 8 μg/mL. Phylogenetic analyses revealed that the RpoB sequence of isolate A0586 was distinct from other isolates. Five substitutions, including H526N located in cluster I and L623F, R628C, L645F, and L672F in the region between clusters II and III, were unique to isolate A0586. In two rifampin-susceptible H. influenzae isolates, RpoB-H526N alone and in combination with RpoB-L672F increased the MICs of rifampin to 4 and 8 μg/mL, respectively. RpoB-L672F did not affect cell growth and transcription in H. influenzae isolates. No amino acid substitutions in the AcrAB-TolC efflux pump or outer membrane proteins were found to be associated with rifampin resistance in H. influenzae. CONCLUSIONS Our findings indicate that L672F substitution in the region between RpoB clusters II and III has an aggravating effect on rifampin resistance in H. influenzae.
Collapse
Affiliation(s)
- Cheng-Hsun Ho
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan.
| | - Chuan-Jung Chen
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Chia-Yun Hsieh
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Pei-Yi Su
- Department of Laboratory Medicine, E-DA Hospital, Kaohsiung, Taiwan
| |
Collapse
|
50
|
Sudzinová P, Šanderová H, Koval' T, Skálová T, Borah N, Hnilicová J, Kouba T, Dohnálek J, Krásný L. What the Hel: recent advances in understanding rifampicin resistance in bacteria. FEMS Microbiol Rev 2023; 47:fuac051. [PMID: 36549665 PMCID: PMC10719064 DOI: 10.1093/femsre/fuac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Rifampicin is a clinically important antibiotic that binds to, and blocks the DNA/RNA channel of bacterial RNA polymerase (RNAP). Stalled, nonfunctional RNAPs can be removed from DNA by HelD proteins; this is important for maintenance of genome integrity. Recently, it was reported that HelD proteins from high G+C Actinobacteria, called HelR, are able to dissociate rifampicin-stalled RNAPs from DNA and provide rifampicin resistance. This is achieved by the ability of HelR proteins to dissociate rifampicin from RNAP. The HelR-mediated mechanism of rifampicin resistance is discussed here, and the roles of HelD/HelR in the transcriptional cycle are outlined. Moreover, the possibility that the structurally similar HelD proteins from low G+C Firmicutes may be also involved in rifampicin resistance is explored. Finally, the discovery of the involvement of HelR in rifampicin resistance provides a blueprint for analogous studies to reveal novel mechanisms of bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Petra Sudzinová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Tomáš Koval'
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Tereza Skálová
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Nabajyoti Borah
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Tomáš Kouba
- Cryogenic Electron Microscopy Research-Service Group, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16000 Prague, Czech Republic
| | - Jan Dohnálek
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| |
Collapse
|