1
|
Hývlová D, Jiřík R, Vitouš J, Macíček O, Krátká L, Dražanová E, Starčuk Z. Focused ultrasound-induced blood-brain barrier opening: A comparative analysis of permeability quantification based on K trans and PS. Magn Reson Med 2025; 93:2610-2622. [PMID: 39963048 PMCID: PMC11971499 DOI: 10.1002/mrm.30446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/12/2024] [Accepted: 01/13/2025] [Indexed: 04/06/2025]
Abstract
PURPOSE Focused ultrasound-induced blood-brain barrier (BBB) opening is a promising method for neurotherapeutic delivery. The standard for quantifying induced BBB permeability is theK trans $$ {K}^{\mathrm{trans}} $$ parameter, which reflects both permeability and plasma flow. The influence of plasma flow can be eliminated by estimating the PS parameter. However, this parameter has been largely unexplored in this application. This study aims to compare permeability estimates based onK trans $$ {K}^{\mathrm{trans}} $$ and PS in focused ultrasound-induced BBB opening experiments. METHODS We used the extended Tofts model (ETM) and the two-compartment exchange model (2CXM) to estimateK trans $$ {K}^{\mathrm{trans}} $$ and PS parameters, respectively. Permeability estimates were compared using simulated concentration curves, simulated DCE-MRI data, and real datasets. We explored the influence of spatially-regularized model fitting on the results. RESULTS For opened BBB,K trans $$ {K}^{\mathrm{trans}} $$ was minimally influenced by plasma flow under the tested conditions. However, fitting the ETM often introduced outliers inK trans $$ {K}^{\mathrm{trans}} $$ estimates in regions with closed BBB. The 2CXM outperformed the ETM at high signal-to-noise ratios, but its higher complexity led to lower precision at low signal-to-noise ratios. Both these issues were successfully compensated by spatially-regularized model fitting. CONCLUSION BothK trans $$ {K}^{\mathrm{trans}} $$ and PS seem to be eligible options for the quantification of BBB opening, and the correct choice depends on the specifics of the acquired DCE-MRI data. Additionally, spatial regularization has demonstrated its importance in enhancing the accuracy and reproducibility of results for both models.
Collapse
Affiliation(s)
- Denisa Hývlová
- Institute of Scientific InstrumentsCzech Academy of SciencesBrnoCzechia
- Faculty of Electrical Engineering and CommunicationBrno University of TechnologyBrnoCzechia
| | - Radovan Jiřík
- Institute of Scientific InstrumentsCzech Academy of SciencesBrnoCzechia
| | - Jiří Vitouš
- Institute of Scientific InstrumentsCzech Academy of SciencesBrnoCzechia
- Faculty of Electrical Engineering and CommunicationBrno University of TechnologyBrnoCzechia
| | - Ondřej Macíček
- Institute of Scientific InstrumentsCzech Academy of SciencesBrnoCzechia
| | - Lucie Krátká
- Institute of Scientific InstrumentsCzech Academy of SciencesBrnoCzechia
| | - Eva Dražanová
- Institute of Scientific InstrumentsCzech Academy of SciencesBrnoCzechia
- Department of Pharmacology, Faculty of MedicineMasaryk UniversityBrnoCzechia
| | - Zenon Starčuk
- Institute of Scientific InstrumentsCzech Academy of SciencesBrnoCzechia
| |
Collapse
|
2
|
Cavicchioli Azevedo V, Johnston CU, Kennedy CJ. Ivermectin Toxicokinetics in Rainbow Trout (Oncorhynchus mykiss) following P-glycoprotein Induction. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:58-72. [PMID: 38103085 DOI: 10.1007/s00244-023-01045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Alterations in ivermectin (IVM, 22,23-dihydro avermectin B1a+22,23-dihydro avermectin B1b) toxicokinetics following P-glycoprotein (P-gp) induction by clotrimazole (CTZ) were examined in rainbow trout (Oncorhynchus mykiss) to assess the potential importance of P-gp activity levels in xenobiotic distribution and kinetics in fish. Control and fish pretreated with CTZ (30 µmol/kg) were administered 175 µg/kg 3H-IVM into the caudal vasculature. At various time points (0.25, 0.5, 1, 3, 24, 48, 96, and 168 h) following injection, tissues (blood, liver, kidney, gill, intestines, brain [5 regions], eye, gonad and fat) were removed analyzed for IVM-derived radioactivity. IVM concentration declined in blood, liver, kidney and gill, and concentrations in other tissues remained constant over the sampling period. The highest measured concentrations were found in kidney, followed by liver, with the lowest values found in brain, eye and gonad. The highest % of the administered dose was found in the liver and kidney in the immediate hours post-administration, and in the intestines and fat at 24 h post-administration. P-gp induction by CTZ did not alter IVM distribution or any calculated toxicokinetic parameter (AUC, mean residence time, T1/2, clearance rate, volume of distribution), suggesting that P-gp induction may be limited or that P-gp plays a lesser role in xenobiotic kinetics in fish compared to mammals.
Collapse
Affiliation(s)
| | - Christina U Johnston
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada.
| |
Collapse
|
3
|
Filippov AG, Alexandrin VV, Ivanov AV, Paltsyn AA, Sviridkina NB, Virus ED, Bulgakova PO, Burmiy JP, Kubatiev AA. Neuroprotective Effect of Platinum Nanoparticles Is Not Associated with Their Accumulation in the Brain of Rats. J Funct Biomater 2023; 14:348. [PMID: 37504843 PMCID: PMC10381480 DOI: 10.3390/jfb14070348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Platinum nanoparticles (nPts) have neuroprotective/antioxidant properties, but the mechanisms of their action in cerebrovascular disease remain unclear. We investigated the brain bioavailability of nPts and their effects on brain damage, cerebral blood flow (CBF), and development of brain and systemic oxidative stress (OS) in a model of cerebral ischemia (hemorrhage + temporary bilateral common carotid artery occlusion, tBCAO) in rats. The nPts (0.04 g/L, 3 ± 1 nm diameter) were administered to rats (N = 19) intraperitoneally at the start of blood reperfusion. Measurement of CBF via laser Doppler flowmetry revealed that the nPts caused a rapid attenuation of postischemic hypoperfusion. The nPts attenuated the apoptosis of hippocampal neurons, the decrease in reduced aminothiols level in plasma, and the glutathione redox status in the brain, which were induced by tBCAO. The content of Pt in the brain was extremely low (≤1 ng/g). Thus, nPts, despite the extremely low brain bioavailability, can attenuate the development of brain OS, CBF dysregulation, and neuronal apoptosis. This may indicate that the neuroprotective effects of nPts are due to indirect mechanisms rather than direct activity in the brain tissue. Research on such mechanisms may offer a promising trend in the treatment of acute disorders of CBF.
Collapse
Affiliation(s)
| | | | | | - Alexander Alexandrovich Paltsyn
- Institute of General Pathology and Pathophysiology, Baltiyskaya St., 8, 125315 Moscow, Russia
- Russian Medical Academy for Continuing Professional Education, Barricadnaya St., 2/1 b. 1, 125993 Moscow, Russia
| | | | | | | | - Joanna Petrovna Burmiy
- Institute of Microelectronic Technology and Ultra-High-Purity Materials, Akademika Osip'yana Str., 6, 142432 Chernogolovka, Russia
| | - Aslan Amirkhanovich Kubatiev
- Institute of General Pathology and Pathophysiology, Baltiyskaya St., 8, 125315 Moscow, Russia
- Russian Medical Academy for Continuing Professional Education, Barricadnaya St., 2/1 b. 1, 125993 Moscow, Russia
| |
Collapse
|
4
|
Welzel B, Johne M, Löscher W. Bumetanide potentiates the anti-seizure and disease-modifying effects of midazolam in a noninvasive rat model of term birth asphyxia. Epilepsy Behav 2023; 142:109189. [PMID: 37037061 DOI: 10.1016/j.yebeh.2023.109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Birth asphyxia and the resulting hypoxic-ischemic encephalopathy (HIE) are highly associated with perinatal and neonatal death, neonatal seizures, and an adverse later-life outcome. Currently used drugs, including phenobarbital and midazolam, have limited efficacy to suppress neonatal seizures. There is a medical need to develop new therapies that not only suppress neonatal seizures but also prevent later-life consequences. We have previously shown that the loop diuretic bumetanide does not potentiate the effects of phenobarbital in a rat model of birth asphyxia. Here we compared the effects of bumetanide (0.3 or 10 mg/kg i.p.), midazolam (1 mg/kg i.p.), and a combination of bumetanide and midazolam on neonatal seizures and later-life outcomes in this model. While bumetanide at either dose was ineffective when administered alone, the higher dose of bumetanide markedly potentiated midazolam's effect on neonatal seizures. Median bumetanide brain levels (0.47-0.53 µM) obtained with the higher dose were in the range known to inhibit the Na-K-Cl-cotransporter NKCC1 but it remains to be determined whether brain NKCC1 inhibition was underlying the potentiation of midazolam. When behavioral and cognitive alterations were examined over three months after asphyxia, treatment with the bumetanide/midazolam combination, but not with bumetanide or midazolam alone, prevented impairment of learning and memory. Furthermore, the combination prevented the loss of neurons in the dentate hilus and aberrant mossy fiber sprouting in the CA3a area of the hippocampus. The molecular mechanisms that explain that bumetanide potentiates midazolam but not phenobarbital in the rat model of birth asphyxia remain to be determined.
Collapse
Affiliation(s)
- Björn Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany.
| |
Collapse
|
5
|
Melillo N, Scotcher D, Kenna JG, Green C, Hines CDG, Laitinen I, Hockings PD, Ogungbenro K, Gunwhy ER, Sourbron S, Waterton JC, Schuetz G, Galetin A. Use of In Vivo Imaging and Physiologically-Based Kinetic Modelling to Predict Hepatic Transporter Mediated Drug-Drug Interactions in Rats. Pharmaceutics 2023; 15:896. [PMID: 36986758 PMCID: PMC10057977 DOI: 10.3390/pharmaceutics15030896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Gadoxetate, a magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 and multidrug resistance-associated protein 2. Six drugs, with varying degrees of transporter inhibition, were used to assess gadoxetate dynamic contrast enhanced MRI biomarkers for transporter inhibition in rats. Prospective prediction of changes in gadoxetate systemic and liver AUC (AUCR), resulting from transporter modulation, were performed by physiologically-based pharmacokinetic (PBPK) modelling. A tracer-kinetic model was used to estimate rate constants for hepatic uptake (khe), and biliary excretion (kbh). The observed median fold-decreases in gadoxetate liver AUC were 3.8- and 1.5-fold for ciclosporin and rifampicin, respectively. Ketoconazole unexpectedly decreased systemic and liver gadoxetate AUCs; the remaining drugs investigated (asunaprevir, bosentan, and pioglitazone) caused marginal changes. Ciclosporin decreased gadoxetate khe and kbh by 3.78 and 0.09 mL/min/mL, while decreases for rifampicin were 7.20 and 0.07 mL/min/mL, respectively. The relative decrease in khe (e.g., 96% for ciclosporin) was similar to PBPK-predicted inhibition of uptake (97-98%). PBPK modelling correctly predicted changes in gadoxetate systemic AUCR, whereas underprediction of decreases in liver AUCs was evident. The current study illustrates the modelling framework and integration of liver imaging data, PBPK, and tracer-kinetic models for prospective quantification of hepatic transporter-mediated DDI in humans.
Collapse
Affiliation(s)
- Nicola Melillo
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Science, The University of Manchester, Manchester M13 9PL, UK (D.S.)
- SystemsForecastingUK Ltd., Lancaster LA1 5DD, UK
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Science, The University of Manchester, Manchester M13 9PL, UK (D.S.)
| | | | - Claudia Green
- MR & CT Contrast Media Research, Bayer AG, 13353 Berlin, Germany
| | | | - Iina Laitinen
- Sanofi-Aventis Deutschland GmbH, Bioimaging Germany, 65929 Frankfurt am Main, Germany
- Antaros Medical, 431 83 Mölndal, Sweden
| | - Paul D. Hockings
- Antaros Medical, 431 83 Mölndal, Sweden
- MedTech West, Chalmers University of Technology, 413 45 Gothenburg, Sweden
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Science, The University of Manchester, Manchester M13 9PL, UK (D.S.)
| | - Ebony R. Gunwhy
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TA, UK
| | - Steven Sourbron
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TA, UK
| | - John C. Waterton
- Bioxydyn Ltd., Manchester M15 6SZ, UK
- Centre for Imaging Sciences, Division of Informatics Imaging & Data Sciences, School of Health Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Gunnar Schuetz
- MR & CT Contrast Media Research, Bayer AG, 13353 Berlin, Germany
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Science, The University of Manchester, Manchester M13 9PL, UK (D.S.)
| |
Collapse
|
6
|
Lee D, Le TT, Im GH, Kim SG. Whole-brain perfusion mapping in mice by dynamic BOLD MRI with transient hypoxia. J Cereb Blood Flow Metab 2022; 42:2270-2286. [PMID: 35903000 PMCID: PMC9670005 DOI: 10.1177/0271678x221117008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-invasive mapping of cerebral perfusion is critical for understanding neurovascular and neurodegenerative diseases. However, perfusion MRI methods cannot be easily implemented for whole-brain studies in mice because of their small size. To overcome this issue, a transient hypoxia stimulus was applied to induce a bolus of deoxyhemoglobins as an endogenous paramagnetic contrast in blood oxygenation level-dependent (BOLD) MRI. Based on stimulus-duration-dependent studies, 5 s anoxic stimulus was chosen, which induced a decrease in arterial oxygenation to 59%. Dynamic susceptibility changes were acquired with whole-brain BOLD MRI using both all-vessel-sensitive gradient-echo and microvascular-sensitive spin-echo readouts. Cerebral blood flow (CBF) and cerebral blood volume (CBV) were quantified by modeling BOLD dynamics using a partial-volume-corrected arterial input function. In the mouse under ketamine/xylazine anesthesia, total CBF and CBV were 112.0 ± 15.0 ml/100 g/min and 3.39 ± 0.59 ml/100 g (n = 15 mice), respectively, whereas microvascular CBF and CBV were 85.8 ± 6.9 ml/100 g/min and 2.23 ± 0.27 ml/100 g (n = 7 mice), respectively. Regional total vs. microvascular perfusion metrics were highly correlated but a slight mismatch was observed in the large-vessel areas and cortical depth profiles. Overall, this non-invasive, repeatable, simple hypoxia BOLD-MRI approach is viable for perfusion mapping of rodents.
Collapse
Affiliation(s)
- DongKyu Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Thuy Thi Le
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
7
|
Qiu F, Huang Y, Saunders NR, Habgood MD, Dziegielewska KM. Age dependent contribution of entry via the CSF to the overall brain entry of small and large hydrophilic markers. Fluids Barriers CNS 2022; 19:90. [PMCID: PMC9661750 DOI: 10.1186/s12987-022-00387-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Apparent permeability of the blood brain barrier to hydrophilic markers has been shown to be higher in the developing brain. Apart from synthesis in situ, any substance detected in the brain parenchyma can originate from two sources: directly through blood vessels of brain vasculature and/or indirectly by entry from the cerebrospinal fluid (CSF) after transfer across the choroid plexuses. The relative quantitative contribution of these two routes to the overall brain entry remains unclear.
Methods
In rats at embryonic day 16, 19 and postnatal day 4 and young adults, a small (sucrose, mw. 342 Da) or a large (dextran, mw. 70 kDa) radiolabelled hydrophilic marker was injected intravenously for very short periods of time (30 s to 5 min) before collection of plasma, cerebrospinal fluid (CSF) and brain samples. Results are presented as concentration ratios between radioactivity measured in CSF or brain and that in plasma (%).
Results
The dextran brain/plasma ratio five minutes post injection was similar (2–4%) from E16 to adulthood whereas the sucrose brain/plasma ratio was significantly higher in fetal brains, but was comparable to dextran values in the adult. Sucrose CSF/plasma ratios were also significantly higher in fetal animals and decreased with age. In very short experiments involving fetal animals, entry of sucrose into the CSF after only 30 s was similar to that of dextran and both markers showed similar brain/plasma ratios.
Conclusions
In the developing brain the apparent higher brain entry of a small hydrophilic marker such as sucrose can be attributed to its higher entry into the CSF and subsequent diffusion into the brain. By contrast, movement of a larger marker like 70 kDa dextran is restricted firstly by choroid plexus epithelial tight junctions and secondly by specialised junctions in the neuroependymal interface between the CSF and brain. Brain/plasma ratios of 70 kDa dextran were similar in fetal and adult rats. Therefore 70 kDa dextran should be considered an appropriate marker if brain residual vascular space is to be measured, especially in younger animals.
Collapse
|
8
|
Ghazanfari N, van Waarde A, Doorduin J, Sijbesma JWA, Kominia M, Koelewijn M, Attia K, Willemsen ATM, Visser TJ, Heeres A, Dierckx RAJO, de Vries EFJ, Elsinga PH. Pharmacokinetic Modeling of [ 11C]GSK-189254, PET Tracer Targeting H 3 Receptors, in Rat Brain. Mol Pharm 2022; 19:918-928. [PMID: 35170965 PMCID: PMC8905578 DOI: 10.1021/acs.molpharmaceut.1c00889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/22/2022]
Abstract
The histamine H3 receptor has been considered as a target for the treatment of various central nervous system diseases. Positron emission tomography (PET) studies with the radiolabeled potent and selective histamine H3 receptor antagonist [11C]GSK-189254 in rodents could be used to examine the mechanisms of action of novel therapeutic drugs or to assess changes of regional H3 receptor density in animal models of neurodegenerative disease. [11C]GSK-189254 was intravenously administered to healthy Wistar rats (n = 10), and a 60 min dynamic PET scan was carried out. Arterial blood samples were obtained during the scan to generate a metabolite-corrected plasma input function. PET data were analyzed using a one-tissue compartment model (1T2k), irreversible (2T3k) or reversible two-tissue compartment models (2T4k), graphical analysis (Logan and Patlak), reference tissue models (SRTM and SRTM2), and standard uptake values (SUVs). The Akaike information criterion and the standard error of the estimated parameters were used to select the most optimal quantification method. This study demonstrated that the 2T4k model with a fixed blood volume fraction and Logan graphical analysis can best describe the kinetics of [11C]GSK-189254 in the rat brain. SUV40-60 and the reference tissue-based measurements DVR(2T4k), BPND(SRTM), and SUV ratio could also be used as a simplified method to estimate H3 receptor availability in case blood sampling is not feasible.
Collapse
Affiliation(s)
- Nafiseh Ghazanfari
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Aren van Waarde
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Janine Doorduin
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Jürgen W. A. Sijbesma
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Maria Kominia
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | | | - Khaled Attia
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Antoon T. M. Willemsen
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | | | | | - Rudi A. J. O. Dierckx
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Erik F. J. de Vries
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Philip H. Elsinga
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| |
Collapse
|
9
|
Sun T, Wu Y, Bai Y, Wang Z, Shen C, Wang W, Li C, Hu Z, Liang D, Liu X, Zheng H, Yang Y, Wang M. An iterative image-based inter-frame motion compensation method for dynamic brain PET imaging. Phys Med Biol 2022; 67. [PMID: 35021156 DOI: 10.1088/1361-6560/ac4a8f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/12/2022] [Indexed: 11/11/2022]
Abstract
As a non-invasive imaging tool, positron emission tomography (PET) plays an important role in brain science and disease research. Dynamic acquisition is one way of brain PET imaging. Its wide application in clinical research has often been hindered by practical challenges, such as patient involuntary movement, which could degrade both image quality and the accuracy of the quantification. This is even more obvious in scans of patients with neurodegeneration or mental disorders. Conventional motion compensation methods were either based on images or raw measured data, were shown to be able to reduce the effect of motion on the image quality. As for a dynamic PET scan, motion compensation can be challenging as tracer kinetics and relatively high noise can be present in dynamic frames. In this work, we propose an image-based inter-frame motion compensation approach specifically designed for dynamic brain PET imaging. Our method has an iterative implementation that only requires reconstructed images, based on which the inter-frame subject movement can be estimated and compensated. The method utilized tracer-specific kinetic modelling and can deal with simple and complex movement patterns. The synthesized phantom study showed that the proposed method can compensate for the simulated motion in scans with18F-FDG,18F-Fallypride and18F-AV45. Fifteen dynamic18F-FDG patient scans with motion artifacts were also processed. The quality of the recovered image was superior to the one of the non-corrected images and the corrected images with other image-based methods. The proposed method enables retrospective image quality control for dynamic brain PET imaging, hence facilitating the applications of dynamic PET in clinics and research.
Collapse
Affiliation(s)
- Tao Sun
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Yaping Wu
- Henan Provincial People's Hospital and the People's Hospital of Zhengzhou, University of Zhengzhou, People's Republic of China
| | - Yan Bai
- Henan Provincial People's Hospital and the People's Hospital of Zhengzhou, University of Zhengzhou, People's Republic of China
| | - Zhenguo Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Chushu Shen
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Wei Wang
- United Imaging Healthcare, Shanghai, People's Republic of China
| | - Chenwei Li
- United Imaging Healthcare, Shanghai, People's Republic of China
| | - Zhanli Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Meiyun Wang
- Henan Provincial People's Hospital and the People's Hospital of Zhengzhou, University of Zhengzhou, People's Republic of China
| |
Collapse
|
10
|
Lowerison MR, Sekaran NVC, Zhang W, Dong Z, Chen X, Llano DA, Song P. Aging-related cerebral microvascular changes visualized using ultrasound localization microscopy in the living mouse. Sci Rep 2022; 12:619. [PMID: 35022482 PMCID: PMC8755738 DOI: 10.1038/s41598-021-04712-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
Aging-related cognitive decline is an emerging health crisis; however, no established unifying mechanism has been identified for the cognitive impairments seen in an aging population. A vascular hypothesis of cognitive decline has been proposed but is difficult to test given the requirement of high-fidelity microvascular imaging resolution with a broad and deep brain imaging field of view, which is restricted by the fundamental trade-off of imaging penetration depth and resolution. Super-resolution ultrasound localization microscopy (ULM) offers a potential solution by exploiting circulating microbubbles to achieve a vascular resolution approaching the capillary scale without sacrificing imaging depth. In this report, we apply ULM imaging to a mouse model of aging and quantify differences in cerebral vascularity, blood velocity, and vessel tortuosity across several brain regions. We found significant decreases in blood velocity, and significant increases in vascular tortuosity, across all brain regions in the aged cohort, and significant decreases in blood volume in the cerebral cortex. These data provide the first-ever ULM measurements of subcortical microvascular dynamics in vivo within the context of the aging brain and reveal that aging has a major impact on these measurements.
Collapse
Affiliation(s)
- Matthew R Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Nathiya Vaithiyalingam Chandra Sekaran
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Wei Zhang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Wuhan City, Hubei Province, China
| | - Zhijie Dong
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Xi Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Daniel A Llano
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA.
| | - Pengfei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
11
|
Sabbioni E, Groppi F, Di Gioacchino M, Petrarca C, Manenti S. Metallobiochemistry of ultratrace levels of bismuth in the rat II. Interaction of 205+206Bi 3+ with tissue, intracellular and molecular components. J Trace Elem Med Biol 2021; 68:126752. [PMID: 33906785 DOI: 10.1016/j.jtemb.2021.126752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/23/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Knowledge on Bi metabolism in laboratory animals refers to studies at "extreme" exposures, i.e. pharmacologically relevant high-doses (mg kg-1 b.w.) in relation to its medical use, or infinitesimal doses (pg kg-1b.w.) concerning radiobiology protection and radiotherapeutic purposes. There are no specific studies on metabolic patterns of environmental exposure doses (ultratrace level, μg kg-1 b.w.), becoming in this context Bi a "heavy metal fallen into oblivion". We previously reported the results of the metabolic fate of ultratrace levels of Bi in the blood of rats [1]. In reference to the same study here we report the results of the retention and tissue binding of Bi with intracellular and molecular components. METHODS Animals were intraperitoneally injected with 0.8 μg Bi kg-1 b.w. as 205+206Bi(NO)3, alone or in combination with 59Fe for the radiolabeling of iron proteins. The use of 205+206Bi radiotracer allowed the determination of Bi down to pg fg-1 in biological fluids, tissues, subcellular fractions, and biochemical components isolated by differential centrifugation, size exclusion chromatography, solvent extraction, precipitation, immunoprecipitation and dialysis. MAIN FINDINGS At 24 h post injection the kidney contained by far the highest Bi concentration (10 ng g-1 wt.w.) followed by the thymus, spleen, liver, thyroid, trachea, femur, lung, adrenal gland, stomach, duodenum and pancreas (0.1 to 1.3 ng g-1 wt.w.). Brain and testis showed smaller but consistently significant concentrations of the element (0.03 ng g-1 wt.w). Urine was the predominant route of excretion. Intracellularly, liver, kidney, spleen, testis, and brain cytosols displayed the highest percentages (35%-58%) of Bi of homogenates. Liver and testis nuclei were the organelles with the highest Bi content (24 % and 27 %). However, when the recovered Bi of the liver was recorded as percent of total recovered Bi divided by percent of total recovered protein the lysosomes showed the highest relative specific activity than in other fractions. In the brain subcellular fractions Bi was incorporated by neuro-structures with the protein and not lipidic fraction of the myelin retaining 18 % of Bi of the total homogenate. After the liver intra-subcellular fractionation: (i) 65 % of the nuclear Bi was associated with the protein fraction of the nuclear membranes and 35 % with the bulk chromatin bound to non-histone and DNA fractions; (ii) about 50 % of the mitochondrial Bi was associated with inner and outer membranes being the other half recovered in the intramitochondrial matrix; (iii) in microsomes Bi showed a high affinity (close to 90 %) for the membranous components (rough and smooth membranes); (iv) In the liver cytosol three pools of Bi-binding proteins (molecular size > 300 kDa, 70 kDa and 10 kDa) were observed with ferritin and metallothionein-like protein identified as Bi-binding biomolecules. Three similar protein pools were also observed in the kidney cytosol. However, the amount of Bi, calculated in percent of the total cytosolic Bi, were significantly different compared to the corresponding pools of the liver cytosol. CONCLUSIONS At the best of our knowledge the present paper represents the first in vivo study, on the basis of an environmental toxicology approach, aiming at describing retention and binding of Bi in the rat at tissue, intracellular and molecular levels.
Collapse
Affiliation(s)
- Enrico Sabbioni
- Center for Advanced Studies and Technology (C.A.S.T.), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, Chieti, I-66100, Italy; LASA, Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, Segrate, MI, I-20090, Italy
| | - Flavia Groppi
- Department of Physics, Università Degli Studi di Milano, Via Celoria 16, Milano, I-20133, Italy; LASA, Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, Segrate, MI, I-20090, Italy
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology (C.A.S.T.), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, Chieti, I-66100, Italy; Institute of Clinical Immunotherapy and Advanced Biological Treatments, Piazza Pierangeli 1, Pescara, Italy; Rectorate of Leonardo da Vinci Telematic University, Largo San Rocco 11 Torrevecchia, Teatina, CH, Italy
| | - Claudia Petrarca
- Center for Advanced Studies and Technology (C.A.S.T.), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, Chieti, I-66100, Italy; Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, via Luigi Polacchi 11, Chieti, I-66100, Italy
| | - Simone Manenti
- Department of Physics, Università Degli Studi di Milano, Via Celoria 16, Milano, I-20133, Italy; LASA, Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, Segrate, MI, I-20090, Italy.
| |
Collapse
|
12
|
Bordia T, Zahr NM. The Inferior Colliculus in Alcoholism and Beyond. Front Syst Neurosci 2020; 14:606345. [PMID: 33362482 PMCID: PMC7759542 DOI: 10.3389/fnsys.2020.606345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Post-mortem neuropathological and in vivo neuroimaging methods have demonstrated the vulnerability of the inferior colliculus to the sequelae of thiamine deficiency as occurs in Wernicke-Korsakoff Syndrome (WKS). A rich literature in animal models ranging from mice to monkeys-including our neuroimaging studies in rats-has shown involvement of the inferior colliculi in the neural response to thiamine depletion, frequently accomplished with pyrithiamine, an inhibitor of thiamine metabolism. In uncomplicated alcoholism (i.e., absent diagnosable neurological concomitants), the literature citing involvement of the inferior colliculus is scarce, has nearly all been accomplished in preclinical models, and is predominately discussed in the context of ethanol withdrawal. Our recent work using novel, voxel-based analysis of structural Magnetic Resonance Imaging (MRI) has demonstrated significant, persistent shrinkage of the inferior colliculus using acute and chronic ethanol exposure paradigms in two strains of rats. We speculate that these consistent findings should be considered from the perspective of the inferior colliculi having a relatively high CNS metabolic rate. As such, they are especially vulnerable to hypoxic injury and may be provide a common anatomical link among a variety of disparate insults. An argument will be made that the inferior colliculi have functions, possibly related to auditory gating, necessary for awareness of the external environment. Multimodal imaging including diffusion methods to provide more accurate in vivo visualization and quantification of the inferior colliculi may clarify the roles of brain stem nuclei such as the inferior colliculi in alcoholism and other neuropathologies marked by altered metabolism.
Collapse
Affiliation(s)
- Tanuja Bordia
- Neuroscience Program, SRI International, Menlo Park, CA, United States
| | - Natalie M. Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
13
|
Uddin MS, Al Mamun A, Kabir MT, Ahmad J, Jeandet P, Sarwar MS, Ashraf GM, Aleya L. Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration. Eur J Pharmacol 2020; 886:173412. [DOI: 10.1016/j.ejphar.2020.173412] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
|
14
|
Broisat A, Lemasson B, Ahmadi M, Collomb N, Bacot S, Soubies A, Fagret D, Rémy C, Ghezzi C, Barbier EL. Mapping of brain tissue hematocrit in glioma and acute stroke using a dual autoradiography approach. Sci Rep 2018; 8:9878. [PMID: 29959336 PMCID: PMC6026160 DOI: 10.1038/s41598-018-28082-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/15/2018] [Indexed: 11/09/2022] Open
Abstract
Hematocrit (Hct) determines the ability of blood to carry oxygen. While changes in systemic Hct are known to impact stroke or tumor control, changes in local (tissue) Hct (tHct) induced by these diseases have however received little attention. In this study, we evaluate tHct in acute stroke and in glioma models using a new approach to map tHct across the brain, a dual isotope autoradiography, based on injections of 125I-labeled albumin and 99mTc-lalbeled red blood cells in the same animal. For validation purpose, tHct was mapped in the rat brain (i) under physiological conditions, (ii) following erythropoietin injection, and (iii) following hemodilution. Then, tHct was then mapped in stroke (middle cerebral artery occlusion) and tumor models (9LGS and C6). The mean tHct values observed in healthy brains (tHct = 29 ± 1.3%), were modified as expected by erythropoietin (tHct = 36.7 ± 2.6%) and hemodilution (tHct = 24.2 ± 2.4%). Using the proposed method, we observed a local reduction, spatially heterogeneous, in tHct following acute stroke (tHct = 19.5 ± 2.5%) and in both glioma models (9LGS: tHct = 18.5 ± 2.3%, C6: tHct = 16.1 ± 1.2%). This reduction and this heterogeneity in tHct observed in stroke and glioma raises methodological issues in perfusion imaging techniques where tHct is generally overlooked and could impact therapeutic strategies.
Collapse
Affiliation(s)
- A Broisat
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, U1039, LRB, F-38000, Grenoble, France
| | - B Lemasson
- Univ. Grenoble Alpes, Inserm, U1216, GIN, F-38000, Grenoble, France
| | - M Ahmadi
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, U1039, LRB, F-38000, Grenoble, France
| | - N Collomb
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, IRMaGe, CNRS, F-38000, Grenoble, France
| | - S Bacot
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, U1039, LRB, F-38000, Grenoble, France
| | - A Soubies
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, U1039, LRB, F-38000, Grenoble, France
| | - D Fagret
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, U1039, LRB, F-38000, Grenoble, France
| | - C Rémy
- Univ. Grenoble Alpes, Inserm, U1216, GIN, F-38000, Grenoble, France
| | - C Ghezzi
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, U1039, LRB, F-38000, Grenoble, France
| | - E L Barbier
- Univ. Grenoble Alpes, Inserm, U1216, GIN, F-38000, Grenoble, France.
| |
Collapse
|
15
|
Gharagouzloo CA, Timms L, Qiao J, Fang Z, Nneji J, Pandya A, Kulkarni P, van de Ven AL, Ferris C, Sridhar S. Quantitative vascular neuroimaging of the rat brain using superparamagnetic nanoparticles: New insights on vascular organization and brain function. Neuroimage 2017; 163:24-33. [PMID: 28889004 PMCID: PMC5824692 DOI: 10.1016/j.neuroimage.2017.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023] Open
Abstract
A method called Quantitative Ultra-Short Time-to-Echo Contrast Enhanced (QUTE-CE) Magnetic Resonance Imaging (MRI) which utilizes superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent to yield positive contrast angiograms with high clarity and definition is applied to the whole live rat brain. QUTE-CE MRI intensity data are particularly well suited for measuring quantitative cerebral blood volume (qCBV). A global map of qCBV in the awake resting-state with unprecedented detail was created via application of a 3D MRI rat brain atlas with 173 segmented and annotated brain areas. From this map we identified two distributed, integrated neural circuits showing the highest capillary densities in the brain. One is the neural circuitry involved with the primary senses of smell, hearing and vision and the other is the neural circuitry of memory. Under isoflurane anesthesia, these same circuits showed significant decreases in qCBV suggesting a role in consciousness. Neural circuits in the brainstem associated with the reticular activating system and the maintenance of respiration, body temperature and cardiovascular function showed an increase in qCBV with anesthesia. During awake CO2 challenge, 84 regions showed significant increases relative to an awake baseline state. This CO2 response provides a measure of cerebral vascular reactivity and regional perfusion reserve with the highest response measured in the somatosensory cortex. These results demonstrate the utility of QUTE-CE MRI for qCBV analysis and offer a new perspective on brain function and vascular organization.
Collapse
Affiliation(s)
- Codi A. Gharagouzloo
- Nanomedicine Science and Technology Center, Northeastern University, Boston MA
- Department of Bioengineering, Northeastern University, Boston MA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Liam Timms
- Nanomedicine Science and Technology Center, Northeastern University, Boston MA
- Department of Physics, Northeastern University, Boston MA
| | - Ju Qiao
- Nanomedicine Science and Technology Center, Northeastern University, Boston MA
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston MA
| | - Zihang Fang
- Nanomedicine Science and Technology Center, Northeastern University, Boston MA
| | - Joseph Nneji
- Nanomedicine Science and Technology Center, Northeastern University, Boston MA
| | - Aniket Pandya
- Nanomedicine Science and Technology Center, Northeastern University, Boston MA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston MA
- Psychology Department, Northeastern University, Boston MA
| | - Anne L. van de Ven
- Nanomedicine Science and Technology Center, Northeastern University, Boston MA
- Department of Physics, Northeastern University, Boston MA
| | - Craig Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston MA
- Psychology Department, Northeastern University, Boston MA
- Department of Pharmaceutical Sciences, Northeastern University, Boston MA
| | - Srinivas Sridhar
- Nanomedicine Science and Technology Center, Northeastern University, Boston MA
- Department of Bioengineering, Northeastern University, Boston MA
- Department of Physics, Northeastern University, Boston MA
| |
Collapse
|
16
|
Valable S, Corroyer-Dulmont A, Chakhoyan A, Durand L, Toutain J, Divoux D, Barré L, MacKenzie ET, Petit E, Bernaudin M, Touzani O, Barbier EL. Imaging of brain oxygenation with magnetic resonance imaging: A validation with positron emission tomography in the healthy and tumoural brain. J Cereb Blood Flow Metab 2017; 37:2584-2597. [PMID: 27702880 PMCID: PMC5531354 DOI: 10.1177/0271678x16671965] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The partial pressure in oxygen remains challenging to map in the brain. Two main strategies exist to obtain surrogate measures of tissue oxygenation: the tissue saturation studied by magnetic resonance imaging (StO2-MRI) and the identification of hypoxia by a positron emission tomography (PET) biomarker with 3-[18F]fluoro-1-(2-nitro-1-imidazolyl)-2-propanol ([18F]-FMISO) as the leading radiopharmaceutical. Nonetheless, a formal validation of StO2-MRI against FMISO-PET has not been performed. The objective of our studies was to compare the two approaches in (a) the normal rat brain when the rats were submitted to hypoxemia; (b) animals implanted with four tumour types differentiated by their oxygenation. Rats were submitted to normoxic and hypoxemic conditions. For the brain tumour experiments, U87-MG, U251-MG, 9L and C6 glioma cells were orthotopically inoculated in rats. For both experiments, StO2-MRI and [18F]-FMISO PET were performed sequentially. Under hypoxemia conditions, StO2-MRI revealed a decrease in oxygen saturation in the brain. Nonetheless, [18F]-FMISO PET, pimonidazole immunohistochemistry and molecular biology were insensitive to hypoxia. Within the context of tumours, StO2-MRI was able to detect hypoxia in the hypoxic models, mimicking [18F]-FMISO PET with high sensitivity/specificity. Altogether, our data clearly support that, in brain pathologies, StO2-MRI could be a robust and specific imaging biomarker to assess hypoxia.
Collapse
Affiliation(s)
- Samuel Valable
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | | | - Ararat Chakhoyan
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Lucile Durand
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Jérôme Toutain
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Didier Divoux
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Louisa Barré
- 2 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, Caen, France
| | - Eric T MacKenzie
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Edwige Petit
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Myriam Bernaudin
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Omar Touzani
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Emmanuel L Barbier
- 3 Inserm, U1216, Grenoble, France.,4 Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| |
Collapse
|
17
|
Chakhoyan A, Corroyer-Dulmont A, Leblond MM, Gérault A, Toutain J, Chazaviel L, Divoux D, Petit E, MacKenzie ET, Kauffmann F, Delcroix N, Bernaudin M, Touzani O, Valable S. Carbogen-induced increases in tumor oxygenation depend on the vascular status of the tumor: A multiparametric MRI study in two rat glioblastoma models. J Cereb Blood Flow Metab 2017; 37:2270-2282. [PMID: 27496553 PMCID: PMC5464716 DOI: 10.1177/0271678x16663947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The alleviation of hypoxia in glioblastoma with carbogen to improve treatment has met with limited success. Our hypothesis is that the eventual benefits of carbogen depend on the capacity for vasodilation. We examined, with MRI, changes in fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent signals in response to carbogen. The analyses were performed in two xenograft models of glioma (U87 and U251) recognized to have different vascular patterns. Carbogen increased fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent signals in contralateral tissues. In the tumor core and peritumoral regions, changes were dependent on the capacity to vasodilate rather than on resting fractional cerebral blood volume. In the highly vascularised U87 tumor, carbogen induced a greater increase in fractional cerebral blood volume and blood oxygen saturation in comparison to the less vascularized U251 tumor. The blood oxygenation level dependent signal revealed a delayed response in U251 tumors relative to the contralateral tissue. Additionally, we highlight the considerable heterogeneity of fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent within U251 tumor in which multiple compartments co-exist (tumor core, rim and peritumoral regions). Finally, our study underlines the complexity of the flow/metabolism interactions in different models of glioblastoma. These irregularities should be taken into account in order to palliate intratumoral hypoxia in clinical trials.
Collapse
Affiliation(s)
- Ararat Chakhoyan
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Aurélien Corroyer-Dulmont
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Marine M Leblond
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Aurélie Gérault
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Jérôme Toutain
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Laurent Chazaviel
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France.,5 UMS3408, GIP CYCERON, Caen, France
| | - Didier Divoux
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Edwige Petit
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Eric T MacKenzie
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - François Kauffmann
- 4 Normandie Univ, Esplanade de la Paix, Caen, France.,6 UMR6139 LMNO, Avenue de Côte de Nacre, Caen, France
| | - Nicolas Delcroix
- 3 UNICAEN, GIP CYCERON, Caen, France.,5 UMS3408, GIP CYCERON, Caen, France
| | - Myriam Bernaudin
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Omar Touzani
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Samuel Valable
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| |
Collapse
|
18
|
Watabe T, Kanai Y, Ikeda H, Horitsugi G, Matsunaga K, Kato H, Isohashi K, Abe K, Shimosegawa E, Hatazawa J. Quantitative evaluation of oxygen metabolism in the intratumoral hypoxia: 18F-fluoromisonidazole and 15O-labelled gases inhalation PET. EJNMMI Res 2017; 7:16. [PMID: 28210996 PMCID: PMC5313496 DOI: 10.1186/s13550-017-0263-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Intratumoral hypoxia is one of the resistant factors in radiotherapy and chemotherapy for cancer. Although it is detected by 18F-fluoromisonidazole (FMISO) PET, the relationship between intratumoral hypoxia and oxygen metabolism has not been studied. The purpose of this study was to evaluate the intratumoral perfusion and oxygen metabolism in hypoxic regions using the rat xenograft model. Ten male Fischer rats with C6 glioma (body weight = 220 ± 15 g) were investigated with 18F-FMISO PET and steady-state inhalation method of 15O-labelled gases PET. The tumoral blood flow (TBF), tumoral metabolic rate of oxygen (TMRO2), oxygen extraction fraction (OEF), and tumoral blood volume (TBV) were measured under artificial ventilation with 15O–CO2, 15O–O2, and 15O–CO gases. Multiple volumes of interest (1-mm diameter sphere) were placed on the co-registered 18F-FMISO (3 h post injection) and functional 15O-labelled gases PET images. The TBF, TMRO2, OEF, and TBV values were compared among the three groups classified by the 18F-FMISO uptake as follows: group Low (L), less than 1.0; group Medium (M), between 1.0 and 2.0; and group High (H), more than 2.0 in the 18F-FMISO standardized uptake value (SUV). Results There were moderate negative correlations between 18F-FMISO SUV and TBF (r = −0.56 and p < 0.01), and weak negative correlations between 18F-FMISO SUV and TMRO2 (r = −0.38 and p < 0.01) and 18F-FMISO SUV and TBV (r = −0.38 and p < 0.01). Quantitative values were as follows: TBF, (L) 55 ± 30, (M) 32 ± 17, and (H) 30 ± 15 mL/100 mL/min; OEF, (L) 33 ± 14, (M) 36 ± 17, and (H) 41 ± 16%; TMRO2, (L) 2.8 ± 1.3, (M) 1.9 ± 1.0, and (H) 2.1 ± 1.1 mL/100 mL/min; and TBV, (L) 5.7 ± 2.1, (M) 4.3 ± 1.9, and (H) 3.9 ± 1.2 mL/100 mL, respectively. Intratumoral hypoxic regions (M and H) showed significantly lower TBF, TMRO2, and TBV values than non-hypoxic regions (L). OEF showed significant increase in the severe hypoxic region compared to non-hypoxic and mild hypoxic regions. Conclusions This study demonstrated that intratumoral hypoxic regions showed decreased blood flow with increased oxygen extraction, suggesting the need for a treatment strategy to normalize the blood flow for oxygen-avid active tumor cells in hypoxic regions. Electronic supplementary material The online version of this article (doi:10.1186/s13550-017-0263-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Japan. .,Medical Imaging Center for Translational Research, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yasukazu Kanai
- Medical Imaging Center for Translational Research, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hayato Ikeda
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Genki Horitsugi
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keiko Matsunaga
- Medical Imaging Center for Translational Research, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroki Kato
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Japan.,Medical Imaging Center for Translational Research, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kayako Isohashi
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Japan.,Medical Imaging Center for Translational Research, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kohji Abe
- Medical Imaging Center for Translational Research, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Drug Metabolism & Pharmacokinetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eku Shimosegawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Japan.,Medical Imaging Center for Translational Research, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Japan.,Medical Imaging Center for Translational Research, Osaka University Graduate School of Medicine, Suita, Japan.,Research Laboratory for Development, Shionogi & Co., Ltd.; Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
19
|
Karwacki GM, Benz MR, Tyndall AJ, Ulmer S. Hematocrit and Serum Hemoglobin Do Not Influence Values in Computed Tomography Perfusion of Patients With Acute Ischemic Stroke. J Comput Assist Tomogr 2017; 41:511-514. [DOI: 10.1097/rct.0000000000000560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Han SH, Cho JH, Jung HS, Suh JY, Kim JK, Kim YR, Cho G, Cho H. Robust MR assessment of cerebral blood volume and mean vessel size using SPION-enhanced ultrashort echo acquisition. Neuroimage 2015; 112:382-389. [PMID: 25818683 DOI: 10.1016/j.neuroimage.2015.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 01/21/2023] Open
Abstract
Intravascular superparamagnetic iron oxide nanoparticles (SPION)-enhanced MR transverse relaxation rates (∆R2(⁎) and ∆R2) are widely used to investigate in vivo vascular parameters, such as the cerebral blood volume (CBV), microvascular volume (MVV), and mean vessel size index (mVSI, ∆R2(⁎)/∆R2). Although highly efficient, regional comparison of vascular parameters acquired using gradient-echo based ∆R2(⁎) is hampered by its high sensitivity to magnetic field perturbations arising from air-tissue interfaces and large vessels. To minimize such demerits, we took advantage of the dual contrast property of SPION and both theoretically and experimentally verified the direct benefit of replacing gradient-echo based ∆R2(⁎) measurement with ultra-short echo time (UTE)-based ∆R1 contrast to generate the robust CBV and mVSI maps. The UTE acquisition minimized the local measurement errors from susceptibility perturbations and enabled dose-independent CBV measurement using the vessel/tissue ∆R1 ratio, while independent spin-echo acquisition enabled simultaneous ∆R2 measurement and mVSI calculation of the cortex, cerebellum, and olfactory bulb, which are animal brain regions typified by significant susceptibility-associated measurement errors.
Collapse
Affiliation(s)
- S H Han
- Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - J H Cho
- Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - H S Jung
- Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - J Y Suh
- Korea Basic Science Institute, Ochang, South Korea
| | - J K Kim
- Asan Medical Center, Seoul, South Korea
| | - Y R Kim
- Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - G Cho
- Korea Basic Science Institute, Ochang, South Korea
| | - H Cho
- Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
21
|
Dienel GA, Cruz NF. Contributions of glycogen to astrocytic energetics during brain activation. Metab Brain Dis 2015; 30:281-98. [PMID: 24515302 PMCID: PMC4130810 DOI: 10.1007/s11011-014-9493-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/21/2014] [Indexed: 12/11/2022]
Abstract
Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K(+) level, oxidative stress management, and memory consolidation; it is a multi-functional compound.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Slot 500, 4301 W. Markham St., Little Rock, AR, 72205, USA,
| | | |
Collapse
|
22
|
CBF/CBV maps in normal volunteers studied with (15)O PET: a possible index of cerebral perfusion pressure. Neurosci Bull 2014; 30:857-62. [PMID: 25085575 DOI: 10.1007/s12264-013-1458-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/18/2014] [Indexed: 10/25/2022] Open
Abstract
Local cerebral perfusion pressure (CPP) is a primary factor controlling cerebral circulation and previous studies have indicated that the ratio of cerebral blood flow (CBF) to cerebral blood volume (CBV) can be used as an index of the local CPP. In this study, we investigated whether the CBF/CBV ratio differs among different brain structures under physiological conditions, by means of (15)O positron emission tomography. Nine healthy volunteers (5 men and 4 women; mean age, 47.0 ± 1.2 years) were studied by H2 (15)O bolus injection for CBF measurement and by C(15)O inhalation for CBV measurement. The CBF/CBV ratio maps were created by dividing the CBF images by the CBV images after anatomical normalization. Regions of interest were placed on the CBF/CBV maps and comparing the regions. The mean CBF/CBV ratio was highest in the cerebellum (19.3 ± 5.2/min), followed by the putamen (18.2 ± 3.9), pons (16.4 ± 4.6), thalamus (14.5 ± 3.3), cerebral cortices (13.2 ± 2.4), and centrum semiovale (11.5 ± 2.1). The cerebellum and putamen showed significantly higher CBF/CBV ratios than the cerebral cortices and centrum semiovale. We created maps of the CBF/CBV ratio in normal volunteers and demonstrated higher CBF/CBV ratios in the cerebellum and putamen than in the cerebral cortices and deep cerebral white matter. The CBF/CBV may reflect the local CPP and should be studied in hemodynamically compromised patients and in patients with risk factors for small-artery diseases of the brain.
Collapse
|
23
|
Watabe T, Shimosegawa E, Watabe H, Kanai Y, Hanaoka K, Ueguchi T, Isohashi K, Kato H, Tatsumi M, Hatazawa J. Quantitative evaluation of cerebral blood flow and oxygen metabolism in normal anesthetized rats: 15O-labeled gas inhalation PET with MRI Fusion. J Nucl Med 2013; 54:283-90. [PMID: 23287575 DOI: 10.2967/jnumed.112.109751] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED PET with (15)O gas has been used for the quantitative measurement of cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO(2)), oxygen extraction fraction (OEF), and cerebral blood volume (CBV) in humans. However, several technical difficulties limit its use in experiments on small animals. Herein, we describe the application of the (15)O gas steady-state inhalation method for normal anesthetized rats. METHODS Eight normal male Sprague-Dawley rats (mean body weight ± SD, 268 ± 14 g) under anesthesia were investigated by (15)O-labeled gas PET. After tracheotomy, an airway tube was placed in the trachea, and the animals were connected to a ventilator (tidal volume, 3 cm(3); frequency, 60/min). The CBF and OEF were measured according to the original steady-state inhalation technique under artificial ventilation with (15)O-CO(2) and (15)O-O(2) gases delivered through the radioactive gas stabilizer. CBV was measured by (15)O-CO gas inhalation and corrected for the intravascular hemoglobin-bound (15)O-O(2). Arterial blood sampling was performed during each study to measure the radioactivity of the whole blood and plasma. MR image was performed with the same acrylic animal holder immediately after the PET. Regions of interest were placed on the whole brain of the PET images with reference to the semiautomatically coregistered PET/MR fused images. RESULTS The data acquisition time for the whole PET experiment in each rat was 73.3 ± 5.8 (range, 68-85) min. In both the (15)O-CO(2) and the (15)O-O(2) studies, the radioactivity count of the brain reached a steady state by approximately 10 min after the start of continuous inhalation of the gas. The quantitative PET data of the whole brain were as follows: CBF, 32.3 ± 4.5 mL/100 mL/min; CMRO(2), 3.23 ± 0.42 mL/100 mL/min; OEF, 64.6% ± 9.1%; and CBV, 5.05 ± 0.45 mL/100 mL. CONCLUSION Although further technical improvements may be needed, this study demonstrated the feasibility of quantitative PET measurement of CBF, OEF, and CMRO(2) using the original steady-state inhalation method of (15)O-CO(2) and (15)O-O(2) gases and measurement of CBV using the (15)O-CO gas inhalation method in the brain of normal anesthetized rats.
Collapse
Affiliation(s)
- Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zinkel JL. Rat forebrain perfusion in vivo by 1 artery like the isolated kidney model: a robust recovery model permitting ischemia without anesthesia to compare multiple brain injury states. Neurosurgery 2013; 72:662-77; discussion 676-7. [PMID: 23277378 DOI: 10.1227/neu.0b013e3182846f4c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rat brain perfusion models are critical to basic research, but they can be imprecise and/or not durable for extended outcome studies. OBJECTIVE To demonstrate a rat brain perfusion model that provides a simplified reliable brain perfusion circuit, reduces variables during experiment and recovery, and therefore permits more precise, reliable, and context-independent research data. METHODS Rat forebrain perfusion was reduced surgically to that by 1 internal carotid artery without injury to the animal. The next day, the fully awake rat was studied for brain ischemia painlessly yet in the absence of anesthesia or other interventions that might bias or alter the biochemistry of the event. This model was rigorously validated with isotope cerebral blood studies during ischemia and with histology studies at 72 hours after ischemia. The first application of this model was to compare ischemia injuries for global total, global penumbra, and global shock ischemia in a single experimental context. RESULTS This model is accurate, reliable, and remarkably durable. This model permits the severest brain ischemia by vessel occlusion ever demonstrated in a recovery model. It also confirms that, with conditions otherwise identical, penumbra ischemia is less injurious than total ischemia and that total ischemia is less injurious than shock ischemia. CONCLUSION Although meticulous in construction, this model creates ischemia more simply and more reliably than the Pulsinelli 4-vessel ischemia model that inspired it, with the inherent advantages of an isolated organ system, in which a known tissue volume is perfused at a predetermined volume and rate. This model permits robust long-term recovery.
Collapse
Affiliation(s)
- John L Zinkel
- Department of Neurological Surgery, Beaumont Hospital Grosse Pointe, St. Clair Shores, MI 48081, USA.
| |
Collapse
|
25
|
Numakawa T, Matsumoto T, Numakawa Y, Richards M, Yamawaki S, Kunugi H. Protective Action of Neurotrophic Factors and Estrogen against Oxidative Stress-Mediated Neurodegeneration. J Toxicol 2011; 2011:405194. [PMID: 21776259 PMCID: PMC3135156 DOI: 10.1155/2011/405194] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/28/2011] [Accepted: 03/29/2011] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Low levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important for maintenance of neuronal function, though elevated levels lead to neuronal cell death. A complex series of events including excitotoxicity, Ca(2+) overload, and mitochondrial dysfunction contributes to oxidative stress-mediated neurodegeneration. As expected, many antioxidants like phytochemicals and vitamins are known to reduce oxidative toxicity. Additionally, growing evidence indicates that neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and estrogens significantly prevent neuronal damage caused by oxidative stress. Here, we review and discuss recent studies addressing the protective mechanisms of neurotrophic factors and estrogen within this system.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
- Core Research for Evolutional Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Tomoya Matsumoto
- Core Research for Evolutional Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- Department of Psychiatry and Neurosciences, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yumiko Numakawa
- Peptide-prima Co., Ltd., 1-25-81, Nuyamazu, Kumamoto 861-2102, Japan
| | - Misty Richards
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
- The Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Shigeto Yamawaki
- Core Research for Evolutional Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- Department of Psychiatry and Neurosciences, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
- Core Research for Evolutional Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
26
|
Fridén M, Ljungqvist H, Middleton B, Bredberg U, Hammarlund-Udenaes M. Improved measurement of drug exposure in the brain using drug-specific correction for residual blood. J Cereb Blood Flow Metab 2010; 30:150-61. [PMID: 19756019 PMCID: PMC2949109 DOI: 10.1038/jcbfm.2009.200] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A major challenge associated with the determination of the unbound brain-to-plasma concentration ratio of a drug (K(p,uu,brain)), is the error associated with correction for the drug in various vascular spaces of the brain, i.e., in residual blood. The apparent brain vascular spaces of plasma water (V(water), 10.3 microL/g brain), plasma proteins (V(protein), 7.99 microL/g brain), and the volume of erythrocytes (V(er), 2.13 microL/g brain) were determined and incorporated into a novel, drug-specific correction model that took the drug-unbound fraction in the plasma (f(u,p)) into account. The correction model was successfully applied for the determination of K(p,uu,brain) for indomethacin, loperamide, and moxalactam, which had potential problems associated with correction. The influence on correction of the drug associated with erythrocytes was shown to be minimal. Therefore, it is proposed that correction for residual blood can be performed using an effective plasma space in the brain (V(eff)), which is calculated from the measured f(u,p) of the particular drug as well as from the estimates of V(water) and V(protein), which are provided in this study. Furthermore, the results highlight the value of determining K(p,uu,brain) with statistical precision to enable appropriate interpretation of brain exposure for drugs that appear to be restricted to the brain vascular spaces.
Collapse
Affiliation(s)
- Markus Fridén
- Division of Pharmacokinetics and Drug Therapy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
27
|
Balvay D, Troprès I, Billet R, Joubert A, Péoc'h M, Cuenod CA, Le Duc G. Mapping the Zonal Organization of Tumor Perfusion and Permeability in a Rat Glioma Model by Using Dynamic Contrast-enhanced Synchrotron Radiation CT. Radiology 2009; 250:692-702. [DOI: 10.1148/radiol.2501071929] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Jaskiw GE, Newbould E, Bongiovanni R. Tyrosine availability modulates potassium-induced striatal catecholamine efflux in vivo. Brain Res 2008; 1209:74-84. [DOI: 10.1016/j.brainres.2008.02.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 11/17/2022]
|
29
|
Kim T, Hendrich KS, Masamoto K, Kim SG. Arterial versus total blood volume changes during neural activity-induced cerebral blood flow change: implication for BOLD fMRI. J Cereb Blood Flow Metab 2007; 27:1235-47. [PMID: 17180136 DOI: 10.1038/sj.jcbfm.9600429] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantifying both arterial cerebral blood volume (CBV(a)) changes and total cerebral blood volume (CBV(t)) changes during neural activation can provide critical information about vascular control mechanisms, and help to identify the origins of neurovascular responses in conventional blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI). Cerebral blood flow (CBF), CBV(a), and CBV(t) were quantified by MRI at 9.4 T in isoflurane-anesthetized rats during 15-s duration forepaw stimulation. Cerebral blood flow and CBV(a) were simultaneously determined by modulation of tissue and vessel signals using arterial spin labeling, while CBV(t) was measured with a susceptibility-based contrast agent. Baseline versus stimulation values in a region centered over the somatosensory cortex were: CBF=150+/-18 versus 182+/-20 mL/100 g/min, CBV(a)=0.83+/-0.21 versus 1.17+/-0.30 mL/100 g, CBV(t)=3.10+/-0.55 versus 3.41+/-0.61 mL/100 g, and CBV(a)/CBV(t)=0.27+/-0.05 versus 0.34+/-0.06 (n=7, mean+/-s.d.). Neural activity-induced absolute changes in CBV(a) and CBV(t) are statistically equivalent and independent of the spatial extent of regional analysis. Under our conditions, increased CBV(t) during neural activation originates mainly from arterial rather than venous blood volume changes, and therefore a critical implication is that venous blood volume changes may be negligible in BOLD fMRI.
Collapse
Affiliation(s)
- Tae Kim
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15203, USA.
| | | | | | | |
Collapse
|
30
|
Perles-Barbacaru AT, Lahrech H. A new Magnetic Resonance Imaging method for mapping the cerebral blood volume fraction: the rapid steady-state T1 method. J Cereb Blood Flow Metab 2007; 27:618-31. [PMID: 16850031 DOI: 10.1038/sj.jcbfm.9600366] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper describes a new rapid steady-state T(1) (RSST(1)) method for mapping the cerebral blood volume fraction (CBVf) by magnetic resonance imaging (MRI). The principle is based on a two-compartment model of the brain (intra- and extravascular), and the effects of paramagnetic contrast agents on the intravascular longitudinal relaxation time T(1). Using appropriate parameters, an Inversion-Recovery-Fast-Low-Angle-Shot sequence acts like a low pass T(1) filter, suppressing signals from tissues with T(1)>>TR (TR=repetition time). It was shown in vivo that, exceeding a particular contrast agent dose, the signal reaches its maximum (corresponding to the intravascular equilibrium magnetization), and is maintained for a duration related to the dose. Acquisitions during this steady state divided by an additional measure of the overall (intra- and extravascular) magnetization at thermal equilibrium provides the CBVf. Experiments were performed on healthy rats at 2.35 T using P760 (Gd(3+)-compound from Guerbet Laboratories) and Gd-DOTA. Because of its high longitudinal relaxivity, P760 is more convenient, and was used to show the feasibility of the method. The CBVf in different structures of the rat brain was compared. The average CBVf for the whole brain slice is 3.29%+/-0.69% (n=15). The influence of transendothelial water exchange was quantified and transversal relaxation effects were found negligible in microvasculature. Finally, the sensitivity of the method to CBVf increases under hypercapnia was evaluated (1%/mm Hg PaCO(2)), demonstrating its potential for longitudinal studies and functional MRI. Clinical applications are feasible since equivalent results were obtained with Gd-DOTA.
Collapse
|
31
|
Groothuis DR, Vavra MW, Schlageter KE, Kang EWY, Itskovich AC, Hertzler S, Allen CV, Lipton HL. Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters. J Cereb Blood Flow Metab 2007; 27:43-56. [PMID: 16639426 DOI: 10.1038/sj.jcbfm.9600315] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We examined the roles of diffusion, convection and capillary transporters in solute removal from extracellular space (ECS) of the brain. Radiolabeled solutes (eight with passive distribution and four with capillary or cell transporters) were injected into the brains of rats (n=497) and multiple-time point experiments measured the amount remaining in brain as a function of time. For passively distributed compounds, there was a relationship between lipid:water solubility and total brain efflux:diffusional efflux, which dominated when k(p), the transcapillary efflux rate constant, was >10(0) h(-1); when 10(-1)<k(p)<10(-2) h(-1) both diffusion and convection contributed, and when k(p)<10(-3) h(-1), convective efflux dominated. Para-aminohippuric acid (PAH) experiments (n=112) showed that PAH entered the brain passively, but had efflux transporters. The total efflux rate constant, k(eff), was the sum of a passive component (k(p)=0.0018 h(-1)), a convective component (k(csf)=0.2 h(-1)), and a variable, concentration-dependent component (k(x)=0 to 0.45 h(-1)). Compounds with cell membrane transporters had longer clearance half times as did an oligonucleotide, which interacted with cell surface receptors. Manipulation of physiologic state (n=35) did not affect efflux, but sucrose efflux half time was longer with pentobarbital anesthesia (24 h) than with no anesthesia or ketamine-xylazine anesthesia (2 to 3 h). These results show that solute clearance from normal brain ECS may involve multiple physiologic pathways, may be affected by anesthesia, and suggests that convection-mediated efflux may be manipulated to increase or decrease drug clearance from brain.
Collapse
Affiliation(s)
- Dennis R Groothuis
- Department of Neurology, Northwestern University Medical School, Evanston Northwestern Healthcare, Evanston, Illinois 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hafezi-Moghadam A, Thomas KL, Wagner DD. ApoE deficiency leads to a progressive age-dependent blood-brain barrier leakage. Am J Physiol Cell Physiol 2006; 292:C1256-62. [PMID: 16870825 DOI: 10.1152/ajpcell.00563.2005] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we reported a defect in the blood-brain barrier (BBB) of apolipoprotein E-deficient (apoE-/-) mice (24). Here, we investigate BBB permeability in wild-type (WT) and apoE-/- mice as a function of age. Both WT and apoE-/- mice showed significantly increased cortical BBB leakage with age. However, in apoE-/- mice, the leakage increased at a 3.7 x higher rate compared with WT mice. Surprisingly, the cerebellum showed significantly more leakage than other brain regions across age, while there was no difference between the two hemispheres. To determine the contribution of tissue- vs. blood-borne apoE to vascular permeability, we generated chimeric mice by bone marrow transplantation and measured their BBB leakage. These experiments suggest that both blood- and tissue-derived apoE are equally important for BBB function. In sum, we find an age-dependent defect in the BBB that is exacerbated in apoE-/- mice. Since vascular defects are found in patients with age-related neurodegenerative diseases, such as Alzheimer's, age-related BBB leakage could underlie these defects and may thus be an important contributor to the cumulative neuronal damage of these diseases.
Collapse
Affiliation(s)
- Ali Hafezi-Moghadam
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
33
|
Kim T, Kim SG. Quantification of cerebral arterial blood volume using arterial spin labeling with intravoxel incoherent motion-sensitive gradients. Magn Reson Med 2006; 55:1047-57. [PMID: 16596632 DOI: 10.1002/mrm.20867] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Quantification of cerebral arterial blood volume (CBVa) is important for understanding vascular regulation. To enable measurement of CBVa with diffusion-weighted (DW) arterial spin labeling (ASL), a theoretical framework was developed using the effects of intravoxel incoherent motion (IVIM). The pseudo-diffusion coefficient (D*) in the IVIM model was evaluated at 9.4 T in DW-ASL of rat brain under isoflurane anesthesia by variations of both post-labeling delay (w) and magnetization transfer ratio (MTR). D* and its volume fraction decreased at values of w>or=0.3 s, and the normalized apparent diffusion coefficient (ADC) increased with MTR, suggesting that D* is closely correlated with CBVa. Thus, the difference between ASL measurements with and without DW gradients is related to CBVa. The CBVa values measured by this approach were compared with values obtained using the modulation of tissue and vessel (MOTIVE) technique with ASL, which varies MT levels without changing spin labeling efficiency. CBVa values from both methods were highly correlated. The measured CBVa values were linearly correlated with cerebral blood flow (CBF) for a PaCO2 range of 25-50 mmHg; DeltaCBVa (ml/100 g)=0.007 (min-1)xDeltaCBF (ml/100 g/min). The DW-ASL approach is simple and easy to implement for human and animal CBVa studies.
Collapse
Affiliation(s)
- Tae Kim
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15203, USA
| | | |
Collapse
|
34
|
Burdo JR, Simpson IA, Menzies S, Beard J, Connor JR. Regulation of the profile of iron-management proteins in brain microvasculature. J Cereb Blood Flow Metab 2004; 24:67-74. [PMID: 14688618 DOI: 10.1097/01.wcb.0000095800.98378.03] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The distribution of brain iron is heterogeneous, but the mechanism by which these regional differences are achieved and maintained is unknown. In this study, the authors test two hypotheses related to brain iron transport. The first is that there is regional variability in the profile of proteins associated with iron transport and storage in the brain microvasculature. The second hypothesis is that the iron status of the brain will dictate the response of the protein profile in the microvasculature to changes in systemic iron status. The profile analysis consists of transferrin (iron transport), ferritin (iron storage), transferrin receptor (iron uptake), and divalent metal transporter 1 (release of iron from endosomes). An additional protein involved in cellular iron efflux, ferroportin, was not detected in brain microvasculature. The results show that there are significantly higher levels of these proteins in the microvasculature from each area of the brain compared to a whole brain homogenate, but no regional differences within the microvasculature. The levels of ferritin observed in the microvasculature indicate that the microvascular endothelial cells have significant iron storage capacity. There are no significant changes in the regional protein profiles in response to systemic iron manipulation when brain iron status was normal. In contrast, in Belgrade rats, whose brain is iron deficient, the expression of both divalent metal transporter 1 and transferrin receptor was increased compared with control in almost all brain regions examined, but not transferrin or ferritin. These findings indicate that regional brain iron heterogeneity is not maintained by differences in microvascular iron-management protein levels. The results also indicate that brain iron status dictates the response of the microvascular protein profile to systemic iron manipulation.
Collapse
Affiliation(s)
- Joseph R Burdo
- Department of Neural and Behavioral Sciences, Pennsylvania State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
35
|
Leroy C, Roch C, Koning E, Namer IJ, Nehlig A. In the lithium-pilocarpine model of epilepsy, brain lesions are not linked to changes in blood-brain barrier permeability: an autoradiographic study in adult and developing rats. Exp Neurol 2003; 182:361-72. [PMID: 12895447 DOI: 10.1016/s0014-4886(03)00122-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lithium-pilocarpine-induced status epilepticus (SE) leads to the genesis of massive neuronal loss in adult rats and to a lesser extent in P21 rats. Neuronal damage occurs mainly via a process of necrosis in limbic forebrain, cerebral cortex, thalamus, and substantia nigra. It is not known, however, whether damage is the result of local excitotoxic hyperactivity or if leakage at the blood-brain barrier (BBB) could participate in the damaging process. Therefore, we investigated the permeability of the BBB in adult and P21 rats using [alpha-(14)C]aminoisobutyric acid, which does not cross an intact BBB, at 90 min after the onset of SE. At both ages, BBB opening occurred both in structures that will undergo damage (thalamus, septum, amygdala) and structures that will not be injured (globus pallidus, hypothalamus). In addition, neuronal damage occurs in the absence of increased BBB permeability in hippocampus, entorhinal cortex, and substantia nigra. Moreover, the increase in the intensity and distribution of BBB permeability changes is age-related, suggesting a differential activation of seizure circuits in adult and P21 rats. In summary, there is no clear correlation between the anatomical distribution of BBB opening and the occurrence of neuronal damage which, in this model, appears to rather depend on excitotoxic mechanisms due to major neuronal hyperexcitability.
Collapse
Affiliation(s)
- Claire Leroy
- INSERM U.398, Faculty of Medicine, 11 rue Humann, 67085 Strasbourg, Cedex, France.
| | | | | | | | | |
Collapse
|
36
|
Lee JM, Vo KD, An H, Celik A, Lee Y, Hsu CY, Lin W. Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients. Ann Neurol 2003; 53:227-32. [PMID: 12557290 DOI: 10.1002/ana.10433] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to explore the feasibility of obtaining magnetic resonance-measured cerebral metabolic rate of oxygen utilization (MR-CMRO(2)) in acute ischemic stroke patients. Seven stroke patients were serially imaged: 4.5 +/- 0.9 hours (tp1), 3 to 5 days (tp2), and 1 to 3 months (tp3) after symptom onset. Diffusion-weighted, perfusion-weighted, and multiecho gradient-echo/spin-echo images were acquired; cerebral blood flow and oxygen extraction fraction maps were obtained from which CMRO(2) was calculated as the product of cerebral blood flow and oxygen extraction fraction. The final infarct lesions obtained from tp3 T2-weighted images and the "penumbra" obtained from the tp1 perfusion-weighted image-defined lesion were coregistered onto tp1 CMRO(2) maps. CMRO(2) values in the region of brain that eventually infarcted were reduced to 0.40 +/- 0.24 of the respective region on the contralateral hemisphere. The "salvaged penumbra" defined by the area of mismatch between the final infarct and the tp1 perfusion-weighted lesion demonstrated an average CMRO(2) value of 0.55 +/- 0.11 of the contralateral hemisphere. Although our results are preliminary and require further evaluation, the ability to obtain in vivo measurements of MR-CMRO(2) noninvasively potentially can provide information for determining brain tissue viability in acute ischemic stroke patients.
Collapse
Affiliation(s)
- Jin-Moo Lee
- Department of Radiology and Biomedical Engineering, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Cui Y, Kataoka Y, Li QH, Yokoyama C, Yamagata A, Mochizuki-Oda N, Watanabe J, Yamada H, Watanabe Y. Targeted tissue oxidation in the cerebral cortex induces local prolonged depolarization and cortical spreading depression in the rat brain. Biochem Biophys Res Commun 2003; 300:631-6. [PMID: 12507495 DOI: 10.1016/s0006-291x(02)02906-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Spreading depression (SD) has been linked to several neurological disorders as epilepsy, migraine aura, trauma, and cerebral ischemia, which were also influenced by disorderliness of the brain redox homeostasis. To investigate whether local tissue oxidation directly induces SD, we oxidized a restricted local area of the rat cerebral cortex using photo-dynamic tissue oxidation (PDTO) technique and examined the cerebral blood flow (CBF) and direct current (DC) potential in and around the oxidized area. Intensive PDTO induced prolonged depolarization only in the photo-oxidized area, which led to global changes of CBF and DC potential: synchronous negative shifts of DC potential (with an amplitude of approximately 20 mV) and hyperperfusion of CBF occurred. The changes in DC potential and CBF spread at a rate of around 3mm/min beyond the oxidized area to the whole hemisphere of the cerebral cortex, indicating that intensive local oxidation induces SD in the rat brain.
Collapse
Affiliation(s)
- Yilong Cui
- Department of Neuroscience, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Broux C, Tropres I, Montigon O, Julien C, Decorps M, Payen JF. The effects of sustained hyperventilation on regional cerebral blood volume in thiopental-anesthetized rats. Anesth Analg 2002; 95:1746-51, table of contents. [PMID: 12456451 DOI: 10.1097/00000539-200212000-00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UNLABELLED Sustained hyperventilation has a time-limited effect on cerebrovascular dynamics. We investigated whether this effect was similar among brain regions by measuring regional cerebral blood volume (CBV) with steady-state susceptibility contrast magnetic resonance imaging during 3 h of hyperventilation. Regional CBV was determined in nine thiopental-anesthetized, mechanically-ventilated rats every 30 min in the dorsoparietal neocortex, the corpus striatum, and the cerebellum. The corpus striatum was the only brain region showing a stable reduction in CBV during the hypocapnic episode (PaCO(2), 24 +/- 3 mm Hg). In contrast, neocortex and, to a lesser extent, cerebellum exhibited a progressive return toward normal values despite continued hypocapnia. No evidence of a rebound in CBV was found on return to normal ventilation in the three brain regions. We conclude that sustained hyperventilation can lead to an uneven change in the reduction of CBV, possibly because of differences of brain vessels in their sensitivity to extracellular pH. Our results in neocortex confirm the transient effect of sustained hyperventilation on cerebral hemodynamics. IMPLICATIONS Sustained hyperventilation has a transient effect in decreasing cerebral blood volume (CBV). Using susceptibility contrast magnetic resonance imaging in thiopental-anesthetized rats, we found differences between brain regions in their transient CBV response to sustained hyperventilation.
Collapse
Affiliation(s)
- Christophe Broux
- Department of Anesthesiology, The University of Grenoble School of Medicine, France
| | | | | | | | | | | |
Collapse
|
39
|
Julien-Dolbec C, Tropres I, Montigon O, Reutenauer H, Ziegler A, Decorps M, Payen JF. Regional response of cerebral blood volume to graded hypoxic hypoxia in rat brain. Br J Anaesth 2002; 89:287-93. [PMID: 12378669 DOI: 10.1093/bja/aef182] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The response of cerebral blood flow to hypoxic hypoxia is usually effected by dilation of cerebral arterioles. However, the resulting changes in cerebral blood volume (CBV) have received little attention. We have determined, using susceptibility contrast magnetic resonance imaging (MRI), changes in regional CBV induced by graded hypoxic hypoxia. METHODS Six anaesthetized rats were subjected to incremental reduction in the fraction of inspired oxygen: 0.35, 0.25, 0.15, and 0.12. At each episode, CBV was determined in five regions of each hemisphere after injection of a contrast agent: superficial and deep neocortex, striatum, corpus callosum and cerebellum. A control group (n = 6 rats) was studied with the same protocol without contrast agent, to determine blood oxygenation level dependent (BOLD) contribution to the MRI changes. RESULTS Each brain region exhibited a significant graded increase in CBV during the two hypoxic episodes: 10-27% of control values at 70% SaO2, and 26-38% at 55% SaO2. There was no difference between regions in their response to hypoxia. The mean CBV of all regions increased from 3.6 (SD 0.6) to 4.1 (0.6) ml (100 g)-1 and to 4.7 (0.7) ml (100 g)-1 during the two hypoxic episodes, respectively (Scheffé F-test; P < 0.01). Over this range, CBV was inversely proportional to SaO2 (r2 = 0.80). In the absence of the contrast agent, changes due to the BOLD effect were negligible. CONCLUSIONS These findings imply that hypoxic hypoxia significantly raises CBV in different brain areas, in proportion to the severity of the insult. These results support the notion that the vasodilatory effect of hypoxia is deleterious in patients with reduced intracranial compliance.
Collapse
Affiliation(s)
- C Julien-Dolbec
- INSERM 438 Unit, University of Grenoble School of Medicine, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Iozzo P, Osman S, Glaser M, Knickmeier M, Ferrannini E, Pike VW, Camici PG, Law MP. In vivo imaging of insulin receptors by PET: preclinical evaluation of iodine-125 and iodine-124 labelled human insulin. Nucl Med Biol 2002; 29:73-82. [PMID: 11786278 DOI: 10.1016/s0969-8051(01)00286-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[A(14)-*I]iodoinsulin was prepared for studies to assess the suitability of labeled iodoinsulin for positron emission tomography (PET). Iodine-125 was used to establish the methods and for preliminary studies in rats. Further studies and PET scanning in rats were carried out using iodine-124. Tissue and plasma radioactivity was measured as the uptake index (UI = [cpm x (g tissue)(-1)]/[cpm injected x (g body weight)(-1)]) at 1 to 40 min after intravenous injection of either [A(14)-(125)I]iodoinsulin or [A(14)-(124)I]iodoinsulin. For both radiotracers, initial clearance of radioactivity from plasma was rapid (T(1/2) approximately 1 min), reaching a plateau (UI = 2.8) at approximately 5 min which was maintained for 35 min. Tissue biodistributions of the two radiotracers were comparable; at 10 min after injection, UI for myocardium was 2.4, liver, 4.0, pancreas, 5.4, brain, 0.17, kidney, 22, lung, 2.3, muscle, 0.54 and fat, 0.28. Predosing rats with unlabelled insulin reduced the UI for myocardium (0.95), liver (1.8), pancreas (1.2) and brain (0.08), increased that for kidney (61) but had no effect on that for lung (2.5), muscle (0.50) or fat (0.34). Analysis of radioactivity in plasma demonstrated a decrease of [(125)I]iodoinsulin associated with the appearance of labeled metabolites; the percentage of plasma radioactivity due to [(125)I]iodoinsulin was 40% at 5 min and 10% at 10 min. The heart, liver and kidneys were visualized using [(124)I]iodoinsulin with PET.
Collapse
Affiliation(s)
- P Iozzo
- MRC Clinical Sciences Centre, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | | | |
Collapse
|
41
|
An H, Lin W, Celik A, Lee YZ. Quantitative measurements of cerebral metabolic rate of oxygen utilization using MRI: a volunteer study. NMR IN BIOMEDICINE 2001; 14:441-7. [PMID: 11746936 PMCID: PMC4096838 DOI: 10.1002/nbm.717] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Quantitative estimates of cerebral metabolic rate of oxygen utilization using magnetic resonance imaging can have profound implications for the understanding of brain metabolic activity as well as the investigation of cerebrovascular disease. In this study, five normal volunteers were studied. All images were acquired on a Siemens 1.5 T scanner (Siemens Medical Systems Inc, Erlangen, Germany). Cerebral blood flow (CBF) was obtained in vivo with a dynamic imaging approach and the acquired images were post-processed with the singular value decomposition method (SVD). In addition, a multi-echo gradient echo/spin echo sequence was employed to provide MR estimates of oxygen extraction fraction (MR_OEF) in vivo. Subsequently, an absolute measure of MR cerebral metabolic rate of oxygen utilization (MR_CMRO(2)) was obtained in all subjects by taking the product of CBF and MR_OEF. A mean MR_CMRO(2) of 28.94 +/- 3.26 ml/min/100 g and 12.57 +/- 3.11 ml/min/100 g was obtained for gray matter and white matter, respectively, suggesting that the gray matter utilizes more oxygen than white matter under normal physiological conditions. These results yield a gray matter to white matter CMRO(2) ratio of 2.37 +/- 0.37, which is comparable to the reported values in the literature. More studies are needed to further improve on the accuracy as well as shortening the required data acquisition time so that the proposed approaches can be utilized in a routine clinical setting.
Collapse
Affiliation(s)
- Hongyu An
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Weili Lin
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Correspondence to: W. Lin, The University of North Carolina at Chapel Hill, Department of Radiology, CB#7515, Chapel Hill, NC 27599, USA.
| | | | - Yueh Z. Lee
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
42
|
Abstract
The blood--brain barrier (BBB) represents an insurmountable obstacle for a large number of drugs, including antibiotics, antineoplastic agents, and a variety of central nervous system (CNS)-active drugs, especially neuropeptides. One of the possibilities to overcome this barrier is a drug delivery to the brain using nanoparticles. Drugs that have successfully been transported into the brain using this carrier include the hexapeptide dalargin, the dipeptide kytorphin, loperamide, tubocurarine, the NMDA receptor antagonist MRZ 2/576, and doxorubicin. The nanoparticles may be especially helpful for the treatment of the disseminated and very aggressive brain tumors. Intravenously injected doxorubicin-loaded polysorbate 80-coated nanoparticles were able to lead to a 40% cure in rats with intracranially transplanted glioblastomas 101/8. The mechanism of the nanoparticle-mediated transport of the drugs across the blood-brain barrier at present is not fully elucidated. The most likely mechanism is endocytosis by the endothelial cells lining the brain blood capillaries. Nanoparticle-mediated drug transport to the brain depends on the overcoating of the particles with polysorbates, especially polysorbate 80. Overcoating with these materials seems to lead to the adsorption of apolipoprotein E from blood plasma onto the nanoparticle surface. The particles then seem to mimic low density lipoprotein (LDL) particles and could interact with the LDL receptor leading to their uptake by the endothelial cells. After this the drug may be released in these cells and diffuse into the brain interior or the particles may be transcytosed. Other processes such as tight junction modulation or P-glycoprotein (Pgp) inhibition also may occur. Moreover, these mechanisms may run in parallel or may be cooperative thus enabling a drug delivery to the brain.
Collapse
Affiliation(s)
- J Kreuter
- Institut für Pharmazeutische Technologie, Biozentrum, J.W.Goethe-Universität, D-60439 Frankfurt, Germany.
| |
Collapse
|
43
|
Alyaudtin RN, Reichel A, Löbenberg R, Ramge P, Kreuter J, Begley DJ. Interaction of poly(butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro. J Drug Target 2001; 9:209-21. [PMID: 11697206 DOI: 10.3109/10611860108997929] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Poly(butylcyanoacrylate) nanoparticles were produced by emulsion polymerisation and used either uncoated or overcoated with polysorbate 80 (Tween 80). [3H]-dalargin bound to nanoparticles overcoated with polysorbate 80 or in the form of saline solution was injected into mice and the brain concentrations of radioactivity determined. Statistically significant, three-fold higher brain concentrations with the nanoparticle preparations were obtained after 45 minutes, the time of greatest pharmacological response assessed as analgesia in previous experiments. In addition the brain inulin spaces in rats and the uptake of fluoresceine isothiocyanate labelled nanoparticles in immortalised rat cerebral endothelial cells, (RBE4) were measured. The inulin spaces after i.v. injection of polysorbate 80-coated nanoparticles were significantly increased by 1% compared to controls. This is interpreted as indicating that there is no large scale opening of the tight junctions of the brain endothelium by the polysorbate 80-coated nanoparticles. In in vitro experiments endocytic uptake of fluorescent nanoparticles by RBE4 cells was only observed after polysorbate 80-overcoating, not with uncoated particles. These results further support the hypothesis that the mechanism of blood-brain barrier transport of drugs by polysorbate 80-coated nanoparticles is one of endocytosis followed by possible transcytosis. The experiments were conducted in several laboratories as part of an EEC/INTAS collaborative program. For various procedural and regulatory reasons this necessitated the use of both rats and mice as experimental animals. The brain endothelial cell line used for the in vitro studies is the rat RBE4.
Collapse
Affiliation(s)
- R N Alyaudtin
- Department of Pharmacology, Sechnov Medical Academy, B. Pirogovskaja 2-6, 119881 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The blood--brain barrier (BBB) represents an insurmountable obstacle for a large number of drugs, including antibiotics, antineoplastic agents, and a variety of central nervous system (CNS)-active drugs, especially neuropeptides. One of the possibilities to overcome this barrier is a drug delivery to the brain using nanoparticles. Drugs that have successfully been transported into the brain using this carrier include the hexapeptide dalargin, the dipeptide kytorphin, loperamide, tubocurarine, the NMDA receptor antagonist MRZ 2/576, and doxorubicin. The nanoparticles may be especially helpful for the treatment of the disseminated and very aggressive brain tumors. Intravenously injected doxorubicin-loaded polysorbate 80-coated nanoparticles were able to lead to a 40% cure in rats with intracranially transplanted glioblastomas 101/8. The mechanism of the nanoparticle-mediated transport of the drugs across the blood-brain barrier at present is not fully elucidated. The most likely mechanism is endocytosis by the endothelial cells lining the brain blood capillaries. Nanoparticle-mediated drug transport to the brain depends on the overcoating of the particles with polysorbates, especially polysorbate 80. Overcoating with these materials seems to lead to the adsorption of apolipoprotein E from blood plasma onto the nanoparticle surface. The particles then seem to mimic low density lipoprotein (LDL) particles and could interact with the LDL receptor leading to their uptake by the endothelial cells. After this the drug may be released in these cells and diffuse into the brain interior or the particles may be transcytosed. Other processes such as tight junction modulation or P-glycoprotein (Pgp) inhibition also may occur. Moreover, these mechanisms may run in parallel or may be cooperative thus enabling a drug delivery to the brain.
Collapse
Affiliation(s)
- J Kreuter
- Institut für Pharmazeutische Technologie, Biozentrum, J.W.Goethe-Universität, D-60439 Frankfurt, Germany.
| |
Collapse
|
45
|
Payen JF, Briot E, Tropres I, Julien-Dolbec C, Montigon O, Decorps M. Regional cerebral blood volume response to hypocapnia using susceptibility contrast MRI. NMR IN BIOMEDICINE 2000; 13:384-391. [PMID: 11114061 DOI: 10.1002/1099-1492(200011)13:7<384::aid-nbm655>3.0.co;2-v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We used steady-state susceptibility contrast MRI to evaluate the regional cerebral blood volume (rCBV) response to hypocapnia in anesthetised rats. The rCBV was determined in the dorsoparietal neocortex, the corpus striatum, the cerebellum, as well as blood volume in extracerebral tissue (group 1). In addition, we used laser-Doppler flow (LDF) measurements in the left dorsoparietal neocortex (group 2), to correlate changes in CBV and in cerebral blood flow. Baseline values, expressed as a percentage of blood volume in each voxel, were higher in the brain regions than in extracerebral tissue. Hypocapnia (P(a)CO(2) approximately 25 mmHg) resulted in a significant decrease in CBV in the cerebellum (-17 +/- 9%), in the corpus striatum (-15 +/- 6%) and in the neocortex (-12 +/- 7%), compared to the normocapnic CBV values (group 1). These changes were in good agreement with the values obtained using alternative techniques. No significant changes in blood volume were found in extracerebral tissue. The CBV changes were reversed during the recovery period. In the left dorsoparietal neocortex, the reduction in LDF (group 2) induced by hypocapnia (-21 +/- 8%) was in accordance with the values predicted by the Poiseuille's law. We conclude that rCBV changes during CO(2) manipulation can be accurately measured by susceptibility contrast MRI. Abbreviations used: ANOVA analysis of variance CBF cerebral blood flow CBV cerebral blood volume CPMG Carr-Purcell-Meiboom-Gill FiO(2) fractional inspired oxygen ICP intracranial pressure LDF laser-Doppler flow MABP mean arterial blood pressure MRI magnetic resonance imaging MTT mean transit time PaCO(2) arterial partial pressure of carbon dioxide PaO(2) arterial partial pressure of oxygen PET positron emission tomography rCBV regional cerebral blood volume SPECT single-photon emission computed tomography
Collapse
Affiliation(s)
- J F Payen
- Unité mixte INSERM-Université Joseph Fourier: U438, LRC CEA, H opital Albert Michallon, BP 217, 38043 Grenoble, France.
| | | | | | | | | | | |
Collapse
|
46
|
Smith CB, Kang J. Cerebral protein synthesis in a genetic mouse model of phenylketonuria. Proc Natl Acad Sci U S A 2000; 97:11014-9. [PMID: 11005872 PMCID: PMC27140 DOI: 10.1073/pnas.97.20.11014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2000] [Accepted: 07/19/2000] [Indexed: 11/18/2022] Open
Abstract
Local rates of cerebral protein synthesis (lCPS(leu)) were measured with the quantitative autoradiographic [1-(14)C]leucine method in a genetic mouse model (Pah(enu2)) of phenylketonuria. As in the human disease, Pah(enu2) mice have a mutation in the gene for phenylalanine hydroxylase. We compared adult homozygous (HMZ) and heterozygous (HTZ) Pah(enu2) mice with the background strain (BTBR). Arterial plasma concentrations of phenylalanine (Phe) were elevated in both HMZ and HTZ mutants by 21 times and 38%, respectively. In the total acid-soluble pool in brain concentrations of Phe were higher and other neutral amino acids lower in HMZ mice compared with either HTZ or BTBR mice indicating a partial saturation of the l-amino acid carrier at the blood brain barrier by the elevated plasma Phe concentrations. In a series of steady-state experiments, the contribution of leucine from the arterial plasma to the tRNA-bound pool in brain was found to be statistically significantly reduced in HMZ mice compared with the other groups, indicating that a greater fraction of leucine in the precursor pool for protein synthesis is derived from protein degradation. We found reductions in lCPS(leu) of about 20% throughout the brain in the HMZ mice compared with the other two groups, but no reductions in brain concentrations of tRNA-bound neutral amino acids. Our results in the mouse model suggest that in untreated phenylketonuria in adults, the partial saturation of the l-amino acid transporter at the blood-brain barrier may not underlie a reduction in cerebral protein synthesis.
Collapse
Affiliation(s)
- C B Smith
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, United States Public Health Service, Department of Health and Human Services, Bethesda, MD 20892-4030, USA.
| | | |
Collapse
|
47
|
Abstract
A quantitative estimate of cerebral blood oxygen saturation is of critical importance in the investigation of cerebrovascular disease because of the fact that it could potentially provide information on tissue viability in vivo. In the current study, a multi-echo gradient and spin echo magnetic resonance imaging sequence was used to acquire images from eight normal volunteer subjects. All images were acquired on a Siemens 1.5T Symphony whole-body scanner (Siemens, Erlangen, Germany). A theoretical signal model, which describes the signal dephasing phenomena in the presence of deoxyhemoglobin, was used for postprocessing of the acquired images and obtaining a quantitative measurement of cerebral blood oxygen saturation in vivo. With a region-of-interest analysis, a mean cerebral blood oxygen saturation of 58.4%+/-1.8% was obtained in the brain parenchyma from all volunteers. It is in excellent agreement with the known cerebral blood oxygen saturation under normal physiologic conditions in humans. Although further studies are needed to overcome some of the confounding factors affecting the estimates of cerebral blood oxygen saturation, these preliminary results are encouraging and should open a new avenue for the noninvasive investigation of cerebral oxygen metabolism under different pathophysiologic conditions using a magnetic resonance imaging approach.
Collapse
Affiliation(s)
- H An
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
48
|
Abstract
In vivo measurement of cerebral arterial and venous volume fractions is important to the understanding of brain physiology and function. By using an intravascular perfluorocarbon and 19F NMR at 4.7 T, regional arterial and venous volume fractions from an intact rat brain were resolved based on the pseudodiffusion coefficients, which were (33 +/- 7) x 10(-3) and (0.45 +/- 0.13) x 10(-3) mm(2)/sec (mean +/- SD, n = 7) for the fast- and slow-moving component, respectively. By exploiting the linear dependence of the perfluorocarbon 19F 1/T1 on the dissolved paramagnetic oxygen concentration, combined inversion-recovery and diffusion measurements were made to correlate the short T1 (high-oxygenation) component with the fast-moving component and the long T1 (low-oxygenation) component with the slow-moving component. The arterial blood volume fraction was 29 +/- 7% of the total cerebral blood volume. Finally, experiments were performed in which different oxygen concentrations were inhaled to validate this technique.
Collapse
Affiliation(s)
- T Q Duong
- Department of Radiology, University of Minnesota School of Medicine, Minneapolis 55455, USA
| | | |
Collapse
|
49
|
Cremin JD, Luck ML, Laughlin NK, Smith DR. Efficacy of succimer chelation for reducing brain lead in a primate model of human lead exposure. Toxicol Appl Pharmacol 1999; 161:283-93. [PMID: 10620486 DOI: 10.1006/taap.1999.8807] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extent to which succimer (meso-2,3-dimercaptosuccinic acid [DMSA], Chemet) reduces brain lead (Pb) levels may be a primary consideration in evaluating its efficacy for reducing neurotoxicity. Clinical research in this area has been hampered by the need to use blood Pb levels as the index of treatment efficacy, despite the fact that brain Pb level is the exposure parameter of greater relevance to cognitive outcomes. Here, a nonhuman primate model of human Pb exposure was used to determine: (1) The efficacy of oral succimer for reducing brain Pb derived from chronic or recent exposures, and (2) The extent to which blood Pb levels reflect brain Pb prior to and following chelation. Adult rhesus monkeys were chronically exposed to Pb orally for 5 weeks to reach and maintain a target blood Pb level of 35-40 microg/dL. Chelation of Pb from recent exposures was assessed using a stable (204)Pb isotope tracer administered over 4 days prior to treatment. Immediately prior to chelation, a prefrontal cortex (PFC) biopsy was collected to determine pretreatment brain Pb levels. Subsequently, monkeys were assigned to vehicle (n = 5) or succimer (n = 6, 30 mg/kg/day x 5 days followed by 20 mg/kg/day x 14 days) groups. Blood and brain PFC, frontal lobe (FL), hippocampus (H), and striatum (S) were analyzed for total Pb and (204)Pb tracer concentrations by magnetic sector inductively coupled plasma-mass spectrometry. There were no measurable differences in brain Pb concentrations between the succimer and vehicle groups, indicating that succimer treatment was not efficacious in reducing brain Pb levels. In contrast, the cessation of Pb exposure significantly reduced brain (PFC) Pb ( approximately 34%) when compared to pretreatment levels (succimer and vehicle groups). Pb concentrations also varied among brain regions (PFC > FL approximately H > S). Finally, pretreatment PFC Pb concentrations were significantly correlated with the integrated blood Pb level (AUC) over the Pb exposure period, but not with the single pretreatment blood Pb collected concurrently with the PFC biopsy. Following treatment, blood Pb levels correlated only with Pb in the PFC, and not the other brain regions measured (FL, H, S). These data indicate that, under the conditions of this study, succimer treatment did not reduce brain Pb levels beyond the cessation of Pb exposure alone. Moreover, a single blood Pb measurement may be a poor predictor of brain Pb levels, reflecting limitations in the use of blood Pb level as an indicator of treatment efficacy.
Collapse
Affiliation(s)
- J D Cremin
- Environmental Toxicology, University of California, Santa Cruz, California, 95064, USA
| | | | | | | |
Collapse
|
50
|
Opacka-Juffry J, Hirani E, Dawson GR, Luthra SK, Hume SP. Evaluation of [methyl-3H]L655,708 and [ethyl-3H]RY80 as putative PET ligands for central GABA(A) receptors containing alpha5 subunit. Nucl Med Biol 1999; 26:743-8. [PMID: 10628553 DOI: 10.1016/s0969-8051(99)00053-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two selective radioligands of gamma aminobutyric acid (GABA)A receptors containing the alpha5 subunit, [3H]L655,708 and [3H]RY80, were evaluated in rats as potential in vivo tracers for positron emission tomography (PET). Brain uptake index (BUI), a measure of first pass extraction, was moderate for [3H]L655,708 (BUI of 59%) and good for [3H]RY80 (BUI of 96%). This finding was consistent with their in vitro binding to plasma proteins of approximately 76% and 50%, respectively. Following intravenous injection of either radioligand, radioactivity in plasma was measured and uptake characteristics were assessed in brain within a time period relevant to PET scanning (up to 90 min). Discrete brain regions, such as frontal cortex, striatum, hypothalamus, thalamus, hippocampus, colliculi, medulla, and cerebellum, were sampled and the temporal distribution of radioactivity analysed. Despite the reasonable delivery to the brain, neither of the radioligands had sufficient retention in the tissues rich in alpha5-containing GABA(A) receptors to achieve a good selective signal. For both radioligands, a maximal tissue:cerebellum ratio of 1.5 was seen in hippocampus at 10 min after injection. Thus, neither of the compounds studied shows potential for further development as an in vivo PET ligand.
Collapse
|