1
|
Bassalo D, Matthews SG, Bloise E. The canine blood-brain barrier in health and disease: focus on brain protection. Vet Q 2025; 45:12-32. [PMID: 39791202 PMCID: PMC11727060 DOI: 10.1080/01652176.2025.2450041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/18/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025] Open
Abstract
This review examines the role of the canine blood-brain barrier (BBB) in health and disease, focusing on the impact of the multidrug resistance (MDR) transporter P-glycoprotein (P-gp) encoded by the ABCB1/MDR1 gene. The BBB is critical in maintaining central nervous system homeostasis and brain protection against xenobiotics and environmental drugs that may be circulating in the blood stream. We revise key anatomical, histological and functional aspects of the canine BBB and examine the role of the ABCB1/MDR1 gene mutation in specific dog breeds that exhibit reduced P-gp activity and disrupted drug brain pharmacokinetics. The review also covers factors that may disrupt the canine BBB, including the actions of aging, canine cognitive dysfunction, epilepsy, inflammation, infection, traumatic brain injury, among others. We highlight the critical importance of this barrier in maintaining central nervous system homeostasis and protecting against xenobiotics and conclude that a number of neurological-related diseases may increase vulnerability of the BBB in the canine species and discuss its profound impacts on canine health.
Collapse
Affiliation(s)
- Dimitri Bassalo
- Especialização em Farmacologia, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G. Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Department of Obstetrics & Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Enrrico Bloise
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Szlak L, Shen J, Zohar E, Karavani E, Rotroff D, Vegh D, Punia V, Rosen-Zvi M, Shimoni Y, Jehi L. Peri-operative anti-inflammatory drug use and seizure recurrence after resective epilepsy surgery: Target trials emulation. iScience 2025; 28:112124. [PMID: 40241751 PMCID: PMC12003005 DOI: 10.1016/j.isci.2025.112124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/23/2025] [Accepted: 02/25/2025] [Indexed: 04/18/2025] Open
Abstract
We conducted a retrospective observational study to examine whether anti-inflammatory medications prescribed peri-operatively of resective brain surgery can reduce long-term seizure recurrence for individuals with drug-resistant focal epilepsy. We used insurance-claims data from across the United States to screen medications prescribed to 1,993 individuals undergoing epilepsy. We then validated the results in a well-characterized cohort of 671 epilepsy patients from a major surgical center. Twelve medications met the screening criteria and were evaluated, identifying dexamethasone and zonisamide as potentially beneficial. Dexamethasone reduced seizure recurrence by 42% over 9 years of follow-up (hazard-ratio = 0.742; 95% CI = 0.662, 0.831), and zonisamide reduced recurrence by 33% (HR = 0.782; 95% CI = 0.667, 0.917). While dexamethasone could not be validated, analysis of zonisamide in the clinical cohort corroborated the beneficial effect (HR = 0.828; 95% CI = 0.706, 0.971). If prospectively validated, this study suggests surgeons could improve long-term outcomes of epilepsy surgery by medically reducing neuro-inflammation in the surgical bed.
Collapse
Affiliation(s)
| | - Jingdi Shen
- Center for Computational Life Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Daniel Rotroff
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Deborah Vegh
- Center for Computational Life Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vineet Punia
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Michal Rosen-Zvi
- IBM Research, Haifa, Israel
- Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | | - Lara Jehi
- Center for Computational Life Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
Rhind SG, Shiu MY, Tenn C, Nakashima A, Jetly R, Sajja VSSS, Long JB, Vartanian O. Repetitive Low-Level Blast Exposure Alters Circulating Myeloperoxidase, Matrix Metalloproteinases, and Neurovascular Endothelial Molecules in Experienced Military Breachers. Int J Mol Sci 2025; 26:1808. [PMID: 40076437 PMCID: PMC11898641 DOI: 10.3390/ijms26051808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Repeated exposure to low-level blast overpressure, frequently experienced during explosive breaching and heavy weapons use in training and operations, is increasingly recognised as a serious risk to the neurological health of military personnel. Although research on the underlying pathobiological mechanisms in humans remains limited, this study investigated the effects of such exposure on circulating molecular biomarkers associated with inflammation, neurovascular damage, and endothelial injury. Blood samples from military breachers were analysed for myeloperoxidase (MPO), matrix metalloproteinases (MMPs), and junctional proteins indicative of blood-brain barrier (BBB) disruption and endothelial damage, including occludin (OCLN), zonula occludens-1 (ZO-1), aquaporin-4 (AQP4), and syndecan-1 (SD-1). The results revealed significantly elevated levels of MPO, MMP-3, MMP-9, and MMP-10 in breachers compared to unexposed controls, suggesting heightened inflammation, oxidative stress, and vascular injury. Increased levels of OCLN and SD-1 further indicated BBB disruption and endothelial glycocalyx degradation in breachers. These findings highlight the potential for chronic neurovascular unit damage/dysfunction from repeated blast exposure and underscore the importance of early targeted interventions-such as reducing oxidative stress, reinforcing BBB integrity, and managing inflammation-that could be essential in mitigating the risk of long-term neurological impairment associated with blast exposure.
Collapse
Affiliation(s)
- Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Maria Y. Shiu
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
| | - Catherine Tenn
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB T1A 8K6, Canada;
| | - Ann Nakashima
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
| | - Rakesh Jetly
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ottawa, ON K1Z 7K4, Canada;
| | | | - Joseph B. Long
- Blast-Induced NeuroTrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (J.B.L.)
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
- Department of Psychology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
4
|
Zheng C, Li R, Shen C, Guo F, Fan D, Yang L, Zhang L, Chen A, Chen Y, Chen D, Zi W, Guo C, Nguyen TN, Albers GW, Campbell BCV, Qiu Z, Hu Z. Methylprednisolone as Adjunct to Thrombectomy for Acute Intracranial Internal Carotid Artery Occlusion Stroke: Post Hoc Secondary Analysis of the MARVEL Randomized Clinical Trial. JAMA Netw Open 2025; 8:e2459945. [PMID: 39964685 PMCID: PMC11836765 DOI: 10.1001/jamanetworkopen.2024.59945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/11/2024] [Indexed: 02/21/2025] Open
Abstract
Importance Patients with acute ischemic stroke (AIS) due to intracranial internal carotid artery (ICA) occlusion often have poor functional outcomes despite undergoing endovascular thrombectomy (EVT). Objective To investigate the effectiveness and safety associated with intravenous methylprednisolone as adjunctive treatment to EVT for patients with AIS due to intracranial ICA occlusion. Design, Setting, and Participants This was a post hoc analysis of the MARVEL randomized, double-blind, placebo-controlled clinical trial conducted from February 9, 2022, to June 30, 2023, at 82 stroke centers across China with a 3-month follow-up. The primary trial enrolled 1680 patients with large vessel occlusion within 24 hours from last known well time in the intracranial ICA, the first segment of the middle cerebral artery (M1), or the second segment of the middle cerebral artery (M2), of whom 579 patients had intracranial ICA occlusion. Intervention Intravenous methylprednisolone, 2 mg/kg/d (maximum dose, 160 mg) for 3 days plus EVT vs placebo plus EVT. Main Outcomes and Measures The primary outcome was independent ambulation at 90 days, defined as a score of 0 to 3 on the modified Rankin Scale (range, 0 [no symptoms] to 6 [death]). Safety outcomes included death within 90 days, symptomatic intracranial hemorrhage (sICH) within 48 hours, and decompressive hemicraniectomy to relieve midline-shift and intracranial pressure after EVT. Results Among 579 patients (median age, 69.0 years [IQR, 59.0-76.0 years]; 338 men [58.4%]), there were 286 patients in the methylprednisolone group and 293 patients in the placebo group. The proportion of patients who achieved 90-day independent ambulation was significantly higher in the methylprednisolone group than in the placebo group (151 of 284 [53.2%] vs 125 of 293 [42.7%]; adjusted risk ratio [RR], 1.27 [95% CI, 1.07-1.52]; P = .007). The incidence of sICH was lower in the methylprednisolone group than in the placebo group (26 of 277 [9.4%] vs 45 of 290 [15.5%]; adjusted RR, 0.55 [95% CI, 0.35-0.87]; P = .01). The rate of decompressive hemicraniectomy was lower in the methylprednisolone group compared with the placebo group (16 of 286 [5.6%] vs 29 of 293 [9.9%]; adjusted RR, 0.54 [95% CI, 0.30-0.98]; P = .04). No significant difference was observed in mortality between groups (methylprednisolone, 92 of 284 [32.4%] vs placebo, 111 of 239 [37.9%]; adjusted RR, 0.84 [95% CI, 0.67-1.05]; P = .13). Conclusions and Relevance In this secondary analysis of a randomized clinical trial of intravenous methylprednisolone vs placebo for patients with intracranial ICA occlusion undergoing EVT, intravenous methylprednisolone was associated with improved ambulation. These findings suggest that the use of intravenous methylprednisolone as an adjunct to EVT may hold promise as a treatment option for patients with AIS due to intracranial ICA occlusion. Trial registration ChiCTR.org.cn Identifier: ChiCTR2100051729.
Collapse
Affiliation(s)
- Chong Zheng
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Rongtong Li
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Chaoxiong Shen
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Fang Guo
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Daofeng Fan
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Lixian Yang
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Li Zhang
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Anni Chen
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Yangui Chen
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Dongping Chen
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Wenjie Zi
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Changwei Guo
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Thanh N. Nguyen
- Department of Neurology, Boston Medical Center, Boston, Massachusetts
- Department of Radiology, Boston Medical Center, Boston, Massachusetts
| | - Gregory W. Albers
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California
| | - Bruce C. V. Campbell
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Zhongming Qiu
- Department of Neurology, The 903rd Hospital of The Chinese People’s Liberation Army, Hangzhou, China
| | - Zhizhou Hu
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| |
Collapse
|
5
|
Prasad GL, Pai A, PT S. Short course of low-dose steroids for management of delayed pericontusional edema after mild traumatic brain injury - A retrospective study. Surg Neurol Int 2025; 16:23. [PMID: 39926471 PMCID: PMC11799702 DOI: 10.25259/sni_948_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/28/2024] [Indexed: 02/11/2025] Open
Abstract
Background Secondary insults such as brain edema is commonly observed after traumatic brain injury (TBI) and remains an important cause of neurological deterioration. Based on the corticosteroid randomisation after significant head injury (CRASH) trial findings, Brain Trauma Foundation guidelines recommend against giving steroids in TBI. However, the findings of two recent clinical studies suggest that there may be a subset of patients who may benefit from steroids. Methods This study was a retrospective, single-center, 4-year study. The study analyzed patients who had received systemic corticosteroids for pericontusional delayed edema after TBI. The time interval to steroid prescription, drug dosage, time to symptomatic improvement, and complications were analyzed. Results There were 19 males and eight females. Mean age was 42.1 years (range, 21-91 years). Except for one, all were mild TBI categories. All patients had brain contusions on computed tomography. Dexamethasone was used in tapering doses over 5-10 days, starting with 12 mg/day. The mean interval to steroid prescription after the trauma was 5.9 days, and the mean and median duration was 7 days. All, except one, had symptomatic improvement. The mean time to complete improvement in symptoms was 2.8 days. There were no complications pertinent to steroid usage in any of our cases. Conclusion This is the third clinical study to document the efficacy of systemic corticosteroids for delayed cerebral edema after TBI. As steroids are excellent drugs for vasogenic edema, the timing and dosage of steroids are two important factors that will determine their efficacy in TBI. We strongly feel that there needs to be more robust clinical trials with good patient numbers to confirm these findings.
Collapse
Affiliation(s)
- G. Lakshmi Prasad
- Department of Neurosurgery, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | | |
Collapse
|
6
|
Jiao W, Lin J, Deng Y, Ji Y, Liang C, Wei S, Jing X, Yan F. The immunological perspective of major depressive disorder: unveiling the interactions between central and peripheral immune mechanisms. J Neuroinflammation 2025; 22:10. [PMID: 39828676 PMCID: PMC11743025 DOI: 10.1186/s12974-024-03312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
Major depressive disorder is a prevalent mental disorder, yet its pathogenesis remains poorly understood. Accumulating evidence implicates dysregulated immune mechanisms as key contributors to depressive disorders. This review elucidates the complex interplay between peripheral and central immune components underlying depressive disorder pathology. Peripherally, systemic inflammation, gut immune dysregulation, and immune dysfunction in organs including gut, liver, spleen and adipose tissue influence brain function through neural and molecular pathways. Within the central nervous system, aberrant microglial and astrocytes activation, cytokine imbalances, and compromised blood-brain barrier integrity propagate neuroinflammation, disrupting neurotransmission, impairing neuroplasticity, and promoting neuronal injury. The crosstalk between peripheral and central immunity creates a vicious cycle exacerbating depressive neuropathology. Unraveling these multifaceted immune-mediated mechanisms provides insights into major depressive disorder's pathogenic basis and potential biomarkers and targets. Modulating both peripheral and central immune responses represent a promising multidimensional therapeutic strategy.
Collapse
Affiliation(s)
- Wenli Jiao
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Jiayi Lin
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Yanfang Deng
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yelin Ji
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Chuoyi Liang
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Sijia Wei
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Xi Jing
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Fengxia Yan
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
7
|
Gonzalez-Aponte MF, Damato AR, Simon T, Aripova N, Darby F, Jeon MS, Luo J, Rubin JB, Herzog ED. Daily glucocorticoids promote glioblastoma growth and circadian synchrony to the host. Cancer Cell 2025; 43:144-160.e7. [PMID: 39672168 PMCID: PMC11732716 DOI: 10.1016/j.ccell.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with a poor prognosis despite aggressive therapy. Here, we hypothesized that daily host signaling regulates tumor growth and synchronizes circadian rhythms in GBM. We find daily glucocorticoids promote or suppress GBM growth through glucocorticoid receptor (GR) signaling depending on time of day and the clock genes, Bmal1 and Cry. Blocking circadian signals, like vasoactive intestinal peptide or glucocorticoids, dramatically slows GBM growth and disease progression. Analysis of human GBM samples from The Cancer Genome Atlas (TCGA) shows that high GR expression significantly increases hazard of mortality. Finally, mouse and human GBM models have intrinsic circadian rhythms in clock gene expression in vitro and in vivo that entrain to the host through glucocorticoid signaling, regardless of tumor type or host immune status. We conclude that GBM entrains to the circadian circuit of the brain, modulating its growth through clock-controlled cues, like glucocorticoids.
Collapse
Affiliation(s)
- Maria F Gonzalez-Aponte
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Anna R Damato
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tatiana Simon
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Nigina Aripova
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Fabrizio Darby
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Myung Sik Jeon
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center Biostatistics Shared Resource, Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jingqin Luo
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center Biostatistics Shared Resource, Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua B Rubin
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erik D Herzog
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
8
|
Bansal R, Bhojwani D, Sun BF, Sawardekar S, Wayne AS, Ouassil H, Gupte C, Marcelino C, Gonzalez Anaya MJ, Luna N, Peterson BS. Progression of brain injuries associated with methotrexate chemotherapy in childhood acute lymphoblastic leukemia. Pediatr Res 2025; 97:348-359. [PMID: 38951657 PMCID: PMC11798858 DOI: 10.1038/s41390-024-03351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/18/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Brain bases and progression of methotrexate-associated neurotoxicity and cognitive disturbances remain unknown. We tested whether brain abnormalities worsen in proportion to intrathecal methotrexate(IT-MTX) doses. METHODS In this prospective, longitudinal study, we recruited 19 patients with newly diagnosed acute lymphoblastic leukemia 4-to-20 years of age and 20 matched controls. We collected MRI and neuropsychological assessments at a pre-methotrexate baseline and at week 9, week 22, and year 1 during treatment. RESULTS Patients had baseline abnormalities in cortical and subcortical gray matter(GM), white matter(WM) volumes and microstructure, regional cerebral blood flow, and neuronal density. Abnormalities of GM, blood flow, and metabolites worsened in direct proportions to IT-MTX doses. WM abnormalities persisted until week 22 but normalized by year 1. Brain injuries were localized to dorsal and ventral attentional and frontoparietal cognitive networks. Patients had cognitive deficits at baseline that persisted at 1-year follow-up. CONCLUSIONS Baseline abnormalities are likely a consequence of neuroinflammation and oxidative stress. Baseline abnormalities in WM microstructure and volumes, and blood flow persisted until week 22 but normalized by year 1, likely due to treatment and its effects on reducing inflammation. The cytotoxic effects of IT-MTX, however, likely contributed to continued, progressive cortical thinning and reductions in neuronal density, thereby contributing to enduring cognitive deficits. IMPACT Brain abnormalities at a pre-methotrexate baseline likely are due to acute illness. The cytotoxic effects of intrathecal MTX contribute to progressive cortical thinning, reductions in neuronal density, and enduring cognitive deficits. Baseline white matter abnormalities may have normalized via methotrexate treatment and decreasing neuroinflammation. Corticosteroid and leucovorin conferred neuroprotective effects. Our findings suggest that the administration of neuroprotective and anti-inflammatory agents should be considered even earlier than they are currently administered. The neuroprotective effects of leucovorin suggest that strategies may be developed that extend the duration of this intervention or adapt it for use in standard risk patients.
Collapse
Affiliation(s)
- Ravi Bansal
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| | - Deepa Bhojwani
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center and Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bernice F Sun
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Siddhant Sawardekar
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Alan S Wayne
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center and Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hannah Ouassil
- College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Chaitanya Gupte
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Courtney Marcelino
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Maria J Gonzalez Anaya
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Natalia Luna
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Bradley S Peterson
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
9
|
Gartling G, Sayce L, Zimmerman Z, Slater A, Hary L, Yang W, Santacatterina M, Rousseau B, Branski RC. Acute Effects of Steroids on Vocal Fold Epithelium Post-injury in a Preclinical Model. Laryngoscope 2025; 135:206-212. [PMID: 39276031 DOI: 10.1002/lary.31729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 09/16/2024]
Abstract
INTRODUCTION Glucocorticoids (GCs) are commonly prescribed for laryngeal indications due to their potent anti-inflammatory properties. However, GCs effect on vocal fold (VF) epithelial morphology and barrier function following injury is overlooked and may be key to efficacy. In this study, the effects of GCs on epithelial morphology and barrier function were quantified in injured VFs. We seek to increase our understanding of biochemical processes underlying GC mechanisms to refine therapeutic strategies. METHODS Microflap injury was induced in 65 rabbits. Seven days after injury, animals received bilateral 20 μL intracordal injections of saline, dexamethasone, methylprednisolone, or triamcinolone (n = 15 per condition). Five rabbits in each condition were euthanized 1, 7, or 60 days following treatment. An additional five animals served as non-injured/untreated controls. To quantify transepithelial electrical resistance (TEER), 1 mm epithelial biopsies were placed in an Ussing chamber. The contralateral VF was processed for transmission electron microscopy and epithelial depth analysis. RESULTS At 60 days, GC treatment maintained TEER levels similar to non-injured/untreated controls. However, triamcinolone reduced TEER compared with saline-treated conditions. Acutely, epithelial hyperplasia typically persisted in all injured VFs. At 60 days, only dexamethasone and triamcinolone increased epithelial depth in injured VFs; all GCs increased epithelial depth compared with non-injured/untreated controls. CONCLUSION Acutely, GCs did not alter TEER. Additionally, GCs did not alter epithelial depth compared with saline treatment, indicating alignment with natural healing responses. At 60 days, GCs exhibited varying degrees of TEER restoration and epithelial hyperplasia, possibly due to distinct pharmacodynamic profiles. LEVEL OF EVIDENCE NA Laryngoscope, 135:206-212, 2025.
Collapse
Affiliation(s)
- Gary Gartling
- Department of Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, New York, U.S.A
| | - Lea Sayce
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Zachary Zimmerman
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Alysha Slater
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Lizzie Hary
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Wenqing Yang
- Division of Biostatistics, Department of Population Health, NYU Grossman School of Medicine, New York, New York, U.S.A
| | - Michele Santacatterina
- Division of Biostatistics, Department of Population Health, NYU Grossman School of Medicine, New York, New York, U.S.A
| | - Bernard Rousseau
- Doisy College of Health Sciences, Saint Louis University, St. Louis, Missouri, U.S.A
| | - Ryan C Branski
- Department of Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, New York, U.S.A
| |
Collapse
|
10
|
Hage Z, Madeira MM, Koliatsis D, Tsirka SE. Convergence of endothelial dysfunction, inflammation and glucocorticoid resistance in depression-related cardiovascular diseases. BMC Immunol 2024; 25:61. [PMID: 39333855 PMCID: PMC11428380 DOI: 10.1186/s12865-024-00653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Major Depressive Disorder, or depression, has been extensively linked to dysregulated HPA axis function, chronic inflammation and cardiovascular diseases. While the former two have been studied in depth, the mechanistic connection between depression and cardiovascular disease is unclear. As major mediators of vascular homeostasis, vascular pathology and immune activity, endothelial cells represent an important player connecting the diseases. Exaggerated inflammation and glucocorticoid function are important topics to explore in the endothelial response to MDD. Glucocorticoid resistance in several cell types strongly promotes inflammatory signaling and results in worsened severity in many diseases. However, endothelial health and inflammation in chronic stress and depression are rarely considered from the perspective of glucocorticoid signaling and resistance. In this review, we aim to discuss (1) endothelial dysfunction in depression, (2) inflammation in depression, (3) general glucocorticoid resistance in depression and (4) endothelial glucocorticoid resistance in depression co-morbid inflammatory diseases. We will first describe vascular pathology, inflammation and glucocorticoid resistance separately in depression and then describe their potential interactions with one another in depression-relevant diseases. Lastly, we will hypothesize potential mechanisms by which glucocorticoid resistance in endothelial cells may contribute to vascular disease states in depressed people. Overall, endothelial-glucocorticoid signaling may play an important role in connecting depression and vascular pathology and warrants further study.
Collapse
Affiliation(s)
- Zachary Hage
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Scholars in Biomedical Sciences Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Miguel M Madeira
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Scholars in Biomedical Sciences Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Dimitris Koliatsis
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
- Scholars in Biomedical Sciences Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
11
|
Mariajoseph FP, Chung JX, Lai LT, Moore J, Goldschlager T, Chandra RV, Praeger A, Slater LA. Clinical management of contrast-induced neurotoxicity: a systematic review. Acta Neurol Belg 2024; 124:1141-1149. [PMID: 38329641 PMCID: PMC11266203 DOI: 10.1007/s13760-024-02474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Contrast-induced neurotoxicity (CIN) is an increasingly recognised complication following endovascular procedures utilising contrast. It remains poorly understood with heterogenous clinical management strategies. The aim of this review was to identify commonly employed treatments for CIN to enhance clinical decision making. METHODS A systematic search of Embase (1947-2022) and Medline (1946-2022) was conducted. Articles describing (i) patients with a clinical diagnosis of CIN, (ii) with radiological exclusion of other pathologies, (iii) detailed report of treatments, and (iv) discharge outcomes, were included. Data relating to demographics, procedure, symptoms, treatment and outcomes were extracted. RESULTS A total of 73 patients were included, with a median age of 64 years. The most common procedures were cerebral angiography (42.5%) and coronary angiography (42.5%), and the median volume of contrast administered was 150 ml. The most common symptoms were cortical blindness (38.4%) and reduced consciousness (28.8%), and 84.9% of patients experienced complete resolution at the time of discharge. Management included intravenous fluids to dilute contrast in the cerebrovasculature (54.8%), corticosteroids to reduce blood-brain barrier damage (47.9%), antiseizure (16.4%) and sedative (16.4%) medications. Mannitol (13.7%) was also utilised to reduce cerebral oedema. Intensive care admission was required for 19.2% of patients. No statistically significant differences were observed between treatment and discharge outcomes. CONCLUSIONS The clinical management of CIN should be considered on a patient-by-patient basis, but may consist of aggressive fluid therapy alongside corticosteroids, as well as other supportive therapy as required. Further examination of CIN management is required to define best practice.
Collapse
Affiliation(s)
- Frederick P Mariajoseph
- Department of Neurosurgery, Monash Health, Clayton, VIC, Australia.
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia.
| | - Jia Xi Chung
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Leon T Lai
- Department of Neurosurgery, Monash Health, Clayton, VIC, Australia
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Justin Moore
- Department of Neurosurgery, Monash Health, Clayton, VIC, Australia
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Tony Goldschlager
- Department of Neurosurgery, Monash Health, Clayton, VIC, Australia
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Ronil V Chandra
- Monash Imaging, Monash Health, Clayton, Melbourne, Australia
- Department of Radiology, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Adrian Praeger
- Department of Neurosurgery, Monash Health, Clayton, VIC, Australia
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Lee-Anne Slater
- Monash Imaging, Monash Health, Clayton, Melbourne, Australia
- Department of Radiology, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Gonzalez-Aponte MF, Damato AR, Simon T, Aripova N, Darby F, Rubin JB, Herzog ED. Daily glucocorticoids promote glioblastoma growth and circadian synchrony to the host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592418. [PMID: 38766060 PMCID: PMC11100585 DOI: 10.1101/2024.05.03.592418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults with a poor prognosis despite aggressive therapy. A recent, retrospective clinical study found that administering Temozolomide in the morning increased patient overall survival by 6 months compared to evening. Here, we tested the hypothesis that daily host signaling regulates tumor growth and synchronizes circadian rhythms in GBM. We found daily Dexamethasone promoted or suppressed GBM growth depending on time of day of administration and on the clock gene, Bmal1. Blocking circadian signals, like VIP or glucocorticoids, dramatically slowed GBM growth and disease progression. Finally, mouse and human GBM models have intrinsic circadian rhythms in clock gene expression in vitro and in vivo that entrain to the host through glucocorticoid signaling, regardless of tumor type or host immune status. We conclude that GBM entrains to the circadian circuit of the brain, which modulates its growth through clockcontrolled cues, like glucocorticoids.
Collapse
Affiliation(s)
- Maria F. Gonzalez-Aponte
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Anna R. Damato
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Tatiana Simon
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Nigina Aripova
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Fabrizio Darby
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Joshua B. Rubin
- Department of Pediatrics, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Erik D. Herzog
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
13
|
Herbst CJ, Lopez-Rodriguez E, Gluhovic V, Schulz S, Brandt R, Timm S, Abledu J, Falivene J, Pennitz P, Kirsten H, Nouailles G, Witzenrath M, Ochs M, Kuebler WM. Characterization of Commercially Available Human Primary Alveolar Epithelial Cells. Am J Respir Cell Mol Biol 2024; 70:339-350. [PMID: 38207121 DOI: 10.1165/rcmb.2023-0320ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024] Open
Abstract
In vitro lung research requires appropriate cell culture models that adequately mimic in vivo structure and function. Previously, researchers extensively used commercially available and easily expandable A549 and NCI-H441 cells, which replicate some but not all features of alveolar epithelial cells. Specifically, these cells are often restricted by terminally altered expression while lacking important alveolar epithelial characteristics. Of late, human primary alveolar epithelial cells (hPAEpCs) have become commercially available but are so far poorly specified. Here, we applied a comprehensive set of technologies to characterize their morphology, surface marker expression, transcriptomic profile, and functional properties. At optimized seeding numbers of 7,500 cells per square centimeter and growth at a gas-liquid interface, hPAEpCs formed regular monolayers with tight junctions and amiloride-sensitive transepithelial ion transport. Electron microscopy revealed lamellar body and microvilli formation characteristic for alveolar type II cells. Protein and single-cell transcriptomic analyses revealed expression of alveolar type I and type II cell markers; yet, transcriptomic data failed to detect NKX2-1, an important transcriptional regulator of alveolar cell differentiation. With increasing passage number, hPAEpCs transdifferentiated toward alveolar-basal intermediates characterized as SFTPC-, KRT8high, and KRT5- cells. In spite of marked changes in the transcriptome as a function of passaging, Uniform Manifold Approximation and Projection plots did not reveal major shifts in cell clusters, and epithelial permeability was unaffected. The present work delineates optimized culture conditions, cellular characteristics, and functional properties of commercially available hPAEpCs. hPAEpCs may provide a useful model system for studies on drug delivery, barrier function, and transepithelial ion transport in vitro.
Collapse
Affiliation(s)
- Christopher J Herbst
- Institute of Physiology
- German Center for Cardiovascular Research, Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Berlin, Germany
- German Center for Lung Research, Deutsches Zentrum für Lungenforschung (DZL), Berlin, Germany
| | | | | | | | | | - Sara Timm
- Core Facility Electron Microscopy, and
| | | | | | - Peter Pennitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany; and
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Ochs
- Institute of Functional Anatomy
- Core Facility Electron Microscopy, and
- German Center for Lung Research, Deutsches Zentrum für Lungenforschung (DZL), Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology
- German Center for Cardiovascular Research, Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Berlin, Germany
- German Center for Lung Research, Deutsches Zentrum für Lungenforschung (DZL), Berlin, Germany
- Keenan Research Centre, St. Michael's Hospital, and
- Departments of Surgery and
- Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Taylor MA, Kokiko-Cochran ON. Context is key: glucocorticoid receptor and corticosteroid therapeutics in outcomes after traumatic brain injury. Front Cell Neurosci 2024; 18:1351685. [PMID: 38529007 PMCID: PMC10961349 DOI: 10.3389/fncel.2024.1351685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Traumatic brain injury (TBI) is a global health burden, and survivors suffer functional and psychiatric consequences that can persist long after injury. TBI induces a physiological stress response by activating the hypothalamic-pituitary-adrenal (HPA) axis, but the effects of injury on the stress response become more complex in the long term. Clinical and experimental evidence suggests long lasting dysfunction of the stress response after TBI. Additionally, pre- and post-injury stress both have negative impacts on outcome following TBI. This bidirectional relationship between stress and injury impedes recovery and exacerbates TBI-induced psychiatric and cognitive dysfunction. Previous clinical and experimental studies have explored the use of synthetic glucocorticoids as a therapeutic for stress-related TBI outcomes, but these have yielded mixed results. Furthermore, long-term steroid treatment is associated with multiple negative side effects. There is a pressing need for alternative approaches that improve stress functionality after TBI. Glucocorticoid receptor (GR) has been identified as a fundamental link between stress and immune responses, and preclinical evidence suggests GR plays an important role in microglia-mediated outcomes after TBI and other neuroinflammatory conditions. In this review, we will summarize GR-mediated stress dysfunction after TBI, highlighting the role of microglia. We will discuss recent studies which target microglial GR in the context of stress and injury, and we suggest that cell-specific GR interventions may be a promising strategy for long-term TBI pathophysiology.
Collapse
Affiliation(s)
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, Chronic Brain Injury Program, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
15
|
Gartling G, Nakamura R, Sayce L, Kimball EE, Wilson A, Schneeberger S, Zimmerman Z, Garabedian MJ, Branski RC, Rousseau B. Acute Effects of Systemic Glucocorticoids on the Vocal Folds in a Pre-Clinical Model. Ann Otol Rhinol Laryngol 2024; 133:87-96. [PMID: 37497827 PMCID: PMC10818023 DOI: 10.1177/00034894231188571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
OBJECTIVES/HYPOTHESIS Systemic glucocorticoids (GC)s are employed to treat various voice disorders. However, GCs have varying pharmacodynamic properties with adverse effects ranging from changes in epithelial integrity, skeletal muscle catabolism, and altered body weight. We sought to characterize the acute temporal effects of systemic dexamethasone and methylprednisolone on vocal fold (VF) epithelial glucocorticoid receptor (GR) nuclear translocation, epithelial tight junction (ZO-1) expression, thyroarytenoid (TA) muscle fiber morphology, and body weight using an established pre-clinical model. We hypothesized dexamethasone and methylprednisolone will elicit changes in VF epithelial GR nuclear translocation, epithelial ZO-1 expression, TA muscle morphology, and body weight compared to placebo-treated controls. METHODS Forty-five New Zealand white rabbits received intramuscular injections of methylprednisolone (4.5 mg; n = 15), dexamethasone (450 µg; n = 15), or volume matched saline (n = 15) into the iliocostalis/longissimus muscle for 6 consecutive days. Vocal folds from 5 rabbits from each treatment group were harvested at 1-, 3-, or 7 days following the final injection and subjected to immunohistochemistry for ZO-1 and GR as well as TA muscle fiber cross-sectional area (CSA) measures. RESULTS Dexamethasone increased epithelial GR nuclear translocation and ZO-1 expression 1-day following injections compared to methylprednisolone (P = .024; P = .012). Dexamethasone and methylprednisolone increased TA CSA 1-day following injections (P = .011). Methylprednisolone decreased body weight 7 days following injections compared to controls (P = .004). CONCLUSIONS Systemic dexamethasone may more efficiently activate GR in the VF epithelium with a lower risk of body weight loss, suggesting a role for more refined approaches to GC selection for laryngeal pathology.
Collapse
Affiliation(s)
- Gary Gartling
- Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Ryosuke Nakamura
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Lea Sayce
- Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily E. Kimball
- Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
- Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Azure Wilson
- Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven Schneeberger
- Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Zachary Zimmerman
- Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J. Garabedian
- Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Urology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ryan C. Branski
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Bernard Rousseau
- Doisy College of Health Sciences, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
16
|
Arora H, Mammi M, Patel NM, Zyfi D, Dasari HR, Yunusa I, Simjian T, Smith TR, Mekary RA. Dexamethasone and overall survival and progression free survival in patients with newly diagnosed glioblastoma: a meta-analysis. J Neurooncol 2024; 166:17-26. [PMID: 38151699 DOI: 10.1007/s11060-023-04549-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE Glioblastomas, the most common primary malignant brain tumors in adults, still hold poor prognosis. Corticosteroids, such as dexamethasone, are usually prescribed to reduce peritumoral edema and limit neurological symptoms, although potential detrimental effects of these drugs have been described. The present meta-analysis aimed to explore the association of dexamethasone with overall survival (OS) and progression free survival (PFS) in patients with newly diagnosed glioblastoma. METHODS PubMed, Cochrane Library, Embase, and ClinicalTrials.gov were searched for pertinent studies following the Preferred Reporting Items of Systematic Review and Meta-Analysis checklist. Pooled multivariable-adjusted hazard ratios (HR) for OS and PFS and their associated 95% confidence intervals (CIs) were calculated using the random-effects model and the heterogeneity among studies was assessed using I2. The quality of evidence was assessed using the GRADE criteria. RESULTS Seven studies were included, pooling data of 1,257 patients, with age varying from 11 to 81 years. Glioblastoma patients on pre- or peri-operative dexamethasone were associated with a significantly poorer overall survival (HR: 1.33, 95% CI: 1.15, 1.55; 7 studies; I2: 59.9%) and progression free survival (HR: 1.77, 95% CI: 1.05, 2.97; 3 studies; I2: 71.1%) compared to patients not on dexamethasone. The quality of evidence was moderate for overall survival and low for progression free survival. CONCLUSION Dexamethasone appeared to be associated with poor survival outcomes of glioblastoma patients.
Collapse
Affiliation(s)
- Harshit Arora
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Mammi
- Neurosurgery Division, "M. Bufalini" Hospital, Cesena, Italy
| | - Naisargi Manishkumar Patel
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Dea Zyfi
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Hema Reddy Dasari
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Ismael Yunusa
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
- College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Thomas Simjian
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Timothy R Smith
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rania A Mekary
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA.
| |
Collapse
|
17
|
Wang Y, Du W, Hu X, Yu X, Guo C, Jin X, Wang W. Targeting the blood-brain barrier to delay aging-accompanied neurological diseases by modulating gut microbiota, circadian rhythms, and their interplays. Acta Pharm Sin B 2023; 13:4667-4687. [PMID: 38045038 PMCID: PMC10692395 DOI: 10.1016/j.apsb.2023.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
The blood-brain barrier (BBB) impairment plays a crucial role in the pathological processes of aging-accompanied neurological diseases (AAND). Meanwhile, circadian rhythms disruption and gut microbiota dysbiosis are associated with increased morbidity of neurological diseases in the accelerated aging population. Importantly, circadian rhythms disruption and gut microbiota dysbiosis are also known to induce the generation of toxic metabolites and pro-inflammatory cytokines, resulting in disruption of BBB integrity. Collectively, this provides a new perspective for exploring the relationship among circadian rhythms, gut microbes, and the BBB in aging-accompanied neurological diseases. In this review, we focus on recent advances in the interplay between circadian rhythm disturbances and gut microbiota dysbiosis, and their potential roles in the BBB disruption that occurs in AAND. Based on existing literature, we discuss and propose potential mechanisms underlying BBB damage induced by dysregulated circadian rhythms and gut microbiota, which would serve as the basis for developing potential interventions to protect the BBB in the aging population through targeting the BBB by exploiting its links with gut microbiota and circadian rhythms for treating AAND.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurology, the Second Affiliated Hospital of Jiaxing City, Jiaxing 314000, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xiaoyan Hu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xin Yu
- Bengbu Medical College (Department of Neurology, the Second Hospital of Jiaxing City), Jiaxing 233030, China
| | - Chun Guo
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
18
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. Biomaterials 2023; 301:122210. [PMID: 37413842 PMCID: PMC10528716 DOI: 10.1016/j.biomaterials.2023.122210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over the chronic implantation period. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Li C, Chen S, Siedhoff HR, Grant D, Liu P, Balderrama A, Jackson M, Zuckerman A, Greenlief CM, Kobeissy F, Wang KW, DePalma RG, Cernak I, Cui J, Gu Z. Low-intensity open-field blast exposure effects on neurovascular unit ultrastructure in mice. Acta Neuropathol Commun 2023; 11:144. [PMID: 37674234 PMCID: PMC10481586 DOI: 10.1186/s40478-023-01636-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Abstract
Mild traumatic brain injury (mTBI) induced by low-intensity blast (LIB) is a serious health problem affecting military service members and veterans. Our previous reports using a single open-field LIB mouse model showed the absence of gross microscopic damage or necrosis in the brain, while transmission electron microscopy (TEM) identified ultrastructural abnormalities of myelin sheaths, mitochondria, and synapses. The neurovascular unit (NVU), an anatomical and functional system with multiple components, is vital for the regulation of cerebral blood flow and cellular interactions. In this study, we delineated ultrastructural abnormalities affecting the NVU in mice with LIB exposure quantitatively and qualitatively. Luminal constrictive irregularities were identified at 7 days post-injury (DPI) followed by dilation at 30 DPI along with degeneration of pericytes. Quantitative proteomic analysis identified significantly altered vasomotor-related proteins at 24 h post-injury. Endothelial cell, basement membrane and astrocyte end-foot swellings, as well as vacuole formations, occurred in LIB-exposed mice, indicating cellular edema. Structural abnormalities of tight junctions and astrocyte end-foot detachment from basement membranes were also noted. These ultrastructural findings demonstrate that LIB induces multiple-component NVU damage. Prevention of NVU damage may aid in identifying therapeutic targets to mitigate the effects of primary brain blast injury.
Collapse
Affiliation(s)
- Chao Li
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Shanyan Chen
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - Heather R Siedhoff
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - DeAna Grant
- Electron Microscopy Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Pei Liu
- Charles W. Gehrke Proteomic Center, University of Missouri, Columbia, MO, 65211, USA
| | - Ashley Balderrama
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - Marcus Jackson
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
| | - Amitai Zuckerman
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - C Michael Greenlief
- Charles W. Gehrke Proteomic Center, University of Missouri, Columbia, MO, 65211, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310-1458, USA
- Atlanta VA Medical and Rehab Center, Decatur, GA, 30033, USA
| | - Kevin W Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310-1458, USA
- Atlanta VA Medical and Rehab Center, Decatur, GA, 30033, USA
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, 20420, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ibolja Cernak
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, 31207, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA.
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA.
| |
Collapse
|
20
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating Clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526463. [PMID: 36778360 PMCID: PMC9915570 DOI: 10.1101/2023.01.31.526463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over chronic implantation. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period. Abstract Figure
Collapse
|
21
|
Lee SJ, Logsdon AF, Yagi M, Baskin BM, Peskind ER, Raskind MM, Cook DG, Schindler AG. The dynorphin/kappa opioid receptor mediates adverse immunological and behavioral outcomes induced by repetitive blast trauma. J Neuroinflammation 2022; 19:288. [PMID: 36463243 PMCID: PMC9719647 DOI: 10.1186/s12974-022-02643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Adverse pathophysiological and behavioral outcomes related to mild traumatic brain injury (mTBI), posttraumatic stress disorder (PTSD), and chronic pain are common following blast exposure and contribute to decreased quality of life, but underlying mechanisms and prophylactic/treatment options remain limited. The dynorphin/kappa opioid receptor (KOR) system helps regulate behavioral and inflammatory responses to stress and injury; however, it has yet to be investigated as a potential mechanism in either humans or animals exposed to blast. We hypothesized that blast-induced KOR activation mediates adverse outcomes related to inflammation and affective behavioral response. METHODS C57Bl/6 adult male mice were singly or repeatedly exposed to either sham (anesthesia only) or blast delivered by a pneumatic shock tube. The selective KOR antagonist norBNI or vehicle (saline) was administered 72 h prior to repetitive blast or sham exposure. Serum and brain were collected 10 min or 4 h post-exposure for dynorphin A-like immunoreactivity and cytokine measurements, respectively. At 1-month post-exposure, mice were tested in a series of behavioral assays related to adverse outcomes reported by humans with blast trauma. RESULTS Repetitive but not single blast exposure resulted in increased brain dynorphin A-like immunoreactivity. norBNI pretreatment blocked or significantly reduced blast-induced increase in serum and brain cytokines, including IL-6, at 4 h post exposure and aversive/anxiety-like behavioral dysfunction at 1-month post-exposure. CONCLUSIONS Our findings demonstrate a previously unreported role for the dynorphin/KOR system as a mediator of biochemical and behavioral dysfunction following repetitive blast exposure and highlight this system as a potential prophylactic/therapeutic treatment target.
Collapse
Affiliation(s)
- Suhjung Janet Lee
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA
| | - Aric F. Logsdon
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA ,grid.34477.330000000122986657Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195 USA
| | - Mayumi Yagi
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA
| | - Britahny M. Baskin
- grid.34477.330000000122986657Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195 USA
| | - Elaine. R. Peskind
- grid.413919.70000 0004 0420 6540VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108 USA ,grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195 USA
| | - Murray M. Raskind
- grid.413919.70000 0004 0420 6540VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108 USA ,grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195 USA
| | - David G. Cook
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA ,grid.34477.330000000122986657Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Department of Pharmacology, University of Washington, Seattle, WA 98195 USA
| | - Abigail. G. Schindler
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA ,grid.34477.330000000122986657Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
22
|
Wu S, Yin Y, Du L. Blood-Brain Barrier Dysfunction in the Pathogenesis of Major Depressive Disorder. Cell Mol Neurobiol 2022; 42:2571-2591. [PMID: 34637015 PMCID: PMC11421634 DOI: 10.1007/s10571-021-01153-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Major depression represents a complex and prevalent psychological disease that is characterized by persistent depressed mood, impaired cognitive function and complicated pathophysiological and neuroendocrine alterations. Despite the multifactorial etiology of depression, one of the most recent factors to be identified as playing a critical role in the development of depression is blood-brain barrier (BBB) disruption. The occurrence of BBB integrity disruption contributes to the disturbance of brain homeostasis and leads to complications of neurological diseases, such as stroke, chronic neurodegenerative disorders, neuroinflammatory disorders. Recently, BBB associated tight junction disruption has been shown to implicate in the pathophysiology of depression and contribute to increased susceptibility to depression. However, the underlying mechanisms and importance of BBB damage in depression remains largely unknown. This review highlights how BBB disruption regulates the depression process and the possible molecular mechanisms involved in development of depression-induced BBB dysfunction. Moreover, insight on promising therapeutic targets for treatment of depression with associated BBB dysfunctions are also discussed.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuye Yin
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
23
|
Immunogenic Cell Death Enhances Immunotherapy of Diffuse Intrinsic Pontine Glioma: From Preclinical to Clinical Studies. Pharmaceutics 2022; 14:pharmaceutics14091762. [PMID: 36145510 PMCID: PMC9502387 DOI: 10.3390/pharmaceutics14091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is the most lethal tumor involving the pediatric central nervous system. The median survival of children that are diagnosed with DIPG is only 9 to 11 months. More than 200 clinical trials have failed to increase the survival outcomes using conventional cytotoxic or myeloablative chemotherapy. Immunotherapy presents exciting therapeutic opportunities against DIPG that is characterized by unique and heterogeneous features. However, the non-inflammatory DIPG microenvironment greatly limits the role of immunotherapy in DIPG. Encouragingly, the induction of immunogenic cell death, accompanied by the release of damage-associated molecular patterns (DAMPs) shows satisfactory efficacy of immune stimulation and antitumor strategies. This review dwells on the dilemma and advances in immunotherapy for DIPG, and the potential efficacy of immunogenic cell death (ICD) in the immunotherapy of DIPG.
Collapse
|
24
|
McNamara EH, Tucker LB, Liu J, Fu AH, Kim Y, Vu PA, McCabe JT. Limbic Responses Following Shock Wave Exposure in Male and Female Mice. Front Behav Neurosci 2022; 16:863195. [PMID: 35747840 PMCID: PMC9210954 DOI: 10.3389/fnbeh.2022.863195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 01/26/2023] Open
Abstract
Blast traumatic brain injury (bTBI) presents a serious threat to military personnel and often results in psychiatric conditions related to limbic system dysfunction. In this study, the functional outcomes for anxiety- and depressive-like behaviors and neuronal activation were evaluated in male and female mice after exposure to an Advanced Blast Simulator (ABS) shock wave. Mice were placed in a ventrally exposed orientation inside of the ABS test section and received primary and tertiary shock wave insults of approximately 15 psi peak pressure. Evans blue staining indicated cases of blood-brain barrier breach in the superficial cerebral cortex four, but not 24 h after blast, but the severity was variable. Behavioral testing with the elevated plus maze (EPM) or elevated zero maze (EZM), sucrose preference test (SPT), and tail suspension test (TST) or forced swim test (FST) were conducted 8 days–3.5 weeks after shock wave exposure. There was a sex difference, but no injury effect, for distance travelled in the EZM where female mice travelled significantly farther than males. The SPT and FST did not indicate group differences; however, injured mice were less immobile than sham mice during the TST; possibly indicating more agitated behavior. In a separate cohort of animals, the expression of the immediate early gene, c-Fos, was detected 4 h after undergoing bTBI or sham procedures. No differences in c-Fos expression were found in the cerebral cortex, but female mice in general displayed enhanced c-Fos activation in the paraventricular nucleus of the thalamus (PVT) compared to male mice. In the amygdala, more c-Fos-positive cells were observed in injured animals compared to sham mice. The observed sex differences in the PVT and c-Fos activation in the amygdala may correlate with the reported hyperactivity of females post-injury. This study demonstrates, albeit with mild effects, behavioral and neuronal activation correlates in female rodents after blast injury that could be relevant to the incidence of increased post-traumatic stress disorder in women.
Collapse
Affiliation(s)
- Eileen H. McNamara
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Laura B. Tucker
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, United States
| | - Jiong Liu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Amanda H. Fu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, United States
| | - Yeonho Kim
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, United States
| | - Patricia A. Vu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joseph T. McCabe
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, United States
- *Correspondence: Joseph T. McCabe,
| |
Collapse
|
25
|
Fan X, Chen H, Xu C, Wang Y, Yin P, Li M, Tang Z, Jiang F, Wei W, Song J, Li G, Zhong D. S1PR3, as a Core Protein Related to Ischemic Stroke, is Involved in the Regulation of Blood–Brain Barrier Damage. Front Pharmacol 2022; 13:834948. [PMID: 35685645 PMCID: PMC9173650 DOI: 10.3389/fphar.2022.834948] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ischemic stroke is the most common stroke incident. Sphingosine-1-phosphate (S1P) receptor 3 (S1PR3) is a member of the downstream G protein-coupled receptor family of S1P. The effect of S1PR3 on ischemic stroke remains elusive. Methods: We downloaded two middle cerebral artery occlusion (MCAO) microarray datasets from the Gene Expression Omnibus (GEO) database and screened differentially expressed genes (DEGs). Then, we performed a weighted gene coexpression network analysis (WGCNA) and identified the core module genes related to ischemic stroke. We constructed a protein–protein interaction (PPI) network for the core genes in which DEGs and WGCNA intersected. Finally, we discovered that S1PR3 was involved as the main member of the red proteome. Then, we explored the mechanism of S1PR3 in the mouse tMCAO model. The S1PR3-specific inhibitor CAY10444 was injected into the abdominal cavity of mice after cerebral ischemia/reperfusion (I/R) injury, and changes in the expression of blood–brain barrier-related molecules were measured using PCR, western blotting, and immunofluorescence staining. Results: Both GEO datasets showed that S1PR3 was upregulated during cerebral I/R in mice. WGCNA revealed that the light yellow module had the strongest correlation with the occurrence of IS. We determined the overlap with DEGs, identified 146 core genes that are potentially related to IS, and constructed a PPI network. Finally, S1PR3 was found to be the main member of the red proteome. In the mouse cerebral I/R model, S1PR3 expression increased 24 h after ischemia. After the administration of CAY10444, brain edema and neurological deficits in mice were ameliorated. CAY10444 rescued the decreased expression of the tight junction (TJ) proteins zonula occludens 1 (ZO1) and occludin after ischemia induced by transient MCAO (tMCAO) and reduced the increase in aquaporin 4 (AQP4) levels after tMCAO, preserving the integrity of the BBB. Finally, we found that S1PR3 is involved in regulating the mitogen-activated protein kinase (MAPK) and (phosphatidylinositol-3 kinase/serine-threonine kinase) PI3K-Akt signaling pathways. Conclusion: S1PR3 participates in the regulation of blood–brain barrier damage after cerebral I/R. S1PR3 is expected to be an indicator and predictor of cerebral ischemia, and drugs targeting S1PR3 may also provide new ideas for clinical medications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Di Zhong
- *Correspondence: Guozhong Li, ; Di Zhong,
| |
Collapse
|
26
|
Tabor JB, McCrea MA, Meier TB, Emery CA, Debert CT. Hiding in Plain Sight: Factors Influencing the Neuroinflammatory Response to Sport-Related Concussion. Neurotrauma Rep 2022; 3:200-206. [PMID: 35734393 PMCID: PMC9153987 DOI: 10.1089/neur.2021.0081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sport-related concussion (SRC) is a major concern among athletes and clinicians around the world. Research into fluid biomarkers of SRC has made significant progress in understanding the complex underlying pathophysiology of concussion. However, little headway has been made toward clinically validating any biomarkers to improve the clinical management of SRC. A major obstacle toward clinical translation of any fluid biomarker is the heterogeneity of SRC overlapping with multiple physiological systems involved in pathology and recovery. Neuroinflammation post-SRC is one such system that may confound fluid biomarker data on many fronts. Neuroinflammatory processes consist of cell mediators, both within the central nervous system and the periphery, that play vital roles in regulating the response to brain injury. Further, neuroinflammation is influenced by many biopsychosocial variables present in most athletic populations. In this commentary, we propose that future fluid biomarker research should take a systems biology approach in the context of the neuroinflammatory response to SRC. We highlight how biological variables, such as age, sex, immune challenges, and hypothalamic-pituitary-adrenal (HPA)-axis responses to stress, may alter neuroinflammation. Further, we underscore the importance of accounting for health and lifestyle variables, such as diet, exercise, sleep, and pre-morbid medical factors, when measuring inflammatory markers of SRC. To successfully move toward clinical translation, fluid biomarker research should take a more holistic approach in study design and data interpretation, collecting information on hidden variables that may be influencing the neuroinflammatory response to SRC.
Collapse
Affiliation(s)
- Jason B. Tabor
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael A. McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Carolyn A. Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Chantel T. Debert
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Blood-Brain Barrier Permeability Following Conventional Photon Radiotherapy - A Systematic Review and Meta-Analysis of Clinical and Preclinical Studies. Clin Transl Radiat Oncol 2022; 35:44-55. [PMID: 35601799 PMCID: PMC9117815 DOI: 10.1016/j.ctro.2022.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 01/16/2023] Open
Abstract
Radiotherapy (RT) is a cornerstone treatment strategy for brain tumours. Besides cytotoxicity, RT can cause disruption of the blood–brain barrier (BBB), resulting in an increased permeability into the surrounding brain parenchyma. Although this effect is generally acknowledged, it remains unclear how and to what extent different radiation schemes affect BBB integrity. The aim of this systematic review and meta-analysis is to investigate the effect of photon RT regimens on BBB permeability, including its reversibility, in clinical and preclinical studies. We systematically reviewed relevant clinical and preclinical literature in PubMed, Embase, and Cochrane search engines. A total of 69 included studies (20 clinical, 49 preclinical) were qualitatively and quantitatively analysed by meta-analysis and evaluated on key determinants of RT-induced BBB permeability in different disease types and RT protocols. Qualitative data synthesis showed that 35% of the included clinical studies reported BBB disruption following RT, whereas 30% were inconclusive. Interestingly, no compelling differences were observed between studies with different calculated biological effective doses based on the fractionation schemes and cumulative doses; however, increased BBB disruption was noted during patient follow-up after treatment. Qualitative analysis of preclinical studies showed RT BBB disruption in 78% of the included studies, which was significantly confirmed by meta-analysis (p < 0.01). Of note, a high risk of bias, publication bias and a high heterogeneity across the studies was observed. This systematic review and meta-analysis sheds light on the impact of RT protocols on BBB integrity and opens the discussion for integrating this factor in the decision-making process of future RT, with better study of its occurrence and influence on concomitant or adjuvant therapies.
Collapse
|
28
|
Abstract
The brain is arguably the most fascinating and complex organ in the human body. Recreating the brain in vitro is an ambition restricted by our limited understanding of its structure and interacting elements. One of these interacting parts, the brain microvasculature, is distinguished by a highly selective barrier known as the blood-brain barrier (BBB), limiting the transport of substances between the blood and the nervous system. Numerous in vitro models have been used to mimic the BBB and constructed by implementing a variety of microfabrication and microfluidic techniques. However, currently available models still cannot accurately imitate the in vivo characteristics of BBB. In this article, we review recent BBB models by analyzing each parameter affecting the accuracy of these models. Furthermore, we propose an investigation of the synergy between BBB models and neuronal tissue biofabrication, which results in more advanced models, including neurovascular unit microfluidic models and vascularized brain organoid-based models.
Collapse
Affiliation(s)
- Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China.,School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongzhao Zhou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China.,School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Weikang Lv
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China.,School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaobin Xu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China.,School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China.,School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
29
|
Addressing Blood–Brain Barrier Impairment in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10040742. [PMID: 35453494 PMCID: PMC9029506 DOI: 10.3390/biomedicines10040742] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
The blood–brain barrier (BBB) plays a vital role in maintaining the specialized microenvironment of the brain tissue. It facilitates communication while separating the peripheral circulation system from the brain parenchyma. However, normal aging and neurodegenerative diseases can alter and damage the physiological properties of the BBB. In this review, we first briefly present the essential pathways maintaining and regulating BBB integrity, and further review the mechanisms of BBB breakdown associated with normal aging and peripheral inflammation-causing neurodegeneration and cognitive impairments. We also discuss how BBB disruption can cause or contribute to Alzheimer’s disease (AD), the most common form of dementia and a devastating neurological disorder. Next, we document overlaps between AD and vascular dementia (VaD) and briefly sum up the techniques for identifying biomarkers linked to BBB deterioration. Finally, we conclude that BBB breakdown could be used as a biomarker to help diagnose cognitive impairment associated with normal aging and neurodegenerative diseases such as AD.
Collapse
|
30
|
van Vliet EA, Marchi N. Neurovascular unit dysfunction as a mechanism of seizures and epilepsy during aging. Epilepsia 2022; 63:1297-1313. [PMID: 35218208 PMCID: PMC9321014 DOI: 10.1111/epi.17210] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
The term neurovascular unit (NVU) describes the structural and functional liaison between specialized brain endothelium, glial and mural cells, and neurons. Within the NVU, the blood‐brain barrier (BBB) is the microvascular structure regulating neuronal physiology and immune cross‐talk, and its properties adapt to brain aging. Here, we analyze a research framework where NVU dysfunction, caused by acute insults or disease progression in the aging brain, represents a converging mechanism underlying late‐onset seizures or epilepsy and neurological or neurodegenerative sequelae. Furthermore, seizure activity may accelerate brain aging by sustaining regional NVU dysfunction, and a cerebrovascular pathology may link seizures to comorbidities. Next, we focus on NVU diagnostic approaches that could be tailored to seizure conditions in the elderly. We also examine the impending disease‐modifying strategies based on the restoration of the NVU and, more in general, the homeostatic control of anti‐ and pro‐inflammatory players. We conclude with an outlook on current pre‐clinical knowledge gaps and clinical challenges pertinent to seizure onset and conditions in an aging population.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Amsterdam UMC, University of Amsterdam, dept. of (Neuro)pathology, Amsterdam, the Netherlands.,University of Amsterdam, Swammerdam Institute for Life Sciences, Center for Neuroscience, Amsterdam, the Netherlands
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
31
|
Oishi T, Koizumi S, Kurozumi K. Molecular Mechanisms and Clinical Challenges of Glioma Invasion. Brain Sci 2022; 12:brainsci12020291. [PMID: 35204054 PMCID: PMC8870089 DOI: 10.3390/brainsci12020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
Glioma is the most common primary brain tumor, and its prognosis is poor. Glioma cells are highly invasive to the brain parenchyma. It is difficult to achieve complete resection due to the nature of the brain tissue, and tumors that invade the parenchyma often recur. The invasiveness of tumor cells has been studied from various aspects, and the related molecular mechanisms are gradually becoming clear. Cell adhesion factors and extracellular matrix factors have a strong influence on glioma invasion. The molecular mechanisms that enhance the invasiveness of glioma stem cells, which have been investigated in recent years, have also been clarified. In addition, it has been discussed from both basic and clinical perspectives that current therapies can alter the invasiveness of tumors, and there is a need to develop therapeutic approaches to glioma invasion in the future. In this review, we will summarize the factors that influence the invasiveness of glioma based on the environment of tumor cells and tissues, and describe the impact of the treatment of glioma on invasion in terms of molecular biology, and the novel therapies for invasion that are currently being developed.
Collapse
|
32
|
Fan HC, Lee HF, Yue CT, Chi CS. Clinical Characteristics of Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes. Life (Basel) 2021; 11:life11111111. [PMID: 34832987 PMCID: PMC8617702 DOI: 10.3390/life11111111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, a maternally inherited mitochondrial disorder, is characterized by its genetic, biochemical and clinical complexity. The most common mutation associated with MELAS syndrome is the mtDNA A3243G mutation in the MT-TL1 gene encoding the mitochondrial tRNA-leu(UUR), which results in impaired mitochondrial translation and protein synthesis involving the mitochondrial electron transport chain complex subunits, leading to impaired mitochondrial energy production. Angiopathy, either alone or in combination with nitric oxide (NO) deficiency, further contributes to multi-organ involvement in MELAS syndrome. Management for MELAS syndrome is amostly symptomatic multidisciplinary approach. In this article, we review the clinical presentations, pathogenic mechanisms and options for management of MELAS syndrome.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan; (H.-C.F.); (C.-T.Y.)
- Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiu-Fen Lee
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Chen-Tang Yue
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan; (H.-C.F.); (C.-T.Y.)
| | - Ching-Shiang Chi
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan; (H.-C.F.); (C.-T.Y.)
- Correspondence: ; Tel.: +886-4-26581919-4301
| |
Collapse
|
33
|
Glucocorticoid-Dependent Mechanisms of Brain Tolerance to Hypoxia. Int J Mol Sci 2021; 22:ijms22157982. [PMID: 34360746 PMCID: PMC8348130 DOI: 10.3390/ijms22157982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Adaptation of organisms to stressors is coordinated by the hypothalamic-pituitary-adrenal axis (HPA), which involves glucocorticoids (GCs) and glucocorticoid receptors (GRs). Although the effects of GCs are well characterized, their impact on brain adaptation to hypoxia/ischemia is still understudied. The brain is not only the most susceptible to hypoxic injury, but also vulnerable to GC-induced damage, which makes studying the mechanisms of brain hypoxic tolerance and resistance to stress-related elevation of GCs of great importance. Cross-talk between the molecular mechanisms activated in neuronal cells by hypoxia and GCs provides a platform for developing the most effective and safe means for prevention and treatment of hypoxia-induced brain damage, including hypoxic pre- and post-conditioning. Taking into account that hypoxia- and GC-induced reprogramming significantly affects the development of organisms during embryogenesis, studies of the effects of prenatal and neonatal hypoxia on health in later life are of particular interest. This mini review discusses the accumulated data on the dynamics of the HPA activation in injurious and non-injurious hypoxia, the role of the brain GRs in these processes, interaction of GCs and hypoxia-inducible factor HIF-1, as well as cross-talk between GC and hypoxic signaling. It also identifies underdeveloped areas and suggests directions for further prospective studies.
Collapse
|
34
|
Lehrner A, Hildebrandt T, Bierer LM, Flory JD, Bader HN, Makotkine I, Yehuda R. A randomized, double-blind, placebo-controlled trial of hydrocortisone augmentation of Prolonged Exposure for PTSD in U.S. combat veterans. Behav Res Ther 2021; 144:103924. [PMID: 34298438 DOI: 10.1016/j.brat.2021.103924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 06/01/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Cognitive behavioral therapies such as Prolonged Exposure (PE) are considered first line treatments for posttraumatic stress disorder (PTSD). Nonetheless, many continue to experience significant symptoms following treatment and there is interest in enhancing treatment effectiveness. Glucocorticoid alterations in PTSD are well documented, and these steroids have been shown to enhance extinction learning. METHODS Augmentation of PE with the synthetic glucocorticoid hydrocortisone (HCORT) was tested in a randomized, double-blind, placebo-controlled trial in 60 veterans of wars in Iraq or Afghanistan with PTSD (NCT01525680). Participants ingested 30 mg oral HCORT or placebo 30 min prior to exposure sessions. PRIMARY OUTCOME MEASURE PTSD severity assessed by the CAPS; secondary outcome measures: self reported PTSD symptoms assessed by the PDS and depression assessed by the BDI; all administered at pretreatment, posttreatment, and 3-month follow up. RESULTS Across conditions, there was a robust effect of PE over time. An intent-to-treat analysis showed that HCORT did not measurably improve PTSD symptoms or secondary outcomes. However, exploratory analyses indicated that veterans with mild TBI exposure and current postconcussive symptoms showed a greater reduction in hyperarousal symptoms following PE treatment with HCORT augmentation. Additionally, veterans with higher baseline glucocorticoid sensitivity showed a greater reduction in avoidance symptoms with HCORT augmentation. CONCLUSIONS Treatment matching based on cognitive or biological vulnerabilities might lead to greater efficacy of PE with glucocorticoid augmentation.
Collapse
Affiliation(s)
- Amy Lehrner
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Tom Hildebrandt
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Linda M Bierer
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Janine D Flory
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather N Bader
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iouri Makotkine
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Yehuda
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
35
|
Shen J, Li G, Zhu Y, Xu Q, Zhou H, Xu K, Huang K, Zhan R, Pan J. Foxo1-induced miR-92b down-regulation promotes blood-brain barrier damage after ischaemic stroke by targeting NOX4. J Cell Mol Med 2021; 25:5269-5282. [PMID: 33955666 PMCID: PMC8178288 DOI: 10.1111/jcmm.16537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
The blood‐brain barrier (BBB) damage is a momentous pathological process of ischaemic stroke. NADPH oxidases 4 (NOX4) boosts BBB damage after ischaemic stroke and its expression can be influenced by microRNAs. This study aimed to probe into whether miR‐92b influenced the BBB damage after ischaemic stroke by regulating NOX4 expression. Here, miR‐92b expression was lessened in the ischaemic brains of rats and oxygen‐glucose deprivation (OGD)‐induced brain microvascular endothelial cells (BMECs). In middle cerebral artery occlusion (MCAo) rats, miR‐92b overexpression relieved the ameliorated neurological function and protected the BBB integrity. In vitro model, miR‐92b overexpression raised the viability and lessened the permeability of OGD‐induced BMECs. miR‐92b targeted NOX4 and regulated the viability and permeability of OGD‐induced BMECs by negatively modulating NOX4 expression. The transcription factor Foxo1 bound to the miR‐92b promoter and restrained its expression. Foxo1 expression was induced by OGD‐induction and its knockdown abolished the effects of OGD on miR‐92b and NOX4 expressions, cell viability and permeability of BMECs. In general, our findings expounded that Foxo1‐induced lessening miR‐92b boosted BBB damage after ischaemic stroke by raising NOX4 expression.
Collapse
Affiliation(s)
- Jian Shen
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qingsheng Xu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kangli Xu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaiyuan Huang
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Renya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianwei Pan
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Tras B, Eser Faki H, Ozdemir Kutahya Z, Bahcivan E, Dik B, Bozkurt B, Uney K. Treatment and protective effects of metalloproteinase inhibitors alone and in combination with N-Acetyl cysteine plus vitamin E in rats exposed to aflatoxin B 1. Toxicon 2021; 194:79-85. [PMID: 33617885 DOI: 10.1016/j.toxicon.2021.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 11/19/2022]
Abstract
This study was conducted to investigate the effects of matrix metalloproteinase (MMP) inhibitors dexamethasone and minocycline administrations -both single and in combination with N-acetylcysteine (NAC) and vitamin E-on the tissue distribution and lethal dose (LD)50 of aflatoxin (AF)B1 in rats. We performed this study on male Wistar rats (8-10 weeks) in two phases. In the first phase, rats were administered dexamethasone (5 and 20 mg/kg) and minocycline (45 and 90 mg/kg), both as single treatments and in combination with NAC (200 mg/kg) and vitamin E (600 mg/kg); these treatments followed AFB1 administration (2 mg/kg). In the second phase, the therapeutic effect value (TEV) was calculated to determine the treatment effect on the LD50 level of AFB1. The tissue affinity of AFB1 from high to low was liver, kidney, intestine, brain, heart, spleen, lung, testis, and vitreous humor, respectively. Dexamethasone at the 20 mg/kg dose significantly reduced AFB1 concentrations in the plasma and the other tissues, except for the vitreous humor. The effects of minocycline on the plasma and tissue concentrations of AFB1 varied by dose and tissue. The combinations of dexamethasone or minocycline with NAC and vitamin E increased the AFB1 concentrations in the plasma and all tissues, except for vitreous humor and liver. In male rats, the LD50 value of AFB1 was 11.86 mg/kg. The TEV of dexamethasone (20 mg/kg) was calculated to be 1.5. Dexamethasone can be administered in repeated doses at ≥20 mg/kg to increase survival in AFB1 poisoning.
Collapse
Affiliation(s)
- Bunyamin Tras
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031, Konya, Turkey
| | - Hatice Eser Faki
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031, Konya, Turkey
| | - Zeynep Ozdemir Kutahya
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Cukurova, 01930, Adana, Turkey
| | - Emre Bahcivan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Kafkas, 36000, Kars, Turkey
| | - Burak Dik
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031, Konya, Turkey.
| | - Banu Bozkurt
- Department of Ophthalmology, Faculty of Medicine, University of Selcuk, 42031, Konya, Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031, Konya, Turkey
| |
Collapse
|
37
|
Ihezie SA, Mathew IE, McBride DW, Dienel A, Blackburn SL, Thankamani Pandit PK. Epigenetics in blood-brain barrier disruption. Fluids Barriers CNS 2021; 18:17. [PMID: 33823899 PMCID: PMC8025355 DOI: 10.1186/s12987-021-00250-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
The vessels of the central nervous system (CNS) have unique barrier properties. The endothelial cells (ECs) which comprise the CNS vessels contribute to the barrier via strong tight junctions, specific transporters, and limited endocytosis which combine to protect the brain from toxins and maintains brain homeostasis. Blood-brain barrier (BBB) leakage is a serious secondary injury in various CNS disorders like stroke, brain tumors, and neurodegenerative disorders. Currently, there are no drugs or therapeutics available to treat specifically BBB damage after a brain injury. Growing knowledge in the field of epigenetics can enhance the understanding of gene level of the BBB and has great potential for the development of novel therapeutic strategies or targets to repair a disrupted BBB. In this brief review, we summarize the epigenetic mechanisms or regulators that have a protective or disruptive role for components of BBB, along with the promising approaches to regain the integrity of BBB.
Collapse
Affiliation(s)
- Stephanie A Ihezie
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Iny Elizebeth Mathew
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Spiros L Blackburn
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Peeyush Kumar Thankamani Pandit
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Williams JR, Young CC, Vitanza NA, McGrath M, Feroze AH, Browd SR, Hauptman JS. Progress in diffuse intrinsic pontine glioma: advocating for stereotactic biopsy in the standard of care. Neurosurg Focus 2021; 48:E4. [PMID: 31896081 DOI: 10.3171/2019.9.focus19745] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/20/2019] [Indexed: 11/06/2022]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a universally fatal pediatric brainstem tumor affecting approximately 300 children in the US annually. Median survival is less than 1 year, and radiation therapy has been the mainstay of treatment for decades. Recent advances in the biological understanding of the disease have identified the H3K27M mutation in nearly 80% of DIPGs, leading to the 2016 WHO classification of diffuse midline glioma H3K27M-mutant, a grade IV brainstem tumor. Developments in epigenetic targeting of transcriptional tendencies have yielded potential molecular targets for clinical trials. Chimeric antigen receptor T cell therapy has also shown preclinical promise. Recent clinical studies, including prospective trials, have demonstrated the safety and feasibility of pediatric brainstem biopsy in the setting of DIPG and other brainstem tumors. Given developments in the ability to analyze DIPG tumor tissue to deepen biological understanding of this disease and develop new therapies for treatment, together with the increased safety of stereotactic brainstem biopsy, the authors present a case for offering biopsy to all children with suspected DIPG. They also present their standard operative techniques for image-guided, frameless stereotactic biopsy.
Collapse
Affiliation(s)
- John R Williams
- 1Department of Neurological Surgery, University of Washington
| | | | - Nicholas A Vitanza
- 2Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital; and
| | | | | | - Samuel R Browd
- 3Division of Neurosurgery, Seattle Children's Hospital, Seattle, Washington
| | - Jason S Hauptman
- 3Division of Neurosurgery, Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
39
|
The Neurovascular Unit Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22042022. [PMID: 33670754 PMCID: PMC7922832 DOI: 10.3390/ijms22042022] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease worldwide. Histopathologically, AD presents with two hallmarks: neurofibrillary tangles (NFTs), and aggregates of amyloid β peptide (Aβ) both in the brain parenchyma as neuritic plaques, and around blood vessels as cerebral amyloid angiopathy (CAA). According to the vascular hypothesis of AD, vascular risk factors can result in dysregulation of the neurovascular unit (NVU) and hypoxia. Hypoxia may reduce Aβ clearance from the brain and increase its production, leading to both parenchymal and vascular accumulation of Aβ. An increase in Aβ amplifies neuronal dysfunction, NFT formation, and accelerates neurodegeneration, resulting in dementia. In recent decades, therapeutic approaches have attempted to decrease the levels of abnormal Aβ or tau levels in the AD brain. However, several of these approaches have either been associated with an inappropriate immune response triggering inflammation, or have failed to improve cognition. Here, we review the pathogenesis and potential therapeutic targets associated with dysfunction of the NVU in AD.
Collapse
|
40
|
Prasad GL. Steroids for delayed cerebral edema after traumatic brain injury. Surg Neurol Int 2021; 12:46. [PMID: 33654549 PMCID: PMC7911208 DOI: 10.25259/sni_756_2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/15/2021] [Indexed: 11/04/2022] Open
Abstract
Background Brain edema is a common phenomenon after traumatic brain injury (TBI) resulting in increased intracranial pressure and subsequent neurological deterioration. Experimental studies have proven that brain edema is biphasic (cytotoxic followed by vasogenic). Till date, all studies, including the corticosteroid randomization after significant head injury (HI) trial, have used high-dose steroids in the acute period during which the edema is essentially cytotoxic in nature. No clinical data exist pertaining to delayed cerebral edema (vasogenic) and steroids. Methods Patients who had received steroids for delayed cerebral edema after TBI were retrospectively analyzed over a 2-year period. Steroid dose, timing of steroid prescription, time to improvement of symptoms, and complications were noted. Results There were six males and three females. Mean age was 41.1 years. There were no severe HI cases. All subjects had cerebral contusions on imaging. Dexamethasone was the preferred steroid starting with 12 mg/day and tapered in 5-7 days. The mean interval to steroid administration after trauma was 7 days. The mean duration of steroid prescription was 6.3 days. All patients had complete symptomatic improvement. The mean time to symptom resolution was 3.8 days. No patients experienced any complications pertinent to steroid usage. Conclusion This is the first study to document efficacy of steroids for delayed cerebral edema after TBI, at least in mild/moderate head injuries. The timing of steroid usage and dose of steroids is key aspects that might determine its efficacy in TBI which was the drawbacks of the previous studies. Future prospective trials with the above factors in consideration may confirm/refute above findings.
Collapse
Affiliation(s)
- G Lakshmi Prasad
- Department of Neurosurgery, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
41
|
Tsai HC, Chen YH. Dexamethasone downregulates the expressions of MMP-9 and oxidative stress in mice with eosinophilic meningitis caused by Angiostrongylus cantonensis infection. Parasitology 2021; 148:187-197. [PMID: 33004090 PMCID: PMC11010167 DOI: 10.1017/s0031182020001870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Steroids have been shown to be beneficial in patients and mice with eosinophilic meningitis caused by Angiostrongylus cantonensis infection; however, the mechanism for this beneficial effect is unknown. We speculated that the effect of steroids in eosinophilic meningitis caused by A. cantonensis infection may be mediated by the downregulation of matrix metallopeptidase-9 (MMP-9) and oxidative stress pathways via glucocorticoid receptors (GRs). We found blood-brain barrier (BBB) dysfunction in mice with eosinophilic meningitis 2-3 weeks after infection as evidenced by increased extravasation of Evans blue and cerebrospinal fluid (CSF) albumin levels. The administration of dexamethasone significantly decreased the amount of Evans blue and CSF albumin. The effect of dexamethasone was mediated by GRs and heat shock protein 70, resulting in subsequent decreases in the expressions of nuclear factor kappa B (NF-κB), c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) in the CSF and brain parenchymal after 2 weeks of steroid administration. Steroid treatment also decreased CSF/brain homogenate MMP-9 concentrations, but had no effect on CSF MMP-2 levels, indicating that MMP-9 rather than MMP-2 played a major role in BBB dysfunction in mice with eosinophilic meningitis. The concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG) gradually increased after 1-3 weeks of infection, and the administration of dexamethasone significantly downregulated the concentration of oxidized derivative 8-OHdG in CSF. In conclusion, increased 8-OHdG and MMP-9 concentrations were found in mice with eosinophilic meningitis caused by A. cantonensis infection. The effect of dexamethasone was mediated by GRs and significantly decreased not only the levels of 8-OHdG and MMP-9 but also NF-κB, JNK and ERK.
Collapse
Affiliation(s)
- Hung-Chin Tsai
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- National Yang-Ming University, Taipei, Taiwan
- Department of Parasitology and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yu-Hsin Chen
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
42
|
Lesniak A, Poznański P, Religa P, Nawrocka A, Bujalska-Zadrozny M, Sacharczuk M. Loss of Brain-Derived Neurotrophic Factor (BDNF) Resulting From Congenital- Or Mild Traumatic Brain Injury-Induced Blood-Brain Barrier Disruption Correlates With Depressive-Like Behaviour. Neuroscience 2021; 458:1-10. [PMID: 33465406 DOI: 10.1016/j.neuroscience.2021.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in processes associated with neuroplasticity and neuroprotection. Evidence suggests that decreased BDNF levels in the central nervous system (CNS) represent a mechanism underlying the development of mood disorders. We hypothesize that both congenital and traumatic brain injury (mTBI)-induced blood-brain barrier (BBB) breakdown are responsible for brain BDNF depletion that contributes to the development of depressive-like symptoms. We employed a mouse model of innate differences in BBB integrity with high (HA) and low (LA) permeability. Depressive-like behaviours were determined under chronic mild stress (CMS) conditions or following mTBI using the tail suspension test (TST). Microvascular leakage of the BBB was evaluated using the Evans Blue Dye (EBD) extravasation method. BDNF concentrations in the brain and plasma were measured using the ELISA. Control HA mice with congenitally high BBB permeability showed exacerbated depressive-like behaviours compared with LA mice. In LA mice, with normal BBB function, mTBI, but not CMS, facilitated depressive-like behaviours, which correlated with enhanced BDNF efflux from the brain. In addition, mTBI triggered upregulation of the Bdnf gene in LA mice to compensate for BDNF loss. No alterations in BDNF levels were observed in mTBI and CMS-exposed HA mice. Moreover, CMS did not induce BBB damage or affect depressive-like behaviours in HA mice despite downregulating Bdnf gene expression. To conclude, BDNF efflux through the mTBI-disrupted BBB is strongly linked to the development of depressive-like behaviours, while the depressive phenotype in mice with congenital BBB dysfunction is independent of BDNF leakage.
Collapse
Affiliation(s)
- Anna Lesniak
- Faculty of Pharmacy with the Laboratory Medicine Division, Department of Pharmacodynamics, Medical University of Warsaw, Centre for Preclinical Research and Technology, Warsaw, Poland
| | - Piotr Poznański
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Piotr Religa
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Agata Nawrocka
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Magdalena Bujalska-Zadrozny
- Faculty of Pharmacy with the Laboratory Medicine Division, Department of Pharmacodynamics, Medical University of Warsaw, Centre for Preclinical Research and Technology, Warsaw, Poland
| | - Mariusz Sacharczuk
- Faculty of Pharmacy with the Laboratory Medicine Division, Department of Pharmacodynamics, Medical University of Warsaw, Centre for Preclinical Research and Technology, Warsaw, Poland; Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland.
| |
Collapse
|
43
|
Espinosa A, Meneses G, Chavarría A, Mancilla R, Pedraza-Chaverri J, Fleury A, Bárcena B, Pérez-Osorio IN, Besedovsky H, Arauz A, Fragoso G, Sciutto E. Intranasal Dexamethasone Reduces Mortality and Brain Damage in a Mouse Experimental Ischemic Stroke Model. Neurotherapeutics 2020; 17:1907-1918. [PMID: 32632775 PMCID: PMC7851226 DOI: 10.1007/s13311-020-00884-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation triggered by the expression of damaged-associated molecular patterns released from dying cells plays a critical role in the pathogenesis of ischemic stroke. However, the benefits from the control of neuroinflammation in the clinical outcome have not been established. In this study, the effectiveness of intranasal, a highly efficient route to reach the central nervous system, and intraperitoneal dexamethasone administration in the treatment of neuroinflammation was evaluated in a 60-min middle cerebral artery occlusion (MCAO) model in C57BL/6 male mice. We performed a side-by-side comparison using intranasal versus intraperitoneal dexamethasone, a timecourse including immediate (0 h) or 4 or 12 h poststroke intranasal administration, as well as 4 intranasal doses of dexamethasone beginning 12 h after the MCAO versus a single dose at 12 h to identify the most effective conditions to treat neuroinflammation in MCAO mice. The best results were obtained 12 h after MCAO and when mice received a single dose of dexamethasone (0.25 mg/kg) intranasally. This treatment significantly reduced mortality, neurological deficits, infarct volume size, blood-brain barrier permeability in the somatosensory cortex, inflammatory cell infiltration, and glial activation. Our results demonstrate that a single low dose of intranasal dexamethasone has neuroprotective therapeutic effects in the MCAO model, showing a better clinical outcome than the intraperitoneal administration. Based on these results, we propose a new therapeutic approach for the treatment of the damage process that accompanies ischemic stroke.
Collapse
Affiliation(s)
- Alejandro Espinosa
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Gabriela Meneses
- Departamento de Parasitología, Instituto Nacional de Diagnóstico y Referencia Epidemiológicos, Mexico City, 01480, Mexico
| | - Anahí Chavarría
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 06726, Mexico
| | - Raúl Mancilla
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Agnes Fleury
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
- Unidad Periférica del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, Mexico City, 14269, Mexico
| | - Brandon Bárcena
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Ivan N Pérez-Osorio
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Hugo Besedovsky
- The Institute of Physiology and Pathophysiology, Medical Faculty, Philipps University, Marburg, D-35037, Germany
| | - Antonio Arauz
- Stroke Clinic, Instituto Nacional de Neurología y Neurocirugía, Mexico City, 14269, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
44
|
Heat Shock Proteins Accelerate the Maturation of Brain Endothelial Cell Glucocorticoid Receptor in Focal Human Drug-Resistant Epilepsy. Mol Neurobiol 2020; 57:4511-4529. [PMID: 32748370 DOI: 10.1007/s12035-020-02043-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022]
Abstract
Pharmacoresistance in epilepsy is a major challenge to successful clinical therapy. Glucocorticoid receptor (GR) dysregulation can affect the underlying disease pathogenesis. We recently reported that local drug biotransformation at the blood-brain barrier is upregulated by GR, which controls drug-metabolizing enzymes (e.g., cytochrome P450s, CYPs) and efflux drug transporters (MDR1) in human epileptic brain endothelial cells (EPI-ECs). Here, we establish that this mechanism is influenced upstream by GR and its association with heat shock proteins/co-chaperones (Hsps) during maturation, which differentially affect human epileptic (EPI) tissue and brain endothelial cells. Overexpressed GR, Hsp90, Hsp70, and Hsp40 were found in EPI vs. NON-EPI brain regions. Elevated neurovascular GR expression and co-localization with Hsps was evident in the EPI regions with cortical dysplasia, predominantly in the brain micro-capillaries and neurons. A corresponding increase in ATPase activity (*p < 0.05) was found in the EPI regions. The GR-Hsp90/Hsp70 binding patterns indicated a faster chaperone-promoted maturation of GR, leading to its overactivation in both the tissue and EPI-ECs derived from EPI/focal regions and GR silencing in EPI-ECs slowed such GR-Hsp interactions. Significantly accelerated GR nuclear translocation was determined in EPI-ECs following treatment with GR modulators/ligands dexamethasone, rifampicin, or phenytoin. Our findings reveal that overexpressed GR co-localizes with Hsps in the neurovasculature of EPI brain, increased GR maturation by Hsps accelerates EPI GR machinery, and furthermore this change in EPI and NON-EPI GR-Hsp interaction alters with the age of seizure onset in epileptic patients, together affecting the pathophysiology and drug regulation in the epileptic brain endothelium.
Collapse
|
45
|
Children with DIPG and high-grade glioma treated with temozolomide, irinotecan, and bevacizumab: the Seattle Children's Hospital experience. J Neurooncol 2020; 148:607-617. [PMID: 32556862 DOI: 10.1007/s11060-020-03558-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Beyond focal radiation, there is no consensus standard therapy for pediatric high-grade glioma (pHGG) and outcomes remain dismal. We describe the largest molecularly-characterized cohort of children with pHGG treated with a 3-drug maintenance regimen of temozolomide, irinotecan, and bevacizumab (TIB) following radiation. METHODS We retrospectively reviewed 36 pediatric patients treated with TIB at Seattle Children's Hospital from 2009 to 2018 and analyzed survival using the Kaplan-Meier method. Molecular profiling was performed by targeted DNA sequencing and toxicities, steroid use, and palliative care utilization were evaluated. RESULTS Median age at diagnosis was 10.9 years (18 months-18 years). Genetic alterations were detected in 26 genes and aligned with recognized molecular subgroups including H3 K27M-mutant (12), H3F3A G34-mutant (2), IDH-mutant (4), and hypermutator profiles (4). Fifteen patients (42%) completed 12 planned cycles of maintenance. Side effects associated with chemotherapy delays or modifications included thrombocytopenia (28%) and nausea/vomiting (19%), with temozolomide dosing most frequently modified. Median event-free survival (EFS) and overall survival (OS) was 16.2 and 20.1 months, with shorter survival seen in DIPG (9.3 and 13.3 months, respectively). Survival at 1, 2, and 5 years was 80%, 10% and 0% for DIPG and 85%, 38%, and 16% for other pHGG. CONCLUSION Our single-center experience demonstrates tolerability of this 3-drug regimen, with prolonged survival in DIPG compared to historical single-agent temozolomide. pHGG survival was comparable to analogous 3-drug regimens and superior to historical agents; however, cure was rare. Children with pHGG remain excellent candidates for the study of novel therapeutics combined with standard therapy.
Collapse
|
46
|
Corticosteroid actions on dengue immune pathology; A review article. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2020. [DOI: 10.1016/j.cegh.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
47
|
Herting CJ, Chen Z, Maximov V, Duffy A, Szulzewsky F, Shayakhmetov DM, Hambardzumyan D. Tumour-associated macrophage-derived interleukin-1 mediates glioblastoma-associated cerebral oedema. Brain 2020; 142:3834-3851. [PMID: 31665239 DOI: 10.1093/brain/awz331] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/12/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is the most common and uncompromising primary brain tumour and is characterized by a dismal prognosis despite aggressive treatment regimens. At the cellular level, these tumours are composed of a mixture of neoplastic cells and non-neoplastic cells, including tumour-associated macrophages and endothelial cells. Cerebral oedema is a near-universal occurrence in patients afflicted with glioblastoma and it is almost exclusively managed with the corticosteroid dexamethasone despite significant drawbacks associated with its use. Here, we demonstrate that dexamethasone blocks interleukin-1 production in both bone marrow-derived and brain resident macrophage populations following stimulation with lipopolysaccharide and interferon gamma. Additionally, dexamethasone is shown to inhibit downstream effectors of interleukin-1 signalling in both macrophage populations. Co-culture of bone marrow-derived macrophages with organotypic tumour slices results in an upregulation of interleukin-1 cytokines, an effect that is absent in co-cultured microglia. Genetic ablation of interleukin-1 ligands or receptor in mice bearing RCAS/tv-a-induced platelet-derived growth factor B-overexpressing glioblastoma results in reduced oedema and partial restoration of the integrity of the blood-brain barrier, respectively; similar to results obtained with vascular endothelial growth factor neutralization. We establish that tumours from dexamethasone-treated mice exhibit reduced infiltration of cells of the myeloid and lymphoid compartments, an effect that should be considered during clinical trials for immunotherapy in glioblastoma patients. Additionally, we emphasize that caution should be used when immune profiling and single-cell RNA sequencing data are interpreted from fresh glioblastoma patient samples, as nearly all patients receive dexamethasone after diagnosis. Collectively, this evidence suggests that interleukin-1 signalling inhibition and dexamethasone treatment share therapeutic efficacies and establishes interleukin-1 signalling as an attractive and specific therapeutic target for the management of glioblastoma-associated cerebral oedema.
Collapse
Affiliation(s)
- Cameron J Herting
- Graduate Division of Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA.,Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA
| | - Zhihong Chen
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Victor Maximov
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA
| | - Alyssa Duffy
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA
| | - Frank Szulzewsky
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dmitry M Shayakhmetov
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA
| | - Dolores Hambardzumyan
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
48
|
Liu Q, Zhu L, Liu X, Zheng J, Liu Y, Ruan X, Cao S, Cai H, Li Z, Xue Y. TRA2A-induced upregulation of LINC00662 regulates blood-brain barrier permeability by affecting ELK4 mRNA stability in Alzheimer's microenvironment. RNA Biol 2020; 17:1293-1308. [PMID: 32372707 DOI: 10.1080/15476286.2020.1756055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) plays a pivotal role in the maintenance and regulation of the neural microenvironment. The BBB breakdown is a pathological change in early Alzheimer's disease (AD). RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are involved in the regulation of BBB permeability. Our study demonstrates the role of TRA2A/LINC00662/ELK4 axis in regulating BBB permeability in AD microenvironment. In Aβ1-42-incubated microvascular endothelial cells (ECs) of the BBB model in vitro, TRA2A and LINC00662 were enriched. TRA2A increased the stability of LINC00662 by binding with it. The knockdown of either TRA2A or LINC00662 decreased BBB permeability due to increased expression of tight junction-related proteins. ELK4 was less expressed in the BBB model in AD microenvironment in vitro. LINC00662 mediated the degradation of ELK4 mRNA by SMD pathway. Downregulation of ELK4 increased BBB permeability by increasing the tight junction-related protein expression.TRA2A/LINC00662/ELK4 axis plays a crucial role in the regulation of BBB permeability in AD microenvironment, which may provide a novel target for the therapy of AD.
Collapse
Affiliation(s)
- Qianshuo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Lu Zhu
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Shuo Cao
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| |
Collapse
|
49
|
Meduri GU, Chrousos GP. General Adaptation in Critical Illness: Glucocorticoid Receptor-alpha Master Regulator of Homeostatic Corrections. Front Endocrinol (Lausanne) 2020; 11:161. [PMID: 32390938 PMCID: PMC7189617 DOI: 10.3389/fendo.2020.00161] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
In critical illness, homeostatic corrections representing the culmination of hundreds of millions of years of evolution, are modulated by the activated glucocorticoid receptor alpha (GRα) and are associated with an enormous bioenergetic and metabolic cost. Appreciation of how homeostatic corrections work and how they evolved provides a conceptual framework to understand the complex pathobiology of critical illness. Emerging literature place the activated GRα at the center of all phases of disease development and resolution, including activation and re-enforcement of innate immunity, downregulation of pro-inflammatory transcription factors, and restoration of anatomy and function. By the time critically ill patients necessitate vital organ support for survival, they have reached near exhaustion or exhaustion of neuroendocrine homeostatic compensation, cell bio-energetic and adaptation functions, and reserves of vital micronutrients. We review how critical illness-related corticosteroid insufficiency, mitochondrial dysfunction/damage, and hypovitaminosis collectively interact to accelerate an anti-homeostatic active process of natural selection. Importantly, the allostatic overload imposed by these homeostatic corrections impacts negatively on both acute and long-term morbidity and mortality. Since the bioenergetic and metabolic reserves to support homeostatic corrections are time-limited, early interventions should be directed at increasing GRα and mitochondria number and function. Present understanding of the activated GC-GRα's role in immunomodulation and disease resolution should be taken into account when re-evaluating how to administer glucocorticoid treatment and co-interventions to improve cellular responsiveness. The activated GRα interdependence with functional mitochondria and three vitamin reserves (B1, C, and D) provides a rationale for co-interventions that include prolonged glucocorticoid treatment in association with rapid correction of hypovitaminosis.
Collapse
Affiliation(s)
- Gianfranco Umberto Meduri
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Memphis Veterans Affairs Medical Center, Memphis, TN, United States
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
50
|
Barna L, Walter FR, Harazin A, Bocsik A, Kincses A, Tubak V, Jósvay K, Zvara Á, Campos-Bedolla P, Deli MA. Simvastatin, edaravone and dexamethasone protect against kainate-induced brain endothelial cell damage. Fluids Barriers CNS 2020; 17:5. [PMID: 32036791 PMCID: PMC7008534 DOI: 10.1186/s12987-019-0166-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/27/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Excitotoxicity is a central pathological pathway in many neurological diseases with blood-brain barrier (BBB) dysfunction. Kainate, an exogenous excitotoxin, induces epilepsy and BBB damage in animal models, but the direct effect of kainate on brain endothelial cells has not been studied in detail. Our aim was to examine the direct effects of kainate on cultured cells of the BBB and to test three anti-inflammatory and antioxidant drugs used in clinical practice, simvastatin, edaravone and dexamethasone, to protect against kainate-induced changes. METHODS Primary rat brain endothelial cell, pericyte and astroglia cultures were used to study cell viability by impedance measurement. BBB permeability was measured on a model made from the co-culture of the three cell types. The production of nitrogen monoxide and reactive oxygen species was followed by fluorescent probes. The mRNA expression of kainate receptors and nitric oxide synthases were studied by PCR. RESULTS Kainate damaged brain endothelial cells and made the immunostaining of junctional proteins claudin-5 and zonula occludens-1 discontinuous at the cell border indicating the opening of the barrier. The permeability of the BBB model for marker molecules fluorescein and albumin and the production of nitric oxide in brain endothelial cells were increased by kainate. Simvastatin, edaravone and dexamethasone protected against the reduced cell viability, increased permeability and the morphological changes in cellular junctions caused by kainate. Dexamethasone attenuated the elevated nitric oxide production and decreased the inducible nitric oxide synthase (NOS2/iNOS) mRNA expression increased by kainate treatment. CONCLUSION Kainate directly damaged cultured brain endothelial cells. Simvastatin, edaravone and dexamethasone protected the BBB model against kainate-induced changes. Our results confirmed the potential clinical usefulness of these drugs to attenuate BBB damage.
Collapse
Affiliation(s)
- Lilla Barna
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary.,Doctoral School in Biology, University of Szeged, Somogyi u. 4, Szeged, 6720, Hungary
| | - Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Alexandra Bocsik
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Vilmos Tubak
- Creative Laboratory Ltd., Temesvári krt. 62, Szeged, 6726, Hungary
| | - Katalin Jósvay
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ágnes Zvara
- Institute of Genetics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Patricia Campos-Bedolla
- Unidad de Investigacion Medica en Enfermedades Neurologicas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, 06720, Ciudad de México, DF, México
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary. .,Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|