1
|
Cheng XX, Lin GW, Zhou YQ, Li YQ, He S, Liu Y, Zeng YN, Guo YM, Liu SQ, Peng W, Wei PP, Luo CL, Bei JX. A rare KLHDC4 variant Glu510Lys is associated with genetic susceptibility and promotes tumor metastasis in nasopharyngeal carcinoma. J Genet Genomics 2025; 52:559-569. [PMID: 39706520 DOI: 10.1016/j.jgg.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Various genetic association studies have identified numerous single nucleotide polymorphisms (SNPs) associated with nasopharyngeal carcinoma (NPC) risk. However, these studies have predominantly focused on common variants, leaving the contribution of rare variants to the "missing heritability" largely unexplored. Here, we integrate genotyping data from 3925 NPC cases and 15,048 healthy controls to identify a rare SNP, rs141121474, resulting in a Glu510Lys mutation in KLHDC4 gene linked to increased NPC risk. Subsequent analyses reveal that KLHDC4 is highly expressed in NPC and correlates with poorer prognosis. Functional characterizations demonstrate that KLHDC4 acts as an oncogene in NPC cells, enhancing their migratory and metastatic capabilities, with these effects being further augmented by the Glu510Lys mutation. Mechanistically, the Glu510Lys mutant exhibits increased interaction with Vimentin compared to the wild-type KLHDC4 (KLHDC4-WT), leading to elevated Vimentin protein stability and modulation of the epithelial-mesenchymal transition process, thereby promoting tumor metastasis. Moreover, Vimentin knockdown significantly mitigates the oncogenic effects induced by overexpression of both KLHDC4-WT and the Glu510Lys variant. Collectively, our findings highlight the critical role of the rare KLHDC4 variant rs141121474 in NPC progression and propose its potential as a diagnostic and therapeutic target for NPC patients.
Collapse
Affiliation(s)
- Xi-Xi Cheng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Guo-Wang Lin
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Ya-Qing Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yi-Qi Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shuai He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yang Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yan-Ni Zeng
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Yun-Miao Guo
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, Guangdong 524045, China
| | - Shu-Qiang Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Wan Peng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Pan-Pan Wei
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Chun-Ling Luo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China.
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Sun Yat-sen University Institute of Advanced Studies Hong Kong, Science Park, Hong Kong SAR, China; Department of Medical Oncology, National Cancer Centre Singapore, Singapore.
| |
Collapse
|
2
|
Zohud O, Lone IM, Nashef A, Iraqi FA. Towards system genetics analysis of head and neck squamous cell carcinoma using the mouse model, cellular platform, and clinical human data. Animal Model Exp Med 2023; 6:537-558. [PMID: 38129938 PMCID: PMC10757216 DOI: 10.1002/ame2.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is a leading global malignancy. Every year, More than 830 000 people are diagnosed with HNSCC globally, with more than 430 000 fatalities. HNSCC is a deadly diverse malignancy with many tumor locations and biological characteristics. It originates from the squamous epithelium of the oral cavity, oropharynx, nasopharynx, larynx, and hypopharynx. The most frequently impacted regions are the tongue and larynx. Previous investigations have demonstrated the critical role of host genetic susceptibility in the progression of HNSCC. Despite the advances in our knowledge, the improved survival rate of HNSCC patients over the last 40 years has been limited. Failure to identify the molecular origins of development of HNSCC and the genetic basis of the disease and its biological heterogeneity impedes the development of new therapeutic methods. These results indicate a need to identify more genetic factors underlying this complex disease, which can be better used in early detection and prevention strategies. The lack of reliable animal models to investigate the underlying molecular processes is one of the most significant barriers to understanding HNSCC tumors. In this report, we explore and discuss potential research prospects utilizing the Collaborative Cross mouse model and crossing it to mice carrying single or double knockout genes (e.g. Smad4 and P53 genes) to identify genetic factors affecting the development of this complex disease using genome-wide association studies, epigenetics, microRNA, long noncoding RNA, lncRNA, histone modifications, methylation, phosphorylation, and proteomics.
Collapse
Affiliation(s)
- Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Aysar Nashef
- Department of Oral and Maxillofacial SurgeryBaruch Padeh Medical CenterPoriyaIsrael
- Azrieli Faculty of MedicineBar‐Ilan UniversityRamat GanIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| |
Collapse
|
3
|
Wang TM, Xiao RW, He YQ, Zhang WL, Diao H, Tang M, Mai ZM, Xue WQ, Yang DW, Deng CM, Liao Y, Zhou T, Li DH, Wu YX, Chen XY, Zhang J, Li XZ, Zhang PF, Zheng XH, Zhang SD, Hu YZ, Cai Y, Zheng Y, Zhang Z, Zhou Y, Jin G, Bei J, Mai HQ, Sun Y, Ma J, Hu Z, Liu J, Lung ML, Adami HO, Ye W, Lam TH, Shen H, Jia WH. High-throughput identification of regulatory elements and functional assays to uncover susceptibility genes for nasopharyngeal carcinoma. Am J Hum Genet 2023:S0002-9297(23)00204-5. [PMID: 37352861 DOI: 10.1016/j.ajhg.2023.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
Large-scale genetic association studies have identified multiple susceptibility loci for nasopharyngeal carcinoma (NPC), but the underlying biological mechanisms remain to be explored. To gain insights into the genetic etiology of NPC, we conducted a follow-up study encompassing 6,907 cases and 10,472 controls and identified two additional NPC susceptibility loci, 9q22.33 (rs1867277; OR = 0.74, 95% CI = 0.68-0.81, p = 3.08 × 10-11) and 17q12 (rs226241; OR = 1.42, 95% CI = 1.26-1.60, p = 1.62 × 10-8). The two additional loci, together with two previously reported genome-wide significant loci, 5p15.33 and 9p21.3, were investigated by high-throughput sequencing for chromatin accessibility, histone modification, and promoter capture Hi-C (PCHi-C) profiling. Using luciferase reporter assays and CRISPR interference (CRISPRi) to validate the functional profiling, we identified PHF2 at locus 9q22.33 as a susceptibility gene. PHF2 encodes a histone demethylase and acts as a tumor suppressor. The risk alleles of the functional SNPs reduced the expression of the target gene PHF2 by inhibiting the enhancer activity of its long-range (4.3 Mb) cis-regulatory element, which promoted proliferation of NPC cells. In addition, we identified CDKN2B-AS1 as a susceptibility gene at locus 9p21.3, and the NPC risk allele of the functional SNP rs2069418 promoted the expression of CDKN2B-AS1 by increasing its enhancer activity. The overexpression of CDKN2B-AS1 facilitated proliferation of NPC cells. In summary, we identified functional SNPs and NPC susceptibility genes, which provides additional explanations for the genetic association signals and helps to uncover the underlying genetic etiology of NPC development.
Collapse
Affiliation(s)
- Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruo-Wen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Medical Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hua Diao
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Minzhong Tang
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China; Wuzhou Cancer Center, Wuzhou, Guangxi, China
| | - Zhi-Ming Mai
- School of Public Health, The University of Hong Kong, Hong Kong S.A.R., China; Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Da-Wei Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chang-Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan-Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xue-Yin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiangbo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yonglin Cai
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China
| | - Yuming Zheng
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China; Wuzhou Cancer Center, Wuzhou, Guangxi, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Guangfu Jin
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jinxin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zhibin Hu
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maria Li Lung
- Department of Clinical Oncology, School of Clinical Medicine, University of Hong Kong, Hong Kong S.A.R., China
| | - Hans-Olov Adami
- Clinical Effectiveness Group, Institute of Health and Society, University of Oslo, Oslo, Norway; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology and Health Statistics & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Tai-Hing Lam
- School of Public Health, The University of Hong Kong, Hong Kong S.A.R., China
| | - Hongbing Shen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
4
|
Wang TM, He YQ, Xue WQ, Zhang JB, Xia YF, Deng CM, Zhang WL, Xiao RW, Liao Y, Yang DW, Zhou T, Li DH, Luo LT, Tong XT, Wu YX, Chen XY, Li XZ, Zhang PF, Zheng XH, Zhang SD, Hu YZ, Wang F, Wu ZY, Zheng MQ, Huang JW, Jia YJ, Yuan LL, You R, Zhou GQ, Lu LX, Liu YY, Chen MY, Feng L, Dai W, Ren ZF, Mai HQ, Sun Y, Ma J, Zheng W, Lung ML, Jia WH. Whole-Exome Sequencing Study of Familial Nasopharyngeal Carcinoma and Its Implication for Identifying High-Risk Individuals. J Natl Cancer Inst 2022; 114:1689-1697. [PMID: 36066420 DOI: 10.1093/jnci/djac177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is closely associated with genetic factors and Epstein-Barr virus infection, showing strong familial aggregation. Individuals with a family history suffer elevated NPC risk, requiring effective genetic counseling for risk stratification and individualized prevention. METHODS We performed whole-exome sequencing on 502 familial NPC patients and 404 unaffected relatives and controls. We systematically evaluated the established cancer predisposition genes and investigated novel NPC susceptibility genes, making comparisons with 21 other familial cancers in the UK biobank (N = 5218). RESULTS Rare pathogenic mutations in the established cancer predisposition genes were observed in familial NPC patients, including ERCC2 (1.39%), TP63 (1.00%), MUTYH (0.80%), and BRCA1 (0.80%). Additionally, 6 novel susceptibility genes were identified. RAD54L, involved in the DNA repair pathway together with ERCC2, MUTYH, and BRCA1, showed the highest frequency (4.18%) in familial NPC. Enrichment analysis found mutations in TP63 were enriched in familial NPC, and RAD54L and EML2 were enriched in both NPC and other Epstein-Barr virus-associated cancers. Besides rare variants, common variants reported in the studies of sporadic NPC were also associated with familial NPC risk. Individuals in the top quantile of common variant-derived genetic risk score while carrying rare variants exhibited increased NPC risk (odds ratio = 13.47, 95% confidence interval = 6.33 to 28.68, P = 1.48 × 10-11); men in this risk group showed a cumulative lifetime risk of 24.19%, much higher than those in the bottom common variant-derived genetic risk score quantile and without rare variants (2.04%). CONCLUSIONS This study expands the catalog of NPC susceptibility genes and provides the potential for risk stratification of individuals with an NPC family history.
Collapse
Affiliation(s)
- Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yun-Fei Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chang-Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wen-Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ruo-Wen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Da-Wei Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Dan-Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lu-Ting Luo
- School of Public Health, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xia-Ting Tong
- School of Public Health, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xue-Yin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Zi-Yi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Mei-Qi Zheng
- School of Public Health, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jing-Wen Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yi-Jing Jia
- School of Public Health, Sun Yat-sen University, Guangzhou, P. R. China
| | - Lei-Lei Yuan
- School of Public Health, Sun Yat-sen University, Guangzhou, P. R. China
| | - Rui You
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Guan-Qun Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Li-Xia Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yu-Ying Liu
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ming-Yuan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lin Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wei Dai
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China
| | - Ze-Fang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
5
|
Chang ET, Ye W, Ernberg I, Zeng YX, Adami HO. A novel causal model for nasopharyngeal carcinoma. Cancer Causes Control 2022; 33:1013-1018. [PMID: 35441278 DOI: 10.1007/s10552-022-01582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
The development of nasopharyngeal carcinoma (NPC) and its unique geographic distribution have long been attributed to a combination of dietary intake of salt-preserved fish, inherited susceptibility, and early-life infection with the Epstein-Barr virus (EBV). New findings from our large, rigorously designed, population-based case-control study of NPC in southern China have enabled substantial revision of this causal model. Here, we briefly summarize these results and provide an updated model of the etiology of NPC. Our new research identifies two EBV genetic variants that may be causally involved in the majority of NPC in southern China, and suggests the rise of modern environmental co-factors accompanying cultural and economic transformation in NPC-endemic regions. These discoveries can be translated directly into clinical and public health advances, including improvement of indoor air quality and oral health, development of an EBV vaccine, enhanced screening strategies, and improved risk prediction. Greater understanding of the roles of environmental, genetic, and viral risk factors can reveal the extent to which these agents act independently or jointly on NPC development. The history of NPC research demonstrates how epidemiology can shed light on the interplay of genes, environment, and infections in carcinogenesis, and how this knowledge can be harnessed for cancer prevention and control.
Collapse
Affiliation(s)
- E T Chang
- Center for Health Sciences, Exponent Inc, 149 Commonwealth Dr, Menlo Park, CA, 94303, USA.
- Department of Cancer Prevention Center, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - W Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - I Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Y X Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Beijing Hospital, Beijing, China
| | - H O Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical Effectiveness Group, Institute of Health and Society, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Wu Y, Chen J, Tan F, Wang B, Xu W, Yuan C. ITGA9: Potential Biomarkers and Therapeutic Targets in Different Tumors. Curr Pharm Des 2022; 28:1412-1418. [DOI: 10.2174/1381612828666220501165644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Integrins are a class of a cell surface adhesion molecule which composed of α subunit (ITGA) and β subunit (ITGB). They belong to heterodimer transmembrane glycoproteins. Its main function in organisms is as the receptor of cell adhesion molecules (CAMs) and extracellular matrix (ECM). According to the current research integration analysis, integrin α9 (ITGA9) is one of the integrin subunits, and there are few studies on ITGA9 among integrins. ITGA9 can improve cell migration and regulate various cellular biological functions, such as tumor cell proliferation, adhesion, invasion, and angiogenesis. But its abnormal expression mechanism in cancer and its specific role in tumor growth and metastasis are still unknown to a great extent. This review reveals the role of ITGA9 in the complex pathogenesis of many tumors and cancers, providing a new direction for the treatment of tumors and cancers. Relevant studies were retrieved and collected through the PubMed system. After determining ITGA9 as the research object, we found the close relationship between ITGA9 and tumorigenesis through the analysis of the research articles on ITGA9 in the PubMed system in the last 15 years, and further determined the references mainly based on the influencing factors of the articles. Thus, the role of ITGA9 in tumor and cancer genesis, proliferation, and metastasis was reviewed and analyzed.
ITGA9 is an integrin subunit, which has been proved to be abnormally expressed in many tumors. After sorting and analyzing the research data, it was found that the abnormal expression of ITGA9 in a variety of tumors, including glioblastoma, rhabdomyosarcoma, melanoma, hepatocellular carcinoma, nasopharyngeal carcinoma, multiple myeloma, non-small cell lung cancer, and prostate cancer, was closely related to the proliferation, metastasis, adhesion, and angiogenesis of tumor cells. These results suggest that ITGA9 plays an important role in the occurrence and development of tumors. The integrin subunit ITGA9 may serve as a biomarker for the diagnosis of tumors and a potential therapeutic target for anti-tumor therapies.
Collapse
Affiliation(s)
- Yinxin Wu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University, Yichang 443002, China
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Jinlan Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University, Yichang 443002, China
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Fangshun Tan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University, Yichang 443002, China
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Bei Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University, Yichang 443002, China
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Wen Xu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University, Yichang 443002, China
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University, Yichang 443002, China
| |
Collapse
|
7
|
He YQ, Wang TM, Ji M, Mai ZM, Tang M, Wang R, Zhou Y, Zheng Y, Xiao R, Yang D, Wu Z, Deng C, Zhang J, Xue W, Dong S, Zhan J, Cai Y, Li F, Wu B, Liao Y, Zhou T, Zheng M, Jia Y, Li D, Cao L, Yuan L, Zhang W, Luo L, Tong X, Wu Y, Li X, Zhang P, Zheng X, Zhang S, Hu Y, Qin W, Deng B, Liang X, Fan P, Feng Y, Song J, Xie SH, Chang ET, Zhang Z, Huang G, Xu M, Feng L, Jin G, Bei J, Cao S, Liu Q, Kozlakidis Z, Mai H, Sun Y, Ma J, Hu Z, Liu J, Lung ML, Adami HO, Shen H, Ye W, Lam TH, Zeng YX, Jia WH. A polygenic risk score for nasopharyngeal carcinoma shows potential for risk stratification and personalized screening. Nat Commun 2022; 13:1966. [PMID: 35414057 PMCID: PMC9005522 DOI: 10.1038/s41467-022-29570-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/23/2022] [Indexed: 12/29/2022] Open
Abstract
Polygenic risk scores (PRS) have the potential to identify individuals at risk of diseases, optimizing treatment, and predicting survival outcomes. Here, we construct and validate a genome-wide association study (GWAS) derived PRS for nasopharyngeal carcinoma (NPC), using a multi-center study of six populations (6 059 NPC cases and 7 582 controls), and evaluate its utility in a nested case-control study. We show that the PRS enables effective identification of NPC high-risk individuals (AUC = 0.65) and improves the risk prediction with the PRS incremental deciles in each population (Ptrend ranging from 2.79 × 10-7 to 4.79 × 10-44). By incorporating the PRS into EBV-serology-based NPC screening, the test's positive predictive value (PPV) is increased from an average of 4.84% to 8.38% and 11.91% in the top 10% and 5% PRS, respectively. In summary, the GWAS-derived PRS, together with the EBV test, significantly improves NPC risk stratification and informs personalized screening.
Collapse
Affiliation(s)
- Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Zhi-Ming Mai
- School of Public Health, The University of Hong Kong, Hong Kong S.A.R., China
- Center for Nasopharyngeal Carcinoma Research (CNPCR), The University of Hong Kong, Hong Kong S.A.R., China
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Minzhong Tang
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, P.R. China
- Wuzhou Cancer Center, Wuzhou, Guangxi, P.R. China
| | - Ruozheng Wang
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Ürümqi, Xinjiang Uygur Autonomous Region, 830011, P.R. China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Yuming Zheng
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, P.R. China
- Wuzhou Cancer Center, Wuzhou, Guangxi, P.R. China
| | - Ruowen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Dawei Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ziyi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Changmi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jiangbo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wenqiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Siqi Dong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jiyun Zhan
- Public Health Service Center of Xiaolan Town, Zhongshan City, Guangdong, China
| | - Yonglin Cai
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, P.R. China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Biaohua Wu
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Meiqi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yijing Jia
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Danhua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lianjing Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Leilei Yuan
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wenli Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Luting Luo
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiating Tong
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yanxia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xizhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Peifen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiaohui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shaodan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yezhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Weiling Qin
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, P.R. China
| | - Bisen Deng
- Public Health Service Center of Xiaolan Town, Zhongshan City, Guangdong, China
| | - Xuejun Liang
- Public Health Service Center of Xiaolan Town, Zhongshan City, Guangdong, China
| | - Peiwen Fan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Departments of Institute for Cancer Research, The Third Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830011, P.R. China
| | - Yaning Feng
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Ürümqi, 830011, China
| | - Jia Song
- Departments of Institute for Cancer Research, The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Ürümqi, Xinjiang Uyghur Autonomous Region, 830010, P.R. China
| | - Shang-Hang Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ellen T Chang
- Center for Health Sciences, Exponent, Inc., Menlo Park, CA, USA
- Stanford Cancer Institute, Stanford, CA, USA
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guangwu Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lin Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Guangfu Jin
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jinxin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Sumei Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Qing Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Zisis Kozlakidis
- Division of Infection and Immunity, Faculty of Medical Sciences - University College London, London, UK
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Haiqiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zhibin Hu
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maria Li Lung
- Center for Nasopharyngeal Carcinoma Research (CNPCR), The University of Hong Kong, Hong Kong S.A.R., China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong S.A.R., China
| | - Hans-Olov Adami
- Clinical Effectiveness Group, Institute of Health and Society, University of Oslo, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hongbing Shen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Department of Epidemiology and Health Statistics & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
| | - Tai-Hing Lam
- School of Public Health, The University of Hong Kong, Hong Kong S.A.R., China.
- Center for Nasopharyngeal Carcinoma Research (CNPCR), The University of Hong Kong, Hong Kong S.A.R., China.
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China.
| |
Collapse
|
8
|
Alexandra G, Alexandru M, Stefan CF, Petruta-Maria D, Gabriel BM, Dragos-Eugen G, Teodor GM. Blood Group Type Association with Head and Neck Cancer. Hematol Rep 2022; 14:24-30. [PMID: 35323176 PMCID: PMC8954807 DOI: 10.3390/hematolrep14010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND We conducted an analysis to check whether the ABO blood group impacts the susceptibility or protection against different types of head and neck cancers. METHOD We analyzed the medical records of 61,899 cancer patients from "Prof. Dr. Alexandru Trestioreanu" Institute of Oncology from Bucharest, along with the corresponding blood group type. Data were scraped using Python. For analysis, we used Chi-square test. RESULTS The blood group count was A (245, 45.12%) followed by 0 (160, 24.66%), B (110, 20.26%), and AB (28, 5.16%). Hypopharyngeal cancer was associated with B group, oral cavity cancer was associated with a lower risk in patients with B group while AB patients had a higher risk for oral cavity cancer (χ2 = 36.136, df = 18, p = 0.007). CONCLUSION Blood group B is associated with an increased incidence for hypopharyngeal cancer, whereas, for the oral cavity, was associated lower incidence. Blood antigen A is associated with a higher risk of oral cavity cancer development, independent of B blood antigen.
Collapse
Affiliation(s)
- Gaube Alexandra
- National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania;
| | - Michire Alexandru
- Department 8 Radiology, Oncology, Hematology, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania; (G.D.-E.); (G.M.T.)
- Radiation Therapy Department, “Prof. Dr. Al. Trestioreanu” Oncology Institute, Sos. Fundeni No. 252, 022328 Bucharest, Romania; (C.F.S.); (D.P.-M.); (B.M.G.)
| | - Calangiu Filip Stefan
- Radiation Therapy Department, “Prof. Dr. Al. Trestioreanu” Oncology Institute, Sos. Fundeni No. 252, 022328 Bucharest, Romania; (C.F.S.); (D.P.-M.); (B.M.G.)
| | - Draghia Petruta-Maria
- Radiation Therapy Department, “Prof. Dr. Al. Trestioreanu” Oncology Institute, Sos. Fundeni No. 252, 022328 Bucharest, Romania; (C.F.S.); (D.P.-M.); (B.M.G.)
| | - Burlacu Mihnea Gabriel
- Radiation Therapy Department, “Prof. Dr. Al. Trestioreanu” Oncology Institute, Sos. Fundeni No. 252, 022328 Bucharest, Romania; (C.F.S.); (D.P.-M.); (B.M.G.)
| | - Georgescu Dragos-Eugen
- Department 8 Radiology, Oncology, Hematology, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania; (G.D.-E.); (G.M.T.)
- Clinical Hospital “Dr Ion Cantacuzino”, 030167 Bucharest, Romania
| | - Georgescu Mihai Teodor
- Department 8 Radiology, Oncology, Hematology, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania; (G.D.-E.); (G.M.T.)
- Radiation Therapy Department, “Prof. Dr. Al. Trestioreanu” Oncology Institute, Sos. Fundeni No. 252, 022328 Bucharest, Romania; (C.F.S.); (D.P.-M.); (B.M.G.)
| |
Collapse
|
9
|
Whole exome sequencing identifies the potential role of genes involved in p53 pathway in Nasopharyngeal Carcinoma from Northeast India. Gene 2021; 812:146099. [PMID: 34906645 DOI: 10.1016/j.gene.2021.146099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/06/2021] [Accepted: 11/16/2021] [Indexed: 11/21/2022]
Abstract
Nasopharyngeal Carcinoma (NPC) found to be dependent on geographical and racial variation and is more prevalent in Northeast (NE) India. WES-based study was conducted in three states (tribes); Nagaland (Naga), Mizoram (Mizo) and Manipur (Manipuri), which provided an overview of germline variants involved inthemajor signaling pathways. Validation and recurrence assessment of WES data confirmed the risk effect of STEAP3_rs138941861 and JAG1_rs2273059, and the protective role of PARP4_rs17080653 and TGFBR1_rs11568778 variants, where STEAP3_rs138941861conferring Arg290His substitution was the only exonic non-synonymous variant and to be located in proximity to the linking region between the transmembrane and oxidoreductasedomainsof STEAP3 protein, andaffectedits structural and functional dynamics by altering the Electrostatic Potential around this connecting region. Moreover, these significantly associated variants having deleterious effect were observed to have interactions in p53 signaling pathway which emphasizes the importance of this pathway in the causation of NPC.
Collapse
|
10
|
Chang ET, Ye W, Zeng YX, Adami HO. The Evolving Epidemiology of Nasopharyngeal Carcinoma. Cancer Epidemiol Biomarkers Prev 2021; 30:1035-1047. [PMID: 33849968 DOI: 10.1158/1055-9965.epi-20-1702] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/15/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The epidemiology of nasopharyngeal carcinoma (NPC) has long been a source of fascination due to the malignancy's striking geographic distribution, the involvement of the oncogenic Epstein-Barr virus (EBV), the unique association with intake of Chinese-style salt-preserved fish, and etiologic heterogeneity by histologic subtype. METHODS This review summarizes the current epidemiologic literature on NPC, highlighting recent results from our population-based case-control study in southern China. RESULTS Findings from our case-control study provide new insight into the epidemiology of NPC, including a diminished role of Chinese-style salt-preserved fish, a profound impact of EBV genetic sequence variation, modest positive associations with passive smoking and household air pollution, and possible effects of oral health and the oral microbiome. Recent findings from other studies include a protective association with infectious mononucleosis, suggesting a causal role of early EBV infection; familial risk conferred by shared genetic variation in the host antibody-mediated immune response to EBV infection; and an unclear association with occupational exposure to formaldehyde. CONCLUSIONS To shed further light on the interplay of environmental, genetic, and viral causes of NPC, large pooled studies must accumulate sufficient cases with detailed exposure data. IMPACT New epidemiologic findings have reshaped the causal model for NPC.
Collapse
Affiliation(s)
- Ellen T Chang
- Center for Health Sciences, Exponent, Inc., Menlo Park, California.
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Beijing Hospital, Beijing, P.R. China
| | - Hans-Olov Adami
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Clinical Effectiveness Group, Institute of Health and Society, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Xin Q, Xin G, Li L, Sun W, Jiang W, Wang J, Luan Y, Zhang Y, Cheng L, Duan S, Hong F, Ji Q, Ma W. Association study of hypertension susceptibility genes ITGA9, MOV10, and CACNB2 with preeclampsia in Chinese Han population. J Matern Fetal Neonatal Med 2021; 35:5227-5235. [PMID: 33491517 DOI: 10.1080/14767058.2021.1876022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Preeclampsia (PE) is a disorder that occurs during the pregnancy and could affect the maternal and perinatal mortality as well as morbidity. The aim of our study is to investigate the associations between the hypertension susceptibility genes ITGA9, MOV10 and CACNB2 with PE in Chinese Han population. METHODS A case-control study including 178 PE patients and 202 healthy controls was conducted to assess the associations between three loci (ITGA9 rs155524, MOV10 rs2932538 and CACNB2 rs4373814) and PE. The TaqMan probe assay was applied for genotyping in our study. Quantitative real-time PCR was performed to detect the mRNA expression levels of ITGA9, MOV10 and CACNB2. ELISA was carried out to detect the concentration of serum sFlt-1 or PLGF. RESULTS Our study detected no significant differences in allelic frequencies of three SNPs between PE patients and healthy controls. In the genetic model, the results showed that the patients with ITGA9 rs155524 GA or AA genotypes had a higher risk of PE development compared to those with GG genotype in codominant model. And PE patients had a higher frequency of GA + AA genotypes based on the dominant model. Subgroup analysis showed ITGA9 rs155524 was associated with early-onset PE but not with late-onset PE. No association was observed between MOV10 and CACNB2 with PE in any genetic model and subgroup analysis. Quantitative real-time PCR results showed that ITGA9 mRNA expression level was apparently increased in the placental tissues of PE patients. In addition, ITGA9 expression levels of GA + AA subjects were apparently higher than that in the genotype GG of placental tissues. sFlt-1/PLGF ratio was higher in GA + AA subjects than that in GG subjects. Regression analysis revealed that ratio of sFlt-1/PLGF was positively correlated with ITGA9 mRNA expression level. CONCLUSION This study has identified ITGA9 is a promising candidate susceptibility gene for early-onset PE. Our findings demonstrated that the high expression of ITGA9 might be associated with an increased risk of PE.
Collapse
Affiliation(s)
- Qian Xin
- Central Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Gang Xin
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Li Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Wenjuan Sun
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Wen Jiang
- Central Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Jue Wang
- Central Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Yun Luan
- Central Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Ying Zhang
- Department of Respiratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Ling Cheng
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Shuhong Duan
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Fanzhen Hong
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Qinghong Ji
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Weihong Ma
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| |
Collapse
|
12
|
Ning L, Ko JMY, Yu VZ, Ng HY, Chan CKC, Tao L, Lam SY, Leong MML, Ngan RKC, Kwong DLW, Lee AWM, Ng WT, Cheng A, Tung S, Lee VHF, Lam KO, Kwan CK, Li WS, Yau S, Bei JX, Lung ML. Nasopharyngeal carcinoma MHC region deep sequencing identifies HLA and novel non-HLA TRIM31 and TRIM39 loci. Commun Biol 2020; 3:759. [PMID: 33311639 PMCID: PMC7733486 DOI: 10.1038/s42003-020-01487-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022] Open
Abstract
Despite pronounced associations of major histocompatibility complex (MHC) regions with nasopharyngeal carcinoma (NPC), causal variants underlying NPC pathogenesis remain elusive. Our large-scale comprehensive MHC region deep sequencing study of 5689 Hong Kong Chinese identifies eight independent NPC-associated signals and provides mechanistic insight for disrupted transcription factor binding, altering target gene transcription. Two novel protective variants, rs2517664 (Trs2517664 = 4.6%, P = 6.38 × 10−21) and rs117495548 (Grs117495548 = 3.0%, P = 4.53 × 10−13), map near TRIM31 and TRIM39/TRIM39-RPP21; multiple independent protective signals map near HLA-B including a previously unreported variant, rs2523589 (P = 1.77 × 10−36). The rare HLA-B*07:05 allele (OR < 0.015, P = 5.83 × 10−21) is absent in NPC, but present in controls. The most prevalent haplotype lacks seven independent protective alleles (OR = 1.56) and the one with additional Asian-specific susceptibility rs9391681 allele (OR = 2.66) significantly increased NPC risk. Importantly, this study provides new evidence implicating two non-human leukocyte antigen (HLA) genes, E3 ubiquitin ligases, TRIM31 and TRIM39, impacting innate immune responses, with NPC risk reduction, independent of classical HLA class I/II alleles. Here the authors report a major histocompatibility complex (MHC) association analysis for nasopharyngeal carcinoma in Chinese individuals from Hong Kong, finding 8 independent associated loci associated with lower risk for developing nasopharyngeal carcinoma. Two non-human leukocyte antigen (HLA) genes are E3 ubiquitin ligases, TRIM31 and TRIM39, having a role in the innate immune response and implicating the importance of host Epstein-Barr virus interactions in this cancer.
Collapse
Affiliation(s)
- Lvwen Ning
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China
| | - Josephine Mun-Yee Ko
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China.
| | - Valen Zhuoyou Yu
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China
| | - Hoi Yan Ng
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China
| | - Candy King-Chi Chan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China
| | - Lihua Tao
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China
| | - Shiu-Yeung Lam
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China
| | - Merrin Man-Long Leong
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China
| | - Roger Kai-Cheong Ngan
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China.,Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong (Special Administrative Region), People's Republic of China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China.,Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China
| | - Anne Wing-Mui Lee
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China.,Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China
| | - Wai-Tong Ng
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China.,Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong (Special Administrative Region), People's Republic of China
| | - Ashley Cheng
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China.,Department of Oncology, Princess Margaret Hospital, Hong Kong (Special Administrative Region), People's Republic of China
| | - Stewart Tung
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China.,Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong (Special Administrative Region), People's Republic of China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China.,Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China
| | - Ka-On Lam
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China.,Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China
| | - Chung-Kong Kwan
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong (Special Administrative Region), People's Republic of China
| | - Wing-Sum Li
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong (Special Administrative Region), People's Republic of China
| | - Stephen Yau
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong (Special Administrative Region), People's Republic of China
| | - Jin-Xin Bei
- Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, People's Republic of China
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China. .,Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong (Special Administrative Region), People's Republic of China.
| |
Collapse
|
13
|
Liu L, Wang H, Yan C, Tao S. An Integrated Analysis of mRNAs and miRNAs Microarray Profiles to Screen miRNA Signatures Involved in Nasopharyngeal Carcinoma. Technol Cancer Res Treat 2020; 19:1533033820956998. [PMID: 32985354 PMCID: PMC7534087 DOI: 10.1177/1533033820956998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE We aim to identify several microRNAs (miRNAs/miRs)-messenger RNAs (mRNAs) biomarkers correlated to nasopharyngeal carcinoma (NPC) based on an integrated analysis of miRNA and mRNAs microarray expression profiles. METHODS The available mRNA and miRNA microarray datasets were retrieved from Gene Expression Omnibus (GEO) database according to pre-determined screening criteria. Differentially expressed miRNA and mRNAs (DEmiRNAs and DEmRNAs) were extracted between NPC and noncancerous nasopharyngeal tissues. The target genes of DEmiRNAs were predicted with miRTarBase followed by the construction of DEmiRNAs-target DEmRNAs network, and functional analyses were performed. The DEmiRNAs expressions were validated and the performance of these DEmiRNAs was assessed by the area under the curve (AUC) values. Finally, the correlations between DEmiRNAs and specific clinical factors were analyzed. RESULTS There were 1140 interaction pairs (including let-7d/f-MYC/HMGA2 and miR-452-ITGA9) in DEmiRNAs-target DEmRNAs network. The GO annotation analysis showed that several genes such as MYC, HMGA2 and ITGA9 primarily participated in cellular process. KEGG analysis showed that these targets were associated with cell cycle and cancer-related pathways. Down-regulated let-7(-d and -f) and up-regulated miR-452 were verified in datasets. The AUC values of these 3 DEmiRNAs (let-7d, let-7-f and miR-452) was 0.803, 0.835 and 0.735, respectively. Besides, miR-452 was significantly related to survival rate of NPC patients. CONCLUSION The findings implied let-7d/f-MYC/HMGA2 and miR-452-ITGA9 might be promising targets for the detection and treatment of NPC.
Collapse
Affiliation(s)
- Lei Liu
- Department of Otorhinolaryngology & Head and Neck Surgery, The Third Central Hospital of Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Hailing Wang
- Department of Diagnostic and Therapeutic Ultrasonography, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chaohui Yan
- Department of Otorhinolaryngology & Head and Neck Surgery, The Third Central Hospital of Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Shudong Tao
- Department of Otorhinolaryngology & Head and Neck Surgery, The Third Central Hospital of Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
14
|
Profiling the circulating mRNA transcriptome in human liver disease. Oncotarget 2020; 11:2216-2232. [PMID: 32577166 PMCID: PMC7289528 DOI: 10.18632/oncotarget.27617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/16/2020] [Indexed: 01/05/2023] Open
Abstract
The human circulation contains cell-free DNA and non-coding microRNA (miRNA). Less is known about the presence of messenger RNA (mRNA). This report profiles the human circulating mRNA transcriptome in people with liver cirrhosis (LC) and hepatocellular carcinoma (HCC) to determine whether mRNA analytes can be used as biomarkers of liver disease. Using RNAseq and RT-qPCR, we investigate circulating mRNA in plasma from HCC and LC patients and demonstrate detection of transcripts representing more than 19,000 different protein coding genes. Remarkably, the circulating mRNA expression levels were similar from person to person over the 21 individuals whose samples were analyzed by RNAseq. Liver derived circulating transcripts such as albumin (ALB), apolipoprotein (APO) A1, A2 & H, serpin A1 & E1, ferritin light chain (FTL) and fibrinogen like 1 (FGL1) were significantly upregulated in HCC patient samples. Higher levels of some of these liver-specific transcripts in the plasma of HCC patients were confirmed by RT-qPCR in another cohort of 20 individuals. Several less abundant circulating transcripts associated with cancer were detected in most HCC samples, but not in healthy subjects. Liver specificity of circulating transcripts was confirmed by investigating their expression in HCC tumor and liver cancer cell lines. Liver specific mRNA sequences in the plasma were predominantly present outside circulating extracellular vesicles. Conclusions: The circulating “mRNA” transcriptome is remarkably consistent in diversity and expression from person to person. Detection of transcripts corresponding to disease selective polypeptides suggests the possibility that circulating mRNA can work as a biomarker analyte for cancer detection.
Collapse
|
15
|
Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet 2019; 394:64-80. [PMID: 31178151 DOI: 10.1016/s0140-6736(19)30956-0] [Citation(s) in RCA: 1924] [Impact Index Per Article: 320.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 02/08/2023]
Abstract
Nasopharyngeal carcinoma is characterised by distinct geographical distribution and is particularly prevalent in east and southeast Asia. Epidemiological trends in the past decade have shown that its incidence has declined gradually but progressively, and mortality has been reduced substantially. These findings probably reflect lifestyle and environmental changes, enhanced understanding of the pathogenesis and risk factors, population screening, advancements in imaging techniques, and individualised comprehensive chemoradiotherapy strategies. In particular, plasma Epstein-Barr virus (EBV) DNA has been used for population screening, prognostication, predicting treatment response for therapeutic adaptation, and disease surveillance. Moreover, the widespread application of intensity-modulated radiotherapy and optimisation of chemotherapy strategies (induction, concurrent, adjuvant) have contributed to improved survival with reduced toxicities. Among the existing developments in novel therapeutics, immune checkpoint therapies have achieved breakthroughs for treating recurrent or metastatic disease and represent a promising future direction in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yu-Pei Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Anthony T C Chan
- Partner State Key Laboratory of Oncology in South China, Sir Y K Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Pierre Blanchard
- Department of Radiation Oncology, Gustave-Roussy; Centre for Research in Epidemiology and Population Health, INSERM U1018, Paris-Saclay University, Villejuif, France
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China.
| |
Collapse
|
16
|
Nasopharyngeal cancer in Saudi Arabia: Epidemiology and possible risk factors. JOURNAL OF ONCOLOGICAL SCIENCES 2019. [DOI: 10.1016/j.jons.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Zuo XY, Feng QS, Sun J, Wei PP, Chin YM, Guo YM, Xia YF, Li B, Xia XJ, Jia WH, Liu JJ, Khoo ASB, Mushiroda T, Ng CC, Su WH, Zeng YX, Bei JX. X-chromosome association study reveals genetic susceptibility loci of nasopharyngeal carcinoma. Biol Sex Differ 2019; 10:13. [PMID: 30909962 PMCID: PMC6434801 DOI: 10.1186/s13293-019-0227-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/27/2019] [Indexed: 02/08/2023] Open
Abstract
Background The male predominance in the incidence of nasopharyngeal carcinoma (NPC) suggests the contribution of the X chromosome to the susceptibility of NPC. However, no X-linked susceptibility loci have been examined by genome-wide association studies (GWASs) for NPC by far. Methods To understand the contribution of the X chromosome in NPC susceptibility, we conducted an X chromosome-wide association analysis on 1615 NPC patients and 1025 healthy controls of Guangdong Chinese, followed by two validation analyses in Taiwan Chinese (n = 562) and Malaysian Chinese (n = 716). Results Firstly, the proportion of variance of X-linked loci over phenotypic variance was estimated in the discovery samples, which revealed that the phenotypic variance explained by X chromosome polymorphisms was estimated to be 12.63% (non-dosage compensation model) in males, as compared with 0.0001% in females. This suggested that the contribution of X chromosome to the genetic variance of NPC should not be neglected. Secondly, association analysis revealed that rs5927056 in DMD gene achieved X chromosome-wide association significance in the discovery sample (OR = 0.81, 95% CI 0.73–0.89, P = 1.49 × 10−5). Combined analysis revealed rs5927056 for DMD gene with suggestive significance (P = 9.44 × 10−5). Moreover, the female-specific association of rs5933886 in ARHGAP6 gene (OR = 0.62, 95%CI: 0.47–0.81, P = 4.37 × 10−4) was successfully replicated in Taiwan Chinese (P = 1.64 × 10−2). rs5933886 also showed nominally significant gender × SNP interaction in both Guangdong (P = 6.25 × 10−4) and Taiwan datasets (P = 2.99 × 10−2). Conclusion Our finding reveals new susceptibility loci at the X chromosome conferring risk of NPC and supports the value of including the X chromosome in large-scale association studies. Electronic supplementary material The online version of this article (10.1186/s13293-019-0227-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Yu Zuo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Qi-Sheng Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jian Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Pan-Pan Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yoon-Ming Chin
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yun-Miao Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yun-Fei Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Xiao-Jun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jian-Jun Liu
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, 138672, Singapore
| | - Alan Soo-Beng Khoo
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, 50603, Kuala Lumpur, Malaysia
| | - Taisei Mushiroda
- Laboratory for International Alliance on Genomic Research, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Ching-Ching Ng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wen-Hui Su
- Department of Biomedical Sciences, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan. .,Department of Otolaryngology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 333, Taiwan.
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China. .,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
18
|
Liu J, Liu T, Liang L, He J, Zhang M, Ge Y, Liao S, Zhou Y, Zhang K. Clinical relationships between the rs2212020 and rs189897 polymorphisms of the ITGA9 gene and epithelial ovarian cancer. J Genet 2019. [DOI: 10.1007/s12041-019-1078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Guo Z, Wang Y, Zhao Y, Jin Y, An L, Xu H, Liu Z, Chen X, Zhou H, Wang H, Zhang W. A Functional 5'-UTR Polymorphism of MYC Contributes to Nasopharyngeal Carcinoma Susceptibility and Chemoradiotherapy Induced Toxicities. J Cancer 2019; 10:147-155. [PMID: 30662535 PMCID: PMC6329860 DOI: 10.7150/jca.28534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/24/2018] [Indexed: 02/05/2023] Open
Abstract
MYC is a transcription factor acting as a pivotal regulator of genes involved in cell cycle progression, apoptosis, differentiation and metabolism. In this study, we evaluated the association of MYC polymorphisms with nasopharyngeal carcinoma (NPC) risk and chemoradiotherapy induced toxicities among Chinese population. By using bioinformatic tools, five potential functional single nucleotide polymorphisms of MYC were genotyped in a case-control study with 684 NPC patients and 823 healthy controls. We found two SNPs rs4645948 (C>T) and rs2071346 (G>T) were significantly associated with increased risk of developing NPC (TT+CT vs CC, OR=1.557, P=3.34×10-4; TT+GT vs GG, OR=1.361, P=0.007, respectively). In addition, rs4645948 (C>T) was conferred with increased risk of anemia (CT vs CC, OR=2.152, P=0.001) and severe leukopenia (CT vs CC, OR=1.893, P=0.034) for NPC patients receiving chemoradiotherapy. We also found rs2071346 (G>T) variant genotype carriers were subjected to higher risk of anemia (GT vs GG, OR=1.665, P=0.022) and thrombocytopenia (GT vs GG, OR=1.685, P=0.035). Our results demonstrated that the relative expression of MYC was dramatically higher in NPC tissues compared to rhinitis tissues. Over-expression of MYC was positively correlated with advanced T stage, N stage, and late clinical stage. Notably, the expression of MYC in rs4645948 CT and TT genotypes carriers were significantly higher than CC genotype carriers. Luciferase reporter assay indicated that the T allele of rs4645948 led to significantly higher transcription activity of MYC compared to the C allele. These findings suggested that individual carrying the rs4645948 T allele may be at greater risk for NPC due to an increase of MYC transcriptional activity and an augment of MYC expression.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Youhong Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Yu Zhao
- Key Laboratory of Translational Radiation Oncology, Hunan Province; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, P.R. China
| | - Yi Jin
- Key Laboratory of Translational Radiation Oncology, Hunan Province; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, P.R. China
| | - Liang An
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Heng Xu
- Department of Laboratory Medicine, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610000, P.R. China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Hui Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Province; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| |
Collapse
|
20
|
Lee HM, Okuda KS, González FE, Patel V. Current Perspectives on Nasopharyngeal Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:11-34. [PMID: 31576537 DOI: 10.1007/978-3-030-22254-3_2] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Of the ~129,079 new cases of nasopharyngeal carcinoma (NPC) and 72,987 associated deaths estimated for 2018, the majority will be geographically localized to South East Asia, and likely to show an upward trend annually. It is thought that disparities in dietary habits, lifestyle, and exposures to harmful environmental factors are likely the root cause of NPC incidence rates to differ geographically. Genetic differences due to ethnicity and the Epstein Barr virus (EBV) are likely contributing factors. Pertinently, NPC is associated with poor prognosis which is largely attributed to lack of awareness of the salient symptoms of NPC. These include nose hemorrhage and headaches and coupled with detection and the limited therapeutic options. Treatment options include radiotherapy or chemotherapy or combination of both. Surgical excision is generally the last option considered for advanced and metastatic disease, given the close proximity of nasopharynx to brain stem cell area, major blood vessels, and nerves. To improve outcome of NPC patients, novel cellular and in vivo systems are needed to allow an understanding of the underling molecular events causal for NPC pathogenesis and for identifying novel therapeutic targets and effective therapies. While challenges and gaps in current NPC research are noted, some advances in targeted therapies and immunotherapies targeting EBV NPCs are discussed in this chapter, which may offer improvements in outcome of NPC patients.
Collapse
Affiliation(s)
- Hui Mei Lee
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Kazuhida Shaun Okuda
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Fermín E González
- Laboratory of Experimental Immunology and Cancer, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Vyomesh Patel
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
21
|
Vukovic V, Stojanovic J, Vecchioni A, Pastorino R, Boccia S. Systematic Review and Meta-analysis of SNPs from Genome-Wide Association Studies of Head and Neck Cancer. Otolaryngol Head Neck Surg 2018; 159:615-624. [PMID: 30126334 DOI: 10.1177/0194599818792262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective Various genome-wide association studies (GWASs) identified new head and neck cancer (HNC) susceptibility loci, although the evidence has not been systematically summarized. We performed a systematic review and meta-analyses of the GWASs to identify the most commonly reported genetic loci associated with a risk of HNC. Data Sources We searched the PubMed, ISI Web of Science, SCOPUS, and GWAS databases to retrieve eligible studies, in English or Italian, published until June 1, 2017. Review Methods Only GWASs reporting data on the association between single-nucleotide polymorphisms (SNPs) and HNC were included. The quality of included studies was evaluated using the Q-Genie tool. Random-effect meta-analyses were performed considering only SNPs with at least 1 significant result from the included articles, and pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Results Seven studies of case-control design were included in the review. Five studies on nasopharyngeal cancer (NPC) in Chinese, reporting on 27 different SNPs, were included in meta-analyses. Results show that 6 SNPs ( rs2076483, rs2975042, rs9258122, rs29232, and rs9510787) had an increased pooled estimates for A risk alleles (OR [95% CI]: 1.55 [1.36-1.77], 1.90 [1.69-2.14], 1.47 [1.31-1.65], 1.52 [1.32-1.76], and 1.22 [1.13-1.31], respectively) while G risk allele of rs3129055 reported an OR of 1.49 (95% CI, 1.33-1.67). Conclusion Our systematic review identified 5 SNPs located on chromosome 6 ( rs2076483, rs2975042, rs3129055, rs9258122, and rs29232) and 1 ( rs9510787) on chromosome 13 as significantly associated with an increased risk of NPC in Chinese.
Collapse
Affiliation(s)
- Vladimir Vukovic
- 1 Section of Hygiene, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Jovana Stojanovic
- 1 Section of Hygiene, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessia Vecchioni
- 1 Section of Hygiene, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberta Pastorino
- 1 Section of Hygiene, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefania Boccia
- 1 Section of Hygiene, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,2 Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
22
|
The Microenvironment in Epstein-Barr Virus-Associated Malignancies. Pathogens 2018; 7:pathogens7020040. [PMID: 29652813 PMCID: PMC6027429 DOI: 10.3390/pathogens7020040] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 12/27/2022] Open
Abstract
The Epstein–Barr virus (EBV) can cause a wide variety of cancers upon infection of different cell types and induces a highly variable composition of the tumor microenvironment (TME). This TME consists of both innate and adaptive immune cells and is not merely an aspecific reaction to the tumor cells. In fact, latent EBV-infected tumor cells utilize several specific mechanisms to form and shape the TME to their own benefit. These mechanisms have been studied largely in the context of EBV+ Hodgkin lymphoma, undifferentiated nasopharyngeal carcinoma, and EBV+ gastric cancer. This review describes the composition, immune escape mechanisms, and tumor cell promoting properties of the TME in these three malignancies. Mechanisms of susceptibility which regularly involve genes related to immune system function are also discussed, as only a small proportion of EBV-infected individuals develops an EBV-associated malignancy.
Collapse
|
23
|
Song Y, Li X, Zeng Z, Li Q, Gong Z, Liao Q, Li X, Chen P, Xiang B, Zhang W, Xiong F, Zhou Y, Zhou M, Ma J, Li Y, Chen X, Li G, Xiong W. Epstein-Barr virus encoded miR-BART11 promotes inflammation-induced carcinogenesis by targeting FOXP1. Oncotarget 2017; 7:36783-36799. [PMID: 27167345 PMCID: PMC5095039 DOI: 10.18632/oncotarget.9170] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/16/2016] [Indexed: 12/23/2022] Open
Abstract
Epstein-Barr virus (EBV) infection and chronic inflammation are closely associated with the development and progression of nasopharyngeal carcinoma (NPC) and gastric cancer (GC), and the infiltration of inflammatory cells, including tumor-associated macrophages (TAMs), is often observed in these cancers. EBV encodes 44 mature micro RNAs (miRNAs), but the roles of only a few EBV-encoded miRNA targets are known in cancer development, and here, our aim was to elucidate the effects of EBV-miR-BART11 on FOXP1 expression, and potential involvement in inflammation-induced carcinogenesis. We constructed an EBV miRNA-dependent gene regulatory network and predicted that EBV-miR-BART11 is able to target forkhead box P1 (FOXP1), a key molecule involved in monocyte to macrophage differentiation. Here, using luciferase reporter assay, we confirmed that EBV-miR-BART11 directly targets the 3′-untranslated region of FOXP1 gene, inhibits FOXP1 induction of TAM differentiation, and the secretion of inflammatory cytokines into the tumor microenvironment, inducing the proliferation of NPC and GC cells. FOXP1 overexpression hindered monocyte differentiation and inhibited NPC and GC cells growth. Our results demonstrated that EBV-miR-BART11 plays a crucial role in the promotion of inflammation-induced NPC and GC carcinogenesis by inhibiting FOXP1 tumor-suppressive effects. We showed a novel EBV-dependent mechanism that may induce the carcinogenesis of NPC and GC, which may help define new potential biomarkers and targets for NPC and GC diagnosis and treatment.
Collapse
Affiliation(s)
- Yali Song
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiao Li
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanhong Zhou
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jian Ma
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xiang Chen
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Cui Q, Feng FT, Xu M, Liu WS, Yao YY, Xie SH, Li XZ, Ye ZL, Feng QS, Chen LZ, Bei JX, Feng L, Huang QH, Jia WH, Cao SM, Chang ET, Ye W, Adami HO, Zeng YX. Nasopharyngeal carcinoma risk prediction via salivary detection of host and Epstein-Barr virus genetic variants. Oncotarget 2017; 8:95066-95074. [PMID: 29221111 PMCID: PMC5707005 DOI: 10.18632/oncotarget.11144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/30/2016] [Indexed: 12/30/2022] Open
Abstract
Genetic susceptibility and Epstein-Barr virus (EBV) infection are important etiological factors in nasopharyngeal carcinoma (NPC). In this study, in southern China, where NPC is endemic, a single nucleotide polymorphism (SNP) in the EBV-encoded RPMS1 gene (locus 155391: G > A [G155391A]) and seven host SNPs (rs1412829, rs28421666, rs2860580, rs2894207, rs31489, rs6774494, and rs9510787) were confirmed to be significantly associated with NPC risk in 50 NPC cases versus 54 hospital-based controls with throat washing specimens and 1925 NPC cases versus 1947 hospital-based controls with buffy coat samples, respectively. We established a strategy to detect the NPC-associated EBV and host SNPs using saliva samples in a single test that is convenient, noninvasive, and cost-effective and displays good compliance. The potential utility of this strategy was tested by applying a risk prediction model integrating these EBV and host genetic variants to a population-based case-control study comprising 1026 incident NPC cases and 1148 controls. Receiver operating characteristic (ROC) curve analysis revealed an area under the curve of the NPC risk prediction model of 0.74 (95% CI: 0.71-0.76). Net reclassification improvement (NRI) analysis showed that inclusion of the EBV SNP significantly improved the discrimination ability of the model (NRI = 0.30, P < 0.001), suggesting the promising value of EBV characteristics for identifying high-risk NPC individuals in endemic areas. Taken together, we developed a promising NPC risk prediction model via noninvasive saliva sampling. This approach might serve as a convenient and effective method for screening the population with high-risk of NPC.
Collapse
Affiliation(s)
- Qian Cui
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Fu-Tuo Feng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Miao Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Wen-Sheng Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - You-Yuan Yao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Shang-Hang Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Xi-Zhao Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Zu-Lu Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Qi-Sheng Feng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Li-Zhen Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Jin-Xin Bei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Lin Feng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Qi-Hong Huang
- Sihui Cancer Institute, Sihui, Guangdong, P. R. China
| | - Wei-Hua Jia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Su-Mei Cao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Ellen T. Chang
- Division of Epidemiology, Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, USA
| | - Weimin Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Olov Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Yi-Xin Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| |
Collapse
|
25
|
Park SL, Cheng I, Haiman CA. Genome-Wide Association Studies of Cancer in Diverse Populations. Cancer Epidemiol Biomarkers Prev 2017. [PMID: 28637795 DOI: 10.1158/1055-9965.epi-17-0169] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies (GWAS) of cancer have identified more than 700 risk loci, of which approximately 80% were first discovered in European ancestry populations, approximately 15% in East Asians, 3% in multiethnic scans, and less than 1% in African and Latin American populations. These percentages closely mirror the distribution of samples included in the discovery phase of cancer GWAS to date (84% European, 11% East Asian, 4% African, and 1% Latin American ancestry). GWAS in non-European ancestry populations have provided insight into ancestry-specific variation in cancer and have pointed to regions of susceptibility that are of particular importance in certain populations. Uncovering and characterizing cancer risk loci in diverse populations is critical for understanding underlying biological mechanisms and developing future genetic risk prediction models in non-European ancestry populations. New GWAS and continued collaborations will be required to eliminate population inequalities in the number of studies, sample sizes, and variant content on GWAS arrays, and to better align genetic research in cancer to the global distribution of race/ethnicity Cancer Epidemiol Biomarkers Prev; 27(4); 405-17. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Sungshim L Park
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Iona Cheng
- Cancer Prevention Institute of California, Fremont, California.,Stanford Cancer Institute, Palo Alto, California
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
26
|
Dai J, Shen W, Wen W, Chang J, Wang T, Chen H, Jin G, Ma H, Wu C, Li L, Song F, Zeng Y, Jiang Y, Chen J, Wang C, Zhu M, Zhou W, Du J, Xiang Y, Shu XO, Hu Z, Zhou W, Chen K, Xu J, Jia W, Lin D, Zheng W, Shen H. Estimation of heritability for nine common cancers using data from genome-wide association studies in Chinese population. Int J Cancer 2017; 140:329-336. [PMID: 27668986 PMCID: PMC5536238 DOI: 10.1002/ijc.30447] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 09/07/2016] [Indexed: 12/31/2022]
Abstract
The familial aggregation indicated the inheritance of cancer risk. Recent genome-wide association studies (GWASs) have identified a number of common single-nucleotide polymorphisms (SNPs). Following heritability analyses have shown that SNPs could explain a moderate amount of variance for different cancer phenotypes among Caucasians. However, little information was available in Chinese population. We performed a genome-wide complex trait analysis for common cancers at nine anatomical sites in Chinese population (14,629 cancer cases vs. 17,554 controls) and estimated the heritability of these cancers based on the common SNPs. We found that common SNPs explained certain amount of heritability with significance for all nine cancer sites: gastric cancer (20.26%), esophageal squamous cell carcinoma (19.86%), colorectal cancer (16.30%), lung cancer (LC) (15.17%), and epithelial ovarian cancer (13.31%), and a similar heritability around 10% for hepatitis B virus-related hepatocellular carcinoma, prostate cancer, breast cancer and nasopharyngeal carcinoma. We found that nearly or less than 25% change was shown when removing the regions expanding 250 kb or 500 kb upward and downward of the GWAS-reported SNPs. We also found strong linear correlations between variance partitioned by each chromosome and chromosomal length only for LC (R2 = 0.641, p = 0.001) and esophageal squamous cell cancer (R2 = 0.633, p = 0.002), which implied us the complex heterogeneity of cancers. These results indicate polygenic genetic architecture of the nine common cancers in Chinese population. Further efforts should be made to discover the hidden heritability of different cancer types among Chinese.
Collapse
Affiliation(s)
- Juncheng Dai
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wanqing Wen
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University of Medical Center, Nashville, Tennessee, USA
| | - Jiang Chang
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Institute of Occupational Medicine and Ministry of Education Key Lab for Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Tongmin Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Haitao Chen
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Chen Wu
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lian Li
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - YiXin Zeng
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yue Jiang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiaping Chen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wen Zhou
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiangbo Du
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Xiao-Ou Shu
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University of Medical Center, Nashville, Tennessee, USA
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Weiping Zhou
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jianfeng Xu
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weihua Jia
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University of Medical Center, Nashville, Tennessee, USA
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Cui Q, Feng QS, Mo HY, Sun J, Xia YF, Zhang H, Foo JN, Guo YM, Chen LZ, Li M, Liu WS, Xu M, Zhou G, He F, Yu X, Jia WH, Liu J, Zeng YX, Bei JX. An extended genome-wide association study identifies novel susceptibility loci for nasopharyngeal carcinoma. Hum Mol Genet 2016; 25:3626-3634. [DOI: 10.1093/hmg/ddw200] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/13/2022] Open
|
28
|
Chin YM, Tan LP, Abdul Aziz N, Mushiroda T, Kubo M, Mohd Kornain NK, Tan GW, Khoo ASB, Krishnan G, Pua KC, Yap YY, Teo SH, Lim PVH, Nakamura Y, Lum CL, Ng CC. Integrated pathway analysis of nasopharyngeal carcinoma implicates the axonemal dynein complex in the Malaysian cohort. Int J Cancer 2016; 139:1731-9. [PMID: 27236004 DOI: 10.1002/ijc.30207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/20/2016] [Accepted: 05/06/2016] [Indexed: 01/22/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial squamous cell carcinoma on the mucosal lining of the nasopharynx. The etiology of NPC remains elusive despite many reported studies. Most studies employ a single platform approach, neglecting the cumulative influence of both the genome and transcriptome toward NPC development. We aim to employ an integrated pathway approach to identify dysregulated pathways linked to NPC. Our approach combines imputation NPC GWAS data from a Malaysian cohort as well as published expression data GSE12452 from both NPC and non-NPC nasopharynx tissues. Pathway association for GWAS data was performed using MAGENTA while for expression data, GSA-SNP was used with gene p values derived from differential expression values from GEO2R. Our study identified NPC association in the gene ontology (GO) axonemal dynein complex pathway (pGWAS-GSEA = 1.98 × 10(-2) ; pExpr-GSEA = 1.27 × 10(-24) ; pBonf-Combined = 4.15 × 10(-21) ). This association was replicated in a separate cohort using gene expression data from NPC and non-NPC nasopharynx tissues (pAmpliSeq-GSEA = 6.56 × 10(-4) ). Loss of function in the axonemal dynein complex causes impaired cilia function, leading to poor mucociliary clearance and subsequently upper or lower respiratory tract infection, the former of which includes the nasopharynx. Our approach illustrates the potential use of integrated pathway analysis in detecting gene sets involved in the development of NPC in the Malaysian cohort.
Collapse
Affiliation(s)
- Yoon-Ming Chin
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Lu Ping Tan
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Norazlin Abdul Aziz
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Taisei Mushiroda
- Laboratory for Pharmacogenetics, RIKEN Center for Integrative Medical Sciences, Tsurumi-Ku, Yokohama, Kanagawa, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Tsurumi-Ku, Yokohama, Kanagawa, Japan
| | | | - Geok Wee Tan
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Alan Soo-Beng Khoo
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Gopala Krishnan
- Department of Otorhinolaryngology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kin-Choo Pua
- Department of Otorhinolaryngology, Pulau Pinang General Hospital, Georgetown, Pulau Pinang, Malaysia
| | - Yoke-Yeow Yap
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Otorhinolaryngology, Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | | | | | - Chee Lun Lum
- Department of Otorhinolaryngology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | | | - Ching-Ching Ng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Nor Hashim NA, Ramzi NH, Velapasamy S, Alex L, Chahil JK, Lye SH, Munretnam K, Haron MR, Ler LW. Identification of genetic and non-genetic risk factors for nasopharyngeal carcinoma in a Southeast Asian population. Asian Pac J Cancer Prev 2016; 13:6005-10. [PMID: 23464394 DOI: 10.7314/apjcp.2012.13.12.6005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is endemic in Southern Chinese and Southeast Asian populations. Geographical and ethnic clustering of the cancer is due to genetic, environmental, and lifestyle risk factors. This case-control study aimed to identify or confirm both genetic and non-genetic risk factors for NPC in one of the endemic countries, Malaysia. MATERIALS AND METHOD A panel of 768 single-nucleotide polymorphisms (SNPs) previously associated with various cancers and known non-genetic risk factors for NPC were selected and analyzed for their associations with NPC in a case-control study. RESULTS Statistical analysis identified 40 SNPs associated with NPC risk in our population, including 5 documented previously by genome-wide association studies (GWAS) and other case-control studies; the associations of the remaining 35 SNPs with NPC were novel. In addition, consistent with previous studies, exposure to occupational hazards, overconsumption of salt-cured foods, red meat, as well as low intake of fruits and vegetables were also associated with NPC risk. CONCLUSIONS In short, this study confirmed and/or identified genetic, environmental and dietary risk factors associated with NPC susceptibility in a Southeast Asian population.
Collapse
Affiliation(s)
- Nikman Adli Nor Hashim
- Molecular Research and Services Laboratory, INFOVALLEY® Life Sciences Sdn. Mines Resort City, Selangor, Malaysia.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bei JX, Su WH, Ng CC, Yu K, Chin YM, Lou PJ, Hsu WL, McKay JD, Chen CJ, Chang YS, Chen LZ, Chen MY, Cui Q, Feng FT, Feng QS, Guo YM, Jia WH, Khoo ASB, Liu WS, Mo HY, Pua KC, Teo SH, Tse KP, Xia YF, Zhang H, Zhou GQ, Liu JJ, Zeng YX, Hildesheim A. A GWAS Meta-analysis and Replication Study Identifies a Novel Locus within CLPTM1L/TERT Associated with Nasopharyngeal Carcinoma in Individuals of Chinese Ancestry. Cancer Epidemiol Biomarkers Prev 2016; 25:188-192. [PMID: 26545403 PMCID: PMC4713263 DOI: 10.1158/1055-9965.epi-15-0144] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/02/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Genetic loci within the major histocompatibility complex (MHC) have been associated with nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-associated cancer, in several GWAS. Results outside this region have varied. METHODS We conducted a meta-analysis of four NPC GWAS among Chinese individuals (2,152 cases; 3,740 controls). Forty-three noteworthy findings outside the MHC region were identified and targeted for replication in a pooled analysis of four independent case-control studies across three regions in Asia (4,716 cases; 5,379 controls). A meta-analysis that combined results from the initial GWA and replication studies was performed. RESULTS In the combined meta-analysis, rs31489, located within the CLPTM1L/TERT region on chromosome 5p15.33, was strongly associated with NPC (OR = 0.81; P value 6.3 × 10(-13)). Our results also provide support for associations reported from published NPC GWAS-rs6774494 (P = 1.5 × 10(-12); located in the MECOM gene region), rs9510787 (P = 5.0 × 10(-10); located in the TNFRSF19 gene region), and rs1412829/rs4977756/rs1063192 (P = 2.8 × 10(-8), P = 7.0 × 10(-7), and P = 8.4 × 10(-7), respectively; located in the CDKN2A/B gene region). CONCLUSIONS We have identified a novel association between genetic variation in the CLPTM1L/TERT region and NPC. Supporting our finding, rs31489 and other SNPs in this region have been reported to be associated with multiple cancer sites, candidate-based studies have reported associations between polymorphisms in this region and NPC, the TERT gene has been shown to be important for telomere maintenance and has been reported to be overexpressed in NPC, and an EBV protein expressed in NPC (LMP1) has been reported to modulate TERT expression/telomerase activity. IMPACT Our finding suggests that factors involved in telomere length maintenance are involved in NPC pathogenesis.
Collapse
Affiliation(s)
- Jin-Xin Bei
- Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wen-Hui Su
- Department of Biomedical Sciences, Graduate Institute of Biomedical Sciences, College of Medicine and Chang Gung Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Ching Ng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kai Yu
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yoon-Ming Chin
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Pei-Jen Lou
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wan-Lun Hsu
- Graduate Institute of Epidemiology, College of Public Health, National Taiwan University and Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - James D. McKay
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon, France
| | - Chien-Jen Chen
- Graduate Institute of Epidemiology, College of Public Health, National Taiwan University and Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Sun Chang
- Chang Gung Molecular Medicine Research Center and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Li-Zhen Chen
- Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ming-Yuan Chen
- Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Qian Cui
- Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Fu-Tuo Feng
- Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Qi-Shen Feng
- Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yun-Miao Guo
- Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wei-Hua Jia
- Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Alan Soo-Beng Khoo
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Wen-Sheng Liu
- Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Hao-Yuan Mo
- Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Kin-Choo Pua
- Department of Otorhinolaryngology, Hospital Pulau Pinang, Penang, Malaysia
| | - Soo-Hwang Teo
- Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Ka-Po Tse
- Chang Gung Molecular Medicine Research Center and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Fei Xia
- Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Hongxin Zhang
- Beijing Proteome Research Center, Department of Genomics & Proteomics, Beijing Institute of Radiation Medicine
| | - Gang-Qiao Zhou
- Beijing Proteome Research Center, Department of Genomics & Proteomics, Beijing Institute of Radiation Medicine
| | | | - Yi-Xin Zeng
- Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Peking Union Medical College, Beijing, China
| | - Allan Hildesheim
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
31
|
Nawaz I, Hu LF, Du ZM, Moumad K, Ignatyev I, Pavlova TV, Kashuba V, Almgren M, Zabarovsky ER, Ernberg I. Integrin α9 gene promoter is hypermethylated and downregulated in nasopharyngeal carcinoma. Oncotarget 2015; 6:31493-507. [PMID: 26372814 PMCID: PMC4741620 DOI: 10.18632/oncotarget.5154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023] Open
Abstract
Epigenetic silencing of tumor suppressor genes (TSGs) by promoter methylation can be an early event in the multi-step process of carcinogenesis. Human chromosome 3 contains clusters of TSGs involved in many cancer types including nasopharyngeal carcinoma (NPC), the most common cancer in Southern China. Among ten candidate TSGs identified in chromosome 3 using NotI microarray, ITGA9 and WNT7A could be validated. 5'-aza-2' deoxycytidine treatment restored the expression of ITGA9 and WNT7A in two NPC cell lines. Immunostaining showed strong expression of these genes in the membrane and cytoplasm of adjacent control nasopharyngeal epithelium cells, while they were weakly expressed in NPC tumor cells. The ITGA9 promoter showed marked differentially methylation between tumor and control tissue, whereas no differentially methylation could be detected for the WNT7A promoter. The expression level of ITGA9 in NPC tumors was downregulated 4.9-fold, compared to the expression in control. ITGA9 methylation was detected by methylation specific PCR (MSP) in 56% of EBV positive NPC-cases with 100% specificity. Taken together, this suggests that ITGA9 might be a TSG in NPC that is involved in tumor cell biology. The possibility of using ITGA9 methylation as a marker for early detection of NPC should further be explored.
Collapse
Affiliation(s)
- Imran Nawaz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, Faculty of Life Sciences, University of Balochistan, Quetta, Pakistan
| | - Li-Fu Hu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Zi-Ming Du
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- State Key Laboratory of Oncology in South China, and Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - Khalid Moumad
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Oncovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ilya Ignatyev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tatiana V. Pavlova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir Kashuba
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Almgren
- Department Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Stockholm, Sweden
| | - Eugene R. Zabarovsky
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical & Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Lung ML, Cheung AKL, Ko JMY, Lung HL, Cheng Y, Dai W. The interplay of host genetic factors and Epstein-Barr virus in the development of nasopharyngeal carcinoma. CHINESE JOURNAL OF CANCER 2015; 33:556-68. [PMID: 25367335 PMCID: PMC4244319 DOI: 10.5732/cjc.014.10170] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The interplay between host cell genetics and Epstein-Barr virus (EBV) infection contributes to the development of nasopharyngeal carcinoma (NPC). Understanding the host genetic and epigenetic alterations and the influence of EBV on cell signaling and host gene regulation will aid in understanding the molecular pathogenesis of NPC and provide useful biomarkers and targets for diagnosis and therapy. In this review, we provide an update of the oncogenes and tumor suppressor genes associated with NPC, as well as genes associated with NPC risk including those involved in carcinogen detoxification and DNA repair. We also describe the importance of host genetics that govern the human leukocyte antigen (HLA) complex and immune responses, and we describe the impact of EBV infection on host cell signaling changes and epigenetic regulation of gene expression. High-power genomic sequencing approaches are needed to elucidate the genetic basis for inherited susceptibility to NPC and to identify the genes and pathways driving its molecular pathogenesis.
Collapse
Affiliation(s)
- Maria Li Lung
- Department of Clinical Oncology and Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, P. R. China.
| | | | | | | | | | | |
Collapse
|
33
|
Lye MS, Visuvanathan S, Chong PP, Yap YY, Lim CC, Ban EZ. Homozygous Wildtype of XPD K751Q Polymorphism Is Associated with Increased Risk of Nasopharyngeal Carcinoma in Malaysian Population. PLoS One 2015; 10:e0130530. [PMID: 26086338 PMCID: PMC4472930 DOI: 10.1371/journal.pone.0130530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/21/2015] [Indexed: 01/26/2023] Open
Abstract
The xeroderma pigmentosum group D (XPD) gene encodes a DNA helicase, an important component in transcription factor IIH (TFIIH) complex. XPD helicase plays a pivotal role in unwinding DNA at the damaged region during nucleotide excision repair (NER) mechanism. Dysfunctional XPD helicase protein from polymorphic diversity may contribute to increased risk of developing cancers. This study aims to determine the association between XPD K751Q polymorphism (rs13181) and risk of nasopharyngeal carcinoma (NPC) in the Malaysian population. In this hospital-based matched case-control study, 356 controls were matched by age, gender and ethnicity to 356 cases. RFLP-PCR was used to genotype the XPD K751Q polymorphism. A significant association was observed between XPD K751Q polymorphism and the risk of NPC using conditional logistic regression. Subjects with homozygous Lys/Lys (wildtype) genotype have 1.58 times higher odds of developing NPC compared to subjects with recessive combination of heterozygous Lys/Gln and homozygous Gln/Gln genotypes (OR = 1.58, 95% CI = 1.05–2.38 p = 0.028) adjusted for cigarette smoking, alcohol and salted fish consumption. Our data suggests that Lys/Lys (wildtype) of XPD K751Q contributes to increased risk of NPC in the Malaysian population.
Collapse
Affiliation(s)
- Munn-Sann Lye
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- * E-mail:
| | - Shaneeta Visuvanathan
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Pei-Pei Chong
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yoke-Yeow Yap
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chin-Chye Lim
- National Cancer Institute, Ministry of Health Malaysia, Putrajaya, Malaysia
| | - Eng-Zhuan Ban
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
34
|
Sasaki MM, Skol AD, Bao R, Rhodes LV, Chambers R, Vokes EE, Cohen EEW, Onel K. Integrated genomic analysis suggests MLL3 is a novel candidate susceptibility gene for familial nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 2015; 24:1222-8. [PMID: 26014803 DOI: 10.1158/1055-9965.epi-15-0275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/17/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Little is known about genetic factors associated with nasopharyngeal carcinoma (NPC). To gain insight into NPC etiology, we performed whole exome sequencing on germline and tumor DNA from three closely related family members with NPC. METHODS The family was ascertained through the Pediatric Familial Cancer Clinic at The University of Chicago (Chicago, IL). The diagnosis of NPC was confirmed pathologically for each individual. For each sample sequenced, 97.3% of the exome was covered at 5×, with an average depth of 44×. Candidate germline and somatic variants associated with NPC were identified and prioritized using a custom pipeline. RESULTS We discovered 72 rare deleterious germline variants in 56 genes shared by all three individuals. Of these, only three are in previously identified NPC-associated genes, all of which are located within MLL3, a gene known to be somatically altered in NPC. One variant introduces an early stop codon in MLL3, which predicts complete loss-of-function. Tumor DNA analysis revealed somatic mutations and Epstein-Barr virus (EBV) integration events; none, however, were shared among all three individuals. CONCLUSIONS These data suggest that inherited mutations in MLL3 may have predisposed these three individuals from a single family to develop NPC, and may cooperate with individually acquired somatic mutations or EBV integration events in NPC etiology. IMPACT Our finding is the first instance of a plausible candidate high penetrance inherited mutation predisposing to NPC.
Collapse
Affiliation(s)
- Mark M Sasaki
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Andrew D Skol
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Riyue Bao
- Center for Research Informatics, The University of Chicago, Chicago, Illinois
| | - Lindsay V Rhodes
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Rachelle Chambers
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Everett E Vokes
- Department of Medicine, The University of Chicago, Chicago, Illinois. The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois
| | - Ezra E W Cohen
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Kenan Onel
- Department of Pediatrics, The University of Chicago, Chicago, Illinois. The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
35
|
Qiu F, Yang L, Zhang L, Yang X, Yang R, Fang W, Wu D, Chen J, Xie C, Huang D, Zhou Y, Lu J. Polymorphism in mature microRNA-608 sequence is associated with an increased risk of nasopharyngeal carcinoma. Gene 2015; 565:180-6. [PMID: 25861865 DOI: 10.1016/j.gene.2015.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/03/2015] [Accepted: 04/05/2015] [Indexed: 12/18/2022]
Abstract
Accumulative evidences indicated that microRNAs (miRNAs) can function as tumor suppressors and oncogenes, in which genetic variations are implicated in various cancer susceptibilities. However, it remains unclear whether single nucleotide polymorphisms (SNPs) in mature miRNA sequence alter nasopharyngeal carcinoma (NPC) susceptibility. In this study, we analyzed associations between eight SNPs in miRNA mature sequences (i.e., rs3746444T>C in hsa-mir-499, rs4919510C>G in hsa-mir-608, rs13299349G>A in hsa-mir-3152, rs12220909G>C in hsa-mir-4293, rs2168518G>A in hsa-mir-4513, rs8078913T>C in hsa-mir-4520a, rs11237828T>C in hsa-mir-5579, and rs9295535T>C in hsa-mir-5689) and NPC susceptibility in southern China with 906 NPC cases and 1072 cancer-free controls, and validated the significant findings in eastern China with 684 cases and 907 healthy controls. Functional assays were further performed to identify the biological effects of these polymorphisms. We found that rs4919510C>G polymorphism showed a consistent association with NPC risk in southern China (GC+GG versus CC genotype, odds ratio [OR]=1.36, 95% confidence interval [CI]=1.10-1.70) and eastern China (GC+GG versus CC: OR=1.37, 95% CI=1.08-1.74). After the two populations were merged, the ORs and 95% CI were 1.38 and 1.18 to 1.62, respectively. Moreover, the rs4919510C>G adverse genotypes significantly interacted with Epstein-Barr virus (EBV) infection on increasing NPC risk (P=0.001). The functional assay further showed that the CNE-2 cell lines that transfected with miR-608-rs4919510G allele expression vector exerted more colony number formations than cell lines that transfected with miR-608-rs4919510C allele expression vector (P=0.001). These data suggested that rs4919510C>G of miR-608 may be a susceptible biomarker of NPC in China.
Collapse
Affiliation(s)
- Fuman Qiu
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, PR China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, PR China
| | - Lisha Zhang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, PR China
| | - Xiaorong Yang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, PR China
| | - Rongrong Yang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, PR China
| | - Wenxiang Fang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, PR China
| | - Di Wu
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, PR China
| | - Jiansong Chen
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, PR China
| | - Chenli Xie
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, PR China
| | - Dongsheng Huang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, PR China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, PR China.
| |
Collapse
|
36
|
Visuvanathan S, Chong PP, Yap YY, Lim CC, Tan MK, Lye MS. Distribution and haplotype associations of XPD Lys751Gln, XRCC1 Arg280His and XRCC1 Arg399Gln polymorphisms with nasopharyngeal carcinoma in the Malaysian population. Asian Pac J Cancer Prev 2015; 15:2747-51. [PMID: 24761895 DOI: 10.7314/apjcp.2014.15.6.2747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA repair pathways play a crucial role in maintaining the human genome. Previous studies associated DNA repair gene polymorphisms (XPD Lys751Gln, XRCC1 Arg280His and XRCC1 Arg399Gln) with nasopharyngeal carcinoma. These non-synonymous polymorphisms may alter DNA repair capacity and thus increase or decrease susceptibility. The present study aimed to determine the genotype distribution of XPD codon 751, XRCC1 codon 280 and codon 399 polymorphisms and haplotype associations among NPC cases and controls in the Malaysian population. MATERIALS AND METHODS We selected 157 NPC cases and 136 controls from two hospitals in Kuala Lumpur, Malaysia for this study. The polymorphisms studied were genotyped by PCR-RFLP assay and allele and genotype frequencies, haplotype and linkage disequilibrium were determined using SNPstat software. RESULTS For the XPD Lys751Gln polymorphism, the frequency of the Lys allele was higher in cases than in controls (94.5% versus 85.0%). For the XRCC1 Arg280His polymorphism, the frequency of Arg allele was 90.0% and 89.0% in cases and controls, respectively and for XRCC1 Arg399Gln the frequency of the Arg allele was 72.0% and 72.8% in cases and controls respectively. All three polymorphisms were in linkage disequilibrium. The odds ratio from haplotype analysis for these three polymorphisms and their association with NPC was 1.93 (95%CI: 0.90-4.16) for haplotype CGC vs AGC allele combinations. The global haplotype association with NPC gave a p-value of 0.054. CONCLUSIONS Our study provides an estimate of allele and genotype frequencies of XRCC1Arg280His, XRCC1 Arg399Gln and XPD Lys751Gln polymorphisms in the Malaysian population and showed no association with nasopharyngeal cancer.
Collapse
Affiliation(s)
- Shaneeta Visuvanathan
- Department of Community Health Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia E-mail :
| | | | | | | | | | | |
Collapse
|
37
|
Lim CR, Lee MML, Chao S, Zaatar A, Liew CC. Whole Blood Transcriptome and Other Biomarkers in Nasopharyngeal Cancer. BIOMARKERS IN DISEASE: METHODS, DISCOVERIES AND APPLICATIONS 2015:849-873. [DOI: 10.1007/978-94-007-7681-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
Park SL, Caberto CP, Lin Y, Goodloe RJ, Dumitrescu L, Love SA, Matise TC, Hindorff LA, Fowke JH, Schumacher FR, Beebe-Dimmer J, Chen C, Hou L, Thomas F, Deelman E, Han Y, Peters U, North KE, Heiss G, Crawford DC, Haiman CA, Wilkens LR, Bush WS, Kooperberg C, Cheng I, Le Marchand L. Association of cancer susceptibility variants with risk of multiple primary cancers: The population architecture using genomics and epidemiology study. Cancer Epidemiol Biomarkers Prev 2014; 23:2568-78. [PMID: 25139936 PMCID: PMC4221293 DOI: 10.1158/1055-9965.epi-14-0129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Multiple primary cancers account for approximately 16% of all incident cancers in the United States. Although genome-wide association studies (GWAS) have identified many common genetic variants associated with various cancer sites, no study has examined the association of these genetic variants with risk of multiple primary cancers (MPC). METHODS As part of the National Human Genome Research Institute (NHGRI) Population Architecture using Genomics and Epidemiology (PAGE) study, we used data from the Multiethnic Cohort (MEC) and Women's Health Initiative (WHI). Incident MPC (IMPC) cases (n = 1,385) were defined as participants diagnosed with more than one incident cancer after cohort entry. Participants diagnosed with only one incident cancer after cohort entry with follow-up equal to or longer than IMPC cases served as controls (single-index cancer controls; n = 9,626). Fixed-effects meta-analyses of unconditional logistic regression analyses were used to evaluate the associations between 188 cancer risk variants and IMPC risk. To account for multiple comparisons, we used the false-positive report probability (FPRP) to determine statistical significance. RESULTS A nicotine dependence-associated and lung cancer variant, CHRNA3 rs578776 [OR, 1.16; 95% confidence interval (CI), 1.05-1.26; P = 0.004], and two breast cancer variants, EMBP1 rs11249433 and TOX3 rs3803662 (OR, 1.16; 95% CI, 1.04-1.28; P = 0.005 and OR, 1.13; 95% CI, 1.03-1.23; P = 0.006), were significantly associated with risk of IMPC. The associations for rs578776 and rs11249433 remained (P < 0.05) after removing subjects who had lung or breast cancers, respectively (P ≤ 0.046). These associations did not show significant heterogeneity by smoking status (Pheterogeneity ≥ 0.53). CONCLUSIONS Our study has identified rs578776 and rs11249433 as risk variants for IMPC. IMPACT These findings may help to identify genetic regions associated with IMPC risk.
Collapse
Affiliation(s)
- S Lani Park
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| | | | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Robert J Goodloe
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee
| | - Logan Dumitrescu
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee. Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Shelly-Ann Love
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Tara C Matise
- Department of Statistics and Biostatistics, Rutgers University, Piscataway, New Jersey
| | - Lucia A Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jay H Fowke
- Vanderbilt Epidemiology Center, Vanderbilt University, Nashville, Tennessee
| | - Fredrick R Schumacher
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jennifer Beebe-Dimmer
- School of Medicine, Wayne State University, Detroit, Michigan. Karmanos Cancer Institute, Detroit, Michigan
| | - Chu Chen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Lifang Hou
- Department of Preventative Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Fridtjof Thomas
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ewa Deelman
- USC Information Sciences Institute, University of Southern California, Marina del Rey, California
| | - Ying Han
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina. Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, California
| | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Dana C Crawford
- Department of Epidemiology and Biostatistics, Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio
| | - Christopher A Haiman
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - William S Bush
- Department of Epidemiology and Biostatistics, Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Iona Cheng
- Cancer Prevention Institute of California, Fremont, California
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| |
Collapse
|
39
|
Evaluation and integration of genetic signature for prediction risk of nasopharyngeal carcinoma in Southern China. BIOMED RESEARCH INTERNATIONAL 2014; 2014:434072. [PMID: 25180181 PMCID: PMC4142549 DOI: 10.1155/2014/434072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/30/2014] [Indexed: 12/14/2022]
Abstract
Genetic factors, as well as environmental factors, play a role in development of nasopharyngeal carcinoma (NPC). A number of single nucleotide polymorphisms (SNPs) have been reported to be associated with NPC. To confirm these genetic associations with NPC, two independent case-control studies from Southern China comprising 1166 NPC cases and 2340 controls were conducted. Seven SNPs in ITGA9 at 3p21.3 and 9 SNPs within the 6p21.3 HLA region were genotyped. To explore the potential clinical application of these genetic markers in NPC, we further evaluate the predictive/diagnostic role of significant SNPs by calculating the area under the curve (AUC). Results. The reported associations between ITGA9 variants and NPC were not replicated. Multiple loci of GABBR1, HLA-F, HLA-A, and HCG9 were statistically significant in both cohorts (Pcombined range from 5.96 × 10−17 to 0.02). We show for the first time that these factors influence NPC development independent of environmental risk factors. This study also indicated that the SNP alone cannot serve as a predictive/diagnostic marker for NPC. Integrating the most significant SNP with IgA antibodies status to EBV, which is presently used as screening/diagnostic marker for NPC in Chinese populations, did not improve the AUC estimate for diagnosis of NPC.
Collapse
|
40
|
Chin YM, Mushiroda T, Takahashi A, Kubo M, Krishnan G, Yap LF, Teo SH, Lim PVH, Yap YY, Pua KC, Kamatani N, Nakamura Y, Sam CK, Khoo ASB, Ng CC. HLA-A SNPs and amino acid variants are associated with nasopharyngeal carcinoma in Malaysian Chinese. Int J Cancer 2014; 136:678-87. [PMID: 24947555 DOI: 10.1002/ijc.29035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 05/15/2014] [Indexed: 11/10/2022]
Abstract
Nasopharyngeal carcinoma (NPC) arises from the mucosal epithelium of the nasopharynx and is constantly associated with Epstein-Barr virus type 1 (EBV-1) infection. We carried out a genome-wide association study (GWAS) of 575,247 autosomal SNPs in 184 NPC patients and 236 healthy controls of Malaysian Chinese ethnicity. Potential association signals were replicated in a separate cohort of 260 NPC patients and 245 healthy controls. We confirmed the association of HLA-A to NPC with the strongest signal detected in rs3869062 (p = 1.73 × 10(-9)). HLA-A fine mapping revealed associations in the amino acid variants as well as its corresponding SNPs in the antigen peptide binding groove (p(HLA-A-aa-site-99) = 3.79 × 10(-8), p(rs1136697) = 3.79 × 10(-8)) and T-cell receptor binding site (p(HLA-A-aa-site-145) = 1.41 × 10(-4), p(rs1059520) = 1.41 × 10(-4)) of the HLA-A. We also detected strong association signals in the 5'-UTR region with predicted active promoter states (p(rs41545520) = 7.91 × 10(-8)). SNP rs41545520 is a potential binding site for repressor ATF3, with increased binding affinity for rs41545520-G correlated with reduced HLA-A expression. Multivariate logistic regression diminished the effects of HLA-A amino acid variants and SNPs, indicating a correlation with the effects of HLA-A*11:01, and to a lesser extent HLA-A*02:07. We report the strong genetic influence of HLA-A on NPC susceptibility in the Malaysian Chinese.
Collapse
Affiliation(s)
- Yoon-Ming Chin
- Laboratory for International Alliance, RIKEN Center for Genomic Medicine, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Genome-wide association studies of cancer predisposition. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
42
|
Su WH, Hildesheim A, Chang YS. Human leukocyte antigens and epstein-barr virus-associated nasopharyngeal carcinoma: old associations offer new clues into the role of immunity in infection-associated cancers. Front Oncol 2013; 3:299. [PMID: 24367763 PMCID: PMC3856645 DOI: 10.3389/fonc.2013.00299] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/26/2013] [Indexed: 12/18/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein–Barr virus (EBV) associated tumor. In addition to EBV, host genetic factors are believed to be important determinants of NPC risk. Of all genes studies to date, human leukocyte antigen (HLA) genes have shown the most consistent evidence for association with NPC, both from candidate-gene studies and genome-wide association studies (GWAS). In this report we summarize results from recent studies that evaluated the association between HLA and NPC, and discuss whether findings reflect direct causal associations for HLA genes and/or indirect associations that mark causal associations with other genes in the gene-dense major histocompatibility (MHC) region where HLA resides. We also compare GWAS results across cancer sites for which strong hits in the MHC region were observed to generate new hypotheses regarding the role of HLA genes in the development of EBV-associated cancers such as NPC. Of note, we report that MHC associations for EBV-associated cancers (NPC, EBV+ Hodgkin lymphoma) are driven by HLA class I genes. In contrast, MHC associations for other viral-associated cancers (cervical cancer, hepatocellular carcinoma) or other hematopoetic cancers (EBV− Hodgkin lymphoma, leukemia, non-Hodgkin lymphomas) are driven by HLA class II genes, and those for other solid tumors with less clear links to infections (lung, testicular, prostate cancers) are driven by non-HLA genes in the MHC region. Future studies should aim to better understand these patterns.
Collapse
Affiliation(s)
- Wen-Hui Su
- Department of Biomedical Sciences, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan ; Chang Gung Molecular Medicine Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Allan Hildesheim
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute , Bethesda, MD , USA
| | - Yu-Sun Chang
- Chang Gung Molecular Medicine Research Center, Chang Gung University , Taoyuan , Taiwan
| |
Collapse
|
43
|
Sheng L, Sun X, Zhang L, Su D. ABO blood group and nasopharyngeal carcinoma risk in a population of Southeast China. Int J Cancer 2013; 133:893-7. [PMID: 23389798 DOI: 10.1002/ijc.28087] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/21/2013] [Indexed: 12/29/2022]
Abstract
Previous studies found that the ABO blood type alters the individual susceptibility of some malignancies. However, whether such an association exists between ABO blood type and nasopharyngeal carcinoma (NPC) remains unknown. A case-control study was conducted, with 1,538 patients who had NPC and 1,260 cancer-free controls. The association between ABO blood type and NPC incidence was evaluated using unconditional logistic regression analysis. Compared with subjects with blood type O, a relatively higher risk was observed among cases with blood types A or AB, with ORs (95% confidence interval) of 1.287 (1.072 - 1.545), p = 0.007 and 1.390 (1.007 - 1.919), p = 0.045, respectively, after adjusting for gender, age, smoking status and family history of cancer. The rate of distant metastasis was significantly higher among male patients with blood type A than in patients with non-A blood types (6.8 vs. 3.5%, p = 0.027). Our results suggest that blood types A or AB is associated with an increased risk of NPC. Further studies are needed to confirm this association and to explore the mechanisms involved.
Collapse
Affiliation(s)
- Liming Sheng
- Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | | | | | | |
Collapse
|
44
|
Ruan HL, Qin HD, Shugart YY, Bei JX, Luo FT, Zeng YX, Jia WH. Developing genetic epidemiological models to predict risk for nasopharyngeal carcinoma in high-risk population of China. PLoS One 2013; 8:e56128. [PMID: 23457511 PMCID: PMC3574061 DOI: 10.1371/journal.pone.0056128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/04/2013] [Indexed: 01/12/2023] Open
Abstract
To date, the only established model for assessing risk for nasopharyngeal carcinoma (NPC) relies on the sero-status of the Epstein-Barr virus (EBV). By contrast, the risk assessment models proposed here include environmental risk factors, family history of NPC, and information on genetic variants. The models were developed using epidemiological and genetic data from a large case-control study, which included 1,387 subjects with NPC and 1,459 controls of Cantonese origin. The predictive accuracy of the models were then assessed by calculating the area under the receiver-operating characteristic curves (AUC). To compare the discriminatory improvement of models with and without genetic information, we estimated the net reclassification improvement (NRI) and integrated discrimination index (IDI). Well-established environmental risk factors for NPC include consumption of salted fish and preserved vegetables and cigarette smoking (in pack years). The environmental model alone shows modest discriminatory ability (AUC = 0.68; 95% CI: 0.66, 0.70), which is only slightly increased by the addition of data on family history of NPC (AUC = 0.70; 95% CI: 0.68, 0.72). With the addition of data on genetic variants, however, our model’s discriminatory ability rises to 0.74 (95% CI: 0.72, 0.76). The improvements in NRI and IDI also suggest the potential usefulness of considering genetic variants when screening for NPC in endemic areas. If these findings are confirmed in larger cohort and population-based case-control studies, use of the new models to analyse data from NPC-endemic areas could well lead to earlier detection of NPC.
Collapse
Affiliation(s)
- Hong-Lian Ruan
- State Key Laboratory of Oncology in Southern China, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hai-De Qin
- Unit of Statistical Genomics, Division of Intramural Research Program, National Institute of Mental Health (NIMH)/National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Yin Yao Shugart
- Unit of Statistical Genomics, Division of Intramural Research Program, National Institute of Mental Health (NIMH)/National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in Southern China, Guangzhou, China
| | - Fu-Tian Luo
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in Southern China, Guangzhou, China
- * E-mail: (Y-XZ); (W-HJ)
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in Southern China, Guangzhou, China
- * E-mail: (Y-XZ); (W-HJ)
| |
Collapse
|
45
|
Liu J, Lewinger JP, Gilliland FD, Gauderman WJ, Conti DV. Confounding and heterogeneity in genetic association studies with admixed populations. Am J Epidemiol 2013; 177:351-60. [PMID: 23334005 DOI: 10.1093/aje/kws234] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Association studies among admixed populations pose many challenges including confounding of genetic effects due to population substructure and heterogeneity due to different patterns of linkage disequilibrium (LD). We use simulations to investigate controlling for confounding by indicators of global ancestry and the impact of including a covariate for local ancestry. In addition, we investigate the use of an interaction term between a single-nucleotide polymorphism (SNP) and local ancestry to capture heterogeneity in SNP effects. Although adjustment for global ancestry can control for confounding, additional adjustment for local ancestry may increase power when the induced admixture LD is in the opposite direction as the LD in the ancestral population. However, if the induced LD is in the same direction, there is the potential for reduced power because of overadjustment. Furthermore, the inclusion of a SNP by local ancestry interaction term can increase power when there is substantial differential LD between ancestry populations. We examine these approaches in genome-wide data using the University of Southern California's Children's Health Study investigating asthma risk. The analysis highlights rs10519951 (P = 8.5 × 10(-7)), a SNP lacking any evidence of association from a conventional analysis (P = 0.5).
Collapse
Affiliation(s)
- Jinghua Liu
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
46
|
Rubicz R, Yolken R, Drigalenko E, Carless MA, Dyer TD, Bauman L, Melton PE, Kent JW, Harley JB, Curran JE, Johnson MP, Cole SA, Almasy L, Moses EK, Dhurandhar NV, Kraig E, Blangero J, Leach CT, Göring HHH. A genome-wide integrative genomic study localizes genetic factors influencing antibodies against Epstein-Barr virus nuclear antigen 1 (EBNA-1). PLoS Genet 2013; 9:e1003147. [PMID: 23326239 PMCID: PMC3542101 DOI: 10.1371/journal.pgen.1003147] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/23/2012] [Indexed: 12/20/2022] Open
Abstract
Infection with Epstein-Barr virus (EBV) is highly prevalent worldwide, and it has been associated with infectious mononucleosis and severe diseases including Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal lymphoma, and lymphoproliferative disorders. Although EBV has been the focus of extensive research, much still remains unknown concerning what makes some individuals more sensitive to infection and to adverse outcomes as a result of infection. Here we use an integrative genomics approach in order to localize genetic factors influencing levels of Epstein Barr virus (EBV) nuclear antigen-1 (EBNA-1) IgG antibodies, as a measure of history of infection with this pathogen, in large Mexican American families. Genome-wide evidence of both significant linkage and association was obtained on chromosome 6 in the human leukocyte antigen (HLA) region and replicated in an independent Mexican American sample of large families (minimum p-value in combined analysis of both datasets is 1.4×10(-15) for SNPs rs477515 and rs2516049). Conditional association analyses indicate the presence of at least two separate loci within MHC class II, and along with lymphocyte expression data suggest genes HLA-DRB1 and HLA-DQB1 as the best candidates. The association signals are specific to EBV and are not found with IgG antibodies to 12 other pathogens examined, and therefore do not simply reveal a general HLA effect. We investigated whether SNPs significantly associated with diseases in which EBV is known or suspected to play a role (namely nasopharyngeal lymphoma, Hodgkin lymphoma, systemic lupus erythematosus, and multiple sclerosis) also show evidence of associated with EBNA-1 antibody levels, finding an overlap only for the HLA locus, but none elsewhere in the genome. The significance of this work is that a major locus related to EBV infection has been identified, which may ultimately reveal the underlying mechanisms by which the immune system regulates infection with this pathogen.
Collapse
Affiliation(s)
- Rohina Rubicz
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Feng BJ. Descriptive, Environmental and Genetic Epidemiology of Nasopharyngeal Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-1-4614-5947-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
TANG MZ, CAI YL, ZHENG YM, ZENG Y. Association between human leukocyte antigenand nasopharyngeal-carcinoma. YI CHUAN = HEREDITAS 2012; 34:1505-12. [DOI: 10.3724/sp.j.1005.2012.01505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Butler AM, Yin X, Evans DS, Nalls MA, Smith EN, Tanaka T, Li G, Buxbaum SG, Whitsel EA, Alonso A, Arking DE, Benjamin EJ, Berenson GS, Bis JC, Chen W, Deo R, Ellinor PT, Heckbert SR, Heiss G, Hsueh WC, Keating BJ, Kerr KF, Li Y, Limacher MC, Liu Y, Lubitz SA, Marciante KD, Mehra R, Meng YA, Newman AB, Newton-Cheh C, North KE, Palmer CD, Psaty BM, Quibrera PM, Redline S, Reiner AP, Rotter JI, Schnabel RB, Schork NJ, Singleton AB, Smith JG, Soliman EZ, Srinivasan SR, Zhang ZM, Zonderman AB, Ferrucci L, Murray SS, Evans MK, Sotoodehnia N, Magnani JW, Avery CL. Novel loci associated with PR interval in a genome-wide association study of 10 African American cohorts. CIRCULATION. CARDIOVASCULAR GENETICS 2012; 5:639-46. [PMID: 23139255 PMCID: PMC3560365 DOI: 10.1161/circgenetics.112.963991] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The PR interval, as measured by the resting, standard 12-lead ECG, reflects the duration of atrial/atrioventricular nodal depolarization. Substantial evidence exists for a genetic contribution to PR, including genome-wide association studies that have identified common genetic variants at 9 loci influencing PR in populations of European and Asian descent. However, few studies have examined loci associated with PR in African Americans. METHODS AND RESULTS We present results from the largest genome-wide association study to date of PR in 13 415 adults of African descent from 10 cohorts. We tested for association between PR (ms) and ≈2.8 million genotyped and imputed single-nucleotide polymorphisms. Imputation was performed using HapMap 2 YRI and CEU panels. Study-specific results, adjusted for global ancestry and clinical correlates of PR, were meta-analyzed using the inverse variance method. Variation in genome-wide test statistic distributions was noted within studies (λ range: 0.9-1.1), although not after genomic control correction was applied to the overall meta-analysis (λ: 1.008). In addition to generalizing previously reported associations with MEIS1, SCN5A, ARHGAP24, CAV1, and TBX5 to African American populations at the genome-wide significance level (P<5.0 × 10(-8)), we also identified a novel locus: ITGA9, located in a region previously implicated in SCN5A expression. The 3p21 region harboring SCN5A also contained 2 additional independent secondary signals influencing PR (P<5.0 × 10(-8)). CONCLUSIONS This study demonstrates the ability to map novel loci in African Americans as well as the generalizability of loci associated with PR across populations of African, European, and Asian descent.
Collapse
Affiliation(s)
- Anne M Butler
- Department of Epidemiology, University of North Carolina, Chapel Hill, 27514, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tang M, Lautenberger JA, Gao X, Sezgin E, Hendrickson SL, Troyer JL, David VA, Guan L, Mcintosh CE, Guo X, Zheng Y, Liao J, Deng H, Malasky M, Kessing B, Winkler CA, Carrington M, dé The G, Zeng Y, O'Brien SJ. The principal genetic determinants for nasopharyngeal carcinoma in China involve the HLA class I antigen recognition groove. PLoS Genet 2012; 8:e1003103. [PMID: 23209447 PMCID: PMC3510037 DOI: 10.1371/journal.pgen.1003103] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 09/19/2012] [Indexed: 11/18/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy facilitated by Epstein-Barr Virus infection. Here we resolve the major genetic influences for NPC incidence using a genome-wide association study (GWAS), independent cohort replication, and high-resolution molecular HLA class I gene typing including 4,055 study participants from the Guangxi Zhuang Autonomous Region and Guangdong province of southern China. We detect and replicate strong association signals involving SNPs, HLA alleles, and amino acid (aa) variants across the major histocompatibility complex-HLA-A, HLA -B, and HLA -C class I genes (P(HLA-A-aa-site-62) = 7.4 × 10(-29); P (HLA-B-aa-site-116) = 6.5 × 10(-19); P (HLA-C-aa-site-156) = 6.8 × 10(-8) respectively). Over 250 NPC-HLA associated variants within HLA were analyzed in concert to resolve separate and largely independent HLA-A, -B, and -C gene influences. Multivariate logistical regression analysis collapsed significant associations in adjacent genes spanning 500 kb (OR2H1, GABBR1, HLA-F, and HCG9) as proxies for peptide binding motifs carried by HLA- A*11:01. A similar analysis resolved an independent association signal driven by HLA-B*13:01, B*38:02, and B*55:02 alleles together. NPC resistance alleles carrying the strongly associated amino acid variants implicate specific class I peptide recognition motifs in HLA-A and -B peptide binding groove as conferring strong genetic influence on the development of NPC in China.
Collapse
Affiliation(s)
- Minzhong Tang
- College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing, China
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, United States of America
- Wuzhou Health System Key Laboratory for Nasopharyngeal Carcinoma Etiology and Molecular Mechanism, Wuzhou Red Cross Hospital, Guangxi, China
| | - James A. Lautenberger
- BSP-CCR Genetics Core, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Frederick National Lab, Frederick, Maryland United States of America
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, United States of America
| | - Efe Sezgin
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, United States of America
| | - Sher L. Hendrickson
- Department of Biology, Shepherd University, Shepherdstown, West Virginia, United States of America
| | - Jennifer L. Troyer
- Laboratory of Genomic Diversity, SAIC–Frederick, NCI–Frederick, Frederick, Maryland, United States of America
| | - Victor A. David
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, United States of America
| | - Li Guan
- Laboratory of Genomic Diversity, SAIC–Frederick, NCI–Frederick, Frederick, Maryland, United States of America
| | - Carl E. Mcintosh
- Laboratory of Genomic Diversity, SAIC–Frederick, NCI–Frederick, Frederick, Maryland, United States of America
| | - Xiuchan Guo
- Laboratory of Genomic Diversity, SAIC–Frederick, NCI–Frederick, Frederick, Maryland, United States of America
- State Key Laboratory for Infectious Diseases Prevention and Control, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuming Zheng
- Wuzhou Health System Key Laboratory for Nasopharyngeal Carcinoma Etiology and Molecular Mechanism, Wuzhou Red Cross Hospital, Guangxi, China
| | - Jian Liao
- Department of Epidemiology, Cangwu Institute for Nasopharyngeal Carcinoma Control and Prevention, Guangxi, China
| | - Hong Deng
- Wuzhou Health System Key Laboratory for Nasopharyngeal Carcinoma Etiology and Molecular Mechanism, Wuzhou Red Cross Hospital, Guangxi, China
| | - Michael Malasky
- Laboratory of Genomic Diversity, SAIC–Frederick, NCI–Frederick, Frederick, Maryland, United States of America
| | - Bailey Kessing
- BSP-CCR Genetics Core, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Cheryl A. Winkler
- Laboratory of Genomic Diversity, SAIC–Frederick, NCI–Frederick, Frederick, Maryland, United States of America
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Frederick National Lab, Frederick, Maryland United States of America
| | - Guy dé The
- Oncogenic Virus Epidemiology and Pathophysiology, Institute Pasteur, Paris, France
| | - Yi Zeng
- College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing, China
- State Key Laboratory for Infectious Diseases Prevention and Control, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Stephen J. O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, United States of America
| |
Collapse
|