1
|
Chen J, Xu M, Wu F, Wu N, Li J, Xie Y, Wang R, Xi N, Zhu Y, Xu X, Liu Y. CRKL silencing inhibits melanoma growth and enhances its chemotherapy sensitivity through the PI3K/AKT and NLRP3/GSDMD pathways. Biochem Pharmacol 2025; 235:116840. [PMID: 40024349 DOI: 10.1016/j.bcp.2025.116840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Great advances have been made in malignant melanoma treatments, whereas drug resistance still limits many drug applications. CRKL has been reported to be overexpressed in various tumors and showed poor prognosis. However, its specific function and mechanism in melanoma remain unclear. In the present study, we investigated the expression of CRKL and its clinical association by bioinformatics and clinical analysis, and then performed a series of in vitro and in vivo experiments to demonstrate its function and mechanism. Results showed that CRKL increased during melanoma progression and was strongly associated with poor prognosis. CRKL silencing effectively inhibited melanoma cell growth and invasion via ERK/MMP9 and PI3K/AKT signaling pathways both in vitro and in vivo. Moreover, CRKL silencing induced pyroptosis in melanoma cells by upregulating the levels of pyroptosis-associated proteins, such as NLRP3, cleaved Caspase-1, and GSDMD-N. Importantly, our study demonstrated that interfering with CRKL expression enhanced the chemotherapy sensitivity of melanoma cells to cisplatin by regulating PI3K/AKT and NLRP3/GSDMD signaling pathways. In conclusion, our study uncovers a novel molecular mechanism by which CRKL functions in melanoma and highlights potential therapeutic strategies for improving chemotherapy sensitivity in melanoma patients.
Collapse
Affiliation(s)
- Jiashe Chen
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Mingyuan Xu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Fei Wu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Nanhui Wu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jie Li
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yongyi Xie
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ruoqi Wang
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ningyuan Xi
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yueyi Zhu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xiaoxiang Xu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Yeqiang Liu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
2
|
Maharati A, Rajabloo Y, Moghbeli M. Molecular mechanisms of mTOR-mediated cisplatin response in tumor cells. Heliyon 2025; 11:e41483. [PMID: 39834411 PMCID: PMC11743095 DOI: 10.1016/j.heliyon.2024.e41483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Cisplatin (CDDP) is one of the main chemotherapeutic drugs that is widely used in many cancers. However, CDDP resistance is a frequent therapeutic challenge that reduces prognosis in cancer patients. Since, CDDP has noticeable side effects in normal tissues and organs, it is necessary to assess the molecular mechanisms associated with CDDP resistance to improve the therapeutic methods in cancer patients. Drug efflux, detoxifying systems, DNA repair mechanisms, and drug-induced apoptosis are involved in multidrug resistance in CDDP-resistant tumor cells. Mammalian target of rapamycin (mTOR), as a serine/threonine kinase has a pivotal role in various cellular mechanisms such as autophagy, metabolism, drug efflux, and cell proliferation. Although, mTOR is mainly activated by PI3K/AKT pathway, it can also be regulated by many other signaling pathways. PI3K/Akt/mTOR axis functions as a key modulator of drug resistance and unfavorable prognosis in different cancers. Regarding, the pivotal role of mTOR in CDDP response, in the present review we discussed the molecular mechanisms that regulate mTOR mediated CDDP response in tumor cells.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Rajabloo
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Hermosaningtyas AA, Totoń E, Lisiak N, Kruszka D, Budzianowska A, Kikowska M. Evaluation of Cytotoxic Activity of Cell Biomass from Eryngium planum and Lychnis flos-cuculi on Melanoma Cancer Cell. Molecules 2024; 29:5158. [PMID: 39519799 PMCID: PMC11547748 DOI: 10.3390/molecules29215158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Melanoma is a malignant neoplasm of melanocytes in the skin, and its occurrence is increasing annually. Plant-based products contain active compounds with low toxicity and are accessible alternatives for melanoma cancer treatment. The biotechnology approach for obtaining plant-based products provides continuity and allows the high-yield production of phytochemically uniform biomass. The callus biomass of Eryngium planum L. and Lychnis flos-cuculi L. was induced on Murashige and Skoog (MS) medium supplemented with growth regulators. A combination of 3.0 mg/L of 3,6-dichloro-2-methoxybenzoic acid (dicamba) and 0.3 mg/L of 1-phenyl-3-(1,2,3-thiadiazol-5-yl)urea-(thidiazuron) was used to obtain E. planum callus. Meanwhile, the callus of L. flos-cuculi was cultivated on MS medium with 2.0 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D). Methanolic extracts (EpME and LFcME), including 40% MeOH fractions (Ep40MF and LFc40MF) and 80% MeOH fractions (Ep80MF and LFc80MF), of E. planum and L. flos-cuculi cell biomass were prepared. Their cytotoxicity activity was assessed in human fibroblast cells (MRC-5) and human melanoma cells (MeWo) by direct cell counting and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Qualitative analyses using thin-layer chromatography and UPLC-HRMS/MS chromatograms showed the presence of phenolic acids and saponins within the extracts and fractions of both cell biomasses. LFc80MF and Ep80MF showed the strongest toxicity against the MeWo cell line, with IC50 values of 47 ± 0.5 and 52 ± 4 μg/mL after 72 h of treatment. EpME and LFcME had IC50 values of 103 ± 4 and 147 ± 4 µg/mL, respectively. On the other hand, Ep40MF and LFc40MF were less toxic against the MeWo cell line compared to the extracts and 80% MeOH fractions, with IC50 values of 145 ± 10 and 172 ± 7 µg/mL. This study suggests that the obtained extracts and fractions of E. planum and L. flos-cuculi cell biomass potentially possess significant cytotoxic activity against MeWo cells, which work in a time and dose-dependent manner. Although the extracts and 80% MeOH fractions were more potent, the 40% MeOH was shown to be more selective against the MeWo than the control MRC-5 cells.
Collapse
Affiliation(s)
- Anastasia Aliesa Hermosaningtyas
- Laboratory of Pharmaceutical Biology and Biotechnology, Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Collegium Pharmaceuticum, 3 Rokietnicka St., 60-806 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St., 60-812 Poznan, Poland
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, 3 Rokietnicka St., 60-806 Poznan, Poland; (E.T.); (N.L.)
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, 3 Rokietnicka St., 60-806 Poznan, Poland; (E.T.); (N.L.)
| | - Dariusz Kruszka
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska St., 60-479 Poznan, Poland;
| | - Anna Budzianowska
- Laboratory of Pharmaceutical Biology and Biotechnology, Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Collegium Pharmaceuticum, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Małgorzata Kikowska
- Laboratory of Pharmaceutical Biology and Biotechnology, Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Collegium Pharmaceuticum, 3 Rokietnicka St., 60-806 Poznan, Poland;
| |
Collapse
|
4
|
Tripathy S, Londhe S, Patel A, Saha S, Chandra Y, Patra CR. Copper nitroprusside analogue nanoparticles against melanoma: detailed in vitro and in vivo investigation. NANOSCALE 2024; 16:13580-13596. [PMID: 38953490 DOI: 10.1039/d4nr01857e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Melanoma is the most invasive and lethal form of skin cancer that arises from the malignant transformation of specialized pigment-producing cell melanocytes. Nanomedicine represents an important prospect to mitigate the difficulties and provide significant benefits to cure melanoma. In the present study, we investigated in vitro and in vivo therapeutic efficacies of copper nitroprusside analogue nanoparticles (abbreviated as CuNPANP) towards melanoma. Initially, in vitro anti-cancer activities of CuNPANP towards melanoma cells (B16F10) were evaluated by several experiments such as [methyl-3H]-thymidine incorporation assay, cell cycle and apoptosis assays using FACS analysis, ROS generation using DCFDA, DHE and DAF2A reagents, internalization of nanoparticles through ICP-OES analysis, co-localization of the nanoparticles using confocal microscopy, JC-1 staining to investigate the mitochondrial membrane potential (MMP) and immunofluorescence studies to analyze the expressions of cytochrome-c, Ki-67, E-cadherin as well as phalloidin staining to analyze the cytoskeletal integrity. Further, the in vivo therapeutic effectiveness of the nanoparticles was established towards malignant melanoma by inoculating B16F10 cells in the dorsal right abdomen of C57BL/6J mice. The intraperitoneal administration of CuNPANP inhibited tumor growth and increased the survivability of melanoma mice. The in vivo immunofluorescence studies (Ki-67, CD-31, and E-cadherin) and TUNEL assay further support the anti-cancer and apoptosis-inducing potential of CuNPANP, respectively. Finally, various signaling pathways and molecular mechanisms involved in anti-cancer activities were further evaluated by Western blot analysis. The results altogether indicated the potential use of copper-based nanomedicines for the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Sanchita Tripathy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Swapnali Londhe
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Arti Patel
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
| | - Sudipta Saha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Yogesh Chandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| |
Collapse
|
5
|
Kook E, Kim DH. Elucidating the Role of Lipid-Metabolism-Related Signal Transduction and Inhibitors in Skin Cancer. Metabolites 2024; 14:309. [PMID: 38921444 PMCID: PMC11205519 DOI: 10.3390/metabo14060309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
Lipids, as multifunctional molecules, play a crucial role in a variety of cellular processes. These include regulating membrane glycoprotein functions, controlling membrane trafficking, influencing apoptotic pathways, and affecting drug transport. In addition, lipid metabolites can alter the surrounding microenvironment in ways that might encourage tumor progression. The reprogramming of lipid metabolism is pivotal in promoting tumorigenesis and cancer progression, with tumors often displaying significant changes in lipid profiles. This review concentrates on the essential factors that drive lipid metabolic reprogramming, which contributes to the advancement and drug resistance in melanoma. Moreover, we discuss recent advances and current therapeutic strategies that employ small-molecule inhibitors to target lipid metabolism in skin cancers, particularly those associated with inflammation and melanoma.
Collapse
Affiliation(s)
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon 16227, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Wang R, Yan Q, Liu X, Wu J. Unraveling lipid metabolism reprogramming for overcoming drug resistance in melanoma. Biochem Pharmacol 2024; 223:116122. [PMID: 38467377 DOI: 10.1016/j.bcp.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Cutaneous melanoma is the deadliest form of skin cancer, and its incidence is continuing to increase worldwide in the last decades. Traditional therapies for melanoma can easily cause drug resistance, thus the treatment of melanoma remains a challenge. Various studies have focused on reversing the drug resistance. As tumors grow and progress, cancer cells face a constantly changing microenvironment made up of different nutrients, metabolites, and cell types. Multiple studies have shown that metabolic reprogramming of cancer is not static, but a highly dynamic process. There is a growing interest in exploring the relationship between melanoma andmetabolic reprogramming, one of which may belipid metabolism. This review frames the recent research progresses on lipid metabolism in melanoma.In addition, we emphasize the dynamic ability of metabolism during tumorigenesis as a target for improving response to different therapies and for overcoming drug resistance in melanoma.
Collapse
Affiliation(s)
- Ruilong Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qin Yan
- Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Khameneh SC, Sari S, Razi S, Yousefi AM, Bashash D. Inhibition of PI3K/AKT signaling using BKM120 reduced the proliferation and migration potentials of colorectal cancer cells and enhanced cisplatin-induced cytotoxicity. Mol Biol Rep 2024; 51:420. [PMID: 38483663 DOI: 10.1007/s11033-024-09339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Although extensive efforts have been made to improve the treatment of colorectal cancer (CRC) patients, the prognosis for these patients remains poor. A wide range of anti-cancer agents has been applied to ameliorate the clinical management of CRC patients; however, drug resistance develops in nearly all patients. Based on the prominent role of PI3K/AKT signaling in the development of CRC and current interest in the application of PI3K inhibitors, we aimed to disclose the exact mechanism underlying the efficacy of BKM120, a well-known pan-class I PI3K inhibitor, in CRC-derived SW480 cells. MATERIALS AND METHODS The effects of BKM120 on SW480 cells were studied using MTT assay, cell cycle assay, Annexin V/PI apoptosis tests, and scratch assay. In the next step, qRT-PCR was used to investigate the underlying molecular mechanisms by which the PI3K inhibitor could suppress the survival of SW480 cells. RESULT The results of the MTT assay showed that BKM120 could decrease the metabolic activity of SW480 cells in a concentration and time-dependent manner. Investigating the exact mechanism of BKM120 showed that this PI3K inhibitor induces its anti-survival effects through a G2/M cell cycle arrest and apoptosis-mediated cell death. Moreover, the scratch assay demonstrated that PI3K inhibition led to the inhibition of cancer invasion and inhibition of PI3K/AKT signaling remarkably sensitized SW480 cells to Cisplatin. CONCLUSION Based on our results, inhibition of PI3K/AKT signaling can be a promising approach, either as a single modality or in combination with Cisplatin. However, further clinical studies should be performed to improve our understanding.
Collapse
Affiliation(s)
- Sepideh Chodary Khameneh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soyar Sari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Razi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Rezaee A, Tehrany PM, Tirabadi FJ, Sanadgol N, Karimi AS, Ajdari A, Eydivandi S, Etemad S, Rajabi R, Rahmanian P, Khorrami R, Nabavi N, Aref AR, Fan X, Zou R, Rashidi M, Zandieh MA, Hushmandi K. Epigenetic regulation of temozolomide resistance in human cancers with an emphasis on brain tumors: Function of non-coding RNAs. Biomed Pharmacother 2023; 165:115187. [PMID: 37499452 DOI: 10.1016/j.biopha.2023.115187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Brain tumors, which are highly malignant, pose a significant threat to health and often result in substantial rates of mortality and morbidity worldwide. The brain cancer therapy has been challenging due to obstacles such as the BBB, which hinders effective delivery of therapeutic agents. Additionally, the emergence of drug resistance further complicates the management of brain tumors. TMZ is utilized in brain cancer removal, but resistance is a drawback. ncRNAs are implicated in various diseases, and their involvement in the cancer is particularly noteworthy. The focus of the current manuscript is to explore the involvement of ncRNAs in controlling drug resistance, specifically in the context of resistance to the chemotherapy drug TMZ. The review emphasizes the function of ncRNAs, particularly miRNAs, in modulating the growth and invasion of brain tumors, which significantly influences their response to TMZ treatment. Through their interactions with various molecular pathways, miRNAs are modulators of TMZ response. Similarly, lncRNAs also associate with molecular pathways and miRNAs, affecting the efficacy of TMZ chemotherapy. Given their functional properties, lncRNAs can either induce or suppress TMZ resistance in brain tumors. Furthermore, circRNAs, which are cancer controllers, regulate miRNAs by acting as sponges, thereby impacting the response to TMZ chemotherapy. The review explores the correlation between ncRNAs and TMZ chemotherapy, shedding light on the underlying molecular pathways involved in this process.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Farimah Jafari Tirabadi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Negin Sanadgol
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asal Sadat Karimi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Atra Ajdari
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Eydivandi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Etemad
- Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Semnan, Iran.
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada.
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA.
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
10
|
Song Y, Wang S. Melatonin synergistically enhances docetaxel induced endoplasmic reticulum stress to promote apoptosis by suppressing NF-κB activation in cervical cancer. Med Oncol 2023; 40:219. [PMID: 37395921 DOI: 10.1007/s12032-023-02087-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Cervical cancer is the fourth most common malignancy in women globally. Although chemotherapy significantly improves the survival of cervical cancer patients, the development of drug resistance is inevitable. In the present study, our study showed that melatonin suppressed the proliferation, cell survival, colony formation, and the ability of adhering to fibronectin in cervical cancer cells. Our data suggested that docetaxel insensitivity was caused by NF-κB pathway activation, and followed by reducing endoplasmic reticulum stress and apoptosis. We showed that melatonin functioned as an oncostatic agent via inhibition of NF-κB signaling in cervical cancer cells. Interestingly, melatonin not only reduced the basal and inducible NF-κB pathway activation, but also prevented docetaxel induced NF-κB pathway activation by stabilizing IκBα protein. Importantly, inhibition of NF-κB pathway activation by melatonin abrogated the protective effect of NF-κB activation on docetaxel provoked endoplasmic reticulum stress, and further enhanced endoplasmic reticulum stress and apoptosis to produce synergistic oncostatic effects in cervical cancer cells. In summary, we revealed that melatonin was a novel agent to enhance docetaxel sensitivity by abolishing NF-κB activation and aggravating endoplasmic reticulum stress. Our results might provide a rationale for the clinical application of melatonin to overcome docetaxel resistance in cervical cancer patients.
Collapse
Affiliation(s)
- Yingqiu Song
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430022, China.
| | - Shaobing Wang
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China
| |
Collapse
|
11
|
Lae Lae Phoo N, Sukhamwang A, Dejkriengkraikul P, Yodkeeree S. Diclofenac Sensitizes Signet Ring Cell Gastric Carcinoma Cells to Cisplatin by Activating Autophagy and Inhibition of Survival Signal Pathways. Int J Mol Sci 2022; 23:ijms232012066. [PMID: 36292923 PMCID: PMC9602524 DOI: 10.3390/ijms232012066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer has one of the highest incidence rates of cancer worldwide while also contributing to increased drug resistance among patients in clinical practice. Herein, we have investigated the role of diclofenac (DCF) on sensitizing cisplatin resistance in signet ring cell gastric carcinoma cells (SRCGC). Non-toxic concentrations of DCF significantly augmented cisplatin-induced cell death in cisplatin-resistant SRCGC cells (KATO/DDP) but not in cisplatin-sensitive SRCGC cells (KATOIII). Consistently, concomitant treatment of DCF and cisplatin significantly enhanced autophagic cell death due to overproduction of intracellular reactive oxygen species (ROS). At the molecular level, the induction of ROS has been associated with a reduction in antioxidant enzymes expression while inhibiting nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Moreover, the combination of DCF and cisplatin also inhibited the expression of survival proteins including Bcl-2, Bcl-xL, cIAP1 and cyclin D1 in KATO/DDP cells when compared with cisplatin alone. This was due, at least in part, to reduce MAPKs, Akt, NF-κB, AP-1 and STAT-3 activation. Taken together, our results suggested that DCF potentiated the anticancer effect of cisplatin in SRCGC via the regeneration of intracellular ROS, which in turn promoted cell death as an autophagy mechanism and potentially modulated the cell survival signal transduction pathway.
Collapse
Affiliation(s)
- Nang Lae Lae Phoo
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Amonnat Sukhamwang
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
12
|
Lin CT, Lin CF, Wu JT, Tsai HP, Cheng SY, Liao HJ, Lin TC, Wu CH, Lin YC, Wang JH, Chang GR. Effects of Para-Toluenesulfonamide on Canine Melanoma Xenotransplants in a BALB/c Nude Mouse Model. Animals (Basel) 2022; 12:2272. [PMID: 36077992 PMCID: PMC9454485 DOI: 10.3390/ani12172272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The pharmacological pathway of para-toluenesulfonamide (PTS) restricts the kinase activity of the mammalian target of rapamycin, potentially leading to reductions in cell division, cell growth, cell proliferation, and inflammation. These pathways have a critical effect on tumorigenesis. We aimed to examine the antitumor effect of PTS or PTS combined with cisplatin on canine melanoma implanted in BALB/c nude mice by estimating tumor growth, apoptosis expression, inflammation, and metastasis. The mice were randomly divided into four groups: control, cisplatin, PTS, and PTS combined with cisplatin. Mice treated with PTS or PTS combined with cisplatin had retarded tumor growth and increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase phosphorylation, decreased inflammatory cytokine levels, reduced inflammation-related factors, enhanced anti-inflammation-related factors, and inhibition of metastasis-related factors. Mice treated with PTS combined with cisplatin exhibited significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with those treated with cisplatin or PTS alone. PTS or PTS combined with cisplatin could retard canine melanoma growth and inhibit tumorigenesis. PTS and cisplatin were found to have an obvious synergistic tumor-inhibiting effect on canine melanoma. PTS alone and PTS combined with cisplatin may be antitumor agents for canine melanoma treatment.
Collapse
Affiliation(s)
- Chien-Teng Lin
- Ph.D. Program of Agriculture Science, National Chiayi University, 300 University Road, Chiayi 60004, Taiwan
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan
| | - Jui-Te Wu
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Hsiao-Pei Tsai
- Ph.D. Program of Agriculture Science, National Chiayi University, 300 University Road, Chiayi 60004, Taiwan
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Shu-Ying Cheng
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
- Department of Pet Medicine, Gongwin Biopharma Co., Ltd., 1 Section, 80 Jianguo North Road, Zhongshan District, Taipei 104001, Taiwan
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Chao-Hsuan Wu
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
- Department of Pet Medicine, Gongwin Biopharma Co., Ltd., 1 Section, 80 Jianguo North Road, Zhongshan District, Taipei 104001, Taiwan
| | - Yu-Chin Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
- Department of Pet Medicine, Gongwin Biopharma Co., Ltd., 1 Section, 80 Jianguo North Road, Zhongshan District, Taipei 104001, Taiwan
| | - Jiann-Hsiung Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| |
Collapse
|
13
|
Seefried F, Haller L, Fukuda S, Thongmao A, Schneider N, Utikal J, Higashiyama S, Bosserhoff AK, Kuphal S. Nuclear
AREG
affects a low‐proliferative phenotype and contributes to drug resistance of melanoma. Int J Cancer 2022; 151:2244-2264. [DOI: 10.1002/ijc.34254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Felix Seefried
- Institute of Biochemistry, Friedrich Alexander University Erlangen‐Nürnberg, Fahrstrasse17 Erlangen Germany
| | - Lucia Haller
- Institute of Biochemistry, Friedrich Alexander University Erlangen‐Nürnberg, Fahrstrasse17 Erlangen Germany
| | - Shinji Fukuda
- Department of Biochemistry, School of Dentistry Aichi Gakuin University Nagoya Japan
| | - Aranya Thongmao
- Institute of Biochemistry, Friedrich Alexander University Erlangen‐Nürnberg, Fahrstrasse17 Erlangen Germany
| | - Nadja Schneider
- Institute of Biochemistry, Friedrich Alexander University Erlangen‐Nürnberg, Fahrstrasse17 Erlangen Germany
| | - Jochen Utikal
- Department of Dermatology Heidelberg University, Mannheim, Germany; Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg Germany
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumour Regulation, Proteo‐Science Center Ehime University, Toon, 791‐0295, Japan and Department of Molecular and Cellular Biology, Osaka International Cancer Institute Osaka Japan
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Friedrich Alexander University Erlangen‐Nürnberg, Fahrstrasse17 Erlangen Germany
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich Alexander University Erlangen‐Nürnberg, Fahrstrasse17 Erlangen Germany
| |
Collapse
|
14
|
Abdik H. Antineoplastic effects of erufosine on small cell and non-small cell lung cancer cells through induction of apoptosis and cell cycle arrest. Mol Biol Rep 2022; 49:2963-2971. [PMID: 35015224 DOI: 10.1007/s11033-022-07117-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung cancer (LC) is the most common types of cancer worldwide and is marked by high mortality rate. LC is classified into two major types due to their molecular and histological properties; non-small cell lung cancer (NSCLC) A549 and small cell lung cancer (SCLC). Currently, surgery, chemotherapy and radiation therapy are the most common treatment options of LC. However, the survival rate of LC is still very poor. Therefore, new treatment strategies are urgently needed. Erufosine (ErPC3) is a novel alkylphosphocholine and inhibits the translocation of Akt to the plasma membrane. METHODS AND RESULTS In the current study, the effects of ErPC3 in NSCLC cell line A549 and SCLC cell line DMS 114 in terms of cell viability, induction of apoptosis, cell cycle phase distribution, gene and protein expression levels, and migration capacity were investigated. 25 µM ErPC3 exhibited dose-dependent cytotoxicity against in both cancer cells. However, DMS 114 was more sensitive to ErPC3 than A549. Similarly, ErPC3 induced apoptotic cell ratio in DMS114 was significantly greater than A549. 25 µM ErPC3 caused the accumulation of both cell in G2/M phase. The levels of BCL-2 were downregulated and CASPASE 3-7 and BAX were upregulated while p-Akt levels were reduced in A549 and DMS 114 cells treated with 25 µM ErPC3. Besides, ErPC3 displayed anti-migratory effect on A549 and DMS 114. CONCLUSION These findings suggest that ErPC3 may be a promising novel therapeutic candidate for treatment of LC. ErPC3 treatment merits further investigation as potential agent against LC.
Collapse
Affiliation(s)
- Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
15
|
Li X, Li C, Guo C, Zhao Q, Cao J, Huang HY, Yue M, Xue Y, Jin Y, Hu L, Ji H. PI3K/Akt/mTOR signaling orchestrates the phenotypic transition and chemo-resistance of small cell lung cancer. J Genet Genomics 2021; 48:640-651. [PMID: 34167917 DOI: 10.1016/j.jgg.2021.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/24/2022]
Abstract
Small cell lung cancer (SCLC) is a phenotypically heterogeneous disease with an extremely poor prognosis, which is mainly attributed to the rapid development of resistance to chemotherapy. However, the relation between the growth phenotypes and chemo-resistance of SCLC remains largely unclear. Through comprehensive bioinformatic analyses, we found that the heterogeneity of SCLC phenotype was significantly associated with different sensitivity to chemotherapy. Adherent or semiadherent SCLC cells were enriched with activation of the PI3K/Akt/mTOR pathway and were highly chemoresistant. Mechanistically, activation of the PI3K/Akt/mTOR pathway promotes the phenotypic transition from suspension to adhesion growth pattern and confers SCLC cells with chemo-resistance. Such chemo-resistance could be largely overcome by combining chemotherapy with PI3K/Akt/mTOR pathway inhibitors. Our findings support that the PI3K/Akt/mTOR pathway plays an important role in SCLC phenotype transition and chemo-resistance, which holds important clinical implications for improving SCLC treatment.
Collapse
Affiliation(s)
- Xuefeng Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Medical Oncology, The First Affiliated Hospita, Hengyang MedicalSchool, University of South China, Hengyang, Hunan 421001, China
| | - Cheng Li
- Department of Medical Oncology, The First Affiliated Hospita, Hengyang MedicalSchool, University of South China, Hengyang, Hunan 421001, China
| | - Chenchen Guo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiqi Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China
| | - Jiayu Cao
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hsin-Yi Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Meiting Yue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
16
|
Ko EB, Jang YG, Kim CW, Go RE, Lee HK, Choi KC. Gallic Acid Hindered Lung Cancer Progression by Inducing Cell Cycle Arrest and Apoptosis in A549 Lung Cancer Cells via PI3K/Akt Pathway. Biomol Ther (Seoul) 2021; 30:151-161. [PMID: 34261818 PMCID: PMC8902450 DOI: 10.4062/biomolther.2021.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 11/05/2022] Open
Abstract
This study elucidates the anti-cancer potential of gallic acid (GA) as a promising therapeutic agent that exerts its effect by regulating the PI3K/Akt pathway. To prove our research rationale, we used diverse experimental methods such as cell viability assay, colony formation assay, tumor spheroid formation assay, cell cycle analysis, TUNEL assay, Western blot analysis, xenograft mouse model and histological analysis. Treatment with GA inhibited cell proliferation in dose-dependent manner as measured by cell viability assay at 48 h. GA and cisplatin (CDDP) also inhibited colony formation and tumor spheroid formation. In addition, GA and CDDP induced apoptosis, as determined by the distribution of early and late apoptotic cells and DNA fragmentation. Western blot analysis revealed that inhibition of the PI3K/Akt pathway induced upregulation of p53 (tumor suppressor protein), which in turn regulated cell cycle related proteins such as p21, p27, Cyclin D1 and E1, and intrinsic apoptotic proteins such as Bax, Bcl-2 and cleaved caspase-3. The anti-cancer effect of GA was further confirmed in an in vivo mouse model. Intraperitoneal injection with GA for 4 weeks in an A549-derived tumor xenograft model reduced the size of tumor mass. Injection of them downregulated the expression of proliferating cell nuclear antigen and p-Akt, but upregulated the expression of cleaved caspase-3 in tumor tissues. Taken together, these results indicated that GA hindered lung cancer progression by inducing cell cycle arrest and apoptosis, suggesting that GA would be a potential therapeutic agent against non-small cell lung cancer.
Collapse
Affiliation(s)
- Eul-Bee Ko
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yin-Gi Jang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
17
|
BCL2L10 Is Overexpressed in Melanoma Downstream of STAT3 and Promotes Cisplatin and ABT-737 Resistance. Cancers (Basel) 2020; 13:cancers13010078. [PMID: 33396645 PMCID: PMC7795116 DOI: 10.3390/cancers13010078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary BCL2L10 is the sixth and less studied protein from the group of Bcl-2 anti-apoptotic proteins. These proteins are important therapeutic targets since they convey resistance to anticancer regimens. We describe here for the first time the role of BCL2L10 in melanoma. We found that BCL2L10 is abundantly and frequently expressed both in melanoma cell lines and tumor samples. This increased expression is due to the activity of the transcription factor STAT3 that positively regulate BCL2L10 transcription. We describe that Bcl2l10 is a pro-survival factor in melanoma, being able to protect cells from the cytotoxic effect of different drugs, including cisplatin, dacarbazine, and ABT-737. BCL2L10 also inhibited the cell death upon combination treatments of PLX-4032, a BRAF inhibitor, with ABT-737 or cisplatin. In summary, we determined that BCL2L10 is expressed in melanoma and contributes to cell survival. Hence, targeting BCL2L10 may enhance the clinical efficacy of other therapies for malignant melanoma. Abstract The anti-apoptotic proteins from the Bcl-2 family are important therapeutic targets since they convey resistance to anticancer regimens. Despite the suspected functional redundancy among the six proteins of this subfamily, both basic studies and therapeutic approaches have focused mainly on BCL2, Bcl-xL, and MCL1. The role of BCL2L10, another member of this group, has been poorly studied in cancer and never has been in melanoma. We describe here that BCL2L10 is abundantly and frequently expressed both in melanoma cell lines and tumor samples. We established that BCL2L10 expression is driven by STAT3-mediated transcription, and by using reporter assays, site-directed mutagenesis, and ChIP analysis, we identified the functional STAT3 responsive elements in the BCL2L10 promoter. BCL2L10 is a pro-survival factor in melanoma since its expression reduced the cytotoxic effects of cisplatin, dacarbazine, and ABT-737 (a BCL2, Bcl-xL, and Bcl-w inhibitor). Meanwhile, both genetic and pharmacological inhibition of BCL2L10 sensitized melanoma cells to cisplatin and ABT-737. Finally, BCL2L10 inhibited the cell death upon combination treatments of PLX-4032, a BRAF inhibitor, with ABT-737 or cisplatin. In summary, we determined that BCL2L10 is expressed in melanoma and contributes to cell survival. Hence, targeting BCL2L10 may enhance the clinical efficacy of other therapies for malignant melanoma.
Collapse
|
18
|
Krishnan R, Murugiah M, Lakshmi, NP, Mahalingam S. Guanine nucleotide binding protein like-1 (GNL1) promotes cancer cell proliferation and survival through AKT/p21 CIP1 signaling cascade. Mol Biol Cell 2020; 31:2904-2919. [PMID: 33147101 PMCID: PMC7927199 DOI: 10.1091/mbc.e20-04-0267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/03/2022] Open
Abstract
Human guanine nucleotide binding protein like 1 (GNL1) is an evolutionary conserved putative nucleolar GTPase belonging to the HSR1_MMR1 subfamily of GTPases. GNL1 was found to be highly up-regulated in various cancers. Here, we report for the first time that GNL1 inhibits apoptosis by modulating the expression of Bcl2 family of proteins and the cleavage of caspases 7 and 8. Furthermore, GNL1 protects colon cancer cells from chemo-drug-induced apoptosis. Interestingly, GNL1 up-regulates the expression of p53 and its transcriptional target, p21 but the up-regulation of p21 was found to be p53 dependent as well as independent mechanisms. Our results further demonstrate that GNL1 promotes cell growth and survival by inducing cytoplasmic retention and stabilization of p21 through AKT-mediated phosphorylation. In addition, GNL1 failed to inhibit apoptosis under p21 knockdown conditions which suggests the critical role of p21 in GNL1-mediated cell survival. Finally, an inverse correlation of GNL1, p21, and AKT expression in primary colon and breast cancer with patient survival suggests their critical role in tumorigenesis. Collectively, our study reveals that GNL1 executes its antiapoptotic function by a novel mechanism and suggests that it may function as a regulatory component of the PI3K/AKT/p21 signaling network to promote cell proliferation and survival in cancers.
Collapse
Affiliation(s)
- Rehna Krishnan
- Laboratory of Molecular Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Mariappan Murugiah
- Laboratory of Molecular Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Naga Padma Lakshmi,
- Laboratory of Molecular Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Sundarasamy Mahalingam
- Laboratory of Molecular Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| |
Collapse
|
19
|
Zhai Z, Samson JM, Yamauchi T, Vaddi PK, Matsumoto Y, Dinarello CA, Ravindran Menon D, Fujita M. Inflammasome Sensor NLRP1 Confers Acquired Drug Resistance to Temozolomide in Human Melanoma. Cancers (Basel) 2020; 12:E2518. [PMID: 32899791 PMCID: PMC7563249 DOI: 10.3390/cancers12092518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 01/13/2023] Open
Abstract
Cancer cells gain drug resistance through a complex mechanism, in which nuclear factor-κB (NF-κB) and interleukin-1β (IL-1β) are critical contributors. Because NACHT, LRR and PYD domains-containing protein (NLRP) inflammasomes mediate IL-1β maturation and NF-κB activation, we investigated the role of inflammasome sensor NLRP1 in acquired drug resistance to temozolomide (TMZ) in melanoma. The sensitivity of melanoma cells to TMZ was negatively correlated with the expression levels of O6-methylguanine-DNA methyltransferase (MGMT), the enzyme to repair TMZ-induced DNA lesions. When MGMT-low human melanoma cells (1205Lu and HS294T) were treated with TMZ for over two months, MGMT was upregulated, and cells became resistant. However, the resistance mechanism was independent of MGMT, and the cells that acquired TMZ resistance showed increased NLRP1 expression, NLRP inflammasome activation, IL-1β secretion, and NF-κB activity, which contributed to the acquired resistance to TMZ. Finally, blocking IL-1 receptor (IL-1R) signaling with IL-1R antagonist decreased TMZ-resistant 1205Lu tumor growth in vivo. Although inflammation has been associated with drug resistance in various cancers, our paper is the first to demonstrate the involvement of NLRP in the development of acquired drug resistance. Because drug-tolerant cancer cells become cross-tolerant to other classes of cancer drugs, NLRP1 might be a suitable therapeutic target in drug-resistant melanoma, as well as in other cancers.
Collapse
Affiliation(s)
- Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Jenny Mae Samson
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Prasanna K. Vaddi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Yuko Matsumoto
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Dinoop Ravindran Menon
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
20
|
Dianzani C, Monge C, Miglio G, Serpe L, Martina K, Cangemi L, Ferraris C, Mioletti S, Osella S, Gigliotti CL, Boggio E, Clemente N, Dianzani U, Battaglia L. Nanoemulsions as Delivery Systems for Poly-Chemotherapy Aiming at Melanoma Treatment. Cancers (Basel) 2020; 12:cancers12051198. [PMID: 32397484 PMCID: PMC7281359 DOI: 10.3390/cancers12051198] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 11/17/2022] Open
Abstract
Aims: Advanced melanoma is characterized by poor outcome. Despite the number of treatments having been increased over the last decade, current pharmacological strategies are only partially effective. Therefore, the improvement of the current systemic therapy is worthy of investigation. Methods: a nanotechnology-based poly-chemotherapy was tested at preclinical level. Temozolomide, rapamycin, and bevacizumab were co-loaded as injectable nanoemulsions for total parenteral nutrition (Intralipid®), due to suitable devices, and preliminarily tested in vitro on human and mouse cell models and in vivo on the B16-F10 melanoma mouse model. Results: Drug combination was efficiently loaded in the liquid lipid matrix of Intralipid®, including bevacizumab monoclonal antibody, leading to a fast internalization in tumour cells. An increased cytotoxicity towards melanoma cells, as well as an improved inhibition of tumour relapse, migration, and angiogenesis were demonstrated in cell models for the Intralipid®-loaded drug combinations. In preliminary in vivo studies, the proposed approach was able to reduce tumour growth significantly, compared to controls. A relevant efficacy towards tumour angiogenesis and mitotic index was determined and immune response was involved. Conclusions: In these preliminary studies, Intralipid® proved to be a safe and versatile poly-chemotherapy delivery system for advanced melanoma treatment, by acting on multiple mechanisms.
Collapse
Affiliation(s)
- Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Chiara Monge
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Gianluca Miglio
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Katia Martina
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Luigi Cangemi
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Silvia Mioletti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Sara Osella
- San Giovanni Bosco Hospital, Piazza del Donatore di Sangue 3, 10154 Turin, Italy;
| | - Casimiro Luca Gigliotti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (C.L.G.); (E.B.); (N.C.); (U.D.)
| | - Elena Boggio
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (C.L.G.); (E.B.); (N.C.); (U.D.)
| | - Nausicaa Clemente
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (C.L.G.); (E.B.); (N.C.); (U.D.)
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (C.L.G.); (E.B.); (N.C.); (U.D.)
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
- Correspondence:
| |
Collapse
|
21
|
Li J, Jia Y, An L, Niu C, Cong X, Zhao Y. Uncoupling protein 2 is upregulated in melanoma cells and contributes to the activation of Akt/mTOR and ERK signaling. Int J Oncol 2020; 56:1252-1261. [PMID: 32319575 DOI: 10.3892/ijo.2020.5010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/12/2019] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to characterize the expression of uncoupling protein 2 (UCP2) in melanoma and to study the potential mechanisms underlying the involvement of UCP2 in melanomagenesis using human melanoma cell lines. The expression of UCP2 was evaluated in specimens from normal control subjects, patients with compound nevus, and patients with cutaneous and mucosal melanoma. Stable knockdown of UCP2 was achieved in human melanoma cell lines, which were used to examine whether UCP2 knockdown affects the mitochondrial membrane potential and intracellular levels of ATP, reactive oxygen species and lactate. Cell proliferation, invasion, spheroid formation and cisplatin sensitivity were also evaluated in the UCP2 knockdown cells. Finally, the effects of UCP2 knockdown on the Akt/mammalian target of rapamycin (mTOR) and extracellular signal‑regulated kinase (ERK) pathways, which are important oncogenic pathways during melanomagenesis, were evaluated. Relatively high expression of UCP2 was detected in human melanoma specimens, which was correlated with Clark level and Breslow thickness. Knockdown of UCP2 suppressed cell proliferation, invasion and spheroid formation, and increased the sensitivity of melanoma cells to cisplatin. Furthermore, the UCP2 knockdown cells exhibited inhibition of Akt/mTOR signaling and ERK activation. Therefore, human melanoma tissues exhibit relatively high UCP2 expression, which may be implicated in the mechanisms underlying tumor progression. The potential role of UCP2 in melanomagenesis may involve enhancing the Akt/mTOR and mitogen‑activated protein kinase/ERK pathways.
Collapse
Affiliation(s)
- Jinran Li
- Department of Dermatology, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yuxi Jia
- Department of Dermatology, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lin An
- Department of Dermatology, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Chunbo Niu
- Department of Pathology, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xianling Cong
- Department of Dermatology, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology and Neurosciences, LSU Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
22
|
Kraus D, Palasuberniam P, Chen B. Therapeutic Enhancement of Verteporfin-mediated Photodynamic Therapy by mTOR Inhibitors. Photochem Photobiol 2019; 96:358-364. [PMID: 31769520 DOI: 10.1111/php.13187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/31/2019] [Indexed: 01/17/2023]
Abstract
Photodynamic therapy (PDT) with photosensitizer verteporfin is a clinically approved vascular disrupting modality that is currently in clinical trial for cancer treatment. In this study, we evaluated PDT in combination with either mTORC1 inhibitor rapamycin or mTORC1/C2 dual inhibitor AZD2014 for therapeutic enhancement in SVEC endothelial cells. Verteporfin-PDT alone induced cell apoptosis by activating the intrinsic apoptotic pathway. However, it increased the expression of anti-apoptotic protein MCL-1 and the phosphorylation of S6, a downstream molecule of mTOR signaling. In contrast, mTOR inhibitors rapamycin and AZD2014 did not induce apoptosis in SVEC cells. They suppressed MCL-1 expression and S6 phosphorylation and imposed a potent inhibition on cell proliferation. PDT in combination with mTOR inhibitors activated the intrinsic apoptotic pathway and resulted in increased apoptosis. Combination treatments also led to sustained inhibition of cell proliferation. Although AZD2014 was more effective for cell growth inhibition and PDT enhancement than rapamycin at the higher concentrations examined in the study, both inhibitors effectively enhanced PDT response, suggesting that inhibition of mTORC1 is crucial for PDT enhancement. Our results indicate that mTOR inhibitors mechanistically cooperate with PDT for enhanced cell death and sustained growth inhibition, supporting a combination approach for therapeutic enhancement.
Collapse
Affiliation(s)
- Daniel Kraus
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA
| | - Pratheeba Palasuberniam
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA.,Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
23
|
Aasen SN, Parajuli H, Hoang T, Feng Z, Stokke K, Wang J, Roy K, Bjerkvig R, Knappskog S, Thorsen F. Effective Treatment of Metastatic Melanoma by Combining MAPK and PI3K Signaling Pathway Inhibitors. Int J Mol Sci 2019; 20:E4235. [PMID: 31470659 PMCID: PMC6747502 DOI: 10.3390/ijms20174235] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/17/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022] Open
Abstract
Malignant melanoma is the most aggressive type of skin cancer and is closely associated with the development of brain metastases. Despite aggressive treatment, the prognosis has traditionally been poor, necessitating improved therapies. In melanoma, the mitogen activated protein kinase and the phosphoinositide 3-kinase signaling pathways are commonly altered, and therapeutically inhibiting one of the pathways often upregulates the other, leading to resistance. Thus, combined treatment targeting both pathways is a promising strategy to overcome this. Here, we studied the in vitro and in vivo effects of the PI3K inhibitor buparlisib and the MEK1/2 inhibitor trametinib, used either as targeted monotherapies or in combination, on patient-derived melanoma brain metastasis cell lines. Scratch wound and trans-well assays were carried out to assess the migratory capacity of the cells upon drug treatment, whereas flow cytometry, apoptosis array and Western blots were used to study apoptosis. Finally, an in vivo treatment experiment was carried out on NOD/SCID mice. We show that combined therapy was more effective than monotherapy. Combined treatment also more effectively increased apoptosis, and inhibited tumor growth in vivo. This suggests a clinical potential of combined treatment to overcome ceased treatment activity which is often seen after monotherapies, and strongly encourages the evaluation of the treatment strategy on melanoma patients with brain metastases.
Collapse
Affiliation(s)
- Synnøve Nymark Aasen
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Himalaya Parajuli
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Tuyen Hoang
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Zichao Feng
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Brain Science Research Institute, Shandong University, 44 Wenhuaxi Road, Jinan 250100, China
| | - Krister Stokke
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Jiwei Wang
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Brain Science Research Institute, Shandong University, 44 Wenhuaxi Road, Jinan 250100, China
| | - Kislay Roy
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Rolf Bjerkvig
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84 Val Fleuri, 1526 Luxembourg, Luxembourg
| | - Stian Knappskog
- Department of Oncology and Medical Physics, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
- Section of Oncology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Frits Thorsen
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84 Val Fleuri, 1526 Luxembourg, Luxembourg.
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
24
|
Rossi A, Roberto M, Panebianco M, Botticelli A, Mazzuca F, Marchetti P. Drug resistance of BRAF-mutant melanoma: Review of up-to-date mechanisms of action and promising targeted agents. Eur J Pharmacol 2019; 862:172621. [PMID: 31446019 DOI: 10.1016/j.ejphar.2019.172621] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022]
Abstract
Melanoma onset and progression are associated with a high variety of activating mutations in the MAPK-pathway, most frequently involving BRAF (35-45%) and NRAS (15-25%) genes, but also c-KIT and PTEN. Targeted therapies with BRAF and MEK inhibitors showed promising results over the past years, but it is known that most responses are temporary, and almost all of patients develop a tumor relapse within one year. Different drug-resistance mechanisms underlie the progression of disease and activation of both MAPK and PI3K/AKT/mTOR pathways. Therefore, in this article we reviewed the main studies about clinical effects of several target inhibitors, describing properly the most prominent mechanisms of both intrinsic and acquired resistance. Furthermore, suggestive strategies for overcoming drug resistance and the most recent alternative combination therapies to optimize the use of MAPK pathway inhibitors were also discussed.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Michela Roberto
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy; Department of Medical-Surgical Sciences and Translation Medicine, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy.
| | - Martina Panebianco
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Federica Mazzuca
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy; Oncology Unit, IDI-IRCCS of Rome, Italy
| |
Collapse
|
25
|
Galangin Suppresses Renal Inflammation via the Inhibition of NF- κB, PI3K/AKT and NLRP3 in Uric Acid Treated NRK-52E Tubular Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3018357. [PMID: 31240210 PMCID: PMC6556363 DOI: 10.1155/2019/3018357] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/22/2019] [Accepted: 04/16/2019] [Indexed: 01/10/2023]
Abstract
Renal inflammation can result in renal injury. Uric acid (UA) is the final product of purine metabolism in humans and because of the lack of urate oxidase, UA may accumulate in tissues, including kidney, causing inflammation. Galangin was isolated from a traditional Chinese medicine plant and possesses several beneficial effects, working as an anti-oxidant, anti-mutagenic, anti-tumor, anti-inflammatory, anti-microbial, and anti-viral agent. Therefore, this study aimed at investigating the molecular mechanism of galangin in the attenuation of UA induced renal inflammation in normal rat kidney epithelial cells NRK-52E. Our findings suggested that galangin treatment efficiently protected NRK-52E cells against UA induced renal inflammation by decreasing tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-18, prostaglandin E2 (PGE2), and nitric oxide (NO) release, and it inhibited nitric oxide synthase (iNOS), prostaglandin endoperoxide synthase 2 (PTGS2), TNF-α, IL-1β, and IL-18 mRNA expression. In addition, galangin was not exerting any cytotoxicity at the concentrations that were effective against inflammation as assessed by CCK8 assay. Moreover, western blotting showed that galangin treatment effectively inhibited nuclear factor-kappa B (NF-κB), phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) and nucleotide-binding domain- (NOD-) like receptor protein 3 (NLRP3) signaling pathway activation. Taken together, these findings suggested that galangin plays a pivotal role in renal inflammation by suppressing inflammatory responses, which might be closely associated with the inhibition of NLRP3 inflammasome, NF-κB and PI3K/AKT signaling pathway activation.
Collapse
|
26
|
Rao M, Chen D, Zhan P, Jiang J. MDA19, a novel CB2 agonist, inhibits hepatocellular carcinoma partly through inactivation of AKT signaling pathway. Biol Direct 2019; 14:9. [PMID: 31053086 PMCID: PMC6500002 DOI: 10.1186/s13062-019-0241-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/21/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND CB2 (cannabinoid receptor 2) agonists have been shown to exert anti-tumor activities in different tumor types. However, there is no study exploring the role of MDA19 (a novel CB2 agonist) in tumors. In this study we aimed to investigate the effects of MDA19 treatment on HCC cell lines, Hep3B and HepG2 and determine the relevant mechanisms. RESULTS Cell proliferation analysis, including CCK8 and colony formation assays, indicated that MDA19 treatment inhibited HCC cell proliferation in a dose- and time-dependent manner. Flow cytometry suggested that MDA19 induced cell apoptosis and activation of mitochondrial apoptosis pathway. Transwell assay indicated that HCC cell migration and invasion were significantly inhibited by MDA19 treatment. Mechanism investigation suggested that MDA19 induced inactivation of AKT signaling pathway in HCC cells. In addition, we investigated the function of CB2receptor in HCC and its role in the anti-tumor activity of MDA19. By searching on Kaplan-Meier plotter ( http://kmplot.com/analysis/ ), we found that HCC patients with high CB2 expression had a better survival and CB2 expression was significantly associated with gender, clinical stages and race of HCC patients (P < 0.05). CB2 inhibited the progression of HCC cells and its knockdown could rescue the growth inhibition induced by MDA19 in HCC. Moreover, the inhibitory effect of MDA19 on AKT signaling pathway was also reversed by CB2 knockdown. CONCLUSION Our data suggest that MDA-19 exerts an anti-tumor activity at least partly through inactivation of AKT signaling pathway in HCC. CB2 functions as a tumor suppressor gene in HCC, and MDA19-induced growth inhibition of HCC cells depends on its binding to CB2 to activate it. MDA-19 treatment may be a promising strategy for HCC therapy. REVIEWER This article was reviewed by Tito Cali, Mohamed Naguib and Bo Chen.
Collapse
Affiliation(s)
- Mei Rao
- Department of Pharmacy, Longyan First Hospital Affiliated to Fujian Medical University, 105 Jiuyi North Road, Longyan, Fujian, 364000, People's Republic of China
| | - Dongfeng Chen
- Department of Osteology, Longyan First Hospital Affiliated to Fujian Medical University, 105 Jiuyi North Road, Longyan, 364000, Fujian, People's Republic of China
| | - Peng Zhan
- Department of Osteology, Longyan First Hospital Affiliated to Fujian Medical University, 105 Jiuyi North Road, Longyan, 364000, Fujian, People's Republic of China
| | - Jianqing Jiang
- Department of Osteology, Longyan First Hospital Affiliated to Fujian Medical University, 105 Jiuyi North Road, Longyan, 364000, Fujian, People's Republic of China.
| |
Collapse
|
27
|
Lim HN, Baek SB, Jung HJ. Bee Venom and Its Peptide Component Melittin Suppress Growth and Migration of Melanoma Cells via Inhibition of PI3K/AKT/mTOR and MAPK Pathways. Molecules 2019; 24:molecules24050929. [PMID: 30866426 PMCID: PMC6429308 DOI: 10.3390/molecules24050929] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 01/28/2023] Open
Abstract
Malignant melanoma is the deadliest form of skin cancer and highly chemoresistant. Melittin, an amphiphilic peptide containing 26 amino acid residues, is the major active ingredient from bee venom (BV). Although melittin is known to have several biological activities such as anti-inflammatory, antibacterial and anticancer effects, its antimelanoma effect and underlying molecular mechanism have not been fully elucidated. In the current study, we investigated the inhibitory effect and action mechanism of BV and melittin against various melanoma cells including B16F10, A375SM and SK-MEL-28. BV and melittin potently suppressed the growth, clonogenic survival, migration and invasion of melanoma cells. They also reduced the melanin formation in α-melanocyte-stimulating hormone (MSH)-stimulated melanoma cells. Furthermore, BV and melittin induced the apoptosis of melanoma cells by enhancing the activities of caspase-3 and -9. In addition, we demonstrated that the antimelanoma effect of BV and melittin is associated with the downregulation of PI3K/AKT/mTOR and MAPK signaling pathways. We also found that the combination of melittin with the chemotherapeutic agent temozolomide (TMZ) significantly increases the inhibition of growth as well as invasion in melanoma cells compared to melittin or TMZ alone. Taken together, these results suggest that melittin could be potentially applied for the prevention and treatment of malignant melanoma.
Collapse
Affiliation(s)
- Haet Nim Lim
- Department of Pharmaceutical Engineering & Biotechnology, Sun Moon University, 70, Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
| | - Seung Bae Baek
- Eco system Lab., LOCORICO, Sun Moon University, 70, Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
| | - Hye Jin Jung
- Department of Pharmaceutical Engineering & Biotechnology, Sun Moon University, 70, Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
| |
Collapse
|
28
|
Dang N, Meng X, Ma S, Zhang Q, Sun X, Wei J, Huang S. MDA-19 Suppresses Progression of Melanoma Via Inhibiting the PI3K/Akt Pathway. Open Med (Wars) 2018; 13:416-424. [PMID: 30613786 PMCID: PMC6310917 DOI: 10.1515/med-2018-0061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/20/2018] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate the effect of MDA-19 on progression of melanoma, and explore the relevant mechanism. Methods The melanoma cell lines, M14 and UACC257, were treated with different concentrations of MDA-19, then CCK8, clone formation assay, Transwell and flow cytometry assays were performed to examine cell proliferation, migration, invasion and apoptosis, respectively. The expression of apoptosis-related proteins (Bcl-2, Bax and caspase 3 P17), EMT and signaling pathway-related proteins were also detected by Western blot. Results MDA-19 inhibited melanoma cells in a dose-dependent manner. Compared to the NC group, MDA-19 significantly inhibited cell growth capacity, migration and invasion of M14 and UACC257 cells, and accelerated cell apoptosis in a mitochondrial pathway through regulating Bcl-2/Bax and Caspase 3 in M14 and UACC257 cells. Moreover, MDA-19 was observed to up-regulate the expression of E-cad and down-regulate the expression of N-cad, Vimentin and Slug in melanoma cells in vitro. Furthermore, MDA-19 could inhibit the PI3K/Akt pathway by blocking Akt phosphorylation (p-Akt) and downstream proteins, P70 and Cyclin D1 in M14 and UACC257 cells. Conclusion Our data demonstrate that MDA-19 could inhibit progression of melanoma by suppressing the PI3K/Akt pathway, suggesting that MDA-19 is a potential anti-cancer agent for therapy of melanoma.
Collapse
Affiliation(s)
- Ningning Dang
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, Shandong Province, P.R. China
| | - Xianguang Meng
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, Shandong Province, P.R. China
| | - Shanshan Ma
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, Shandong Province, P.R. China
| | - Qian Zhang
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, Shandong Province, P.R. China
| | - XiYa Sun
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu Province, P.R. China
| | - Jingjing Wei
- Department of Neurobiology, Key Laboratory of Medical Neurobiology, School of Medicine, Shandong University, Jinan 250012, Shandong Province, P.R. China
| | - Shuhong Huang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology, School of Medicine, Shandong University, Jinan 250012, Shandong Province, P.R. China
| |
Collapse
|
29
|
Li L, Huang Y, Gao Y, Shi T, Xu Y, Li H, Hyytiäinen M, Keski-Oja J, Jiang Q, Hu Y, Du Z. EGF/EGFR upregulates and cooperates with Netrin-4 to protect glioblastoma cells from DNA damage-induced senescence. BMC Cancer 2018; 18:1215. [PMID: 30514230 PMCID: PMC6280426 DOI: 10.1186/s12885-018-5056-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most malignant central nervous system tumor. Alkylating agent, temozolomide (TMZ), is currently the first-line chemotherapeutic agent for GBM. However, the sensitivity of GBM cells to TMZ is affected by many factors. And, several clinic trials, including co-administration of TMZ with other drugs, have failed in successful treatment of GBM. We have previously reported that Netrin-4 (NTN4), a laminin-like axon guidance protein, plays a protective role in GBM cell senescence upon TMZ-triggered DNA damage. However, the master regulator of NTN4 needs further elucidation. Epidermal growth factor/Epidermal growth factor receptor (EGF/EGFR) can modulate the expression of various extracellular matrix related molecules, and prevent DNA damage in GBM cells. In this study, we investigated the relationship between EGF/EGFR signaling and NTN4, and explored their effect on therapeutic efficacy in GBM cells upon TMZ treatment. METHODS Co-expression analysis were performed by using the RNA sequencing data from NIH 934 cell lines and from single cell RNA sequencing data of GBM tumor. The co-expressing genes were used for GO enrichment and signaling pathway enrichment. mRNA expression of the target genes were quantified by qPCR, and cell senescence were investigated by Senescence-Associated Beta-Galactosidase Staining. Protein phosphorylation were observed and analyzed by immunoblotting. The RNA sequencing data and clinical information of TMZ treated patients were extracted from TCGA-glioblastoma project, and then used for Kaplan-Meier survival analysis. RESULTS Analysis of RNA sequencing data revealed a potential co-expression relationship between NTN4 and EGFR. GO enrichment of EGFR-correlated genes indicated that EGFR regulates GBM cells in a manner similar to that in central nervous system development and neural cell differentiation. Pathway analysis suggested that EGFR and its related genes contribute to cell adhesion, extracellular matrix (ECM) organization and caspase related signaling. We also show that EGF stimulates NTN4 expression in GBM cells and cooperates with NTN4 to attenuate GBM cell senescence induced by DNA damage, possibly via AKT and ERK. Clinical analysis showed that co-expression of EGFR and NTN4 significantly predicts poor survival in TMZ-treated GBM patients. CONCLUSIONS This study indicates that EGF/EGFR regulates and cooperates with NTN4 in DNA damage resistance in GBM. Therefore, our findings provide a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, the Second Clinical College, Harbin Medical University, Harbin, People's Republic of China
| | - Yulun Huang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuge Gao
- Department of Oncology, the Second Clinical College, Harbin Medical University, Harbin, People's Republic of China
| | - Tengfei Shi
- Department of Oncology, the Second Clinical College, Harbin Medical University, Harbin, People's Republic of China
| | - Yunyun Xu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Huini Li
- Departments of Virology and Pathology, Faculty of Medicine, the Haartman Institute, Translational Cancer Biology Research Program and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Marko Hyytiäinen
- Departments of Virology and Pathology, Faculty of Medicine, the Haartman Institute, Translational Cancer Biology Research Program and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jorma Keski-Oja
- Departments of Virology and Pathology, Faculty of Medicine, the Haartman Institute, Translational Cancer Biology Research Program and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Qiuying Jiang
- Department of Oncology, the Second Clinical College, Harbin Medical University, Harbin, People's Republic of China.
| | - Yizhou Hu
- Departments of Virology and Pathology, Faculty of Medicine, the Haartman Institute, Translational Cancer Biology Research Program and Helsinki University Hospital, University of Helsinki, Helsinki, Finland.
- Present address: Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Zhimin Du
- Department of pharmacy, the Second Clinical College, Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
30
|
Wei CY, Zhu MX, Lu NH, Peng R, Yang X, Zhang PF, Wang L, Gu JY. Bioinformatics-based analysis reveals elevated MFSD12 as a key promoter of cell proliferation and a potential therapeutic target in melanoma. Oncogene 2018; 38:1876-1891. [PMID: 30385854 PMCID: PMC6462865 DOI: 10.1038/s41388-018-0531-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/30/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022]
Abstract
Although recent therapeutic advances based on our understanding of molecular phenomena have prolonged the survival of melanoma patients, the prognosis of melanoma remains dismal and further understanding of the underlying mechanism of melanoma progression is needed. In this study, differential expression analyses revealed that many genes, including AKT1 and CDK2, play important roles in melanoma. Functional analyses of differentially expressed genes (DEGs), obtained from the GEO (Gene Expression Omnibus) database, indicated that high proliferative and metastatic abilities are the main characteristics of melanoma and that the PI3K and MAPK pathways play essential roles in melanoma progression. Among these DEGs, major facilitator superfamily domain-containing 12 (MFSD12) was found to have significantly and specifically upregulated expression in melanoma, and elevated MFSD12 level promoted cell proliferation by promoting cell cycle progression. Mechanistically, MFSD12 upregulation was found to activate PI3K signaling, and a PI3K inhibitor reversed the increase in cell proliferation endowed by MFSD12 upregulation. Clinically, high MFSD12 expression was positively associated with shorter overall survival (OS) and disease-free survival (DFS) in melanoma patients, and MFSD12 was an independent prognostic factor for OS and DFS in melanoma patients. Therapeutically, in vivo assays further confirmed that MFSD12 interference inhibited tumor growth and lung metastasis in melanoma. In conclusion, elevated MFSD12 expression promotes melanoma cell proliferation, and MFSD12 is a valuable prognostic biomarker and promising therapeutic target in melanoma.
Collapse
Affiliation(s)
- Chuan-Yuan Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Meng-Xuan Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Nan-Hang Lu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Rui Peng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Xuan Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Peng-Fei Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jian-Ying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
31
|
Ghosh D, Nandi S, Bhattacharjee S. Combination therapy to checkmate Glioblastoma: clinical challenges and advances. Clin Transl Med 2018; 7:33. [PMID: 30327965 PMCID: PMC6191404 DOI: 10.1186/s40169-018-0211-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022] Open
Abstract
Combination therapy is increasingly becoming the cornerstone of current day antitumor therapy. Glioblastoma multiforme is an aggressive brain tumor with a dismal median survival post diagnosis and a high rate of disease recurrence. The poor prognosis can be attributed to unique treatment limitations, which include the infiltrative nature of tumor cells, failure of anti-glioma drugs to cross the blood-brain barrier, tumor heterogeneity and the highly metastatic and angiogenic nature of the tumor making cells resistant to chemotherapy. Combination therapy approach is being developed against glioblastoma with new innovative combination drug regimens being tested in preclinical and clinical trials. In this review, we discuss the pathophysiology of glioblastoma, diagnostic markers, therapeutic targeting strategies, current treatment limitations, novel combination therapies in the context of current treatment options and the ongoing clinical trials for glioblastoma therapy.
Collapse
Affiliation(s)
- Debarati Ghosh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Saikat Nandi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | | |
Collapse
|
32
|
Takahashi T, Abe N, Kanoh H, Banno Y, Seishima M. Synergistic effects of vemurafenib and fingolimod (FTY720) in vemurafenib‑resistant melanoma cell lines. Mol Med Rep 2018; 18:5151-5158. [PMID: 30320355 DOI: 10.3892/mmr.2018.9537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/27/2018] [Indexed: 11/05/2022] Open
Abstract
Vemurafenib, a selective inhibitor of mutated BRAF, is used to treat late‑stage melanoma. However, resistance to vemurafenib is urgently required as it can have fatal consequences. Fingolimod (FTY720), a sphingosine‑1‑phosphate receptor modulator, has been used for the treatment of several malignant neoplasms in clinical trials. The present study investigated the effects of FTY720 and vemurafenib combination treatment on cell death induction, and defined the molecular mechanisms in vemurafenib‑resistant melanoma cells. The combination treatment with FTY720 and vemurafenib reduced cell viability, and the expression of apoptosis‑associated cleaved poly (adenosine diphosphate‑ribose) polymerase (PARP) was increased when compared with treatment with vemurafenib alone in WM‑115 cells, a vemurafenib‑resistant human melanoma cell line. In addition, the protein expression of phosphorylated extracellular signal‑related kinase (ERK) in WM‑115 cells was decreased by this combination treatment. Vemurafenib‑resistant SK‑Mel‑28 cells (R‑SK‑Mel) were established by culturing SK‑Mel‑28 cells, which are the most sensitive to vemurafenib, in the presence of vemurafenib. Similar to WM‑155 cells, the viability of R‑SK‑Mel cells was reduced and the expression of cleaved PARP was increased by the combination treatment with FTY720 and vemurafenib. In addition, the expression of phosphorylated ERK and Akt was also reduced by this treatment. These results suggested that FTY720 and vemurafenib synergistically induced cell death by downregulating proliferation and survival signalling pathways in vemurafenib‑resistant melanoma cells.
Collapse
Affiliation(s)
- Tomoko Takahashi
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu 501‑1194, Japan
| | - Naoko Abe
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu 501‑1194, Japan
| | - Hiroyuki Kanoh
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu 501‑1194, Japan
| | - Yoshiko Banno
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu 501‑1194, Japan
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu 501‑1194, Japan
| |
Collapse
|
33
|
Sun Z, Zheng L, Liu X, Xing W, Liu X. Sinomenine inhibits the growth of melanoma by enhancement of autophagy via PI3K/AKT/mTOR inhibition. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2413-2421. [PMID: 30122899 PMCID: PMC6084074 DOI: 10.2147/dddt.s155798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Melanoma is a common skin tumor in adults with high metastasis and mortality rates. Thus, finding a better effective approach to treat melanoma has become very urgent. Sinomenine (SIN), the major active compound of Sinomenium acutum, has shown antitumorigenic activities in certain cancers. However, its role in melanoma remains unclear. Purpose This study aimed to explore the effects of SIN on melanoma in vitro and in vivo, in addition to exploring the underlying mechanism. Methods Mouse melanoma cell B16-F10 treated by SIN was analyzed by CCK8 assay and flow cytometry. Melanoma xenograft model was then established by subcutaneously injection with B16-F10 cells. Tumor growth was measured by immunohistochemistry. To further investigate the relative mechanism, the autophagy and PI3K/Akt/mTOR pathway were examined by immunofluorescence and Western blot. Results Our results revealed that SIN dose dependently inhibited the proliferation of B16-F10 cells in vitro and attenuated melanoma growth in vivo. In addition, SIN treatment promoted the apoptosis of B16-F10 cells in a dose-dependent manner, as demonstrated by the increase in apoptotic cells, Bax/Bcl-2 ratio, and caspase-3 activity. Moreover, preconditioning with SIN dramatically enhanced autophagy activity by increasing Beclin-1 and LC3II/LC3I expression, in addition to decreasing p62 expression and augmenting the number of LC3 puncta, in B16-F10 cells. More importantly, autophagy inhibitor chloroquine partly abolished SIN’s effects on cell growth and apoptosis. Furthermore, our results showed that SIN-triggered activation of autophagy was mediated by PI3K/Akt/mTOR signaling pathway. Conclusion Our study has identified a novel function of SIN and provided a molecular basis for potential applications of SIN in the treatment of melanoma and other cancers.
Collapse
Affiliation(s)
- Zheng Sun
- Department of Dermatology and Venereology, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lingling Zheng
- Department of Dermatology and Venereology, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xujun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Wenlong Xing
- Department of Cardiovasology, Beijing Chinese Medicine Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xinhai Liu
- Department of Plastic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China,
| |
Collapse
|
34
|
Abstract
Malignant transformation of melanocytes, the pigment cells of human skin, causes formation of melanoma, a highly aggressive cancer with increased metastatic potential. Recently, mono-chemotherapies continue to improve by melanoma specific combination therapies with targeted kinase inhibitors. Still, metastatic melanoma remains a life-threatening disease because tumors exhibit primary resistance or develop resistance to novel therapies, thereby regaining tumorigenic capacity. In order to improve the therapeutic success of malignant melanoma, the determination of molecular mechanisms conferring resistance against conventional treatment approaches is necessary; however, it requires innovative cellular in vitro models. Here, we introduce an in vitro three-dimensional (3D) organotypic melanoma spheroid model that can portray the in vivo architecture of malignant melanoma and may warrant new insights into intra-tumoral as well as tumor-host interactions. The model incorporates defined numbers of mature and differentiated melanoma spheroids in a 3D human full skin reconstruction model consisting of primary skin cells. The cellular composition and differentiation status of the embedded melanoma spheroids is similar to the one of cutaneous melanoma metastasis in vivo. Using this organotypic melanoma spheroid model as a drug screening platform may support the identification of responders to selected combination therapies, while sparing the unnecessary treatment burden for non-responders, thereby increasing the benefit of therapeutic interventions.
Collapse
Affiliation(s)
- Ines Müller
- Experimental Dermatology, Medical Faculty, TU-Dresden
| | - Dagmar Kulms
- Experimental Dermatology, Medical Faculty, TU-Dresden;
| |
Collapse
|
35
|
Tan D, Pang FM, Li D, Zhang L, Wu J, Liu ZQ, Li X, Yan H. Overexpression of Fn14 in gliomas: tumor progression and poor prognosis. Future Oncol 2018; 14:1273-1284. [PMID: 29741404 DOI: 10.2217/fon-2017-0598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIM To confirm whether the expression level of Fn14 could affect progression or prognosis of glioma patients. METHODS Glioma cohorts in The Cancer Genome Atlas, Gene Expression Omnibus and Chinese Glioma Genome Atlas databases were comprehensively analyzed. RESULTS Low-grade patients had lower expression level of Fn14, while patients with higher expression of Fn14 tended to harbor shorter overall survival and disease-free survival. The expression level of Fn14 was downregulated by IDH1/IDH2 mutations while its gene body methylation was upregulated. After adjusting age, the expression level of Fn14 was still significantly associated with overall survival and disease-free survival in low-grade gliomas. In a cell line data analysis, Fn14 expression was positively correlated with temozolomide dosage. CONCLUSION Fn14 was an independent predictive biomarker for the progression and prognosis in low-grade gliomas.
Collapse
Affiliation(s)
- Dan Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, PR China.,Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Feng-Mei Pang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, PR China.,Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Dan Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, PR China.,Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, Hunan, 410008, PR China
| | - Jun Wu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, Hunan, 410008, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, PR China.,Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, PR China.,Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Han Yan
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, PR China.,Department of Pharmacy, The Second Xiangya Hospital, Central South University Changsha, Hunan, 410011, PR China
| |
Collapse
|
36
|
Haas B, Klinger V, Keksel C, Bonigut V, Kiefer D, Caspers J, Walther J, Wos-Maganga M, Weickhardt S, Röhn G, Timmer M, Frötschl R, Eckstein N. Inhibition of the PI3K but not the MEK/ERK pathway sensitizes human glioma cells to alkylating drugs. Cancer Cell Int 2018; 18:69. [PMID: 29755294 PMCID: PMC5935937 DOI: 10.1186/s12935-018-0565-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background Intrinsic chemoresistance of glioblastoma (GBM) is frequently owed to activation of the PI3K and MEK/ERK pathways. These signaling cascades are tightly interconnected however the quantitative contribution of both to intrinsic resistance is still not clear. Here, we aimed at determining the activation status of these pathways in human GBM biopsies and cells and investigating the quantitative impact of both pathways to chemoresistance. Methods Receptor tyrosine kinase (RTK) pathways in temozolomide (TMZ) treatment naive or TMZ resistant human GBM biopsies and GBM cells were investigated by proteome profiling and immunoblotting of a subset of proteins. Resistance to drugs and RTK pathway inhibitors was assessed by MTT assays. Apoptotic rates were determined by Annexin V staining and DNA damage with comet assays and immunoblotting. Results We analyzed activation of RTK pathways by proteome profiling of tumor samples of patients which were diagnosed a secondary GBM and underwent surgery and patients which underwent a second surgery after TMZ treatment due to recurrence of the tumor. We observed substantial activation of the PI3K and MEK/ERK pathways in both groups. However, AKT and CREB phosphorylation was reduced in biopsies of resistant tumors while ERK phosphorylation remained unchanged. Subsequent proteome profiling revealed that multiple RTKs and downstream targets are also activated in three GBM cell lines. We then systematically describe a mechanism of resistance of GBM cell lines and human primary GBM cells to the alkylating drugs TMZ and cisplatin. No specific inhibitor of the upstream RTKs sensitized cells to drug treatment. In contrast, we were able to restore sensitivity to TMZ and cisplatin by inhibiting PI3K in all cell lines and in human primary GBM cells. Interestingly, an opposite effect was observed when we inhibited the MEK/ERK signaling cascade with two different inhibitors. Conclusions Temozolomide treatment naive and TMZ resistant GBM biopsies show a distinct activation pattern of the MEK/ERK and PI3K signaling cascades indicating a role of these pathways in resistance development. Both pathways are also activated in GBM cell lines, however, only the PI3K pathway seems to play a crucial role in resistance to alkylating agents and might serve as drug target for chemosensitization.
Collapse
Affiliation(s)
- Bodo Haas
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Veronika Klinger
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,2Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany
| | - Christina Keksel
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,3Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| | - Verena Bonigut
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,3Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| | - Daniela Kiefer
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,3Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| | - Julia Caspers
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,4Faculty of Applied Natural Sciences, Cologne University of Applied Sciences, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany
| | - Julia Walther
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,2Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany
| | - Maria Wos-Maganga
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Sandra Weickhardt
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Gabriele Röhn
- 5Department of General Neurosurgery, Center for Neurosurgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Marco Timmer
- 5Department of General Neurosurgery, Center for Neurosurgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Roland Frötschl
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Niels Eckstein
- 3Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| |
Collapse
|
37
|
Antunes F, Pereira GJ, Jasiulionis MG, Bincoletto C, Smaili SS. Nutritional shortage augments cisplatin-effects on murine melanoma cells. Chem Biol Interact 2017; 281:89-97. [PMID: 29273566 DOI: 10.1016/j.cbi.2017.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/25/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023]
Abstract
Melanoma incidence increases every year worldwide and is responsible for 80% of skin cancer deaths. Due to its metastatic potential and resistance to almost any treatments such as chemo, radio, immune and targeted-therapy, the patients still have a poor prognosis, especially at metastatic stage. Considering that, it is crucial to find new therapeutic approaches to overcome melanoma resistance. Here we investigated the effect of cisplatin (CDDP), one of the chemotherapeutic agents used for melanoma treatment, in association with nutritional deprivation in murine melanoma cell lines. Cell death and autophagy were evaluated after the treatment with cisplatin, nutritional deprivation and its association using an in vitro model of murine melanocytes malignant transformation to metastatic melanoma. Our results showed that nutritional deprivation augmented cell death induced by cisplatin in melanoma cells, especially at the metastatic subtype, with slight effects on melanocytes. Mechanistic studies revealed that although autophagy was present at high levels in basal conditions in melanoma cells, was not essential for cell death process that involved mitochondrial damage, reactive oxygen species production and possible glycolysis inhibition. In conclusion, nutritional shortage in combination with chemotherapeutic drugs as cisplatin can be a valuable new therapeutic strategy to overcome melanoma resistance.
Collapse
Affiliation(s)
- F Antunes
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil
| | - G J Pereira
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil.
| | - M G Jasiulionis
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil
| | - C Bincoletto
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil
| | - S S Smaili
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
38
|
Lee SG, Kim MM. Pachymic acid promotes induction of autophagy related to IGF-1 signaling pathway in WI-38 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:82-87. [PMID: 29157832 DOI: 10.1016/j.phymed.2017.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 08/31/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The insulin-like growth factor 1 (IGF-1) signaling pathway has spotlighted as a mechanism to elucidate aging associated with autophagy in recent years. Therefore, we have tried to screen an effective compound capable of inducing autophagy to delay aging process. PURPOSE The aim of this study is to investigate whether pachymic acid, a main compound in Poria cocos, induces autophagy in the aged cells. METHODS The aging of young cells was induced by treatment with IGF-1 at 50 ng/ml three times every two days. The effect of pachymic acid on cell viability was evaluated in human lung fibroblasts, WI-38 cells, using MTT assay. The induction of autophagy was detected using autophagy detection kit. The expression of proteins related to autophagy and IGF-1 signaling pathway was examined by western blot analysis and immunofluorescence assay. RESULTS In this study, pachymic acid showed cytotoxic effect in a dose dependent manner and remarkably induced autophagy at the same time. Moreover, pachymic acid increased the expression of proteins related to autophagy such as LC3-II and Beclin1 and decreased the levels of mTor phosphorylation and p70S6K in the aged cells. In particular, pachymic acid increased the expression of p-PI3K, p-FoxO and Catalase. In addition, pachymic acid remarkably increased the expression of IGFBP-3. CONCLUSION Above results suggest that pachymic acid could induce autophagy related to IGF-1 signaling pathway in the aged cells.
Collapse
Affiliation(s)
- Su-Gyeong Lee
- Department of Chemistry, Dong-Eui University, Busan, 614-714, Republic of Korea
| | - Moon-Moo Kim
- Department of Chemistry, Dong-Eui University, Busan, 614-714, Republic of Korea.
| |
Collapse
|
39
|
Abstract
Inhibition of the BRAF/MAPK pathway belongs to the standard therapies for patients with activating BRAFV600E/K mutations. However, even in well-responding tumors, anti-tumorigenic effect and clinical benefit are only transient, and the original tumors often relapse. This demonstrates that there are remaining residual tumors, which have withstood therapy-induced apoptosis and which have the potential to resume growth. Although BRAF mutant melanoma cells seem to depend on BRAF/MAPK signaling, the inhibition of this pathway triggers several events, which modulate the tumor as well as the tumor niche. After a certain adaptation period, this can turn out to be beneficial for tumor growth and metastasis-even in cases of good initial tumor response. This review sheds light on the biology of BRAF/MEK inhibitor-sensitive melanoma cells, which survive targeted therapy and will address the crosstalk signaling events occurring in BRAF mutant melanomas when the BRAF/MAPK pathway is fully blocked. The knowledge of these events is important for potential future drug combinations, which enhance the inhibitory effect of BRAF/MEK inhibition, particularly in patients not eligible for immune therapy.
Collapse
Affiliation(s)
- Svenja Meierjohann
- Department of Physiological Chemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
40
|
Niessner H, Kosnopfel C, Sinnberg T, Beck D, Krieg K, Wanke I, Lasithiotakis K, Bonin M, Garbe C, Meier F. Combined activity of temozolomide and the mTOR inhibitor temsirolimus in metastatic melanoma involves DKK1. Exp Dermatol 2017; 26:598-606. [PMID: 28423208 DOI: 10.1111/exd.13372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2017] [Indexed: 02/03/2023]
Abstract
The BRAFV600E inhibitor vemurafenib achieves remarkable clinical responses in patients with BRAF-mutant melanoma, but its effects are limited by the onset of drug resistance. In the case of resistance, chemotherapy can still be applied as second line therapy. However, it yields low response rates and strategies are urgently needed to potentiate its effects. In a previous study, we showed that the inhibition of the PI3K-AKT-mTOR pathway significantly increases sensitivity of melanoma cells to chemotherapeutic drugs (J. Invest. Dermatol. 2009, 129, 1500). In this study, the combination of the mTOR inhibitor temsirolimus with the chemotherapeutic agent temozolomide significantly increases growth inhibition and apoptosis in melanoma cells compared to temsirolimus or temozolomide alone. The combination of temozolomide with temsirolimus is not only effective in established but also in newly isolated and vemurafenib-resistant metastatic melanoma cell lines. These effects are associated with the downregulation of the anti-apoptotic protein Mcl-1 and the upregulation of the Wnt antagonist Dickkopf homologue 1 (DKK1). Knock-down of DKK1 suppresses apoptosis induction by the combination of temsirolimus and temozolomide. These data suggest that the inhibition of the mTOR pathway increases sensitivity of melanoma cells towards temozolomide. Chemosensitisation is associated with enhanced expression of the Wnt antagonist DKK1.
Collapse
Affiliation(s)
- Heike Niessner
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Corinna Kosnopfel
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Tobias Sinnberg
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Daniela Beck
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Kathrin Krieg
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Ines Wanke
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | | | - Michael Bonin
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Claus Garbe
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Friedegund Meier
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
- Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| |
Collapse
|
41
|
Basu R, Wu S, Kopchick JJ. Targeting growth hormone receptor in human melanoma cells attenuates tumor progression and epithelial mesenchymal transition via suppression of multiple oncogenic pathways. Oncotarget 2017; 8:21579-21598. [PMID: 28223541 PMCID: PMC5400608 DOI: 10.18632/oncotarget.15375] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
Recent reports have confirmed highest levels of growth hormone (GH) receptor (GHR) transcripts in melanoma, one of the most aggressive forms of human cancer. Yet the mechanism of GH action in melanoma remains mostly unknown. Here, using human malignant melanoma cells, we examined the effects of GH excess or siRNA mediated GHR knock-down (GHRKD) on tumor proliferation, migration and invasion. GH promoted melanoma progression while GHRKD attenuated the same. Western blot analysis revealed drastic modulation of multiple oncogenic signaling pathways (JAK2, STAT1, STAT3, STAT5, AKT, mTOR, SRC and ERK1/2) following addition of GH or GHRKD. Further, we show that GH excess upregulates expression of markers of epithelial mesenchymal transition in human melanoma, while the effects were reversed by GHRKD. Interestingly, we observed consistent expression of GH transcript in the melanoma cells as well as marked modulation of the IGF receptors and binding proteins (IGF1R, IGF2R, IR, IGFBP2, IGFBP3) and the oncogenic HGF-MET mRNA, in response to excess GH or GHRKD. Our study thus identifies the mechanistic model of GH-GHR action in human melanoma and validates it as an important pharmacological target of intervention.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Molecular and Cell Biology Program, Ohio University, Athens, Ohio, USA
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Molecular and Cell Biology Program, Ohio University, Athens, Ohio, USA
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Molecular and Cell Biology Program, Ohio University, Athens, Ohio, USA
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, USA
| |
Collapse
|
42
|
Liu Y, Chu Z, Li Q, Peng B, Xu S, Lian CG, Geng S. Downregulation of Bmi-1 suppresses epithelial‑mesenchymal transition in melanoma. Oncol Rep 2016; 37:139-146. [PMID: 27878257 DOI: 10.3892/or.2016.5244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/08/2016] [Indexed: 01/28/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) contributes to the invasion and metastasis of numerous malignant cancers, including melanoma. A significant higher expression of B-lymphoma Moloney murine leukemia virus insertion region-1 (Bmi-1) has been reported in cell lines from metastatic melanoma compared to cell lines from primary melanoma. There are studies that show that knockdown of Bmi-1 could induce E-cadherin expression in melanoma cells. However, the role of Bmi-1 in mediating EMT-like changes in melanoma has not yet been fully studied. In the present study, knockdown of Bmi-1 by shRNA transduction decreased the invasion properties of the cultured human melanoma cells A375 by a Matrigel invasion assay, along with alterations in EMT-related markers E-cadherin, α-catenin, vimentin and N-cadherin. The aforementioned altered expression of EMT markers was verified in BALB/c-nude mouse xenografts. Furthermore, to explore the underlying regulatory mechanism of EMT, we detected the significant downregulation of p-Akt/p‑NF-κB/MMP-2 and the upregulation of PTEN in Bmi-1-silenced A375 cells. The present study demonstrated that knockdown of Bmi-1 significantly inhibited the aggressive behavior of melanoma by reversing EMT-like changes via the PTEN/p-Akt/p‑NF-κB/MMP-2 pathway.
Collapse
Affiliation(s)
- Yanting Liu
- Department of Dermatology, Northwest Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhaowei Chu
- Department of Dermatology, Northwest Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qingyan Li
- Department of Dermatology, Northwest Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Bin Peng
- Department of Dermatology, Northwest Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Suyun Xu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christine G Lian
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Songmei Geng
- Department of Dermatology, Northwest Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
43
|
Sinnberg T, Wang J, Sauer B, Schittek B. Casein kinase 1α has a non-redundant and dominant role within the CK1 family in melanoma progression. BMC Cancer 2016; 16:594. [PMID: 27488834 PMCID: PMC4973074 DOI: 10.1186/s12885-016-2643-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 06/15/2016] [Indexed: 01/08/2023] Open
Abstract
Background We previously identified CK1α as a novel tumor suppressor in melanoma and reported that the loss of CK1α leads to increased proliferation and invasive growth of melanoma cells by strong activation of the Wnt/β-catenin signaling pathway. Methods In this study we analyzed expression and the functional effects of the dominantly expressed CK1- isoforms α, δ and ε in melanoma cells by quantitative real-time PCR, western blot and immunohistochemistry. We down-regulated CK1 kinase activity with isoform specific siRNAs and small molecule inhibitors. Vice versa we overexpressed the CK1 isoforms α, δ and ε using viral vectors and tested the biological effects on melanoma cell proliferation, migration and invasion. Results We show that protein expression of all three CK1-isoforms is downregulated in metastatic melanoma cells compared to benign melanocytic cells. Furthermore, the CK1δ and ε isoforms are able to negatively regulate expression of each other, whereas CK1α expression is independently regulated in melanoma cells. Inhibition of the expression and activity of CK1δ or CK1ε by specific inhibitors or siRNAs had no significant effect on the growth and survival of metastatic melanoma cells. Moreover, the over-expression of CK1δ or CK1ε in melanoma cells failed to induce cell death and cell cycle arrest although p53 signaling was activated. This is in contrast to the effects of CK1α where up-regulated expression induces cell death and apoptosis in metastatic melanoma cells. Conclusion These data indicate that CK1α has a dominant and non-redundant function in melanoma cells and that the CK1δ and ε isoforms are not substantially involved in melanoma progression. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2643-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Sinnberg
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-University Tübingen, Liebermeisterstr 25, D-72076, Tübingen, Germany
| | - Jun Wang
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-University Tübingen, Liebermeisterstr 25, D-72076, Tübingen, Germany
| | - Birgit Sauer
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-University Tübingen, Liebermeisterstr 25, D-72076, Tübingen, Germany
| | - Birgit Schittek
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-University Tübingen, Liebermeisterstr 25, D-72076, Tübingen, Germany.
| |
Collapse
|
44
|
Wang J, Sinnberg T, Niessner H, Dölker R, Sauer B, Kempf WE, Meier F, Leslie N, Schittek B. PTEN regulates IGF-1R-mediated therapy resistance in melanoma. Pigment Cell Melanoma Res 2016; 28:572-89. [PMID: 26112748 DOI: 10.1111/pcmr.12390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 06/18/2015] [Indexed: 12/21/2022]
Abstract
Inhibition of the mitogen-activated protein kinase (MAPK) pathway is a major advance in the treatment of metastatic melanoma. However, its therapeutic success is limited by the rapid emergence of drug resistance. The insulin-like growth factor-1 receptor (IGF-1R) is overexpressed in melanomas developing resistance toward the BRAF(V) (600) inhibitor vemurafenib. Here, we show that hyperactivation of BRAF enhances IGF-1R expression. In addition, the phosphatase activity of PTEN as well as heterocellular contact to stromal cells increases IGF-1R expression in melanoma cells and enhances resistance to vemurafenib. Interestingly, PTEN-negative melanoma cells escape IGF-1R blockade by decreased expression of the receptor, implicating that only in melanoma patients with PTEN-positive tumors treatment with IGF-1R inhibitors would be a suitable strategy to combat therapy resistance. Our data emphasize the crosstalk and therapeutic relevance of microenvironmental and tumor cell-autonomous mechanisms in regulating IGF-1R expression and by this sensitivity toward targeted therapies.
Collapse
Affiliation(s)
- Jun Wang
- Division of Dermatooncology, Department of Dermatology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Heike Niessner
- Division of Dermatooncology, Department of Dermatology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Rebecca Dölker
- Division of Dermatooncology, Department of Dermatology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Birgit Sauer
- Division of Dermatooncology, Department of Dermatology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Wolfgang E Kempf
- Division of Dermatooncology, Department of Dermatology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Friedegund Meier
- Division of Dermatooncology, Department of Dermatology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | | | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
45
|
Guo S, Long M, Li X, Zhu S, Zhang M, Yang Z. Curcumin activates autophagy and attenuates oxidative damage in EA.hy926 cells via the Akt/mTOR pathway. Mol Med Rep 2016; 13:2187-93. [PMID: 26781771 DOI: 10.3892/mmr.2016.4796] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 11/05/2015] [Indexed: 11/05/2022] Open
Abstract
Curcumin, which is the effective component of turmeric (Curcuma longa), has previously been shown to exert potent antioxidant, antitumor and anti‑inflammatory activities in vitro and in vivo. However, the mechanism underlying the protective effects of curcumin against oxidative damage in endothelial cells remains unclear. The present study aimed to examine the effects of curcumin on hydrogen peroxide (H2O2)‑induced apoptosis and autophagy in EA.hy926 cells, and to determine the underlying molecular mechanism. Cultured EA.hy926 cells were treated with curcumin (5‑20 µmol/l) 4 h prior to and for 4 h during exposure to H2O2 (200 µmol/l). Oxidative stress resulted in a significant increase in the rate of cell apoptosis, which was accompanied by an increase in the expression levels of caspase‑3 and B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax), and a decrease in the expression levels of Bcl‑2. Treatment with curcumin (5 or 20 µmol/l) significantly inhibited apoptosis, and reversed the alterations in caspase‑3, Bcl‑2 and Bax expression. Furthermore, curcumin induced autophagy and microtubule‑associated protein 1A/1B‑light chain 3‑Ⅱ expression, and suppressed the phosphorylation of Akt and mammalian target of rapamycin (mTOR). These results indicated that curcumin may protect cells against oxidative stress‑induced damage through inhibiting apoptosis and inducing autophagy via the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Shouyu Guo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingzhi Long
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Xiuzhen Li
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Shushu Zhu
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Min Zhang
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Zhijian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
46
|
Fernández A, Ordóñez R, Reiter RJ, González-Gallego J, Mauriz JL. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res 2015. [PMID: 26201382 DOI: 10.1111/jpi.12264] [Citation(s) in RCA: 389] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) is a dynamic organelle that participates in a number of cellular functions by controlling lipid metabolism, calcium stores, and proteostasis. Under stressful situations, the ER environment is compromised, and protein maturation is impaired; this causes misfolded proteins to accumulate and a characteristic stress response named unfolded protein response (UPR). UPR protects cells from stress and contributes to cellular homeostasis re-establishment; however, during prolonged ER stress, UPR activation promotes cell death. ER stressors can modulate autophagy which in turn, depending of the situation, induces cell survival or death. Interactions of different autophagy- and apoptosis-related proteins and also common signaling pathways have been found, suggesting an interplay between these cellular processes, although their dynamic features are still unknown. A number of pathologies including metabolic, neurodegenerative and cardiovascular diseases, cancer, inflammation, and viral infections are associated with ER stress, leading to a growing interest in targeting components of the UPR as a therapeutic strategy. Melatonin has a variety of antioxidant, anti-inflammatory, and antitumor effects. As such, it modulates apoptosis and autophagy in cancer cells, neurodegeneration and the development of liver diseases as well as other pathologies. Here, we review the effects of melatonin on the main ER stress mechanisms, focusing on its ability to regulate the autophagic and apoptotic processes. As the number of studies that have analyzed ER stress modulation by this indole remains limited, further research is necessary for a better understanding of the crosstalk between ER stress, autophagy, and apoptosis and to clearly delineate the mechanisms by which melatonin modulates these responses.
Collapse
Affiliation(s)
- Anna Fernández
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Raquel Ordóñez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - José L Mauriz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
47
|
Hall CP, Reynolds CP, Kang MH. Modulation of Glucocorticoid Resistance in Pediatric T-cell Acute Lymphoblastic Leukemia by Increasing BIM Expression with the PI3K/mTOR Inhibitor BEZ235. Clin Cancer Res 2015; 22:621-32. [PMID: 26080839 DOI: 10.1158/1078-0432.ccr-15-0114] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/06/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of our study is to evaluate the preclinical therapeutic activity and mechanism of action of BEZ235, a dual PI3K/mTOR inhibitor, in combination with dexamethasone in acute lymphoblastic leukemia (ALL). EXPERIMENTAL DESIGN The cytotoxic effects of BEZ235 and dexamethasone as single agents and in combination were assessed in a panel of ALL cell lines and xenograft models. The underlying mechanism of BEZ235 and dexamethasone was evaluated using immunoblotting, TaqMan RT-PCR, siRNA, immunohistochemistry, and immunoprecipitation. RESULTS Inhibition of the PI3K/AKT/mTOR pathway with the dual PI3K/mTOR inhibitor BEZ235 enhanced dexamethasone-induced anti-leukemic activity in in vitro (continuous cell lines and primary ALL cultures) and systemic in vivo models of T-ALL (including a patient-derived xenograft). Through inhibition of AKT1, BEZ235 was able to alleviate AKT1-mediated suppression of dexamethasone-induced apoptotic pathways leading to increased expression of the proapoptotic BCL-2 protein BIM. Downregulation of MCL-1 by BEZ235 further contributed to the modulation of dexamethasone resistance by increasing the amount of BIM available to induce apoptosis, especially in PTEN-null T-ALL where inhibition of AKT only partially overcame AKT-induced BIM suppression. CONCLUSIONS Our data support the further investigation of agents targeting the PI3K/mTOR pathway to modulate glucocorticoid resistance in T-ALL.
Collapse
Affiliation(s)
- Connor P Hall
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas. Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - C Patrick Reynolds
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas. Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas. Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas. Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Min H Kang
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas. Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas. Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas. Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas.
| |
Collapse
|
48
|
Targeting N-cadherin increases vascular permeability and differentially activates AKT in melanoma. Ann Surg 2015; 261:368-77. [PMID: 24646553 DOI: 10.1097/sla.0000000000000635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We investigate the mechanism through which N-cadherin disruption alters the effectiveness of regional chemotherapy for locally advanced melanoma. BACKGROUND N-cadherin antagonism during regional chemotherapy has demonstrated variable treatment effects. METHODS Isolated limb infusion (ILI) with melphalan (LPAM) or temozolomide (TMZ) was performed on rats bearing melanoma xenografts after systemic administration of the N-cadherin antagonist, ADH-1, or saline. Permeability studies were performed using Evans blue dye as the infusate, and interstitial fluid pressure was measured. Immunohistochemistry of LPAM-DNA adducts and damage was performed as surrogates for LPAM and TMZ delivery. Tumor signaling was studied by Western blotting and reverse-phase protein array analysis. RESULTS Systemic ADH-1 was associated with increased growth and activation of the PI3K (phosphatidylinositol-3 kinase)-AKT pathway in A375 but not DM443 xenografts. ADH-1 in combination with LPAM ILI improved antitumor responses compared with LPAM alone in both cell lines. Combination of ADH-1 with TMZ ILI did not improve tumor response in A375 tumors. ADH-1 increased vascular permeability without effecting tumor interstitial fluid pressure, leading to increased delivery of LPAM but not TMZ. CONCLUSIONS ADH-1 improved responses to regional LPAM but had variable effects on tumors regionally treated with TMZ. N-cadherin-targeting agents may lead to differential effects on the AKT signaling axis that can augment growth of some tumors. The vascular targeting actions of N-cadherin antagonism may not augment some regionally delivered alkylating agents, leading to a net increase in tumor size with this type of combination treatment strategy.
Collapse
|
49
|
Garay T, Molnár E, Juhász É, László V, Barbai T, Dobos J, Schelch K, Pirker C, Grusch M, Berger W, Tímár J, Hegedűs B. Sensitivity of Melanoma Cells to EGFR and FGFR Activation but Not Inhibition is Influenced by Oncogenic BRAF and NRAS Mutations. Pathol Oncol Res 2015; 21:957-68. [PMID: 25749811 DOI: 10.1007/s12253-015-9916-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/17/2015] [Indexed: 11/28/2022]
Abstract
BRAF and NRAS are the two most frequent oncogenic driver mutations in melanoma and are pivotal components of both the EGF and FGF signaling network. Accordingly, we investigated the effect of BRAF and NRAS oncogenic mutation on the response to the stimulation and inhibition of epidermal and fibroblast growth factor receptors in melanoma cells. In the three BRAF mutant, two NRAS mutant and two double wild-type cell lines growth factor receptor expression had been verified by qRT-PCR. Cell proliferation and migration were determined by the analysis of 3-days-long time-lapse videomicroscopic recordings. Of note, a more profound response was found in motility as compared to proliferation and double wild-type cells displayed a higher sensitivity to EGF and FGF2 treatment when compared to mutant cells. Both baseline and induced activation of the growth factor signaling was assessed by immunoblot analysis of the phosphorylation of the downstream effectors Erk1/2. Low baseline and higher inducibility of the signaling pathway was characteristic in double wild-type cells. In contrast, oncogenic BRAF or NRAS mutation did not influence the response to EGF or FGF receptor inhibitors in vitro. Our findings demonstrate that the oncogenic mutations in melanoma have a profound impact on the motogenic effect of the activation of growth factor receptor signaling. Since emerging molecularly targeted therapies aim at the growth factor receptor signaling, the appropriate mutational analysis of individual melanoma cases is essential in both preclinical studies and in the clinical trials and practice.
Collapse
Affiliation(s)
- Tamás Garay
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, H-1091, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Phase II study of temozolomide (TMZ) and everolimus (RAD001) therapy for metastatic melanoma: a North Central Cancer Treatment Group study, N0675. Am J Clin Oncol 2014; 37:369-76. [PMID: 23357973 DOI: 10.1097/coc.0b013e31827b45d4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Mammalian target of rapamycin (mTOR) pathway is activated in malignant melanoma and in situ lesions as opposed to benign nevi. Inhibition of PI3K-Akt-mTOR signaling is implicated in sensitization of melanoma cells to alkylating agents (temozolomide [TMZ]) and inhibition of tumor angiogenesis. METHODS We conducted a single-arm phase II multi-institution cooperative group study to assess the antitumor activity and safety profile of the combination of TMZ and the rapamycin derivative everolimus in patients with metastatic unresectable malignant melanoma. Patients received 10 mg/d of RAD001 for 5 of 7 days (ie, 50 mg/wk) and 200 mg/m/d of TMZ for 5 days each cycle. RESULTS Of the first 39 eligible patients, 17 were PFS-9 successes, for a predetermined threshold of 18/39 patients for a positive trial. Overall, 21 of 48 patients were progression free at 9 weeks, for an event-free survival rate of 44% (95% confidence interval, 29%-59%). The median progression-free survival was 2.4 months and the median overall survival was 8.6 months. Four patients achieved a partial response; the median duration of response was 15.1 months. No complete remissions were observed. Treatment was in general well tolerated with only 1 patient discontinuing therapy due to toxicity (hyperlipidemia). CONCLUSIONS The combination of TMZ and RAD001 was well tolerated but failed to meet/exceed our study threshold for promising clinical activity in patients with metastatic melanoma.
Collapse
|