1
|
Andersen CJ, Fernandez ML. Emerging Biomarkers and Determinants of Lipoprotein Profiles to Predict CVD Risk: Implications for Precision Nutrition. Nutrients 2024; 17:42. [PMID: 39796476 PMCID: PMC11722654 DOI: 10.3390/nu17010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Biomarkers constitute a valuable tool to diagnose both the incidence and the prevalence of chronic diseases and may help to inform the design and effectiveness of precision nutrition interventions. Cardiovascular disease (CVD) continues to be the foremost cause of death all over the world. While the reasons that lead to increased risk for CVD are multifactorial, dyslipidemias, plasma concentrations of specific lipoproteins, and dynamic measures of lipoprotein function are strong biomarkers to predict and document coronary heart disease incidence. The aim of this review is to provide a comprehensive evaluation of the biomarkers and emerging approaches that can be utilized to characterize lipoprotein profiles as predictive tools for assessing CVD risk, including the assessment of traditional clinical lipid panels, measures of lipoprotein efflux capacity and inflammatory and antioxidant activity, and omics-based characterization of lipoprotein composition and regulators of lipoprotein metabolism. In addition, we discuss demographic, genetic, metagenomic, and lifestyle determinants of lipoprotein profiles-such as age, sex, gene variants and single-nucleotide polymorphisms, gut microbiome profiles, dietary patterns, physical inactivity, obesity status, smoking and alcohol intake, and stress-which are likely to be essential factors to explain interindividual responses to precision nutrition recommendations to mitigate CVD risk.
Collapse
Affiliation(s)
- Catherine J. Andersen
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
- School of Nutrition and Wellness, University of Arizona, Tucson, AZ 85712, USA
| |
Collapse
|
2
|
Stadler JT, Borenich A, Pammer A, Emrich IE, Habisch H, Madl T, Heine GH, Marsche G. Association of Small HDL Subclasses with Mortality Risk in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:1511. [PMID: 39765838 PMCID: PMC11673888 DOI: 10.3390/antiox13121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
High-density lipoproteins (HDL) exist in various subclasses, with smaller HDL particles possessing the highest anti-oxidative and anti-inflammatory properties. Understanding the role of these specific subclasses in chronic kidney disease (CKD) could provide valuable insights into disease progression and potential therapeutic targets. In the present study, we assessed HDL subclass composition in 463 patients with CKD stage 2-4 using nuclear magnetic resonance spectroscopy. Over a mean follow-up period of 5.0 years, 18.6% of patients died. Compared to survivors, deceased patients exhibited significantly lower levels of cholesterol, ApoA-I, and ApoA-II within the small and extra-small (XS) HDL subclasses. Multivariable Cox regression analysis, adjusted for traditional cardiovascular and renal risk factors, demonstrated that reduced levels of XS-HDL-cholesterol, XS-HDL-ApoA-I, and XS-HDL-ApoA-II were independently associated with an increased risk of mortality. Furthermore, receiver operating characteristic analysis identified XS-HDL-ApoA-II as the most potent prognostic marker for mortality. In conclusion, reduced small and XS-HDL subclasses, especially XS-HDL-ApoA-II, are strongly associated with increased all-cause mortality risk in CKD patients. Assessment of HDL subclass distribution could provide valuable clinical information and help identify patients at high risk.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (A.P.)
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstraße 8, 8010 Graz, Austria
| | - Andrea Borenich
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria;
| | - Anja Pammer
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (A.P.)
| | - Insa E. Emrich
- Faculty of Medicine, Saarland University, 66421 Saarbrücken, Germany;
| | - Hansjörg Habisch
- Division of Medical Chemistry, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (H.H.); (T.M.)
| | - Tobias Madl
- Division of Medical Chemistry, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (H.H.); (T.M.)
- BioTechMed Graz, 8010 Graz, Austria
| | - Gunnar H. Heine
- Faculty of Medicine, Saarland University, 66421 Saarbrücken, Germany;
- Department of Nephrology, Agaplesion Markus Krankenhaus, 60431 Frankfurt am Main, Germany
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (A.P.)
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
3
|
Ma L, Sun F, Zhu K, Han Q, Sun Q. The Predictive Value of Atherogenic Index of Plasma, Non- High Density Lipoprotein Cholesterol (Non-HDL-C), Non-HDL-C/HDL-C, and Lipoprotein Combine Index for Stroke Incidence and Prognosis in Maintenance Hemodialysis Patients. Clin Interv Aging 2024; 19:1235-1245. [PMID: 38978964 PMCID: PMC11230120 DOI: 10.2147/cia.s461150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose The serum lipid level is strongly associated with atherosclerosis. However, research on the relationship between lipid-derived indices and acute ischemic stroke (AIS) occurrence in hemodialysis populations is limited. This study aimed to explore the predictive value of lipid-derived indices, including atherogenic index of plasma (AIP), Non- high density lipoprotein cholesterol (Non-HDL-C), Non-HDL-C/HDL-C, and lipoprotein combine index (LCI) in clinical practice for the occurrence and prognosis of AIS in hemodialysis patients. Methods A total of 451 patients undergoing maintenance hemodialysis were screened and 350 were enrolled in this study. The lipid parameters exhibit a progressive increase across the tertiles, with values rising from Q1 through Q3. Enrolled patients were divided into three groups (Q1, Q2, and Q3) based on tertiles of AIP, Non-HDL-C, Non-HDL-C/HDL-C, and LCI values. Kaplan-Meier curves were performed to investigate the association between the AIP, Non-HDL-C, Non-HDL-C/HDL-C, LCI and AIS-free survival in hemodialysis patients. Chi-square analysis was used to explore the association between the AIP, Non-HDL-C, Non-HDL-C/HDL-C, LCI and AIS outcomes in hemodialysis patients. AIS outcomes were assessed using the modified Rankin Scale (mRS). Results Kaplan-Meier analysis revealed that the AIS-free survival rates were significantly higher in the Q1 group compared to Q2 and Q3 groups for AIP, Non-HDL-C, Non-HDL-C/HDL-C, and LCI. Log rank tests showed statistically significant differences between the Q1 group and the Q2 and Q3 groups (p < 0.05 for all). The proportion of patients with a good outcome mRS was higher in the Q1 group compared to the Q2-Q3 groups (AIP: 0.818 vs 0.792; Non- HDL-C: 0.866 vs 0.767; Non- HDL-C/HDL-C: 0.867 vs 0.767; LCI: 0.938 vs 0.750). Conclusion The four lipid-derived parameters are effective predictors of AIS in patients undergoing hemodialysis, and AIP has a strongest correlation with the risk of AIS. Hemodialysis patients with elevated levels of the four lipid-derived indices had a higher incidence of AIS and poorer functional outcomes compared to those with lower levels. Our conclusions may require confirmation by further research in the future.
Collapse
Affiliation(s)
- Lijie Ma
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Fang Sun
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Kaiyi Zhu
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Qiuxia Han
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Qianmei Sun
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| |
Collapse
|
4
|
Parandoosh H, Khodaei-Motlagh M, Ghasemi HA, Farahani AHK. Effects of day-of-hatch intramuscular administration of a herbal extract mixture and its re-supplementation in drinking water on growth performance, stress indicators, and antioxidant status of broiler chickens reared under hot summer conditions. Trop Anim Health Prod 2023; 55:196. [PMID: 37147529 DOI: 10.1007/s11250-023-03597-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 04/18/2023] [Indexed: 05/07/2023]
Abstract
Broilers under oxidative stress from high ambient temperatures may benefit from the use of additives that have antioxidant properties. This experiment investigated the efficacy of a herbal extract mixture (HEM; aqueous extracts from Ferula gummosa, Thymus vulgaris, and Trachyspermum copticum) in day-old chicks, injected intramuscular (deep pectoral muscle; (0, 30, 60, and 90 μL/0.1 mL of sterilized and distilled water)), and supplemented in drinking water (0 and 0.25 mL/L) during the rearing period. Broilers were reared in battery cages under summer temperature conditions, with average maximum temperature of 35.5°C, average minimum temperature of 25.5°C, and average relative humidity of 50-60%. A total of 400 1-day-old Ross 308 male broiler chicks were randomly assigned to 8 treatment groups (5 replicates/treatment with 10 birds per replicate). From d1 to d10, the indoor air temperature was adjusted to match fluctuating outdoor summer temperatures, and was set at 30-34°C and 50-60% relative humidity; and from d10 onwards, no adjustments were made. Injection of HEM linearly decreased feed:gain (P = 0.005), heterophile-to-lymphocyte (H/L) ratio (P = 0.007), and serum concentrations of cholesterol (P = 0.008), low-density lipoprotein cholesterol (LDL) (P < 0.001), malondialdehyde (P = 0.005), and cortisol (P = 0.008). The 60 μL of HEM injection produced the best results in terms of final body weight (BW; P = 0.003), overall average daily gain (ADG; P = 0.002), European performance index (P < 0.001), carcass yield (P < 0.001), and serum glutathione peroxidase activity (P < 0.001). Supplementation of HEM in drinking water also increased final BW (P = 0.048), overall ADG (P = 0.047), high-density lipoprotein cholesterol (P = 0.042), and total antioxidant capacity (P = 0.030), while decreasing the H/L ratio (P = 0.004) and serum LDL concentration (P = 0.031). There were interactions between injection and water supplementation for BW (day 24; P = 0.045), carcass yield (day 42; P = 0.014), and serum superoxide dismutase activity (day 42; P = 0.004). In conclusion, administering an injection of HEM at a dose of 60 μL at the time of hatching, followed by supplementation at a dose of 0.25 mL/L via drinking water during the rearing period could be a useful strategy for improving the performance and health status of heat-stressed broiler chickens.
Collapse
Affiliation(s)
- Hadiseh Parandoosh
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran
| | - Mahdi Khodaei-Motlagh
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran.
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran.
| | | |
Collapse
|
5
|
Schoch L, Sutelman P, Suades R, Casani L, Padro T, Badimon L, Vilahur G. Hypercholesterolemia-Induced HDL Dysfunction Can Be Reversed: The Impact of Diet and Statin Treatment in a Preclinical Animal Model. Int J Mol Sci 2022; 23:8596. [PMID: 35955730 PMCID: PMC9368958 DOI: 10.3390/ijms23158596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
High-density lipoproteins (HDL) undergo adverse remodeling and loss of function in the presence of comorbidities. We assessed the potential of lipid-lowering approaches (diet and rosuvastatin) to rescue hypercholesterolemia-induced HDL dysfunction. Hypercholesterolemia was induced in 32 pigs for 10 days. Then, they randomly received one of the 30-day interventions: (I) hypercholesterolemic (HC) diet; (II) HC diet + rosuvastatin; (III) normocholesterolemic (NC) diet; (IV) NC diet + rosuvastatin. We determined cholesterol efflux capacity (CEC), antioxidant potential, HDL particle number, HDL apolipoprotein content, LDL oxidation, and lipid levels. Hypercholesterolemia time-dependently impaired HDL function (−62% CEC, −11% antioxidant index (AOI); p < 0.01), increased HDL particles numbers 2.8-fold (p < 0.0001), reduced HDL-bound APOM (−23%; p < 0.0001), and increased LDL oxidation 1.7-fold (p < 0.0001). These parameters remained unchanged in animals on HC diet alone up to day 40, while AOI deteriorated up to day 25 (−30%). The switch to NC diet reversed HDL dysfunction, restored apolipoprotein M content and particle numbers, and normalized cholesterol levels at day 40. Rosuvastatin improved HDL, AOI, and apolipoprotein M content. Apolipoprotein A-I and apolipoprotein C-III remained unchanged. Lowering LDL-C levels with a low-fat diet rescues HDL CEC and antioxidant potential, while the addition of rosuvastatin enhances HDL antioxidant capacity in a pig model of hypercholesterolemia. Both strategies restore HDL-bound apolipoprotein M content.
Collapse
Affiliation(s)
- Leonie Schoch
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
- Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain
| | - Pablo Sutelman
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
| | - Rosa Suades
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
| | - Laura Casani
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
| | - Teresa Padro
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
- CiberCV, 08025 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
- CiberCV, 08025 Barcelona, Spain
- Cardiovascular Research Chair, Autonomous University of Barcelona (UAB), 08025 Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
- CiberCV, 08025 Barcelona, Spain
| |
Collapse
|
6
|
Ghareghomi S, Rahban M, Moosavi-Movahedi Z, Habibi-Rezaei M, Saso L, Moosavi-Movahedi AA. The Potential Role of Curcumin in Modulating the Master Antioxidant Pathway in Diabetic Hypoxia-Induced Complications. Molecules 2021; 26:molecules26247658. [PMID: 34946740 PMCID: PMC8706440 DOI: 10.3390/molecules26247658] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is the leading player in the onset and development of various diseases. The Keap1-Nrf2 pathway is a pivotal antioxidant system that preserves the cells' redox balance. It decreases inflammation in which the nuclear trans-localization of Nrf2 as a transcription factor promotes various antioxidant responses in cells. Through some other directions and regulatory proteins, this pathway plays a fundamental role in preventing several diseases and reducing their complications. Regulation of the Nrf2 pathway occurs on transcriptional and post-transcriptional levels, and these regulations play a significant role in its activity. There is a subtle correlation between the Nrf2 pathway and the pivotal signaling pathways, including PI3 kinase/AKT/mTOR, NF-κB and HIF-1 factors. This demonstrates its role in the development of various diseases. Curcumin is a yellow polyphenolic compound from Curcuma longa with multiple bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Since hyperglycemia and increased reactive oxygen species (ROS) are the leading causes of common diabetic complications, reducing the generation of ROS can be a fundamental approach to dealing with these complications. Curcumin can be considered a potential treatment option by creating an efficient therapeutic to counteract ROS and reduce its detrimental effects. This review discusses Nrf2 pathway regulation at different levels and its correlation with other important pathways and proteins in the cell involved in the progression of diabetic complications and targeting these pathways by curcumin.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
| | | | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417466191, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (M.H.-R.); (A.A.M.-M.); Tel.: +98-21-6111-3214 (M.H.-R.); +98-21-6111-3381 (A.A.M.-M.); Fax: +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680 (A.A.M.-M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, 00185 Rome, Italy;
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (M.H.-R.); (A.A.M.-M.); Tel.: +98-21-6111-3214 (M.H.-R.); +98-21-6111-3381 (A.A.M.-M.); Fax: +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680 (A.A.M.-M.)
| |
Collapse
|
7
|
Peng M, Zhang Q, Liu Y, Guo X, Ju J, Xu L, Gao Y, Chen D, Mu D, Zhang R. Apolipoprotein A-I Mimetic Peptide L-4F Suppresses Granulocytic-Myeloid-Derived Suppressor Cells in Mouse Pancreatic Cancer. Front Pharmacol 2020; 11:576. [PMID: 32425796 PMCID: PMC7204910 DOI: 10.3389/fphar.2020.00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
L-4F is an apolipoprotein A-I (ApoA-I) mimetic peptide, it was engineered to imitate the anti-inflammatory and anti-oxidative activity of ApoA-I. In this paper, H7 cell was used to construct a mouse model of pancreatic cancer in situ, and the mice were treated with L-4F. Then, the development of pancreatic cancer and myeloid-derived suppressor cells (MDSCs) infiltration were investigated in vivo. After L-4F treatment, the differentiation, proliferation and apoptosis of MDSCs were detected in vitro. Moreover, we test its effects on the immunosuppressive function of MDSCs ex vivo. The results show that L-4F significantly reduced the tumorigenicity of H7 cells. L-4F suppressed granulocytic myeloid-derived suppressor cells (PMN-MDSCs) differentiation and inhibited the accumulation of PMN-MDSCs in the mouse spleen and tumor tissue. L-4F weakened the immunosuppressive function of MDSCs, resulting in decreased production of ROS and H2O2 by MDSCs, and increased T cell proliferation, interferon γ and tumor necrosis factor β secretion, and CD3+CD4+ T and CD3+CD8+ T cell infiltration into the mouse spleen and pancreatic cancer tissue. Furthermore, L-4F significantly down regulated the STAT3 signaling pathway in PMN-MDSCs. These results indicated that L-4F exerts an effective anti-tumor and immunomodulatory effect in pancreatic cancer by inhibiting PMN-MDSCs.
Collapse
Affiliation(s)
- Meiyu Peng
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yanqing Liu
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiangdong Guo
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Medical University, Tianjin, China
| | - Jiyu Ju
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Lingzhi Xu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Yuanyuan Gao
- Department of Pharmaceutics, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Daquan Chen
- School of Pharmacy, Yantai University, Yantai, China
| | - Dongzhen Mu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
8
|
Apolipoprotein-AI mimetic peptides D-4F and L-5F decrease hepatic inflammation and increase insulin sensitivity in C57BL/6 mice. PLoS One 2020; 15:e0226931. [PMID: 31914125 PMCID: PMC6948736 DOI: 10.1371/journal.pone.0226931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Apolipoprotein-AI (apo-AI) is the major apolipoprotein found in high density lipoprotein particles (HDLs). We previously demonstrated that apo-AI injected directly into high-fat diet fed mice improved insulin sensitivity associated with decreased hepatic inflammation. While our data provides compelling proof of concept, apoA-I mimetic peptides are more clinically feasible. The aim of this study was to test whether apo-AI mimetic peptide (D-4F and L-5F) treatment will emulate the effects of full-length apo-AI to improve insulin sensitivity. METHODS Male C57BL/6 mice were fed a high-fat diet for 16 weeks before receiving D4F mimetic peptide administered via drinking water or L5F mimetic peptide administered by intraperitoneal injection bi-weekly for a total of five weeks. Glucose tolerance and insulin tolerance tests were conducted to assess the effects of the peptides on insulin resistance. Effects of the peptides on inflammation, gluconeogenic enzymes and lipid synthesis were assessed by real-time PCR of key markers involved in the respective pathways. RESULTS Treatment with apo-AI mimetic peptides D-4F and L-5F showed: (i) improved blood glucose clearance (D-4F 1.40-fold AUC decrease compared to HFD, P<0.05; L-4F 1.17-fold AUC decrease compared to HFD, ns) in the glucose tolerance test; (ii) improved insulin tolerance (D-4F 1.63-fold AUC decrease compared to HFD, P<0.05; L-5F 1.39-fold AUC compared to HFD, P<0.05) in the insulin tolerance test. The metabolic test results were associated with (i) decreased hepatic inflammation of SAA1, IL-1β IFN-γ and TNFα (2.61-5.97-fold decrease compared to HFD, P<0.05) for both mimetics; (ii) suppression of hepatic mRNA expression of gluconeogenesis-associated genes (PEPCK and G6Pase; 1.66-3.01-fold decrease compared to HFD, P<0.001) for both mimetics; (iii) lipogenic-associated genes, (SREBP1c and ChREBP; 2.15-3.31-fold decrease compared to HFD, P<0.001) for both mimetics and; (iv) reduced hepatic macrophage infiltration (F4/80 and CD68; 1.77-2.15-fold compared to HFD, P<0.001) for both mimetics. CONCLUSION Apo-AI mimetic peptides treatment led to improved glucose homeostasis. This effect is associated with reduced expression of inflammatory markers in the liver and reduced infiltration of macrophages, suggesting an overall suppression of hepatic inflammation. We also showed altered expression of genes associated with gluconeogenesis and lipid synthesis, suggesting that glucose and lipid synthesis is suppressed. These findings suggest that apoA-I mimetic peptides could be a new therapeutic option to reduce hepatic inflammation that contributes to the development of overnutrition-induced insulin resistance.
Collapse
|
9
|
Majdolhosseini L, Ghasemi HA, Hajkhodadadi I, Moradi MH. Nutritional and physiological responses of broiler chickens to dietary supplementation with de-oiled soyabean lecithin at different metabolisable energy levels and various fat sources. Br J Nutr 2019; 122:863-872. [PMID: 31599223 DOI: 10.1017/s000711451900182x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A 42-d study was conducted to investigate the effects of an emulsifier supplementation (de-oiled soyabean lecithin (DSL)) of diets with different levels of metabolisable energy (ME) and various sources of fat on growth performance, nutrient digestibility, blood profile and jejunal morphology of broiler chickens. Diets were arranged factorially (2 × 2 × 2) and consisted of two concentrations of ME (normal and low), two fat sources (soyabean oil (SO) and poultry fat (PF)) and two levels of DSL supplementation (0 and 1 g/kg). A total of 800 1-d-old male broiler chickens were assigned to eight treatments with five replicates/treatment. The results showed the supplemental DSL caused improvements in the overall feed conversion ratio, fat digestibility and jejunal villus height:crypt depth ratio, but the magnitude of the responses was greater in the PF-containing diets, resulting in significant fat × DSL interactions (P<0·05). Abdominal fat percentage was also reduced by the PF-containing diet, but the response was greater in the normal ME diet, resulting in a significant ME × fat interaction (P = 0·048). Dietary DSL supplementation also increased nitrogen-corrected apparent ME values but decreased blood TAG (P = 0·041) and LDL (P = 0·049) concentrations, regardless of the source of fat used or the ME values in the diet. In conclusion, the present study suggests that the improvements in growth performance, fat digestibility and intestinal morphology that can be achieved with DSL supplementation are highly dependent on the degree of saturation of lipid incorporated into broiler chicken diets.
Collapse
Affiliation(s)
- Leila Majdolhosseini
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak, Iran
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak, Iran
| | - Iman Hajkhodadadi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak, Iran
| | - Mohammad Hossein Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak, Iran
| |
Collapse
|
10
|
Suematsu Y, Goto M, Park C, Nunes ACF, Jing W, Streja E, Rhee CM, Cruz S, Kashyap ML, Vaziri ND, Narayanaswami V, Kalantar-Zadeh K, Moradi H. Association of Serum Paraoxonase/Arylesterase Activity With All-Cause Mortality in Maintenance Hemodialysis Patients. J Clin Endocrinol Metab 2019; 104:4848-4856. [PMID: 30920627 PMCID: PMC6733492 DOI: 10.1210/jc.2019-00334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
Abstract
CONTEXT In end-stage renal disease (ESRD), serum high-density lipoprotein cholesterol (HDL-C) level is not an accurate predictor of mortality, partly because it does not necessarily correlate with indices of HDL function. Paraoxonase (PON) is a major enzyme constituent of HDL and a key component of HDL antioxidant activity. Apolipoprotein A-I (Apo A-1) is the core HDL structural protein that plays a major role in various aspects of HDL function. OBJECTIVE We sought to examine PON activity and Apo A-I levels in patients with ESRD vs healthy controls. DESIGN AND SETTING PON/arylesterase activity was measured in 499 patients with maintenance hemodialysis (MHD) and 24 healthy controls with similar distributions of age, sex, and race/ethnicity. Serum acrolein-modified Apo A-I was measured in 30 patients with MHD and 10 healthy controls. MAIN OUTCOME MEASURES Multilevel Cox models were used to assess associations among PON activity, Apo A-I, and HDL-C levels with 12-month all-cause mortality. RESULTS PON activity was significantly lower in patients with MHD vs controls. Furthermore, acrolein-modified Apo A-I levels were higher in patients with MHD vs controls. In fully adjusted models, high PON activity was associated with lower 12-month mortality, whereas no difference of mortality risk was observed across HDL-C levels. The combination of high PON and low Apo A-I compared with low PON and low Apo A-I was associated with lower mortality risk. CONCLUSIONS In patients with MHD, PON activity had a stronger association with 12-month mortality than HDL-C. Future studies are needed to examine the role of these markers as potential diagnostic and therapeutic tools in ESRD.
Collapse
Affiliation(s)
- Yasunori Suematsu
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
- Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California
| | - Masaki Goto
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
- Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California
| | - Christina Park
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
- Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California
| | - Ane C F Nunes
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
| | - WangHui Jing
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
| | - Elani Streja
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
- Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California
| | - Connie M Rhee
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
| | - Siobanth Cruz
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California
| | - Moti L Kashyap
- Atherosclerosis Research Center, Department of Veterans Affairs Healthcare System, Long Beach, California
- University of California, Irvine, California
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
| | - Vasanthy Narayanaswami
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
- Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California
| | - Hamid Moradi
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
- Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California
- Correspondence and Reprint Requests: Hamid Moradi, MD, Department of Medicine, Nephrology Section, Long Beach VA Healthcare System, 5901 East 7th Street, Long Beach, California 90822. E-mail:
| |
Collapse
|
11
|
Trakaki A, Sturm GJ, Pregartner G, Scharnagl H, Eichmann TO, Trieb M, Knuplez E, Holzer M, Stadler JT, Heinemann A, Sturm EM, Marsche G. Allergic rhinitis is associated with complex alterations in high-density lipoprotein composition and function. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1280-1292. [PMID: 31185305 DOI: 10.1016/j.bbalip.2019.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/17/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
Despite strong evidence that high-density lipoproteins (HDLs) modulate the immune response, the role of HDL in allergies is still poorly understood. Many patients with allergic rhinitis (AR) develop a late-phase response, characterized by infiltration of monocytes and eosinophils into the nasal submucosa. Functional impairment of HDL in AR-patients may insufficiently suppress inflammation and cell infiltration, but the effect of AR on the composition and function of HDL is not understood. We used apolipoprotein (apo) B-depleted serum as well as isolated HDL from AR-patients (n = 43) and non-allergic healthy controls (n = 20) for detailed compositional and functional characterization of HDL. Both AR-HDL and apoB-depleted serum of AR-patients showed decreased anti-oxidative capacity and impaired ability to suppress monocyte nuclear factor-κB expression and pro-inflammatory cytokine secretion, such as interleukin (IL)-4, IL-6, IL-8, tumor necrosis factor alpha and IL-1 beta. Sera of AR-patients showed decreased paraoxonase and cholesteryl-ester transfer protein activities, increased lipoprotein-associated phospholipase A2 activity, while lecithin-cholesterol acyltransferase activity and cholesterol efflux capacity were not altered. Surprisingly, apoB-depleted serum and HDL from AR-patients showed an increased ability to suppress eosinophil effector responses upon eotaxin-2/CCL24 stimulation. Mass spectrometry and biochemical analyses showed reduced levels of apoA-I and phosphatidylcholine, but increased levels of apoA-II, triglycerides and lyso-phosphatidylcholine in AR-HDL. The changes in AR-HDL composition were associated with altered functional properties. In conclusion, AR alters HDL composition linked to decreased anti-oxidative and anti-inflammatory properties but improves the ability of HDL to suppress eosinophil effector responses.
Collapse
Affiliation(s)
- Athina Trakaki
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Gunter J Sturm
- Department of Dermatology and Venerology, Medical University of Graz, Auenbruggerplatz 8, 8036 Graz, Austria; Allergy Outpatient Clinic Reumannplatz, Vienna, Austria
| | - Gudrun Pregartner
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2/9/V, 8036 Graz, Austria
| | - Hubert Scharnagl
- Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| | - Markus Trieb
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Michael Holzer
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.; BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Eva M Sturm
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria..
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.; BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
12
|
Hsu YH, Toh JJ, Chang CT, Liu MY. Investigating apolipoproteins of human high-density lipoprotein by cyclodextrin-micellar electrokinetic chromatography. J Chromatogr A 2019; 1593:164-173. [PMID: 30738616 DOI: 10.1016/j.chroma.2019.01.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/01/2022]
Abstract
A cyclodextrin-micellar electrokinetic chromatography (CD-MEKC) method has been developed to determine the apolipoproteins (apos) of human high-density lipoprotein (HDL). The optimal CD-MEKC conditions included a separation buffer mixture of 5 mM sodium phosphate, 40 mM bile salts (50% sodium cholate and 50% sodium deoxycholate), 25 mM carboxymethyl-β-CD (CM-β-CD) and pH 7.0. The separation voltage was 15 kV, and the capillary temperature was 15℃. The CD-MEKC profiles of human HDL apolipoproteins showed good repeatability and sensitivity. Linear analysis has been performed for human apolipoprotein standards including apos AI, AII, CI, CII, CIII and E. Linear regression lines with coefficients of determination (R2) greater than 0.99 were obtained for apos AI, AII, CI, CII and E. The linear ranges for the six apolipoproteins were within 0.18-0.70 mg/mL, and the concentration limits of detection (LOD) were lower than 0.0617 mg/mL. Apos AI, AII, CI and CIII were identified and quantified in human HDL by comparing with apolipoprotein standards. Furthermore, the CD-MEKC profiles of uremic patients differed significantly from healthy subjects. The concentration ratios of apo AI/apo CIII were significantly lower for uremic patients than healthy subjects. This study demonstrated the feasibility of determining human HDL apolipoproteins by CD-MEKC. In the future, it might help monitor the progression of uremia and cardiovascular disease.
Collapse
Affiliation(s)
- Yun-Hsun Hsu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Jia-Jia Toh
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | | | - Mine-Yine Liu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan.
| |
Collapse
|
13
|
Streja E, Streja DA, Soohoo M, Kleine CE, Hsiung JT, Park C, Moradi H. Precision Medicine and Personalized Management of Lipoprotein and Lipid Disorders in Chronic and End-Stage Kidney Disease. Semin Nephrol 2019; 38:369-382. [PMID: 30082057 DOI: 10.1016/j.semnephrol.2018.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Precision medicine is an emerging field that calls for individualization of treatment strategies based on characteristics unique to each patient. In lipid management, current guidelines are driven mainly by clinical trial results that presently indicate that patients with non-dialysis-dependent chronic kidney disease (CKD) should be treated with a β-hydroxy β-methylglutaryl-CoA reductase inhibitor, also known as statin therapy. For patients with end-stage kidney disease (ESKD) being treated with hemodialysis, statin therapy has not been shown to successfully reduce poor outcomes in trials and therefore is not recommended. The two major guidelines dissent on whether statin therapy should be of moderate or high intensity in non-dialysis-dependent CKD patients, but often leave the prescribing clinician to make that decision. These decisions often are complicated by the increased concerns for adverse events such as myopathies in patients with advanced kidney disease and ESKD. In the future, there may be an opportunity to further identify CKD and ESKD patients who are more likely to benefit from lipid-modifying therapy as opposed to those who likely will suffer from its side effects using precision medicine tools. For now, data from genetics studies and subgroup analyses may provide insight for future research directions in this field and we review some of the work that has been published in this regard.
Collapse
Affiliation(s)
- Elani Streja
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA.; Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, CA..
| | - Dan A Streja
- Division of Endocrinology, Diabetes and Metabolism, West Los Angeles VA Medical Center, Greater Los Angeles VA Healthcare System, Los Angeles, CA
| | - Melissa Soohoo
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA.; Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, CA
| | - Carola-Ellen Kleine
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA.; Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, CA
| | - Jui-Ting Hsiung
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA.; Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, CA
| | - Christina Park
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA.; Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, CA
| | - Hamid Moradi
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA.; Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, CA
| |
Collapse
|
14
|
Lipid Metabolism Disorder and Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:525-541. [PMID: 31399983 DOI: 10.1007/978-981-13-8871-2_26] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the lipid nephrotoxicity hypothesis was proposed in 1982, increasing evidence has supported the hypothesis that lipid abnormalities contributed to the progression of glomerulosclerosis. In this chapter, we will discuss the general promises of the original hypothesis, focusing especially on the role of lipids and metabolic inflammation accompanying CKD in renal fibrosis and potential new strategies of prevention.
Collapse
|
15
|
Lu Z, Luo Z, Jia A, Yu L, Muhammad I, Zeng W, Song Y. Associations of the ABCA1 gene polymorphisms with plasma lipid levels: A meta-analysis. Medicine (Baltimore) 2018; 97:e13521. [PMID: 30558007 PMCID: PMC6320104 DOI: 10.1097/md.0000000000013521] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Studies on the associations of the adenosine triphosphate-binding cassette transporter A1 gene (ABCA1) rs2230806, rs2230808, and rs2066714 polymorphisms with plasma lipid levels have reported apparently conflicting findings. This meta-analysis aimed to clarify the relationships between the 3 polymorphisms and fasting lipid levels. METHODS A comprehensive search of the literature was carried out by using the databases including Medline, Google Scholar, Web of Science, Embase, Cochrane Library, CNKI, Wanfang, and VIP. The studies that presented mean lipids and standard deviations or standard errors according to the rs2230806, rs2230808, and/or rs2066714 genotypes were examined and included. The random effects model was used. Standardized mean difference and 95% confidence interval were used to assess the differences in lipid levels between the genotypes. Heterogeneity among studies was tested by Cochran's χ-based Q-statistic, and Galbraith plots were used to detect the potential sources of heterogeneity. Publication bias was assessed by Begg's rank correlation test as well as funnel plots. RESULTS Sixty-two studies (48,452 subjects), 12 studies (9853 subjects) and 14 studies (10,727 subjects) were identified for the rs2230806, rs2230808, and rs2066714 polymorphisms, respectively. A dominant model was used for all the polymorphisms in this meta-analysis. The A allele carriers of the rs2230806 polymorphism had higher levels of high-density lipoprotein cholesterol (HDL-C) (P <.001), and lower levels of low-density lipoprotein cholesterol (LDL-C) (P =.03) and triglycerides (TG) (P <.01) than the non-carriers. The A allele carriers of the rs2230808 polymorphism had higher levels of total cholesterol (TC) (P <.001) than the non-carriers. The G allele carriers of the rs2066714 polymorphism had higher levels of TC (P <.01) and HDL-C (P = .02) than the non-carriers. CONCLUSION The ABCA1 rs2230806, rs2230808, and rs2066714 polymorphisms are significantly associated with plasma lipid levels in the present meta-analysis.
Collapse
Affiliation(s)
- Zhan Lu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College
| | - Zhi Luo
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College
| | - Aimei Jia
- School of Preclinical Medicine, and Nanchong Key Laboratory of Metabolic Drugs and Biological Products
| | - Liuqin Yu
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, People's Republic of China
| | - Irfan Muhammad
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College
| | - Wei Zeng
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College
| | - Yongyan Song
- School of Preclinical Medicine, and Nanchong Key Laboratory of Metabolic Drugs and Biological Products
| |
Collapse
|
16
|
Wang K, Zelnick LR, Hoofnagle AN, Vaisar T, Henderson CM, Imrey PB, Robinson-Cohen C, de Boer IH, Shiu YT, Himmelfarb J, Beck GJ. Alteration of HDL Protein Composition with Hemodialysis Initiation. Clin J Am Soc Nephrol 2018; 13:1225-1233. [PMID: 30045914 PMCID: PMC6086713 DOI: 10.2215/cjn.11321017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES HDL particles obtained from patients on chronic hemodialysis exhibit lower cholesterol efflux capacity and are enriched in inflammatory proteins compared with those in healthy individuals. Observed alterations in HDL proteins could be due to effects of CKD, but also may be influenced by the hemodialysis procedure, which stimulates proinflammatory and prothrombotic pathways. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We compared HDL-associated proteins in 143 participants who initiated hemodialysis within the previous year with those of 110 participants with advanced CKD from the Hemodialysis Fistula Maturation Study. We quantified concentrations of 38 HDL-associated proteins relative to total HDL protein using targeted mass spectrometry assays that included a stable isotope-labeled internal standard. We used linear regression to compare the relative abundances of HDL-associated proteins after adjustment and required a false discovery rate q value ≤10% to control for multiple testing. We further assessed the association between hemodialysis initiation and cholesterol efflux capacity in a subset of 80 participants. RESULTS After adjustment for demographics, comorbidities, and other clinical characteristics, eight HDL-associated proteins met the prespecified false discovery threshold for association. Recent hemodialysis initiation was associated with higher HDL-associated concentrations of serum amyloid A1, A2, and A4; hemoglobin-β; haptoglobin-related protein; cholesterylester transfer protein; phospholipid transfer protein; and apo E. The trend for participants recently initiating hemodialysis for lower cholesterol efflux capacity compared with individuals with advanced CKD did not reach statistical significance. CONCLUSIONS Compared with advanced CKD, hemodialysis initiation within the previous year is associated with higher concentrations of eight HDL proteins related to inflammation and lipid metabolism. Identified associations differ from those recently observed for nondialysis-requiring CKD. Hemodialysis initiation may further impair cholesterol efflux capacity. Further work is needed to clarify the clinical significance of the identified proteins with respect to cardiovascular risk. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2018_07_25_CJASNPodcast_18_8_W.mp3.
Collapse
Affiliation(s)
- Ke Wang
- Departments of Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Leila R. Zelnick
- Departments of Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Andrew N. Hoofnagle
- Departments of Medicine and
- Laboratory Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | | | | | - Peter B. Imrey
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | | | - Ian H. de Boer
- Departments of Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Yan-Ting Shiu
- Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jonathan Himmelfarb
- Departments of Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Gerald J. Beck
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - KestenbaumBryan12on behalf of the HFM Study
- Departments of Medicine and
- Laboratory Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
- Department of Medicine, Vanderbilt University, Nashville, Tennessee; and
- Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
17
|
Moradi H, Streja E, Vaziri ND. ESRD-induced dyslipidemia-Should management of lipid disorders differ in dialysis patients? Semin Dial 2018; 31:398-405. [PMID: 29707830 DOI: 10.1111/sdi.12706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide. Although numerous modifiable risk factors in the pathogenesis of CVD and its associated mortality have been identified, dyslipidemia remains to be a key focus for therapy. In this regard, significant progress has been made in reducing cardiovascular mortality via the use of lipid-lowering agents such as HMG CoA reductase inhibitors (statins). Yet, despite the disproportionate risk of CVD and mortality in patients with advanced chronic and end stage renal disease (ESRD), treatment of dyslipidemia in this patient population has not been associated with a notable improvement in outcomes. Furthermore, observational studies have not consistently found an association between dyslipidemia and poor outcomes in patients with ESRD. However, it is imperative that examination of dyslipidemia and its association with outcomes take place in the context of the many factors that are unique to kidney disease and may contribute to the abnormalities in lipid metabolism in patients with ESRD. Understanding these intricacies and distinct features will be vital not only to the interpretation of the available clinical data in regards to outcomes, but also to the individualization of lipid therapy in ESRD. In this review, we will examine the nature and underlying mechanisms responsible for dyslipidemia, the association of serum lipids and lipoprotein concentrations with outcomes and the results of major trials targeting cholesterol (mainly statins) in patients with ESRD.
Collapse
Affiliation(s)
- Hamid Moradi
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, CA, USA.,Department of Medicine, Long Beach VA Healthcare System, Long Beach, CA, USA
| | - Elani Streja
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, CA, USA.,Department of Medicine, Long Beach VA Healthcare System, Long Beach, CA, USA
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
18
|
Abstract
The picture of HDL cholesterol (HDL-C) as the "good" cholesterol has eroded. This is even more surprising because there exists strong evidence that HDL-C is associated with cardiovascular disease (CVD) in the general population as well as in patients with impairment of kidney function and/or progression of CKD. However, drugs that dramatically increase HDL-C have mostly failed to decrease CVD events. Furthermore, genetic studies took the same line, as genetic variants that have a pronounced influence on HDL-C concentrations did not show an association with cardiovascular risk. For many, this was not surprising, given that an HDL particle is highly complex and carries >80 proteins and several hundred lipid species. Simply measuring cholesterol might not reflect the variety of biologic effects of heterogeneous HDL particles. Therefore, functional studies and the involvement of HDL components in the reverse cholesterol transport, including the cholesterol efflux capacity, have become a further focus of study during recent years. As also observed for other aspects, CKD populations behave differently compared with non-CKD populations. Although clear disturbances have been observed for the "functionality" of HDL particles in patients with CKD, this did not necessarily translate into clear-cut associations with outcomes.
Collapse
Affiliation(s)
- Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Increments in serum high-density lipoprotein cholesterol over time are not associated with improved outcomes in incident hemodialysis patients. J Clin Lipidol 2018; 12:488-497. [PMID: 29456130 DOI: 10.1016/j.jacl.2018.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Elevated serum high-density lipoprotein cholesterol (HDL-C) has not been associated with better cardiovascular (CV) and all-cause mortality in hemodialysis patients. However, the association between change in HDL over time and mortality has not been fully examined. OBJECTIVE In a nationally representative cohort of incident hemodialysis patients who had available HDL data at baseline and 6 months after dialysis initiation, we studied the association of change in HDL-C during the first 6 months of dialysis with all-cause and CV mortality. METHODS Associations between HDL-C change and mortality were determined in Cox proportional hazard regression models with adjustment for multiple variables. RESULTS In case-mix models, there was a J-shaped association between change in HDL-C and mortality, such that quartiles 1 (<-5 mg/dL) and 4 (≥7 mg/dL) were each associated with higher all-cause (hazard ratio, 1.32 [95% confidence interval, 1.21-1.45] and 1.09 [1.01-1.18]) and CV (1.28 [1.06-1.55] and 1.23 [1.04-1.45]) death risk, respectively. In fully adjusted models that included indices of malnutrition and inflammation, the higher death risk observed in the lowest quartile was attenuated, whereas the highest quartile continued to demonstrate significantly higher all-cause (1.11 [1.02-1.20]) and CV mortality (1.15 [1.00-1.32]). These associations persisted across various subgroups. CONCLUSIONS Although malnutrition and inflammation may explain the increased risk for mortality in patients with decreasing serum HDL-C concentrations over time, these indices do not mitigate the elevated risk in patients with rising serum HDL-C. We found that increasing serum HDL-C over time is paradoxically associated with worse outcomes in incident hemodialysis patients.
Collapse
|
20
|
Peng M, Zhang Q, Cheng Y, Fu S, Yang H, Guo X, Zhang J, Wang L, Zhang L, Xue Z, Li Y, Da Y, Yao Z, Qiao L, Zhang R. Apolipoprotein A-I mimetic peptide 4F suppresses tumor-associated macrophages and pancreatic cancer progression. Oncotarget 2017; 8:99693-99706. [PMID: 29245934 PMCID: PMC5725125 DOI: 10.18632/oncotarget.21157] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/08/2017] [Indexed: 01/07/2023] Open
Abstract
Pancreatic cancer is an aggressive malignancy that is unresponsive to conventional radiation and chemotherapy. Therefore, development of novel immune therapeutic strategies is urgently needed. L-4F, an Apolipoprotein A-I (ApoA-I) mimetic peptide, is engineered to mimic the anti-inflammatory and anti-oxidative functionalities of ApoA-I. In this work, H7 cells were orthotopically implanted in C57BL/6 mice and treated with L-4F. Then, pancreatic cancer progression and the inflammatory microenvironment were investigated in vivo. The cytotoxicity of L-4F toward H7 cells was assessed in vitro. Furthermore, we investigated the effects of L-4F on macrophage polarization by analyzing the polarization and genes of mouse bone marrow-derived macrophages in vitro. The results show that L-4F substantially reduced the tumorigenicity of H7 cells. L-4F inhibited inflammation by reducing the accumulation of inflammatory cells, such as IL-17A-, IL-4-, GM-CSF-, IL-1β-, and IL-6-producing cells and Th1 and Th17. Notably, L-4F also decreased the percentage of macrophages in tumor tissues, especially M2 macrophages (CD11b+F4/80+CD206+), which was also confirmed in vitro. Additionally, the expression of the M2 marker genes Arg1, MRC1, and CCL22 and the inflammatory genes IL-6, iNOS, and IL-12 was decreased by L-4F, indicating that L-4F prevents M2 type macrophage polarization. However, L-4F could not directly attenuate H7 cell invasion or proliferation and did not induce apoptosis. In addition, L-4F potently down-regulated STAT3, JNK and ERK signaling pathways but not affects the phosphorylation of p38 in RAW 264.7 cells. These results suggest that L-4F exhibits an effective therapeutic effect on pancreatic cancer progression by inhibiting tumor-associated macrophages and inflammation.
Collapse
Affiliation(s)
- Meiyu Peng
- Department of Immunology, School of Clinical Medicine, Weifang Medical University, Weifang, China.,Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Qi Zhang
- Institute of Integrative Medicines for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China.,Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Yingnan Cheng
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Shuyu Fu
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China.,Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
| | - Huipeng Yang
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Xiangdong Guo
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Jieyou Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Lina Wang
- Department of Immunology, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Lijuan Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Zhenyi Xue
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Yan Li
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Yurong Da
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Zhi Yao
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Liang Qiao
- Storr Liver Unit, Westmead Institute for Medical Research, the University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China.,Laboratory of Immunology and Inflammation, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
21
|
Lee MJ, Park JT, Han SH, Kim YL, Kim YS, Yang CW, Kim NH, Kang SW, Kim HJ, Yoo TH. The atherogenic index of plasma and the risk of mortality in incident dialysis patients: Results from a nationwide prospective cohort in Korea. PLoS One 2017; 12:e0177499. [PMID: 28549070 PMCID: PMC5446226 DOI: 10.1371/journal.pone.0177499] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/30/2017] [Indexed: 12/30/2022] Open
Abstract
Background The atherogenic index of plasma (AIP), which is the logarithmic ratio of triglyceride (TG) to high-density lipoprotein cholesterol (HDL-C), had a linear relationship with clinical outcomes in the general population. However, the association of each lipid profile, TG and HDL-C, with survival was not straightforward in dialysis patients. This non-linear association led us to further investigate the prognostic impact of the AIP in these patients. Methods From a nationwide prospective cohort, 1,174 incident dialysis patients were included. Patients were categorized into quintiles according to the AIP. An independent association of the AIP with all-cause and cardiovascular mortality was determined. Results During a mean follow-up duration of 33.2 months, 170 patients (14.5%) died, and cardiovascular death was observed in 55 patients (4.7%). Multivariate Cox analyses revealed that the lowest (quintile 1, hazard ratio [HR] = 1.76, 95% confidence interval [CI] = 1.02–3.03) and the highest (quintile 5, HR = 2.15, 95% CI = 1.26–3.65) AIP groups were significantly associated with higher all-cause mortality compared to patients in quintile 3 (reference group). In terms of cardiovascular mortality, only the highest AIP group (quintile 5, HR = 2.59, 95% CI = 1.06–6.34) was significantly associated with increased risk of mortality. Sensitivity analyses showed that a U-shaped association between the AIP and all-cause mortality remained significant in non-diabetic and underweight to normal body mass index patients. Conclusions Both the highest and the lowest AIP groups were independently associated with all-cause mortality, showing a U-shaped association. It suggested further studies are needed to identify targets and subgroups that can benefit from intervention of the AIP in incident dialysis patients.
Collapse
Affiliation(s)
- Mi Jung Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Jung Tak Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Lim Kim
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
- Clinical Research Center for End-Stage Renal Disease, Daegu, Korea
| | - Yon Su Kim
- Clinical Research Center for End-Stage Renal Disease, Daegu, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Chul Woo Yang
- Clinical Research Center for End-Stage Renal Disease, Daegu, Korea
- Department of Internal Medicine, Catholic University of Korea College of Medicine, Seoul, Korea
| | - Nam-Ho Kim
- Clinical Research Center for End-Stage Renal Disease, Daegu, Korea
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Clinical Research Center for End-Stage Renal Disease, Daegu, Korea
| | - Hyung Jong Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
- * E-mail: (HJK); (THY)
| | - Tae-Hyun Yoo
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (HJK); (THY)
| |
Collapse
|
22
|
Chang TI, Streja E, Soohoo M, Kim TW, Rhee CM, Kovesdy CP, Kashyap ML, Vaziri ND, Kalantar-Zadeh K, Moradi H. Association of Serum Triglyceride to HDL Cholesterol Ratio with All-Cause and Cardiovascular Mortality in Incident Hemodialysis Patients. Clin J Am Soc Nephrol 2017; 12:591-602. [PMID: 28193609 PMCID: PMC5383388 DOI: 10.2215/cjn.08730816] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Elevated serum triglyceride/HDL cholesterol (TG/HDL-C) ratio has been identified as a risk factor for cardiovascular (CV) disease and mortality in the general population. However, the association of this important clinical index with mortality has not been fully evaluated in patients with ESRD on maintenance hemodialysis (MHD). We hypothesized that the association of serum TG/HDL-C ratio with all-cause and CV mortality in patients with ESRD on MHD is different from the general population. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We studied the association of serum TG/HDL-C ratio with all-cause and CV mortality in a nationally representative cohort of 50,673 patients on incident hemodialysis between January 1, 2007 and December 31, 2011. Association of baseline and time-varying TG/HDL-C ratios with mortality was assessed using Cox proportional hazard regression models, with adjustment for multiple variables, including statin therapy. RESULTS During the median follow-up of 19 months (interquartile range, 11-32 months), 12,778 all-cause deaths and 4541 CV deaths occurred, respectively. We found that the 10th decile group (reference: sixth deciles of TG/HDL-C ratios) had significantly lower risk of all-cause mortality (hazard ratio, 0.91 [95% confidence interval, 0.83 to 0.99] in baseline and 0.86 [95% confidence interval, 0.79 to 0.94] in time-varying models) and CV mortality (hazard ratio, 0.83 [95% confidence interval, 0.72 to 0.96] in baseline and 0.77 [95% confidence interval, 0.66 to 0.90] in time-varying models). These associations remained consistent and significant across various subgroups. CONCLUSIONS Contrary to the general population, elevated TG/HDL-C ratio was associated with better CV and overall survival in patients on hemodialysis. Our findings provide further support that the nature of CV disease and mortality in patients with ESRD is unique and distinct from other patient populations. Hence, it is vital that future studies focus on identifying risk factors unique to patients on MHD and decipher the underlying mechanisms responsible for poor outcomes in patients with ESRD.
Collapse
Affiliation(s)
- Tae Ik Chang
- Harold Simmons Center for Kidney Disease Research and Epidemiology, University of California, Irvine School of Medicine, Orange, California
- Department of Internal Medicine, National Health Insurance Service Medical Center, Ilsan Hospital, Goyangshi, Gyeonggi–do, Republic of Korea
| | - Elani Streja
- Harold Simmons Center for Kidney Disease Research and Epidemiology, University of California, Irvine School of Medicine, Orange, California
| | - Melissa Soohoo
- Harold Simmons Center for Kidney Disease Research and Epidemiology, University of California, Irvine School of Medicine, Orange, California
| | - Tae Woo Kim
- Harold Simmons Center for Kidney Disease Research and Epidemiology, University of California, Irvine School of Medicine, Orange, California
- Department of Internal Medicine, Soon Chun Hyang University Hospital, Gumi, Republic of Korea
| | - Connie M. Rhee
- Harold Simmons Center for Kidney Disease Research and Epidemiology, University of California, Irvine School of Medicine, Orange, California
| | - Csaba P. Kovesdy
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, Tennessee
- Nephrology Section, Memphis Veterans Affairs Medical Center, Memphis, Tennessee
| | - Moti L. Kashyap
- Atherosclerosis Research Center, Gerontology Section, Geriatric, Rehabilitation Medicine and Extended Care Health Care Group and
- Department of Medicine, University of California, Irvine, Orange, California
| | - Nosratola D. Vaziri
- Harold Simmons Center for Kidney Disease Research and Epidemiology, University of California, Irvine School of Medicine, Orange, California
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, University of California, Irvine School of Medicine, Orange, California
| | - Hamid Moradi
- Harold Simmons Center for Kidney Disease Research and Epidemiology, University of California, Irvine School of Medicine, Orange, California
- Nephrology Section, Veterans Affairs Medical Center, Long Beach, California; and
| |
Collapse
|
23
|
Chang TI, Streja E, Moradi H. Could high-density lipoprotein cholesterol predict increased cardiovascular risk? Curr Opin Endocrinol Diabetes Obes 2017; 24:140-147. [PMID: 28099207 DOI: 10.1097/med.0000000000000318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Serum high-density lipoprotein (HDL) is considered to be protective against cardiovascular disease. However, there is emerging evidence that under certain conditions the HDL molecule can become dysfunctional and proinflammatory, paradoxically leading to increased risk of cardiovascular disease. This review will provide a brief outline of the potential mechanisms by which HDL can become atherogenic and summarize some of the clinical evidence on this topic. RECENT FINDINGS HDL metabolism, structure, and function in addition to its level can be profoundly altered under conditions of marked oxidative stress and chronic inflammation. These abnormalities, in turn, lead to impaired reverse cholesterol transport, increased systemic oxidative stress/inflammation, and endothelial dysfunction that subsequently may contribute to atherogenesis and progression of cardiovascular disease. SUMMARY Association of serum HDL cholesterol level with outcomes is not only dependent on its serum concentration but also on the qualities/properties of this lipoprotein at a given point in time. Hence, it is essential that future studies examining association of HDL with risk of cardiovascular disease take into account the complexities of HDL metabolism and function and address the impact of the HDL particle as a whole (quantity as well as various properties) on atherosclerosis and cardiovascular outcomes.
Collapse
Affiliation(s)
- Tae Ik Chang
- aHarold Simmons Center for Kidney Disease Research and Epidemiology, School of Medicine, University of California, Irvine, Orange, California, USA bDepartment of Internal Medicine, NHIS Medical Center, Ilsan Hospital, Goyangshi, Gyeonggi-do, Republic of Korea cDepartment of Medicine, Long Beach Veteran Affairs Health System, Long Beach, California, USA
| | | | | |
Collapse
|
24
|
Wagner S, Apetrii M, Massy ZA, Kleber ME, Delgado GE, Scharnagel H, März W, Metzger M, Rossignol P, Jardine A, Holdaas H, Fellström B, Schmieder R, Stengel B, Zannad F. Oxidized LDL, statin use, morbidity, and mortality in patients receiving maintenance hemodialysis. Free Radic Res 2017; 51:14-23. [DOI: 10.1080/10715762.2016.1241878] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sandra Wagner
- Inserm U1018, Université Paris-Saclay, UVSQ, Université Paris-Sud, Villejuif, France
| | - Mugurel Apetrii
- Service de Néphrologie, Hôpital Ambroise Paré APHP, Boulogne-Billancourt, France
- Department of Nephrology, University of Medicine and Pharmacy “Gr. T. Popa”, Iasi, Romania
| | - Ziad A. Massy
- Inserm U1018, Université Paris-Saclay, UVSQ, Université Paris-Sud, Villejuif, France
- Service de Néphrologie, Hôpital Ambroise Paré APHP, Boulogne-Billancourt, France
| | - Marcus E. Kleber
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Graciela E. Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hubert Scharnagel
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany
| | - Marie Metzger
- Inserm U1018, Université Paris-Saclay, UVSQ, Université Paris-Sud, Villejuif, France
| | - Patrick Rossignol
- Inserm, Centre d’Investigations Cliniques - Plurithématique 14-33, and Inserm U1116, CHU de Nancy, and Université de Lorraine, France and F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
- Association Lorraine de Traitement de l’Insuffisance Rénale (ALTIR), Vandoeuvre-lès-Nancy, France
| | - Alan Jardine
- British Heart Foundation Glasgow Cardiovascular Research Centre, Glasgow, UK
| | | | | | | | - Bénédicte Stengel
- Inserm U1018, Université Paris-Saclay, UVSQ, Université Paris-Sud, Villejuif, France
| | - Faiez Zannad
- Inserm, Centre d’Investigations Cliniques - Plurithématique 14-33, and Inserm U1116, CHU de Nancy, and Université de Lorraine, France and F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | | |
Collapse
|
25
|
High-density Lipoprotein and Inflammation and Its Significance to Atherosclerosis. Am J Med Sci 2016; 352:408-415. [DOI: 10.1016/j.amjms.2016.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 06/06/2016] [Accepted: 06/24/2016] [Indexed: 01/09/2023]
|
26
|
Bocharov AV, Wu T, Baranova IN, Birukova AA, Sviridov D, Vishnyakova TG, Remaley AT, Eggerman TL, Patterson AP, Birukov KG. Synthetic Amphipathic Helical Peptides Targeting CD36 Attenuate Lipopolysaccharide-Induced Inflammation and Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 2016; 197:611-9. [PMID: 27316682 DOI: 10.4049/jimmunol.1401028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 04/28/2016] [Indexed: 01/07/2023]
Abstract
Synthetic amphipathic helical peptides (SAHPs) designed as apolipoprotein A-I mimetics are known to bind to class B scavenger receptors (SR-Bs), SR-BI, SR-BII, and CD36, receptors that mediate lipid transport and facilitate pathogen recognition. In this study, we evaluated SAHPs, selected for targeting human CD36, by their ability to attenuate LPS-induced inflammation, endothelial barrier dysfunction, and acute lung injury (ALI). L37pA, which targets CD36 and SR-BI equally, inhibited LPS-induced IL-8 secretion and barrier dysfunction in cultured endothelial cells while reducing lung neutrophil infiltration by 40% in a mouse model of LPS-induced ALI. A panel of 20 SAHPs was tested in HEK293 cell lines stably transfected with various SR-Bs to identify SAHPs with preferential selectivity toward CD36. Among several SAHPs targeting both SR-BI/BII and CD36 receptors, ELK-B acted predominantly through CD36. Compared with L37pA, 5A, and ELK SAHPs, ELK-B was most effective in reducing the pulmonary barrier dysfunction, neutrophil migration into the lung, and lung inflammation induced by LPS. We conclude that SAHPs with relative selectivity toward CD36 are more potent at inhibiting acute pulmonary inflammation and dysfunction. These data indicate that therapeutic strategies using SAHPs targeting CD36, but not necessarily mimicking all apolipoprotein A-I functions, may be considered a possible new treatment approach for inflammation-induced ALI and pulmonary edema.
Collapse
Affiliation(s)
- Alexander V Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; National Heart, Lung, and Blood Institute, Bethesda, MD 20892;
| | - Tinghuai Wu
- Lung Injury Center, The University of Chicago, Chicago, IL 60637
| | - Irina N Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Anna A Birukova
- Lung Injury Center, The University of Chicago, Chicago, IL 60637
| | - Denis Sviridov
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892; and
| | - Tatyana G Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Alan T Remaley
- National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Thomas L Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892; and
| | - Amy P Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
27
|
Abstract
The concept of lipoprotein mimetics was developed and extensively tested in the last three decades. Most lipoprotein mimetics were designed to recreate one or several functions of high-density lipoprotein (HDL) in the context of cardiovascular disease; however, the application of this approach is much broader. Lipoprotein mimetics should not just be seen as a set of compounds aimed at replenishing a deficiency or dysfunctionality of individual elements of lipoprotein metabolism but rather as a designer concept with remarkable flexibility and numerous applications in medicine and biology. In the present review, we discuss the fundamental design principles used to create lipoprotein mimetics, mechanisms of their action, medical indications and efficacy in animal models and human studies.
Collapse
|
28
|
Ross DJ, Hough G, Hama S, Aboulhosn J, Belperio JA, Saggar R, Van Lenten BJ, Ardehali A, Eghbali M, Reddy S, Fogelman AM, Navab M. Proinflammatory high-density lipoprotein results from oxidized lipid mediators in the pathogenesis of both idiopathic and associated types of pulmonary arterial hypertension. Pulm Circ 2015; 5:640-8. [PMID: 26697171 DOI: 10.1086/683695] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by abnormal elaboration of vasoactive peptides, endothelial cell dysfunction, vascular remodeling, and inflammation, which collectively contribute to its pathogenesis. We investigated the potential for high-density lipoprotein (HDL) dysfunction (i.e., proinflammatory effects) and abnormal plasma eicosanoid levels to contribute to the pathobiology of PAH and assessed ex vivo the effect of treatment with apolipoprotein A-I mimetic peptide 4F on the observed HDL dysfunction. We determined the "inflammatory indices" HII and LII for HDL and low-density lipoprotein (LDL), respectively, in subjects with idiopathic PAH (IPAH) and associated PAH (APAH) by an in vitro monocyte chemotaxis assay. The 4F was added ex vivo, and repeat LII and HII values were obtained versus a sham treatment. We further determined eicosanoid levels in plasma and HDL fractions from patients with IPAH and APAH relative to controls. The LIIs were significantly higher for IPAH and APAH patients than for controls. Incubation of plasma with 4F before isolation of LDL and HDL significantly reduced the LII values, compared with sham-treated LDL, for IPAH and APAH. The increased LII values reflected increased states of LDL oxidation and thereby increased proinflammatory effects in both cohorts. The HIIs for both PAH cohorts reflected a "dysfunctional HDL phenotype," that is, proinflammatory HDL effects. In contrast to "normal HDL function," the determined HIIs were significantly increased for the IPAH and APAH cohorts. Ex vivo 4F treatment significantly improved the HDL function versus the sham treatment. Although there was a significant "salutary effect" of 4F treatment, this did not entirely normalize the HII. Significantly increased levels for both IPAH and APAH versus controls were evident for the eicosanoids 9-HODE, 13-HODE, 5-HETE, 12-HETE, and 15-HETE, while no statistical differences were evident for comparisons of IPAH and APAH for the determined plasma eicosanoid levels in the HDL fractions. Our study has further implicated the putative role of "oxidant stress" and inflammation in the pathobiology of PAH. Our data suggest the influences on the "dysfunctional HDL phenotype" of increased oxidized fatty acids, which are paradoxically proinflammatory. We speculate that therapies that target either the "inflammatory milieu" or the "dysfunctional HDL phenotype," such as apoA-I mimetic peptides, may be valuable avenues of further research in pulmonary vascular diseases.
Collapse
Affiliation(s)
- David J Ross
- Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Greg Hough
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Susan Hama
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jamil Aboulhosn
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - John A Belperio
- Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rajan Saggar
- Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Brian J Van Lenten
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Abbas Ardehali
- Division of Cardiothoracic Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Srinivasa Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mohamad Navab
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
29
|
Vaziri ND, Liu S, Farzaneh SH, Nazertehrani S, Khazaeli M, Zhao YY. Dose-dependent deleterious and salutary actions of the Nrf2 inducer dh404 in chronic kidney disease. Free Radic Biol Med 2015; 86:374-381. [PMID: 25930007 DOI: 10.1016/j.freeradbiomed.2015.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/07/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022]
Abstract
Oxidative stress and inflammation play a central role in the progression and complications of chronic kidney disease (CKD) and are, in part, due to impairment of the Nrf2 system, which regulates the expression of antioxidant and detoxifying molecules. Natural Nrf2-inducing phytochemicals have been shown to ameliorate kidney disease in experimental animals. However, owing to adverse outcomes a clinical trial of a synthetic Nrf2 activator, bardoxolone methyl (BARD), in CKD patients was terminated. BARD activates Nrf2 via covalent modification of reactive cysteine residues in the Nrf2 repressor molecule, Keap1. In addition to Nrf2, Keap1 suppresses IKKB, the positive regulator of NF-κB. Treatment with a BARD analog, dh404, at 5-20mg/kg/day in diabetic obese Zucker rats exacerbates, whereas its use at 2mg/kg/day in 5/6 nephrectomized rats attenuates, CKD progression. We, therefore, hypothesized that deleterious effects of high-dose BARD are mediated by the activation of NF-κB. CKD (5/6 nephrectomized) rats were randomized to receive dh404 (2 or 10mg/kg/day) or vehicle for 12 weeks. The vehicle-treated group exhibited glomerulosclerosis; interstitial fibrosis and inflammation; activation of NF-κB; upregulation of oxidative, inflammatory, and fibrotic pathways; and suppression of Nrf2 activity and its key target gene products. Treatment with low-dose dh404 restored Nrf2 activity and expression of its target genes, attenuated activation of NF-κB and fibrotic pathways, and reduced glomerulosclerosis, interstitial fibrosis, and inflammation. In contrast, treatment with a high dh404 dosage intensified proteinuria, renal dysfunction, and histological abnormalities; amplified upregulation of NF-κB and fibrotic pathways; and suppressed the Nrf2 system. Thus therapy with BARD analogs exerts a dose-dependent dimorphic impact on CKD progression.
Collapse
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, Department of Medicine, University of California at Irvine, Irvine, CA 92868, USA.
| | - Shuman Liu
- Division of Nephrology and Hypertension, Department of Medicine, University of California at Irvine, Irvine, CA 92868, USA
| | - Seyed H Farzaneh
- Division of Nephrology and Hypertension, Department of Medicine, University of California at Irvine, Irvine, CA 92868, USA
| | - Sohrab Nazertehrani
- Division of Nephrology and Hypertension, Department of Medicine, University of California at Irvine, Irvine, CA 92868, USA
| | - Mahyar Khazaeli
- Division of Nephrology and Hypertension, Department of Medicine, University of California at Irvine, Irvine, CA 92868, USA
| | - Ying-Yong Zhao
- Division of Nephrology and Hypertension, Department of Medicine, University of California at Irvine, Irvine, CA 92868, USA
| |
Collapse
|
30
|
Rolla R, De Mauri A, Valsesia A, Vidali M, Chiarinotti D, Bellomo G. Lipoprotein profile, lipoprotein-associated phospholipase A2 and cardiovascular risk in hemodialysis patients. J Nephrol 2015; 28:749-55. [PMID: 25971848 DOI: 10.1007/s40620-015-0194-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/26/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cardiovascular disease is the leading cause of morbidity and mortality in hemodialysis patients; the increased risk of cardiovascular disease is due to accelerated atherosclerosis, inflammation and impaired lipoprotein metabolism. We aimed to evaluate lipoprotein-associated phospholipase A2 (Lp-PLA2) and some pro-inflammatory aspects of the lipoprotein profile in dialyzed patients in order to evaluate the relationship with the accelerated atherosclerosis and vascular accidents. METHODS In 102 dialysis patients and 40 non-uremic controls, we investigated the lipoprotein plasma profile, high sensitivity C-reactive protein (CRP), ceruloplasmin and serum amyloid A protein (SAA), and followed patients for 1 year to analyze the risk of acute cardiovascular events. RESULTS Total cholesterol, low-density lipoprotein and high-density lipoprotein plasma levels were significantly lower in uremic patients than controls, whereas CRP, SAA, ceruloplasmin, Lp-PLA2 and their ratio with apolipoprotein A1 were significantly higher. Patients with Lp-PLA2 levels >194 nmol/min/ml had more acute cardiovascular events than patients with lower values. CONCLUSION Our results show that in dialysis subjects: (1) low-density lipoproteins show a more atherogenic phenotype than in the general population; (2) high-density lipoproteins are less anti-inflammatory; (3) Lp-PLA2 could potentially be used to evaluate cardiovascular risk.
Collapse
Affiliation(s)
- Roberta Rolla
- Clinical Chemistry Laboratory, Department of Health Sciences, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Andreana De Mauri
- Nephrology and Dialysis Unit, University Hospital 'Maggiore della Carità', Corso Mazzini, 18, 28100, Novara, Italy.
| | - Ambra Valsesia
- Clinical Chemistry Laboratory, Department of Health Sciences, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Matteo Vidali
- Clinical Chemistry Laboratory, Department of Health Sciences, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Doriana Chiarinotti
- Nephrology and Dialysis Unit, University Hospital 'Maggiore della Carità', Corso Mazzini, 18, 28100, Novara, Italy
| | - Giorgio Bellomo
- Clinical Chemistry Laboratory, Department of Health Sciences, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
31
|
Vilahur G, Padró T, Casaní L, Mendieta G, López JA, Streitenberger S, Badimon L. El enriquecimiento de la dieta con polifenoles previene la disfunción endotelial coronaria mediante la activación de la vía de Akt/eNOS. Rev Esp Cardiol 2015. [DOI: 10.1016/j.recesp.2014.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Vilahur G, Padró T, Casaní L, Mendieta G, López JA, Streitenberger S, Badimon L. Polyphenol-enriched Diet Prevents Coronary Endothelial Dysfunction by Activating the Akt/eNOS Pathway. ACTA ACUST UNITED AC 2015; 68:216-25. [DOI: 10.1016/j.rec.2014.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/01/2014] [Indexed: 01/25/2023]
|
33
|
High-density lipoprotein: structural and functional changes under uremic conditions and the therapeutic consequences. Handb Exp Pharmacol 2014. [PMID: 25522997 DOI: 10.1007/978-3-319-09665-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
High-density lipoprotein (HDL) has attracted interest as a therapeutic target in cardiovascular diseases in recent years. Although many functional mechanisms of the vascular protective effects of HDL have been identified, increasing the HDL plasma level has not been successful in all patient cohorts with increased cardiovascular risk. The composition of the HDL particle is very complex and includes diverse lipids and proteins that can be modified in disease conditions. In patients with chronic kidney disease (CKD), the accumulation of uremic toxins, high oxidative stress, and chronic micro-inflammatory conditions contribute to changes in the HDL composition and may also account for protein/lipid modifications. These conditions are associated with a decreased protective function of HDL. Therefore, the HDL quantity and the functional quality of the particle must be considered. This review summarizes the current knowledge of dyslipidemia in CKD patients, the effects of lipid-modulating therapy, and the structural modifications of HDL that are associated with dysfunction.
Collapse
|
34
|
Vilahur G, Casani L, Mendieta G, Lamuela-Raventos RM, Estruch R, Badimon L. Beer elicits vasculoprotective effects through Akt/eNOS activation. Eur J Clin Invest 2014; 44:1177-88. [PMID: 25323945 DOI: 10.1111/eci.12352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 10/14/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND There is controversy regarding the effect of alcohol beverage intake in vascular vasodilatory function in peripheral arteries. The effects of beer intake in coronary vasodilation remain unknown. We investigated whether regular beer intake (alcohol and alcohol-free) protects against hypercholesterolaemia-induced coronary endothelial dysfunction and the mechanisms behind this effect. MATERIALS AND METHODS Pigs were fed 10 days: (i) a Western-type hypercholesterolaemic diet (WD); (ii) WD+low-dose beer (12·5 g alcohol/day); (iii) WD+moderate-dose beer (25 g alcohol/day); or (iv) WD+moderate-dose alcohol-free-beer (0·0 g alcohol/day). Coronary responses to endothelium-dependent vasoactive drugs (acetylcholine: receptor mediated; calcium ionophore-A23189: nonreceptor mediated), endothelium-independent vasoactive drug (SNP) and L-NMMA (NOS-antagonist) were evaluated in the LAD coronary artery by flow Doppler. Coronary Akt/eNOS activation, MCP-1 expression, oxidative DNA damage and superoxide production were assessed. Lipid profile, lipoproteins resistance to oxidation and urinary isoxanthohumol concentration were evaluated. RESULTS Alcoholic and nonalcoholic beer intake prevented WD-induced impairment of receptor- and non-receptor-operated endothelial-dependent coronary vasodilation. All animals displayed a similar vasodilatory response to SNP and L-NMMA blunted all endothelial-dependent vasorelaxation responses. Haemodynamic parameters remained unchanged. Coronary arteries showed lower DNA damage and increased Akt/eNOS axis activation in beer-fed animals. Animals taking beer showed HDL with higher antioxidant capacity, higher LDL resistance to oxidation and increased isoxanthohumol levels. Weight, lipids levels, liver enzymes and MCP-1 expression were not affected by beer intake. CONCLUSIONS Non-alcoholic-related beer components protect against hyperlipemia-induced coronary endothelial dysfunction by counteracting vascular oxidative damage and preserving the Akt/eNOS pathway. Light-to-moderate beer consumption prevents and/or reduces the endothelial dysfunction associated with cardiovascular risk factors.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Birner-Gruenberger R, Schittmayer M, Holzer M, Marsche G. Understanding high-density lipoprotein function in disease: recent advances in proteomics unravel the complexity of its composition and biology. Prog Lipid Res 2014; 56:36-46. [PMID: 25107698 DOI: 10.1016/j.plipres.2014.07.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
Although the epidemiology of high-density lipoprotein (HDL) cholesterol and cardiovascular risk has been consistent, pharmacologic interventions to increase HDL-cholesterol by delaying HDL catabolism did not translate into reduction in cardiovascular risk. HDL particles are small, protein-rich when compared to other plasma lipoprotein classes. Latest progresses in proteomics technology have dramatically increased our understanding of proteins carried by HDL. In addition to proteins with well-established functions in lipid transport, iron transport proteins, members of the complement pathway, and proteins involved in immune function and acute phase response were repeatedly identified on HDL particles. With the unraveling of the complexity of the HDL proteome, different laboratories have started to monitor its changes in various disease states. In addition, dynamic aspects of HDL subgroups are being discovered. These recent studies clearly illustrate the promise of HDL proteomics for deriving new biomarkers for disease diagnosis and to measure the effectiveness of current and future treatment regimens. This review summarizes recent advances in proteomics and lipidomics helping to understand HDL function in health and disease.
Collapse
Affiliation(s)
- Ruth Birner-Gruenberger
- Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed, Graz, Austria.
| | - Matthias Schittmayer
- Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed, Graz, Austria
| | - Michael Holzer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
36
|
Arya N, Kharjul MD, Shishoo CJ, Thakare VN, Jain KS. Some molecular targets for antihyperlipidemic drug research. Eur J Med Chem 2014; 85:535-68. [DOI: 10.1016/j.ejmech.2014.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/17/2022]
|
37
|
Vilahur G, Casani L, Peña E, Juan-Babot O, Mendieta G, Crespo J, Badimon L. HMG-CoA reductase inhibition prior reperfusion improves reparative fibrosis post-myocardial infarction in a preclinical experimental model. Int J Cardiol 2014; 175:528-38. [DOI: 10.1016/j.ijcard.2014.06.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/13/2014] [Accepted: 06/24/2014] [Indexed: 12/30/2022]
|
38
|
Silbernagel G, Genser B, Drechsler C, Scharnagl H, Grammer TB, Stojakovic T, Krane V, Ritz E, Wanner C, März W. HDL cholesterol, apolipoproteins, and cardiovascular risk in hemodialysis patients. J Am Soc Nephrol 2014; 26:484-92. [PMID: 25012163 DOI: 10.1681/asn.2013080816] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
High concentrations of HDL cholesterol are considered to indicate efficient reverse cholesterol transport and to protect from atherosclerosis. However, HDL has been suggested to be dysfunctional in ESRD. Hence, our main objective was to investigate the effect of HDL cholesterol on outcomes in maintenance hemodialysis patients with diabetes. Moreover, we investigated the associations between the major protein components of HDL (apoA1, apoA2, and apoC3) and end points. We performed an exploratory, post hoc analysis with 1255 participants (677 men and 578 women) of the German Diabetes Dialysis study. The mean age was 66.3 years and the mean body mass index was 28.0 kg/m(2). The primary end point was a composite of cardiac death, myocardial infarction, and stroke. The secondary end point included all-cause mortality. The mean duration of follow-up was 3.9 years. A total of 31.3% of the study participants reached the primary end point and 49.1% died from any cause. HDL cholesterol and apoA1 and apoC3 quartiles were not related to end points. However, there was a trend toward an inverse association between apoA2 and all-cause mortality. The hazard ratio for death from any cause in the fourth quartile compared with the first quartile of apoA2 was 0.63 (95% confidence interval, 0.40 to 0.89). The lack of an association between HDL cholesterol and cardiovascular risk may support the concept of dysfunctional HDL in hemodialysis. The possible beneficial effect of apoA2 on survival requires confirmation in future studies.
Collapse
Affiliation(s)
- Günther Silbernagel
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, University of Bern, Bern, Switzerland;
| | - Bernd Genser
- Mannheim Institute of Public Health, Social and Preventive Medicine, and Institute of Public Health, Federal University of Bahia, Salvador, Brazil; Division of Nephrology, Department of Medicine I, and
| | - Christiane Drechsler
- Division of Nephrology, Department of Medicine I, and Comprehensive Heart Failure Centre, University of Würzburg, Würzburg, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Tanja B Grammer
- Mannheim Institute of Public Health, Social and Preventive Medicine, and
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Vera Krane
- Division of Nephrology, Department of Medicine I, and Comprehensive Heart Failure Centre, University of Würzburg, Würzburg, Germany
| | - Eberhard Ritz
- Division of Nephrology, Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany; and
| | - Christoph Wanner
- Division of Nephrology, Department of Medicine I, and Comprehensive Heart Failure Centre, University of Würzburg, Würzburg, Germany
| | - Winfried März
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria; Medical Clinic V (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Department of Internal Medicine, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany; Synlab Academy, Synlab Services LLC, Mannheim, Germany
| |
Collapse
|
39
|
Kratzer A, Giral H, Landmesser U. High-density lipoproteins as modulators of endothelial cell functions: alterations in patients with coronary artery disease. Cardiovasc Res 2014; 103:350-61. [DOI: 10.1093/cvr/cvu139] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
40
|
Gao X, Wu J, Qian Y, Fu L, Wu G, Xu C, Mei C. Oxidized high-density lipoprotein impairs the function of human renal proximal tubule epithelial cells through CD36. Int J Mol Med 2014; 34:564-72. [PMID: 24919723 DOI: 10.3892/ijmm.2014.1799] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/29/2014] [Indexed: 11/06/2022] Open
Abstract
Unlike native high-density lipoprotein (HDL), oxidized HDL exerts adverse effects in a number of diseases, including chronic kidney disease (CKD); however, the mechanisms involved in this process remain unclear. In the present study, we investigated the effects of oxidized HDL on renal tubular cells, which play an important role in the progression of CKD. Human renal proximal tubule epithelial cells (HK-2) were cultured and stimulated with various concentrations of oxidized HDL in the absence or presence of CD36 siRNA. The results revealed that oxidized HDL enhanced the production of reactive oxygen species (ROS) and upregulated the expression of pro-inflammatory factors in the HK-2 cells in a dose-dependent manner. Incubation with oxidized HDL also increased the apoptosis of the HK-2 cells and reduced their migration ability in a dose‑dependent manner. Src family kinase, mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) were activated following stimulation with oxidized HDL. All these effects mediated by oxidized HDL on HK-2 cells were markedly attenuated by transfection with with CD36 siRNA pior to stimulation with oxidized HDL. These findings suggest that oxidized HDL enhances the pro-inflammatory properties and impairs the function of HK-2 cells, mainly through the scavenger receptor, CD36, as well as through the Src, MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Xiang Gao
- Kidney Institute of PLA, Department of Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jianxiang Wu
- Carder's Ward, No. 411 Hospital of PLA, Shanghai 200081, P.R. China
| | - Yixin Qian
- Kidney Institute of PLA, Department of Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Lili Fu
- Kidney Institute of PLA, Department of Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Guiqun Wu
- Kidney Institute of PLA, Department of Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Chenggang Xu
- Kidney Institute of PLA, Department of Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Changlin Mei
- Kidney Institute of PLA, Department of Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
41
|
Kim JB, Hama S, Hough G, Navab M, Fogelman AM, MacLellan WR, Horwich TB, Fonarow GC. Heart failure is associated with impaired anti-inflammatory and antioxidant properties of high-density lipoproteins. Am J Cardiol 2013; 112:1770-7. [PMID: 24050409 DOI: 10.1016/j.amjcard.2013.07.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 10/26/2022]
Abstract
Oxidative stress and inflammation are hallmarks of the heart failure (HF) disease state. In the present study, we investigated the inflammatory/anti-inflammatory characteristics of high-density lipoproteins (HDL) in patients with HF. Ninety-six consecutive patients with systolic HF were followed in an advanced HF center, and 21 healthy subjects were recruited. Plasma was tested for HDL inflammatory index (HII) using a monocyte chemotactic activity assay, with HII >1.0 indicating proinflammatory HDL. We found significantly increased inflammatory properties of HDL in patients with HF (median HII 1.56 vs 0.59 in controls; p <0.0001). Serum amyloid A level was markedly elevated and the activity of paraoxonase-1, an HDL antioxidant enzyme, was significantly reduced in patients versus controls. HDL and albumin from patients with HF contained markedly elevated levels of oxidized products of arachidonic and linoleic acids. HDL function improved when plasma was treated in vitro with 4F, an apolipoprotein A-I mimetic peptide (40% reduction in HII, p <0.0001). There was no correlation found between HII level and ejection fraction or New York Heart Association functional class. In conclusion, HDL function is significantly impaired and oxidation products of arachidonic and linoleic acids are markedly elevated in patients with HF compared with non-HF controls.
Collapse
|
42
|
Vaziri ND. Role of dyslipidemia in impairment of energy metabolism, oxidative stress, inflammation and cardiovascular disease in chronic kidney disease. Clin Exp Nephrol 2013; 18:265-8. [PMID: 23974528 DOI: 10.1007/s10157-013-0847-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/22/2013] [Indexed: 01/02/2023]
Abstract
Advanced chronic kidney disease (CKD) results in a constellation of dysregulation of lipid metabolism, oxidative stress, and inflammation which are causally interconnected and participate in a vicious cycle. The CKD-associated lipid disorders are marked by impaired clearance of very low density lipoprotein and chylomicrons, hypertriglyceridemia, formation of small dense low-density lipoprotein (LDL), oxidative modification of LDL, intermediate density lipoprotein and chylomicron remnants, and high-density lipoprotein deficiency and dysfunction. This review provides a brief overview of the role of CKD-induced lipid disorders in the pathogenesis of oxidative stress, inflammation, cardiovascular disease, impaired exercise capacity, cachexia and wasting syndrome.
Collapse
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California Irvine Medical Center, Suite 400, City Tower, 101 City Drive, Orange, CA, 92868, USA,
| |
Collapse
|
43
|
Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int 2013; 83:1029-41. [PMID: 23325084 PMCID: PMC3633725 DOI: 10.1038/ki.2012.439] [Citation(s) in RCA: 558] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress and inflammation are mediators in the development and progression of chronic kidney disease (CKD) and its complications, and they are inseparably linked as each begets and amplifies the other. CKD-associated oxidative stress is due to increased production of reactive oxygen species (ROS) and diminished antioxidant capacity. The latter is largely caused by impaired activation of Nrf2, the transcription factor that regulates genes encoding antioxidant and detoxifying molecules. Protective effects of Nrf2 are evidenced by amelioration of oxidative stress, inflammation, and kidney disease in response to natural Nrf2 activators in animal models, while Nrf2 deletion amplifies these pathogenic pathways and leads to autoimmune nephritis. Given the role of impaired Nrf2 activity in CKD-induced oxidative stress and inflammation, interventions aimed at restoring Nrf2 may be effective in retarding CKD progression. Clinical trials of the potent Nrf2 activator bardoxolone methyl showed significant improvement in renal function in CKD patients with type 2 diabetes. However, due to unforeseen complications the BEACON trial, which was designed to investigate the effect of this drug on time to end-stage renal disease or cardiovascular death in patients with advanced CKD, was prematurely terminated. This article provides an overview of the role of impaired Nrf2 activity in the pathogenesis of CKD-associated oxidative stress and inflammation and the potential utility of targeting Nrf2 in the treatment of CKD.
Collapse
|
44
|
Moradi H, Said HM, Vaziri ND. Post-transcriptional nature of uremia-induced downregulation of hepatic apolipoprotein A-I production. Transl Res 2013; 161:477-85. [PMID: 23219399 PMCID: PMC3609941 DOI: 10.1016/j.trsl.2012.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 01/17/2023]
Abstract
Chronic kidney disease is associated with premature death from cardiovascular disease, which is, in part, driven by high density lipoprotein deficiency and dysfunction. One of the main causes of high density lipoprotein deficiency in chronic kidney disease is diminished plasma apolipoprotein (Apo)A-I level. Plasma ApoA-I is reduced in dialysis patients and hepatic ApoA-I messenger RNA (mRNA) is decreased in the uremic rats. This study explored the mechanism of uremia-induced downregulation of ApoA-I. Human hepatoma derived cells were incubated in media containing whole plasma or plasma subfractionation from normal subjects and patients with end stage renal disease pre- and posthemodialysis. Cells and culture media were isolated to measure ApoA-I protein and mRNA. ApoA-I promoter activity was measured using transfection with a luciferase promoter construct containing the -2096 to +293 segment of ApoA-I gene. Finally, effect of uremic and control plasma was assessed on ApoA-I RNA stability. Exposure to uremic plasma significantly reduced ApoA-I mRNA expression and ApoA-I protein production. These effects were reversed by replacing uremic plasma with normal plasma. Although no difference in ApoA-I promoter activity was found between cells exposed to uremic and normal plasma, uremic plasma significantly reduced ApoA-I RNA stability. Experiments using plasma subfractions revealed that the inhibitory effect of uremic plasma on ApoA-I mRNA expression resides in fractions containing molecules larger but not smaller than 30 kd. The pre- and postdialysis plasma exerted an equally potent inhibitory effect on ApoA-I mRNA abundance. Uremia lowers ApoA-I production by reducing its RNA stability. The inhibitory effect of uremic milieu on ApoA-I mRNA expression is mediated by non-dialyzable molecule(s) larger than 30 kd.
Collapse
Affiliation(s)
- Hamid Moradi
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
45
|
Triolo M, Annema W, Dullaart RPF, Tietge UJF. Assessing the functional properties of high-density lipoproteins: an emerging concept in cardiovascular research. Biomark Med 2013; 7:457-72. [DOI: 10.2217/bmm.13.35] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although plasma concentrations of high-density lipoprotein (HDL) cholesterol correlate inversely with the incidence of atherosclerotic cardiovascular disease, results from recent epidemiological, genetic and pharmacological intervention studies resulted in a shift of concept. Rather than HDL cholesterol mass levels, the functionality of HDL particles is increasingly regarded as potentially clinically important. This review provides an overview of four key functional properties of HDL, namely cholesterol efflux and reverse cholesterol transport; antioxidative activities; anti-inflammatory activities; and the ability of HDL to increase vascular nitric oxide production resulting in vasorelaxation. Currently available assays are put into context with different HDL isolation procedures yielding compositional heterogeneity of the particle. Gathered knowledge on the impact of different disease states on HDL function is discussed together with potential underlying causative factors modulating HDL functionalities. In addition, a perspective is provided regarding how a better understanding of the determinants of (dys)functional HDL might impact clinical practice and the future design of rational and specific therapeutic approaches targeting atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Michela Triolo
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wijtske Annema
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Top Institute Food & Nutrition, Wageningen, The Netherlands
| | - Robin PF Dullaart
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Uwe JF Tietge
- Top Institute Food & Nutrition, Wageningen, The Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
46
|
Speer T, Zewinger S, Fliser D. Uraemic dyslipidaemia revisited: role of high-density lipoprotein. Nephrol Dial Transplant 2013; 28:2456-63. [PMID: 23645475 DOI: 10.1093/ndt/gft080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chronic kidney disease (CKD) is accompanied by strong cardiovascular risk. In a rather rigid picture of lipoprotein biology, low-density lipoprotein (LDL) is referred to as 'bad cholesterol', while high-density lipoprotein (HDL) is referred to as 'good cholesterol'. However, recent experimental evidence suggests that HDL may be rendered dysfunctional regarding its effects on the vasculature under various clinical conditions such as CKD. Indeed, HDL from the blood of CKD patients has been shown to transform into a particle which promotes endothelial dysfunction, endothelial proinflammatory activation and, thereby, sets the conditions for the development of atherosclerotic disease. Notably, pharmaceutical interventions to raise serum HDL-cholesterol levels have not been proven beneficial so far. Collectively, these findings indicate that HDL cholesterol levels do not represent a valuable marker for indicating the vascular properties of HDL.
Collapse
Affiliation(s)
- Thimoteus Speer
- Department of Internal Medicine 4, Saarland University Hospital, Homburg/Saar, Germany
| | | | | |
Collapse
|
47
|
Metabolic syndrome component combinations and chronic kidney disease: The severance cohort study. Maturitas 2013; 75:74-80. [DOI: 10.1016/j.maturitas.2013.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/07/2013] [Accepted: 02/15/2013] [Indexed: 11/18/2022]
|
48
|
Moradi H, Vaziri ND, Said HM, Kalantar-Zadeh K. Role of HDL dysfunction in end-stage renal disease: a double-edged sword. J Ren Nutr 2013; 23:203-6. [PMID: 23611547 PMCID: PMC3664234 DOI: 10.1053/j.jrn.2013.01.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 01/17/2013] [Indexed: 12/22/2022] Open
Abstract
End-stage renal disease (ESRD) is associated with a significant propensity for development of atherosclerosis and cardiovascular mortality. The atherogenic diathesis associated with ESRD is driven by inflammation, oxidative stress, and dyslipidemia. Reduced high-density lipoprotein cholesterol (HDL-C) level and high-density lipoprotein (HDL) dysfunction are the hallmarks of ESRD-related dyslipidemia. Clinical and laboratory studies have revealed that ESRD is associated with significantly reduced serum apolipoprotein A-I (ApoA-I) and HDL-C level as well as altered HDL composition. Furthermore, although ESRD is associated with impaired HDL antioxidant and anti-inflammatory properties in most patients, in a small subset, HDL may in fact have a pro-oxidant and proinflammatory effect. Therefore, it is no surprise that serum HDL-C level is not a dependable indicator of cardiovascular disease burden in ESRD, and markers such as HDL function are critical to accurately identifying patients at risk for cardiovascular disease and mortality in ESRD.
Collapse
Affiliation(s)
- Hamid Moradi
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Orange, California
| | - Nosratola D. Vaziri
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Orange, California
| | - Hamid M. Said
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Orange, California
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Orange, California
| |
Collapse
|
49
|
Marsche G, Saemann MD, Heinemann A, Holzer M. Inflammation alters HDL composition and function: Implications for HDL-raising therapies. Pharmacol Ther 2013; 137:341-51. [DOI: 10.1016/j.pharmthera.2012.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
High-density lipoprotein in uremic patients: metabolism, impairment, and therapy. Int Urol Nephrol 2013; 46:27-39. [PMID: 23443874 DOI: 10.1007/s11255-012-0366-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/12/2012] [Indexed: 01/21/2023]
Abstract
Several studies have shown that HDL has altered antioxidant and anti-inflammatory effects in chronic uremia, either by the reduction in its antioxidant enzymes or by the impairment of their activity. Systemic oxidative stress, which is highly prevalent in chronic kidney disease (CKD) patients, has been shown to decrease antioxidant and anti-inflammatory effects of HDL and even transform it into a pro-oxidant and pro-inflammatory agent. For this reason, we believe that the propensity for accelerated cardiovascular disease in CKD is facilitated by a few key features of this disease, namely, oxidative stress, inflammation, hypertension, and disorders of lipid metabolism. In a nutshell, oxidative stress and inflammation enhance atherosclerosis leading to increased cardiovascular mortality and morbidity in this population. In this detailed review, we highlight the current knowledge on HDL dysfunction and impairment in chronic kidney disease as well as the available therapy.
Collapse
|