1
|
Niu P, Li D, Chen H, Zhu Y, Zhou J, Zhang J, Liu Y. Cardamonin suppresses mTORC1/SREBP1 through reducing Raptor and inhibits de novo lipogenesis in ovarian cancer. PLoS One 2025; 20:e0322733. [PMID: 40315213 PMCID: PMC12047825 DOI: 10.1371/journal.pone.0322733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/25/2025] [Indexed: 05/04/2025] Open
Abstract
Metabolic reprogramming is a hallmark of cancer and de novo lipogenesis (DNL) accelerates the progression of ovarian cancer. In this study, we investigated the effects of cardamonin, a natural compound potential to suppress various malignancies, on the lipid anabolism in ovarian cancer. Cell proliferation was assessed using CCK-8 and clone formation assay. Cell apoptosis was detected by flow cytometry with Annexin V-FITC/PI staining and mitochondrial membrane potential (MMP) was measured with JC-10 probe. Free fatty acids (FFA) was measured by fluorescence using acyl-CoA oxidation and carnitine palmitoyl transferase-1 (CPT-1) activity was analyzed by spectrophotometric assay using palmitoyl-CoA and DTNB (5,5'-dithio-bis-(2-nitrobenzoic acid)) reaction. mRNA expression was measured by Quantitative Real-Time PCR. Protein expression was analyzed through western blotting and immunofluorescence. Raptor was knocked down by shRNA and Raptor was overexpressed by lentiviral transfection. The antitumor effect of cardamonin was evaluated using a xenotransplantation tumor bearing mouse model. Cardamonin suppressed the cell proliferation, induced cell apoptosis and triggered mitochondrial damage in ovarian cancer cells. Cardamonin inhibited the protein expression of sterol regulatory element binding protein 1 (SREBP1) and its downstream lipogenic enzymes and decreased FFA content and CPT-1 activity. Additionally, cardamonin inhibited the activation of mechanistic target of rapamycin complex 1 (mTORC1) and expression of regulatory-associated protein of mTOR (Raptor). Raptor knockdown abolished the inhibitory effect of cardamonin on mTORC1 and SREBP1. Furthermore, cardamonin inhibited mTORC1 activation and lipogenic proteins expression induced by Raptor overexpression. Cardamonin reduced the tumor growth and fatty acid synthase of the tumors, as evidenced by decreased expression of Ki-67 and FASN. It suggests that cardamonin suppresses mTORC1/SREBP1 through reducing the protein level of Raptor and inhibits DNL of ovarian cancer.
Collapse
Affiliation(s)
- Peiguang Niu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research [Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital)], Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Danyun Li
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Huajiao Chen
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanting Zhu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research [Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital)], Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Jintuo Zhou
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Ying Liu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Elahi LS, Condro MC, Kawaguchi R, Qin Y, Alvarado AG, Gruender B, Qi H, Li T, Lai A, Castro MG, Lowenstein PR, Garrett MC, Kornblum HI. Valproic acid targets IDH1 mutants through alteration of lipid metabolism. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:20. [PMID: 39149696 PMCID: PMC11321993 DOI: 10.1038/s44324-024-00021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Histone deacetylases (HDACs) have a wide range of targets and can rewire both the chromatin and lipidome of cancer cells. In this study, we show that valproic acid (VPA), a brain penetrant anti-seizure medication and histone deacetylase inhibitor, inhibits the growth of IDH1 mutant tumors in vivo and in vitro, with at least some selectivity over IDH1 wild-type tumors. Surprisingly, genes upregulated by VPA showed no enhanced chromatin accessibility at the promoter, but there was a correlation between VPA-downregulated genes and diminished promoter chromatin accessibility. VPA inhibited the transcription of lipogenic genes and these lipogenic genes showed significant decreases in promoter chromatin accessibility only in the IDH1 MT glioma cell lines tested. VPA inhibited the mTOR pathway and a key lipogenic gene, fatty acid synthase (FASN). Both VPA and a selective FASN inhibitor TVB-2640 rewired the lipidome and promoted apoptosis in an IDH1 MT but not in an IDH1 WT glioma cell line. We further find that HDACs are involved in the regulation of lipogenic genes and HDAC6 is particularly important for the regulation of FASN in IDH1 MT glioma. Finally, we show that FASN knockdown alone and VPA in combination with FASN knockdown significantly improved the survival of mice in an IDH1 MT primary orthotopic xenograft model in vivo. We conclude that targeting fatty acid metabolism through HDAC inhibition and/or FASN inhibition may be a novel therapeutic opportunity in IDH1 mutant gliomas.
Collapse
Affiliation(s)
- Lubayna S. Elahi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Michael C. Condro
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Yue Qin
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Alvaro G. Alvarado
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Brandon Gruender
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Haocheng Qi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Tie Li
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Maria G. Castro
- Department of Neurosurgery, Department of Cell and Developmental Biology, and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, Department of Cell and Developmental Biology, and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI USA
| | | | - Harley I. Kornblum
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| |
Collapse
|
3
|
Kook E, Kim DH. Elucidating the Role of Lipid-Metabolism-Related Signal Transduction and Inhibitors in Skin Cancer. Metabolites 2024; 14:309. [PMID: 38921444 PMCID: PMC11205519 DOI: 10.3390/metabo14060309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
Lipids, as multifunctional molecules, play a crucial role in a variety of cellular processes. These include regulating membrane glycoprotein functions, controlling membrane trafficking, influencing apoptotic pathways, and affecting drug transport. In addition, lipid metabolites can alter the surrounding microenvironment in ways that might encourage tumor progression. The reprogramming of lipid metabolism is pivotal in promoting tumorigenesis and cancer progression, with tumors often displaying significant changes in lipid profiles. This review concentrates on the essential factors that drive lipid metabolic reprogramming, which contributes to the advancement and drug resistance in melanoma. Moreover, we discuss recent advances and current therapeutic strategies that employ small-molecule inhibitors to target lipid metabolism in skin cancers, particularly those associated with inflammation and melanoma.
Collapse
Affiliation(s)
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon 16227, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Hayek H, Rehbini O, Kosmider B, Brandt T, Chatila W, Marchetti N, Criner GJ, Bolla S, Kishore R, Bowler RP, Bahmed K. The Regulation of Fatty Acid Synthase by Exosomal miR-143-5p and miR-342-5p in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2024; 70:259-282. [PMID: 38117249 PMCID: PMC11478129 DOI: 10.1165/rcmb.2023-0232oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease caused by an aberrant repair of injured alveolar epithelial cells. The maintenance of the alveolar epithelium and its regeneration after the damage is fueled by alveolar type II (ATII) cells. Injured cells release exosomes containing microRNAs (miRNAs), which can alter the recipient cells' function. Lung tissue, ATII cells, fibroblasts, plasma, and exosomes were obtained from naive patients with IPF, patients with IPF taking pirfenidone or nintedanib, and control organ donors. miRNA expression was analyzed to study their impact on exosome-mediated effects in IPF. High miR-143-5p and miR-342-5p levels were detected in ATII cells, lung tissue, plasma, and exosomes in naive patients with IPF. Decreased FASN (fatty acid synthase) and ACSL-4 (acyl-CoA-synthetase long-chain family member 4) expression was found in ATII cells. miR-143-5p and miR-342-5p overexpression or ATII cell treatment with IPF-derived exosomes containing these miRNAs lowered FASN and ACSL-4 levels. Also, this contributed to ATII cell injury and senescence. However, exosomes isolated from patients with IPF taking nintedanib or pirfenidone increased FASN expression in ATII cells compared with naive patients with IPF. Furthermore, fibroblast treatment with exosomes obtained from naive patients with IPF increased SMAD3, CTGF, COL3A1, and TGFβ1 expression. Our results suggest that IPF-derived exosomes containing miR-143-5p and miR-342-5p inhibited the de novo fatty acid synthesis pathway in ATII cells. They also induced the profibrotic response in fibroblasts. Pirfenidone and nintedanib improved ATII cell function and inhibited fibrogenesis. This study highlights the importance of exosomes in IPF pathophysiology.
Collapse
Affiliation(s)
- Hassan Hayek
- Department of Microbiology, Immunology, and Inflammation
- Center for Inflammation and Lung Research
| | | | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation
- Center for Inflammation and Lung Research
- Department of Thoracic Medicine and Surgery
| | | | | | | | | | | | - Raj Kishore
- Center for Translational Medicine, and
- Department of Cardiovascular Sciences, Temple University, Philadelphia, Pennsylvania; and
| | | | - Karim Bahmed
- Department of Microbiology, Immunology, and Inflammation
- Center for Inflammation and Lung Research
- Department of Thoracic Medicine and Surgery
| |
Collapse
|
5
|
Menendez JA, Cuyàs E, Encinar JA, Vander Steen T, Verdura S, Llop‐Hernández À, López J, Serrano‐Hervás E, Osuna S, Martin‐Castillo B, Lupu R. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol Oncol 2024; 18:479-516. [PMID: 38158755 PMCID: PMC10920094 DOI: 10.1002/1878-0261.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.
Collapse
Affiliation(s)
- Javier A. Menendez
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Jose Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC)Miguel Hernández University (UMH)ElcheSpain
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| | - Sara Verdura
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Àngela Llop‐Hernández
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Júlia López
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Eila Serrano‐Hervás
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
| | - Begoña Martin‐Castillo
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- Unit of Clinical ResearchCatalan Institute of OncologyGironaSpain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| |
Collapse
|
6
|
Bintener T, Pacheco MP, Philippidou D, Margue C, Kishk A, Del Mistro G, Di Leo L, Moscardó Garcia M, Halder R, Sinkkonen L, De Zio D, Kreis S, Kulms D, Sauter T. Metabolic modelling-based in silico drug target prediction identifies six novel repurposable drugs for melanoma. Cell Death Dis 2023; 14:468. [PMID: 37495601 PMCID: PMC10372000 DOI: 10.1038/s41419-023-05955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Despite high initial response rates to targeted kinase inhibitors, the majority of patients suffering from metastatic melanoma present with high relapse rates, demanding for alternative therapeutic options. We have previously developed a drug repurposing workflow to identify metabolic drug targets that, if depleted, inhibit the growth of cancer cells without harming healthy tissues. In the current study, we have applied a refined version of the workflow to specifically predict both, common essential genes across various cancer types, and melanoma-specific essential genes that could potentially be used as drug targets for melanoma treatment. The in silico single gene deletion step was adapted to simulate the knock-out of all targets of a drug on an objective function such as growth or energy balance. Based on publicly available, and in-house, large-scale transcriptomic data metabolic models for melanoma were reconstructed enabling the prediction of 28 candidate drugs and estimating their respective efficacy. Twelve highly efficacious drugs with low half-maximal inhibitory concentration values for the treatment of other cancers, which are not yet approved for melanoma treatment, were used for in vitro validation using melanoma cell lines. Combination of the top 4 out of 6 promising candidate drugs with BRAF or MEK inhibitors, partially showed synergistic growth inhibition compared to individual BRAF/MEK inhibition. Hence, the repurposing of drugs may enable an increase in therapeutic options e.g., for non-responders or upon acquired resistance to conventional melanoma treatments.
Collapse
Affiliation(s)
- Tamara Bintener
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Demetra Philippidou
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Christiane Margue
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Ali Kishk
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Greta Del Mistro
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumour Diseases, TU-Dresden, Dresden, Germany
| | - Luca Di Leo
- Melanoma Research Team, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maria Moscardó Garcia
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Daniela De Zio
- Melanoma Research Team, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumour Diseases, TU-Dresden, Dresden, Germany
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
7
|
Chen S, Liang JF. Anticancer Activity of Nano-formulated Orlistat-Dopamine Conjugates Through Self-Assembly. Bioconjug Chem 2023; 34:581-593. [PMID: 36802542 DOI: 10.1021/acs.bioconjchem.3c00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Orlistat, an FDA-approved fatty acid inhibitor for obesity treatment, demonstrates certain low and greatly varied anticancer abilities. In a previous study, we revealed a synergistic effect between orlistat and dopamine in cancer treatment. Here, orlistat-dopamine conjugates (ODCs) with defined chemical structures were synthesized. The ODC by design underwent polymerization and self-assembly in the presence of oxygen to form nano-sized particles (Nano-ODCs) spontaneously. The resulted Nano-ODCs of partial crystalline structures demonstrated good water dispersion to form stable Nano-ODC suspensions. Because of the bioadhesive property of the catechol moieties, once administered, Nano-ODCs were quickly accumulated on cell surfaces and efficiently uptaken by cancer cells. In the cytoplasm, Nano-ODC experienced biphasic dissolution followed by spontaneous hydrolysis to release intact orlistat and dopamine. Besides elevated levels of intracellular reactive oxygen species (ROS), the co-localized dopamine also induced mitochondrial dysfunctions through monoamine oxidases (MAOs)-catalyzed dopamine oxidation. The strong synergistic effects between orlistat and dopamine determined a good cytotoxicity activity and a unique cell lysis mechanism, explaining the distinguished activity of Nano-ODC to drug-sensitive and -resistant cancer cells. This new technology-enabled orlistat repurposing will contribute to overcoming drug resistance and the improvement of cancer chemotherapy.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Chemistry and Chemical Biology, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jun F Liang
- Department of Chemistry and Chemical Biology, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
8
|
Kim H, Hwang E, Park BC, Kim SJ. Novel potential NOX2 inhibitors, Dudleya brittonii water extract and polygalatenoside A inhibit intracellular ROS generation and growth of melanoma. Biomed Pharmacother 2022; 150:112967. [PMID: 35430393 DOI: 10.1016/j.biopha.2022.112967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 11/02/2022] Open
Abstract
Reactive oxygen species (ROS) are key regulators of the proliferation, metastasis, and drug resistance of melanoma, which accounts for 60% of skin cancer deaths. In a previous study, we developed Dudleya brittonii water extract (DBWE) with antioxidant activity, but the mechanism of action and bioactive substances of DBWE have not been fully identified. This study showed altered NADPH oxidase 2 (NOX2) expression and selective inhibition of cytosolic ROS but not mitochondrial ROS in B16-F10 melanoma cells, suggesting the NOX2 inhibitory potential of DBWE. In addition, DBWE inhibited mitochondrial activity, lipid metabolism, and cell cycle in B16-F10 cells. The anti-melanoma effect of DBWE was abrogated by the addition of ROS, and there was no significant change in the melanogenesis pathway. Polygalatenoside A was identified as a candidate bioactive substance in the DBWE aqueous fraction through mass spectrometry, and the DBWE-like anti-melanoma effect was confirmed. These data suggest that DBWE and polygalatenoside A have the potential to prevent and treat melanoma.
Collapse
Affiliation(s)
- Hyungkuen Kim
- Division of Cosmetics and Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, Chungnam 31499, Republic of Korea
| | - Eunmi Hwang
- Division of Cosmetics and Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, Chungnam 31499, Republic of Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology, Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea.
| | - Sung-Jo Kim
- Division of Cosmetics and Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, Chungnam 31499, Republic of Korea.
| |
Collapse
|
9
|
Schroeder B, Vander Steen T, Espinoza I, Venkatapoorna CMK, Hu Z, Silva FM, Regan K, Cuyàs E, Meng XW, Verdura S, Arbusà A, Schneider PA, Flatten KS, Kemble G, Montero J, Kaufmann SH, Menendez JA, Lupu R. Fatty acid synthase (FASN) regulates the mitochondrial priming of cancer cells. Cell Death Dis 2021; 12:977. [PMID: 34675185 PMCID: PMC8531299 DOI: 10.1038/s41419-021-04262-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022]
Abstract
Inhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors. Evaluation of the death decision circuits controlled by the BCL-2 family of proteins revealed that FASN inhibition is accompanied by the upregulation of the pro-death BH3-only proteins BIM, PUMA, and NOXA. Cell death triggered by FASN inhibition, which causally involves a palmitate/NADPH-related redox imbalance, is markedly diminished by concurrent loss of BIM or PUMA, suggesting that FASN activity controls cancer cell survival by fine-tuning the BH3 only proteins-dependent mitochondrial threshold for apoptosis. FASN inhibition results in a heightened mitochondrial apoptosis priming, shifting cells toward a primed-for-death state "addicted" to the anti-apoptotic protein BCL-2. Accordingly, co-administration of a FASNi synergistically augments the apoptosis-inducing activity of the dual BCL-XL/BCL-2 inhibitor ABT-263 (navitoclax) and the BCL-2 specific BH3-mimetic ABT-199 (venetoclax). FASN inhibition, however, fails to sensitize breast cancer cells to MCL-1- and BCL-XL-selective inhibitors such as S63845 and A1331852. A human breast cancer xenograft model evidenced that oral administration of the only clinically available FASNi drastically sensitizes FASN-addicted breast tumors to ineffective single-agents navitoclax and venetoclax in vivo. In summary, a novel FASN-driven facet of the mitochondrial priming mechanistically links the redox-buffering mechanism of FASN activity to the intrinsic apoptotic threshold in breast cancer cells. Combining next-generation FASNis with BCL-2-specific BH3 mimetics that directly activate the apoptotic machinery might generate more potent and longer-lasting antitumor responses in a clinical setting.
Collapse
Affiliation(s)
- Barbara Schroeder
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Cancer Center, Rochester, MN, 55905, USA.,Helmholtz Pioneer Campus, Heimholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1 D-85764 Neuherberg, Munich, Germany
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ingrid Espinoza
- Department of Preventive Medicine, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS, 39216, USA.,Cancer Institute, School of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Chandra M Kurapaty Venkatapoorna
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Nutrition, Dietetics, and Hospital Management, Auburn University, Auburn, AL, 36849, USA
| | - Zeng Hu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.,Radiation Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fernando Martín Silva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Kevin Regan
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Elisabet Cuyàs
- Girona Biomedical Research Institute, 17190, Salt, Girona, Spain.,Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007, Girona, Spain
| | - X Wei Meng
- Deparment of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sara Verdura
- Girona Biomedical Research Institute, 17190, Salt, Girona, Spain.,Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007, Girona, Spain
| | - Aina Arbusà
- Girona Biomedical Research Institute, 17190, Salt, Girona, Spain.,Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007, Girona, Spain
| | | | - Karen S Flatten
- Deparment of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - George Kemble
- Sagimet Biosciences (formerly 3-V Biosciences), San Mateo, CA, 94402, USA
| | - Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Scott H Kaufmann
- Mayo Clinic Cancer Center, Rochester, MN, 55905, USA.,Deparment of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Javier A Menendez
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, 55905, USA. .,Girona Biomedical Research Institute, 17190, Salt, Girona, Spain.
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA. .,Mayo Clinic Cancer Center, Rochester, MN, 55905, USA. .,Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Laboratory, Rochester, MN, 55905, USA.
| |
Collapse
|
10
|
MiR-486-3p was downregulated at microRNA profiling of adrenals of multiple endocrine neoplasia type 1 mice, and inhibited human adrenocortical carcinoma cell lines. Sci Rep 2021; 11:14772. [PMID: 34285285 PMCID: PMC8292366 DOI: 10.1038/s41598-021-94154-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/13/2021] [Indexed: 12/04/2022] Open
Abstract
Adrenocortical carcinoma is a rare aggressive disease commonly recurring regardless of radical surgery. Although data on genomic alterations in malignant tumors are accumulating, knowledge of molecular events of importance for initiation of adrenocortical transformation is scarce. In an attempt to recognize early molecular alterations, we used adrenals from young multiple endocrine neoplasia type 1 conventional knock-out mice (Men1+/−) closely mimicking the human MEN1 trait (i.e. transformation of pituitary, parathyroid, endocrine pancreatic, and adrenocortical cells). MicroRNA array and hierarchical clustering showed a distinct pattern. Twenty miRNAs were significantly upregulated and eleven were downregulated in Men1+/− compared to wild type littermates. The latter included the known suppressor miRNA miR-486-3p, which was chosen for transfection in human adrenocortical carcinoma cell lines H295R and SW13. Cell growth decreased in miR-486-3p overexpressing clones and levels of the predicted target gene fatty acid synthase (FASN) and its downstream product, palmitic acid, were lowered. In conclusion, heterozygous inactivation of Men1 in adrenals results in distinct miRNA profile regulating expression of genes with impact on tumorigenesis, e.g. transcription, nucleic acid and lipid metabolism. Low levels of miR-486-3p in the early stages of transformation may contribute to proliferation by increasing FASN and thus fatty acid production. FASN as a potentially druggable target for treatment of the devastating disease adrenocortical carcinoma warrants further studies.
Collapse
|
11
|
Lipid metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives. Cancers (Basel) 2020; 12:cancers12113147. [PMID: 33121001 PMCID: PMC7692067 DOI: 10.3390/cancers12113147] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Melanoma is a devastating skin cancer characterized by an impressive metabolic plasticity. Melanoma cells are able to adapt to the tumor microenvironment by using a variety of fuels that contribute to tumor growth and progression. In this review, the authors summarize the contribution of the lipid metabolic network in melanoma plasticity and aggressiveness, with a particular attention to specific lipid classes such as glycerophospholipids, sphingolipids, sterols and eicosanoids. They also highlight the role of adipose tissue in tumor progression as well as the potential antitumor role of drugs targeting critical steps of lipid metabolic pathways in the context of melanoma. Abstract Metabolic reprogramming contributes to the pathogenesis and heterogeneity of melanoma. It is driven both by oncogenic events and the constraints imposed by a nutrient- and oxygen-scarce microenvironment. Among the most prominent metabolic reprogramming features is an increased rate of lipid synthesis. Lipids serve as a source of energy and form the structural foundation of all membranes, but have also emerged as mediators that not only impact classical oncogenic signaling pathways, but also contribute to melanoma progression. Various alterations in fatty acid metabolism have been reported and can contribute to melanoma cell aggressiveness. Elevated expression of the key lipogenic fatty acid synthase is associated with tumor cell invasion and poor prognosis. Fatty acid uptake from the surrounding microenvironment, fatty acid β-oxidation and storage also appear to play an essential role in tumor cell migration. The aim of this review is (i) to focus on the major alterations affecting lipid storage organelles and lipid metabolism. A particular attention has been paid to glycerophospholipids, sphingolipids, sterols and eicosanoids, (ii) to discuss how these metabolic dysregulations contribute to the phenotype plasticity of melanoma cells and/or melanoma aggressiveness, and (iii) to highlight therapeutic approaches targeting lipid metabolism that could be applicable for melanoma treatment.
Collapse
|
12
|
Fatty Acid Synthase: An Emerging Target in Cancer. Molecules 2020; 25:molecules25173935. [PMID: 32872164 PMCID: PMC7504791 DOI: 10.3390/molecules25173935] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
In recent years, lipid metabolism has garnered significant attention as it provides the necessary building blocks required to sustain tumor growth and serves as an alternative fuel source for ATP generation. Fatty acid synthase (FASN) functions as a central regulator of lipid metabolism and plays a critical role in the growth and survival of tumors with lipogenic phenotypes. Accumulating evidence has shown that it is capable of rewiring tumor cells for greater energy flexibility to attain their high energy requirements. This multi-enzyme protein is capable of modulating the function of subcellular organelles for optimal function under different conditions. Apart from lipid metabolism, FASN has functional roles in other cellular processes such as glycolysis and amino acid metabolism. These pivotal roles of FASN in lipid metabolism make it an attractive target in the clinic with several new inhibitors currently being tested in early clinical trials. This article aims to present the current evidence on the emergence of FASN as a target in human malignancies.
Collapse
|
13
|
Smith LK, Arabi S, Lelliott EJ, McArthur GA, Sheppard KE. Obesity and the Impact on Cutaneous Melanoma: Friend or Foe? Cancers (Basel) 2020; 12:cancers12061583. [PMID: 32549336 PMCID: PMC7352630 DOI: 10.3390/cancers12061583] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Excess body weight has been identified as a risk factor for many types of cancers, and for the majority of cancers, it is associated with poor outcomes. In contrast, there are cancers in which obesity is associated with favorable outcomes and this has been termed the “obesity paradox”. In melanoma, the connection between obesity and the increased incidence is not as strong as for other cancer types with some but not all studies showing an association. However, several recent studies have indicated that increased body mass index (BMI) improves survival outcomes in targeted and immune therapy treated melanoma patients. The mechanisms underlying how obesity leads to changes in therapeutic outcomes are not completely understood. This review discusses the current evidence implicating obesity in melanoma progression and patient response to targeted and immunotherapy, and discusses potential mechanisms underpinning these associations.
Collapse
Affiliation(s)
- Lorey K. Smith
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.K.S.); (S.A.); (E.J.L.); (G.A.M.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shaghayegh Arabi
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.K.S.); (S.A.); (E.J.L.); (G.A.M.)
| | - Emily J. Lelliott
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.K.S.); (S.A.); (E.J.L.); (G.A.M.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Grant A. McArthur
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.K.S.); (S.A.); (E.J.L.); (G.A.M.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Karen E. Sheppard
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.K.S.); (S.A.); (E.J.L.); (G.A.M.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
14
|
Fujimoto M, Matsuzaki I, Nishitsuji K, Yamamoto Y, Murakami D, Yoshikawa T, Fukui A, Mori Y, Nishino M, Takahashi Y, Iwahashi Y, Warigaya K, Kojima F, Jinnin M, Murata SI. Adipophilin expression in cutaneous malignant melanoma is associated with high proliferation and poor clinical prognosis. J Transl Med 2020; 100:727-737. [PMID: 31857696 DOI: 10.1038/s41374-019-0358-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Adipophilin (ADP) is a primary protein component of lipid droplets (LDs). For more than half a century, certain types of cancer cells have been known to contain LDs in their cytoplasm. However, the pathological significance of ADP or LDs in cancer remains unclear. In the present study, we investigated the association between ADP and other pathological characteristics in cutaneous malignant melanomas to clarify the role of ADP in melanoma cells. We immunostained whole paraffin sections of primary cutaneous melanomas obtained from 90 cases for ADP, after which we analyzed the correlation between ADP immunohistochemistry (IHC) and patient survival data. We also studied the relationship between the ADP IHC score and in situ hybridization (ISH) score of ADP mRNA, and the Ki67-labeling index (Ki67-LI) by using tissue microarrays consisting of 74 primary cutaneous malignant melanomas, 19 metastasizing melanomas, and 29 melanocytic nevi. Finally, we analyzed the relationship between ADP expression and cell proliferation in cutaneous melanoma cell lines. We found that high ADP expression was associated with poor metastasis-free survival, disease-specific survival, and overall survival rates of patients with cutaneous melanomas (P < 0.05). By linear regression analysis, ADP IHC was correlated with increasing ADP mRNA ISH H-scores and Ki67-LI scores in melanocytic lesions (P < 0.01). ADP IHC and ADP ISH H-scores and Ki67-LI scores were greater in pT3-4 melanomas than in pT1-2 melanomas. In cell-based assays, cells with increased ADP expression showed higher proliferation rates compared with those of low-ADP cells. Thus, ADP expression in malignant melanoma was significantly associated with high cell proliferation and poor clinical prognosis. Our results thus indicate a significant association between ADP and melanoma progression, and we propose that ADP may be a novel marker of aggressive cutaneous melanoma with a lipogenic phenotype.
Collapse
Affiliation(s)
- Masakazu Fujimoto
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan.
| | - Ibu Matsuzaki
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | | | - Yuki Yamamoto
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Daisuke Murakami
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Takanori Yoshikawa
- Clinical Study Support Center, Wakayama Medical University, Wakayama, Japan
| | - Ayaka Fukui
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Yuuki Mori
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Masaru Nishino
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Yuichi Takahashi
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Yoshifumi Iwahashi
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Kenji Warigaya
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Fumiyoshi Kojima
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Masatoshi Jinnin
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Shin-Ichi Murata
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
15
|
de Almeida LY, Mariano FS, Bastos DC, Cavassani KA, Raphelson J, Mariano VS, Agostini M, Moreira FS, Coletta RD, Mattos-Graner RO, Graner E. The antimetastatic activity of orlistat is accompanied by an antitumoral immune response in mouse melanoma. Cancer Chemother Pharmacol 2019; 85:321-330. [PMID: 31863126 DOI: 10.1007/s00280-019-04010-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/07/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Fatty acid synthase (FASN), the multifunctional enzyme responsible for endogenous fatty acid synthesis, is highly expressed and associated with poor prognosis in several human cancers, including melanoma. Our group has previously shown that pharmacological inhibition of FASN with orlistat decreases proliferation, promotes apoptosis, and reduces the metastatic spread of B16-F10 cells in experimental models of melanoma. While most of the orlistat antitumor properties seem to be closely related to direct effects on malignant cells, its impact on the host immune system is still unknown. METHODS The effects of orlistat on the phenotype and activation status of infiltrating leukocytes in primary tumors and metastatic lymph nodes were assessed using a model of spontaneous melanoma metastasis (B16-F10 cells/C57BL/6 mice). Cells from the primary tumors and lymph nodes were mechanically dissociated and immune cells phenotyped by flow cytometry. The expression of IL-12p35, IL-12p40, and inducible nitric oxide synthase (iNOS) was analyzed by qRT-PCR and production of nitrite (NO2-) evaluated in serum samples with the Griess method. RESULTS Orlistat-treated mice exhibited a 25% reduction in the number of mediastinal lymph node metastases (mean 3.96 ± 0.78, 95% CI 3.63-4.28) compared to the controls (mean 5.7 ± 1.72; 95% CI 5.01-6.43). The drug elicited an antitumor immune response against experimental melanomas by increasing maturation of intratumoral dendritic cells (DC), stimulating the expression of cytotoxicity markers in CD8 T lymphocytes and natural killer (NK) cells, as well as reducing regulatory T cells (Tregs). Moreover, the orlistat-treatment increased serum levels of nitric oxide (NO) concentrations. CONCLUSION Taken together, these findings suggest that orlistat supports an antitumor response against experimental melanomas by increasing CD80/CD81-positive and IL-12-positive DC populations, granzyme b/NKG2D-positive NK populations, and perforin/granzyme b-positive CD8 T lymphocytes as well as reducing Tregs counts within experimental melanomas.
Collapse
Affiliation(s)
- Luciana Y de Almeida
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil. Av. Limeira 901, CP 52, Areão, Piracicaba, SP, 13414-903, Brazil
| | - Flávia S Mariano
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil. Av. Limeira 901, CP 52, Areão, Piracicaba, SP, 13414-903, Brazil
| | - Débora C Bastos
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil. Av. Limeira 901, CP 52, Areão, Piracicaba, SP, 13414-903, Brazil
| | - Karen A Cavassani
- Urologic Oncology Program/Uro-Oncology Research Laboratories, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, 90048, USA
| | - Janna Raphelson
- Urologic Oncology Program/Uro-Oncology Research Laboratories, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, 90048, USA
| | - Vânia S Mariano
- Department of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Michelle Agostini
- Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda S Moreira
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil. Av. Limeira 901, CP 52, Areão, Piracicaba, SP, 13414-903, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil. Av. Limeira 901, CP 52, Areão, Piracicaba, SP, 13414-903, Brazil
| | - Renata O Mattos-Graner
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil. Av. Limeira 901, CP 52, Areão, Piracicaba, SP, 13414-903, Brazil
| | - Edgard Graner
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil. Av. Limeira 901, CP 52, Areão, Piracicaba, SP, 13414-903, Brazil.
| |
Collapse
|
16
|
Yarrow supercritical extract exerts antitumoral properties by targeting lipid metabolism in pancreatic cancer. PLoS One 2019; 14:e0214294. [PMID: 30913248 PMCID: PMC6435158 DOI: 10.1371/journal.pone.0214294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming is considered a hallmark of cancer. Currently, the altered lipid metabolism in cancer is a topic of interest due to the prominent role of lipids regulating the progression of various types of tumors. Lipids and lipid-derived molecules have been shown to activate growth regulatory pathways and to promote malignancy in pancreatic cancer. In a previous work, we have described the antitumoral properties of Yarrow (Achillea Millefolium) CO2 supercritical extract (Yarrow SFE) in pancreatic cancer. Herein, we aim to investigate the underlaying molecular mechanisms by which Yarrow SFE induces cytotoxicity in pancreatic cancer cells. Yarrow SFE downregulates SREBF1 and downstream molecular targets of this transcription factor, such as fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD). Importantly, we demonstrate the in vivo effect of Yarrow SFE diminishing the tumor growth in a xenograft mouse model of pancreatic cancer. Our data suggest that Yarrow SFE can be proposed as a complementary adjuvant or nutritional supplement in pancreatic cancer therapy.
Collapse
|
17
|
Henderson F, Johnston HR, Badrock AP, Jones EA, Forster D, Nagaraju RT, Evangelou C, Kamarashev J, Green M, Fairclough M, Ramirez IBR, He S, Snaar-Jagalska BE, Hollywood K, Dunn WB, Spaink HP, Smith MP, Lorigan P, Claude E, Williams KJ, McMahon AW, Hurlstone A. Enhanced Fatty Acid Scavenging and Glycerophospholipid Metabolism Accompany Melanocyte Neoplasia Progression in Zebrafish. Cancer Res 2019; 79:2136-2151. [DOI: 10.1158/0008-5472.can-18-2409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/23/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022]
|
18
|
Ali A, Levantini E, Teo JT, Goggi J, Clohessy JG, Wu CS, Chen L, Yang H, Krishnan I, Kocher O, Zhang J, Soo RA, Bhakoo K, Chin TM, Tenen DG. Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer. EMBO Mol Med 2019; 10:emmm.201708313. [PMID: 29449326 PMCID: PMC5840543 DOI: 10.15252/emmm.201708313] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming is widely known as a hallmark of cancer cells to allow adaptation of cells to sustain survival signals. In this report, we describe a novel oncogenic signaling pathway exclusively acting in mutated epidermal growth factor receptor (EGFR) non-small cell lung cancer (NSCLC) with acquired tyrosine kinase inhibitor (TKI) resistance. Mutated EGFR mediates TKI resistance through regulation of the fatty acid synthase (FASN), which produces 16-C saturated fatty acid palmitate. Our work shows that the persistent signaling by mutated EGFR in TKI-resistant tumor cells relies on EGFR palmitoylation and can be targeted by Orlistat, an FDA-approved anti-obesity drug. Inhibition of FASN with Orlistat induces EGFR ubiquitination and abrogates EGFR mutant signaling, and reduces tumor growths both in culture systems and in vivo Together, our data provide compelling evidence on the functional interrelationship between mutated EGFR and FASN and that the fatty acid metabolism pathway is a candidate target for acquired TKI-resistant EGFR mutant NSCLC patients.
Collapse
Affiliation(s)
- Azhar Ali
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore
| | - Elena Levantini
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.,Beth Israel Deaconess Medical Center, Boston, MA, USA.,Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
| | - Jun Ting Teo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore
| | - Julian Goggi
- Singapore Bioimaging Consortium (A*STAR), Singapore City, Singapore
| | | | - Chan Shuo Wu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore
| | | | | | - Junyan Zhang
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ross A Soo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore.,Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore City, Singapore
| | - Kishore Bhakoo
- Singapore Bioimaging Consortium (A*STAR), Singapore City, Singapore
| | - Tan Min Chin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore .,Raffles Cancer Centre, Raffles Hospital, Singapore City, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore .,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Schcolnik-Cabrera A, Chávez-Blanco A, Domínguez-Gómez G, Taja-Chayeb L, Morales-Barcenas R, Trejo-Becerril C, Perez-Cardenas E, Gonzalez-Fierro A, Dueñas-González A. Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy. Expert Opin Investig Drugs 2018; 27:475-489. [PMID: 29723075 DOI: 10.1080/13543784.2018.1471132] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cancer cells have increased glycolysis and glutaminolysis. Their third feature is increased de novo lipogenesis. As such, fatty acid (FA) synthesis enzymes are over-expressed in cancer and their depletion causes antitumor effects. As fatty acid synthase (FASN) plays a pivotal role in this process, it is an attractive target for cancer therapy. AREAS COVERED This is a review of the lipogenic phenotype of cancer and how this phenomenon can be exploited for cancer therapy using inhibitors of FASN, with particular emphasis on orlistat as a repurposing drug. EXPERT OPINION Disease stabilization only has been observed with a highly selective FASN inhibitor used as a single agent in clinical trials. It is too early to say whether the absence of tumor responses other than stabilization results because even full inhibition of FASN is not enough to elicit antitumor responses. The FASN inhibitor orlistat is a 'dirty' drug with target-off actions upon at least seven targets with a proven role in tumor biology. The development of orlistat formulations suited for its intravenous administration is a step ahead to shed light on the concept that drug promiscuity can or not be a virtue.
Collapse
Affiliation(s)
| | - Alma Chávez-Blanco
- a Division of Basic Research , Instituto Nacional de Cancerologia , Mexico City , Mexico
| | | | - Lucia Taja-Chayeb
- a Division of Basic Research , Instituto Nacional de Cancerologia , Mexico City , Mexico
| | - Rocio Morales-Barcenas
- a Division of Basic Research , Instituto Nacional de Cancerologia , Mexico City , Mexico
| | | | - Enrique Perez-Cardenas
- a Division of Basic Research , Instituto Nacional de Cancerologia , Mexico City , Mexico
| | - Aurora Gonzalez-Fierro
- a Division of Basic Research , Instituto Nacional de Cancerologia , Mexico City , Mexico
| | - Alfonso Dueñas-González
- b Unit of Biomedical Research in Cancer , Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia , Mexico City , Mexico
| |
Collapse
|
20
|
Khiewkamrop P, Phunsomboon P, Richert L, Pekthong D, Srisawang P. Epistructured catechins, EGCG and EC facilitate apoptosis induction through targeting de novo lipogenesis pathway in HepG2 cells. Cancer Cell Int 2018; 18:46. [PMID: 29588626 PMCID: PMC5863485 DOI: 10.1186/s12935-018-0539-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/13/2018] [Indexed: 02/06/2023] Open
Abstract
Background Abnormally high expression of the mammalian de novo lipogenesis (DNL) pathway in various cancer cells promotes cell over-proliferation and resistance to apoptosis. Inhibition of key enzymes in the DNL pathway, namely, ATP citrate lyase, acetyl-CoA carboxylase, and fatty acid synthase (FASN) can increase apoptosis without cytotoxicity to non-cancerous cells, leading to the search for and presentation of novel selective and powerful targets for cancer therapy. Previous studies reported that epistructured catechins, epigallocatechin gallate (EGCG) and epicatechin (EC) exhibit different mechanisms regarding a strong inducer of apoptosis in various cancer cell lines. Thus, the current study investigated the growth inhibitory effect of EGCG and EC, on the enzyme expression and activity of the DNL pathway, which leads to the prominent activity of carnitine palmitoyl transferase-1 (CPT-1) mediating apoptosis in HepG2 cells. Methods The cytotoxicity on HepG2 cells of EGCG and EC was determined by MTT assay. Cell death caused by apoptosis, the dissipation of mitochondrial membrane potential (MMP), and cell cycle arrest were then detected by flow cytometry. We further investigated the decrease of fatty acid levels associated with DNL retardation, followed by evaluation of DNL protein expression. Then, the negative inhibitory effect of depleted fatty acid synthesis on malonyl-CoA synthesis followed by regulating of CPT-1 activity was investigated. Thereafter, we inspected the enhanced reactive oxygen species (ROS) generation, which is recognized as one of the causes of apoptosis in HepG2 cells. Results We found that EGCG and EC decreased cancer cell viability by increasing apoptosis as well as causing cell cycle arrest in HepG2 cells. Apoptosis was associated with MMP dissipation. Herein, EGCG and EC inhibited the expression of FASN enzymes contributing to decreasing fatty acid levels. Notably, this decrease consequently showed a suppressing effect on the CPT-1 activity. We suggest that epistructured catechin-induced apoptosis targets CPT-1 activity suppression mediated through diminishing the DNL pathway in HepG2 cells. In addition, increased ROS production was found after treatment with EGCG and EC, indicating oxidative stress mechanism-induced apoptosis. The strong apoptotic effect of EGCG and EC was specifically absent in primary human hepatocytes. Conclusion Our supportive evidence confirms potential alternative cancer treatments by EGCG and EC that selectively target the DNL pathway.
Collapse
Affiliation(s)
- Phuriwat Khiewkamrop
- 1Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000 Thailand
| | - Pattamaphron Phunsomboon
- 2Clinical Research Unit Floor 5 His Majesty's 7th Cycle Birthday Anniversary 2, Faculty of Medicine, Naresuan University, Phitsanulok, 65000 Thailand
| | - Lysiane Richert
- KaLy-Cell, 20A rue du Général Leclerc, 67115 Plobsheim, France.,Laboratoire de Toxicologie Cellulaire, Université de Bourgogne Franche-Comté, EA 4267, Besançon, France
| | - Dumrongsak Pekthong
- 5Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000 Thailand
| | - Piyarat Srisawang
- 1Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000 Thailand
| |
Collapse
|
21
|
Shen M, Tsai Y, Zhu R, Keng PC, Chen Y, Chen Y, Lee SO. RETRACTED: FASN-TGF-β1-PD-L1 axis contributes to the development of resistance to NK cell cytotoxicity of cisplatin-resistant lung cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:313-322. [DOI: 10.1016/j.bbalip.2017.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/22/2017] [Accepted: 12/31/2017] [Indexed: 12/11/2022]
|
22
|
Fischer GM, Gopal YV, McQuade JL, Peng W, DeBerardinis RJ, Davies MA. Metabolic strategies of melanoma cells: Mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell Melanoma Res 2018; 31:11-30. [PMID: 29049843 PMCID: PMC5742019 DOI: 10.1111/pcmr.12661] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Abstract
Melanomas are metabolically heterogeneous, and they are able to adapt in order to utilize a variety of fuels that facilitate tumor progression and metastasis. The significance of metabolism in melanoma is supported by growing evidence of impact on the efficacy of contemporary therapies for this disease. There are also data to support that the metabolic phenotypes of melanoma cells depend upon contributions from both intrinsic oncogenic pathways and extrinsic factors in the tumor microenvironment. This review summarizes current understanding of the metabolic processes that promote cutaneous melanoma tumorigenesis and progression, the regulation of cancer cell metabolism by the tumor microenvironment, and the impact of metabolic pathways on targeted and immune therapies.
Collapse
Affiliation(s)
- Grant M. Fischer
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Y.N. Vashisht Gopal
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Jennifer L. McQuade
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Weiyi Peng
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Ralph J. DeBerardinis
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390
| | - Michael A. Davies
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| |
Collapse
|
23
|
Clawson GA, Matters GL, Xin P, McGovern C, Wafula E, dePamphilis C, Meckley M, Wong J, Stewart L, D’Jamoos C, Altman N, Imamura Kawasawa Y, Du Z, Honaas L, Abraham T. "Stealth dissemination" of macrophage-tumor cell fusions cultured from blood of patients with pancreatic ductal adenocarcinoma. PLoS One 2017; 12:e0184451. [PMID: 28957348 PMCID: PMC5619717 DOI: 10.1371/journal.pone.0184451] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
Here we describe isolation and characterization of macrophage-tumor cell fusions (MTFs) from the blood of pancreatic ductal adenocarcinoma (PDAC) patients. The MTFs were generally aneuploidy, and immunophenotypic characterizations showed that the MTFs express markers characteristic of PDAC and stem cells, as well as M2-polarized macrophages. Single cell RNASeq analyses showed that the MTFs express many transcripts implicated in cancer progression, LINE1 retrotransposons, and very high levels of several long non-coding transcripts involved in metastasis (such as MALAT1). When cultured MTFs were transplanted orthotopically into mouse pancreas, they grew as obvious well-differentiated islands of cells, but they also disseminated widely throughout multiple tissues in "stealth" fashion. They were found distributed throughout multiple organs at 4, 8, or 12 weeks after transplantation (including liver, spleen, lung), occurring as single cells or small groups of cells, without formation of obvious tumors or any apparent progression over the 4 to 12 week period. We suggest that MTFs form continually during PDAC development, and that they disseminate early in cancer progression, forming "niches" at distant sites for subsequent colonization by metastasis-initiating cells.
Collapse
Affiliation(s)
- Gary A. Clawson
- Gittlen Cancer Research Laboratories and the Department of Pathology, Hershey Medical Center (HMC), Pennsylvania State University (PSU), Hershey, PA, United States of America
| | - Gail L. Matters
- Department of Biochemistry & Molecular Biology, HMC, PSU, Hershey, PA, United States of America
| | - Ping Xin
- Gittlen Cancer Research Laboratories and the Department of Pathology, Hershey Medical Center (HMC), Pennsylvania State University (PSU), Hershey, PA, United States of America
| | - Christopher McGovern
- Department of Biochemistry & Molecular Biology, HMC, PSU, Hershey, PA, United States of America
| | - Eric Wafula
- Department of Biology, Eberly College, University Park (UP), Pennsylvania State University, University Park, PA, United States of America
| | - Claude dePamphilis
- Department of Biology, Eberly College, University Park (UP), Pennsylvania State University, University Park, PA, United States of America
| | - Morgan Meckley
- Gittlen Cancer Research Laboratories and the Department of Pathology, Hershey Medical Center (HMC), Pennsylvania State University (PSU), Hershey, PA, United States of America
| | - Joyce Wong
- Department of Surgery, HMC, PSU, Hershey, PA, United States of America
| | - Luke Stewart
- Applications Support, Fluidigm Corporation, South San Francisco, CA, United States of America
| | - Christopher D’Jamoos
- Applications Support, Fluidigm Corporation, South San Francisco, CA, United States of America
| | - Naomi Altman
- Department of Statistics, Eberly College, UP, PSU, University Park, PA, United States of America
| | - Yuka Imamura Kawasawa
- Department of Pharmacology and Biochemistry & Molecular Biology, Institute for Personalized Medicine, HMC, PSU, Hershey, PA, United States of America
| | - Zhen Du
- Gittlen Cancer Research Laboratories and the Department of Pathology, Hershey Medical Center (HMC), Pennsylvania State University (PSU), Hershey, PA, United States of America
| | - Loren Honaas
- Department of Biology, Eberly College, University Park (UP), Pennsylvania State University, University Park, PA, United States of America
| | - Thomas Abraham
- Department of Neural & Behavioral Sciences and Microscopy Imaging Facility, HMC, PSU, Hershey, PA, United States of America
| |
Collapse
|
24
|
Triacsin C reduces lipid droplet formation and induces mitochondrial biogenesis in primary rat hepatocytes. J Bioenerg Biomembr 2017; 49:399-411. [PMID: 28918598 DOI: 10.1007/s10863-017-9725-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/04/2017] [Indexed: 12/21/2022]
Abstract
Intracellular long-chain acyl-CoA synthetases (ACSL) activate fatty acids to produce acyl-CoA, which undergoes β-oxidation and participates in the synthesis of esterified lipids such as triacylglycerol (TAG). Imbalances in these metabolic routes are closely associated with the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Triacsin C is one of the few compounds that inhibit TAG accumulation into lipid droplets (LD) by suppressing ACSL activity. Here we report that treatment of primary rat hepatocytes with triacsin C at concentrations lower than the IC50 (4.1 μM) for LD formation: (i) diminished LD number in a concentration-dependent manner; (ii) increased mitochondrial amount; (iii) markedly improved mitochondrial metabolism by enhancing the β-oxidation efficiency, electron transport chain capacity, and degree of coupling - treatment of isolated rat liver mitochondria with the same triacsin C concentrations did not affect the last two parameters; (iv) decreased the GSH/GSSG ratio and elevated the protein carbonyl level, which suggested an increased reactive oxygen species production, as observed in isolated mitochondria. The hepatocyte mitochondrial improvements were not related to either the transcriptional levels of PGC-1α or the content of mTOR and phosphorylated AMPK. Triacsin C at 10 μM induced hepatocyte death by necrosis and/or apoptosis through mechanisms associated with mitochondrial permeability transition pore opening, as demonstrated by experiments using isolated mitochondria. Therefore, triacsin C at sub-IC50 concentrations modulates the lipid imbalance by shifting hepatocytes to a more oxidative state and enhancing the fatty acid consumption, which can in turn accelerate lipid oxidation and reverse NAFLD in long-term therapies.
Collapse
|
25
|
Wright C, Iyer AKV, Kaushik V, Azad N. Anti-Tumorigenic Potential of a Novel Orlistat-AICAR Combination in Prostate Cancer Cells. J Cell Biochem 2017; 118:3834-3845. [PMID: 28387458 DOI: 10.1002/jcb.26033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/05/2017] [Indexed: 01/13/2023]
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer-related deaths in men worldwide. Fatty acid synthase (FASN) is reported to be overexpressed in several cancers including PCa, and this has led to clinical cancer treatments that utilize various FASN inhibitors such as the anti-obesity drug, Orlistat. However, pharmacological limitations have impeded the progress in cancer treatments expected thus far with FASN inhibition. In this study, we investigated a novel therapeutic combination to enhance the toxic potential of Orlistat in three different PCa cell-lines (DU145, PC3, and LNCaP). We show that Orlistat and 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) (AMP-activated protein kinase [AMPK] activator) co-treatment induces significant downregulation of two key fatty acid synthesis regulatory proteins (FASN, Sterol regulatory element-binding protein 1 [SREBP-1c]) as compared to control and Orlistat alone. Orlistat and AICAR co-treatment induced a significant decrease in cell viability and proliferation, and a significant increase in apoptosis in all three PCa cell-lines. Apoptosis induction was preceded by a marked increase in reactive oxygen species (ROS) production followed by G0/G1 cell cycle arrest and activation of pro-apoptotic caspases. We also observed a significant decrease in migration potential and VEGF expression in Orlistat and AICAR co-treated samples in all three PCa cell-lines. Compound C (AMPK inhibitor) negatively affected some of the enhanced anti-cancer effects observed with Orlistat treatment. We conclude that AICAR co-treatment potentiates the anti-proliferative effects of Orlistat at a low dose (100 µM), and this combination has the potential to be a viable and effective therapeutic option in PCa treatment. J. Cell. Biochem. 118: 3834-3845, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Clayton Wright
- Department of Pharmaceutical Sciences, Hampton University, Hampton, Virginia, 23668
| | | | - Vivek Kaushik
- Department of Pharmaceutical Sciences, Hampton University, Hampton, Virginia, 23668
| | - Neelam Azad
- Department of Pharmaceutical Sciences, Hampton University, Hampton, Virginia, 23668
| |
Collapse
|
26
|
Chen XY, Ruan HB, Long XH, Peng AF, Zhou LD, Liu JM, Zhou Y, Liu ZL. Blocking fatty acid synthase inhibits tumor progression of human osteosarcoma by regulating the human epidermal growth factor receptor 2/phosphoinositide 3-kinase/protein kinase B signaling pathway in xenograft models. Exp Ther Med 2017; 13:2411-2416. [PMID: 28565856 DOI: 10.3892/etm.2017.4284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/20/2017] [Indexed: 02/01/2023] Open
Abstract
Previous studies have demonstrated that fatty acid synthase (FASN) is overexpressed in osteosarcoma (OS) cells and tissues and, therefore, knockdown of FASN may inhibit OS cell proliferation, migration and invasion via regulation of the human epidermal growth factor receptor 2 (HER2)/phosphoinositide 3-kinase (PI3K)/protein kinase B(Akt) signaling pathway in vitro. However, the tumor microenvironment has a crucial role in the determination of tumor malignant phenotype. The aim of the present study was to investigate the effect of knockdown of FASN on OS progression and the potential molecular mechanism in nude mice with orthotopic tumor implants in vivo. Results demonstrated that the knockdown of FASN markedly suppressed the growth and metastasis of OS, at least partially, by blocking the HER2/PI3K/Akt signal pathway in mice with intratibial 143B OS xenografts. These results suggest that the FASN/HER2/PI3K/Akt signaling pathway may be a potential therapeutic target for OS management.
Collapse
Affiliation(s)
- Xuan Yin Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Bing Ruan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xin Hua Long
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ai Fen Peng
- College of Humanities, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| | - Long Dian Zhou
- Department of Orthopedics, Hong-Du Traditional Chinese Medical Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Jia Ming Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yang Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi Li Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
27
|
Fujimoto M, Matsuzaki I, Yamamoto Y, Yoshizawa A, Warigaya K, Iwahashi Y, Kojima F, Furukawa F, Murata SI. Adipophilin expression in cutaneous malignant melanoma. J Cutan Pathol 2017; 44:228-236. [PMID: 27886404 DOI: 10.1111/cup.12868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The lipogenic pathway is upregulated in cancer cells, including melanomas. However, the pathological significance of cellular lipids in melanocytic lesions has yet to be determined. In this study, we evaluated intracytoplasmic lipid droplets in melanocytic nevi (MNs) and malignant melanomas via immunohistochemical analysis of adipophilin (ADP), which coats lipid droplets. METHODS One hundred primary cutaneous melanocytic lesions [33 MNs, 17 melanomas in situ (MIS), and 50 invasive melanomas (IMs)] were immunostained for ADP. The intensity score (IS) and proportion score (PS) of ADP staining in each case was recorded semiquantitatively on a scale of 0 to 3+. RESULTS High ADP expression (IS2/3+ and PS2/3+) was observed in 27 primary cutaneous melanocytic lesions that consisted of 23 IMs, three MISs, and one MN. Consequently, high ADP expression was associated with malignancy (38.8% vs. 3.0%; p < 0.0001). Among the IMs, high ADP expression was more prevalent in pT3/4 than pT1/2 (63.3% vs. 23.8%; p = 0.01) and Stage 3/4 than Stage 1/2 (76.9% vs. 36.8%; p = 0.02). CONCLUSIONS The majority of the melanocytic lesions with high ADP expression were malignant melanomas in our cohort. Therefore, ADP expression may serve as a sensitive diagnostic marker for malignant melanoma.
Collapse
Affiliation(s)
- Masakazu Fujimoto
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Ibu Matsuzaki
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Yuki Yamamoto
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Kenji Warigaya
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Yoshifumi Iwahashi
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Fumiyoshi Kojima
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Fukumi Furukawa
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Shin-Ichi Murata
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
28
|
Effects of fatty acid synthase inhibitors on lymphatic vessels: an in vitro and in vivo study in a melanoma model. J Transl Med 2017; 97:194-206. [PMID: 27918556 DOI: 10.1038/labinvest.2016.125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/04/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022] Open
Abstract
Fatty acid synthase (FASN) is responsible for the endogenous production of fatty acids from acetyl-CoA and malonyl-CoA. Its overexpression is associated with poor prognosis in human cancers including melanomas. Our group has previously shown that the inhibition of FASN with orlistat reduces spontaneous lymphatic metastasis in experimental B16-F10 melanomas, which is a consequence, at least in part, of the reduction of proliferation and induction of apoptosis. Here, we sought to investigate the effects of pharmacological FASN inhibition on lymphatic vessels by using cell culture and mouse models. The effects of FASN inhibitors cerulenin and orlistat on the proliferation, apoptosis, and migration of human lymphatic endothelial cells (HDLEC) were evaluated with in vitro models. The lymphatic outgrowth was evaluated by using a murine ex vivo assay. B16-F10 melanomas and surgical wounds were produced in the ears of C57Bl/6 and Balb-C mice, respectively, and their peripheral lymphatic vessels evaluated by fluorescent microlymphangiography. The secretion of vascular endothelial growth factor C and D (VEGF-C and -D) by melanoma cells was evaluated by ELISA and conditioned media used to study in vitro lymphangiogenesis. Here, we show that cerulenin and orlistat decrease the viability, proliferation, and migration of HDLEC cells. The volume of lymph node metastases from B16-F10 experimental melanomas was reduced by 39% in orlistat-treated animals as well as the expression of VEGF-C in these tissues. In addition, lymphatic vessels from orlistat-treated mice drained more efficiently the injected FITC-dextran. Orlistat and cerulenin reduced VEGF-C secretion and, increase production of VEGF-D by B16-F10 and SK-Mel-25 melanoma cells. Finally, reduced lymphatic cell extensions, were observed following the treatment with conditioned medium from cerulenin- and orlistat-treated B16-F10 cells. Altogether, our results show that FASN inhibitors have anti-metastatic effects by acting on lymphatic endothelium and melanoma cells regardless the increase of lymphatic permeability promoted by orlistat.
Collapse
|
29
|
Komina A, Palkina N, Aksenenko M, Tsyrenzhapova S, Ruksha T. Antiproliferative and Pro-Apoptotic Effects of MiR-4286 Inhibition in Melanoma Cells. PLoS One 2016; 11:e0168229. [PMID: 28005927 PMCID: PMC5179095 DOI: 10.1371/journal.pone.0168229] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION MicroRNAs are essential regulators of gene expression at the post-transcriptional level. Their expression is altered in cancer tissues, and evaluation of these alterations is considered a promising tool used to diagnose and identify prognostic markers. MATERIALS AND METHODS The microRNA expression profiles of formalin-fixed, paraffin-embedded melanoma and melanocytic nevi samples were estimated with a microarray and subsequently validated by real-time PCR. Melanoma cells were transfected with miR-4286 inhibitor to evaluate the influence of this microRNA on the viability, proliferation, apoptosis, migration, and invasion of melanoma cells. RESULTS The microarray revealed that the expression of 1,171 microRNAs was altered in melanoma samples compared to melanocytic nevi. Real-time PCR validation experiments found the microRNA expression levels to correspond to the melanoma/melanocytic nevi microarray results. The pathway analysis identified 52 modulated pathways in melanoma. Moreover, the application of miR-4286 inhibitor to BRO melanoma cells resulted in a 2.6-fold increase in the apoptosis rate and a 1.7-fold decrease in the cell proliferation/viability but did not affect the invasiveness and migration of these cells. Furthermore, the use of miR-4286 inhibitor altered the mRNA expression of several miR-4286 gene targets: folylpolyglutamate synthase, RNA polymerase I-specific transcription initiation factor, apelin, G-protein-coupled receptor 55, and high-mobility group A1 protein, which have been implicated in cell proliferation/apoptosis regulation. Lastly, the transiently transfected SK-MEL-1 cells with miR-4286 inhibitor decreased proliferation rate and modulated folylpolyglutamate synthase rates of these cells. CONCLUSION Our results demonstrate that miR-4286 mediates proliferation and apoptosis in melanoma cells, these findings may represent a novel mechanism underlying these processes.
Collapse
Affiliation(s)
- Anna Komina
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation
| | - Nadezhda Palkina
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation
| | - Mariya Aksenenko
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation
| | - Seseg Tsyrenzhapova
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation
| | - Tatiana Ruksha
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation
- * E-mail:
| |
Collapse
|
30
|
Rosolen D, Kretzer IF, Winter E, Noldin VF, Rodrigues do Carmo ÍA, Filippin-Monteiro FB, Cechinel-Filho V, Creczynski-Pasa TB. N-phenylmaleimides affect adipogenesis and present antitumor activity through reduction of FASN expression. Chem Biol Interact 2016; 258:10-20. [PMID: 27507602 DOI: 10.1016/j.cbi.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/21/2016] [Accepted: 08/05/2016] [Indexed: 12/12/2022]
Abstract
In light of the evidence that in contrast to most healthy tissues, several neoplasms overexpress fatty acid synthase (FASN) upon their dependence on increased lipogenesis; targeting of this protein is being considered as a valuable strategy in anticancer drug development. This can be particularly relevant for aggressive tumors such as melanoma in which FASN overexpression has been associated with increased depth of invasion and worse prognosis. We have previously shown that a sub-class of cyclic imides, the N-phenylmaleimides, presented antitumor activity against L1210 leukemia and B16F10 melanoma with evidences of interference in the energetic metabolism. Here, we aimed to investigate if some selected N-phenylmaleimides (M1 and M5) interfere with fatty acids metabolism and its relation with cancer. For that, a model of pre-adipocytes differentiation (3T3-L1 cells) and also human melanoma cells (SK-Mel-147) were used. As results, when 3T3-L1 cells were exposed to non-cytotoxic concentrations of M1 and M5 in the presence of an adipogenic cocktail, intracellular lipid content decreased by 26-36%, marking the inhibition of adipocyte differentiation. High selectivity indexes were obtained for both compounds for tumoral cells. Cell cycle phases analysis revealed a remarkable proportion of cells with DNA fragmentation after their exposure to M1 and M5. This was correlated to both apoptosis and necrosis, showed by Annexin-V/PI assay. Furthermore, M1 and M5 reduced FASN expression by 19-39%, respectively. In conclusion, M1 and M5 presented antiadipogenic and antitumoral activities. The antitumoral activity that was associated to apoptosis and necrosis is a possible consequence of the FASN reduction, which in turn, might result in a fuel decrease to cell proliferation. As it happens with antiangiogenic activity, reduction of fatty acid synthesis might be a potential target for cancer treatment in a strategy of hunger-strike, which valorizes these N-phenylmaleimides as candidates for drug development.
Collapse
Affiliation(s)
- Daiane Rosolen
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Iara Fabrícia Kretzer
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Evelyn Winter
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Vânia Floriani Noldin
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Ícaro Andrade Rodrigues do Carmo
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fabíola Branco Filippin-Monteiro
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Valdir Cechinel-Filho
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
31
|
Matsuura K, Canfield K, Feng W, Kurokawa M. Metabolic Regulation of Apoptosis in Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:43-87. [PMID: 27692180 DOI: 10.1016/bs.ircmb.2016.06.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Apoptosis is a cellular suicide program that plays a critical role in development and human diseases, including cancer. Cancer cells evade apoptosis, thereby enabling excessive proliferation, survival under hypoxic conditions, and acquired resistance to therapeutic agents. Among various mechanisms that contribute to the evasion of apoptosis in cancer, metabolism is emerging as one of the key factors. Cellular metabolites can regulate functions of pro- and antiapoptotic proteins. In turn, p53, a regulator of apoptosis, also controls metabolism by limiting glycolysis and facilitating mitochondrial respiration. Consequently, with dysregulated metabolism and p53 inactivation, cancer cells are well-equipped to disable the apoptotic machinery. In this article, we review how cellular apoptosis is regulated and how metabolism can influence the signaling pathways leading to apoptosis, especially focusing on how glucose and lipid metabolism are altered in cancer cells and how these alterations can impact the apoptotic pathways.
Collapse
Affiliation(s)
- K Matsuura
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| | - K Canfield
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - W Feng
- Norris Cotton Cancer Center, Lebanon, NH, United States
| | - M Kurokawa
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Norris Cotton Cancer Center, Lebanon, NH, United States.
| |
Collapse
|
32
|
Cervantes-Madrid D, Dueñas-González A. Antitumor effects of a drug combination targeting glycolysis, glutaminolysis and de novo synthesis of fatty acids. Oncol Rep 2015; 34:1533-1542. [PMID: 26134042 DOI: 10.3892/or.2015.4077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/22/2015] [Indexed: 11/06/2022] Open
Abstract
There is a strong rationale for targeting the metabolic alterations of cancer cells. The most studied of these are the higher rates of glycolysis, glutaminolysis and de novo synthesis of fatty acids (FAs). Despite the availability of pharmacological inhibitors of these pathways, no preclinical studies targeting them simultaneously have been performed. In the present study it was determined whether three key enzymes for glycolysis, glutaminolysis and de novo synthesis of FAs, hexokinase-2, glutaminase and fatty acid synthase, respectively, were overexpressed as compared to primary fibroblasts. In addition, we showed that at clinically relevant concentrations lonidamine, 6-diazo-5-oxo-L-norleucine and orlistat, known inhibitors of the mentioned enzymes, exerted a cell viability inhibitory effect. Genetic downregulation of the three enzymes also reduced cell viability. The three drugs were highly synergistic when administered as a triple combination. Of note, the cytotoxicity of the triple combination was low in primary fibroblasts and was well tolerated when administered into healthy BALB/c mice. The results suggest the feasibility and potential clinical utility of the triple metabolic targeting which merits to be further studied by using either repositioned old drugs or newer, more selective inhibitors.
Collapse
Affiliation(s)
- Diana Cervantes-Madrid
- Division of Basic Research, Instituto Nacional de Cancerología, Mexico City, Tlalpan 14080, Mexico
| | - Alfonso Dueñas-González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Cancerología, Mexico City, Tlalpan 14080, Mexico
| |
Collapse
|
33
|
Clawson GA, Matters GL, Xin P, Imamura-Kawasawa Y, Du Z, Thiboutot DM, Helm KF, Neves RI, Abraham T. Macrophage-tumor cell fusions from peripheral blood of melanoma patients. PLoS One 2015; 10:e0134320. [PMID: 26267609 PMCID: PMC4534457 DOI: 10.1371/journal.pone.0134320] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 06/30/2015] [Indexed: 12/13/2022] Open
Abstract
Background While the morbidity and mortality from cancer are largely attributable to its metastatic dissemination, the integral features of the cascade are not well understood. The widely accepted hypothesis is that the primary tumor microenvironment induces the epithelial-to-mesenchymal transition in cancer cells, facilitating their escape into the bloodstream, possibly accompanied by cancer stem cells. An alternative theory for metastasis involves fusion of macrophages with tumor cells (MTFs). Here we culture and characterize apparent MTFs from blood of melanoma patients. Methods We isolated enriched CTC populations from peripheral blood samples from melanoma patients, and cultured them. We interrogated these cultured cells for characteristic BRAF mutations, and used confocal microscopy for immunophenotyping, motility, DNA content and chromatin texture analyses, and then conducted xenograft studies using nude mice. Findings Morphologically, the cultured MTFs were generally large with many pseudopod extensions and lamellipodia. Ultrastructurally, the cultured MTFs appeared to be macrophages. They were rich in mitochondria and lysosomes, as well as apparent melanosomes. The cultured MTF populations were all heterogeneous with regard to DNA content, containing aneuploid and/or high-ploidy cells, and they typically showed large sheets (and/or clumps) of cytoplasmic chromatin. This cytoplasmic DNA was found within heterogeneously-sized autophagic vacuoles, which prominently contained chromatin and micronuclei. Cultured MTFs uniformly expressed pan-macrophage markers (CD14, CD68) and macrophage markers indicative of M2 polarization (CD163, CD204, CD206). They also expressed melanocyte-specific markers (ALCAM, MLANA), epithelial biomarkers (KRT, EpCAM), as well as the pro-carcinogenic cytokine MIF along with functionally related stem cell markers (CXCR4, CD44). MTF cultures from individual patients (5 of 8) contained melanoma-specific BRAF activating mutations. Chromatin texture analysis of deconvoluted images showed condensed DNA (DAPI-intense) regions similar to focal regions described in stem cell fusions. MTFs were readily apparent in vivo in all human melanomas examined, often exhibiting even higher DNA content than the cultured MTFs. When cultured MTFs were transplanted subcutaneously in nude mice, they disseminated and produced metastatic lesions at distant sites. Conclusions and Hypothesis Apparent MTFs are present in peripheral blood of patients with cutaneous melanomas, and they possess the ability to form metastatic lesions when transplanted into mice. We hypothesize that these MTFs arise at the periphery of primary tumors in vivo, that they readily enter the bloodstream and invade distant tissues, secreting cytokines (such as MIF) to prepare “niches” for colonization by metastasis initiating cells.
Collapse
Affiliation(s)
- Gary A. Clawson
- Department of Pathology and Gittlen Cancer Research Laboratories, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
- * E-mail:
| | - Gail L. Matters
- Department of Biochemistry & Molecular Biology, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Ping Xin
- Department of Pathology and Gittlen Cancer Research Laboratories, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Yuka Imamura-Kawasawa
- Department of Pharmacology and the Institute for Personalized Medicine, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Zhen Du
- Department of Pathology and Gittlen Cancer Research Laboratories, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Diane M. Thiboutot
- Department of Dermatology, Division of Health Science Research, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Klaus F. Helm
- Department of Dermatopathology, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Rogerio I. Neves
- Department of Surgery and the Melanoma Center, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Thomas Abraham
- Department of Neural and Behavioral Science and the Microscopy Imaging Facility, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| |
Collapse
|
34
|
Cioccoloni G, Bonmassar L, Pagani E, Caporali S, Fuggetta MP, Bonmassar E, D'Atri S, Aquino A. Influence of fatty acid synthase inhibitor orlistat on the DNA repair enzyme O6-methylguanine-DNA methyltransferase in human normal or malignant cells in vitro. Int J Oncol 2015; 47:764-72. [PMID: 26035182 DOI: 10.3892/ijo.2015.3025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/20/2015] [Indexed: 11/05/2022] Open
Abstract
Tetrahydrolipstatin (orlistat), an inhibitor of lipases and fatty acid synthase, is used orally for long-term treatment of obesity. Although the drug possesses striking antitumor activities in vitro against human cancer cells and in vitro and in vivo against animal tumors, it also induces precancerous lesions in rat colon. Therefore, we tested the in vitro effect of orlistat on the expression of O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme that plays an essential role in the control of mutagenesis and carcinogenesis. Western blot analysis demonstrated that 2-day continuous exposure to 40 µM orlistat did not affect MGMT levels in a human melanoma cell line, but downregulated the repair protein by 30-70% in human peripheral blood mononuclear cells, in two leukemia and two colon cancer cell lines. On the other hand, orlistat did not alter noticeably MGMT mRNA expression. Differently from lomeguatrib (a false substrate, strong inhibitor of MGMT) orlistat did not reduce substantially MGMT function after 2-h exposure of target cells to the agent, suggesting that this drug is not a competitive inhibitor of the repair protein. Combined treatment with orlistat and lomeguatrib showed additive reduction of MGMT levels. More importantly, orlistat-mediated downregulation of MGMT protein expression was markedly amplified when the drug was combined with a DNA methylating agent endowed with carcinogenic properties such as temozolomide. In conclusion, even if orlistat is scarcely absorbed by oral route, it is possible that this drug could reduce local MGMT-mediated protection against DNA damage provoked by DNA methylating compounds on gastrointestinal tract epithelial cells, thus favoring chemical carcinogenesis.
Collapse
Affiliation(s)
- Giorgia Cioccoloni
- Department of Systems Medicine, University of Rome 'Tor Vergata', I-00133 Rome, Italy
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, I-00167 Rome, Italy
| | - Elena Pagani
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, I-00167 Rome, Italy
| | - Simona Caporali
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, I-00167 Rome, Italy
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), I-00133 Rome, Italy
| | - Enzo Bonmassar
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), I-00133 Rome, Italy
| | - Stefania D'Atri
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, I-00167 Rome, Italy
| | - Angelo Aquino
- Department of Systems Medicine, University of Rome 'Tor Vergata', I-00133 Rome, Italy
| |
Collapse
|
35
|
Bauerschlag DO, Maass N, Leonhardt P, Verburg FA, Pecks U, Zeppernick F, Morgenroth A, Mottaghy FM, Tolba R, Meinhold-Heerlein I, Bräutigam K. Fatty acid synthase overexpression: target for therapy and reversal of chemoresistance in ovarian cancer. J Transl Med 2015; 13:146. [PMID: 25947066 PMCID: PMC4504229 DOI: 10.1186/s12967-015-0511-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/29/2015] [Indexed: 12/30/2022] Open
Abstract
Background Fatty acid synthase (FASN) is crucial to de novo long-chain fatty acid synthesis, needed to meet cancer cells’ increased demands for membrane, energy, and protein production. Methods We investigated FASN overexpression as a therapeutic and chemosensitization target in ovarian cancer tissue, cell lines, and primary cell cultures. FASN expression at mRNA and protein levels was determined by quantitative real-time polymerase chain reaction and immunoblotting and immunohistochemistry, respectively. FASN inhibition’s impact on cell viability, apoptosis, and fatty acid metabolism was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide assay, cell death detection enzyme-linked immunosorbent assay, immunoblotting, and 18 F-fluoromethylcholine uptake measurement, respectively. Results Relative to that in healthy fallopian tube tissue, tumor tissues had 1.8-fold average FASN protein overexpression; cell lines and primary cultures had 11-fold–100-fold mRNA and protein overexpression. In most samples, the FASN inhibitor cerulenin markedly decreased FASN expression and cell viability and induced apoptosis. Unlike concomitant administration, sequential cerulenin/cisplatin treatment reduced cisplatin’s half maximal inhibitory concentration profoundly (up to 54%) in a cisplatin-resistant cell line, suggesting platinum (re)sensitization. Cisplatin-resistant cells displayed lower 18 F-fluoro-methylcholine uptake than did cisplatin-sensitive cells, suggesting that metabolic imaging might help guide therapy. Conclusions FASN inhibition induced apoptosis in chemosensitive and platinum-resistant ovarian cancer cells and may reverse cisplatin resistance. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0511-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dirk O Bauerschlag
- Department of Gynecology and Obstetrics, University Medical Center RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Nicolai Maass
- Department of Gynecology and Obstetrics, University Medical Center RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Peter Leonhardt
- Department of Gynecology and Obstetrics, University Medical Center RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Frederik A Verburg
- Department of Nuclear Medicine, University Medical Center RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Ulrich Pecks
- Department of Gynecology and Obstetrics, University Medical Center RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Felix Zeppernick
- Department of Gynecology and Obstetrics, University Medical Center RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Medical Center RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Medical Center RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Rene Tolba
- Institute for Laboratory Animal Science, University Medical Center RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Ivo Meinhold-Heerlein
- Department of Gynecology and Obstetrics, University Medical Center RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Karen Bräutigam
- Department of Gynecology and Obstetrics, University Medical Center RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
36
|
Ayllón N, Villar M, Galindo RC, Kocan KM, Šíma R, López JA, Vázquez J, Alberdi P, Cabezas-Cruz A, Kopáček P, de la Fuente J. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet 2015; 11:e1005120. [PMID: 25815810 PMCID: PMC4376793 DOI: 10.1371/journal.pgen.1005120] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A. phagocytophilum in I. scapularis tissue-specific transcriptome and proteome demonstrated the complexity of the tick response to infection and will contribute to characterize gene regulation in ticks. The continuous human exploitation of environmental resources and the increase in human outdoor activities, which have allowed for the contact with arthropod vectors normally present in the field, has promoted the emergence and resurgence of vector-borne pathogens. Among these, Anaplasma phagocytophilum is an emerging bacterial pathogen transmitted to humans and other vertebrate hosts by ticks as they take a blood meal that causes human granulocytic anaplasmosis in the United States, Europe and Asia, with increasing numbers of affected people every year. Tick response to pathogen infection has been only partially characterized. In this study, global tissue-specific response and apoptosis signaling pathways were characterized in tick nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. The results demonstrated dramatic and complex tissue-specific response to A. phagocytophilum in the tick vector Ixodes scapularis, which reflected pathogen developmental cycle and the impact on tick apoptosis pathways. These dynamic changes in response to A. phagocytophilum in I. scapularis tissue-specific transcriptome and proteome demonstrated the complexity of the tick response to infection and contributes information on tick-pathogen interactions and for development of novel control strategies for pathogen infection and transmission.
Collapse
Affiliation(s)
- Nieves Ayllón
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Ruth C. Galindo
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Katherine M. Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Radek Šíma
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, České Budějovice, The Czech Republic
| | - Juan A. López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pilar Alberdi
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
- Center for Infection and Immunity of Lille (CIIL), Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, České Budějovice, The Czech Republic
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
37
|
Fako VE, Zhang JT, Liu JY. Mechanism of Orlistat Hydrolysis by the Thioesterase of Human Fatty Acid Synthase. ACS Catal 2014; 4:3444-3453. [PMID: 25309810 PMCID: PMC4188697 DOI: 10.1021/cs500956m] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 08/15/2014] [Indexed: 01/25/2023]
Abstract
Fatty acid synthase (FASN), the sole protein capable of de novo synthesis of free fatty acids, is overexpressed in a wide variety of human cancers and is associated with poor prognosis and aggressiveness of these cancers. Orlistat, an FDA-approved drug for obesity treatment that inhibits pancreatic lipases in the GI tract, also inhibits the thioesterase (TE) of human FASN. The cocrystal structure of TE with orlistat shows a pseudo TE dimer containing two different forms of orlistat in the active site, an intermediate that is covalently bound to a serine residue (Ser2308) and a hydrolyzed and inactivated product. In this study, we attempted to understand the mechanism of TE-catalyzed orlistat hydrolysis by examining the role of the hexyl tail of the covalently bound orlistat in water activation for hydrolysis using molecular dynamics simulations. We found that the hexyl tail of the covalently bound orlistat undergoes a conformational transition, which is accompanied by destabilization of a hydrogen bond between a hydroxyl moiety of orlistat and the catalytic His2481 of TE that in turn leads to an increased hydrogen bonding between water molecules and His2481 and increased chance for water activation to hydrolyze the covalent bond between orlistat and Ser2308. Thus, the conformation of the hexyl tail of orlistat plays an important role in orlistat hydrolysis. Strategies that stabilize the hexyl tail may lead to the design of more potent irreversible inhibitors that target FASN and block TE activity with greater endurance.
Collapse
Affiliation(s)
| | | | - Jing-Yuan Liu
- Department
of Computer and Information Science, Indiana University-Purdue University, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States
| |
Collapse
|
38
|
Impheng H, Pongcharoen S, Richert L, Pekthong D, Srisawang P. The selective target of capsaicin on FASN expression and de novo fatty acid synthesis mediated through ROS generation triggers apoptosis in HepG2 cells. PLoS One 2014; 9:e107842. [PMID: 25255125 PMCID: PMC4177889 DOI: 10.1371/journal.pone.0107842] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/17/2014] [Indexed: 12/21/2022] Open
Abstract
The inhibition of the mammalian de novo synthesis of long-chain saturated fatty acids (LCFAs) by blocking the fatty acid synthase (FASN) enzyme activity in tumor cells that overexpress FASN can promote apoptosis, without apparent cytotoxic to non-tumor cells. The present study aimed to focus on the potent inhibitory effect of capsaicin on the fatty acid synthesis pathway inducing apoptosis of capsaicin in HepG2 cells. The use of capsaicin as a source for a new FASN inhibitor will provide new insight into its possible application as a selective anti-cancer therapy. The present findings showed that capsaicin promoted apoptosis as well as cell cycle arrest in the G0/G1 phase. The onset of apoptosis was correlated with a dissipation of mitochondrial membrane potential (ΔΨm). Apoptotic induction by capsaicin was mediated by inhibition of FASN protein expression which was accompanied by decreasing its activity on the de novo fatty acid synthesis. The expression of FASN was higher in HepG2 cells than in normal hepatocytes that were resistant to undergoing apoptosis following capsaicin administration. Moreover, the inhibitory effect of capsaicin on FASN expression and activity was found to be mediated by an increase of intracellular reactive oxygen species (ROS) generation. Treatment of HepG2 cells with capsaicin failed to alter ACC and ACLY protein expression, suggesting ACC and ACLY might not be the specific targets of capsaicin to induce apoptosis. An accumulation of malonyl-CoA level following FASN inhibition represented a major cause of mitochondrial-dependent apoptotic induction instead of deprivation of fatty acid per se. Here, we also obtained similar results with C75 that exhibited apoptosis induction by reducing the levels of fatty acid without any change in the abundance of FASN expression along with increasing ROS production. Collectively, our results provide novel evidence that capsaicin exhibits a potent anti-cancer property by targeting FASN protein in HepG2 cells.
Collapse
Affiliation(s)
- Hathaichanok Impheng
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Lysiane Richert
- Laboratoire de Toxicologie Cellulaire, Faculté de Médecine et de Pharmacie, Université de Franche-Comté, Besançon, France
| | - Dumrongsak Pekthong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
39
|
Rossato FA, Zecchin KG, La Guardia PG, Ortega RM, Alberici LC, Costa RAP, Catharino RR, Graner E, Castilho RF, Vercesi AE. Fatty acid synthase inhibitors induce apoptosis in non-tumorigenic melan-a cells associated with inhibition of mitochondrial respiration. PLoS One 2014; 9:e101060. [PMID: 24964211 PMCID: PMC4071076 DOI: 10.1371/journal.pone.0101060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/03/2014] [Indexed: 12/31/2022] Open
Abstract
The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm) and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin and orlistat induce apoptosis in non-tumorigenic cells via mitochondrial dysfunction, independent of FASN inhibition.
Collapse
Affiliation(s)
- Franco A. Rossato
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Karina G. Zecchin
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Paolo G. La Guardia
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rose M. Ortega
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Luciane C. Alberici
- Departamento de Química e Física, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Rute A. P. Costa
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rodrigo R. Catharino
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Edgard Graner
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Roger F. Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Aníbal E. Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
40
|
Grube S, Dünisch P, Freitag D, Klausnitzer M, Sakr Y, Walter J, Kalff R, Ewald C. Overexpression of fatty acid synthase in human gliomas correlates with the WHO tumor grade and inhibition with Orlistat reduces cell viability and triggers apoptosis. J Neurooncol 2014; 118:277-287. [PMID: 24789255 DOI: 10.1007/s11060-014-1452-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/20/2014] [Indexed: 02/08/2023]
Abstract
Fatty acid synthase (FASN), catalyzing the de novo synthesis of fatty acids, is known to be deregulated in several cancers. Inhibition of this enzyme reduces tumor cell proliferation. Unfortunately, adverse effects and chemical instability prevent the in vivo use of the best-known inhibitors, Cerulenin and C75. Orlistat, a drug used for obesity treatment, is also considered as a potential FASN inhibitor, but its impact on glioma cell biology has not yet been described. In this study, we analyzed FASN expression in human glioma samples and primary glioblastoma cell cultures and the effects of FASN inhibition with Orlistat, Cerulenin and C75. Immunohistochemistry followed by densitometric analysis of 20 glioma samples revealed overexpression of FASN that correlated with the WHO tumor grade. Treatment of glioblastoma cells with these inhibitors resulted in a significant, dose-dependent reduction in tumor cell viability and fatty acid synthesis. Compared to Cerulenin and C75, Orlistat was a more potent inhibitor in cell cultures and cell lines. In LN229, cell-growth was reduced by 63.9 ± 8.7 % after 48 h and 200 µM Orlistat compared to controls; in LT68, the reduction in cell growth was 76.3 ± 23.7 %. Nuclear fragmentation assay and Western blotting analysis after targeting FASN with Orlistat demonstrated autophagy and apoptosis. Organotypic slice cultures treated with Orlistat showed reduced proliferation after Ki67 staining and increased caspase-3 cleavage. Our results suggest that FASN may be a therapeutic target in malignant gliomas and identify Orlistat as a possible anti-tumor drug in this setting.
Collapse
Affiliation(s)
- Susanne Grube
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich-Schiller-University Jena, Erlanger Allee 101, 07747, Jena, Germany.
| | - Pedro Dünisch
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich-Schiller-University Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Diana Freitag
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich-Schiller-University Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Maren Klausnitzer
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich-Schiller-University Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Yasser Sakr
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich-Schiller-University Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Jan Walter
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich-Schiller-University Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Rolf Kalff
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich-Schiller-University Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Christian Ewald
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich-Schiller-University Jena, Erlanger Allee 101, 07747, Jena, Germany
| |
Collapse
|
41
|
Swierczynski J, Hebanowska A, Sledzinski T. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J Gastroenterol 2014; 20:2279-303. [PMID: 24605027 PMCID: PMC3942833 DOI: 10.3748/wjg.v20.i9.2279] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/25/2013] [Accepted: 01/03/2014] [Indexed: 02/07/2023] Open
Abstract
There is growing evidence that metabolic alterations play an important role in cancer development and progression. The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation. Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism. An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival, as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival. Based on the data that serum fatty acid synthase (FASN), also known as oncoantigen 519, is elevated in patients with certain types of cancer, its serum level was proposed as a marker of neoplasia. This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic neoplasm, characterized by high mortality. We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism. Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer. In particular, FASN is a viable candidate for indicator of pathologic state, marker of neoplasia, as well as, pharmacological treatment target in pancreatic cancer. Recent research showed that, in addition to lipogenesis, certain cancer cells can use fatty acids from circulation, derived from diet (chylomicrons), synthesized in liver, or released from adipose tissue for their growth. Thus, the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation.
Collapse
|
42
|
Wang H, Luo QF, Peng AF, Long XH, Wang TF, Liu ZL, Zhang GM, Zhou RP, Gao S, Zhou Y, Chen WZ. Positive feedback regulation between Akt phosphorylation and fatty acid synthase expression in osteosarcoma. Int J Mol Med 2013; 33:633-9. [PMID: 24366211 DOI: 10.3892/ijmm.2013.1602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/13/2013] [Indexed: 11/06/2022] Open
Abstract
The activation of PI3K/Akt and the overexpression of fatty acid synthase (FASN) are frequently observed in human osteosarcoma (OS). In the present study, in order to investigate the possible association between the phosphorylation of Akt and FASN expression, immunohistochemical staining was conducted on 24 OS specimens from patients with pulmonary metastasis, which revealed a significant positive correlation between phosphorylated Akt (p-Akt) and the expression of FASN (R=0.469, P=0.04). To investigate the association between p-Akt and FASN in vitro, human U2-OS OS cells were treated with FASN-specific RNAi plasmid or LY294002 (an inhibitor of PI3k/Akt). The mRNA levels of Akt and FASN were measured by real-time PCR. Western blot analysis was also performed to detect the protein experession of PI3K, Akt, p-Akt and FASN. The results demonstrated that the PI3K/Akt signaling pathway modulates FASN expression; the inhibition of FASN resulted in the downregulation of p-Akt in the U2-OS cells. Furthermore, the effects induced by the inhibition of the activity of p-Akt or FASN on the malignant phenotype of U2-OS cells were investigated, demonstrating that the malignant phenotype was inhibited by suppressing the activity of PI3K/Akt or FASN in the U2-OS cells. The findings from our study suggest the existence of a positive feedback regulation between Akt phosphorylation and FASN expression and that this loop may play an important role in the malignant phenotype of OS cells.
Collapse
Affiliation(s)
- Heng Wang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Qing Feng Luo
- Department of Pathology, Cancer Hospital of Jiangxi Province, Nanchang, Jiangxi, P.R. China
| | - Ai Fen Peng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, P.R. China
| | - Xin Hua Long
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Tao Fang Wang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Zhi Li Liu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Guo Mei Zhang
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Rong Ping Zhou
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Song Gao
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yang Zhou
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Wen Zhao Chen
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
43
|
Agostini M, Almeida LY, Bastos DC, Ortega RM, Moreira FS, Seguin F, Zecchin KG, Raposo HF, Oliveira HCF, Amoêdo ND, Salo T, Coletta RD, Graner E. The fatty acid synthase inhibitor orlistat reduces the growth and metastasis of orthotopic tongue oral squamous cell carcinomas. Mol Cancer Ther 2013; 13:585-95. [PMID: 24362464 DOI: 10.1158/1535-7163.mct-12-1136] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fatty acid synthase (FASN) is the biosynthetic enzyme responsible for the endogenous synthesis of fatty acids. It is downregulated in most normal cells, except in lipogenic tissues such as liver, lactating breast, fetal lung, and adipose tissue. Conversely, several human cancers, including head and neck squamous cell carcinomas (HNSCC), overexpress FASN, which has been associated with poor prognosis and recently suggested as a metabolic oncoprotein. Orlistat is an irreversible inhibitor of FASN activity with cytotoxic properties on several cancer cell lines that inhibits tumor progression and metastasis in prostate cancer xenografts and experimental melanomas, respectively. To explore whether the inhibition of FASN could impact oral tongue squamous cell carcinoma (OTSCC) metastatic spread, an orthotopic model was developed by the implantation of SCC-9 ZsGreen LN-1 cells into the tongue of BALB/c nude mice. These cells were isolated through in vivo selection, show a more invasive behavior in vitro than the parental cells, and generate orthotopic tumors that spontaneously metastasize to cervical lymph nodes in 10 to 15 days only. SCC-9 ZsGreen LN-1 cells also exhibit enhanced production of MMP-2, ERBB2, and CDH2. The treatment with orlistat reduced proliferation and migration, promoted apoptosis, and stimulated the secretion of VEGFA165b by SCC-9 ZsGreen LN-1 cells. In vivo, the drug was able to decrease both the volume and proliferation indexes of the tongue orthotopic tumors and, importantly, reduced the number of metastatic cervical lymph nodes by 43%. These results suggest that FASN is a potential molecular target for the chemotherapy of patients with OTSCC.
Collapse
Affiliation(s)
- Michelle Agostini
- Corresponding Author: Edgard Graner, Department of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas (UNICAMP), Avenida Limeira 901, CP 52, Areão, Piracicaba, São Paulo 13414-018, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang TF, Wang H, Peng AF, Luo QF, Liu ZL, Zhou RP, Gao S, Zhou Y, Chen WZ. Inhibition of fatty acid synthase suppresses U-2 OS cell invasion and migration via downregulating the activity of HER2/PI3K/AKT signaling pathway in vitro. Biochem Biophys Res Commun 2013; 440:229-34. [PMID: 24041695 DOI: 10.1016/j.bbrc.2013.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/05/2013] [Indexed: 02/08/2023]
Abstract
FASN plays an important role in the malignant phenotype of various tumors. Our previous studies show that inhibition FASN could induce apoptosis and inhibit proliferation in human osteosarcoma (OS) cell in vivo and vitro. The aim in this study was to investigate the effect of inhibition FASN on the activity of HER2/PI3K/AKT axis and invasion and migration of OS cell. The expression of FASN, HER2 and p-HER2(Y1248) proteins was detected by immunohistochemistry in OS tissues from 24 patients with pulmonary metastatic disease, and the relationship between FASN and p-HER2 as well as HER2 was investigated. The results showed that there was a positive correlation between FASN and HER2 as well as p-HER2 protein expression. The U-2 OS cells were transfected with either the FASN specific RNAi plasmid or the negative control RNAi plasmid. FASN mRNA was measured by RT-PCR. Western blot assays was performed to examine the protein expression of FASN, HER2, p-HER2(Y1248), PI3K, Akt and p-Akt (Ser473). Migration and invasion of cells were investigated by wound healing and transwell invasion assays. The results showed that the activity of HER2/PI3K/AKT signaling pathway was suppressed by inhibiting FASN. Meanwhile, the U-2OS cells migration and invasion were also impaired by inhibiting the activity of FASN/HER2/PI3K/AKT. Our results indicated that inhibition of FASN suppresses OS cell invasion and migration via down-regulation of the "HER2/PI3K/AKT" axis in vitro. FASN blocker may be a new therapeutic strategy in OS management.
Collapse
Affiliation(s)
- Tao Fang Wang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Jiangxi, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vandhana S, Coral K, Jayanthi U, Deepa PR, Krishnakumar S. Biochemical changes accompanying apoptotic cell death in retinoblastoma cancer cells treated with lipogenic enzyme inhibitors. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1458-66. [PMID: 23816424 DOI: 10.1016/j.bbalip.2013.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/08/2013] [Accepted: 06/20/2013] [Indexed: 02/03/2023]
Abstract
Retinoblastoma (RB) is a malignant intra-ocular neoplasm that affects children (usually below the age of 5years). In addition to conventional chemotherapy, novel therapeutic strategies that target metabolic pathways such as glycolysis and lipid metabolism are emerging. Fatty acid synthase (FASN), a lipogenic multi-enzyme complex, is over-expressed in retinoblastoma cancer. The present study evaluated the biochemical basis of FASN inhibition induced apoptosis in cultured Y79 RB cells. FASN inhibitors (cerulenin, triclosan and orlistat) significantly inhibited FASN enzyme activity (P<0.05) in Y79 RB cells. This was accompanied by a decrease in palmitate synthesis (end-product depletion), and increased malonyl CoA levels (substrate accumulation). Differential lipid profile was biochemically estimated in neoplastic (Y79 RB) and non-neoplastic (3T3) cells subjected to FASN inhibition. The relative proportion of phosphatidyl choline to neutral lipids (triglyceride+total cholesterol) in Y79 RB cancer cells was found to be higher than the non-neoplastic cells, indicative of altered lipid distribution and utilization in tumor cells. FASN inhibitor treated Y79 RB and fibroblast cells showed decrease in the cellular lipids (triglyceride, cholesterol and phosphatidyl choline) levels. Apoptotic DNA damage induced by FASN inhibitors was accompanied by enhanced lipid peroxidation.
Collapse
|
46
|
LONG XINGHUA, MAO JIANHUA, PENG AIFEN, ZHOU YANG, HUANG SHANHU, LIU ZHILI. Tumor suppressive microRNA-424 inhibits osteosarcoma cell migration and invasion via targeting fatty acid synthase. Exp Ther Med 2013; 5:1048-1052. [PMID: 23599729 PMCID: PMC3628901 DOI: 10.3892/etm.2013.959] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 02/01/2013] [Indexed: 01/02/2023] Open
Abstract
Numerous studies have recently suggested that miRNAs contribute to the development of various types of human cancer as well as to their invasive and metastatic capacities. The aim of this study was to investigate the functional significance of miR-424 and to identify its possible target genes in osteosarcoma (OS) cells. Previously, inhibition of fatty acid synthase (FASN) has been shown to suppress OS cell proliferation, invasion and migration. The prediction was made using the microRNA.org and TargetScan.human6.0.database. The results showed that FASN is a promising target gene of miR-424. FASN may be a direct target of miR-424 as shown by the luciferase reporter assays. Furthermore, miR-424 expression was increased in osteosarcoma cells by transfection with has-miR-424. FASN mRNA and protein expression levels were measured by RT-PCR and western blot analysis. Cell migration and invasion was measured using Transwell migration and Transwell invasion assays. Expression levels of FASN mRNA and protein were greatly decreased in U2OS cells transfected with has-miR-424. The migration and invasion of cells was significantly decreased by the upregulation of miR-424. These findings suggested that miR-424 plays a key role in inhibiting OS cell migration and invasion through targeting FASN.
Collapse
Affiliation(s)
- XING HUA LONG
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006
| | - JIAN HUA MAO
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006
| | - AI FEN PENG
- School of Humanities, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006,
P.R. China
| | - YANG ZHOU
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006
| | - SHAN HU HUANG
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006
| | - ZHI LI LIU
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006
| |
Collapse
|
47
|
Warmoes M, Jaspers JE, Xu G, Sampadi BK, Pham TV, Knol JC, Piersma SR, Boven E, Jonkers J, Rottenberg S, Jimenez CR. Proteomics of genetically engineered mouse mammary tumors identifies fatty acid metabolism members as potential predictive markers for cisplatin resistance. Mol Cell Proteomics 2013; 12:1319-34. [PMID: 23397111 DOI: 10.1074/mcp.m112.024182] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to various signatures that predict the prognosis of breast cancer patients, markers that predict chemotherapy response are still elusive. To detect such predictive biomarkers, we investigated early changes in protein expression using two mouse models for distinct breast cancer subtypes who have a differential knock-out status for the breast cancer 1, early onset (Brca1) gene. The proteome of cisplatin-sensitive BRCA1-deficient mammary tumors was compared with that of cisplatin-resistant mammary tumors resembling pleomorphic invasive lobular carcinoma. The analyses were performed 24 h after administration of the maximum tolerable dose of cisplatin. At this time point, drug-sensitive BRCA1-deficient tumors showed DNA damage, but cells were largely viable. By applying paired statistics and quantitative filtering, we identified highly discriminatory markers for the sensitive and resistant model. Proteins up-regulated in the sensitive model are involved in centrosome organization, chromosome condensation, homology-directed DNA repair, and nucleotide metabolism. Major discriminatory markers that were up-regulated in the resistant model were predominantly involved in fatty acid metabolism, such as fatty-acid synthase. Specific inhibition of fatty-acid synthase sensitized resistant cells to cisplatin. Our data suggest that exploring the functional link between the DNA damage response and cancer metabolism shortly after the initial treatment may be a useful strategy to predict the efficacy of cisplatin.
Collapse
Affiliation(s)
- Marc Warmoes
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu ZL, Mao JH, Peng AF, Yin QS, Zhou Y, Long XH, Huang SH. Inhibition of fatty acid synthase suppresses osteosarcoma cell invasion and migration via downregulation of the PI3K/Akt signaling pathway in vitro. Mol Med Rep 2013; 7:608-612. [PMID: 23229760 DOI: 10.3892/mmr.2012.1220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/24/2012] [Indexed: 11/06/2022] Open
Abstract
In the present study, the effect of fatty acid synthase (FASN) inhibition on cell invasion and migration in vitro was investigated. A recombinant plasmid containing a microRNA targeting the FASN gene was used to inhibit FASN expression in U2‑OS cells. Cell migration and invasion were investigated using wound healing and Transwell invasion assays. We found that cell invasion and migration were suppressed by inhibiting FASN. In addition, the effect of inhibition of FASN on phosphorylation of Akt was investigated by detecting the expression levels of pAkt using western blot analysis. Furthermore, protein expression levels of nuclear factor‑κB (NF‑κB; p65) and matrix metalloproteinase (MMP)‑2 and ‑9 were also measured by western blot analysis. Results demonstrated that expression levels of pAkt, NF‑κB (p65) and MMP‑2 and ‑9 proteins were reduced significantly by inhibiting FASN. Therefore, we confirmed that inhibition of FASN by RNA interference suppresses osteosarcoma cell metastasis via downregulation of the phosphoinositide 3‑kinase/Akt/NF‑κB signaling pathway in vitro.
Collapse
Affiliation(s)
- Zhi Li Liu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | | | | | | | | | | | | |
Collapse
|
49
|
MAO JIANHUA, ZHOU RONGPING, PENG AIFEN, LIU ZHILI, HUANG SHANHU, LONG XINHUA, SHU YONG. microRNA-195 suppresses osteosarcoma cell invasion and migration in vitro by targeting FASN. Oncol Lett 2012; 4:1125-1129. [PMID: 23162665 PMCID: PMC3499598 DOI: 10.3892/ol.2012.863] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/08/2012] [Indexed: 12/22/2022] Open
Abstract
microRNAs are involved in different cancer-related processes. miR-195, one of the miR-16/15/195/424/497 family members, has been shown to act as a tumor suppressor during tumorigenesis. However, the function of miR-195 in osteosarcoma is still unclear. In our study, the miR-195 expression level was upregulated in osteosarcoma cells, by transfection with miR-195, and the fatty acid synthase (FASN) mRNA and protein expression levels were measured by RT-PCR and western blotting. Cell migration and invasion was measured using wound healing migration and Transwell invasion assays. We found that the upregulation of miR-195 greatly decreased cell invasion and the migration of U2OS. We also identified that FASN may be a direct target of miR-195 by the luciferase activity assay. These findings provide evidence that miR-195 plays a key role in inhibiting osteosarcoma cell migration and invasion through targeting FASN, and strongly suggest that exogenous miR-195 may have therapeutic value in treating osteosarcoma.
Collapse
Affiliation(s)
- JIAN HUA MAO
- Department of Orthopedics, First Affiliated Hospital of Nanchang University
| | - RONG PING ZHOU
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University
| | - AI FEN PENG
- School of Humanities, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006,
P.R. China
| | - ZHI LI LIU
- Department of Orthopedics, First Affiliated Hospital of Nanchang University
| | - SHAN HU HUANG
- Department of Orthopedics, First Affiliated Hospital of Nanchang University
| | - XIN HUA LONG
- Department of Orthopedics, First Affiliated Hospital of Nanchang University
| | - YONG SHU
- Department of Orthopedics, First Affiliated Hospital of Nanchang University
| |
Collapse
|
50
|
Huang Y, Bell LN, Okamura J, Kim MS, Mohney RP, Guerrero-Preston R, Ratovitski EA. Phospho-ΔNp63α/SREBF1 protein interactions: bridging cell metabolism and cisplatin chemoresistance. Cell Cycle 2012; 11:3810-27. [PMID: 22951905 DOI: 10.4161/cc.22022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tumor protein (TP)-p53 family members (TP63, TP63 and TP73) are guardians of the genome and key players in orchestrating the cellular response to cisplatin treatment. Cisplatin-induced phosphorylation of ΔNp63α was shown to have a role in regulating intracellular ΔNp63α protein levels. We previously found that squamous cell carcinoma (SCC) cells exposed to cisplatin displayed the ATM-dependent phosphorylation of ΔNp63α (p-ΔNp63α), which is critical for the transcriptional regulation of specific downstream mRNAs and microRNAs and is likely to underlie the chemoresistance of SCC cells. However, SCC cells expressing non-p-ΔNp63α became more cisplatin-resistant. We also found that p-ΔNp63α forms complexes with a number of proteins involved in cell death response through regulation of cell cycle arrest, apoptosis, autophagy, RNA splicing and chromatin modifications. Here, we showed that p-ΔNp63α induced ARG1, GAPDH, and CPT2 gene transcription in cisplatin-sensitive SCC cells, while non-p-ΔNp63α increased a transcription of CAD, G6PD and FASN genes in cisplatin-resistant SCC cells. We report that the p-ΔNp63α-dependent regulatory mechanisms implicated in the modulation of plethora of pathways, including amino acid, carbohydrate, lipid and nucleotide metabolisms, thereby affect tumor cell response to cisplatin-induced cell death, suggesting that the ATM-dependent ΔNp63α pathway plays a role in the resistance of tumor cells to platinum therapy.
Collapse
Affiliation(s)
- Yiping Huang
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|