1
|
Medina I, Wieland EB, Temmerman L, Otten JJT, Bermudez B, Bot I, Rademakers T, Wijnands E, Schurgers L, Mees B, van Berkel TJC, Goossens P, Biessen EAL. Colony stimulating factor 1 receptor (Csf1r) expressing cell ablation in mafia (macrophage-specific Fas-induced apoptosis) mice alters monocyte landscape and atherosclerotic lesion characteristics. Eur J Immunol 2024; 54:e2350943. [PMID: 39233527 DOI: 10.1002/eji.202350943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Macrophage infiltration and accumulation in the atherosclerotic lesion are associated with plaque progression and instability. Depletion of macrophages from the lesion might provide valuable insights into plaque stabilization processes. Therefore, we assessed the effects of systemic and local macrophage depletion on atherogenesis. To deplete monocytes/macrophages we used atherosclerosis-susceptible Apoe- /- mice, bearing a MaFIA (macrophage-Fas-induced-apoptosis) suicide construct under control of the Csf1r (CD115) promotor, where selective apoptosis of Csf1r-expressing cells was induced in a controlled manner, by administration of a drug, AP20187. Systemic induction of apoptosis resulted in a decrease in lesion macrophages and smooth-muscle cells. Plaque size and necrotic core size remained unaffected. Two weeks after the systemic depletion of macrophages, we observed a replenishment of the myeloid compartment. Myelopoiesis was modulated resulting in an expansion of CSF1Rlo myeloid cells in the circulation and a shift from Ly6chi monocytes toward Ly6cint and Ly6clo populations in the spleen. Local apoptosis induction led to a decrease in plaque burden and macrophage content with marginal effects on the circulating myeloid cells. Local, but not systemic depletion of Csf1r+ myeloid cells resulted in decreased plaque burden. Systemic depletion led to CSF1Rlo-monocyte expansion in blood, possibly explaining the lack of effects on plaque development.
Collapse
Affiliation(s)
- Indira Medina
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Division of Biopharmaceutics, Leiden Academic Center for Drug Research, Leiden, the Netherlands
| | - Elias B Wieland
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Lieve Temmerman
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Jeroen J T Otten
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Beatriz Bermudez
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Center for Drug Research, Leiden, the Netherlands
| | - Timo Rademakers
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Erwin Wijnands
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Leon Schurgers
- Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | - Barend Mees
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Theo J C van Berkel
- Division of Biopharmaceutics, Leiden Academic Center for Drug Research, Leiden, the Netherlands
| | - Pieter Goossens
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Niu SW, Wu CH, Chen HC, Yang CJ, Chang JM, Chang EE, Chuang HH, Chiu YW, Zhen YY, Hung CC, Hwang SJ. Proteins Secreted by Lung Cancer Cells Induce the Onset of Proteinuria via Focal Adhesion Kinase Signaling in Mice. J Transl Med 2023; 103:100156. [PMID: 37119854 DOI: 10.1016/j.labinv.2023.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023] Open
Abstract
Paraneoplastic nephrotic syndrome (PNS) is a complication seen in cancer patients. Ultrastructural examination shows the accumulation of proteins and the presence of foot process (FP) effacement in the glomeruli of PNS patients. Previously, we reported that orthotopic xenografts of Lewis lung carcinoma 1 in C57BL/6 mice caused them to develop lung cancer with albuminuria. This implies that these mice can be used as a model of human disease and suggests that Lewis lung carcinoma 1 cell-secreted proteins (LCSePs) contain nephrotoxic molecules and cause inflammation in renal cells. As podocyte effacement was present in glomeruli in this model, such podocyte injury may be attributable to either soluble LCSeP or LCSeP deposits triggering pathological progression. LCSePs in conditioned media was concentrated for nephrotoxicity testing. Integrin-focal adhesion kinase (FAK) signaling and inflammatory responses were evaluated in podocytes either exposed to soluble LCSePs or seeded onto substrates with immobilized LCSePs. FAK phosphorylation and interleukin-6 expression were higher in podocytes attached to LCSePs substrates than in those exposed to soluble LCSePs. Notably, LCSeP-based haptotaxis gave rise to altered signaling in podocytes. When podocytes were stimulated by immobilized LCSePs, FAK accumulated at focal adhesions, synaptopodin dissociated from F-actin, and disrupting the interactions between synaptopodin and α-actinin was observed. When FAK was inhibited by PF-573228 in immobilized LCSePs, the association between synaptopodin and α-actinin was observed in the podocytes. The association of synaptopodin and α-actinin with F-actin allowed FP stretching, establishing a functional glomerular filtration barrier. Therefore, in this mouse model of lung cancer, FAK signaling prompts podocyte FP effacement and proteinuria, indicative of PNS.
Collapse
Affiliation(s)
- Sheng-Wen Niu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Hsing Wu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Hung-Chun Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Jen Yang
- Division of Pulmonary and Critical care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jer-Ming Chang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eddy Essen Chang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Hao Chuang
- Division of Pulmonary and Critical care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yi Zhen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Chih Hung
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Shang-Jyh Hwang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Cai J, Chen J, Ortiz-Guzman J, Huang J, Arenkiel BR, Wang Y, Zhang Y, Shi Y, Tong Q, Zhan C. AgRP neurons are not indispensable for body weight maintenance in adult mice. Cell Rep 2023; 42:112789. [PMID: 37422762 PMCID: PMC10909125 DOI: 10.1016/j.celrep.2023.112789] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/16/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023] Open
Abstract
In addition to their role in promoting feeding and obesity development, hypothalamic arcuate agouti-related protein/neuropeptide Y (AgRP/NPY) neurons are widely perceived to be indispensable for maintaining normal feeding and body weight in adults, and consistently, acute inhibition of AgRP neurons is known to reduce short-term food intake. Here, we adopted complementary methods to achieve nearly complete ablation of arcuate AgRP/NPY neurons in adult mice and report that lesioning arcuate AgRP/NPY neurons in adult mice causes no apparent alterations in ad libitum feeding or body weight. Consistent with previous studies, loss of AgRP/NPY neurons blunts fasting refeeding. Thus, our studies show that AgRP/NPY neurons are not required for maintaining ad libitum feeding or body weight homeostasis in adult mice.
Collapse
Affiliation(s)
- Jing Cai
- Brown Institute of Molecular Medicine at McGovern Medical School and Neuroscience Program of MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jing Chen
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Joshua Ortiz-Guzman
- Duncan Institute of Neurological Research and Department of Neuroscience and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jessica Huang
- Brown Institute of Molecular Medicine at McGovern Medical School and Neuroscience Program of MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Duncan Institute of Neurological Research and Department of Neuroscience and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuchen Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Hematology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Brain Function and Disease, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yan Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuyan Shi
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Hematology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Brain Function and Disease, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qingchun Tong
- Brown Institute of Molecular Medicine at McGovern Medical School and Neuroscience Program of MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Cheng Zhan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Hematology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Brain Function and Disease, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
4
|
Bousbaine D, Fisch LI, London M, Bhagchandani P, Rezende de Castro TB, Mimee M, Olesen S, Reis BS, VanInsberghe D, Bortolatto J, Poyet M, Cheloha RW, Sidney J, Ling J, Gupta A, Lu TK, Sette A, Alm EJ, Moon JJ, Victora GD, Mucida D, Ploegh HL, Bilate AM. A conserved Bacteroidetes antigen induces anti-inflammatory intestinal T lymphocytes. Science 2022; 377:660-666. [PMID: 35926021 PMCID: PMC9766740 DOI: 10.1126/science.abg5645] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The microbiome contributes to the development and maturation of the immune system. In response to commensal bacteria, intestinal CD4+ T lymphocytes differentiate into functional subtypes with regulatory or effector functions. The development of small intestine intraepithelial lymphocytes that coexpress CD4 and CD8αα homodimers (CD4IELs) depends on the microbiota. However, the identity of the microbial antigens recognized by CD4+ T cells that can differentiate into CD4IELs remains unknown. We identified β-hexosaminidase, a conserved enzyme across commensals of the Bacteroidetes phylum, as a driver of CD4IEL differentiation. In a mouse model of colitis, β-hexosaminidase-specific lymphocytes protected against intestinal inflammation. Thus, T cells of a single specificity can recognize a variety of abundant commensals and elicit a regulatory immune response at the intestinal mucosa.
Collapse
Affiliation(s)
- Djenet Bousbaine
- Microbiology Graduate Program, Massachussetts Institute of Technology (MIT), Cambridge, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Laura I Fisch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Mariya London
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Preksha Bhagchandani
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Tiago B Rezende de Castro
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.,Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Mark Mimee
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Synthetic Biology Center, MIT, Cambridge, MA, USA.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Scott Olesen
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - David VanInsberghe
- Microbiology Graduate Program, Massachussetts Institute of Technology (MIT), Cambridge, MA, USA.,Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
| | - Juliana Bortolatto
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Mathilde Poyet
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jingjing Ling
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Aaron Gupta
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Timothy K Lu
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Synthetic Biology Center, MIT, Cambridge, MA, USA.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Eric J Alm
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, The Rockefeller University, New York NY, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Angelina M Bilate
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
5
|
Robles-Oteiza C, Ayeni D, Levy S, Homer RJ, Kaech SM, Politi K. Elevated murine HB-EGF confers sensitivity to diphtheria toxin in EGFR-mutant lung adenocarcinoma. Dis Model Mech 2021; 14:272093. [PMID: 34494649 PMCID: PMC8617309 DOI: 10.1242/dmm.049072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Conditional ablation of defined cell populations in vivo can be achieved using genetically engineered mice in which the human diphtheria toxin (DT) receptor (DTR) is placed under control of a murine tissue-specific promotor, such that delivery of DT selectively ablates cells expressing this high-affinity human DTR; cells expressing only the endogenous low-affinity mouse DTR are assumed to be unaffected. Surprisingly, we found that systemic administration of DT induced rapid regression of murine lung adenocarcinomas that express human mutant EGFR in the absence of a transgenic allele containing human DTR. DT enzymatic activity was required for tumor regression, and mutant EGFR-expressing tumor cells were the primary target of DT toxicity. In FVB mice, EGFR-mutant tumors upregulated expression of HBEGF, which is the DTR in mice and humans. HBEGF blockade with the enzymatically inactive DT mutant CRM197 partially abrogated tumor regression induced by DT. These results suggest that elevated expression of murine HBEGF, i.e. the low-affinity DTR, confers sensitivity to DT in EGFR-mutant tumors, demonstrating a biological effect of DT in mice lacking transgenic DTR alleles and highlighting a unique vulnerability of EGFR-mutant lung cancers.
Collapse
Affiliation(s)
| | - Deborah Ayeni
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Stellar Levy
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Robert J Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Susan M Kaech
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA.,NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, La Jolla, CA 92037, USA
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA.,Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.,Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
6
|
Purde V, Kudryashova E, Heisler DB, Shakya R, Kudryashov DS. Intein-mediated cytoplasmic reconstitution of a split toxin enables selective cell ablation in mixed populations and tumor xenografts. Proc Natl Acad Sci U S A 2020; 117:22090-22100. [PMID: 32839344 PMCID: PMC7486740 DOI: 10.1073/pnas.2006603117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The application of proteinaceous toxins for cell ablation is limited by their high on- and off-target toxicity, severe side effects, and a narrow therapeutic window. The selectivity of targeting can be improved by intein-based toxin reconstitution from two dysfunctional fragments provided their cytoplasmic delivery via independent, selective pathways. While the reconstitution of proteins from genetically encoded elements has been explored, exploiting cell-surface receptors for boosting selectivity has not been attained. We designed a robust splitting algorithm and achieved reliable cytoplasmic reconstitution of functional diphtheria toxin from engineered intein-flanked fragments upon receptor-mediated delivery of one of them to the cells expressing the counterpart. Retargeting the delivery machinery toward different receptors overexpressed in cancer cells enables selective ablation of specific subpopulations in mixed cell cultures. In a mouse model, the transmembrane delivery of a split-toxin construct potently inhibits the growth of xenograft tumors expressing the split counterpart. Receptor-mediated delivery of engineered split proteins provides a platform for precise therapeutic and experimental ablation of tumors or desired cell populations while also greatly expanding the applicability of the intein-based protein transsplicing.
Collapse
Affiliation(s)
- Vedud Purde
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210;
| | - David B Heisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Reena Shakya
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210;
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
7
|
Liu F, Dai S, Feng D, Peng X, Qin Z, Kearns AC, Huang W, Chen Y, Ergün S, Wang H, Rappaport J, Bryda EC, Chandrasekhar A, Aktas B, Hu H, Chang SL, Gao B, Qin X. Versatile cell ablation tools and their applications to study loss of cell functions. Cell Mol Life Sci 2019; 76:4725-4743. [PMID: 31359086 PMCID: PMC6858955 DOI: 10.1007/s00018-019-03243-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022]
Abstract
Targeted cell ablation is a powerful approach for studying the role of specific cell populations in a variety of organotypic functions, including cell differentiation, and organ generation and regeneration. Emerging tools for permanently or conditionally ablating targeted cell populations and transiently inhibiting neuronal activities exhibit a diversity of application and utility. Each tool has distinct features, and none can be universally applied to study different cell types in various tissue compartments. Although these tools have been developed for over 30 years, they require additional improvement. Currently, there is no consensus on how to select the tools to answer the specific scientific questions of interest. Selecting the appropriate cell ablation technique to study the function of a targeted cell population is less straightforward than selecting the method to study a gene's functions. In this review, we discuss the features of the various tools for targeted cell ablation and provide recommendations for optimal application of specific approaches.
Collapse
Affiliation(s)
- Fengming Liu
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA, 19140, USA
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Shen Dai
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiao Peng
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Zhongnan Qin
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA, 19140, USA
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Alison C Kearns
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Wenfei Huang
- Institute of NeuroImmune Pharmacology, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - Yong Chen
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA, 19140, USA
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, 261053, Weifang, People's Republic of China
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximillan University, 97070, Wurzburg, Germany
| | - Hong Wang
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Jay Rappaport
- Division of Pathology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Elizabeth C Bryda
- Rat Resource and Research Center, University of Missouri, 4011 Discovery Drive, Columbia, MO, 65201, USA
| | - Anand Chandrasekhar
- Division of Biological Sciences, 340D Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO, USA
| | - Bertal Aktas
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Hongzhen Hu
- Department of Anesthesiology, Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xuebin Qin
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA, 19140, USA.
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, 70433, USA.
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
8
|
Malhotra R, Lipworth L, Cavanaugh KL, Young BA, Tucker KL, Carithers TC, Taylor HA, Correa A, Kabagambe EK, Ikizler TA. Protein Intake and Long-term Change in Glomerular Filtration Rate in the Jackson Heart Study. J Ren Nutr 2018; 28:245-250. [DOI: 10.1053/j.jrn.2017.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 11/11/2022] Open
|
9
|
Ding W, Yousefi K, Goncalves S, Goldstein BJ, Sabater AL, Kloosterboer A, Ritter P, Lambert G, Mendez AJ, Shehadeh LA. Osteopontin deficiency ameliorates Alport pathology by preventing tubular metabolic deficits. JCI Insight 2018; 3:94818. [PMID: 29563333 PMCID: PMC5926939 DOI: 10.1172/jci.insight.94818] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 02/09/2018] [Indexed: 12/31/2022] Open
Abstract
Alport syndrome is a rare hereditary renal disorder with no etiologic therapy. We found that osteopontin (OPN) is highly expressed in the renal tubules of the Alport mouse and plays a causative pathological role. OPN genetic deletion ameliorated albuminuria, hypertension, tubulointerstitial proliferation, renal apoptosis, and hearing and visual deficits in the Alport mouse. In Alport renal tubules we found extensive cholesterol accumulation and increased protein expression of dynamin-3 (DNM3) and LDL receptor (LDLR) in addition to dysmorphic mitochondria with defective bioenergetics. Increased pathological cholesterol influx was confirmed by a remarkably increased uptake of injected DiI-LDL cholesterol by Alport renal tubules, and by the improved lifespan of the Alport mice when crossed with the Ldlr-/- mice with defective cholesterol influx. Moreover, OPN-deficient Alport mice demonstrated significant reduction of DNM3 and LDLR expression. In human renal epithelial cells, overexpressing DNM3 resulted in elevated LDLR protein expression and defective mitochondrial respiration. Our results suggest a potentially new pathway in Alport pathology where tubular OPN causes DNM3- and LDLR-mediated enhanced cholesterol influx and impaired mitochondrial respiration.
Collapse
Affiliation(s)
- Wen Ding
- Department of Molecular and Cellular Pharmacology
- Interdisciplinary Stem Cell Institute
| | - Keyvan Yousefi
- Department of Molecular and Cellular Pharmacology
- Interdisciplinary Stem Cell Institute
| | | | | | | | | | | | | | | | - Lina A. Shehadeh
- Interdisciplinary Stem Cell Institute
- Department of Medicine, Division of Cardiology
- Vascular Biology Institute, and
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
10
|
Stevens M, Neal CR, Salmon AHJ, Bates DO, Harper SJ, Oltean S. Vascular Endothelial Growth Factor-A165b Restores Normal Glomerular Water Permeability in a Diphtheria-Toxin Mouse Model of Glomerular Injury. Nephron Clin Pract 2018; 139:51-62. [PMID: 29393270 DOI: 10.1159/000485664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/24/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/AIMS Genetic cell ablation using the human diphtheria toxin receptor (hDTR) is a new strategy used for analysing cellular function. Diphtheria toxin (DT) is a cytotoxic protein that leaves mouse cells relatively unaffected, but upon binding to hDTR it ultimately leads to cell death. We used a podocyte-specific hDTR expressing (Pod-DTR) mouse to assess the anti-permeability and cyto-protective effects of the splice isoform vascular endothelial growth factor (VEGF-A165b). METHODS The Pod-DTR mouse was crossed with a mouse that over-expressed VEGF-A165b specifically in the podocytes (Neph-VEGF-A165b). Wild type (WT), Pod-DTR, Neph-VEGF-A165b and Pod-DTR X Neph-VEGF-A165b mice were treated with several doses of DT (1, 5, 100, and 1,000 ng/g bodyweight). Urine was collected and the glomerular water permeability (LpA/Vi) was measured ex vivo after 14 days. Structural analysis and podocyte marker expression were also assessed. RESULTS Pod-DTR mice developed an increased glomerular LpA/Vi 14 days after administration of DT (all doses), which was prevented when the mice over-expressed VEGF-A165b. No major structural abnormalities, podocyte ablation or albuminuria was observed in Pod-DTR mice, indicating this to be a mild model of podocyte disease. However, a change in expression and localisation of nephrin within the podocytes was observed, indicating disruption of the slit diaphragm in the Pod-DTR mice. This was prevented in the Pod-DTR X Neph-VEGF-A165b mice. CONCLUSION Although only a mild model of podocyte injury, over-expression of the anti-permeability VEGF-A165b isoform in the podocytes of Pod-DTR mice had a protective effect. Therefore, this study further highlights the therapeutic potential of VEGF-A165b in glomerular disease.
Collapse
Affiliation(s)
- Megan Stevens
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom.,School of Physiology, Pharmacology and Neurosciences, Bristol, United Kingdom.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Christopher R Neal
- School of Physiology, Pharmacology and Neurosciences, Bristol, United Kingdom.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew H J Salmon
- School of Physiology, Pharmacology and Neurosciences, Bristol, United Kingdom.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Steven J Harper
- School of Physiology, Pharmacology and Neurosciences, Bristol, United Kingdom.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom.,School of Physiology, Pharmacology and Neurosciences, Bristol, United Kingdom.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
11
|
Tubulointerstitial fibrosis can sensitize the kidney to subsequent glomerular injury. Kidney Int 2017; 92:1395-1403. [PMID: 28709637 DOI: 10.1016/j.kint.2017.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/21/2017] [Accepted: 04/06/2017] [Indexed: 01/24/2023]
Abstract
Chronic glomerular injury is associated with eventual development of tubulointerstitial fibrosis. Here we aimed to assess whether, and how, mild chronic tubulointerstitial injury affects glomeruli. For this, we generated mice expressing different toxin receptors, one on their proximal tubular epithelial cells (diphtheria toxin receptor [DTR]) and the other only on podocytes (human CD25 [IL-2R] driven by the nephrin promoter [Nep25]), allowing serial induction of tubule-specific and glomerular (podocyte)-specific injury, respectively. Six weeks after diphtheria toxin injection, mild interstitial fibrosis was found in Nep25+/DTR+, but not in Nep25+/DTR- mice. However, atubular glomeruli and neuronal nitric oxide synthase, a mediator of tubuloglomerular feedback, were higher in Nep25+/DTR+ than in DTR- mice and these atubular glomeruli had less podocyte density as assessed by WT-1 biomarker expression. Peritubular capillary density, hypoxia-inducible factor-1 and -2, and cyclooxygenase 2 expression were similar at week six in the two groups. At week seven, all mice were given the immunotoxin LMB-2, which binds to CD25 to induce podocyte injury. Ten days later, proteinuria, podocyte injury, and glomerulosclerosis were more severe in Nep25+/DTR+ than Nep25+/DTR- mice with more severe sclerosis in the tubule-connected glomeruli. This supports the concept that even mild preexisting tubulointerstitial injury sensitizes glomeruli to subsequent podocyte-specific injury. Thus, increased atubular glomeruli and abnormal tubuloglomerular feedback significantly contribute to the crosstalk between the tubulointerstitium and glomeruli.
Collapse
|
12
|
Konishi H, Ohgami N, Matsushita A, Kondo Y, Aoyama Y, Kobayashi M, Nagai T, Ugawa S, Yamada K, Kato M, Kiyama H. Exposure to diphtheria toxin during the juvenile period impairs both inner and outer hair cells in C57BL/6 mice. Neuroscience 2017; 351:15-23. [PMID: 28344071 DOI: 10.1016/j.neuroscience.2017.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/20/2022]
Abstract
Diphtheria toxin (DT) administration into transgenic mice that express the DT receptor (DTR) under control of specific promoters is often used for cell ablation studies in vivo. Because DTR is not expressed in mice, DT injection has been assumed to be nontoxic to cells in vivo. In this study, we demonstrated that DT application during the juvenile stage leads to hearing loss in wild-type mice. Auditory brainstem response measurement showed severe hearing loss in C57BL/6 mice administered DT during the juvenile period, and the hearing loss persisted into adulthood. However, ototoxicity did not occur when DT was applied on postnatal day 28 or later. Histological studies demonstrated that hearing loss was accompanied by significant degeneration of inner and outer hair cells (HCs), as well as spiral ganglion neurons. Scanning electron microscopy showed quick degeneration of inner HCs within 3days and gradual degeneration of outer HCs within 1week. These results demonstrated that DT has ototoxic action on C57BL/6 mice during the juvenile period, but not thereafter, and the hearing loss was due to degeneration of inner and outer HCs by unknown DT-related mechanisms.
Collapse
Affiliation(s)
- Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Nutritional Health Science Research Center, Chubu University, Kasugai 487-8501, Japan.
| | - Aika Matsushita
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Yuki Kondo
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Yuki Aoyama
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Masaaki Kobayashi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
13
|
Malhotra R, Cavanaugh KL, Blot WJ, Ikizler TA, Lipworth L, Kabagambe EK. Higher protein intake is associated with increased risk for incident end-stage renal disease among blacks with diabetes in the Southern Community Cohort Study. Nutr Metab Cardiovasc Dis 2016; 26:1079-1087. [PMID: 27562875 PMCID: PMC5147554 DOI: 10.1016/j.numecd.2016.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/15/2016] [Accepted: 07/17/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Diabetes, a risk factor for end-stage renal disease (ESRD), is associated with impaired protein metabolism. We investigated whether protein intake is associated with ESRD and whether the risk is higher among blacks with diabetes. METHODS AND RESULTS We conducted a nested case-control study of ESRD within the Southern Community Cohort Study, a prospective study of low-income blacks and whites in the southeastern US (2002-2009). Through 2012, 1057 incident ESRD cases were identified by linkage with the United States Renal Data System and matched to 3198 controls by age, sex, and race. Dietary intakes were assessed from a validated food frequency questionnaire at baseline. Odds ratios (ORs) and 95% confidence intervals (CIs) were computed from logistic regression models that included matching variables, BMI, education, income, hypertension, total energy intake, and percent energy from saturated and polyunsaturated fatty acids. Mean (±SD) daily energy intake from protein was higher among ESRD cases than controls (15.7 ± 3.3 vs. 15.1 ± 3.1%, P < 0.0001). For a 1% increase in percent energy intake from protein, the adjusted ORs (95% CIs) for ESRD were 1.06 (1.02-1.10) for blacks with diabetes, 1.02 (0.98-1.06) for blacks without diabetes, 0.99 (0.90-1.09) for whites with diabetes and 0.94 (0.84-1.06) for whites without diabetes. Protein intake in g/kg/day was also associated with ESRD (4th vs. 1st quartile OR = 1.76; 95% CI: 1.17-2.65). CONCLUSION Our results raise the possibility that among blacks with diabetes, increased dietary protein is associated with increased incidence of ESRD. Studies on how protein intake and metabolism affect ESRD are needed.
Collapse
Affiliation(s)
- R Malhotra
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Kidney Disease, Nashville, TN 37232, USA
| | - K L Cavanaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Kidney Disease, Nashville, TN 37232, USA
| | - W J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA; International Epidemiology Institute, Rockville, MD 20850, USA
| | - T A Ikizler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Kidney Disease, Nashville, TN 37232, USA
| | - L Lipworth
- Vanderbilt Center for Kidney Disease, Nashville, TN 37232, USA; Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - E K Kabagambe
- Vanderbilt Center for Kidney Disease, Nashville, TN 37232, USA; Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| |
Collapse
|
14
|
Feng D, Dai S, Liu F, Ohtake Y, Zhou Z, Wang H, Zhang Y, Kearns A, Peng X, Zhu F, Hayat U, Li M, He Y, Xu M, Zhao C, Cheng M, Zhang L, Wang H, Yang X, Ju C, Bryda EC, Gordon J, Khalili K, Hu W, Li S, Qin X, Gao B. Cre-inducible human CD59 mediates rapid cell ablation after intermedilysin administration. J Clin Invest 2016; 126:2321-33. [PMID: 27159394 DOI: 10.1172/jci84921] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/03/2016] [Indexed: 11/17/2022] Open
Abstract
Cell ablation is a powerful tool for studying cell lineage and/or function; however, current cell-ablation models have limitations. Intermedilysin (ILY), a cytolytic pore-forming toxin that is secreted by Streptococcus intermedius, lyses human cells exclusively by binding to the human complement regulator CD59 (hCD59), but does not react with CD59 from nonprimates. Here, we took advantage of this feature of ILY and developed a model of conditional and targeted cell ablation by generating floxed STOP-CD59 knockin mice (ihCD59), in which expression of human CD59 only occurs after Cre-mediated recombination. The administration of ILY to ihCD59+ mice crossed with various Cre-driver lines resulted in the rapid and specific ablation of immune, epithelial, or neural cells without off-target effects. ILY had a large pharmacological window, which allowed us to perform dose-dependent studies. Finally, the ILY/ihCD59-mediated cell-ablation method was tested in several disease models to study immune cell functionalities, hepatocyte and/or biliary epithelial damage and regeneration, and neural cell damage. Together, the results of this study demonstrate the utility of the ihCD59 mouse model for studying the effects of cell ablation in specific organ systems in a variety of developmental and disease states.
Collapse
|
15
|
Abstract
Podocytes are highly specialized cells of the kidney glomerulus that wrap around capillaries and that neighbor cells of the Bowman’s capsule. When it comes to glomerular filtration, podocytes play an active role in preventing plasma proteins from entering the urinary ultrafiltrate by providing a barrier comprising filtration slits between foot processes, which in aggregate represent a dynamic network of cellular extensions. Foot processes interdigitate with foot processes from adjacent podocytes and form a network of narrow and rather uniform gaps. The fenestrated endothelial cells retain blood cells but permit passage of small solutes and an overlying basement membrane less permeable to macromolecules, in particular to albumin. The cytoskeletal dynamics and structural plasticity of podocytes as well as the signaling between each of these distinct layers are essential for an efficient glomerular filtration and thus for proper renal function. The genetic or acquired impairment of podocytes may lead to foot process effacement (podocyte fusion or retraction), a morphological hallmark of proteinuric renal diseases. Here, we briefly discuss aspects of a contemporary view of podocytes in glomerular filtration, the patterns of structural changes in podocytes associated with common glomerular diseases, and the current state of basic and clinical research.
Collapse
Affiliation(s)
- Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
16
|
Mayer CT, Lahl K, Milanez-Almeida P, Watts D, Dittmer U, Fyhrquist N, Huehn J, Kopf M, Kretschmer K, Rouse B, Sparwasser T. Advantages of Foxp3(+) regulatory T cell depletion using DEREG mice. IMMUNITY INFLAMMATION AND DISEASE 2014; 2:162-5. [PMID: 25505550 PMCID: PMC4257761 DOI: 10.1002/iid3.33] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 12/17/2022]
Abstract
Several mechanisms enable immunological self-tolerance. Regulatory T cells (Tregs) are a specialized T cell subset that prevents autoimmunity and excessive immune responses, but can also mediate detrimental tolerance to tumors and pathogens in a Foxp3-dependent manner. Genetic tools exploiting the foxp3 locus including bacterial artificial chromosome (BAC)-transgenic DEREG mice have provided essential information on Treg biology and the potential therapeutic modulation of tolerance. In DEREG mice, Foxp3(+) Tregs selectively express eGFP and diphtheria toxin (DT) receptor, allowing for the specific depletion of Tregs through DT administration. We here provide a detailed overview about important considerations such as DT toxicity, which affects any mouse strain treated with DT, and Treg rebound after depletion. Additionally, we point out the specific advantages of BAC-transgenic DEREG mice including their suitability to study organ-specific autoimmunity such as type I diabetes. Moreover, we discuss recent insights into the role of Tregs in viral infections. In summary, DEREG mice are an important tool to study Treg-mediated tolerance and its therapeutic circumvention.
Collapse
Affiliation(s)
- Christian T Mayer
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Katharina Lahl
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine Lane Building, Mailcode 5324, Stanford, CA, 94305, USA ; The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Pedro Milanez-Almeida
- Experimental Immunology, Helmholtz Centre for Infection Research Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Deepika Watts
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden Fetscherstr. 105, 01307, Dresden, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen Virchowstr.179, 45122, Essen, Germany
| | - Nanna Fyhrquist
- Unit of Systems Toxicology, Finnish Institute of Occupational Health Topeliuksenkatu 41b, 00250, Helsinki, Finland
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Manfred Kopf
- Institute for Molecular Health Sciences, Swiss Federal Institute of Technology Zuerich Otto-Stern-Weg 7, 8093, Zuerich, Switzerland
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden Fetscherstr. 105, 01307, Dresden, Germany ; Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD) Fetscherstr. 74, 01307, Dresden, Germany
| | - Barry Rouse
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee Knoxville, TN, 37996, USA
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| |
Collapse
|
17
|
Xia Y, Herlitz LC, Gindea S, Wen J, Pawar RD, Misharin A, Perlman H, Wu L, Wu P, Michaelson JS, Burkly LC, Putterman C. Deficiency of fibroblast growth factor-inducible 14 (Fn14) preserves the filtration barrier and ameliorates lupus nephritis. J Am Soc Nephrol 2014; 26:1053-70. [PMID: 25270074 DOI: 10.1681/asn.2014030233] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/23/2014] [Indexed: 11/03/2022] Open
Abstract
TNF ligand superfamily member 12, also known as TNF-related weak inducer of apoptosis (TWEAK), acts through its receptor, fibroblast growth factor-inducible 14 (Fn14), to mediate several key pathologic processes involved in tissue injury relating to lupus nephritis. To explore the potential for renal protection in lupus nephritis by targeting this pathway, we introduced the Fn14 null allele into the MRL-lpr/lpr lupus mouse strain. At 26-38 weeks of age, female Fn14-knockout MRL-lpr/lpr mice had significantly lower levels of proteinuria compared with female wild-type MRL-lpr/lpr mice. Furthermore, Fn14-knockout mice had significantly improved renal histopathology accompanied by attenuated glomerular and tubulointerstitial inflammation. There was a significant reduction in glomerular Ig deposition in Fn14-knockout mice, despite no detectable differences in either serum levels of antibodies or splenic immune cell subsets. Notably, we found that the Fn14-knockout mice displayed substantial preservation of podocytes in glomeruli and that TWEAK signaling directly damaged barrier function and increased filtration through podocyte and glomerular endothelial cell monolayers. Our results show that deficiency of the Fn14 receptor significantly improves renal disease in a spontaneous lupus nephritis model through prevention of the direct injurious effects of TWEAK on the filtration barrier and/or modulation of cytokine production by resident kidney cells. Thus, blocking the TWEAK/Fn14 axis may be a novel therapeutic intervention in immune-mediated proliferative GN.
Collapse
Affiliation(s)
- Yumin Xia
- Department of Microbiology and Immunology and Division of Rheumatology, Albert Einstein College of Medicine, Bronx, New York
| | - Leal C Herlitz
- Department of Pathology, Columbia-Presbyterian Medical Center, New York, New York
| | - Simona Gindea
- Division of Rheumatology, Albert Einstein College of Medicine, Bronx, New York
| | - Jing Wen
- Department of Microbiology and Immunology and
| | - Rahul D Pawar
- Department of Microbiology and Immunology and Division of Rheumatology, Albert Einstein College of Medicine, Bronx, New York
| | - Alexander Misharin
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Harris Perlman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lan Wu
- Department of Immunology, Biogen Idec, Cambridge, Massachusetts; and
| | - Ping Wu
- Department of Immunology, Biogen Idec, Cambridge, Massachusetts; and
| | | | - Linda C Burkly
- Department of Immunology, Biogen Idec, Cambridge, Massachusetts; and
| | - Chaim Putterman
- Department of Microbiology and Immunology and Division of Rheumatology, Albert Einstein College of Medicine, Bronx, New York;
| |
Collapse
|
18
|
Christiaansen AF, Boggiatto PM, Varga SM. Limitations of Foxp3(+) Treg depletion following viral infection in DEREG mice. J Immunol Methods 2014; 406:58-65. [PMID: 24642426 DOI: 10.1016/j.jim.2014.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 12/31/2022]
Abstract
Regulatory T cells (Tregs) play a critical role in maintaining tissue homeostasis and preventing the development of immunopathology. Depletion of REGulatory T cell (DEREG) mice express a diphtheria toxin receptor (DTR)-eGFP transgene under the control of the Foxp3 promoter allowing for Treg depletion following diphtheria toxin (DT) administration. DEREG mice have been utilized to investigate the role of Tregs in a wide range of disease settings. Administration of DT to naïve DEREG mice resulted in the rapid depletion of Foxp3(+) Tregs from the peripheral blood. However, by day 4 post-DT administration, a GFP(-) Foxp3(+) Treg population emerged that lacked expression of the DTR transgene and was resistant to further depletion by additional DT treatment. We further evaluated the impact of Treg depletion during both acute and chronic viral infections. Similar to naïve mice, Treg numbers rapidly rebounded during an inflammatory setting following an acute viral infection. DT treatment of both wild-type (WT) and DEREG mice following both acute and chronic viral infections induced exacerbated disease as compared to PBS-treated controls. Furthermore, following a chronic systemic viral infection, DT treatment resulted in nearly 100% mortality in both WT and DEREG mice while the PBS-treated controls survived. Our results demonstrate that Treg depletion in DEREG mice is transient and that DT administration can have adverse effects during virus-induced inflammation and highlights the critical need to include DT-treated WT mice when using DTR models to control for DT-mediated toxicity.
Collapse
Affiliation(s)
| | - Paola M Boggiatto
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven M Varga
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
19
|
Holderied A, Anders HJ. Animal models of kidney inflammation in translational medicine. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.ddmod.2014.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|