1
|
van der Graaff D, Seghers S, Vanclooster P, Deben C, Vandamme T, Prenen H. Advancements in Research and Treatment Applications of Patient-Derived Tumor Organoids in Colorectal Cancer. Cancers (Basel) 2024; 16:2671. [PMID: 39123399 PMCID: PMC11311786 DOI: 10.3390/cancers16152671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant health burden globally, being the second leading cause of cancer-related mortality. Despite significant therapeutic advancements, resistance to systemic antineoplastic agents remains an important obstacle, highlighting the need for innovative screening tools to tailor patient-specific treatment. This review explores the application of patient-derived tumor organoids (PDTOs), three-dimensional, self-organizing models derived from patient tumor samples, as screening tools for drug resistance in CRC. PDTOs offer unique advantages over traditional models by recapitulating the tumor architecture, cellular heterogeneity, and genomic landscape and are a valuable ex vivo predictive drug screening tool. This review provides an overview of the current literature surrounding the use of PDTOs as an instrument for predicting therapy responses in CRC. We also explore more complex models, such as co-cultures with important stromal cells, such as cancer-associated fibroblasts, and organ-on-a-chip models. Furthermore, we discuss the use of PDTOs for drug repurposing, offering a new approach to identify the existing drugs effective against drug-resistant CRC. Additionally, we explore how PDTOs serve as models to gain insights into drug resistance mechanisms, using newer techniques, such as single-cell RNA sequencing and CRISPR-Cas9 genome editing. Through this review, we aim to highlight the potential of PDTOs in advancing our understanding of predicting therapy responses, drug resistance, and biomarker identification in CRC management.
Collapse
Affiliation(s)
| | - Sofie Seghers
- Department of Medical Oncology, University Hospital Antwerp, 2650 Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Christophe Deben
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | - Timon Vandamme
- Department of Medical Oncology, University Hospital Antwerp, 2650 Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | - Hans Prenen
- Department of Medical Oncology, University Hospital Antwerp, 2650 Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
2
|
Zhou Y, He Z, Li T, Choppavarapu L, Hu X, Cao R, Leone GW, Kahn M, Jin VX. 3D Chromatin Alteration by Disrupting β-Catenin/CBP Interaction Is Enriched with Insulin Signaling in Pancreatic Cancer. Cancers (Basel) 2024; 16:2202. [PMID: 38927910 PMCID: PMC11201718 DOI: 10.3390/cancers16122202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The therapeutic potential of targeting the β-catenin/CBP interaction has been demonstrated in a variety of preclinical tumor models with a small molecule inhibitor, ICG-001, characterized as a β-catenin/CBP antagonist. Despite the high binding specificity of ICG-001 for the N-terminus of CBP, this β-catenin/CBP antagonist exhibits pleiotropic effects. Our recent studies found global changes in three-dimensional (3D) chromatin architecture in response to disruption of the β-catenin/CBP interaction in pancreatic cancer cells. However, an understanding of how the functional crosstalk between the antagonist and the β-catenin/CBP interaction affects changes in 3D chromatin architecture and, thereby, gene expression and downstream effects remains to be elucidated. Here, we perform Hi-C analyses on canonical and patient-derived pancreatic cancer cells before and after treatment with ICG-001. In addition to global alteration of 3D chromatin domains, we unexpectedly identify insulin signaling genes enriched in the altered chromatin domains. We further demonstrate that the chromatin loops associated with insulin signaling genes are significantly weakened after ICG-001 treatment. We finally elicit the deletion of a looping of IRS1-a key insulin signaling gene-significantly impeding pancreatic cancer cell growth, indicating that looping-mediated insulin signaling might act as an oncogenic pathway to promote pancreatic cancer progression. Our work shows that targeting aberrant insulin chromatin looping in pancreatic cancer might provide a therapeutic benefit.
Collapse
Affiliation(s)
- Yufan Zhou
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (Z.H.); (T.L.)
| | - Zhijing He
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (Z.H.); (T.L.)
- Department of Stomatology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Tian Li
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (Z.H.); (T.L.)
| | - Lavanya Choppavarapu
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaohui Hu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China;
| | - Ruifeng Cao
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Gustavo W. Leone
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Victor X. Jin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Fu J, Ling J, Li CF, Tsai CL, Yin W, Hou J, Chen P, Cao Y, Kang Y, Sun Y, Xia X, Jiang Z, Furukawa K, Lu Y, Wu M, Huang Q, Yao J, Hawke DH, Pan BF, Zhao J, Huang J, Wang H, Bahassi EIM, Stambrook PJ, Huang P, Fleming JB, Maitra A, Tainer JA, Hung MC, Lin C, Chiao PJ. Nardilysin-regulated scission mechanism activates polo-like kinase 3 to suppress the development of pancreatic cancer. Nat Commun 2024; 15:3149. [PMID: 38605037 PMCID: PMC11009390 DOI: 10.1038/s41467-024-47242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) develops through step-wise genetic and molecular alterations including Kras mutation and inactivation of various apoptotic pathways. Here, we find that development of apoptotic resistance and metastasis of KrasG12D-driven PDAC in mice is accelerated by deleting Plk3, explaining the often-reduced Plk3 expression in human PDAC. Importantly, a 41-kDa Plk3 (p41Plk3) that contains the entire kinase domain at the N-terminus (1-353 aa) is activated by scission of the precursor p72Plk3 at Arg354 by metalloendopeptidase nardilysin (NRDC), and the resulting p32Plk3 C-terminal Polo-box domain (PBD) is removed by proteasome degradation, preventing the inhibition of p41Plk3 by PBD. We find that p41Plk3 is the activated form of Plk3 that regulates a feed-forward mechanism to promote apoptosis and suppress PDAC and metastasis. p41Plk3 phosphorylates c-Fos on Thr164, which in turn induces expression of Plk3 and pro-apoptotic genes. These findings uncover an NRDC-regulated post-translational mechanism that activates Plk3, establishing a prototypic regulation by scission mechanism.
Collapse
Affiliation(s)
- Jie Fu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Jianhua Ling
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ching-Fei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wenjuan Yin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Junwei Hou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ping Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yu Cao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yichen Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xianghou Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhou Jiang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kenei Furukawa
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yu Lu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qian Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bih-Fang Pan
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Zhao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jiaxing Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - E I Mustapha Bahassi
- Department of Molecular Genetics, University of Cincinnati Cancer Institute, Cincinnati, OH, 45267, USA
| | - Peter J Stambrook
- Department of Molecular Genetics, University of Cincinnati Cancer Institute, Cincinnati, OH, 45267, USA
| | - Peng Huang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Kazi A, Ranjan A, Kumar M.V. V, Agianian B, Garcia Chavez M, Vudatha V, Wang R, Vangipurapu R, Chen L, Kennedy P, Subramanian K, Quirke JC, Beato F, Underwood PW, Fleming JB, Trevino J, Hergenrother PJ, Gavathiotis E, Sebti SM. Discovery of KRB-456, a KRAS G12D Switch-I/II Allosteric Pocket Binder That Inhibits the Growth of Pancreatic Cancer Patient-derived Tumors. CANCER RESEARCH COMMUNICATIONS 2023; 3:2623-2639. [PMID: 38051103 PMCID: PMC10754035 DOI: 10.1158/2767-9764.crc-23-0222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/26/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Currently, there are no clinically approved drugs that directly thwart mutant KRAS G12D, a major driver of human cancer. Here, we report on the discovery of a small molecule, KRB-456, that binds KRAS G12D and inhibits the growth of pancreatic cancer patient-derived tumors. Protein nuclear magnetic resonance studies revealed that KRB-456 binds the GDP-bound and GCP-bound conformation of KRAS G12D by forming interactions with a dynamic allosteric binding pocket within the switch-I/II region. Isothermal titration calorimetry demonstrated that KRB-456 binds potently to KRAS G12D with 1.5-, 2-, and 6-fold higher affinity than to KRAS G12V, KRAS wild-type, and KRAS G12C, respectively. KRB-456 potently inhibits the binding of KRAS G12D to the RAS-binding domain (RBD) of RAF1 as demonstrated by GST-RBD pulldown and AlphaScreen assays. Treatment of KRAS G12D-harboring human pancreatic cancer cells with KRB-456 suppresses the cellular levels of KRAS bound to GTP and inhibits the binding of KRAS to RAF1. Importantly, KRB-456 inhibits P-MEK, P-AKT, and P-S6 levels in vivo and inhibits the growth of subcutaneous and orthotopic xenografts derived from patients with pancreatic cancer whose tumors harbor KRAS G12D and KRAS G12V and who relapsed after chemotherapy and radiotherapy. These results warrant further development of KRB-456 for pancreatic cancer. SIGNIFICANCE There are no clinically approved drugs directly abrogating mutant KRAS G12D. Here, we discovered a small molecule, KRB-456, that binds a dynamic allosteric binding pocket within the switch-I/II region of KRAS G12D. KRB-456 inhibits P-MEK, P-AKT, and P-S6 levels in vivo and inhibits the growth of subcutaneous and orthotopic xenografts derived from patients with pancreatic cancer. This discovery warrants further advanced preclinical and clinical studies in pancreatic cancer.
Collapse
Affiliation(s)
- Aslamuzzaman Kazi
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Alok Ranjan
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Vasantha Kumar M.V.
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Bogos Agianian
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Martin Garcia Chavez
- Department of Chemistry, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Rui Wang
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | | | - Liwei Chen
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Perry Kennedy
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Karthikeyan Subramanian
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Jonathan C.K. Quirke
- Department of Chemistry, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Francisca Beato
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | | | - Jason B. Fleming
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Jose Trevino
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Paul J. Hergenrother
- Department of Chemistry, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Said M. Sebti
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
5
|
Maurin M, Ranjouri M, Megino-Luque C, Newberg JY, Du D, Martin K, Miner RE, Prater MS, Wee DKB, Centeno B, Pruett-Miller SM, Stewart P, Fleming JB, Yu X, Bravo-Cordero JJ, Guccione E, Black MA, Mann KM. RBFOX2 deregulation promotes pancreatic cancer progression and metastasis through alternative splicing. Nat Commun 2023; 14:8444. [PMID: 38114498 PMCID: PMC10730836 DOI: 10.1038/s41467-023-44126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
RNA splicing is an important biological process associated with cancer initiation and progression. However, the contribution of alternative splicing to pancreatic cancer (PDAC) development is not well understood. Here, we identify an enrichment of RNA binding proteins (RBPs) involved in splicing regulation linked to PDAC progression from a forward genetic screen using Sleeping Beauty insertional mutagenesis in a mouse model of pancreatic cancer. We demonstrate downregulation of RBFOX2, an RBP of the FOX family, promotes pancreatic cancer progression and liver metastasis. Specifically, we show RBFOX2 regulates exon splicing events in transcripts encoding proteins involved in cytoskeletal remodeling programs. These exons are differentially spliced in PDAC patients, with enhanced exon skipping in the classical subtype for several RBFOX2 targets. RBFOX2 mediated splicing of ABI1, encoding the Abelson-interactor 1 adapter protein, controls the abundance and localization of ABI1 protein isoforms in pancreatic cancer cells and promotes the relocalization of ABI1 from the cytoplasm to the periphery of migrating cells. Using splice-switching antisense oligonucleotides (AONs) we demonstrate the ABI1 ∆Ex9 isoform enhances cell migration. Together, our data identify a role for RBFOX2 in promoting PDAC progression through alternative splicing regulation.
Collapse
Affiliation(s)
- Michelle Maurin
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | | | - Cristina Megino-Luque
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Justin Y Newberg
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Dongliang Du
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Katelyn Martin
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Robert E Miner
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Mollie S Prater
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Dave Keng Boon Wee
- Institute for Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Republic of Singapore
| | - Barbara Centeno
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Paul Stewart
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Jose Javier Bravo-Cordero
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Karen M Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA.
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA.
| |
Collapse
|
6
|
Zhou Y, Li T, He Z, Choppavarapu L, Hu X, Cao R, Leone GW, Kahn M, Jin VX. Reprogramming of 3D chromatin domains by antagonizing the β-catenin/CBP interaction attenuates insulin signaling in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566585. [PMID: 38013997 PMCID: PMC10680786 DOI: 10.1101/2023.11.10.566585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The therapeutic potential of targeting the β-catenin/CBP interaction has been demonstrated in a variety of preclinical tumor models with a small molecule inhibitor, ICG-001, characterized as a β-catenin/CBP antagonist. Despite the high binding specificity of ICG-001 for the N-terminus of CBP, this β-catenin/CBP antagonist exhibits pleiotropic effects. Our recent studies found global changes in three-dimensional (3D) chromatin architecture in response to disruption of the β-catenin/CBP interaction in pancreatic cancer cells. However, an understanding of the functional crosstalk between antagonizing the β-catenin/CBP interaction effect changes in 3D chromatin architecture and thereby gene expression and downstream effects remains to be elucidated. Here we perform Hi-C analyses on canonical and patient-derived pancreatic cancer cells before and after the treatment with ICG-001. In addition to global alteration of 3D chromatin domains, we unexpectedly identify insulin signaling genes enriched in the altered chromatin domains. We further demonstrate the chromatin loops associated with insulin signaling genes are significantly weakened after ICG-001 treatment. We finally elicit the deletion of a looping of IRS1, a key insulin signaling gene, significantly impede pancreatic cancer cell growth, indicating that looping-mediated insulin signaling might act as an oncogenic pathway to promote pancreatic cancer progression. Our work shows that targeting aberrant insulin chromatin looping in pancreatic cancer might provide a therapeutic benefit.
Collapse
|
7
|
Chen Z, Ho IL, Soeung M, Yen EY, Liu J, Yan L, Rose JL, Srinivasan S, Jiang S, Edward Chang Q, Feng N, Gay JP, Wang Q, Wang J, Lorenzi PL, Veillon LJ, Wei B, Weinstein JN, Deem AK, Gao S, Genovese G, Viale A, Yao W, Lyssiotis CA, Marszalek JR, Draetta GF, Ying H. Ether phospholipids are required for mitochondrial reactive oxygen species homeostasis. Nat Commun 2023; 14:2194. [PMID: 37069167 PMCID: PMC10110566 DOI: 10.1038/s41467-023-37924-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
Mitochondria are hubs where bioenergetics, redox homeostasis, and anabolic metabolism pathways integrate through a tightly coordinated flux of metabolites. The contributions of mitochondrial metabolism to tumor growth and therapy resistance are evident, but drugs targeting mitochondrial metabolism have repeatedly failed in the clinic. Our study in pancreatic ductal adenocarcinoma (PDAC) finds that cellular and mitochondrial lipid composition influence cancer cell sensitivity to pharmacological inhibition of electron transport chain complex I. Profiling of patient-derived PDAC models revealed that monounsaturated fatty acids (MUFAs) and MUFA-linked ether phospholipids play a critical role in maintaining ROS homeostasis. We show that ether phospholipids support mitochondrial supercomplex assembly and ROS production; accordingly, blocking de novo ether phospholipid biosynthesis sensitized PDAC cells to complex I inhibition by inducing mitochondrial ROS and lipid peroxidation. These data identify ether phospholipids as a regulator of mitochondrial redox control that contributes to the sensitivity of PDAC cells to complex I inhibition.
Collapse
Affiliation(s)
- Ziheng Chen
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - I-Lin Ho
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melinda Soeung
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Er-Yen Yen
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jintan Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liang Yan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Johnathon L Rose
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanjana Srinivasan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Jiang
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Q Edward Chang
- The Oncology Research for Biologics and Immunotherapy Translation (ORBIT), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ningping Feng
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason P Gay
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lucas J Veillon
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bo Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angela K Deem
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sisi Gao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giannicola Genovese
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wantong Yao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joseph R Marszalek
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giulio F Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Dinter J, Friedrich RP, Yang H, Pilarsky C, Mangge H, Pöttler M, Janko C, Alexiou C, Lyer S. Mitoxantrone and Mitoxantrone-Loaded Iron Oxide Nanoparticles Induce Cell Death in Human Pancreatic Ductal Adenocarcinoma Cell Spheroids. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2906. [PMID: 37049199 PMCID: PMC10096321 DOI: 10.3390/ma16072906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Pancreatic ductal adenocarcinoma is a hard-to-treat, deadly malignancy. Traditional treatments, such as surgery, radiation and chemotherapy, unfortunately are still not able to significantly improve long-term survival. Three-dimensional (3D) cell cultures might be a platform to study new drug types in a highly reproducible, resource-saving model within a relevant pathophysiological cellular microenvironment. We used a 3D culture of human pancreatic ductal adenocarcinoma cell lines to investigate a potential new treatment approach using superparamagnetic iron oxide nanoparticles (SPIONs) as a drug delivery system for mitoxantrone (MTO), a chemotherapeutic agent. We established a PaCa DD183 cell line and generated PANC-1SMAD4 (-/-) cells by using the CRISPR-Cas9 system, differing in a prognostically relevant mutation in the TGF-β pathway. Afterwards, we formed spheroids using PaCa DD183, PANC-1 and PANC-1SMAD4 (-/-) cells, and analyzed the uptake and cytotoxic effect of free MTO and MTO-loaded SPIONs by microscopy and flow cytometry. MTO and SPION-MTO-induced cell death in all tumor spheroids in a dose-dependent manner. Interestingly, spheroids with a SMAD4 mutation showed an increased uptake of MTO and SPION-MTO, while at the same time being more resistant to the cytotoxic effects of the chemotherapeutic agents. MTO-loaded SPIONs, with their ability for magnetic drug targeting, could be a future approach for treating pancreatic ductal adenocarcinomas.
Collapse
Affiliation(s)
- Jonas Dinter
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Medical Faculty, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Ralf P. Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Hai Yang
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, 8036 Graz, Austria
| | - Marina Pöttler
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
9
|
IGFBP2 Drives Regulatory T Cell Differentiation through STAT3/IDO Signaling Pathway in Pancreatic Cancer. J Pers Med 2022; 12:jpm12122005. [PMID: 36556226 PMCID: PMC9785430 DOI: 10.3390/jpm12122005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest malignancies. Elevated regulatory T cell (Treg) infiltration has a potent immunosuppressive function in tumor biology, which contributes to low survival in PDAC. Nonetheless, the crosstalk between malignant cells and tumor-infiltrating Tregs in PDAC is not well understood. Here, clinical data demonstrates that the insulin-like growth factor binding protein 2 (IGFBP2) is associated with Treg accumulation in the microenvironment of PDAC in humans. Additionally, IGFBP2 increases Treg infiltration in the tumor microenvironment and promotes disease progression in mouse PDAC. Bioinformatic analysis and mechanistic assessment reveals IGFBP2 upregulated indoleamine 2, 3-dioxygenase (IDO) by activating signal transducer and activator of transcription 3 (STAT3) signaling in PDAC cells, thus inducing Treg differentiation and an immunosuppressive tumor microenvironment. These findings provide mechanistic insights into an important molecular pathway that promotes an immunosuppressive microenvironment, which suggests the IGFBP2 axis as a potential target for improved immune response in PDAC.
Collapse
|
10
|
Pion E, Karnosky J, Boscheck S, Wagner BJ, Schmidt KM, Brunner SM, Schlitt HJ, Aung T, Hackl C, Haerteis S. 3D In Vivo Models for Translational Research on Pancreatic Cancer: The Chorioallantoic Membrane (CAM) Model. Cancers (Basel) 2022; 14:cancers14153733. [PMID: 35954398 PMCID: PMC9367548 DOI: 10.3390/cancers14153733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The 5-year overall survival rate for all stages of pancreatic cancer is relatively low at about only 6%. As a result of this exceedingly poor prognosis, new research models are necessary to investigate this highly malignant cancer. One model that has been used extensively for a vast variety of different cancers is the chorioallantoic membrane (CAM) model. It is based on an exceptionally vascularized membrane that develops within fertilized chicken eggs and can be used for the grafting and analysis of tumor tissue. The aim of the study was to summarize already existing works on pancreatic ductal adenocarcinoma (PDAC) and the CAM model. The results were subdivided into different categories that include drug testing, angiogenesis, personalized medicine, modifications of the model, and further developments to help improve the unfavorable prognosis of this disease. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with adverse outcomes that have barely improved over the last decade. About half of all patients present with metastasis at the time of diagnosis, and the 5-year overall survival rate across all stages is only 6%. Innovative in vivo research models are necessary to combat this cancer and to discover novel treatment strategies. The chorioallantoic membrane (CAM) model represents one 3D in vivo methodology that has been used in a large number of studies on different cancer types for over a century. This model is based on a membrane formed within fertilized chicken eggs that contain a dense network of blood vessels. Because of its high cost-efficiency, simplicity, and versatility, the CAM model appears to be a highly valuable research tool in the pursuit of gaining more in-depth insights into PDAC. A summary of the current literature on the usage of the CAM model for the investigation of PDAC was conducted and subdivided into angiogenesis, drug testing, modifications, personalized medicine, and further developments. On this comprehensive basis, further research should be conducted on PDAC in order to improve the abysmal prognosis of this malignant disease.
Collapse
Affiliation(s)
- Eric Pion
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
| | - Julia Karnosky
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Sofie Boscheck
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
| | - Benedikt J. Wagner
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Katharina M. Schmidt
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Stefan M. Brunner
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Hans J. Schlitt
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, 94469 Deggendorf, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
- Correspondence:
| |
Collapse
|
11
|
Navarro-Serer B, Wood LD. Organoids: A Promising Preclinical Model for Pancreatic Cancer Research. Pancreas 2022; 51:608-616. [PMID: 36206467 DOI: 10.1097/mpa.0000000000002084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Pancreatic cancer is one of the most lethal cancer types, estimated to become the second leading cause of cancer-related deaths in the United States in 2030. The use of 3-dimensional culture systems has greatly expanded over the past few years, providing a valuable tool for the study of pancreatic cancer. In this review, we highlight some of the preclinical in vitro and in vivo models used in pancreatic cancer research, each with its own advantages and disadvantages, and focus on one of the recently used 3-dimensional culture models: organoids. Organoids are multicellular units derived from tissue samples and embedded within extracellular matrix gels after mechanical and enzymatic digestion. We define organoids, differentiate them from other 3-dimensional culture systems such as spheroids, and describe some applications of this model that have recently advanced our understanding of pancreatic cancer and its tumor microenvironment. Organoids have provided valuable insights into pancreatic cancer progression, heterogeneity, and invasion, and they have enabled the creation of biobanks, providing a platform for drug screening. In addition, we discuss some of the future directions and challenges in this model when addressing research questions.
Collapse
Affiliation(s)
- Bernat Navarro-Serer
- From the Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine
| | | |
Collapse
|
12
|
Wörmann SM, Zhang A, Thege FI, Cowan RW, Rupani DN, Wang R, Manning SL, Gates C, Wu W, Levin-Klein R, Rajapakshe KI, Yu M, Multani AS, Kang Y, Taniguchi CM, Schlacher K, Bellin MD, Katz MHG, Kim MP, Fleming JB, Gallinger S, Maddipati R, Harris RS, Notta F, Ross SR, Maitra A, Rhim AD. APOBEC3A drives deaminase domain-independent chromosomal instability to promote pancreatic cancer metastasis. NATURE CANCER 2021; 2:1338-1356. [PMID: 35121902 DOI: 10.1038/s43018-021-00268-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
Despite efforts in understanding its underlying mechanisms, the etiology of chromosomal instability (CIN) remains unclear for many tumor types. Here, we identify CIN initiation as a previously undescribed function for APOBEC3A (A3A), a cytidine deaminase upregulated across cancer types. Using genetic mouse models of pancreatic ductal adenocarcinoma (PDA) and genomics analyses in human tumor cells we show that A3A-induced CIN leads to aggressive tumors characterized by enhanced early dissemination and metastasis in a STING-dependent manner and independently of the canonical deaminase functions of A3A. We show that A3A upregulation recapitulates numerous copy number alterations commonly observed in patients with PDA, including co-deletions in DNA repair pathway genes, which in turn render these tumors susceptible to poly (ADP-ribose) polymerase inhibition. Overall, our results demonstrate that A3A plays an unexpected role in PDA as a specific driver of CIN, with significant effects on disease progression and treatment.
Collapse
Affiliation(s)
- Sonja M Wörmann
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA.
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA.
| | - Amy Zhang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Fredrik I Thege
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Robert W Cowan
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Gastroenterology, Hepatology & Nutrition, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Dhwani N Rupani
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Gastroenterology, Hepatology & Nutrition, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Runsheng Wang
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Gastroenterology, Hepatology & Nutrition, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Sara L Manning
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Gastroenterology, Hepatology & Nutrition, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Chris Gates
- BRCF Bioinformatics Core, University of Michigan, School of Medicine, Ann Arbor, MI, USA
| | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, School of Medicine, Ann Arbor, MI, USA
| | - Rena Levin-Klein
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Kimal I Rajapakshe
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Meifang Yu
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Asha S Multani
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Ya'an Kang
- Department of Surgical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Cullen M Taniguchi
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Katharina Schlacher
- Department of Cancer Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melena D Bellin
- University of Minnesota Medical Center, Schulze Diabetes Institute, Minneapolis, MN, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Michael P Kim
- Department of Surgical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Ravikanth Maddipati
- Department of Internal Medicine and Hamon Center for Therapeutic Oncology Research and Children's Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Faiyaz Notta
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Susan R Ross
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Anirban Maitra
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Andrew D Rhim
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA.
- Department of Gastroenterology, Hepatology & Nutrition, MD Anderson Cancer Center, University of Texas, Houston, TX, USA.
| |
Collapse
|
13
|
Dai B, Augustine JJ, Kang Y, Roife D, Li X, Deng J, Tan L, Rusling LA, Weinstein JN, Lorenzi PL, Kim MP, Fleming JB. Compound NSC84167 selectively targets NRF2-activated pancreatic cancer by inhibiting asparagine synthesis pathway. Cell Death Dis 2021; 12:693. [PMID: 34247201 PMCID: PMC8272721 DOI: 10.1038/s41419-021-03970-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is aberrantly activated in about 93% of pancreatic cancers. Activated NRF2 regulates multiple downstream molecules involved in cancer cell metabolic reprogramming, translational control, and treatment resistance; however, targeting NRF2 for pancreatic cancer therapy remains largely unexplored. In this study, we used the online computational tool CellMinerTM to explore the NCI-60 drug databases for compounds with anticancer activities correlating most closely with the mRNA expression of NQO1, a marker for NRF2 pathway activity. Among the >100,000 compounds analyzed, NSC84167, termed herein as NRF2 synthetic lethality compound-01 (NSLC01), was one of the top hits (r = 0.71, P < 0.001) and selected for functional characterization. NSLC01 selectively inhibited the viabilities of four out of seven conventional pancreatic cancer cell lines and induced dramatic apoptosis in the cells with high NRF2 activation. The selective anticancer activity of NSLC01 was further validated with a panel of nine low-passage pancreatic patient-derived cell lines, and a significant reverse correlation between log(IC50) of NSLC01 and NQO1 expression was confirmed (r = -0.5563, P = 0.024). Notably, screening of a panel of nine patient-derived xenografts (PDXs) revealed six PDXs with high NQO1/NRF2 activation, and NSLC01 dramatically inhibited the viabilities and induced apoptosis in ex vivo cultures of PDX tumors. Consistent with the ex vivo results, NSLC01 inhibited the tumor growth of two NRF2-activated PDX models in vivo (P < 0.01, n = 7-8) but had no effects on the NRF2-low counterpart. To characterize the mechanism of action, we employed a metabolomic isotope tracer assay that demonstrated that NSLC01-mediated inhibition of de novo synthesis of multiple amino acids, including asparagine and methionine. Importantly, we further found that NSLC01 suppresses the eEF2K/eEF2 translation elongation cascade and protein translation of asparagine synthetase. In summary, this study identified a novel compound that selectively targets protein translation and induces synthetic lethal effects in NRF2-activated pancreatic cancers.
Collapse
Affiliation(s)
- Bingbing Dai
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jithesh J Augustine
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ya'an Kang
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David Roife
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Xinqun Li
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jenying Deng
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lin Tan
- Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Leona A Rusling
- Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John N Weinstein
- Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Philip L Lorenzi
- Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael P Kim
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
14
|
Heinrich MA, Mostafa AMRH, Morton JP, Hawinkels LJAC, Prakash J. Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Adv Drug Deliv Rev 2021; 174:265-293. [PMID: 33895214 DOI: 10.1016/j.addr.2021.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive type of cancer with an overall survival rate of less than 7-8%, emphasizing the need for novel effective therapeutics against PDAC. However only a fraction of therapeutics which seemed promising in the laboratory environment will eventually reach the clinic. One of the main reasons behind this low success rate is the complex tumor microenvironment (TME) of PDAC, a highly fibrotic and dense stroma surrounding tumor cells, which supports tumor progression as well as increases the resistance against the treatment. In particular, the growing understanding of the PDAC TME points out a different challenge in the development of efficient therapeutics - a lack of biologically relevant in vitro and in vivo models that resemble the complexity and heterogeneity of PDAC observed in patients. The purpose and scope of this review is to provide an overview of the recent developments in different in vitro and in vivo models, which aim to recapitulate the complexity of PDAC in a laboratory environment, as well to describe how 3D in vitro models can be integrated into drug development pipelines that are already including sophisticated in vivo models. Hereby a special focus will be given on the complexity of in vivo models and the challenges in vitro models face to reach the same levels of complexity in a controllable manner. First, a brief introduction of novel developments in two dimensional (2D) models and ex vivo models is provided. Next, recent developments in three dimensional (3D) in vitro models are described ranging from spheroids, organoids, scaffold models, bioprinted models to organ-on-chip models including a discussion on advantages and limitations for each model. Furthermore, we will provide a detailed overview on the current PDAC in vivo models including chemically-induced models, syngeneic and xenogeneic models, highlighting hetero- and orthotopic, patient-derived tissues (PDX) models, and genetically engineered mouse models. Finally, we will provide a discussion on overall limitations of both, in vitro and in vivo models, and discuss necessary steps to overcome these limitations to reach an efficient drug development pipeline, as well as discuss possibilities to include novel in silico models in the process.
Collapse
Affiliation(s)
- Marcel A Heinrich
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Ahmed M R H Mostafa
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Jennifer P Morton
- Cancer Research UK, Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Rd, Glasgow G61 1QH, UK
| | - Lukas J A C Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, PO-box 9600, 2300 RC Leiden, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| |
Collapse
|
15
|
Kazi A, Chen L, Xiang S, Vangipurapu R, Yang H, Beato F, Fang B, Williams TM, Husain K, Underwood P, Fleming JB, Malafa M, Welsh EA, Koomen J, Trevino J, Sebti SM. Global Phosphoproteomics Reveal CDK Suppression as a Vulnerability to KRas Addiction in Pancreatic Cancer. Clin Cancer Res 2021; 27:4012-4024. [PMID: 33879459 DOI: 10.1158/1078-0432.ccr-20-4781] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/27/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Among human cancers that harbor mutant (mt) KRas, some, but not all, are dependent on mt KRas. However, little is known about what drives KRas dependency. EXPERIMENTAL DESIGN Global phosphoproteomics, screening of a chemical library of FDA drugs, and genome-wide CRISPR/Cas9 viability database analysis were used to identify vulnerabilities of KRas dependency. RESULTS Global phosphoproteomics revealed that KRas dependency is driven by a cyclin-dependent kinase (CDK) network. CRISPR/Cas9 viability database analysis revealed that, in mt KRas-driven pancreatic cancer cells, knocking out the cell-cycle regulators CDK1 or CDK2 or the transcriptional regulators CDK7 or CDK9 was as effective as knocking out KRas. Furthermore, screening of a library of FDA drugs identified AT7519, a CDK1, 2, 7, and 9 inhibitor, as a potent inducer of apoptosis in mt KRas-dependent, but not in mt KRas-independent, human cancer cells. In vivo AT7519 inhibited the phosphorylation of CDK1, 2, 7, and 9 substrates and suppressed growth of xenografts from 5 patients with pancreatic cancer. AT7519 also abrogated mt KRas and mt p53 primary and metastatic pancreatic cancer in three-dimensional (3D) organoids from 2 patients, 3D cocultures from 8 patients, and mouse 3D organoids from pancreatic intraepithelial neoplasia, primary, and metastatic tumors. CONCLUSIONS A link between CDK hyperactivation and mt KRas dependency was uncovered and pharmacologically exploited to abrogate mt KRas-driven pancreatic cancer in highly relevant models, warranting clinical investigations of AT7519 in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Aslamuzzaman Kazi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Liwei Chen
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Shengyan Xiang
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Rajanikanth Vangipurapu
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Hua Yang
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Francisca Beato
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Kazim Husain
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric A Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - John Koomen
- Molecular Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - José Trevino
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Saïd M Sebti
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. .,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
16
|
Chen D, Zhang R, Zhang H. High expression of LUM independently predicts poor prognosis in gastric cancer: a bioinformatics study combining TCGA and GEO datasets. ALL LIFE 2021; 14:1063-1072. [DOI: 10.1080/26895293.2021.2000894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Diqun Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
| | - Rouxin Zhang
- College of Science and Technology of China Three Gorges University, Yichang, People’s Republic of China
| | - Hongxia Zhang
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
| |
Collapse
|
17
|
IGFBP2 promotes tumor progression by inducing alternative polarization of macrophages in pancreatic ductal adenocarcinoma through the STAT3 pathway. Cancer Lett 2020; 500:132-146. [PMID: 33309859 DOI: 10.1016/j.canlet.2020.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/20/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022]
Abstract
Tumor-associated macrophages (TAMs) represent the M2-like phenotype with potent immunosuppressive activity, and play a pro-tumor role in pancreatic ductal adenocarcinoma (PDAC) biology. In this study, we investigated the role of the insulin-like growth factor binding protein 2 (IGFBP2) as a determinant of TAM polarity. Clinical data revealed that the levels of IGFBP2 correlated with M2 TAMs accumulation and disease progression in human PDAC. In vivo mouse model experiments showed that IGFBP2 promoted an immunosuppressive microenvironment and tumor growth in a macrophage dependent manner. Bioinformatics analysis of PDAC transcriptomes revealed a significant association between IGFBP2 expression and M2 macrophage polarization and signal transducer and activator of transcription 3 (STAT3) activation. Mechanistic investigations demonstrated that IGFBP2 augmented the expression and secretion of IL-10 through STAT3 activation in PDAC cells, which induced TAM polarization toward an M2 phenotype. IGFBP2-polarized M2 macrophages significantly increased Tregs infiltration and impaired antitumor T-cell immunity in a mouse model. Thus, our investigations have illuminated the IGFBP2 signaling pathway that contributes to the macrophage-based immunosuppressive microenvironment in PDAC, suggesting that blocking the IGFBP2 axis constitutes a potential treatment strategy to reset TAM polarization toward an antitumor state in PDAC.
Collapse
|
18
|
Biological features of tissue and bone sarcomas investigated using an in vitro model of clonal selection. Pathol Res Pract 2020; 217:153214. [PMID: 33290900 DOI: 10.1016/j.prp.2020.153214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
The malignancy progression is an evolutionary process in which tumor clones are selected and competed for the duration of the disease. Intratumor heterogeneity is one of the key problems in the development of treatment methods for cancer patients. In this study we obtained metastatic soft tissue and bone sarcomas (STBSs) cultures from 54 patients, performed in vitro cloning and randomly selected 83 clones. Cloning was successful in 22 cases (40.7%). STBSs cultures with a high clonogenic potential (CP) were characterized by greater proliferative activity and increased Aldehyde dehydrogenase (ALDH) expression. We studied the transcription activity of the following cancer-testis genes (CTG): MAGE, NY-ESO-1, PRAME, GAGE, SSX1, HAGE1, PASD1, SCP1, SEMG1, SLLP1 and SPANXA1. The SEMG1 expression wasn't registered in any studied case. CTG activity wasn't observed in 10 cases out of 52 (19,2%) STBS cultures. We observed CTG activation and increased transcription activity in 82 STBSs clones. Clustering by the gene profile has revealed three different patterns: 1 st - with low expression CTG, 2nd - with co-expression GAGE1, PASD1 and PRAME, 3d - with co-expression SLLP1 and GAGE1. The last two clusters included most cloned cell lines and their clones. CP of STBSs cell lines was associated with the parameters of patients overall survival (OS) at comparable progression-free survival (PFS). Among patients with STBSs with the high CP, median OS was 7.6 months (min 0.7 - max 11.0 months). In the group with the low CP, OS did not reach the median value by the end of the five-year observation period. PFS was 5.6 months (min 0.2 - max 19.2 months) in the first group and 3.2 months (min 0.3- max 71.3 months) in the second group. Resistance to therapeutic doses of chemotherapy drugs was correlated with CP cultures STBSs. We suggest that chemotherapy-resistant clones are pre-existing in the tumor rather than being formed under the influence of chemotherapy. Highly aggressive metastatic sarcomas may be a promising candidate for immunotherapy against cancer-testis antigens (CTAs).
Collapse
|
19
|
Ehlen L, Arndt J, Treue D, Bischoff P, Loch FN, Hahn EM, Kotsch K, Klauschen F, Beyer K, Margonis GA, Kreis ME, Kamphues C. Novel methods for in vitro modeling of pancreatic cancer reveal important aspects for successful primary cell culture. BMC Cancer 2020; 20:417. [PMID: 32404074 PMCID: PMC7222463 DOI: 10.1186/s12885-020-06929-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/05/2020] [Indexed: 01/05/2023] Open
Abstract
Background Pancreatic cancer remains a fatal disease. Experimental systems are needed for personalized treatment strategies, drug testing and to further understand tumor biology. Cell cultures can serve as an excellent preclinical platform, but their generation remains challenging. Methods Tumor cells from surgically removed pancreatic ductal adenocarcinoma (PDAC) specimens were cultured under novel protocols. Cellular growth and composition were analyzed and culture conditions were continuously optimized. Characterization of cell cultures and primary tumors was performed via hematoxylin and eosin (HE) and immunofluorescence (IF) staining. Results Protocols for two- and three-dimensional PDAC primary cell cultures could successfully be established. Primary cell culture depended on dissociation techniques, growth factor supplementation and extracellular matrix components containing Matrigel being crucial for the transformation to three-dimensional PDAC organoids. The generated cultures showed to be highly resemblant to established PDAC primary cell cultures. HE and IF staining for cell culture and corresponding primary tumor characterization could successfully be performed. Conclusions The work presented herein shows novel and effective methods to successfully establish primary PDAC cell cultures in a distinct time frame. Factors contributing to cell growth and differentiation could be identified with important implications for further primary cell culture protocols. The established protocols might serve as novel tools in personalized tumor therapy.
Collapse
Affiliation(s)
- L Ehlen
- Department of General, Visceral and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - J Arndt
- Department of General, Visceral and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - D Treue
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - P Bischoff
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - F N Loch
- Department of General, Visceral and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - E M Hahn
- Department of General, Visceral and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - K Kotsch
- Department of General, Visceral and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - F Klauschen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - K Beyer
- Department of General, Visceral and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - G A Margonis
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - M E Kreis
- Department of General, Visceral and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - C Kamphues
- Department of General, Visceral and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
20
|
Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26:1394-1426. [PMID: 32308343 PMCID: PMC7152519 DOI: 10.3748/wjg.v26.i13.1394] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed malignancy among both sexes in the United States as well as in the European Union. While the incidence and mortality rates in western, high developed countries are declining, reflecting the success of screening programs and improved treatment regimen, a rise of the overall global CRC burden can be observed due to lifestyle changes paralleling an increasing human development index. Despite a growing insight into the biology of CRC and many therapeutic improvements in the recent decades, preclinical in vivo models are still indispensable for the development of new treatment approaches. Since the development of carcinogen-induced rodent models for CRC more than 80 years ago, a plethora of animal models has been established to study colon cancer biology. Despite tenuous invasiveness and metastatic behavior, these models are useful for chemoprevention studies and to evaluate colitis-related carcinogenesis. Genetically engineered mouse models (GEMM) mirror the pathogenesis of sporadic as well as inherited CRC depending on the specific molecular pathways activated or inhibited. Although the vast majority of CRC GEMM lack invasiveness, metastasis and tumor heterogeneity, they still have proven useful for examination of the tumor microenvironment as well as systemic immune responses; thus, supporting development of new therapeutic avenues. Induction of metastatic disease by orthotopic injection of CRC cell lines is possible, but the so generated models lack genetic diversity and the number of suited cell lines is very limited. Patient-derived xenografts, in contrast, maintain the pathological and molecular characteristics of the individual patient's CRC after subcutaneous implantation into immunodeficient mice and are therefore most reliable for preclinical drug development - even in comparison to GEMM or cell line-based analyses. However, subcutaneous patient-derived xenograft models are less suitable for studying most aspects of the tumor microenvironment and anti-tumoral immune responses. The authors review the distinct mouse models of CRC with an emphasis on their clinical relevance and shed light on the latest developments in the field of preclinical CRC models.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Christina S Mullins
- Department of Thoracic Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
21
|
Wang CF, Shi XJ. Generation and application of patient-derived xenograft models in pancreatic cancer research. Chin Med J (Engl) 2019; 132:2729-2736. [PMID: 31725451 PMCID: PMC6940092 DOI: 10.1097/cm9.0000000000000524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma cancer (PDAC) is one of the leading causes of cancer-related death worldwide. Hence, the development of effective anti-PDAC therapies is urgently required. Patient-derived xenograft (PDX) models are useful models for developing anti-cancer therapies and screening drugs for precision medicine. This review aimed to provide an updated summary of using PDX models in PDAC. DATA SOURCES The author retrieved information from the PubMed database up to June 2019 using various combinations of search terms, including PDAC, pancreatic carcinoma, pancreatic cancer, patient-derived xenografts or PDX, and patient-derived tumor xenografts or PDTX. STUDY SELECTION Original articles and review articles relevant to the review's theme were selected. RESULTS PDX models are better than cell line-derived xenograft and other models. PDX models consistently demonstrate retained tumor morphology and genetic stability, are beneficial in cancer research, could enhance drug discovery and oncologic mechanism development of PDAC, allow an improved understanding of human cancer cell biology, and help guide personalized treatment. CONCLUSIONS In this review, we outline the status and application of PDX models in both basic and pre-clinical pancreatic cancer researches. PDX model is one of the most appropriate pre-clinical tools that can improve the prognosis of patients with pancreatic cancer in the future.
Collapse
Affiliation(s)
- Cheng-Fang Wang
- Department of Hepato-Biliary Surgery, The General Hospital of People's Liberation Army (301 hospital), Beijing 100853, China
| | | |
Collapse
|
22
|
Yu M, Nguyen ND, Huang Y, Lin D, Fujimoto TN, Molkentine JM, Deorukhkar A, Kang Y, San Lucas FA, Fernandes CJ, Koay EJ, Gupta S, Ying H, Koong AC, Herman JM, Fleming JB, Maitra A, Taniguchi CM. Mitochondrial fusion exploits a therapeutic vulnerability of pancreatic cancer. JCI Insight 2019; 5:126915. [PMID: 31335325 DOI: 10.1172/jci.insight.126915] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) requires mitochondrial oxidative phosphorylation (OXPHOS) to fuel its growth, however, broadly inhibiting this pathway might also disrupt essential mitochondrial functions in normal tissues. PDAC cells exhibit abnormally fragmented mitochondria that are essential to its oncogenicity, but it was unclear if this mitochondrial feature was a valid therapeutic target. Here, we present evidence that normalizing the fragmented mitochondria of pancreatic cancer via the process of mitochondrial fusion reduces OXPHOS, which correlates with suppressed tumor growth and improved survival in preclinical models. Mitochondrial fusion was achieved by genetic or pharmacologic inhibition of dynamin related protein-1 (Drp1) or through overexpression of mitofusin-2 (Mfn2). Notably, we found that oral leflunomide, an FDA-approved arthritis drug, promoted a two-fold increase in Mfn2 expression in tumors and was repurposed as a chemotherapeutic agent, improving the median survival of mice with spontaneous tumors by 50% compared to vehicle. We found that the chief tumor suppressive mechanism of mitochondrial fusion was enhanced mitophagy, which proportionally reduced mitochondrial mass and ATP production. These data suggest that mitochondrial fusion is a specific and druggable regulator of pancreatic cancer growth that could be rapidly translated to the clinic.
Collapse
Affiliation(s)
- Meifang Yu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas D Nguyen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanqing Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tara N Fujimoto
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jessica M Molkentine
- Department of Radiation Oncology, University of Pittsburgh, Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | | | - Conrad J Fernandes
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Sonal Gupta
- Department of Pathology.,Department of Translational Molecular Pathology, and
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Anirban Maitra
- Department of Pathology.,Department of Translational Molecular Pathology, and
| | - Cullen M Taniguchi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Radiation Oncology
| |
Collapse
|
23
|
Antineoplastic effects of auranofin in human pancreatic adenocarcinoma preclinical models. Surg Open Sci 2019; 1:56-63. [PMID: 33981979 PMCID: PMC8083010 DOI: 10.1016/j.sopen.2019.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/17/2019] [Accepted: 05/07/2019] [Indexed: 01/03/2023] Open
Abstract
Background Auranofin, a Food and Drug Administration–approved anti-rheumatic agent with anticancer properties for lung and ovarian cancer, has never been studied for pancreatic cancer. We hypothesize that auranofin may prevent pancreatic ductal adenocarcinoma progression by inhibition of Txnrd1 and HIF-1α. Methods In vitro sensitivity of human pancreatic ductal adenocarcinoma cell lines was determined based on IC50. Western blot assays were used to interrogate mechanisms of apoptosis and resistance. Ex vivo live tissue slice assays of xenografts allowed for testing of a larger number of PDX samples with high efficiency. In vivo pancreatic ductal adenocarcinoma orthotopic mouse models using MiaPaCa-2 Luc + cells were designed to determine optimal dose and antitumor effect. Results We found that 10 of 15 tested pancreatic ductal adenocarcinoma cell lines were sensitive to auranofin based on IC50s below 5 μmol/L. Ex vivo tissue growth inhibition greater than 44% was observed for 13 PDX tissue cases treated with 10 μmol/L auranofin. High Txnrd1 expression was observed for resistant cell lines. In vivo studies showed 15 mg/kg IP as the optimal dose with absence of gross solid organ metastasis up to 13 weeks post-treatment (median survival 8 and 12 weeks, respectively; P = .0953). Conclusions We have demonstrated that auranofin prevents pancreatic ductal adenocarcinoma progression using multiple models. Our study suggests inhibition of Txnrd1 and HIF-1α as possible mechanisms of action, and Txnrd1 as a biomarker of resistance. Based on these data, an off-label Phase 0 clinical trial with this FDA-approved drug should be considered for patients with pancreatic cancer.
Collapse
|
24
|
Kazi A, Xiang S, Yang H, Chen L, Kennedy P, Ayaz M, Fletcher S, Cummings C, Lawrence HR, Beato F, Kang Y, Kim MP, Delitto A, Underwood PW, Fleming JB, Trevino JG, Hamilton AD, Sebti SM. Dual Farnesyl and Geranylgeranyl Transferase Inhibitor Thwarts Mutant KRAS-Driven Patient-Derived Pancreatic Tumors. Clin Cancer Res 2019; 25:5984-5996. [PMID: 31227505 DOI: 10.1158/1078-0432.ccr-18-3399] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/03/2019] [Accepted: 06/11/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE Mutant KRAS is a major driver of pancreatic oncogenesis and therapy resistance, yet KRAS inhibitors are lacking in the clinic. KRAS requires farnesylation for membrane localization and cancer-causing activity prompting the development of farnesyltransferase inhibitors (FTIs) as anticancer agents. However, KRAS becomes geranylgeranylated and active when cancer cells are treated with FTIs. To overcome this geranylgeranylation-dependent resistance to FTIs, we designed FGTI-2734, a RAS C-terminal mimetic dual FT and geranylgeranyltransferase-1 inhibitor (GGTI). EXPERIMENTAL DESIGN Immunofluorescence, cellular fractionation, and gel shift assays were used to assess RAS membrane association, Western blotting to evaluate FGTI-2734 effects on signaling, and mouse models to demonstrate its antitumor activity. RESULTS FGTI-2734, but not the selective FTI-2148 and GGTI-2418, inhibited membrane localization of KRAS in pancreatic, lung, and colon human cancer cells. FGTI-2734 induced apoptosis and inhibited the growth in mice of mutant KRAS-dependent but not mutant KRAS-independent human tumors. Importantly, FGTI-2734 inhibited the growth of xenografts derived from four patients with pancreatic cancer with mutant KRAS (2 G12D and 2 G12V) tumors. FGTI-2734 was also highly effective at inhibiting, in three-dimensional cocultures with resistance promoting pancreatic stellate cells, the viability of primary and metastatic mutant KRAS tumor cells derived from eight patients with pancreatic cancer. Finally, FGTI-2734 suppressed oncogenic pathways mediated by AKT, mTOR, and cMYC while upregulating p53 and inducing apoptosis in patient-derived xenografts in vivo. CONCLUSIONS The development of this novel dual FGTI overcomes a major hurdle in KRAS resistance, thwarting growth of patient-derived mutant KRAS-driven xenografts from patients with pancreatic cancer, and as such it warrants further preclinical and clinical studies.
Collapse
Affiliation(s)
- Aslamuzzaman Kazi
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida
| | - Shengyan Xiang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Hua Yang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Liwei Chen
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Perry Kennedy
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Muhammad Ayaz
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Chemical Biology Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | | | - Harshani R Lawrence
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida
- Chemical Biology Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Francisca Beato
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ya'an Kang
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael P Kim
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrea Delitto
- Department of Surgery, University of Florida, Gainesville, Florida
| | | | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jose G Trevino
- Department of Surgery, University of Florida, Gainesville, Florida
| | | | - Said M Sebti
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida
- Chemical Biology Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
25
|
Dutta P, Perez MR, Lee J, Kang Y, Pratt M, Salzillo TC, Weygand J, Zacharias NM, Gammon ST, Koay EJ, Kim M, McAllister F, Sen S, Maitra A, Piwnica-Worms D, Fleming JB, Bhattacharya PK. Combining Hyperpolarized Real-Time Metabolic Imaging and NMR Spectroscopy To Identify Metabolic Biomarkers in Pancreatic Cancer. J Proteome Res 2019; 18:2826-2834. [PMID: 31120258 DOI: 10.1021/acs.jproteome.9b00132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer that progresses without any symptom, and oftentimes, it is detected at an advanced stage. The lack of prior symptoms and effective treatments have created a knowledge gap in the management of this lethal disease. This issue can be addressed by developing novel noninvasive imaging-based biomarkers in PDAC. We explored in vivo hyperpolarized (HP) 13C MRS of pyruvate to lactate conversion and ex vivo 1H NMR spectroscopy in a panel of well-annotated patient-derived PDAC xenograft (PDXs) model and investigated the correlation between aberrant glycolytic metabolism and aggressiveness of the tumor. Real-time metabolic imaging data demonstrate the immediate intracellular conversion of HP 13C pyruvate to lactate after intravenous injection interrogating upregulated lactate dehydrogenase (LDH) activity in aggressive PDXs. Total ex vivo lactate measurement by 1H NMR spectroscopy showed a direct correlation with in vivo dynamic pyruvate-to-lactate conversion and demonstrated the potential of dynamic metabolic flux as a biomarker of total lactate concentration and aggressiveness of the tumor. Furthermore, the metabolite concentrations were very distinct among all four tumor types analyzed in this study. Overexpression of LDH-A and hypoxia-inducible factor (HIF-1α) plays a significant role in the conversion kinetics of HP pyruvate-to-lactate in tumors. Collectively, these data identified aberrant metabolic characteristics of pancreatic cancer PDXs and could potentially delineate metabolic targets for therapeutic intervention. Metabolic imaging with HP pyruvate and NMR metabolomics may enable identification and classification of aggressive subtypes of patient-derived xenografts. Translation of this real-time metabolic technique to the clinic may have the potential to improve the management of patients at high risk of developing pancreatic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jason B Fleming
- Department of Gastrointestinal Oncology , H. Lee Moffitt Cancer Center , Tampa , Florida 33612 , United States
| | | |
Collapse
|
26
|
Sarcar B, Li X, Fleming JB. Hypoxia-Induced Autophagy Degrades Stromal Lumican into Tumor Microenvironment of Pancreatic Ductal Adenocarcinoma: A Mini-Review. ACTA ACUST UNITED AC 2019. [PMID: 31406961 PMCID: PMC6690605 DOI: 10.29245/2578-2967/2019/1.1165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The extracellular matrix (ECM) in the tumor microenvironment (TME) has gained considerable interest in recent years as a crucial component in fundamental cellular processes and provides novel therapeutic targets. Lumican is a class II small leucine-rich proteoglycan with a key role in ECM organization and modulation of biological functions dependent on tumor type, abundance, and stage of disease. The presence of stromal lumican in the ECM surrounding pancreatic ductal adenocarcinoma (PDAC) inhibits cancer cell replication and is associated with improved patient outcomes after multimodal therapies. In this mini-review, were-present our novel findings describing how hypoxia (1% O2) within the TME influences stromal lumican expression and secretion. We observed that hypoxia specifically inhibited lumican expression and secretion post-transcriptionally only from pancreatic stellate cells. Hypoxia-induced increased lactate production did not influence lumican expression. Notably, autophagy was induced by hypoxia in ex vivo cultures of patient-derived primary PDAC xenograft and pancreatic stellate cells; however, the cancer cells remain unaffected. Moreover, hypoxia-inducible factor (HIF)-1α expression or inhibition of AMP-regulated protein kinase (AMPK) activation within hypoxic stellate cells restored lumican expression levels. Interestingly, AMPK inhibition attenuated hypoxia-reduced phosphorylation of the mTOR/p70S6K/4EBP signaling pathway. The aim of this mini-review is to summarize our recent publication that hypoxia reduces stromal lumican in PDAC through autophagy-mediated degradation and reduction in protein synthesis within pancreatic cancer stellate cells. This may provide another plausible mechanism by which hypoxia-induced stromal autophagy leads to cancer growth.
Collapse
Affiliation(s)
- Bhaswati Sarcar
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, FL, USA
| | - Xinqun Li
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, FL, USA
| |
Collapse
|
27
|
Sarcar B, Li X, Fleming JB. Hypoxia-Induced Autophagy Degrades Stromal Lumican into Tumor Microenvironment of Pancreatic Ductal Adenocarcinoma: A Mini-Review. JOURNAL OF CANCER TREATMENT & DIAGNOSIS 2019; 3:22-27. [PMID: 31406961 PMCID: PMC6690605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The extracellular matrix (ECM) in the tumor microenvironment (TME) has gained considerable interest in recent years as a crucial component in fundamental cellular processes and provides novel therapeutic targets. Lumican is a class II small leucine-rich proteoglycan with a key role in ECM organization and modulation of biological functions dependent on tumor type, abundance, and stage of disease. The presence of stromal lumican in the ECM surrounding pancreatic ductal adenocarcinoma (PDAC) inhibits cancer cell replication and is associated with improved patient outcomes after multimodal therapies. In this mini-review, were-present our novel findings describing how hypoxia (1% O2) within the TME influences stromal lumican expression and secretion. We observed that hypoxia specifically inhibited lumican expression and secretion post-transcriptionally only from pancreatic stellate cells. Hypoxia-induced increased lactate production did not influence lumican expression. Notably, autophagy was induced by hypoxia in ex vivo cultures of patient-derived primary PDAC xenograft and pancreatic stellate cells; however, the cancer cells remain unaffected. Moreover, hypoxia-inducible factor (HIF)-1α expression or inhibition of AMP-regulated protein kinase (AMPK) activation within hypoxic stellate cells restored lumican expression levels. Interestingly, AMPK inhibition attenuated hypoxia-reduced phosphorylation of the mTOR/p70S6K/4EBP signaling pathway. The aim of this mini-review is to summarize our recent publication that hypoxia reduces stromal lumican in PDAC through autophagy-mediated degradation and reduction in protein synthesis within pancreatic cancer stellate cells. This may provide another plausible mechanism by which hypoxia-induced stromal autophagy leads to cancer growth.
Collapse
Affiliation(s)
- Bhaswati Sarcar
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, FL, USA
| | - Xinqun Li
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Jason B. Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, FL, USA
| |
Collapse
|
28
|
Koay EJ, Lee Y, Cristini V, Lowengrub JS, Kang Y, Lucas FAS, Hobbs BP, Ye R, Elganainy D, Almahariq M, Amer AM, Chatterjee D, Yan H, Park PC, Rios Perez MV, Li D, Garg N, Reiss KA, Yu S, Chauhan A, Zaid M, Nikzad N, Wolff RA, Javle M, Varadhachary GR, Shroff RT, Das P, Lee JE, Ferrari M, Maitra A, Taniguchi CM, Kim MP, Crane CH, Katz MH, Wang H, Bhosale P, Tamm EP, Fleming JB. A Visually Apparent and Quantifiable CT Imaging Feature Identifies Biophysical Subtypes of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2018; 24:5883-5894. [PMID: 30082477 PMCID: PMC6279613 DOI: 10.1158/1078-0432.ccr-17-3668] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/14/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous disease with variable presentations and natural histories of disease. We hypothesized that different morphologic characteristics of PDAC tumors on diagnostic computed tomography (CT) scans would reflect their underlying biology. EXPERIMENTAL DESIGN We developed a quantitative method to categorize the PDAC morphology on pretherapy CT scans from multiple datasets of patients with resectable and metastatic disease and correlated these patterns with clinical/pathologic measurements. We modeled macroscopic lesion growth computationally to test the effects of stroma on morphologic patterns, hypothesizing that the balance of proliferation and local migration rates of the cancer cells would determine tumor morphology. RESULTS In localized and metastatic PDAC, quantifying the change in enhancement on CT scans at the interface between tumor and parenchyma (delta) demonstrated that patients with conspicuous (high-delta) tumors had significantly less stroma, higher likelihood of multiple common pathway mutations, more mesenchymal features, higher likelihood of early distant metastasis, and shorter survival times compared with those with inconspicuous (low-delta) tumors. Pathologic measurements of stromal and mesenchymal features of the tumors supported the mathematical model's underlying theory for PDAC growth. CONCLUSIONS At baseline diagnosis, a visually striking and quantifiable CT imaging feature reflects the molecular and pathological heterogeneity of PDAC, and may be used to stratify patients into distinct subtypes. Moreover, growth patterns of PDAC may be described using physical principles, enabling new insights into diagnosis and treatment of this deadly disease.
Collapse
Affiliation(s)
- Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Yeonju Lee
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vittorio Cristini
- Center for Precision Biomedicine, The University of Texas Health Science Center, Houston, Texas
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John S Lowengrub
- Department of Mathematics, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
- Center for Complex Biological Systems, University of California, Irvine, California
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - F Anthony San Lucas
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian P Hobbs
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rong Ye
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dalia Elganainy
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Muayad Almahariq
- Deparment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
| | - Ahmed M Amer
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Deyali Chatterjee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huaming Yan
- Department of Mathematics, University of California, Irvine, California
| | - Peter C Park
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mayrim V Rios Perez
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dali Li
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naveen Garg
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kim A Reiss
- Department of Medical Oncology, The University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Shun Yu
- Department of Internal Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anil Chauhan
- Department of Radiology, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mohamed Zaid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Newsha Nikzad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gauri R Varadhachary
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rachna T Shroff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prajnan Das
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael P Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher H Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew H Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Priya Bhosale
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eric P Tamm
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
29
|
Cheng D, He Z, Zheng L, Xie D, Dong S, Zhang P. PRMT7 contributes to the metastasis phenotype in human non-small-cell lung cancer cells possibly through the interaction with HSPA5 and EEF2. Onco Targets Ther 2018; 11:4869-4876. [PMID: 30147338 PMCID: PMC6098420 DOI: 10.2147/ott.s166412] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Non-small-cell lung cancer (NSCLC) constitutes the leading cause of cancer death in humans. Previous studies revealed the essential role of the protein arginine methyltransferase 7 (PRMT7) in promoting metastasis in breast cancer. However, its function and potential mechanism in NSCLC remain unclear. Materials and methods The gene expression of PRMT7 between lung cancer tissues and normal tissues was studied with online database (http://medicalgenome.kribb.re.kr/GENT/). NSCLC cell lines with specific gene overexpression were constructed with lentivirus transduction. Matrigel invasion and colony formation assays were performed to evaluate the invasion and colony formation abilities. Co-immunoprecipitation coupled with mass spectrometry analysis was performed to explore the potential interaction proteins of PRMT7. Bioinformatic analysis was performed with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Results Online analysis of gene expression patterns revealed the relatively high expression of PRMT7 in lung cancer tissues. PRMT7 overexpression was able to promote the invasion and colony formation of A549 and SPC-A1 cells. A total of 19 in-common proteins shared by both NSCLC cell lines were identified to be interacting with PRMT7 and found to participate in a wide variety of pathways and protein–protein interactions according to bioinformatic analysis. Among them, HSPA5 and EEF2 were further investigated for their essential roles in PRMT7-promoted NSCLC cell invasion. Conclusion Our results suggested PRMT7 overexpression was able to promote metastasis in NSCLC possibly through the interaction with HSPA5 and EEF2, which provides the potential mechanism of oncogenesis in lung cancer.
Collapse
Affiliation(s)
- Dezhi Cheng
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China, .,Department of Thoracic Cardiovascular, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhifeng He
- Department of Thoracic Cardiovascular, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liangcheng Zheng
- Department of Thoracic Cardiovascular, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Deyao Xie
- Department of Thoracic Cardiovascular, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shangwen Dong
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Peng Zhang
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| |
Collapse
|
30
|
Wang YN, Lee HH, Chou CK, Yang WH, Wei Y, Chen CT, Yao J, Hsu JL, Zhu C, Ying H, Ye Y, Wang WJ, Lim SO, Xia W, Ko HW, Liu X, Liu CG, Wu X, Wang H, Li D, Prakash LR, Katz MH, Kang Y, Kim M, Fleming JB, Fogelman D, Javle M, Maitra A, Hung MC. Angiogenin/Ribonuclease 5 Is an EGFR Ligand and a Serum Biomarker for Erlotinib Sensitivity in Pancreatic Cancer. Cancer Cell 2018; 33:752-769.e8. [PMID: 29606349 PMCID: PMC5893359 DOI: 10.1016/j.ccell.2018.02.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/20/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022]
Abstract
Pancreatic ribonuclease (RNase) is a secreted enzyme critical for host defense. We discover an intrinsic RNase function, serving as a ligand for epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase (RTK), in pancreatic ductal adenocarcinoma (PDAC). The closely related bovine RNase A and human RNase 5 (angiogenin [ANG]) can trigger oncogenic transformation independently of their catalytic activities via direct association with EGFR. Notably, high plasma ANG level in PDAC patients is positively associated with response to EGFR inhibitor erlotinib treatment. These results identify a role of ANG as a serum biomarker that may be used to stratify patients for EGFR-targeted therapies, and offer insights into the ligand-receptor relationship between RNase and RTK families.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Wen-Hao Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Chun-Te Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Cihui Zhu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Jan Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Seung-Oe Lim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - How-Wen Ko
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Xiuping Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Laura R Prakash
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew H Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yaan Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Fogelman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
31
|
Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype. Oncogenesis 2018; 7:21. [PMID: 29472531 PMCID: PMC5833389 DOI: 10.1038/s41389-018-0032-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/05/2018] [Indexed: 11/10/2022] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, has attracted interest as a target for pharmacological intervention in malignant diseases. Here, we describe BI 853520, a novel ATP-competitive inhibitor distinguished by high potency and selectivity. In vitro, the compound inhibits FAK autophosphorylation in PC-3 prostate carcinoma cells with an IC50 of 1 nmol/L and blocks anchorage-independent proliferation of PC-3 cells with an EC50 of 3 nmol/L, whereas cells grown in conventional surface culture are 1000-fold less sensitive. In mice, the compound shows long half-life, high volume of distribution and high oral bioavailability; oral dosing of immunodeficient mice bearing subcutaneous PC-3 prostate adenocarcinoma xenografts resulted in rapid, long-lasting repression of FAK autophosphorylation in tumor tissue. Daily oral administration of BI 853520 to nude mice at doses of 50 mg/kg was well tolerated for prolonged periods of time. In a diverse panel of 16 subcutaneous adenocarcinoma xenograft models in nude mice, drug treatment resulted in a broad spectrum of outcomes, ranging from group median tumor growth inhibition values >100% and tumor regression in subsets of animals to complete lack of sensitivity. Biomarker analysis indicated that high sensitivity is linked to a mesenchymal tumor phenotype, initially defined by loss of E-cadherin expression and subsequently substantiated by gene set enrichment analysis. Further, we obtained microRNA expression profiles for 13 models and observed that hsa-miR-200c-3p expression is strongly correlated with efficacy (R2 = 0.889). BI 853520 is undergoing evaluation in early clinical trials.
Collapse
|
32
|
Roife D, Kang Y, Wang L, Fang B, Swisher SG, Gershenwald JE, Pretzsch S, Dinney CP, Katz MHG, Fleming JB. Generation of patient-derived xenografts from fine needle aspirates or core needle biopsy. Surgery 2017; 161:1246-1254. [PMID: 28081955 PMCID: PMC5404969 DOI: 10.1016/j.surg.2016.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/08/2016] [Accepted: 11/13/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Patient-derived xenografts have recently become a powerful tool for cancer research and may be used to guide personalized therapy. Thus far, patient-derived xenografts have been grown from tumor tissue obtained after operative resection; however, many cancer patients never undergo operative intervention for a variety of reasons. We hypothesized that xenograft tumors could be grown from smaller volumes of patient tissue, such as those obtained during diagnostic biopsies. METHODS Surgical specimens were obtained after resection of primary or metastatic lesions of the following cancers: pancreatic carcinoma, non-small cell lung cancer, bladder (urothelial) carcinoma, and melanoma. At least 10 cases of each cancer were included in this study. To mimic clinical biopsies, small fragments of the surgical specimens were biopsied with a 22-gauge needle, and the needle contents were injected subcutaneously in immunocompromised mice. The tumor fragment from which the biopsy was taken was also implanted subcutaneously in the contralateral side of the same mouse as a control. RESULTS Success rates of the traditional method of xenograft implantation ranged from 27.3%-70%. Success rates of the fine needle aspirate technique ranged from 0%-36.4%. An attempt to engraft a percutaneous core needle liver biopsy of a metastatic pancreatic adenocarcinoma also was successful. CONCLUSION We have found that it is possible to engraft fine needle aspirates and core biopsies of solid tumors in order to generate patient-derived xenografts. This may open up xenografting to a wider cancer patient population than previously possible.
Collapse
Affiliation(s)
- David Roife
- Department of General Surgery, The University of Texas Health Science Center at Houston, Houston, TX
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Li Wang
- Department of Thoracic Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Bingliang Fang
- Department of Thoracic Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Stephen G Swisher
- Department of Thoracic Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Shanna Pretzsch
- Department of Urology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Colin P Dinney
- Department of Urology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX.
| |
Collapse
|
33
|
Dai B, Roife D, Kang Y, Gumin J, Rios Perez MV, Li X, Pratt M, Brekken RA, Fueyo-Margareto J, Lang FF, Fleming JB. Preclinical Evaluation of Sequential Combination of Oncolytic Adenovirus Delta-24-RGD and Phosphatidylserine-Targeting Antibody in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2017; 16:662-670. [PMID: 28138026 DOI: 10.1158/1535-7163.mct-16-0526] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/01/2016] [Accepted: 12/15/2016] [Indexed: 12/24/2022]
Abstract
Delta-24-RGD (DNX-2401) is a conditional replication-competent oncolytic virus engineered to preferentially replicate in and lyse tumor cells with abnormality of p16/RB/E2F pathway. In a phase I clinical trial, Delta-24-RGD has shown favorable safety profile and promising clinical efficacy in brain tumor, which prompted us to evaluate its anticancer activity in pancreatic ductal adenocarcinoma (PDAC), which also has high frequency of homozygous deletion and promoter methylation of CDKN2A encoding the p16 protein. Our results demonstrate that Delta-24-RGD can induce dramatic cytotoxicity in a subset of PDAC cell lines with high cyclin D1 expression. Induction of autophagy and apoptosis by Delta-24-RGD in sensitive PDAC cells was confirmed with LC3B-GFP autophagy reporter and acridine orange staining as well as Western blotting analysis of LC3B-II expression. Notably, we found that Delta-24-RGD induced phosphatidylserine exposure in infected cells independent of cells' sensitivity to Delta-24-RGD, which renders a rationale for combination of Delta-24-RGD viral therapy and phosphatidylserine targeting antibody for PDAC. In a mouse PDAC model derived from a liver metastatic pancreatic cancer cell line, Delta-24-RGD significantly inhibited tumor growth compared with control (P < 0.001), and combination of phosphatidylserine targeting antibody 1N11 further enhanced its anticancer activity (P < 0.01) possibly through inducing synergistic anticancer immune responses. Given that these 2 agents are currently in clinical evaluation, our study warrants further clinical evaluation of this novel combination strategy in pancreatic cancer therapy. Mol Cancer Ther; 16(4); 662-70. ©2016 AACR.
Collapse
Affiliation(s)
- Bingbing Dai
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Roife
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mayrim V Rios Perez
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xinqun Li
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Pratt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas
| | - Juan Fueyo-Margareto
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
34
|
Sun L, Hu L, Cogdell D, Lu L, Gao C, Tian W, Zhang Z, Kang Y, Fleming JB, Zhang W. MIR506 induces autophagy-related cell death in pancreatic cancer cells by targeting the STAT3 pathway. Autophagy 2017; 13:703-714. [PMID: 28121485 DOI: 10.1080/15548627.2017.1280217] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and lethal cancer. The role of autophagy in the pathobiology of PDAC is intricate, with opposing functions manifested in different cellular contexts. MIR506 functions as a tumor suppressor in many cancer types through the regulation of multiple pathways. In this study, we hypothesized that MIR506 exerted a tumor suppression function in PDAC by inducing autophagy-related cell death. Our results provided evidence that downregulation of MIR506 expression was associated with disease progression in human PDAC. MIR506 triggered autophagic flux in PDAC cells, which led to autophagy-related cell death through direct targeting of the STAT3 (signal transducer and activator of transcription 3)-BCL2-BECN1 axis. Silencing and inhibiting STAT3 recapitulated the effects of MIR506, whereas forced expression of STAT3 abrogated the effects of MIR506. We propose that the apoptosis-inhibitory protein BCL2, which also inhibits induction of autophagy by blocking BECN1, was inhibited by MIR506 through targeting STAT3, thus augmenting BECN1 and promoting autophagy-related cell death. Silencing BECN1 and overexpression of BCL2 abrogated the effects of MIR506. These findings expand the known mechanisms of MIR506-mediated tumor suppression to activation of autophagy-related cell death and suggest a strategy for using MIR506 as an anti-STAT3 approach to PDAC treatment.
Collapse
Affiliation(s)
- Longhao Sun
- a Department of Cancer Biology , Comprehensive Cancer Center of Wake Forest Baptist Medical Center , Winston-Salem , NC , USA.,b Department of Pathology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,c Department of General Surgery , Tianjin Medical University General Hospital , Tianjin , China
| | - Limei Hu
- b Department of Pathology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - David Cogdell
- b Department of Pathology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Li Lu
- c Department of General Surgery , Tianjin Medical University General Hospital , Tianjin , China
| | - Chao Gao
- a Department of Cancer Biology , Comprehensive Cancer Center of Wake Forest Baptist Medical Center , Winston-Salem , NC , USA.,b Department of Pathology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Weijun Tian
- c Department of General Surgery , Tianjin Medical University General Hospital , Tianjin , China
| | - Zhixiang Zhang
- c Department of General Surgery , Tianjin Medical University General Hospital , Tianjin , China
| | - Ya'an Kang
- d Department of Surgical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jason B Fleming
- d Department of Surgical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Wei Zhang
- a Department of Cancer Biology , Comprehensive Cancer Center of Wake Forest Baptist Medical Center , Winston-Salem , NC , USA.,b Department of Pathology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
35
|
Beglyarova N, Banina E, Zhou Y, Mukhamadeeva R, Andrianov G, Bobrov E, Lysenko E, Skobeleva N, Gabitova L, Restifo D, Pressman M, Serebriiskii IG, Hoffman JP, Paz K, Behrens D, Khazak V, Jablonski SA, Golemis EA, Weiner LM, Astsaturov I. Screening of Conditionally Reprogrammed Patient-Derived Carcinoma Cells Identifies ERCC3-MYC Interactions as a Target in Pancreatic Cancer. Clin Cancer Res 2016; 22:6153-6163. [PMID: 27384421 PMCID: PMC5161635 DOI: 10.1158/1078-0432.ccr-16-0149] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/17/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Even when diagnosed prior to metastasis, pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with almost 90% lethality, emphasizing the need for new therapies optimally targeting the tumors of individual patients. EXPERIMENTAL DESIGN We first developed a panel of new physiologic models for study of PDAC, expanding surgical PDAC tumor samples in culture using short-term culture and conditional reprogramming with the Rho kinase inhibitor Y-27632, and creating matched patient-derived xenografts (PDX). These were evaluated for sensitivity to a large panel of clinical agents, and promising leads further evaluated mechanistically. RESULTS Only a small minority of tested agents was cytotoxic in minimally passaged PDAC cultures in vitro Drugs interfering with protein turnover and transcription were among most cytotoxic. Among transcriptional repressors, triptolide, a covalent inhibitor of ERCC3, was most consistently effective in vitro and in vivo causing prolonged complete regression in multiple PDX models resistant to standard PDAC therapies. Importantly, triptolide showed superior activity in MYC-amplified PDX models and elicited rapid and profound depletion of the oncoprotein MYC, a transcriptional regulator. Expression of ERCC3 and MYC was interdependent in PDACs, and acquired resistance to triptolide depended on elevated ERCC3 and MYC expression. The Cancer Genome Atlas analysis indicates ERCC3 expression predicts poor prognosis, particularly in CDKN2A-null, highly proliferative tumors. CONCLUSIONS This provides initial preclinical evidence for an essential role of MYC-ERCC3 interactions in PDAC, and suggests a new mechanistic approach for disruption of critical survival signaling in MYC-dependent cancers. Clin Cancer Res; 22(24); 6153-63. ©2016 AACR.
Collapse
Affiliation(s)
- Natalya Beglyarova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Eugenia Banina
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Grigorii Andrianov
- Department of Biochemistry, Kazan Federal University, Kazan, Russian Federation
| | - Egor Bobrov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Elena Lysenko
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Natalya Skobeleva
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Linara Gabitova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Diana Restifo
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Max Pressman
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ilya G Serebriiskii
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - John P Hoffman
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Keren Paz
- Champions Oncology, Baltimore, Maryland
| | - Diana Behrens
- EPO Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | | | - Sandra A Jablonski
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Louis M Weiner
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Igor Astsaturov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
36
|
Wang Y, Hsu JM, Kang Y, Wei Y, Lee PC, Chang SJ, Hsu YH, Hsu JL, Wang HL, Chang WC, Li CW, Liao HW, Chang SS, Xia W, Ko HW, Chou CK, Fleming JB, Wang H, Hwang RF, Chen Y, Qin J, Hung MC. Oncogenic Functions of Gli1 in Pancreatic Adenocarcinoma Are Supported by Its PRMT1-Mediated Methylation. Cancer Res 2016; 76:7049-7058. [PMID: 27758883 PMCID: PMC5135656 DOI: 10.1158/0008-5472.can-16-0715] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022]
Abstract
The oncogenic transcription factor Gli1 is a critical effector in the Hedgehog (Hh) pathway, which is necessary for the development and progression of pancreatic ductal adenocarcinoma (PDAC). Although TGFβ and K-Ras are known regulators of Gli1 gene transcription in this setting, it is not understood how Gli1 functional activity is regulated. Here, we report the identification of Gli1 as a substrate for the protein arginine N-methyltransferase PRMT1 in PDAC. We found that PRMT1 methylates Gli1 at R597, promoting its transcriptional activity by enhancing the binding of Gli1 to its target gene promoters. Interruption of Gli1 methylation attenuates oncogenic functions of Gli1 and sensitizes PDAC cells to gemcitabine treatment. In human PDAC specimens, the levels of both total Gli1 and methylated Gli1 were correlated positively with PRMT1 protein levels. Notably, PRMT1 regulated Gli1 independently of the canonical Hh pathway as well as the TGFβ/Kras-mediated noncanonical Hh pathway, thereby signifying a novel regulatory mechanism for Gli1 transcriptional activity. Taken together, our results identified a new posttranslational modification of Gli1 that underlies its pivotal oncogenic functions in PDAC. Cancer Res; 76(23); 7049-58. ©2016 AACR.
Collapse
Affiliation(s)
- Yan Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jung-Mao Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pei-Chih Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shing-Jyh Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Yi-Hsin Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hung-Ling Wang
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hsin-Wei Liao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Shih-Shin Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - How-Wen Ko
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rosa F Hwang
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yue Chen
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Jun Qin
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
37
|
Roland CL, Starker LF, Kang Y, Chatterjee D, Estrella J, Rashid A, Katz MH, Aloia TA, Lee JE, Dasari A, Yao JC, Fleming JB. Loss of DPC4/SMAD4 expression in primary gastrointestinal neuroendocrine tumors is associated with cancer-related death after resection. Surgery 2016; 161:753-759. [PMID: 27816207 DOI: 10.1016/j.surg.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Gastrointestinal neuroendocrine tumors have frequent loss of DPC4/SMAD4 expression, a known tumor suppressor. The impact of SMAD4 loss on gastrointestinal neuroendocrine tumors aggressiveness or cancer-related patient outcomes is not defined. We examined the expression of SMAD4 in resected gastrointestinal neuroendocrine tumors and its impact on oncologic outcomes. METHODS Patients who underwent complete curative operative resection of gastrointestinal neuroendocrine tumors were identified retrospectively (n = 38). Immunohistochemical staining for SMAD4 expression was scored by a blinded pathologist and correlated with clinicopathologic features and oncologic outcomes. RESULTS Twenty-nine percent of the gastrointestinal neuroendocrine tumors were SMAD4-negative and 71% SMAD4-positive. Median overall survival was 155 months (95% confidence interval, 102-208 months). Loss of SMAD4 was associated with both decreased median disease-free survival (28 months; 95% confidence interval, 16-40) months compared with 223 months (95% confidence interval, 3-443 months) for SMAD4-positive patients (P = .03) and decreased median disease-specific survival (SMAD4: 137 [95% confidence interval, 81-194] months versus SMAD4-positive: 204 [95% confidence interval, 143-264] months; P = .04). This translated into a decrease in median overall survival (SMAD4-negative: 125 (95% confidence interval, 51-214) months versus SMAD4-positive: 185 (95% confidence interval, 138-232) months; P = .02). CONCLUSION Consistent with the known biology of the DPC4/SMAD4 gene, an absence of its protein expression in primary gastrointestinal neuroendocrine tumors was negatively associated with outcomes after curative operative resection.
Collapse
Affiliation(s)
- Christina L Roland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lee F Starker
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Y Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Deyali Chatterjee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeannelyn Estrella
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Matthew H Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Thomas A Aloia
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - James C Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
38
|
Gao S, Sun Y, Zhang X, Hu L, Liu Y, Chua CY, Phillips LM, Ren H, Fleming JB, Wang H, Chiao PJ, Hao J, Zhang W. IGFBP2 Activates the NF-κB Pathway to Drive Epithelial-Mesenchymal Transition and Invasive Character in Pancreatic Ductal Adenocarcinoma. Cancer Res 2016; 76:6543-6554. [PMID: 27659045 DOI: 10.1158/0008-5472.can-16-0438] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 08/27/2016] [Accepted: 09/12/2016] [Indexed: 12/31/2022]
Abstract
The molecular basis underlying the particularly aggressive nature of pancreatic ductal adenocarcinoma (PDAC) still remains unclear. Here we report evidence that the insulin-like growth factor-binding protein IGFBP2 acts as a potent oncogene to drive its extremely malignant character. We found that elevated IGFBP2 expression in primary tumors was associated with lymph node metastasis and shorter survival in patients with PDAC. Enforced expression of IGFBP2 promoted invasion and metastasis of PDAC cells in vitro and in vivo by inducing NF-κB-dependent epithelial-mesenchymal transition (EMT). Mechanistic investigations revealed that IGFBP2 induced the nuclear translocation and phosphorylation of the p65 NF-κB subunit through the PI3K/Akt/IKKβ pathway. Conversely, enforced expression of PTEN blunted this signaling pathway and restored an epithelial phenotype to PDAC cells in the presence of overexpressed IGFBP2. Overall, our results identify IGFBP2 as a pivotal regulator of an EMT axis in PDAC, the activation of which is sufficient to confer the characteristically aggressive clinical features of this disease. Cancer Res; 76(22); 6543-54. ©2016 AACR.
Collapse
Affiliation(s)
- Song Gao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Limei Hu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuexin Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Corrine Yingxuan Chua
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lynette M Phillips
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - He Ren
- Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jihui Hao
- Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China.
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| |
Collapse
|
39
|
Kang Y, Roife D, Lee Y, Lv H, Suzuki R, Ling J, Rios Perez MV, Li X, Dai B, Pratt M, Truty MJ, Chatterjee D, Wang H, Thomas RM, Wang Y, Koay EJ, Chiao PJ, Katz MH, Fleming JB. Transforming Growth Factor-β Limits Secretion of Lumican by Activated Stellate Cells within Primary Pancreatic Adenocarcinoma Tumors. Clin Cancer Res 2016; 22:4934-4946. [PMID: 27126993 DOI: 10.1158/1078-0432.ccr-15-2780] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/07/2016] [Indexed: 01/14/2023]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is lethal cancer whose primary tumor is characterized by dense composition of cancer cells, stromal cells, and extracellular matrix (ECM) composed largely of collagen. Within the PDAC tumor microenvironment, activated pancreatic stellate cells (PSC) are the dominant stromal cell type and responsible for collagen deposition. Lumican is a secreted proteoglycan that regulates collagen fibril assembly. We have previously identified that the presence of lumican in the ECM surrounding PDAC cells is associated with improved patient outcome after multimodal therapy and surgical removal of localized PDAC. EXPERIMENTAL DESIGN Lumican expression in PDAC from 27 patients was determined by IHC and quantitatively analyzed for colocalization with PSCs. In vitro studies examined the molecular mechanisms of lumican transcription and secretion from PSCs (HPSCs and HPaSteC), and cell adhesion and migration assays examined the effect of lumican on PSCs in a collagen-rich environment. RESULTS Here we identify PSCs as a significant source of extracellular lumican production through quantitative IHC analysis. We demonstrate that the cytokine, TGF-β, negatively regulates lumican gene transcription within HPSCs through its canonical signaling pathway and binding of SMAD4 to novel SBEs identified within the promoter region. In addition, we found that the ability of HPSCs to produce and secrete extracellular lumican significantly enhances HPSCs adhesion and mobility on collagen. CONCLUSIONS Our results demonstrate that activated pancreatic stellate cells within PDAC secrete lumican under the negative control of TGF-β; once secreted, the extracellular lumican enhances stellate cell adhesion and mobility in a collagen-rich environment. Clin Cancer Res; 22(19); 4934-46. ©2016 AACR.
Collapse
Affiliation(s)
- Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Roife
- Department of General Surgery, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Yeonju Lee
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hailong Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Xinjiang, China
| | - Rei Suzuki
- Department of Gastroenterology and Rheumatology, The Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Jianhua Ling
- Department of Molecular and Cellular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mayrim V Rios Perez
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xinqun Li
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - BingBing Dai
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Pratt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Deyali Chatterjee
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ryan M Thomas
- Department of General Surgery, The University of Florida College of Medicine, Gainesville, Florida
| | - Yu Wang
- Neurodiagnostics Laboratory, The University of Texas Medical Branch, Galveston, Texas
| | - Eugene J Koay
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul J Chiao
- Department of Molecular and Cellular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew H Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
40
|
Pham K, Delitto D, Knowlton AE, Hartlage ER, Madhavan R, Gonzalo DH, Thomas RM, Behrns KE, George TJ, Hughes SJ, Wallet SM, Liu C, Trevino JG. Isolation of Pancreatic Cancer Cells from a Patient-Derived Xenograft Model Allows for Practical Expansion and Preserved Heterogeneity in Culture. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1537-46. [PMID: 27102771 DOI: 10.1016/j.ajpath.2016.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 01/18/2023]
Abstract
Commercially available, highly passaged pancreatic cancer (PC) cell lines are of limited translational value. Attempts to overcome this limitation have primarily consisted of cancer cell isolation and culture directly from human PC specimens. However, these techniques are associated with exceedingly low success rates. Here, we demonstrate a highly reproducible culture of primary PC cell lines (PPCLs) from patient-derived xenografts, which preserve, in part, the intratumoral heterogeneity known to exist in PC. PPCL expansion from patient-derived xenografts was successful in 100% of attempts (5 of 5). Phenotypic analysis was evaluated with flow cytometry, immunofluorescence microscopy, and short tandem repeat profiling. Importantly, tumorigenicity of PPCLs expanded from patient-derived xenografts was assessed by subcutaneous injection into nonobese diabeteic.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ mice. Morphologically, subcutaneous injection of all PPCLs into mice yielded tumors with similar characteristics to the parent xenograft. PPCLs uniformly expressed class I human leukocyte antigen, epithelial cell adhesion molecule, and cytokeratin-19. Heterogeneity within each PPCL persisted in culture for the frequency of cells expressing the cancer stem cell markers CD44, CD133, and c-Met and the immunologic markers human leukocyte antigen class II and programmed death ligand 1. This work therefore presents a reliable method for the rapid expansion of primary human PC cells and, thereby, provides a platform for translational investigation and, importantly, potential personalized therapeutic approaches.
Collapse
Affiliation(s)
- Kien Pham
- Department of Pathology, Immunology, Laboratory Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Daniel Delitto
- Department of Surgery, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Andrea E Knowlton
- Department of Oral Biology, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Emily R Hartlage
- Department of Oral Biology, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Ricky Madhavan
- Department of Pathology, Immunology, Laboratory Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - David H Gonzalo
- Department of Pathology, Immunology, Laboratory Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Ryan M Thomas
- Department of Surgery, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Kevin E Behrns
- Department of Surgery, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Thomas J George
- Department of Internal Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Steven J Hughes
- Department of Surgery, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Shannon M Wallet
- Department of Internal Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Chen Liu
- Department of Pathology, Immunology, Laboratory Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida.
| | - Jose G Trevino
- Department of Surgery, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida.
| |
Collapse
|
41
|
Lai ZW, Bolm L, Fuellgraf H, Biniossek ML, Makowiec F, Hopt UT, Werner M, Keck T, Bausch D, Sorio C, Scarpa A, Schilling O, Bronsert P, Wellner UF. Characterization of various cell lines from different ampullary cancer subtypes and cancer associated fibroblast-mediated responses. BMC Cancer 2016; 16:195. [PMID: 26951071 PMCID: PMC4782372 DOI: 10.1186/s12885-016-2193-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
Background Ampullary cancer is a relatively rare form of cancer and usually treated by pancreatoduodenectomy, followed by adjuvant therapy. The intestinal subtype is associated with markedly improved prognosis after resection. At present, only few cell lines are available for in vitro studies of ampullary cancer and they have not been collectively characterized. Methods We characterize five ampullary cancer cell lines by subtype maker expression, epithelial-mesenchymal transition (EMT) features, growth and invasion, drug sensitivity and response to cancer-associated fibroblast conditioned medium (CAF-CM). Results On the basis of EMT features, subtype marker expression, growth, invasion and drug sensitivity three types of cell lines could be distinguished: mesenchymal-like, pancreatobiliary-like and intestinal-like. Heterogeneous effects from the cell lines in response to CAF-CM, such as different growth rates, induction of EMT markers as well as suppression of intestinal differentiation markers were observed. In addition, proteomic analysis showed a clear difference in intestinal-like cell line from other cell lines. Conclusion Most of the available AMPAC cell lines seem to reflect a poorly differentiated pancreatobiliary or mesenchymal-like phenotype, which is consistent to their origin. We suggest that the most appropriate cell line model for intestinal-like AMPAC is the SNU869, while others seem to reflect aggressive AMPAC subtypes. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2193-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zon Weng Lai
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Louisa Bolm
- Clinic for Surgery, UKSH Campus Lübeck, Lübeck, Germany
| | - Hannah Fuellgraf
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Frank Makowiec
- Clinic for General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Ulrich Theodor Hopt
- Clinic for General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany.,Klinik für Chirurgie, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Martin Werner
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany.,Comprehensive Cancer Center Freiburg, Freiburg, Germany
| | - Tobias Keck
- Clinic for Surgery, UKSH Campus Lübeck, Lübeck, Germany
| | - Dirk Bausch
- Clinic for Surgery, UKSH Campus Lübeck, Lübeck, Germany
| | - Claudio Sorio
- Dipartimento di Patologia, Universita di Verona, Verona, Italy
| | - Aldo Scarpa
- Dipartimento di Patologia, Universita di Verona, Verona, Italy
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany. .,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany.
| | - Peter Bronsert
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany.,Comprehensive Cancer Center Freiburg, Freiburg, Germany
| | - Ulrich Friedrich Wellner
- Clinic for Surgery, UKSH Campus Lübeck, Lübeck, Germany.,Comprehensive Cancer Center Freiburg, Freiburg, Germany.,Klinik für Chirurgie, Ratzeburger Allee 160, 23562, Lübeck, Germany
| |
Collapse
|
42
|
Murphy SJ, Hart SN, Halling GC, Johnson SH, Smadbeck JB, Drucker T, Lima JF, Rohakhtar FR, Harris FR, Kosari F, Subramanian S, Petersen GM, Wiltshire TD, Kipp BR, Truty MJ, McWilliams RR, Couch FJ, Vasmatzis G. Integrated Genomic Analysis of Pancreatic Ductal Adenocarcinomas Reveals Genomic Rearrangement Events as Significant Drivers of Disease. Cancer Res 2015; 76:749-61. [PMID: 26676757 DOI: 10.1158/0008-5472.can-15-2198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/20/2015] [Indexed: 02/07/2023]
Abstract
Many somatic mutations have been detected in pancreatic ductal adenocarcinoma (PDAC), leading to the identification of some key drivers of disease progression, but the involvement of large genomic rearrangements has often been overlooked. In this study, we performed mate pair sequencing (MPseq) on genomic DNA from 24 PDAC tumors, including 15 laser-captured microdissected PDAC and 9 patient-derived xenografts, to identify genome-wide rearrangements. Large genomic rearrangements with intragenic breakpoints altering key regulatory genes involved in PDAC progression were detected in all tumors. SMAD4, ZNF521, and FHIT were among the most frequently hit genes. Conversely, commonly reported genes with copy number gains, including MYC and GATA6, were frequently observed in the absence of direct intragenic breakpoints, suggesting a requirement for sustaining oncogenic function during PDAC progression. Integration of data from MPseq, exome sequencing, and transcriptome analysis of primary PDAC cases identified limited overlap in genes affected by both rearrangements and point mutations. However, significant overlap was observed in major PDAC-associated signaling pathways, with all PDAC exhibiting reduced SMAD4 expression, reduced SMAD-dependent TGFβ signaling, and increased WNT and Hedgehog signaling. The frequent loss of SMAD4 and FHIT due to genomic rearrangements strongly implicates these genes as key drivers of PDAC, thus highlighting the strengths of an integrated genomic and transcriptomic approach for identifying mechanisms underlying disease initiation and progression.
Collapse
Affiliation(s)
- Stephen J Murphy
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Steven N Hart
- Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Geoffrey C Halling
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sarah H Johnson
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - James B Smadbeck
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Travis Drucker
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota
| | - Joema Felipe Lima
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota
| | | | - Faye R Harris
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Farhad Kosari
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | | | | | - Timothy D Wiltshire
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Fergus J Couch
- Health Sciences Research, Mayo Clinic, Rochester, Minnesota. Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| | - George Vasmatzis
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|