1
|
Nakagawa T, Honda T, Inagaki S, Yuasa T, Tourtas T, Schlötzer-Schrehardt U, Kruse F, Aouimeur I, Vaitinadapoule H, Travers G, He Z, Gain P, Koizumi N, Thuret G, Okumura N. Involvement of TGF-β signaling pathway-associated genes in the corneal endothelium of patients with Fuchs endothelial corneal dystrophy. Exp Eye Res 2025; 255:110334. [PMID: 40081749 DOI: 10.1016/j.exer.2025.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This study investigated the involvement of TGF-β signaling pathway-associated genes in the pathogenesis of Fuchs endothelial corneal dystrophy (FECD). The RNA-sequencing analysis of corneal endothelial cells (CECs) from FECD patients revealed significant alterations in multiple TGF-β superfamily genes, with 9 genes upregulated (including BMP6, GDF5, and TGF-β2) and 10 genes downregulated (including BMP2, NOG, and INHBA) compared to controls. Quantitative PCR validation confirmed the elevated expression of GDF5 (3.35-fold in non-expanded and 7.66-fold in expanded TCF4), TGF-β2 (6.17-fold and 11.5-fold), and TGF-β1 (1.78-fold and 1.58-fold) in FECD patients with and without TCF4 trinucleotide repeat expansion. Ex-vivo experiments using donor corneas demonstrated that TGF-β2 stimulation significantly increased the expression of extracellular matrix (ECM) components associated with guttae formation, including fibronectin, types I and VI collagens, and other matrix proteins. Immunofluorescence confirmed increased fibronectin protein expression in the corneal endothelium following TGF-β1 or TGF-β2 treatment. This study provides the first comprehensive analysis of TGF-β superfamily involvement in FECD and suggests that GDF5, found to be upregulated in FECD, may contribute to the disease process. These findings further indicate that dysregulation of TGF-β signaling pathways drives the characteristic ECM accumulation in FECD, potentially offering new therapeutic targets for this progressive corneal disease involving fibrosis-related alterations. Future research is warranted to clarify GDF5's specific role and mechanistic impact on FECD pathogenesis.
Collapse
Affiliation(s)
- Tatsuya Nakagawa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Tetsuro Honda
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Soichiro Inagaki
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Taichi Yuasa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Theofilos Tourtas
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Friedrich Kruse
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ines Aouimeur
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Hanielle Vaitinadapoule
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Gauthier Travers
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Zhiguo He
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Philippe Gain
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France; Ophthalmology Department, University Hospital, Saint-Etienne, France
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Gilles Thuret
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France; Ophthalmology Department, University Hospital, Saint-Etienne, France.
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.
| |
Collapse
|
2
|
Inagaki S, Yuasa T, Tourtas T, Schlötzer-Schrehardt U, Kruse F, Koizumi N, Okumura N. TCF4 expansion-associated loss of FN1 intron retention drives extracellular matrix accumulation in Fuchs endothelial corneal dystrophy. Exp Eye Res 2025; 255:110398. [PMID: 40268158 DOI: 10.1016/j.exer.2025.110398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025]
Abstract
Fuchs endothelial corneal dystrophy (FECD), which is characterized by excessive extracellular matrix (ECM) accumulation and corneal endothelial cell degeneration, has trinucleotide repeat expansion in TCF4 as a major genetic risk factor. While aberrant splicing has been implicated in FECD pathogenesis, the mechanistic link between splicing abnormalities and disease-specific features remains unclear. Here, we investigated the intron retention (IR) patterns in corneal endothelial cells from FECD patients with TCF4 expansion. Initial RNA-Seq analysis using rMATS identified 486 upregulated and 89 downregulated IR events in expansion-positive FECD compared to controls. Subsequent analysis with the more stringent IRFinder algorithm revealed 10 upregulated IR events distributed across nine genes and, notably, 6 downregulated events exclusively localized within FN1, a major component of corneal guttae. While DEXSeq analysis showed reduced expression across FN1 gene regions in FECD samples, subsequent qPCR validation in an independent cohort demonstrated significantly elevated FN1 expression in both expansion-positive and expansion-negative FECD samples compared to controls. This paradoxical finding suggests that the loss of normal IR-mediated regulation may contribute to pathological FN1 overexpression in FECD. Gene ontology analysis of IR-associated genes revealed enrichment in RNA splicing and ECM-related pathways, supporting a role for IR in disease pathogenesis. Our findings reveal an association between TCF4 expansion and reduced FN1 intron retention, which correlates with ECM accumulation, suggesting a potential link between RNA processing alterations and hallmark features of FECD. These results suggest that targeting IR-mediated regulation could represent a therapeutic strategy for preventing disease progression.
Collapse
Affiliation(s)
- Soichiro Inagaki
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Taichi Yuasa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Theofilos Tourtas
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Friedrich Kruse
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.
| |
Collapse
|
3
|
Chen L, Li S, Fu Y. MicroRNAs in Corneal Diseases: Emerging Roles as Biomarkers, Regulators, and Therapeutics. Ocul Surf 2025:S1542-0124(25)00068-0. [PMID: 40412549 DOI: 10.1016/j.jtos.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/29/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
MicroRNAs (miRNAs) are conserved, short, non-coding RNAs that play a crucial role in regulating gene expression. Emerging evidence suggests that miRNAs are closely involved in the pathophysiology of various corneal diseases, particularly in regulating corneal wound healing, inflammation and neovascularization. In this review, we summarized the recent progress of miRNAs in corneal diseases, especially focused on their application as diagnostic biomarkers, regulators of cell biology, and therapeutic targets. Recent advances in miRNA detection technology have made it possible to analyze minimal miRNAs in samples such as tears or exosomes, further enhancing the ability to identify disease-specific miRNA profiles and providing potential objective indicators for the early diagnosis of disease. Meanwhile, we summarized the mechanisms and pathways of multiple miRNAs in regulating various biological processes of corneal cells, as well as the advantages of studying miRNA compared to proteins or genes. Furthermore, we explore the potential of miRNAs-based therapies, especially introduce various miRNA delivery systems and challenges associated with clinical translation. This review highlights the need for further research to harness the full potential of miRNAs in treating various corneal diseases.
Collapse
Affiliation(s)
- Liangbo Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospill, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 200011 Shanghai, China
| | - Shiding Li
- Department of Ophthalmology, Shanghai Ninth People's Hospill, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 200011 Shanghai, China
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospill, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 200011 Shanghai, China.
| |
Collapse
|
4
|
Pan Q, Ge X, Wang D, He Y. DNA methylation modification: Dawn of research on cornea-related diseases. Life Sci 2025; 376:123757. [PMID: 40412607 DOI: 10.1016/j.lfs.2025.123757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 05/19/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
DNA methylation is a significant form of epigenetic modification that plays a crucial role in the occurrence and progression of diseases by regulating gene expression. Recent advancements in our understanding of DNA methylation have demonstrated its involvement in corneal damage repair and various corneal diseases. This article reviews the mechanisms and effects of DNA methylation modifications in corneal injury repair, keratoconus, corneal dystrophy, keratitis, and other related conditions. The aim is to enhance our understanding of the vital role of DNA methylation in the pathogenesis of corneal injuries and the development of cornea-related diseases. The phenomenon of DNA methylation in these conditions may offer new ideas and insights for therapeutic approaches.
Collapse
Affiliation(s)
- Quanhao Pan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | - Xiaoning Ge
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | - Di Wang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | - Yuxi He
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| |
Collapse
|
5
|
Sharma S, Basak SK, Das S, Alone DP. Characterisation of the role played by ELMO1, GPR141 and the intergenic polymorphism rs918980 in Fuchs' dystrophy in the Indian population. FEBS Open Bio 2025; 15:822-835. [PMID: 39967558 PMCID: PMC12051025 DOI: 10.1002/2211-5463.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/24/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Fuchs' endothelial corneal dystrophy (FECD) is the most common type of primary corneal dystrophy and can result in corneal transplantation. Here, we investigated the genetic association of SNP rs918980 (A>G) with FECD and the role of its surrounding genes ELMO1 and GPR141. First, 128 patients and 379 controls were genotyped by Sanger sequencing. Our results show that rs918980 is significantly associated with FECD in the Indian population. Furthermore, in silico analysis suggested that rs918980 and its surrounding 150 bp region could regulate the transcriptional activities of nearby genes. Thus, we assessed whether ELMO1 and GPR141 were differentially expressed in FECD patients and in the corneal tissue of a UVA-induced FECD mice model. Both genes were significantly upregulated and western blots studies concluded that protein levels of ELMO1 and GPR141 were also higher in the corneal endothelium of the UVA-exposed eye compared to the control eye. Taken together, our results suggest that ELMO1 and GPR141 might play a significant role in FECD progression. However, further studies are required to better characterize the possible role of rs918980 and its nearby region in the regulation of ELMO1 and GPR141.
Collapse
Affiliation(s)
- Susmita Sharma
- School of Biological SciencesNational Institute of Science Education and Research (NISER) BhubaneswarKhurdaIndia
- Homi Bhabha National Institute (HBNI)MumbaiIndia
| | | | | | - Debasmita Pankaj Alone
- School of Biological SciencesNational Institute of Science Education and Research (NISER) BhubaneswarKhurdaIndia
- Homi Bhabha National Institute (HBNI)MumbaiIndia
| |
Collapse
|
6
|
Oka I, Toyokawa Y, Imai K, Nakagawa T, Tourtas T, Schlötzer-Schrehardt U, Kruse F, Koizumi N, Okumura N. A feasibility of computational drug screening for Fuchs endothelial corneal dystrophy. Sci Rep 2025; 15:14665. [PMID: 40287480 PMCID: PMC12033358 DOI: 10.1038/s41598-025-95003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) remains a leading cause of corneal blindness globally, with corneal transplantation being the primary treatment. FECD is characterized by the formation of guttae, extracellular matrix (ECM) deposits beneath the corneal endothelium, and progressive endothelial cell loss. These pathological changes cause visual deterioration through light scattering by guttae and corneal edema due to endothelial cell loss. However, limitations such as donor shortage and graft failure necessitate alternative therapeutic approaches. We employed computational drug screening using three platforms (L1000FWD, L1000CDS2, and SigCom LINCS) to identify compounds capable of normalizing FECD-associated differentially expressed genes (DEGs). Analysis of transcriptome data from FECD patients with TCF4trinucleotide repeat expansion identified 706 upregulated and 962 downregulated genes. The screening platforms identified 200, 35, and 76 compounds through L1000FWD, L1000CDS2, and SigCom LINCS, respectively, with five compounds commonly predicted across all platforms. Among these, LDN193189 and cercosporin were selected for further evaluation based on availability and lack of cytotoxicity. Both compounds significantly decreased the expression of ECM-related genes (FN1, MATN3, BGN, and LTBP2) in FECD cell models and suppressed TGF-β-induced fibronectin expression. Additionally, both compounds reduced aggresome formation to normal control levels, suggesting protection against endoplasmic reticulum stress-induced cell death. This study demonstrates the feasibility of computational drug screening for identifying therapeutic candidates for FECD, with LDN193189 and cercosporin showing promise in normalizing FECD-associated pathological changes.
Collapse
Affiliation(s)
- Itsuki Oka
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Yoshiaki Toyokawa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Kouta Imai
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Tatsuya Nakagawa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Theofilos Tourtas
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Friedrich Kruse
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan.
| |
Collapse
|
7
|
Ito S, Oyama Y, Yuasa T, Amano K, Onishi K, Izumi A, Jun AS, Ikawa M, Koizumi N, Okumura N. Heterozygous Tcf4 Deficiency Mitigates Fuchs Endothelial Corneal Dystrophy Progression in a Mouse Model. Invest Ophthalmol Vis Sci 2025; 66:19. [PMID: 40197778 PMCID: PMC11984510 DOI: 10.1167/iovs.66.4.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
Purpose The purpose of this study was to use Col8a2Q455K/Q455K mice, an established Fuchs endothelial corneal dystrophy (FECD) model, to investigate whether heterozygous knockout of Tcf4 expression could ameliorate the progression of FECD. Methods Tcf4 heterozygous knockout mice were generated using CRISPR/Cas9-mediated deletion of exons 2 and 3. These mice were crossed with Col8a2Q455K/Q455K mice to obtain Col8a2Q455K/Q455K/Tcf4± mice. Differential gene expression profiles in corneal endothelial cells of Col8a2Q455K/Q455K/Tcf4± and Col8a2Q455K/Q455K mice were then examined using RNA sequencing. Guttae formation and corneal endothelial cell density were assessed using contact specular microscopy. Expression of extracellular matrix (ECM) components was evaluated by qPCR and immunofluorescence analysis. Results RNA-Seq analysis revealed 1053 differentially expressed genes between the Col8a2Q455K/Q455K/Tcf4± and the Col8a2Q455K/Q455K mice, with significant enrichment in ion channel-related pathways and downregulation of TNF-associated signaling pathways. Contact specular microscopy in 28-week-old mice demonstrated that guttae formation was significantly lower in the Col8a2Q455K/Q455K/Tcf4± mice than in the Col8a2Q455K/Q455K mice (0.71 ± 0.77% vs. 1.87 ± 1.43%, P < 0.001), whereas the corneal endothelial cell density was higher (1819 ± 170 vs. 1521 ± 292 cells/mm², P < 0.001). ECM components-particularly fibronectin and type I collagen, which are major constituents of guttae-were significantly decreased in the Col8a2Q455K/Q455K/Tcf4± mice. Conclusions Heterozygous knockout of Tcf4 significantly suppressed the progression of the FECD phenotype, including guttae formation and endothelial cell loss, in the FECD mouse model. These findings provide in vivo support for TCF4 as a potential therapeutic target for FECD treatment.
Collapse
Affiliation(s)
- Suguru Ito
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Yuki Oyama
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Taichi Yuasa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Koki Amano
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Kotaro Onishi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | | | - Albert S. Jun
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Masahito Ikawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
8
|
Sun F, Xi LWQ, Luu W, Enkhbat M, Neo D, Mehta JS, Peh GSL, Yim EKF. Preclinical Models for Studying Fuchs Endothelial Corneal Dystrophy. Cells 2025; 14:505. [PMID: 40214459 PMCID: PMC11988011 DOI: 10.3390/cells14070505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Fuchs Endothelial Corneal Dystrophy (FECD) is a corneal endothelial disease that causes microenvironment alterations and endothelial cell loss, which leads to vision impairment. It has a high global prevalence, especially in elderly populations. FECD is also one of the leading indications of corneal transplantation globally. Currently, there is no clearly defined canonical pathway for this disease, and it has been proposed that the combinatorial effects of genetic mutations and exogenous factors cause FECD. Clinical studies and observations have provided valuable knowledge and understanding of FECD, while preclinical studies are essential for gaining insights into disease progression and mechanisms for the development and testing of regenerative medicine therapies. In this review, we first introduce the proposed genetic and molecular pathologies of FECD. Notably, we discuss the impact of abnormal extracellular matrix deposition (guttata), endothelial-to-mesenchymal transition, cell senescence, and oxidative stress on the pathology and etiology of FECD. We review and summarize the in vitro cell models, ex vivo tissues, and in vivo animal models used to study FECD. The benefits and challenges of each model are also discussed.
Collapse
Affiliation(s)
- Fancheng Sun
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON NL2 3G1, Canada; (F.S.); (L.W.Q.X.); (W.L.); (M.E.)
| | - Lexie W. Q. Xi
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON NL2 3G1, Canada; (F.S.); (L.W.Q.X.); (W.L.); (M.E.)
| | - Wesley Luu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON NL2 3G1, Canada; (F.S.); (L.W.Q.X.); (W.L.); (M.E.)
| | - Myagmartsend Enkhbat
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON NL2 3G1, Canada; (F.S.); (L.W.Q.X.); (W.L.); (M.E.)
| | - Dawn Neo
- Singapore Eye Research Institute, Singapore 169856, Singapore; (D.N.); (J.S.M.)
| | - Jodhbir S. Mehta
- Singapore Eye Research Institute, Singapore 169856, Singapore; (D.N.); (J.S.M.)
- Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Gary S. L. Peh
- Singapore Eye Research Institute, Singapore 169856, Singapore; (D.N.); (J.S.M.)
| | - Evelyn K. F. Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON NL2 3G1, Canada; (F.S.); (L.W.Q.X.); (W.L.); (M.E.)
- Centre for Biotechnology and Bioengineering, University of Waterloo, Waterloo, ON NL2 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON NL2 3G1, Canada
| |
Collapse
|
9
|
Fujimoto S, Endo M, Tonomura S, Tsuji F, Haraguchi H, Hasegawa K, Numao T, Izumi A, Tourtas T, Schlötzer-Schrehardt U, Kruse F, Oyama Y, Ikawa M, Jun AS, Koizumi N, Okumura N. Therapeutic Potential of Emricasan, a Pan-Caspase Inhibitor, in Reducing Cell Death and Extracellular Matrix Accumulation in Fuchs Endothelial Corneal Dystrophy. Cells 2025; 14:498. [PMID: 40214452 PMCID: PMC11988121 DOI: 10.3390/cells14070498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a progressive disorder characterized by endothelial cell loss and excessive extracellular matrix (ECM) accumulation leading to corneal dysfunction. Emricasan, a pan-caspase inhibitor, was investigated for its therapeutic potential in suppressing these pathological changes. Patient-derived FECD cells and stress-induced cell models were treated with emricasan to assess its effects on apoptosis and ECM production. Caspase-specific knockdown experiments were performed to identify key mediators. Col8a2Q455K/Q455K mice, model mice of early-onset FECD, received twice-daily administration of 0.1% emricasan eye drops from 8 to 28 weeks of age. Endothelial cell density, hexagonality, cell size variation, and guttae area were evaluated by contact specular microscopy, while transcriptomic changes were analyzed via RNA sequencing. Emricasan effectively reduced apoptosis and ECM production in vitro by selectively inhibiting caspase-7 without affecting canonical TGF-β signaling. In vivo, emricasan-treated mice exhibited significantly higher endothelial cell density, improved hexagonality, and reduced variation in cell size compared with controls. Transcriptome analysis revealed distinct gene expression changes in the corneal endothelium following emricasan treatment. These findings suggest that emricasan exerts dual protective effects by inhibiting caspase-7-mediated ECM accumulation and broadly suppressing apoptosis, highlighting its potential as a pharmacological therapy for FECD.
Collapse
Affiliation(s)
- Sohya Fujimoto
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 602-8580, Japan
| | - Mako Endo
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 602-8580, Japan
| | - Shigehito Tonomura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 602-8580, Japan
| | - Fuuga Tsuji
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 602-8580, Japan
| | - Hirotaka Haraguchi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 602-8580, Japan
| | - Kanna Hasegawa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 602-8580, Japan
| | - Taisuke Numao
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 602-8580, Japan
| | | | - Theofilos Tourtas
- Department of Ophthalmology, University of Erlangen-Nürnberg, 430074 Erlangen, Germany
| | | | - Friedrich Kruse
- Department of Ophthalmology, University of Erlangen-Nürnberg, 430074 Erlangen, Germany
| | - Yuki Oyama
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 602-8580, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Masahito Ikawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Albert S. Jun
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 602-8580, Japan
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 602-8580, Japan
| |
Collapse
|
10
|
Qiu J, Zhang X, Shi Q, Yang Y, Zhou R, Xiang J, Gu J, Xu J, Hong J, Shan K. METTL3-m 6A-mediated TGF-β signaling promotes Fuchs endothelial corneal dystrophy via regulating corneal endothelial-to-mesenchymal transition. Cell Death Discov 2025; 11:104. [PMID: 40089501 PMCID: PMC11910554 DOI: 10.1038/s41420-025-02384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the leading cause of vision-threatening corneal endothelial dystrophy without pharmacologic treatments. Corneal endothelial-mesenchymal transition (cEndMT), a specific cellular phenotypic transition, is implicated in the vicious cycle in FECD pathogenesis. Here, we investigated the reversible epigenetic regulation of N6-methyladenosine (m6A) during cEndMT process and FECD progression. The m6A writer methyltransferase-like 3 (METTL3) was significantly upregulated in FECD models and induced transcriptomic hypermethylation, including TGFB2 mRNA. METTL3 promoted the translation of hypermethylated TGFB2 mRNA in an YTHDF1-dependent manner, resulting in upregulation of TGF-β2 protein and activation of TGF-β signaling. Intervention of METTL3 expression or catalytic activity could suppress TGF-β signaling activation, subsequently ameliorate cEndMT process and FECD progression. This study reveals unique METTL3-m6A-mediated mechanism in regulating cEndMT process, suggesting the prevailing role of m6A in cellular phenotypic transition. Targeting METTL3/m6A is a promising strategy for FECD treatment. Schematic representation of METTL3-m6A-TGF-β signaling regulating FCED. In the context of environmental stress, METTL3 is upregulated in corneal endothelium, which in turn leads to increased m6A level of TGFB2 mRNA, upregulation of TGF-β2 protein via YTHDF1 mechanism, and activation of TGF-β signaling pathway. The regulation of these mechanisms results in the progressive irreversible transition of corneal endothelial cells from their specific phenotype to a mesenchymal phenotype, which accelerates the progression of FECD.
Collapse
Affiliation(s)
- Jini Qiu
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China
| | - Xueling Zhang
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China
| | - Qian Shi
- Department of Ophthalmology, Yixing Eye Hospital, Wuxi School of Medicine, Jiangnan University, Yixing, 214200, Jiangsu, China
| | - Yujing Yang
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China
| | - Rongmei Zhou
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China
| | - Jun Xiang
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China
| | - Jiayu Gu
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China
| | - Jianjiang Xu
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China
| | - Jiaxu Hong
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China.
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China.
- Shanghai Key Laboratory of Rare Disease Gene Editing and Cell Therapy, Shanghai Engineering Research Center of Synthetic Immunology, Shanghai, 200032, China.
- Department of Ophthalmology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, 201102, China.
| | - Kun Shan
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China.
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China.
| |
Collapse
|
11
|
Nakagawa T, Honda T, Yuasa T, Nishiuchi G, Sato M, Tokunaga A, Nakahara M, Tourtas T, Schlötzer-Schrehardt U, Kruse F, Padmanabhan P, Chatterjee A, Sathe G, Ghose V, Janakiraman N, Blake DJ, Koizumi N, Elchuri S, Okumura N. The TCF4 Gene Regulates Apoptosis of Corneal Endothelial Cells in Fuchs Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci 2025; 66:16. [PMID: 40048186 PMCID: PMC11895853 DOI: 10.1167/iovs.66.3.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Purpose Fuchs endothelial corneal dystrophy (FECD) is a progressive corneal disorder characterized by excessive extracellular matrix (ECM) accumulation and corneal endothelial cell death. CTG trinucleotide repeat expansion in the transcription factor 4 (TCF4) gene represents the most significant genetic risk factor. This study aimed to elucidate the role of TCF4 in FECD pathogenesis through comprehensive proteomic analysis. Methods Corneal endothelial cells isolated from patients with FECD harboring TCF4 trinucleotide repeat expansion were immortalized to establish an FECD cell model (iFECD). CRISPR/Cas9-mediated genome editing was employed to generate TCF4-knockout iFECD cells. Whole-cell proteome analysis was performed using liquid chromatography-mass spectrometry, followed by pathway enrichment analysis of differentially expressed proteins (DEPs). The effects of TCF4 deletion on TGF-β-mediated protein aggregation and cell death were evaluated using Western blot analysis, flow cytometry, and aggresome detection assays. Results Proteomic analysis identified 88 DEPs among 6510 detected proteins. Pathway analysis revealed significant enrichment in ECM-associated pathways, oxidative stress responses, and cellular motility. TCF4 deletion attenuated TGF-β-induced cell death in iFECD cells. Concordantly, Western blot analysis demonstrated that TCF4 deletion suppressed TGF-β2-mediated cleavage of caspase-3 and poly (ADP-ribose) polymerase. Flow cytometric analysis of Annexin V-positive cells confirmed reduced apoptosis in TCF4-deleted cells following TGF-β2 treatment. Additionally, aggresome detection assays revealed that TCF4 deletion diminished TGF-β2-induced protein aggregation. Conclusions This study demonstrates a crucial role for TCF4 in FECD pathogenesis, particularly in ECM regulation and protein aggregation-induced cell death.
Collapse
Affiliation(s)
- Tatsuya Nakagawa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Tetsuro Honda
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Taichi Yuasa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Go Nishiuchi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Masakazu Sato
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Ayumi Tokunaga
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Makiko Nakahara
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Theofilos Tourtas
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Friedrich Kruse
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Prema Padmanabhan
- Department of Cornea and Refractive Surgery, Sankara Nethralaya, Chennai, India
| | - Amit Chatterjee
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, India
| | | | - Vivek Ghose
- Institute of Bioinformatics, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Narayanan Janakiraman
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, India
| | - Derek J. Blake
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Sailaja Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, India
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
12
|
Maeno S, Lewis PN, Young RD, Oie Y, Nishida K, Quantock AJ. Imaging pathology in archived cornea with Fuchs' endothelial corneal dystrophy including tissue reprocessing for volume electron microscopy. Sci Rep 2024; 14:31786. [PMID: 39738318 PMCID: PMC11685999 DOI: 10.1038/s41598-024-82888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
Fuchs' endothelial corneal dystrophy (FECD) is a common sight-threatening condition characterised by pathological changes in the posterior cornea. Here we report observations by light, transmission and volume scanning electron microscopy on changes in the endothelium and matrix associated with the characteristic deformations of Descemet's membrane, termed guttae. Specimens were archived full-thickness human corneal tissue, removed during graft surgery, that had been fixed, stained and embedded by conventional processing methods for examination by transmission electron microscopy more than 40-years previously. Intact archived samples can be extremely valuable where, as with FECD, new cell-based methods of therapy now avoid excision of the full cornea thickness and any tissue excised is inferior for study. Volume electron microscopy, in particular serial block face scanning electron microscopy (SBF SEM), employing backscatter electron detection from resin-embedded specimens, has become an invaluable technique for 3D imaging of biological samples. However, archived specimens are normally considered unsuitable for imaging as conventional processing methods generate low backscatter electron yield. To overcome this for SBF SEM, we subjected epoxy resin-embedded specimens to de-plastination, then applied additional contrasting agents, uranyl acetate and lead acetate, prior to re-embedding. Selected regions of interest in the new resin blocks were examined in a scanning electron microscope equipped for SBF SEM and serial image datasets acquired. Enhanced contrast enabled 3D reconstruction of endothelium and guttae in Descemet's membrane over large tissue volumes.
Collapse
Affiliation(s)
- Sayo Maeno
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Philip N Lewis
- Structural Biophysics Research Group, School of Optometry & Vision Sciences, Cardiff University, Cardiff, Wales, UK
| | - Robert D Young
- Structural Biophysics Research Group, School of Optometry & Vision Sciences, Cardiff University, Cardiff, Wales, UK
| | - Yoshinori Oie
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Andrew J Quantock
- Structural Biophysics Research Group, School of Optometry & Vision Sciences, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
13
|
Parekh M, Miall A, Chou A, Buhl L, Deshpande N, Price MO, Price FW, Jurkunas UV. Enhanced Migration of Fuchs Corneal Endothelial Cells by Rho Kinase Inhibition: A Novel Ex Vivo Descemet's Stripping Only Model. Cells 2024; 13:1218. [PMID: 39056800 PMCID: PMC11274477 DOI: 10.3390/cells13141218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Descemet's Stripping Only (DSO) is a surgical technique that utilizes the peripheral corneal endothelial cell (CEnC) migration for wound closure. Ripasudil, a Rho-associated protein kinase (ROCK) inhibitor, has shown potential in DSO treatment; however, its mechanism in promoting CEnC migration remains unclear. We observed that ripasudil-treated immortalized normal and Fuchs endothelial corneal dystrophy (FECD) cells exhibited significantly enhanced migration and wound healing, particularly effective in FECD cells. Ripasudil upregulated mRNA expression of Snail Family Transcriptional Repressor (SNAI1/2) and Vimentin (VIM) while decreasing Cadherin (CDH1), indicating endothelial-to-mesenchymal transition (EMT) activation. Ripasudil activated Rac1, driving the actin-related protein complex (ARPC2) to the leading edge, facilitating enhanced migration. Ex vivo studies on cadaveric and FECD Descemet's membrane (DM) showed increased migration and proliferation of CEnCs after ripasudil treatment. An ex vivo DSO model demonstrated enhanced migration from the DM to the stroma with ripasudil. Coating small incision lenticule extraction (SMILE) tissues with an FNC coating mix and treating the cells in conjunction with ripasudil further improved migration and resulted in a monolayer formation, as detected by the ZO-1 junctional marker, thereby leading to the reduction in EMT. In conclusion, ripasudil effectively enhanced cellular migration, particularly in a novel ex vivo DSO model, when the stromal microenvironment was modulated. This suggests ripasudil as a promising adjuvant for DSO treatment, highlighting its potential clinical significance.
Collapse
Affiliation(s)
- Mohit Parekh
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; (M.P.)
| | - Annie Miall
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; (M.P.)
| | - Ashley Chou
- Faculty of Arts and Sciences, Harvard College, Boston, MA 02138, USA
| | - Lara Buhl
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Neha Deshpande
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; (M.P.)
| | | | - Francis W. Price
- Cornea Research Foundation of America, Indianapolis, IN 46260, USA
| | - Ula V. Jurkunas
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; (M.P.)
- Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA
| |
Collapse
|
14
|
Yan J, Mehta S, Patel K, Dhupar N, Little N, Ong Tone S. Transcription factor 4 promotes increased corneal endothelial cellular migration by altering microtubules in Fuchs endothelial corneal dystrophy. Sci Rep 2024; 14:10276. [PMID: 38704483 PMCID: PMC11069521 DOI: 10.1038/s41598-024-61170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a complex corneal disease characterized by the progressive decline and morphological changes of corneal endothelial cells (CECs) that leads to corneal edema and vision loss. The most common mutation in FECD is an intronic CTG repeat expansion in transcription factor 4 (TCF4) that leads to its altered expression. Corneal endothelial wound healing occurs primarily through cell enlargement and migration, and FECD CECs have been shown to display increased migration speeds. In this study, we aim to determine whether TCF4 can promote cellular migration in FECD CECs. We generated stable CEC lines derived from FECD patients that overexpressed different TCF4 isoforms and investigated epithelial-to-mesenchymal (EMT) expression, morphological analysis and cellular migration speeds. We found that full length TCF4-B isoform overexpression promotes cellular migration in FECD CECs in an EMT-independent manner. RNA-sequencing identified several pathways including the negative regulation of microtubules, with TUBB4A (tubulin beta 4A class IVa) as the top upregulated gene. TUBB4A expression was increased in FECD ex vivo specimens, and there was altered expression of cytoskeleton proteins, tubulin and actin, compared to normal healthy donor ex vivo specimens. Additionally, there was increased acetylation and detyrosination of microtubules in FECD supporting that microtubule stability is altered in FECD and could promote cellular migration. Future studies could be aimed at investigating if targeting the cytoskeleton and microtubules would have therapeutic potential for FECD by promoting cellular migration and regeneration.
Collapse
Affiliation(s)
- Judy Yan
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada
| | - Shanti Mehta
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Keya Patel
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Narisa Dhupar
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Ness Little
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Stephan Ong Tone
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.
| |
Collapse
|
15
|
Zou D, Wang T, Li W, Wang X, Ma B, Hu X, Zhou Q, Li Z, Shi W, Duan H. Nicotinamide promotes the differentiation of functional corneal endothelial cells from human embryonic stem cells. Exp Eye Res 2024; 242:109883. [PMID: 38561106 DOI: 10.1016/j.exer.2024.109883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Corneal transplantation represents the primary therapeutic approach for managing corneal endothelial dysfunction, but corneal donors remain scarce. Anterior chamber cell injection emerges as a highly promising alternative strategy for corneal transplantation, with pluripotent stem cells (PSC) demonstrating considerable potential as an optimal cell source. Nevertheless, only a few studies have explored the differentiation of functional corneal endothelial-like cells originating from PSC. In this investigation, a chemical-defined protocol was successfully developed for the differentiation of functional corneal endothelial-like cells derived from human embryonic stem cells (hESC). The application of nicotinamide (NAM) exhibited a remarkable capability in suppressing the fibrotic phenotype, leading to the generation of more homogeneous and well-distinctive differentiated cells. Furthermore, NAM effectively suppressed the expression of genes implicated in endothelial cell migration and extracellular matrix synthesis. Notably, NAM also facilitated the upregulation of surface marker genes specific to functional corneal endothelial cells (CEC), including CD26 (-) CD44 (-∼+-) CD105 (-) CD133 (-) CD166 (+) CD200 (-). Moreover, in vitro functional assays were performed, revealing intact barrier properties and Na+/K+-ATP pump functionality in the differentiated cells treated with NAM. Consequently, our findings provide robust evidence supporting the capacity of NAM to enhance the differentiation of functional CEC originating from hESC, offering potential seed cells for therapeutic interventions of corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Dulei Zou
- Department of Medicine, Qingdao University, Qingdao, 266071, China; Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China; School of Ophthalmology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China
| | - Ting Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China; School of Ophthalmology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China
| | - Wenjing Li
- Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, 266000, China
| | - Xin Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China; School of Ophthalmology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China
| | - Bochao Ma
- Capital Medical University, Beijing, 100070, China
| | - Xiangyue Hu
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China
| | - Zongyi Li
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China; School of Ophthalmology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China
| | - Haoyun Duan
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China.
| |
Collapse
|
16
|
Xia Y, Chen K, Yang Q, Chen Z, Jin L, Zhang L, Yu X, Wang L, Xie C, Zhao Y, Shen Y, Tong J. Methylation in cornea and corneal diseases: a systematic review. Cell Death Discov 2024; 10:169. [PMID: 38589350 PMCID: PMC11002037 DOI: 10.1038/s41420-024-01935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Corneal diseases are among the primary causes of blindness and vision loss worldwide. However, the pathogenesis of corneal diseases remains elusive, and diagnostic and therapeutic tools are limited. Thus, identifying new targets for the diagnosis and treatment of corneal diseases has gained great interest. Methylation, a type of epigenetic modification, modulates various cellular processes at both nucleic acid and protein levels. Growing evidence shows that methylation is a key regulator in the pathogenesis of corneal diseases, including inflammation, fibrosis, and neovascularization, making it an attractive potential therapeutic target. In this review, we discuss the major alterations of methylation and demethylation at the DNA, RNA, and protein levels in corneal diseases and how these dynamics contribute to the pathogenesis of corneal diseases. Also, we provide insights into identifying potential biomarkers of methylation that may improve the diagnosis and treatment of corneal diseases.
Collapse
Affiliation(s)
- Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Zhitong Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Le Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Xin Yu
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Liyin Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Yuan Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
17
|
Chan MF, Pan P, Wolfreys FD. Novel Mechanisms Guide Innovative Molecular-Based Therapeutic Strategies for Fuchs Endothelial Corneal Dystrophy. Cornea 2023; 42:929-933. [PMID: 37318135 PMCID: PMC10313750 DOI: 10.1097/ico.0000000000003292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/13/2023] [Indexed: 06/16/2023]
Abstract
ABSTRACT Major advances in genomics have dramatically increased our understanding of Fuchs endothelial corneal dystrophy (FECD) and identified diverse genetic causes and associations. Biomarkers derived from these studies have the potential to inform both clinical treatment and yield novel therapeutics for this corneal dystrophy.
Collapse
Affiliation(s)
- Matilda F. Chan
- Department of Ophthalmology, University of California, San Francisco, California, USA
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
| | - Peipei Pan
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Finn D. Wolfreys
- Department of Ophthalmology, University of California, San Francisco, California, USA
| |
Collapse
|
18
|
Won HJ, Won HS, Shin JO. Increased miR-200c levels disrupt palatal fusion by affecting apoptosis, cell proliferation, and cell migration. Biochem Biophys Res Commun 2023; 664:43-49. [PMID: 37137222 DOI: 10.1016/j.bbrc.2023.04.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
The mammalian palate separates the oral and nasal cavities, facilitating proper feeding, respiration, and speech. Palatal shelves, composed of neural crest-derived mesenchyme and surrounding epithelium, are a pair of maxillary prominences contributing to this structure. Palatogenesis reaches completion upon the fusion of the midline epithelial seam (MES) following contact between medial edge epithelium (MEE) cells in the palatal shelves. This process entails numerous cellular and molecular occurrences, including apoptosis, cell proliferation, cell migration, and epithelial-mesenchymal transition (EMT). MicroRNAs (miRs) are small, endogenous, non-coding RNAs derived from double-stranded hairpin precursors that regulate gene expression by binding to target mRNA sequences. Although miR-200c is a positive regulator of E-cadherin, its role in palatogenesis remains unclear. This study aims to explore the role of miR-200c in palate development. Before contact with palatal shelves, mir-200c was expressed in the MEE along with E-cadherin. After palatal shelf contact, miR-200c was present in the palatal epithelial lining and epithelial islands surrounding the fusion region but absent in the mesenchyme. The function of miR-200c was investigated by utilizing a lentiviral vector to facilitate overexpression. Ectopic expression of miR-200c resulted in E-cadherin upregulation, impaired dissolution of the MES, and reduced cell migration for palatal fusion. The findings imply that miR-200c is essential in palatal fusion as it governs E-cadherin expression, cell death, and cell migration, acting as a non-coding RNA. This study may contribute to clarifying the underlying molecular mechanisms in palate formation and provides insights into potential gene therapies for cleft palate.
Collapse
Affiliation(s)
- Hyung-Jin Won
- Department of Anatomy, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea; BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Hyung-Sun Won
- Department of Anatomy and Jesaeng-Euise Clinical Anatomy Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Jeong-Oh Shin
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, 33151, Republic of Korea; BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.
| |
Collapse
|
19
|
Hazra S, Dey S, Mandal BB, Ramachandran C. In Vitro Profiling of the Extracellular Matrix and Integrins Expressed by Human Corneal Endothelial Cells Cultured on Silk Fibroin-Based Matrices. ACS Biomater Sci Eng 2023; 9:2438-2451. [PMID: 37023465 DOI: 10.1021/acsbiomaterials.2c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Developing a scaffold for culturing human corneal endothelial (HCE) cells is crucial as an alternative cell therapeutic approach to bridge the growing gap between the demand and availability of healthy donor corneas for transplantation. Silk films are promising substrates for the culture of these cells; however, their tensile strength is several-fold greater than the native basement membrane which can possibly influence the dynamics of cell-matrix interaction and the extracellular matrix (ECM) secreted by the cells in long-term culture. In our current study, we assessed the secretion of ECM and the expression of integrins by the HCE cells on Philosamia ricini (PR) and Antheraea assamensis (AA) silk films and fibronectin-collagen (FNC)-coated plastic dishes to understand the cell-ECM interaction in long-term culture. The expression of ECM proteins (collagens 1, 4, 8, and 12, laminin, and fibronectin) on silk was comparable to that on the native tissue. The thicknesses of collagen 8 and laminin at 30 days on both PR (4.78 ± 0.55 and 5.53 ± 0.51 μm, respectively) and AA (4.66 ± 0.72 and 5.71 ± 0.61 μm, respectively) were comparable with those of the native tissue (4.4 ± 0.63 and 5.28 ± 0.72 μm, respectively). The integrin expression by the cells on the silk films was also comparable to that on the native tissue, except for α3 whose fluorescence intensity was significantly higher on PR (p ≤ 0.01) and AA (p ≤ 0.001), compared to that on the native tissue. This study shows that the higher tensile strength of the silk films does not alter the ECM secretion or cell phenotype in long-term culture, confirming the suitability of using this material for engineering the HCE cells for transplantation.
Collapse
Affiliation(s)
- Swatilekha Hazra
- Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad 500034, India
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences & Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | |
Collapse
|
20
|
Petrela RB, Patel SP. The soil and the seed: The relationship between Descemet's membrane and the corneal endothelium. Exp Eye Res 2023; 227:109376. [PMID: 36592681 DOI: 10.1016/j.exer.2022.109376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Descemet's membrane (DM), the basement membrane of the corneal endothelium, is formed from the extracellular matrix (ECM) secreted by corneal endothelial cells. The ECM supports the growth and function of the corneal endothelial cells. Changes to DM are central to the diagnosis of the most common corneal endothelial disease, Fuchs endothelial corneal dystrophy (FECD). Changes in DM are also noted in systemic diseases such as diabetes mellitus. In FECD, the DM progressively accumulates guttae, "drop-like deposits" that disrupt the corneal endothelial cell monolayer. While the pathophysiologic changes to corneal endothelial cells in the course of FECD have been well described and reviewed, the changes to DM have received limited attention. The reciprocity of influence between the corneal endothelial cells and DM demands full attention to the latter in our search for novel treatment and preventive strategies. In this review, we discuss what is known about the formation and composition of DM and how it changes in FECD and other conditions. We review characteristics of guttae and the interplay between corneal endothelial cells and guttae, particularly as it might apply to future cell-based and genetic therapies for FECD.
Collapse
Affiliation(s)
- Redion B Petrela
- Ross Eye Institute, Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 1176 Main Street, Buffalo, NY, 14209, USA; Norton College of Medicine, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| | - Sangita P Patel
- Ross Eye Institute, Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 1176 Main Street, Buffalo, NY, 14209, USA; Research and Ophthalmology Services, Veterans Administration of Western New York Healthcare System, 3495 Bailey Ave, Buffalo, NY, 14215, USA.
| |
Collapse
|
21
|
Demura TA, Fisenko NV, Osipyan GA, Afonina MA. [Corneal changes in Fuchs endothelial corneal dystrophy and bullous keratopathy]. Arkh Patol 2023; 85:29-35. [PMID: 37814847 DOI: 10.17116/patol20238505129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Evaluation of structural and immunohistochemical features of cornea in Fuchs endothelial corneal dystrophy (FECD) and bullous keratopathy (BK). MATERIAL AND METHODS Group 1 - 44 patients (46 eyes) with FECD, group 2 - 42 patients (42 eyes) with BK. All patients underwent keratoplasty. Preoperative anterior segment optical coherence tomography (AS-OCT, RTVue-100, Optovue, USA) was performed. Endothelium-Descemet membrane (EDM) complexes, corneal buttons were obtained intraoperatively. Morphological (H&E staining) and immunohistochemical (primary antibodies to pancytokeratin, vimentin, fibronectin) studies were performed at the light microscope level (Leica DM-2500, Leica Application Suite V4.8, Leica Microsystems, Switzerland). RESULTS A direct correlation is found between the results of DM analysis in vivo with OCT and ex vivo with light microscopy. DM thickness (AS-OCT) was significantly greater in FECD (23.0 [19.0; 27.0] μm), than in BK (13.0 [12.0; 14.0] μm). Morphological study of EDM and corneal buttons showed similar difference in DM thickness: 17.9 [16.1; 20.0] μm in FECD and 11.9 [11.3; 13.0] μm in BK. Irregular optical density of stroma is a feature of edema and local fibrosis. In FECD and BK pancytokeratin is expressed in epithelial and endothelial cells, vimentin - in keratocytes, macrophages and vascular endothelium, fibronectin - in DM. In FECD, vimentin is expressed in endothelial cells. CONCLUSION FECD and BK are associated with different DM' and endothelium' abnormalities, which lead to similar changes of stroma and epithelium. AS-OCT is a useful method of FECD and BK in vivo diagnostics and the selection of treatment option.
Collapse
Affiliation(s)
- T A Demura
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - N V Fisenko
- M.M. Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - G A Osipyan
- M.M. Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - M A Afonina
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
22
|
Dubchak E, Obasanmi G, Zeglinski MR, Granville DJ, Yeung SN, Matsubara JA. Potential role of extracellular granzyme B in wet age-related macular degeneration and fuchs endothelial corneal dystrophy. Front Pharmacol 2022; 13:980742. [PMID: 36204224 PMCID: PMC9531149 DOI: 10.3389/fphar.2022.980742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related ocular diseases are the leading cause of blindness in developed countries and constitute a sizable socioeconomic burden worldwide. Age-related macular degeneration (AMD) and Fuchs endothelial corneal dystrophy (FECD) are some of the most common age-related diseases of the retina and cornea, respectively. AMD is characterized by a breakdown of the retinal pigment epithelial monolayer, which maintains retinal homeostasis, leading to retinal degeneration, while FECD is characterized by degeneration of the corneal endothelial monolayer, which maintains corneal hydration status, leading to corneal edema. Both AMD and FECD pathogenesis are characterized by disorganized local extracellular matrix (ECM) and toxic protein deposits, with both processes linked to aberrant protease activity. Granzyme B (GrB) is a serine protease traditionally known for immune-mediated initiation of apoptosis; however, it is now recognized that GrB is expressed by a variety of immune and non-immune cells and aberrant extracellular localization of GrB substantially contributes to various age-related pathologies through dysregulated cleavage of ECM, tight junction, and adherens junction proteins. Despite growing recognition of GrB involvement in multiple age-related pathologies, its role in AMD and FECD remains poorly understood. This review summarizes the pathophysiology of, and similarities between AMD and FECD, outlines the current knowledge of the role of GrB in AMD and FECD, as well as hypothesizes putative contributions of GrB to AMD and FECD pathogenesis and highlights the therapeutic potential of pharmacologically inhibiting GrB as an adjunctive treatment for AMD and FECD.
Collapse
Affiliation(s)
- Eden Dubchak
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Gideon Obasanmi
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Matthew R. Zeglinski
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - David J. Granville
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - Sonia N. Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
- *Correspondence: Joanne A. Matsubara,
| |
Collapse
|
23
|
Qiu JN, Shan K, Xiang J, Gu JY, Zhou RM, Zhang XL, Zhang CR, Xu JJ. Comprehensive Analysis of circRNA-Associated-ceRNA Networks in Human Corneal Endothelial Dysfunction. Cornea 2022; 41:1545-1552. [PMID: 35965398 DOI: 10.1097/ico.0000000000003065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Circular RNAs (circRNAs) are a novel class of endogenous noncoding RNAs that regulate gene expression through the competitive endogenous RNA (ceRNA) mechanism. CircRNA-associated-ceRNA networks are closely related to oxidative stress-related diseases. Oxidative stress-induced dysfunction of the corneal endothelium (CE) is a major pathological feature in many corneal diseases. This study was aimed to analyze circRNA-associated-ceRNA networks in oxidative stress-induced CE dysfunction. METHODS A CE dysfunction model was established using human corneal endothelial cells (HCECs) treated with H2O2 at a concentration of 250 μM for 4 hours at 37°C. High-throughput sequencing was conducted to determine the expression profiles of circRNA, miRNA, and mRNA. Bioinformatic analyses, including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes analysis, were conducted to identify the potential biological modules and pathologic pathways of dysregulated circRNAs. CircRNA-associated-ceRNA networks were established based on the data of sequencing and bioinformatic analyses. RESULTS We obtained 108 differentially expressed circRNAs, including 77 upregulated and 31 downregulated circRNAs. GO analysis suggested that dysregulated circRNAs were mainly targeted to protein quality control for misfolded or incompletely synthesized proteins (biologic process), nuclear chromatin (cellular component), and ubiquitin protein ligase binding (molecular function). GO terms related to CE functions responding to oxidative stress were also identified. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that dysregulated circRNAs were mostly enriched in the adherens junction pathway. Network analysis identified several potential therapeutic targets for CE dysfunction. CONCLUSIONS CircRNAs are significantly dysregulated in HCECs under oxidative stress. The circRNA-associated-ceRNA networks are closely related to HCEC functions. Targeting these networks might provide novel therapies for CE dysfunction.
Collapse
Affiliation(s)
- Ji-Ni Qiu
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kun Shan
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jun Xiang
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jia-Yu Gu
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and
| | - Rong-Mei Zhou
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xue-Ling Zhang
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chao-Ran Zhang
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jian-Jiang Xu
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
24
|
Loss of YB-1 alleviates liver fibrosis by suppressing epithelial-mesenchymal transition in hepatic progenitor cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166510. [DOI: 10.1016/j.bbadis.2022.166510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022]
|
25
|
Hu H, Ma J, Li Z, Ding Z, Chen W, Peng Y, Tao Z, Chen L, Luo M, Wang C, Wang X, Li J, Zhong M. CyPA interacts with SERPINH1 to promote extracellular matrix production and inhibit epithelial-mesenchymal transition of trophoblast via enhancing TGF-β/Smad3 pathway in preeclampsia. Mol Cell Endocrinol 2022; 548:111614. [PMID: 35304192 DOI: 10.1016/j.mce.2022.111614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
Abstract
We previously reported that cyclophilin A (CyPA) production is upregulated in preeclampsia (PE). Moreover, CyPA is known to induce PE-like features in pregnant mice and impair trophoblast invasiveness. In this study, we further illustrated the role of CyPA in PE. RNA-seq analysis, RT-qPCR, immunohistochemical (IHC) staining, and western blotting of mouse placentae revealed that CyPA increased the levels of extracellular matrix (ECM) proteins, such as collagen I and fibronectin, and activated the TGF-β/Smad3 signaling pathway. Additionally, CyPA inhibited the expression of genes involved in epithelial-mesenchymal transition (EMT) (e.g., E-cadherin, N-cadherin, and vimentin) in mouse placentae. We then constructed stable overexpressing and knock-down CyPA cell models (using HTR8/SVneo cells) to clarify the molecular mechanism. We found that CyPA regulated the levels of ECM-related proteins and the EMT process through the TGF-β/Smad3 pathway. We also identified SERPINH1 as a putative CyPA-binding protein, using liquid chromatography-electrospray mass spectrometry (LC-MS)/MS. SERPINH1 was found to be upregulated in the placentae of PE. Silencing SERPINH1 expression reversed the upregulation of ECM proteins and inhibition of the EMT process induced by the overexpression of CyPA. These findings revealed the functions of CyPA in the impaired invasiveness of trophoblasts in PE and indicated that CyPA and SERPINH1 may represent promising targets for the treatment of PE.
Collapse
Affiliation(s)
- Haoyue Hu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiju Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziling Ding
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenqian Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - You Peng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zixin Tao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manling Luo
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chichiu Wang
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xuefei Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Jing Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
26
|
Global Prevalence of Fuchs Endothelial Corneal Dystrophy (FECD) in Adult Population: A Systematic Review and Meta-Analysis. J Ophthalmol 2022; 2022:3091695. [PMID: 35462618 PMCID: PMC9023201 DOI: 10.1155/2022/3091695] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose. To evaluate the global prevalence of Fuchs endothelial corneal dystrophy (FECD). Design. Systematic review and meta-analysis. Methods. A systematic electronic literature search was conducted on PubMed/MedLine, Cochrane Library, and Google Scholar, in order to select papers analysing the prevalence rate of FECD. Two authors independently conducted the electronic search. After removal of duplicates, title and abstract screening, and full-text analysis, data from selected articles were archived in a customized Excel spreadsheet. Risk of bias assessment was performed using the Joanna Briggs Institute Prevalence Critical Appraisal Tool. Meta-analysis was conducted using R (version 1.4.1106, package “meta”). Results. A total of 6660 eligible articles were retrieved from the initial electronic search. Only 4 original works were included in the qualitative and quantitative analysis. Of the 4746 patients included in this meta-analysis (i.e., 2232 male (M) and 2322 female (F)), we retrieved 269 FECD cases (81 M; 188 F), with a pooled prevalence estimates of 7.33% (95% CI: 4.08–12.8%). Statistically significant gender-related differences in the prevalence of FECD emerged by the analysis (OR: 2.22; 95% CI: 1.66–2.96,
). While the total number of people aged >30 years with FECD is nowadays estimated at nearly 300 million, an increase of 41.7% in the number of FECD-affected patients is expected by 2050, when the overall figure is supposed to rise up to 415 million. Conclusion. This study provides a reliable figure of the present and future epidemiological burden of FECD globally, which might be useful for the design of FECD screening, treatment, rehabilitation, and related public health strategies.
Collapse
|
27
|
Sun Y, Bao X, Chen H, Zhou L. MicroRNA-128-3p suppresses interleukin-1β-stimulated cartilage degradation and chondrocyte apoptosis via targeting zinc finger E-box binding homeobox 1 in osteoarthritis. Bioengineered 2022; 13:1736-1745. [PMID: 34990303 PMCID: PMC8805990 DOI: 10.1080/21655979.2021.2019879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Accumulating studies have suggested that microRNAs (miRNAs) play vital roles in the pathogenesis of osteoarthritis (OA). Nevertheless, the specific function of miR-128-3p in OA remains unknown. In this study, we demonstrated that miR-128-3p was decreased and ZEB1 was increased in OA. Additionally, miR-128-3p expression was negatively correlated with ZEB1. miR-128-3p overexpression or ZEB1 silencing attenuated extracellular matrix degradation and cell apoptosis, and increased the proliferation of IL-1β-activated CHON-001 cells. Furthermore, ZEB1 was directly targeted by miR-128-3p. In addition, ZEB1 upregulation restored the effects of miR-128-3p overexpression on OA progression. Overall, our findings suggested that miR-128-3p might regulate the development of OA via targeting ZEB1.
Collapse
Affiliation(s)
- Yu Sun
- Department of Orthopectics, The First People's Hospital of Changzhou, Changzhou, P.R. China
| | - Xinnan Bao
- Department of Orthopectics, The First People's Hospital of Changzhou, Changzhou, P.R. China
| | - Haiou Chen
- Department of Orthopectics, The First People's Hospital of Changzhou, Changzhou, P.R. China
| | - Liping Zhou
- Department of Orthopectics, The First People's Hospital of Changzhou, Changzhou, P.R. China
| |
Collapse
|
28
|
Viberg A, Westin IM, Golovleva I, Byström B. TCF4 trinucleotide repeat expansion in Swedish cases with Fuchs' endothelial corneal dystrophy. Acta Ophthalmol 2021; 100:541-548. [PMID: 34644448 DOI: 10.1111/aos.15032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE Fuchs' endothelial corneal dystrophy (FECD) has been considered a genetically heterogeneous disease but is increasingly associated with the transcription factor 4 (TCF4) gene. This study investigates the prevalence of the cytosine-thymine-guanine (CTG)n repeat expansion in TCF4 among FECD patients in northern Sweden coupled to the phenotype. METHODS Blood samples were collected from 85 FECD cases at different stages. Short tandem repeat PCR and triplet repeat-primed PCR were applied in order to determine TCF4 (CTG)n genotype. RESULTS A (CTG)n repeat expansion (n > 50) in TCF4 was identified in 76 of 85 FECD cases (89.4%) and in four of 102 controls (3.9%). The median (CTG)n repeat length was 81 (IQR 39.3) in mild FECD and 87 (IQR 13.0) in severe FECD (p = 0.01). A higher number of (CTG)n repeats in an expanded TCF4 allele increased the probability of severe FECD. Other ocular surgery was overrepresented in FECD cases without a (CTG)n repeat expansion (44.4%, n = 4) compared with 3.9% (n = 3) in FECD cases with an (CTG)n repeat expansion (p < 0.001). CONCLUSION In northern Sweden, the FECD phenotype is associated with (CTG)n expansion in the TCF4 gene, with nearly 90% of patients being hetero- or homozygous for (CTG)n expansion over 50 repeats. Furthermore, the severity of FECD was associated with the repeat length in the TCF4 gene. Ocular surgery might act as an environmental factor explaining the clinical disease in FECD without a repeat expansion in TCF4.
Collapse
Affiliation(s)
- Andreas Viberg
- Department of Clinical Sciences/Ophthalmology Umeå University Umeå Sweden
| | - Ida Maria Westin
- Department of Medical Biosciences/Medical and Clinical Genetics Umeå University Umeå Sweden
| | - Irina Golovleva
- Department of Medical Biosciences/Medical and Clinical Genetics Umeå University Umeå Sweden
| | - Berit Byström
- Department of Clinical Sciences/Ophthalmology Umeå University Umeå Sweden
| |
Collapse
|
29
|
Bertolin M, Lamon M, Franco E, Barbaro V, Ferrari S, Bovone C, Yu AC, Parekh M, Ponzin D, Busin M. Culture of corneal endothelial cells obtained by descemetorhexis of corneas with Fuchs endothelial corneal dystrophy. Exp Eye Res 2021; 211:108748. [PMID: 34461137 DOI: 10.1016/j.exer.2021.108748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022]
Abstract
Currently, endothelial keratoplasty is the gold standard for the surgical treatment of Fuchs endothelial corneal dystrophy (FECD). Despite the remarkable success in terms of surgical outcomes, a shortage of corneal donor tissue poses a limitation to performing endothelial keratoplasty in many parts of the world. Cell therapy is a potential alternative strategy to keratoplasty and is currently under investigation. Considering that corneas with FECD may contain relatively healthy endothelial cells, samples obtained by descemetorhexis of eyes undergoing EK for FECD can be used for ex vivo expansion of endothelial cells as an autologous cell culture. In this study, we established corneal endothelial cell cultures derived from 40 patients that underwent endothelial keratoplasty for advanced FECD. Several parameters were evaluated including patient characteristics such as age, gender, and endothelial cell density as well as various processing and cell culture protocols based on different combinations of shipping temperatures, stabilization periods and treatment methods for corneal endothelial cell dissociation. FECD cultures were classified into three groups as: (i) no cells, (ii) cell cultures with endothelial-like morphology or (iii) cell cultures with fibroblast-like features. Our data seem to suggest that some factors can influence FECD cell culture characteristics including young age, high paracentral endothelial cell density, low shipping temperature and short stabilization period prior to cell isolation. Treatment with type 1 collagenase for cell isolation can delay endothelial-to-mesenchymal transition, but does not increase proliferative capacity. Although heterologous corneal endothelial cultures from healthy donors have shown encouraging outcomes, the feasibility of autologous cell therapy as a potential treatment for FECD remains challenging. Low initial cell concentration as well as endothelial to mesenchymal transition are the main obstacles to the application of FECD cultures in the clinical setting.
Collapse
Affiliation(s)
| | - Mattia Lamon
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | - Elena Franco
- University of Ferrara, Department of Translational Medicine, Ferrara, Italy; Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", Forlì, Italy; Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), Forlì, Italy
| | | | | | - Cristina Bovone
- University of Ferrara, Department of Translational Medicine, Ferrara, Italy; Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", Forlì, Italy; Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), Forlì, Italy
| | - Angeli Christy Yu
- University of Ferrara, Department of Translational Medicine, Ferrara, Italy; Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", Forlì, Italy; Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), Forlì, Italy
| | | | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | - Massimo Busin
- University of Ferrara, Department of Translational Medicine, Ferrara, Italy; Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", Forlì, Italy; Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), Forlì, Italy
| |
Collapse
|
30
|
Snail Upregulates Transcription of FN, LEF, COX2, and COL1A1 in Hepatocellular Carcinoma: A General Model Established for Snail to Transactivate Mesenchymal Genes. Cells 2021; 10:cells10092202. [PMID: 34571852 PMCID: PMC8467536 DOI: 10.3390/cells10092202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/14/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022] Open
Abstract
SNA is one of the essential EMT transcriptional factors capable of suppressing epithelial maker while upregulating mesenchymal markers. However, the mechanisms for SNA to transactivate mesenchymal markers was not well elucidated. Recently, we demonstrated that SNA collaborates with EGR1 and SP1 to directly upregulate MMP9 and ZEB1. Remarkably, a SNA-binding motif (TCACA) upstream of EGR/SP1 overlapping region on promoters was identified. Herein, we examined whether four other mesenchymal markers, lymphoid enhancer-binding factor (LEF), fibronectin (FN), cyclooxygenase 2 (COX2), and collagen type alpha I (COL1A1) are upregulated by SNA in a similar fashion. Expectedly, SNA is essential for expression of these mesenchymal genes. By deletion mapping and site directed mutagenesis coupled with dual luciferase promoter assay, SNA-binding motif and EGR1/SP1 overlapping region are required for TPA-induced transcription of LEF, FN, COX2 and COL1A1. Consistently, TPA induced binding of SNA and EGR1/SP1 on relevant promoter regions of these mesenchymal genes using ChIP and EMSA. Thus far, we found six of the mesenchymal genes are transcriptionally upregulated by SNA in the same fashion. Moreover, comprehensive screening revealed similar sequence architectures on promoter regions of other SNA-upregulated mesenchymal markers, suggesting that a general model for SNA-upregulated mesenchymal genes can be established.
Collapse
|
31
|
Liu X, Zheng T, Zhao C, Zhang Y, Liu H, Wang L, Liu P. Genetic mutations and molecular mechanisms of Fuchs endothelial corneal dystrophy. EYE AND VISION 2021; 8:24. [PMID: 34130750 PMCID: PMC8204469 DOI: 10.1186/s40662-021-00246-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/18/2021] [Indexed: 11/10/2022]
Abstract
Background Fuchs endothelial corneal dystrophy is a hereditary disease and the most frequent cause of corneal transplantation in the worldwide. Its main clinical signs are an accelerated decrease in the number of endothelial cells, thickening of Descemet’s membrane and formation of guttae in the extracellular matrix. The cornea’s ability to maintain stromal dehydration is impaired, causing painful epithelial bullae and loss of vision at the point when the amount of corneal endothelial cells cannot be compensated. At present, apart from corneal transplantation, there is no other effective treatment that prevents blindness. Main text In this review, we first summarized the mutations of COL8A2, TCF4, TCF8, SLC4A11 and AGBL1 genes in Fuchs endothelial corneal dystrophy. The molecular mechanisms associated with Fuchs endothelial corneal dystrophy, such as endoplasmic reticulum stress and unfolded protein response pathway, oxidative stress, mitochondrial dysregulation pathway, apoptosis pathway, mitophagy, epithelial-mesenchymal transition pathway, RNA toxicity and repeat-associated non-ATG translation, and other pathogenesis, were then explored. Finally, we discussed several potential treatments related to the pathogenesis of Fuchs endothelial corneal dystrophy, which may be the focus of future research. Conclusions The pathogenesis of Fuchs endothelial corneal dystrophy is very complicated. Currently, corneal transplantation is an important method in the treatment of Fuchs endothelial corneal dystrophy. It is necessary to continuously explore the pathogenesis of Fuchs endothelial corneal dystrophy and establish the scientific foundations for the development of next-generation corneal therapeutics.
Collapse
Affiliation(s)
- Xuerui Liu
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tao Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chuchu Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hanruo Liu
- The Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liyuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Ping Liu
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
32
|
Schlötzer-Schrehardt U, Zenkel M, Strunz M, Gießl A, Schondorf H, da Silva H, Schmidt GA, Greiner MA, Okumura N, Koizumi N, Kinoshita S, Tourtas T, Kruse FE. Potential Functional Restoration of Corneal Endothelial Cells in Fuchs Endothelial Corneal Dystrophy by ROCK Inhibitor (Ripasudil). Am J Ophthalmol 2021; 224:185-199. [PMID: 33316261 DOI: 10.1016/j.ajo.2020.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Rho-associated kinase (ROCK) inhibitors have been successfully used as a rescue strategy in eyes that failed to clear after descemetorhexis without endothelial graft for treatment of Fuchs endothelial corneal dystrophy (FECD). The functional mechanisms by which ROCK inhibitors modulate corneal endothelial cell regeneration in FECD patients have, however, not been clarified. Here, we analyzed the effect of the ROCK inhibitor ripasudil on corneal endothelial cells of FECD patients and normal donors using ex vivo tissue and in vitro cellular models. DESIGN Experimental study: laboratory investigation. METHODS This institutional study used endothelial cell-Descemet membrane lamellae from FECD patients (n = 450) undergoing Descemet membrane endothelial keratoplasty (FECD ex vivo model), normal research-grade donor corneas (n = 30) after scraping off central endothelial cells (ex vivo wound healing model), normal donor corneas (n = 20) without endothelial injury, and immortalized cell lines (n = 3) generated from FECD patients (FECD in vitro model). Descemet membrane lamellae were dissected into halves and incubated for 24-72 hours in storage medium with or without a single dose of 30 μM ripasudil. The effects of ripasudil on expression of genes and proteins related to endothelial cell proliferation, migration, functionality, and endothelial-to-mesenchymal transition were analyzed and complemented by functional assays on FECD cell lines. RESULTS A single dose of ripasudil induced significant upregulation of genes and proteins related to cell cycle progression, cell-matrix adhesion and migration, as well as endothelial barrier and pump function up to 72 hours, whereas classical markers of endothelial-to-mesenchymal transition were downregulated in both FECD and normal specimens compared to unstimulated controls ex vivo. In addition to stimulation of proliferation and migration, ripasudil-induced changes in expression of functional signature genes could be also verified in FECD cell lines in vitro. CONCLUSIONS These data support the concept that inhibition of ROCK signaling represents a potent tool in regenerative therapies in FECD patients through reactivation of cell proliferation and migration as well as restoration of endothelial pump and barrier function without inducing adverse phenotypic changes.
Collapse
|
33
|
Pouw AE, Greiner MA, Coussa RG, Jiao C, Han IC, Skeie JM, Fingert JH, Mullins RF, Sohn EH. Cell-Matrix Interactions in the Eye: From Cornea to Choroid. Cells 2021; 10:687. [PMID: 33804633 PMCID: PMC8003714 DOI: 10.3390/cells10030687] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) plays a crucial role in all parts of the eye, from maintaining clarity and hydration of the cornea and vitreous to regulating angiogenesis, intraocular pressure maintenance, and vascular signaling. This review focuses on the interactions of the ECM for homeostasis of normal physiologic functions of the cornea, vitreous, retina, retinal pigment epithelium, Bruch's membrane, and choroid as well as trabecular meshwork, optic nerve, conjunctiva and tenon's layer as it relates to glaucoma. A variety of pathways and key factors related to ECM in the eye are discussed, including but not limited to those related to transforming growth factor-β, vascular endothelial growth factor, basic-fibroblastic growth factor, connective tissue growth factor, matrix metalloproteinases (including MMP-2 and MMP-9, and MMP-14), collagen IV, fibronectin, elastin, canonical signaling, integrins, and endothelial morphogenesis consistent of cellular activation-tubulogenesis and cellular differentiation-stabilization. Alterations contributing to disease states such as wound healing, diabetes-related complications, Fuchs endothelial corneal dystrophy, angiogenesis, fibrosis, age-related macular degeneration, retinal detachment, and posteriorly inserted vitreous base are also reviewed.
Collapse
Affiliation(s)
- Andrew E. Pouw
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Mark A. Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Razek G. Coussa
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Chunhua Jiao
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Ian C. Han
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Jessica M. Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
| | - John H. Fingert
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Robert F. Mullins
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Elliott H. Sohn
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
34
|
Ong Tone S, Wylegala A, Böhm M, Melangath G, Deshpande N, Jurkunas UV. Increased Corneal Endothelial Cell Migration in Fuchs Endothelial Corneal Dystrophy: A Live Cell Imaging Study. OPHTHALMOLOGY SCIENCE 2021; 1:100006. [PMID: 36246012 PMCID: PMC9559113 DOI: 10.1016/j.xops.2021.100006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Purpose To investigate if corneal endothelial cells (CECs) in Fuchs endothelial corneal dystrophy (FECD) have altered cellular migration compared with normal controls. Design Comparative analysis. Materials Descemet's membrane and CECs derived from patients with FECD undergoing endothelial keratoplasty or normal cadaveric donors. Methods Ex vivo specimens were used for live cell imaging and generation of immortalized cell lines. Live imaging was performed on FECD and normal CECs and on ex vivo specimens transfected with green fluorescent protein. Migration speeds were determined as a function of cellular density using automated cell tracking. Ex vivo specimens were classified as either FECD or normal low cell density (nonconfluent) or high cell density (confluent). Scratch assay was performed on CECs seeded at high confluence to determine migration speed. Genetic analysis from blood samples or CECs was performed to detect a CTG repeat expansion in the TCF4 gene. Main Outcome Measures Mean cell migration speed. Results Fuchs endothelial corneal dystrophy CECs in low cell density areas displayed increased mean speed (0.391 ± 0.005 μm/minute vs. 0.364 ± 0.005 μm/minute; P < 0.001) and mean maximum speed (0.961 ± 0.010 μm/minute vs. 0.787 ± 0.011 μm/minute; P < 0.001) compared with normal CECs, and increased mean maximum speed (0.778 ± 0.014 μm/minute vs. 0.680 ± 0.011 μm/minute; P < 0.001) in high cell density areas ex vivo. Similarly, FECD CECs displayed increased mean speed compared with normal CECs (1.958 ± 0.020 μm/minute vs. 2.227 ± 0.021 μm/minute vs. 1.567 ± 0.019 μm/minute; P < 0.001) under nonconfluent conditions in vitro. Moreover, FECD CECs also displayed increased mean speed compared with normal CECs under high confluent conditions as detected by scratch assay (37.2 ± 1.1% vs. 44.3 ± 4.1% vs. 70.7 ± 5.2%; P < 0.001). Morphologic analysis showed that FECD CECs displayed an increased fibroblastic phenotype as detected by filamentous-actin labeling. Conclusions Fuchs endothelial corneal dystrophy CECs demonstrated increased migration speed compared with normal CECs. Further investigation into the mechanisms of heightened cell migration in FECD is needed and may provide insight into its pathogenesis, as well as having implications on descemetorhexis without endothelial keratoplasty.
Collapse
Key Words
- CE, corneal endothelium
- CEC, corneal endothelial cell
- Cell migration
- Corneal endothelium
- DM, Descemet’s membrane
- DMEK, Descemet's membrane endothelial keratoplasty
- DWEK, descemetorhexis without endothelial keratoplasty
- Descemetorhexis without endothelial keratoplasty
- Descemet’s stripping only
- ECD, endothelial cell density
- ECM, extracellular matrix
- EMT, endothelial-to-mesenchymal transition
- FECD, Fuchs endothelial corneal dystrophy
- Fuchs endothelial corneal dystrophy
- GFP, green fluorescent protein
- LNP, lipid nanoparticle
- PBS, phosphate-buffered saline
- TCF4, transcription factor 4
Collapse
Affiliation(s)
- Stephan Ong Tone
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
- Department of Ophthalmology, University of Toronto, Toronto, Canada
| | - Adam Wylegala
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Myriam Böhm
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Geetha Melangath
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Neha Deshpande
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Ula V. Jurkunas
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
35
|
Watanabe S, Oie Y, Miki A, Soma T, Koh S, Kawasaki S, Tsujikawa M, Jhanji V, Nishida K. Correlation Between Angle Parameters and Central Corneal Thickness in Fuchs Endothelial Corneal Dystrophy. Cornea 2021; 39:540-545. [PMID: 31842041 DOI: 10.1097/ico.0000000000002220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate the correlation between anterior chamber parameters and central corneal thickness (CCT) or peripheral corneal thickness (PCT) in patients with Fuchs endothelial corneal dystrophy (FECD) using anterior segment optical coherence tomography. METHODS This case-control study included 20 eyes from 20 patients with FECD and 31 eyes from 31 patients with healthy corneas. CCT was measured as an indicator of FECD severity. Anterior chamber angle parameters, including trabecular-iris angle (TIA500) and angle opening distance (AOD500), were measured as an indicator of peripheral anterior chamber morphology. We also analyzed PCT and lens vault (LV). The relationships between CCT or PCT and anterior chamber parameters were also analyzed in patients with FECD. RESULTS Patients with FECD had a larger CCT (593.9 ± 54.6 μm vs. 533.0 ± 25.4 μm, P < 0.001), smaller TIA500 (21.8 ± 9.9 vs. 32.5 ± 11.2 degrees, P = 0.002), smaller AOD500 (0.21 ± 0.11 vs. 0.34 ± 0.18 mm, P = 0.002), and greater LV (0.60 ± 0.27 vs. 0.40 ± 0.29 mm, P = 0.02) than control subjects. In patients with FECD, CCT was negatively correlated with the angle parameters TIA500 (R = 0.29, P = 0.009) and AOD500 (R = 0.19, P = 0.03). There were no significant correlations between PCT and TIA500 (R = 0.008, P = 0.29) or AOD500 (R = 0.007, P = 0.29). There were also no significant correlations between CCT and LV (R = 0.02, P = 0.55). CONCLUSIONS Larger CCT was significantly associated with narrower anterior chamber angle width, but not with LV. We showed that the severity of FECD is associated with angle chamber morphology.
Collapse
Affiliation(s)
- Shinya Watanabe
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and
| | - Yoshinori Oie
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and
| | - Atsuya Miki
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and
| | - Takeshi Soma
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and
| | - Shizuka Koh
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and
| | - Satoshi Kawasaki
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and
| | - Motokazu Tsujikawa
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and
| |
Collapse
|
36
|
White TL, Deshpande N, Kumar V, Gauthier AG, Jurkunas UV. Cell cycle re-entry and arrest in G2/M phase induces senescence and fibrosis in Fuchs Endothelial Corneal Dystrophy. Free Radic Biol Med 2021; 164:34-43. [PMID: 33418109 PMCID: PMC7897316 DOI: 10.1016/j.freeradbiomed.2020.12.445] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is an age-related disease whereby progressive loss of corneal endothelial cells (CEnCs) leads to loss of vision. There is currently a lack of therapeutic interventions as the etiology of the disease is complex, with both genetic and environmental factors. In this study, we have provided further insights into the pathogenesis of the disease, showing a causal relationship between senescence and endothelial-mesenchymal transition (EMT) using in vitro and in vivo models. Ultraviolet A (UVA) light induced EMT and senescence in CEnCs. Senescent cells were arrested in G2/M phase of the cell cycle and responsible for the resulting profibrotic phenotype. Inhibiting ATR signaling and subsequently preventing G2/M arrest attenuated EMT. In vivo, UVA irradiation induced cell cycle re-entry in post mitotic CEnCs, resulting in senescence and fibrosis at 1- and 2-weeks post-UVA. Selectively eliminating senescent cells using the senolytic cocktail of dasatinib and quercetin attenuated UVA-induced fibrosis, highlighting the potential for a new therapeutic intervention for FECD.
Collapse
Affiliation(s)
- Tomas L White
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Neha Deshpande
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Varun Kumar
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Alex G Gauthier
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ula V Jurkunas
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
37
|
Matrix metalloproteinases and their inhibitors in Fuchs endothelial corneal dystrophy. Exp Eye Res 2021; 205:108500. [PMID: 33617849 DOI: 10.1016/j.exer.2021.108500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/23/2021] [Accepted: 02/07/2021] [Indexed: 11/20/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is characterized by a progressive loss of corneal endothelial cells (CECs) and an abnormal accumulation of extracellular matrix in Descemet's membrane leading to increased thickness and formation of excrescences called guttae. Extracellular matrix homeostasis is modulated by an equilibrium between matrix metalloproteinases (MMPs) and their endogenous tissue inhibitors (TIMPs). This study aimed to investigate MMPs and TIMPs profile in FECD, taking into account cell morphology. Populations of FECD and healthy CECs were cultured and their conditioned media collected for analysis. The presence of proteases in the conditioned media was studied using a semi-quantitative proteome profiler array, and MMPs levels were assessed using quantitative assays (ELISA and quantitative antibody array). MMP activity was determined by zymography and fluorometry. The expression pattern of the membrane type 1-MMP (MT1-MMP, also known as MMP-14) was examined by immunofluorescence on ex vivo FECD and healthy explants of CECs attached to Descemet's membrane. Finally, MMPs and TIMPs protein expression was compared to gene expression obtained from previously collected data. FECD and healthy CEC populations generated cultures of endothelial, intermediate, and fibroblastic-like morphology. Various MMPs (MMP-1, -2, -3, -7, -8, -9, -10, and -12) and TIMPs (TIMP-1 to -4) were detected in both FECD and healthy CECs culture supernatants. Quantitative assays revealed a decrease in MMP-2 and MMP-10 among FECD samples. Both these MMPs can degrade the main extracellular matrix components forming guttae (fibronectin, laminin, collagen IV). Moreover, MMPs/TIMPs ratio was also decreased among FECD cell populations. Activity assays showed greater MMPs/Pro-MMPs proportions for MMP-2 and MMP-10 in FECD cell populations, although overall activities were similar. Moreover, the analysis according to cell morphology revealed among healthy CECs, both increased (MMP-3 and -13) and decreased (MMP-1, -9, -10, and -12) MMPs proteins along with increased MMPs activity (MMP-2, -3, -9, and -10) in the fibroblastic-like subgroup when compared to the endothelial subgroup. However, FECD CECs did not show similar behaviors between the different morphology subgroups. Immunostaining of MT1-MMP on ex vivo FECD and healthy explants revealed a redistribution of MT1-MMP around guttae in FECD explants. At the transcriptional level, no statistically significant differences were detected, but cultured FECD cells had a 12.2-fold increase in MMP1 and a 4.7-fold increase in TIMP3. These results collectively indicate different, and perhaps pathological, MMPs and TIMPs profile in FECD CECs compared to healthy CECs. This is an important finding suggesting the implication of MMPs and TIMPs in FECD pathophysiology.
Collapse
|
38
|
Diseases of the corneal endothelium. Exp Eye Res 2021; 205:108495. [PMID: 33596440 DOI: 10.1016/j.exer.2021.108495] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
The corneal endothelial monolayer and associated Descemet's membrane (DM) complex is a unique structure that plays an essential role in corneal function. Endothelial cells are neural crest derived cells that rest on a special extracellular matrix and play a major role in maintaining stromal hydration within a narrow physiologic range necessary for clear vision. A number of diseases affect the endothelial cells and DM complex and can impair corneal function and vision. This review addresses different human corneal endothelial diseases characterized by loss of endothelial function including: Fuchs endothelial corneal dystrophy (FECD), posterior polymorphous corneal dystrophy (PPCD), congenital hereditary endothelial dystrophy (CHED), bullous keratopathy, iridocorneal endothelial (ICE) syndrome, post-traumatic fibrous downgrowth, glaucoma and diabetes mellitus.
Collapse
|
39
|
Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL, Jurkunas UV. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res 2021; 80:100863. [PMID: 32438095 PMCID: PMC7648733 DOI: 10.1016/j.preteyeres.2020.100863] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the most common primary corneal endothelial dystrophy and the leading indication for corneal transplantation worldwide. FECD is characterized by the progressive decline of corneal endothelial cells (CECs) and the formation of extracellular matrix (ECM) excrescences in Descemet's membrane (DM), called guttae, that lead to corneal edema and loss of vision. FECD typically manifests in the fifth decades of life and has a greater incidence in women. FECD is a complex and heterogeneous genetic disease where interaction between genetic and environmental factors results in cellular apoptosis and aberrant ECM deposition. In this review, we will discuss a complex interplay of genetic, epigenetic, and exogenous factors in inciting oxidative stress, auto(mito)phagy, unfolded protein response, and mitochondrial dysfunction during CEC degeneration. Specifically, we explore the factors that influence cellular fate to undergo apoptosis, senescence, and endothelial-to-mesenchymal transition. These findings will highlight the importance of abnormal CEC-DM interactions in triggering the vicious cycle of FECD pathogenesis. We will also review clinical characteristics, diagnostic tools, and current medical and surgical management options for FECD patients. These new paradigms in FECD pathogenesis present an opportunity to develop novel therapeutics for the treatment of FECD.
Collapse
Affiliation(s)
- Stephan Ong Tone
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Viridiana Kocaba
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Myriam Böhm
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Adam Wylegala
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Tomas L White
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Ula V Jurkunas
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
40
|
Li H, Zou J, Yu XH, Ou X, Tang CK. Zinc finger E-box binding homeobox 1 and atherosclerosis: New insights and therapeutic potential. J Cell Physiol 2020; 236:4216-4230. [PMID: 33275290 DOI: 10.1002/jcp.30177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022]
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1), an important transcription factor belonging to the ZEB family, plays a crucial role in regulating gene expression required for both normal physiological and pathological processes. Accumulating evidence has shown that ZEB1 participates in the initiation and progression of atherosclerotic cardiovascular disease. Recent studies suggest that ZEB1 protects against atherosclerosis by regulation of endothelial cell angiogenesis, endothelial dysfunction, monocyte-endothelial cell interaction, macrophage lipid accumulation, macrophage polarization, monocyte-vascular smooth muscle cell (VSMC) interaction, VSMC proliferation and migration, and T cell proliferation. In this review, we summarize the recent progress of ZEB1 in the pathogenesis of atherosclerosis and provide insights into the prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Instrument and Equipment Technology Laboratory of Hengyang Medical College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Instrument and Equipment Technology Laboratory of Hengyang Medical College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China.,Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiang Ou
- Department of Endocrinology, The First Hospital of Changsha, Changsha, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Instrument and Equipment Technology Laboratory of Hengyang Medical College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
41
|
Effect of SIS3 on Extracellular Matrix Remodeling and Repair in a Lipopolysaccharide-Induced ARDS Rat Model. J Immunol Res 2020; 2020:6644687. [PMID: 33294466 PMCID: PMC7714568 DOI: 10.1155/2020/6644687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
The remodeling of the extracellular matrix (ECM) in the parenchyma plays an important role in the development of acute respiratory distress syndrome (ARDS), a disease characterized by lung injury. Although it is clear that TGF-β1 can modulate the expression of the extracellular matrix (ECM) through intracellular signaling molecules such as Smad3, its role as a therapeutic target against ARDS remains unknown. In this study, a rat model was established to mimic ARDS via intratracheal instillation of lipopolysaccharide (LPS). A selective inhibitor of Smad3 (SIS3) was intraperitoneally injected into the disease model, while phosphate-buffered saline (PBS) was used in the control group. Animal tissues were then evaluated using histological analysis, immunohistochemistry, RT-qPCR, ELISA, and western blotting. LPS was found to stimulate the expression of RAGE, TGF-β1, MMP2, and MMP9 in the rat model. Moreover, treatment with SIS3 was observed to reverse the expression of these molecules. In addition, pretreatment with SIS3 was shown to partially inhibit the phosphorylation of Smad3 and alleviate symptoms including lung injury and pulmonary edema. These findings indicate that SIS3, or the blocking of TGF-β/Smad3 pathways, could influence remodeling of the ECM and this may serve as a therapeutic strategy against ARDS.
Collapse
|
42
|
Trufanov SV, Fisenko NV. [Molecular genetic aspects of Fuchs' endothelial corneal dystrophy pathogenesis]. Vestn Oftalmol 2020; 136:260-267. [PMID: 33063975 DOI: 10.17116/oftalma2020136052260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fuchs' corneal dystrophy (FCD) is a common bilateral non-inflammatory endothelial pathology. It is a multigenic disorder with various expressivity, penetrance and population prevalence. This review discusses corneal endothelium pump function, FCD pathogenesis and its known genetic factors.
Collapse
Affiliation(s)
- S V Trufanov
- Research Institute of Eye Diseases, Moscow, Russia
| | - N V Fisenko
- Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
43
|
Matthaei M, Hribek A, Clahsen T, Bachmann B, Cursiefen C, Jun AS. Fuchs Endothelial Corneal Dystrophy: Clinical, Genetic, Pathophysiologic, and Therapeutic Aspects. Annu Rev Vis Sci 2020; 5:151-175. [PMID: 31525145 DOI: 10.1146/annurev-vision-091718-014852] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a bilateral corneal endothelial disorder and the most common cause of corneal transplantation worldwide. Professor Ernst Fuchs described the first 13 cases of FECD more than 100 years ago. Since then, we have seen far-reaching progress in its diagnosis and treatment. In the field of diagnostics, new technologies enable the development of more accurate classification systems and the more detailed breakdown of the genetic basis of FECD. Laboratory studies help in deciphering the molecular pathomechanisms. The development of minimally invasive surgical techniques leads to a continuous improvement of the postoperative result. This review highlights and discusses clinical, genetic, pathophysiologic, and therapeutic aspects of this common and important corneal disorder.
Collapse
Affiliation(s)
- Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; , , , ,
| | - Agathe Hribek
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; , , , ,
| | - Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; , , , ,
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; , , , ,
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; , , , ,
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA;
| |
Collapse
|
44
|
Eghrari AO, Rasooly MM, Fliotsos MJ, Kinard J, Odozor O, Cunningham D, Bishop RJ, Guerrerio AL, Frischmeyer-Guerrerio PA. Corneal thinning and cornea guttata in patients with mutations in TGFB2. Can J Ophthalmol 2020; 55:336-341. [PMID: 32307099 DOI: 10.1016/j.jcjo.2020.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/19/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Human genome-wide association studies and animal models suggest a role for TGFB2 in contributing to the corneal thickness phenotype. No specific mutations, however, have been reported in this gene that affect corneal thickness. We sought to determine if haploinsufficiency of TGFB2 in humans associated with Loeys-Dietz syndrome type 4 is associated with corneal thinning. DESIGN Observational cohort study of families with Loeys-Dietz syndrome type 4, caused specifically by TGFB2 mutations, in a tertiary care setting. PARTICIPANTS Three probands with pathogenic mutations in TGFB2 and family members underwent comprehensive ophthalmic examination. METHODS Clinical assessment included Scheimpflug imaging, specular microscopy, and slit-lamp biomicroscopy. We measured visual acuity, axial length, refractive error, and central corneal thickness. RESULTS Clinical evaluation of 2 probands identified corneal thinning and cornea guttata, despite a young age and distinct mutations in TGFB2 (c.905G>A, p.Arg302His; c.988C>A, p.Arg330Ser). In the third family, corneal thinning co-segregated with a TGFB2 mutation (c.1103G>A, p.Gly368Glu), although without apparent guttae. CONCLUSIONS In this series, participants with TGFB2 mutations associated with Loeys-Dietz syndrome type 4 demonstrated decreased corneal thickness, and in 2 cases with splice site mutations, also demonstrated cornea guttata. The data demonstrate the importance of considering distinct phenotype-genotype correlations within this condition.
Collapse
Affiliation(s)
- Allen O Eghrari
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD.
| | | | - Michael J Fliotsos
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jessica Kinard
- National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Obinna Odozor
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Denise Cunningham
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rachel J Bishop
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | |
Collapse
|
45
|
Resolution of Corneal Fibrosis After Descemet's Stripping Automated Endothelial Keratoplasty: A Case Report. Ophthalmol Ther 2020; 9:349-354. [PMID: 32144575 PMCID: PMC7196097 DOI: 10.1007/s40123-020-00244-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose To report the resolution of anterior corneal fibrosis after Descemet’s stripping automated endothelial keratoplasty (DSAEK), in a patient with chronic corneal edema and anterior stromal scarring. Methods A 63-year-old woman, with a history of Fuchs endothelial dystrophy, presented with increasing discomfort and gradual visual loss in her right eye. Clinical examination revealed long-standing bullous keratopathy accompanied by marked subepithelial fibrosis (SEF). Based on the low postoperative visual potential due to glaucomatous optic neuropathy, we decided to proceed with DSAEK. Results During the follow-up period, SEF was found to gradually resolve. Corneal clarity was restored and an improvement in visual acuity was observed up to 12 months after surgery. Conclusion DSAEK alone may represent an effective therapeutic option for the restoration of impaired corneal clarity in patients with long-standing corneal edema and concomitant anterior subepithelial scarring.
Collapse
|
46
|
Pan P, Weisenberger DJ, Zheng S, Wolf M, Hwang DG, Rose-Nussbaumer JR, Jurkunas UV, Chan MF. Aberrant DNA methylation of miRNAs in Fuchs endothelial corneal dystrophy. Sci Rep 2019; 9:16385. [PMID: 31705138 PMCID: PMC6841734 DOI: 10.1038/s41598-019-52727-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Homeostatic maintenance of corneal endothelial cells is essential for maintenance of corneal deturgescence and transparency. In Fuchs endothelial corneal dystrophy (FECD), an accelerated loss and dysfunction of endothelial cells leads to progressively severe visual impairment. An abnormal accumulation of extracellular matrix (ECM) is a distinctive hallmark of the disease, however the molecular pathogenic mechanisms underlying this phenomenon are not fully understood. Here, we investigate genome-wide and sequence-specific DNA methylation changes of miRNA genes in corneal endothelial samples from FECD patients. We discover that miRNA gene promoters are frequent targets of aberrant DNA methylation in FECD. More specifically, miR-199B is extensively hypermethylated and its mature transcript miR-199b-5p was previously found to be almost completely silenced in FECD. Furthermore, we find that miR-199b-5p directly and negatively regulates Snai1 and ZEB1, two zinc finger transcription factors that lead to increased ECM deposition in FECD. Taken together, these findings suggest a novel epigenetic regulatory mechanism of matrix protein production by corneal endothelial cells in which miR-199B hypermethylation leads to miR-199b-5p downregulation and thereby the increased expression of its target genes, including Snai1 and ZEB1. Our results support miR-199b-5p as a potential therapeutic target to prevent or slow down the progression of FECD disease.
Collapse
Affiliation(s)
- Peipei Pan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Siyu Zheng
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Marie Wolf
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - David G Hwang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA.,Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Jennifer R Rose-Nussbaumer
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA.,Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Ula V Jurkunas
- Department of Ophthalmology, Harvard Medical School, and Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| | - Matilda F Chan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA. .,Francis I. Proctor Foundation, University of California, San Francisco, CA, USA.
| |
Collapse
|
47
|
Kocaba V, Katikireddy KR, Gipson I, Price MO, Price FW, Jurkunas UV. Association of the Gutta-Induced Microenvironment With Corneal Endothelial Cell Behavior and Demise in Fuchs Endothelial Corneal Dystrophy. JAMA Ophthalmol 2019; 136:886-892. [PMID: 29852040 DOI: 10.1001/jamaophthalmol.2018.2031] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance The number and size of guttae increase over time in Fuchs endothelial corneal dystrophy (FECD); however, the association between these physical parameters and disease pathogenesis is unclear. Objective To determine the role of guttae in corneal endothelial cell function. Design, Settings, and Participants In an in vitro model, cells from a human corneal endothelial cell line, HCENC-21T, were seeded on decellularized normal (n = 30) and FECD (n = 70) endothelial basement (Descemet) membranes (DMs). Normal human corneas were sent to our laboratory from 3 sources. The study took place at the Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, and was performed from September 2015 to July 2017. Normal DMs were obtained from 3 different tissue banks and FECD-DMs were obtained from patients undergoing endothelial keratoplasty in 2 departments. Main Outcomes and Measures Endothelial cell shape, growth, and migration were assessed by live-cell imaging, and gene expression analysis as a function of guttae diameter was assessed by laser capture microscopy. Results Mean (SD) age of normal-DMs donors was 65.6 (4.4) years (16 women [53%]), and mean (SD) age of FECD-DMs donors was 68.9 (10.6) years (43 women [61%]). Cells covered a greater area (mean [SD], 97.7% [8.5%]) with a greater mean (SD) number of cells (2083 [153] cells/mm2) on the normal DMs compared with the FECD DMs (72.8% [11%]; P = .02 and 1541 [221] cells/mm2 221/mm2; P = .01, respectively). Differences in endothelial cell growth over guttae were observed on FECD DMs depending on the guttae diameter. Guttae with a mean (SD) diameter of 10.5 (2.9) μm did not impede cell growth, whereas those with a diameter of 21.1 (4.9) μm were covered only by the cell cytoplasm. Guttae with the largest mean (SD) diameter, 31.8 (3.8) μm, were not covered by cells, which instead surrounded them in a rosette pattern. Moreover, cells adjacent to large guttae upregulated αSMA, N-cadherin, Snail1, and NOX4 genes compared with ones grown on normal DMs or small guttae. Furthermore, large guttae induced TUNEL-positive apoptosis in a rosette pattern, similar to ex vivo FECD specimens. Conclusions and Relevance These findings highlight the important role of guttae in endothelial cell growth, migration, and survival. These data suggest that cell therapy procedures in FECD might be guided by the diameter of the host guttae if subsequent clinical studies confirm these laboratory findings.
Collapse
Affiliation(s)
- Viridiana Kocaba
- The Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston
| | - Kishore Reddy Katikireddy
- The Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston
| | - Ilene Gipson
- The Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston
| | | | | | - Ula V Jurkunas
- The Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston
| |
Collapse
|
48
|
Okumura N, Puangsricharern V, Jindasak R, Koizumi N, Komori Y, Ryousuke H, Nakahara M, Nakano M, Adachi H, Tashiro K, Yoshii K, Chantaren P, Ittiwut R, Shotelersuk V, Suphapeetiporn K. Trinucleotide repeat expansion in the transcription factor 4 (TCF4) gene in Thai patients with Fuchs endothelial corneal dystrophy. Eye (Lond) 2019; 34:880-885. [PMID: 31554942 DOI: 10.1038/s41433-019-0595-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/10/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To evaluate the association of single nucleotide polymorphisms (SNPs) and the intronic expansion of a trinucleotide repeat (TNR) in the TCF4 gene with Fuchs endothelial corneal dystrophy (FECD) in a Thai population. METHODS In total, 54 Thai FECD patients and 54 controls were recruited for the study. Five SNPs (rs613872, rs2123392, rs17089887, rs1452787, and rs1348047), previously reported to be associated with FECD, were genotyped by direct sequencing. The repeat length was determined by direct sequencing of PCR-amplified DNA (a short tandem repeat; STR assay) and by triplet repeat primed PCR (TP-PCR). RESULTS Only one of the 54 patients with FECD harboured rs613872 (1.9%). Four SNPs (rs2123392, rs17089887, rs1452787, and rs1348047), which are not rare polymorphisms in the Thai population, were found in approximately half of the patients. Of the 54 patients, 21 (1 homozygous and 20 heterozygous patients; 39%) harboured a TNR ≥ 40, while 33 patients (61%) harboured a TNR < 40. CONCLUSIONS The association of TNR expansion in TCF4 with FECD is shown for the first time in the Thai population. The intronic TNR expansion identified in various ethnic groups underlines the importance of expansion as a potent pathophysiological cause of FECD.
Collapse
Affiliation(s)
- Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Vilavun Puangsricharern
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand. .,Excellence Center for Cornea and Limbal Stem Cell Transplantation, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand.
| | - Raina Jindasak
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Yuya Komori
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Hayashi Ryousuke
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Makiko Nakahara
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroko Adachi
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Tashiro
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kengo Yoshii
- Department of Mathematics and Statistics in Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Patchima Chantaren
- Excellence Center for Cornea and Limbal Stem Cell Transplantation, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Rungnapa Ittiwut
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
49
|
Skorodumova LO, Belodedova AV, Sharova EI, Malyugin BE. [Search for genetic markers for precise diagnostics of keratoconus]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:9-20. [PMID: 30816092 DOI: 10.18097/pbmc20196501009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Keratoconus is a chronic disorder of the cornea, characterized by its progressive thinning, stretching, and conical protrusion. Diagnostics of subclinical keratoconus, as well as its early stages (forme fruste), is a complex problem. The presence of these forms of keratoconus in a patient is one of the reasons for the development of keratectasia after laser refractive surgery. Currently, the role of genetic factors in keratoconus development has been proven. This indicates the possibility of diagnostics of subclinical and forme fruste keratoconus using genetic markers. Knowledge about the patient's genetic susceptibility to keratoconus would allow correcting the tactics of treatment of refractive anomalies and avoiding serious side effects. The studies of causal mutations indicate the genetic heterogeneity of keratoconus, which complicates the development of a diagnostic panel. Selection of candidate variants from the currently known ones based on clear criteria may be one of the approaches for diagnostic markers search. In this review, we have analyzed articles on keratoconus markers in order to form a list of candidate variants for genotyping in the Russian population. The selection criteria took into account the complexes of symptoms in which a marker was found, populations in which a particular marker was investigated, the presence and results of replication studies. The analysis included markers in VSX1, SOD1, ZEB1, LOX, CAST, DOCK9, TGFBI, HGF, MAP3K19, KCND3, COL4A3, COL4A4, COL5A1, FNDC3B, FOXO1, BANP-ZNF469, MPDZ-NF1B, WNT10A genes. Based on the results of the analysis, the following candidate variants were selected for genotyping in the Russian population of patients with keratoconus: rs1536482 and rs7044529 in the COL5A1 gene, rs5745752 and rs2286194 in the HGF gene, rs4954218 in the MAP3K19 gene, rs4839200 near the KCND3 gene, rs2721051 near the FOXO1 gene, rs1324183 between the MPDZ and the NF1B genes, and rs121908120 in the WNT10A gene.
Collapse
Affiliation(s)
- L O Skorodumova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - A V Belodedova
- Fyodorov Eye Microsurgery Complex Federal State Institution, Moscow, Russia
| | - E I Sharova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - B E Malyugin
- Fyodorov Eye Microsurgery Complex Federal State Institution, Moscow, Russia
| |
Collapse
|
50
|
Fuchs endothelial corneal dystrophy and corneal endothelial diseases: East meets West. Eye (Lond) 2019; 34:427-441. [PMID: 31267087 DOI: 10.1038/s41433-019-0497-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/21/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is amongst one of the most common indications for endothelial keratoplasty worldwide. Despite being originally described among Caucasians, it is now known to be prevalent among a large number of populations, including Asians. While the FECD phenotype is classically described as that of central guttate and pigment deposits associated with corneal endothelial dysfunction, there are subtle yet important differences in how FECD and its phenocopies may present in Caucasians vs Asians. Such differences are paralled by genotypic variations and disease management preferences which appear to be geographically and ethnically delineated. This article provides a succinct review of such differences, with a focus on diagnostic and management issues which may be encountered by ophthalmologists practicing in the different geographic regions, when evaluating a patient with FECD.
Collapse
|