1
|
Wang P, Zheng Y, Sun J, Zhang Y, Chan WK, Lu Y, Li X, Yang Z, Wang Y. Sepsis induced dysfunction of liver type 1 innate lymphoid cells. BMC Immunol 2024; 25:57. [PMID: 39210270 PMCID: PMC11363412 DOI: 10.1186/s12865-024-00648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Sepsis is a life-threatening condition triggered by uncontrolled immune responses to infection, leading to widespread inflammation, tissue damage, organ dysfunction, and potentially death. The liver plays a crucial role in the immune response during sepsis, serving as a major site for immune cell activation and cytokine production. Liver type 1 innate lymphoid cells (ILCs) consist of NK cells and ILC1s. They maintain the local immune microenvironment by directly eliminating target cells and secreting cytokines. However, the specific roles and pathological changes of liver-resident NK cells and ILC1s during sepsis remain poorly understood. RESULTS This study aims to investigate the pathological changes of NK cells and ILC1s, which might contribute the dysfunction of liver. Sepsis mouse model was established by cecal ligation and puncture (CLP). Mouse immune cells from liver were isolated, and the surface makers, gene expression profiles, cytokine response and secretion, and mitochondrial function of NK (Natural Killer) cells and ILC1s (Innate Lymphoid Cell 1) were analyzed. A significant decrease in the number of mature NK cells was observed in the liver after CLP. Furthermore, the secretion of interferon-gamma (IFN-γ) was found to be reduced in spleen and liver NK cells when stimulated by IL-18. Mitochondrial activities in both liver NK cells and ILC1 were found to be increased during sepsis, suggesting an enhanced metabolic response in these cells to combat the infection. However, despite this heightened activity, liver NK cells exhibited a decreased level of cytotoxicity, which might impact their ability to target infected cells effectively. RNA sequencing supported and provided the potential mechanisms for the proinflammatory effects and exhaustion like phenotypes of liver NK cells. CONCLUSIONS Sepsis induces dysfunction and exhaustion-like phenotypes in liver NK cells and ILC1, which might further impair other immune cells and represent a potential therapeutic target for sepsis.
Collapse
Affiliation(s)
- Peiying Wang
- Institute of Medical Engineering & Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yiran Zheng
- Institute of Medical Engineering & Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jiaman Sun
- Institute of Medical Engineering & Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yumo Zhang
- Institute of Medical Engineering & Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wing Keung Chan
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, 43210, USA
| | - Yan Lu
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Xiaohong Li
- Institute of Medical Engineering & Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Zhouxin Yang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China.
| | - Youwei Wang
- Institute of Medical Engineering & Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
2
|
Ye H, Zou X, Fang X. Advancing cell-based therapy in sepsis: An anesthesia outlook. Chin Med J (Engl) 2024; 137:1522-1534. [PMID: 38708689 PMCID: PMC11230747 DOI: 10.1097/cm9.0000000000003097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 05/07/2024] Open
Abstract
ABSTRACT Sepsis poses a health challenge globally owing to markedly high rates of morbidity and mortality. Despite employing bundle therapy over two decades, approaches including transient organ supportive therapy and clinical trials focusing on signaling pathways have failed in effectively reversing multiple organ failure in patients with sepsis. Prompt and appropriate perioperative management for surgical patients with concurrent sepsis is urgent. Consequently, innovative therapies focusing on remedying organ injuries are necessitated. Cell therapy has emerged as a promising therapeutic avenue for repairing local damage to vital organs and restoring homeostasis during perioperative treatment for sepsis. Given the pivotal role of immune cell responses in the pathogenesis of sepsis, stem cell-based interventions that primarily modulate immune responses by interacting with multiple immune cells have progressed into clinical trials. The strides made in single-cell sequencing and gene-editing technologies have advanced the understanding of disease-specific immune responses in sepsis. Chimeric antigen receptor (CAR)-immune cell therapy offers an intriguing option for the treatment of sepsis. This review provides a concise overview of immune cell therapy, its current status, and the strides made in the context of sepsis research, discussing potential strategies for the management of patients with sepsis during perioperative stages.
Collapse
Affiliation(s)
- Hui Ye
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiaoyu Zou
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 312000, China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
3
|
Yang J, Zhu X, Feng J. The Changes in the Quantity of Lymphocyte Subpopulations during the Process of Sepsis. Int J Mol Sci 2024; 25:1902. [PMID: 38339179 PMCID: PMC10855580 DOI: 10.3390/ijms25031902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Sepsis remains a global challenge, especially in low- and middle-income countries, where there is an urgent need for easily accessible and cost-effective biomarkers to predict the occurrence and prognosis of sepsis. Lymphocyte counts are easy to measure clinically, and a large body of animal and clinical research has shown that lymphocyte counts are closely related to the incidence and prognosis of sepsis. This review extensively collected experimental articles related to lymphocyte counts since the unification of the definition of sepsis. The article categorizes and discusses the relationship between absolute lymphocyte counts, intrinsic lymphocyte subsets, effector T-lymphocytes, B-lymphocytes, dendritic cells, and the incidence and prognosis of sepsis. The results indicate that comparisons of absolute lymphocyte counts alone are meaningless. However, in addition to absolute lymphocyte counts, innate lymphocyte subsets, effector T-cells, B-lymphocytes, and dendritic cells have shown certain research value in related studies.
Collapse
Affiliation(s)
- Jiale Yang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Wang F, Cui Y, He D, Gong L, Liang H. Natural killer cells in sepsis: Friends or foes? Front Immunol 2023; 14:1101918. [PMID: 36776839 PMCID: PMC9909201 DOI: 10.3389/fimmu.2023.1101918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Sepsis is one of the major causes of death in the hospital worldwide. The pathology of sepsis is tightly associated with dysregulation of innate immune responses. The contribution of macrophages, neutrophils, and dendritic cells to sepsis is well documented, whereas the role of natural killer (NK) cells, which are critical innate lymphoid lineage cells, remains unclear. In some studies, the activation of NK cells has been reported as a risk factor leading to severe organ damage or death. In sharp contrast, some other studies revealed that triggering NK cell activity contributes to alleviating sepsis. In all, although there are several reports on NK cells in sepsis, whether they exert detrimental or protective effects remains unclear. Here, we will review the available experimental and clinical studies about the opposing roles of NK cells in sepsis, and we will discuss the prospects for NK cell-based immunotherapeutic strategies for sepsis.
Collapse
Affiliation(s)
- Fangjie Wang
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yiqin Cui
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dongmei He
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lisha Gong
- School of Laboratory Medicine and Technology, Harbin Medical University, Daqing, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
5
|
Pretreatment with 6-Gingerol Ameliorates Sepsis-Induced Immune Dysfunction by Regulating the Cytokine Balance and Reducing Lymphocyte Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:5427153. [PMID: 35003518 PMCID: PMC8731291 DOI: 10.1155/2021/5427153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/04/2021] [Accepted: 11/26/2021] [Indexed: 11/19/2022]
Abstract
Sepsis is characterized by an initial net hyperinflammatory response, followed by a period of immunosuppression, termed immunoparalysis. During this immunosuppressive phase, patients may have difficulty eradicating invading pathogens and are susceptible to life-threatening secondary hospital-acquired infections. Due to progress in antimicrobial treatment and supportive care, most patients survive early sepsis. Mortality is more frequently attributed to subsequent secondary nosocomial infections and multiorgan system failure. 6-Gingerol is the major pharmacologically active component of ginger. Although it is known to exhibit a variety of biological activities, including anti-inflammation and antioxidation, the role of 6-gingerol in sepsis-induced immune dysfunction remains elusive. Thus, we investigated whether 6-gingerol improves septic host response to infections during sepsis. 6-Gingerol-treated mice showed significantly lower mortality in polymicrobial sepsis induced by cecal ligation and puncture LPS via enhanced bacterial clearance in the peritoneum, blood, and organs (liver, spleen, and kidney) and inhibited the production of TNF-α and IL-6 in TLR2 and/or TLR4-stimulated macrophages. In addition, we demonstrated that survival improvement of secondary infection following septic insult was associated with an initial response of enhanced neutrophil numbers and function at the infection site, reduced apoptosis of immune cells, and a shift from a T helper cell type 2 (Th2) to a T helper cell type 1 (Th1) cytokine balance in the hypoinflammation phase. Our overall findings suggest that 6-gingerol potentially restores sepsis-induced immune dysfunction by shifting the balance of Th1/Th2 and by regulating apoptosis of immune cells.
Collapse
|
6
|
Elemam NM, Ramakrishnan RK, Hundt JE, Halwani R, Maghazachi AA, Hamid Q. Innate Lymphoid Cells and Natural Killer Cells in Bacterial Infections: Function, Dysregulation, and Therapeutic Targets. Front Cell Infect Microbiol 2021; 11:733564. [PMID: 34804991 PMCID: PMC8602108 DOI: 10.3389/fcimb.2021.733564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases represent one of the largest medical challenges worldwide. Bacterial infections, in particular, remain a pertinent health challenge and burden. Moreover, such infections increase over time due to the continuous use of various antibiotics without medical need, thus leading to several side effects and bacterial resistance. Our innate immune system represents our first line of defense against any foreign pathogens. This system comprises the innate lymphoid cells (ILCs), including natural killer (NK) cells that are critical players in establishing homeostasis and immunity against infections. ILCs are a group of functionally heterogenous but potent innate immune effector cells that constitute tissue-resident sentinels against intracellular and extracellular bacterial infections. Being a nascent subset of innate lymphocytes, their role in bacterial infections is not clearly understood. Furthermore, these pathogens have developed methods to evade the host immune system, and hence permit infection spread and tissue damage. In this review, we highlight the role of the different ILC populations in various bacterial infections and the possible ways of immune evasion. Additionally, potential immunotherapies to manipulate ILC responses will be briefly discussed.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jennifer E Hundt
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Azzam A Maghazachi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Abstract
Sepsis is a host immune disorder induced by infection. It can lead to multiple organ dysfunction syndrome (MODS), which has high morbidity and mortality. There has been great progress in the clinical diagnosis and treatment of sepsis, such as improvements in pathogen detection technology, innovations regarding anti-infection drugs, and the development of organ function support. Abnormal immune responses triggered by pathogens, ranging from excessive inflammation to immunosuppression, are recognized to be an important cause of the high mortality rate. However, no drugs have been approved specifically for treating sepsis. Here, we review the recent research progress on immune responses in sepsis to provide a theoretical basis for the treatment of sepsis. Constructing and optimizing a dynamic immune system treatment regimen based on anti-infection treatment, fluid replacement, organ function support, and timely use of immunomodulatory interventions may improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Jian Chen
- Department of Intensive Care Medicine, The First Affiliated Hospital of, USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Department of Geriatrics, The First Affiliated Hospital of, USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
He W, Xiao K, Fang M, Xie L. Immune Cell Number, Phenotype, and Function in the Elderly with Sepsis. Aging Dis 2021; 12:277-296. [PMID: 33532141 PMCID: PMC7801284 DOI: 10.14336/ad.2020.0627] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a form of life-threatening organ dysfunction caused by dysregulated host responses to an infection that can be partly attributed to immune dysfunction. Although sepsis affects patients of all ages, elderly individuals display increased susceptibility and mortality. This is partly due to immunosenescence, a decline in normal immune system function associated with physiological aging that affects almost all cell types in the innate and adaptive immune systems. In elderly patients with sepsis, these alterations in immune cells such as endothelial cells, neutrophils, monocytes, macrophages, natural killer cells, dendritic cells, T lymphocytes, and B lymphocytes, are largely responsible for their poor prognosis and increased mortality. Here, we review recent studies investigating the events affecting both innate and adaptive immune cells in elderly mice and patients with sepsis, including alterations in their number, phenotype, and function, to shed light on possible new therapeutic strategies.
Collapse
Affiliation(s)
- Wanxue He
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China.
| | - Kun Xiao
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China.
| | - Min Fang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
9
|
Taylor MD, Fernandes TD, Kelly AP, Abraham MN, Deutschman CS. CD4 and CD8 T Cell Memory Interactions Alter Innate Immunity and Organ Injury in the CLP Sepsis Model. Front Immunol 2020; 11:563402. [PMID: 33329524 PMCID: PMC7715000 DOI: 10.3389/fimmu.2020.563402] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
The role of T cell memory in sepsis is poorly understood. Recent work has demonstrated that mice exposed to frequent antigenic stimulation, in contrast to laboratory mice, better recapitulate the human T cell repertoire. This difference may profoundly alter responses to inflammatory insults. We induced isolated T cell memory by inoculating C57Bl/6 mice with an anti-CD3ϵ activating antibody, a process we term “immune education.” These mice were subjected to the cecal ligation and puncture (CLP) model of sepsis and responses were compared to those of isotype-treated controls. CLP-induced increases in 1) CD4 T cell production and serum levels of IFNγ, 2) CD8 T cell granzyme B levels, and 3) innate cell function were all more pronounced in educated mice than in control mice. Immune education increased CLP-induced liver injury and decreased survival. The differences in responses to CLP were not recapitulated in mice with either isolated CD4 or isolated CD8 T cell memory. Relative to controls, CLP in educated CD8−/− mice (isolated CD4 memory) increased monocyte-derived dendritic cells. Combined CD4 and CD8 memory did not increase monocyte-derived dendritic cells; this combination recapitulated increases in neutrophil and inflammatory monocyte numbers in educated wild-type mice. Induction of T cell memory prior to CLP alters immune responses, organ function, and survival. Both CD4 and CD8 memory T cells play important and independent roles in this response. These findings have profound implications for the development of murine models of human inflammatory disorders such as infection and sepsis.
Collapse
Affiliation(s)
- Matthew D Taylor
- The Division of Critical Care Medicine, Department of Pediatrics, The Feinstein Institutes for Medical Research, Manhasset, NY, and Cohen Children's Medical Center/Northwell Health, New Hyde Park, NY, United States.,Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Tiago D Fernandes
- The Division of Critical Care Medicine, Department of Pediatrics, The Feinstein Institutes for Medical Research, Manhasset, NY, and Cohen Children's Medical Center/Northwell Health, New Hyde Park, NY, United States.,Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Alexander P Kelly
- The Division of Critical Care Medicine, Department of Pediatrics, The Feinstein Institutes for Medical Research, Manhasset, NY, and Cohen Children's Medical Center/Northwell Health, New Hyde Park, NY, United States.,Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Mabel N Abraham
- The Division of Critical Care Medicine, Department of Pediatrics, The Feinstein Institutes for Medical Research, Manhasset, NY, and Cohen Children's Medical Center/Northwell Health, New Hyde Park, NY, United States.,Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Clifford S Deutschman
- The Division of Critical Care Medicine, Department of Pediatrics, The Feinstein Institutes for Medical Research, Manhasset, NY, and Cohen Children's Medical Center/Northwell Health, New Hyde Park, NY, United States.,Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
10
|
Garzón-Tituaña M, Arias MA, Sierra-Monzón JL, Morte-Romea E, Santiago L, Ramirez-Labrada A, Martinez-Lostao L, Paño-Pardo JR, Galvez EM, Pardo J. The Multifaceted Function of Granzymes in Sepsis: Some Facts and a Lot to Discover. Front Immunol 2020; 11:1054. [PMID: 32655547 PMCID: PMC7325996 DOI: 10.3389/fimmu.2020.01054] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a serious global health problem. In addition to a high incidence, this syndrome has a high mortality and is responsible for huge health expenditure. The pathophysiology of sepsis is very complex and it is not well-understood yet. However, it is widely accepted that the initial phase of sepsis is characterized by a hyperinflammatory response while the late phase is characterized by immunosuppression and immune anergy, increasing the risk of secondary infections. Granzymes (Gzms) are a family of serine proteases classified according to their cleavage specificity. Traditionally, it was assumed that all Gzms acted as cytotoxic proteases. However, recent evidence suggests that GzmB is the one with the greatest cytotoxic capacity, while the cytotoxicity of others such as GzmA and GzmK is not clear. Recent studies have found that GzmA, GzmB, GzmK, and GzmM act as pro-inflammatory mediators. Specially, solid evidences show that GzmA and GzmK function as extracellular proteases that regulate the inflammatory response irrespectively of its ability to induce cell death. Indeed, studies in animal models indicate that GzmA is involved in the cytokine release syndrome characteristic of sepsis. Moreover, the GZM family also could regulate other biological processes involved in sepsis pathophysiology like the coagulation cascade, platelet function, endothelial barrier permeability, and, in addition, could be involved in the immunosuppressive stage of sepsis. In this review, we provide a comprehensive overview on the contribution of these novel functions of Gzms to sepsis and the new therapeutic opportunities emerging from targeting these proteases for the treatment of this serious health problem.
Collapse
Affiliation(s)
- Marcela Garzón-Tituaña
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - José L Sierra-Monzón
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Elena Morte-Romea
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Nanotoxicology and Immunotoxicology Unit (UNATI), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Luis Martinez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| | - José R Paño-Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain.,Aragon I + D Foundation (ARAID), Zaragoza, Spain.,Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
11
|
Fatemi F, Golbodagh A, Hojihosseini R, Dadkhah A, Akbarzadeh K, Dini S, Malayeri MRM. Anti-inflammatory Effects of Deuterium-Depleted Water Plus Rosa Damascena Mill. Essential Oil Via Cyclooxygenase-2 Pathway in Rats. Turk J Pharm Sci 2020; 17:99-107. [PMID: 32454767 DOI: 10.4274/tjps.galenos.2018.24381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/15/2018] [Indexed: 12/29/2022]
Abstract
Objectives Natural medicine has been proposed for treating sepsis worldwide. Therefore, in this study, the effect of deuterium-depleted water (DDW) alone and adjuvant with Rosa damascena Mill. (RD) essential oils was considered through the evaluation of oxidative stress-antioxidant parameters and the expression of cyclooxygenase-2 (COX-2) inflammatory gene in liver damage caused by sepsis. Materials and Methods The rats were randomly divided into 5 groups: 1) laparotomy group; 2) cecal ligation and puncture (CLP) group; 3) DDW (15 ppm and 30 ppm doses) group; 4) DDW (15 ppm and 30 ppm doses) plus RD essential oil (100 mg/kg.bw); 5) indomethacin (2 mg/kg.bw) as a positive control. The treatments were daily administrated for 2 weeks and the CLP model was created on the day 15. Then, the animals were killed and their liver tissue was separated for histopathologic and biochemical assessment. Results Our results demonstrated that the treatment of animals with DDW and DDW plus RD essential oil was effective due to the regulation of the oxidative stress-antioxidant parameters including lipid peroxidation, glutathione (GSH), GSH s-transferases, myeloperoxidase, ferric reducing ability of plasma and inflammatory parameters such as prostaglandin E2 and COX-2. Pathological studies also showed that sepsis led to the liver tissue injuries, which can be reduced by treatments. Conclusion Sepsis caused oxidative stress in the liver tissue, but the administration of DDW and DDW plus RD essential oil can be useful to prevent and heal these injuries.
Collapse
Affiliation(s)
- Faezeh Fatemi
- Nuclear Science and Technology Research Institute, Materials and Nuclear Fuel Research School, Tehran, Iran
| | - Abbas Golbodagh
- Payame Noor University, Faculty of Sciences, Department of Biochemistry, Tehran, Iran
| | - Reza Hojihosseini
- Payame Noor University, Faculty of Sciences, Department of Biochemistry, Tehran, Iran
| | - Abolfazl Dadkhah
- Islamic Azad University, Qom Branch, Faculty of Medicine, Department of Medicine, Qom, Iran
| | - Kambiz Akbarzadeh
- Mashhad University of Medical Science, Faculty of Medicine, Mashhad, Iran
| | - Salome Dini
- Islamic Azad University, Karaj Branch, Young Researchers and Elite Club, Karaj, Iran
| | | |
Collapse
|
12
|
Feng T, Liao X, Yang X, Yang C, Lin F, Guo Y, Kang Y, Li H. A shift toward inhibitory receptors and impaired effector functions on NK cells contribute to immunosuppression during sepsis. J Leukoc Biol 2019; 107:57-67. [PMID: 31385383 DOI: 10.1002/jlb.4a0818-313rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/05/2023] Open
Abstract
Most information about the immune status of NK cells during sepsis has been obtained from animal models, athough data from clinical septic patients is limited. In this study, we aimed to decipher NK cell immunity of septic patients in a more comprehensive way. We found that cytotoxicity of NK cells dramatically decreased during sepsis, likely due to the reduction of cluster of differentiation (CD)3- CD56+ NK cells and a shift of phenotypic changes of NK group 2 member (NKG2) receptors, natural cytotoxicity receptors (NCRs) and killer immunoglobulin-like receptors (KIRs) toward inhibitory receptors demonstrated by CD3- CD56+ NK cells in septic patients. Expression of the activation indicator CD69 and cytotoxic associated marker CD107a on CD3- CD56+ NK cells in healthy adults was significantly lower than that of septic patients. Although perforin and granzyme B on CD3- CD56+ NK cells from all groups exhibited equivalently high levels, CD3- CD56+ NK cells from septic patients exhibited a much lower fold increase of CD69 and CD107a compared with healthy adults after coculturing with K562 cells in vitro. Cytokine production of IFN-γ and TNF-α on CD3- CD56+ NK cells in septic patients was also impaired after stimulation by PMA and ionomycin. We found that the proportion of NK cells in lymphocytes was negatively associated with patient 28 d death in septic patients. Phenotypic changes of a shift toward inhibitory receptors and impairment of effector functions of NK cells might be an important mechanism of immunosuppression during sepsis.
Collapse
Affiliation(s)
- Ting Feng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liao
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xuewei Yang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chuan Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fang Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yinkun Guo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Jensen IJ, Winborn CS, Fosdick MG, Shao P, Tremblay MM, Shan Q, Tripathy SK, Snyder CM, Xue HH, Griffith TS, Houtman JC, Badovinac VP. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathog 2018; 14:e1007405. [PMID: 30379932 PMCID: PMC6231673 DOI: 10.1371/journal.ppat.1007405] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/12/2018] [Accepted: 10/13/2018] [Indexed: 12/14/2022] Open
Abstract
The sepsis-induced cytokine storm leads to severe lymphopenia and reduced effector capacity of remaining/surviving cells. This results in a prolonged state of immunoparalysis, that contributes to enhanced morbidity/mortality of sepsis survivors upon secondary infection. The impact of sepsis on several lymphoid subsets has been characterized, yet its impact on NK-cells remains underappreciated-despite their critical role in controlling infection(s). Here, we observed numerical loss of NK-cells in multiple tissues after cecal-ligation-and-puncture (CLP)-induced sepsis. To elucidate the sepsis-induced lesions in surviving NK-cells, transcriptional profiles were evaluated and indicated changes consistent with impaired effector functionality. A corresponding deficit in NK-cell capacity to produce effector molecules following secondary infection and/or cytokine stimulation (IL-12,IL-18) further suggested a sepsis-induced NK-cell intrinsic impairment. To specifically probe NK-cell receptor-mediated function, the activating Ly49H receptor, that recognizes the murine cytomegalovirus (MCMV) m157 protein, served as a model receptor. Although relative expression of Ly49H receptor did not change, the number of Ly49H+ NK-cells in CLP hosts was reduced leading to impaired in vivo cytotoxicity and the capacity of NK-cells (on per-cell basis) to perform Ly49H-mediated degranulation, killing, and effector molecule production in vitro was also severely reduced. Mechanistically, Ly49H adaptor protein (DAP12) activation and clustering, assessed by TIRF microscopy, was compromised. This was further associated with diminished AKT phosphorylation and capacity to flux calcium following receptor stimulation. Importantly, DAP12 overexpression in NK-cells restored Ly49H/D receptors-mediated effector functions in CLP hosts. Finally, as a consequence of sepsis-dependent numerical and functional lesions in Ly49H+ NK-cells, host capacity to control MCMV infection was significantly impaired. Importantly, IL-2 complex (IL-2c) therapy after CLP improved numbers but not a function of NK-cells leading to enhanced immunity to MCMV challenge. Thus, the sepsis-induced immunoparalysis state includes numerical and NK-cell-intrinsic functional impairments, an instructive notion for future studies aimed in restoring NK-cell immunity in sepsis survivors.
Collapse
Affiliation(s)
- Isaac J. Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Christina S. Winborn
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Micaela G. Fosdick
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Peng Shao
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Mikaela M. Tremblay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Qiang Shan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Sandeep Kumar Tripathy
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christopher M. Snyder
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Hai-Hui Xue
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Thomas S. Griffith
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Minneapolis VA Health Care, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jon C. Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Vladimir P. Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
14
|
Shaul ME, Fridlender ZG. Cancer-related circulating and tumor-associated neutrophils - subtypes, sources and function. FEBS J 2018; 285:4316-4342. [PMID: 29851227 DOI: 10.1111/febs.14524] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/18/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
Abstract
In recent years, the role of neutrophils in cancer biology has been a matter of increasing interest. Many patients with advanced cancer show high levels of neutrophilia, tumor neutrophils are connected to dismal prognosis, and the neutrophil-to-lymphocyte ratio has been introduced as a significant prognostic factor for survival in many types of cancer. Neutrophils constitute an important portion of the infiltrating immune cells in the tumor microenvironment, but controversy has long surrounded the function of these cells in the context of cancer. Multiple evidences have shown that neutrophils recruited to the tumor can acquire either protumor or antitumor function. These findings have led to the identification of multiple and heterogeneous neutrophil subsets in the tumor and circulation. In addition, tumor-associated neutrophils (TANs) were shown to demonstrate functional plasticity, driven by multiple factors present in the tumor microenvironment. In this review, we examine the current knowledge on cancer-related circulating neutrophils, their source and the function of the different subtypes, both mature and immature. We then discuss the pro vs antitumor nature of TANs in cancer, their functional plasticity and the mechanisms that regulate neutrophil recruitment and polarization. Although the vast majority of the knowledge on neutrophils in cancer comes from murine studies, recent work has been done on human cancer-related neutrophils. In the final paragraphs, we expand on the current knowledge regarding the role of neutrophils in human cancer and examine the question whether cancer-related neutrophils (circulating or intratumoral) could be a new possible target for cancer immunotherapy.
Collapse
Affiliation(s)
- Merav E Shaul
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
15
|
Schmidt S, Tramsen L, Rais B, Ullrich E, Lehrnbecher T. Natural killer cells as a therapeutic tool for infectious diseases - current status and future perspectives. Oncotarget 2018; 9:20891-20907. [PMID: 29755697 PMCID: PMC5945539 DOI: 10.18632/oncotarget.25058] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
Natural Killer (NK) cells are involved in the host immune response against infections due to viral, bacterial and fungal pathogens, all of which are a significant cause of morbidity and mortality in immunocompromised patients. Since the recovery of the immune system has a major impact on the outcome of an infectious complication, there is major interest in strengthening the host response in immunocompromised patients, either by using cytokines or growth factors or by adoptive cellular therapies transfusing immune cells such as granulocytes or pathogen-specific T-cells. To date, relatively little is known about the potential of adoptively transferring NK cells in immunocompromised patients with infectious complications, although the anti-cancer property of NK cells is already being investigated in the clinical setting. This review will focus on the antimicrobial properties of NK cells and the current standing and future perspectives of generating and using NK cells as immunotherapy in patients with infectious complications, an approach which is promising and might have an important clinical impact in the future.
Collapse
Affiliation(s)
- Stanislaw Schmidt
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Lars Tramsen
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Bushra Rais
- Division of Stem Cell Transplantation and Immunology, Laboratory for Cellular Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Evelyn Ullrich
- Division of Stem Cell Transplantation and Immunology, Laboratory for Cellular Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Thomas Lehrnbecher
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
16
|
Danahy DB, Strother RK, Badovinac VP, Griffith TS. Clinical and Experimental Sepsis Impairs CD8 T-Cell-Mediated Immunity. Crit Rev Immunol 2017; 36:57-74. [PMID: 27480902 DOI: 10.1615/critrevimmunol.2016017098] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Septic patients experience chronic immunosuppression resulting in enhanced susceptibility to infections normally controlled by T cells. Clinical research on septic patients has shown increased apoptosis and reduced total numbers of CD4 and CD8 T cells, suggesting contributing mechanism driving immunosuppression. Experimental models of sepsis, including cecal ligation and puncture, reverse translated this clinical observation to facilitate hypothesis-driven research and allow the use of an array of experimental tools to probe the impact of sepsis on T-cell immunity. In addition to numerical loss, sepsis functionally impairs the antigen-driven proliferative capacity and effector functions of CD4 and CD8 T cells. Sepsis-induced impairments in both the quantity and quality of T cells results in reduced protective capacity and increased susceptibility of mice to new or previously encountered infections. Therefore, the combined efforts of clinical and experimental sepsis research have begun to elucidate the impact of sepsis on T-cell-mediated immunity and potential T-cell-intrinsic and -extrinsic mechanisms driving chronic immunosuppression. Future work will explore the impact of sepsis on the recently appreciated tissue-resident memory (TRM) T cells, which provide robust protection against localized infections, and dendritic cells, which are needed to activate T cells and promote effective T-cell responses.
Collapse
Affiliation(s)
- Derek B Danahy
- Department of Pathology, University of Iowa, Iowa City, IA; Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | - Vladimir P Badovinac
- Department of Pathology, Interdisciplinary Program in Immunology, University of Iowa, Iowa City, Iowa
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN; Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN; Center for Immunology, University of Minnesota, Minneapolis, MN; Minneapolis VA Health Care System, Minneapolis, Minnesota
| |
Collapse
|
17
|
Guo Y, Patil NK, Luan L, Bohannon JK, Sherwood ER. The biology of natural killer cells during sepsis. Immunology 2017; 153:190-202. [PMID: 29064085 DOI: 10.1111/imm.12854] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are large granular lymphocytes largely recognized for their importance in tumour surveillance and the host response to viral infections. However, as the major innate lymphocyte population, NK cells also coordinate early responses to bacterial infections by amplifying the antimicrobial functions of myeloid cells, especially macrophages, by production of interferon-γ (IFN-γ). Alternatively, excessive NK cell activation and IFN-γ production can amplify the systemic inflammatory response during sepsis resulting in increased physiological dysfunction and organ injury. Our understanding of NK cell biology during bacterial infections and sepsis is mostly derived from studies performed in mice. Human studies have demonstrated a correlation between altered NK cell functions and outcomes during sepsis. However, mechanistic understanding of NK cell function during human sepsis is limited. In this review, we will review the current understanding of NK cell biology during sepsis and discuss the challenges associated with modulating NK cell function during sepsis for therapeutic benefit.
Collapse
Affiliation(s)
- Yin Guo
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edward R Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
18
|
Increased level and interferon-γ production of circulating natural killer cells in patients with scrub typhus. PLoS Negl Trop Dis 2017; 11:e0005815. [PMID: 28750012 PMCID: PMC5549767 DOI: 10.1371/journal.pntd.0005815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/08/2017] [Accepted: 07/19/2017] [Indexed: 12/27/2022] Open
Abstract
Background Natural killer (NK) cells are essential immune cells against several pathogens. Not much is known regarding the roll of NK cells in Orientia tsutsugamushi infection. Thus, this study aims to determine the level, function, and clinical relevance of NK cells in patients with scrub typhus. Methodology/Principal findings This study enrolled fifty-six scrub typhus patients and 56 health controls (HCs). The patients were divided into subgroups according to their disease severity. A flow cytometry measured NK cell level and function in peripheral blood. Circulating NK cell levels and CD69 expressions were significantly increased in scrub typhus patients. Increased NK cell levels reflected disease severity. In scrub typhus patients, tests showed their NK cells produced higher amounts of interferon (IFN)-γ after stimulation with interleukin (IL)-12 and IL-18 relative to those of HCs. Meanwhile, between scrub typhus patients and HCs, the cytotoxicity and degranulation of NK cells against K562 were comparable. CD69 expressions were recovered to the normal levels in the remission phase. Conclusions This study shows that circulating NK cells are activated and numerically increased, and they produced more IFN-γ in scrub typhus patients. Orientia tsutsugamushi is an obligate intracellular bacterium. It primarily invades endothelial cells, macrophages, monocytes, and dendritic cells. Plasma concentrations of interferon (IFN)-γ, several cytokines and chemokines, which are known to recruit natural killer (NK) cells and T cells, were found to be increased in scrub typhus patients. NK cells are known as essential immune cells against several pathogens. In murine models of Rickettsial infection, the clearance of bacteria was found to be significantly associated with NK cell activity. Not much is known regarding NK cells’ role in O. tsutsugamushi infection in humans. This study is very possibly the first to measure NK cells’ level and function of in scrub typhus patients, or to examine NK cell levels’ clinical relevance. This study’s results demonstrate that circulating NK cells are activated and numerically increased in scrub typhus patients. Notably, increased production IFN-γ by NK cells of scrub typhus patients suggests their contribution to enhancement of intracellular bacterial killing in infected antigen presenting cells. Moreover, disease severity corresponded to increased NK cell levels. These findings importantly suggest that NK cells play a role in protecting the host against O. tsutsugamushi infection.
Collapse
|
19
|
Guo Y, Luan L, Patil NK, Wang J, Bohannon JK, Rabacal W, Fensterheim BA, Hernandez A, Sherwood ER. IL-15 Enables Septic Shock by Maintaining NK Cell Integrity and Function. THE JOURNAL OF IMMUNOLOGY 2016; 198:1320-1333. [PMID: 28031340 DOI: 10.4049/jimmunol.1601486] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/05/2016] [Indexed: 11/19/2022]
Abstract
Interleukin 15 is essential for the development and differentiation of NK and memory CD8+ (mCD8+) T cells. Our laboratory previously showed that NK and CD8+ T lymphocytes facilitate the pathobiology of septic shock. However, factors that regulate NK and CD8+ T lymphocyte functions during sepsis are not well characterized. We hypothesized that IL-15 promotes the pathogenesis of sepsis by maintaining NK and mCD8+ T cell integrity. To test our hypothesis, the pathogenesis of sepsis was assessed in IL-15-deficient (IL-15 knockout, KO) mice. IL-15 KO mice showed improved survival, attenuated hypothermia, and less proinflammatory cytokine production during septic shock caused by cecal ligation and puncture or endotoxin-induced shock. Treatment with IL-15 superagonist (IL-15 SA, IL-15/IL-15Rα complex) regenerated NK and mCD8+ T cells and re-established mortality of IL-15 KO mice during septic shock. Preventing NK cell regeneration attenuated the restoration of mortality caused by IL-15 SA. If given immediately prior to septic challenge, IL-15-neutralizing IgG M96 failed to protect against septic shock. However, M96 caused NK cell depletion if given 4 d prior to septic challenge and conferred protection. IL-15 SA treatment amplified endotoxin shock, which was prevented by NK cell or IFN-γ depletion. IL-15 SA treatment also exacerbated septic shock caused by cecal ligation and puncture when given after the onset of sepsis. In conclusion, endogenous IL-15 does not directly augment the pathogenesis of sepsis but enables the development of septic shock by maintaining NK cell numbers and integrity. Exogenous IL-15 exacerbates the severity of sepsis by activating NK cells and facilitating IFN-γ production.
Collapse
Affiliation(s)
- Yin Guo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212; and
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jingbin Wang
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Whitney Rabacal
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212; and
| | - Benjamin A Fensterheim
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212; and
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Edward R Sherwood
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212; and .,Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
20
|
Schmidt S, Ullrich E, Bochennek K, Zimmermann SY, Lehrnbecher T. Role of natural killer cells in antibacterial immunity. Expert Rev Hematol 2016; 9:1119-1127. [DOI: 10.1080/17474086.2016.1254546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Histone Deacetylase Inhibition Protects Mice Against Lethal Postinfluenza Pneumococcal Infection. Crit Care Med 2016; 44:e980-7. [DOI: 10.1097/ccm.0000000000001821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Role of cellular events in the pathophysiology of sepsis. Inflamm Res 2016; 65:853-868. [PMID: 27392441 DOI: 10.1007/s00011-016-0970-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/11/2016] [Accepted: 06/25/2016] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Sepsis is a dysregulated host immune response due to an uncontrolled infection. It is a leading cause of mortality in adult intensive care units globally. When the host immune response induced against a local infection fails to contain it locally, it progresses to sepsis, severe sepsis, septic shock and death. METHOD Literature survey was performed on the roles of different innate and adaptive immune cells in the development and progression of sepsis. Additionally, the effects of septic changes on reprogramming of different immune cells were also summarized to prepare the manuscript. FINDINGS Scientific evidences to date suggest that the loss of balance between inflammatory and anti-inflammatory responses results in reprogramming of immune cell activities that lead to irreversible tissue damaging events and multi-organ failure during sepsis. Many surface receptors expressed on immune cells at various stages of sepsis have been suggested as biomarkers for sepsis diagnosis. Various immunomodulatory therapeutics, which could improve the functions of immune cells during sepsis, were shown to restore immunological homeostasis and improve survival in animal models of sepsis. CONCLUSION In-depth and comprehensive knowledge on the immune cell activities and their correlation with severity of sepsis will help clinicians and scientists to design effective immunomodulatory therapeutics for treating sepsis.
Collapse
|
23
|
He H, Geng T, Chen P, Wang M, Hu J, Kang L, Song W, Tang H. NK cells promote neutrophil recruitment in the brain during sepsis-induced neuroinflammation. Sci Rep 2016; 6:27711. [PMID: 27270556 PMCID: PMC4897692 DOI: 10.1038/srep27711] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/19/2016] [Indexed: 02/07/2023] Open
Abstract
Sepsis could affect the central nervous system and thus induces neuroinflammation, which subsequently leads to brain damage or dysfunction. However, the mechanisms of generation of neuroinflammation during sepsis remain poorly understood. By administration of lipopolysaccharides (LPS) in mice to mimic sepsis, we found that shortly after opening the blood-brain barrier, conventional CD11b(+)CD27(+) NK subset migrated into the brain followed by subsequent neutrophil infiltration. Interestingly, depletion of NK cells prior to LPS treatment severely impaired neutrophil recruitment in the inflamed brain. By in vivo recruitment assay, we found that brain-infiltrated NK cells displayed chemotactic activity to neutrophils, which depended on the higher expression of chemokines such as CXCL2. Moreover, microglia were also responsible for neutrophil recruitment, and their chemotactic activity was significantly impaired by ablation of NK cells. Furthermore, depletion of NK cells could significantly ameliorate depression-like behavior in LPS-treated mice. These data indicated a NK cell-regulated neutrophil recruitment in the blamed brain, which also could be seen on another sepsis model, cecal ligation and puncture. So, our findings revealed an important scenario in the generation of sepsis-induced neuroinflammation.
Collapse
Affiliation(s)
- Hao He
- Institute of Immunology, Taishan Medical University, Taian, Shandong, 271000, China
| | - Tingting Geng
- Institute of Immunology, Taishan Medical University, Taian, Shandong, 271000, China
| | - Piyun Chen
- Institute of Immunology, Taishan Medical University, Taian, Shandong, 271000, China
| | - Meixiang Wang
- Institute of Immunology, Taishan Medical University, Taian, Shandong, 271000, China
| | - Jingxia Hu
- Institute of Immunology, Taishan Medical University, Taian, Shandong, 271000, China
| | - Li Kang
- Institute of Immunology, Taishan Medical University, Taian, Shandong, 271000, China
| | - Wengang Song
- Institute of Immunology, Taishan Medical University, Taian, Shandong, 271000, China
| | - Hua Tang
- Institute of Immunology, Taishan Medical University, Taian, Shandong, 271000, China
| |
Collapse
|
24
|
Abstract
Supplemental digital content is available in the text. During sepsis, CD4+ T cells express activation markers within the first 24 h. In the present study, the mechanisms of T-cell activation and its consequences were addressed in an acute peritonitis model in mice. The response of CD4+ T cells to sepsis induction was compared between OTII mice, characterized by ovalbumin-specific T-cell receptor–transgenic T cells, and C57BL/6 controls (wild type [WT] mice). Because ovalbumin was absent during peritonitis, the OTII CD4+ T cells could not be activated by canonical antigen recognition. In both OTII and WT control mice, CD4+ T effector cells and CD4+ Foxp3+ regulatory T cells (Tregs) expressed the activation marker CD69 early after sepsis onset. However, full activation with upregulation of CD25 and proliferation took place only in the presence of the antigen. Besides this, the fraction of Tregs was lower in OTII than that in WT mice. Sepsis mortality was increased in OTII mice. Our data show that, in sepsis, partial activation of CD4+ T cells is induced by a T-cell receptor–independent pathway, whereas full stimulation and proliferation require a specific antigen. Antigen-dependent T-cell effector functions as well as Treg activity may contribute to sepsis survival.
Collapse
|
25
|
Sharma A, Yang WL, Matsuo S, Wang P. Differential alterations of tissue T-cell subsets after sepsis. Immunol Lett 2015; 168:41-50. [PMID: 26362089 DOI: 10.1016/j.imlet.2015.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Abstract
Among immune cells in responding to sepsis, macrophages and neutrophils have been extensively studied, while the contribution of T lymphocytes and natural killer T (NKT) cells is less well characterized. Here we monitored tissue specific changes of T cell subsets in male C57BL/6 mice subjected to sham operation or cecal ligation and puncture (CLP) to induce polymicrobial sepsis. Thymus, spleen, liver, lungs and blood were processed and analyzed 20h later. Total lymphocyte count showed a significant reduction in septic thymus, spleen and blood but not in lungs and liver. The septic thymi were hypocellular with severe reduction in cell numbers of immature CD4(+)CD8(+) subset. CD4(+) T and CD8(+) T lymphocyte numbers in septic spleens were also significantly reduced, but the frequency of CD4(+)CD25(+) Tregs was significantly increased. In addition, naïve and Tcm CD4(+) T cell numbers were significantly reduced in the septic spleens. By contrast, in septic liver the CD8(+) T cell numbers were significantly increased, whereas NKT cell numbers were reduced, but more activated with increased CD69 and CD25 expression. In the septic lungs, the CD4(+) T and CD8(+) T cell numbers showed no significant change, whereas they were severely reduced in the septic blood. Overall, this study provides important information on the alterations of different T-cell subsets in various tissues after sepsis.
Collapse
Affiliation(s)
- Archna Sharma
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | - Weng-Lang Yang
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY 11030, USA.
| | - Shingo Matsuo
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY 11030, USA.
| | - Ping Wang
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY 11030, USA.
| |
Collapse
|
26
|
Buerfent BC, Gondorf F, Wohlleber D, Schumak B, Hoerauf A, Hübner MP. Escherichia coli-induced immune paralysis is not exacerbated during chronic filarial infection. Immunology 2015; 145:150-60. [PMID: 25521437 DOI: 10.1111/imm.12435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/26/2014] [Accepted: 12/12/2014] [Indexed: 01/17/2023] Open
Abstract
Sepsis initially starts with a systemic inflammatory response (SIRS phase) and is followed by a compensatory anti-inflammatory response syndrome (CARS) that causes impaired adaptive T-cell immunity, immune paralysis and an increased susceptibility to secondary infections. In contrast, parasitic filariae release thousands of microfilariae into the peripheral blood without triggering inflammation, as they induce regulatory, anti-inflammatory host responses. Hence, we investigated the impact of chronic filarial infection on adaptive T-cell responses during the SIRS and CARS phases of a systemic bacterial infection and analysed the development of T-cell paralysis following a subsequent adenovirus challenge in BALB/c mice. Chronic filarial infection impaired adenovirus-specific CD8(+) T-cell cytotoxicity and interferon-γ responses in the absence of a bacterial challenge and led to higher numbers of splenic CTLA-4(+) CD4(+) T cells, whereas splenic T-cell expression of CD69 and CD62 ligand, serum cytokine levels and regulatory T-cell frequencies were comparable to naive controls. Irrespective of filarial infection, the SIRS phase dominated 6-24 hr after intravenous Escherichia coli challenge with increased T-cell activation and pro-inflammatory cytokine production, whereas the CARS phase occurred 6 days post E. coli challenge and correlated with high levels of transforming growth factor-β and increased CD62 ligand T-cell expression. Escherichia coli-induced impairment of adenovirus-specific CD8(+) T-cell cytotoxicity and interferon-γ production was not additionally impaired by chronic filarial infection. This suggests that filarial immunoregulation does not exacerbate E. coli-induced T-cell paralysis.
Collapse
Affiliation(s)
- Benedikt C Buerfent
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
27
|
NK and NKT Cell Depletion Alters the Outcome of Experimental Pneumococcal Pneumonia: Relationship with Regulation of Interferon-γ Production. J Immunol Res 2015; 2015:532717. [PMID: 26114123 PMCID: PMC4465773 DOI: 10.1155/2015/532717] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/29/2015] [Accepted: 05/03/2015] [Indexed: 12/31/2022] Open
Abstract
Background. Natural killer (NK) and natural killer T (NKT) cells contribute to the innate host defense but their role in bacterial sepsis remains controversial. Methods. C57BL/6 mice were infected intratracheally with 5 × 10(5) cfu of Streptococcus pneumoniae. Animals were divided into sham group (Sham); pretreated with isotype control antibody (CON) group; pretreated with anti-asialo GM1 antibody (NKd) group; and pretreated with anti-CD1d monoclonal antibody (NKTd) group before bacterial challenge. Serum and tissue samples were analyzed for bacterial load, cytokine levels, splenocyte apoptosis rates, and cell characteristics by flow cytometry. Splenocyte miRNA expression was also analyzed and survival was assessed. Results. NK cell depletion prolonged survival. Upon inhibition of NKT cell activation, spleen NK (CD3-/NK1.1+) cells increased compared to all other groups. Inhibition of NKT cell activation led to higher bacterial loads and increased levels of serum and splenocyte IFN-γ. Splenocyte miRNA analysis showed that miR-200c and miR-29a were downregulated, while miR-125a-5p was upregulated, in anti-CD1d treated animals. These changes were moderate after NK cell depletion. Conclusions. NK cells appear to contribute to mortality in pneumococcal pneumonia. Inhibition of NKT cell activation resulted in an increase in spleen NK (CD3-/NK1.1+) cells and a higher IFN-γ production, while altering splenocyte miRNA expression.
Collapse
|
28
|
Mihaylova S, Schweighöfer H, Hackstein H, Rosengarten B. Effects of anti-inflammatory vagus nerve stimulation in endotoxemic rats on blood and spleen lymphocyte subsets. Inflamm Res 2014; 63:683-90. [PMID: 24802890 DOI: 10.1007/s00011-014-0741-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/28/2014] [Accepted: 04/18/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Anti-inflammatory cytokine effects of vagus nerve stimulation in sepsis syndromes are well established. Effects on immune cells are less clear. Therefore, we studied changes in peripheral and spleen leukocyte subsets in an endotoxic rat sepsis model. METHODS Ventilated and sedated adult male SD rats received 5 mg/kg b.w. lipopolysaccharide intravenously to induce endotoxic sepsis. Controls and a group with both-sided vagotomy were compared to animals with both sided vagotomy and left distal vagus nerve stimulation. 4.5 h after sepsis induction immune cell counts and types in the peripheral blood and spleen were determined [T-lymphocytes (CD3+), T-helper cells (CD3+ CD4+), activated T-helper cells (CD3+ CD4+ CD134+), cytotoxic T-cells (CD3+ CD8+), activated cytotoxic T-cells (CD3+ CD8+ CD134+), B-lymphocytes (CD45R+ CD11cneg-dim), dendritic cells (CD11c+ OX-62 +), natural killer cells (CD161+ CD3neg) and granulocytes (His48 +)] together with cytokine and chemokine plasma levels (IL10; IFN-g, TNF-a, Cxcl5, Ccl5). RESULTS Blood cell counts declined in all LPS groups. However, vagus nerve stimulation but not vagotomy activated cytotoxic T-cells. Vagotomy also depleted natural killer cells. In the spleen, vagotomy resulted in a strong decline of all cell types which was not present in the other septic groups where only granulocyte numbers declined. CONCLUSION Vagotomy strongly declines immune cell counts in the septic spleen. This could not be explained by an evasion or apoptosis of cells. A marginalisation of spleen immune cells into the peripheral microcirculation might be therefore most likely. Further studies are warranted to clear this issue.
Collapse
Affiliation(s)
- S Mihaylova
- Departments of Neurology, Justus-Liebig University Giessen, Klinikstrasse 33, 35392, Giessen, Germany
| | | | | | | |
Collapse
|
29
|
Depletion of natural killer cells increases mice susceptibility in a Pseudomonas aeruginosa pneumonia model. Crit Care Med 2014; 42:e441-50. [PMID: 24732238 DOI: 10.1097/ccm.0000000000000311] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Pseudomonas aeruginosa infection is a clinically relevant infection involved in pneumonia in ICUs. Understanding the type of immune response initiated by the host during pneumonia would help defining new strategies to interfere with the bacteria pathogenicity. In this setting, the role of natural killer cells remains controversial. We assessed the role of systemic natural killer cells in a Pseudomonas aeruginosa mouse pneumonia model. DESIGN Experimental study. SETTING Research laboratory from a university hospital. SUBJECTS RjOrl:SWISS and BALB/cJ mice (weight, 20-24 g). INTERVENTIONS Lung injuries were assessed by bacterial load, myeloperoxidase activity, endothelial permeability (pulmonary edema), immune cell infiltrate (histological analysis), proinflammatory cytokine release, and Ly6-G immunohistochemistry. Bacterial loads were assessed in the lungs and spleen. Natural killer cell number and status were assessed in spleen (flow cytometry and quantitative polymerase chain reaction). Depletion of natural killer cells was achieved through an IV anti-asialo-GM1 antibody injection. MEASUREMENTS AND MAIN RESULTS Pseudomonas aeruginosa tracheal instillation led to an acute pneumonia with a rapid decrease of bacterial load in lungs and with an increase of endothelial permeability, proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β), and myeloperoxidase activity followed by Ly6-G positive cell infiltrate in lungs. Pseudomonas aeruginosa was detected in the spleen. Membrane markers of activation and maturation (CD69 and KLRG1 molecules) were increased in splenic natural killer cells during Pseudomonas aeruginosa infection. Splenic natural killer cells activated upon Pseudomonas aeruginosa infection produced interferon-γ but not interleukin-10. Ultimately, mice depleted of natural killer cells displayed an increased neutrophil numbers in the lungs and an increased mortality rate without bacterial load modifications in the lungs, indicating that mice depleted of natural killer cells were much more susceptible to infection compared with control animals. CONCLUSIONS We report for the first time that natural killer cells play a major role in the mice susceptibility toward a Pseudomonas aeruginosa-induced acute pneumonia model.
Collapse
|
30
|
Sharma A, Matsuo S, Yang WL, Wang Z, Wang P. Receptor-interacting protein kinase 3 deficiency inhibits immune cell infiltration and attenuates organ injury in sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R142. [PMID: 24996547 PMCID: PMC4226938 DOI: 10.1186/cc13970] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/19/2014] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Sepsis is defined as a systemic hyper-inflammatory immune response, with a subsequent immune-suppressive phase, which leads to multiple organ dysfunction and late lethality. Receptor-interacting protein kinase 3 (RIPK3)-dependent necrosis is implicated in driving tumor necrosis factor alpha (TNF-α)- and sepsis-induced mortality in mice. However, it is unknown if RIPK3 deficiency has any impact on immune cell trafficking, which contributes to organ damage in sepsis. METHODS To study this, male wild-type (WT) and RIPK3-deficient (Ripk3-/-) mice on C57BL/6 background were subjected to sham operation or cecal ligation and puncture (CLP)-induced sepsis. Blood and tissue samples were collected 20 hours post-CLP for various measurements. RESULTS In our severe sepsis model, the mean survival time of Ripk3-/- mice was significantly extended to 68 hours compared to 41 hours for WT mice. Ripk3-/- mice had significantly decreased plasma levels of TNF-α and IL-6 and organ injury markers compared to WT mice post-CLP. In the lungs, Ripk3-/- mice preserved better integrity of microscopic structure with reduced apoptosis, and decreased levels of IL-6, macrophage inflammatory protein (MIP)-2 and keratinocyte-derived chemokine (KC), compared to WT. In the liver, the levels of MIP-1, MIP-2 and KC were also decreased in septic Ripk3-/- mice. Particularly, the total number of neutrophils in the lungs and liver of Ripk3-/- mice decreased by 59.9% and 66.7%, respectively, compared to WT mice post-CLP. In addition, the number of natural killer (NK) and CD8T cells in the liver decreased by 64.8% and 53.4%, respectively, in Ripk3-/- mice compared to WT mice post-sepsis. CONCLUSIONS Our data suggest that RIPK3 deficiency modestly protected from CLP-induced severe sepsis and altered the immune cell trafficking in an organ-specific manner attenuating organ injury. Thus, RIPK3 acts as a detrimental factor in contributing to the organ deterioration in sepsis.
Collapse
|
31
|
Herzig DS, Luan L, Bohannon JK, Toliver-Kinsky TE, Guo Y, Sherwood ER. The role of CXCL10 in the pathogenesis of experimental septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R113. [PMID: 24890566 PMCID: PMC4075230 DOI: 10.1186/cc13902] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/15/2014] [Indexed: 12/22/2022]
Abstract
Introduction The chemokine CXCL10 is produced during infection and inflammation to activate the chemokine receptor CXCR3, an important regulator of lymphocyte trafficking and activation. The goal of this study was to assess the contributions of CXCL10 to the pathogenesis of experimental septic shock in mice. Methods Septic shock was induced by cecal ligation and puncture (CLP) in mice resuscitated with lactated Ringer’s solution and, in some cases, the broad spectrum antibiotic Primaxin. Studies were performed in CXCL10 knockout mice and mice treated with anti-CXCL10 immunoglobulin G (IgG). Endpoints included leukocyte trafficking and activation, core body temperature, plasma cytokine concentrations, bacterial clearance and survival. Results CXCL10 was present at high concentrations in plasma and peritoneal cavity during CLP-induced septic shock. Survival was significantly improved in CXCL10 knockout (CXCL10KO) mice and mice treated with anti-CXCL10 IgG compared to controls. CXCL10KO mice and mice treated with anti-CXCL10 IgG showed attenuated hypothermia, lower concentrations of interleukin-6 (IL-6) and macrophage inhibitory protein-2 (MIP-2) in plasma and lessened natural killer (NK) cell activation compared to control mice. Compared to control mice, bacterial burden in blood and lungs was lower in CXCL10-deficient mice but not in mice treated with anti-CXCL10 IgG. Treatment of mice with anti-CXCL10 IgG plus fluids and Primaxin at 2 or 6 hours after CLP significantly improved survival compared to mice treated with non-specific IgG under the same conditions. Conclusions CXCL10 plays a role in the pathogenesis of CLP-induced septic shock and could serve as a therapeutic target during the acute phase of septic shock.
Collapse
|
32
|
Thymic stromal lymphopoietin mediates the host response and increases mortality during sepsis. J Surg Res 2014; 191:19-24. [PMID: 24990542 DOI: 10.1016/j.jss.2014.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/29/2014] [Accepted: 05/13/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Sepsis and subsequent multiorgan system failure is associated with high rates of mortality and morbidity. Thymic stromal lymphopoietin (TSLP) is a cytokine that can be produced by keratinocytes and epithelial cells. Primarily, TSLP has been shown to promote counter-inflammatory processes. However, its potential expression or role in the pathogenesis of sepsis is largely unexplored. We hypothesized that TSLP is expressed during sepsis and TSLP blockade would alter the immune response and mortality. MATERIALS AND METHODS Mice underwent cecal ligation and puncture (CLP) to produce a physiologically relevant murine model for sepsis. Cohorts were either treated with neutralizing TSLP antibodies or isotype controls before the CLP to determine changes in survival, bacterial loads, cytokine levels, and neutrophil function. RESULTS It was observed that TSLP levels peaked at 6 h and remained detectable up to 48 h after CLP. Mice pretreated with neutralizing TSLP showed decreased mortality and bacterial load after CLP. Additionally, we determined that septic mice pretreated with the anti-TSLP antibody had increased tumor necrosis factor alpha and oxidative burst as well as increased interleukin 17 and neutrophil numbers compared with mice pretreated with isotype controls. CONCLUSIONS TSLP levels peak early but are sustained during the first 48 h of sepsis. We speculate that TSLP blunts the neutrophil response resulting in increased bacterial load and mortality.
Collapse
|
33
|
Juarez GE, Villena J, Salva S, de Valdez GF, Rodriguez AV. Lactobacillus reuteri CRL1101 beneficially modulate lipopolysaccharide-mediated inflammatory response in a mouse model of endotoxic shock. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
34
|
Role of NK cells in host defense against pulmonary type A Francisella tularensis infection. Microbes Infect 2012; 15:201-11. [PMID: 23211929 DOI: 10.1016/j.micinf.2012.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/25/2012] [Accepted: 11/15/2012] [Indexed: 01/16/2023]
Abstract
Pneumonic tularemia is a potentially fatal disease caused by the Category A bioterrorism agent Francisella tularensis. Understanding the pulmonary immune response to this bacterium is necessary for developing effective vaccines and therapeutics. In this study, characterization of immune cell populations in the lungs of mice infected with the type A strain Schu S4 revealed a significant loss in natural killer (NK) cells over time. Since this decline in NK cells correlated with morbidity and mortality, we hypothesized these cells contribute to host defense against Schu S4 infection. Depletion of NK cells prior to Schu S4 challenge significantly reduced IFN-γ and granzyme B in the lung but had no effect on bacterial burden or disease progression. Conversely, increasing NK cell numbers with the anti-apoptotic cytokine IL-15 and soluble receptor IL-15Rα had no significant impact on Schu S4 growth in vivo. A modest decrease in median time to death, however, was observed in live vaccine strain (LVS)-vaccinated mice depleted of NK1.1+ cells and challenged with Schu S4. Therefore, NK cells do not appear to contribute to host defense against acute respiratory infection with type A F. tularensis in vivo, but they play a minor role in protection elicited by LVS vaccination.
Collapse
|
35
|
Mattick JS, Yang Q, Orman MA, Ierapetritou MG, Berthiaume F, Androulakis IP. Long-term gene expression profile dynamics following cecal ligation and puncture in the rat. J Surg Res 2012; 178:431-42. [DOI: 10.1016/j.jss.2012.03.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|
36
|
Increased granzyme levels in cytotoxic T lymphocytes are associated with disease severity in emergency department patients with severe sepsis. Shock 2012; 37:257-62. [PMID: 22089193 DOI: 10.1097/shk.0b013e31823fca44] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Exocytosis of granules containing the cytolytic effector (CE) molecules granzyme A (GzmA), granzyme B (GzmB), and perforin is one major pathway of lymphocyte-mediated cytotoxicity. Studies in murine models and the finding of elevated granzyme levels in the plasma of septic patients have implicated cytotoxic lymphocytes in the pathogenesis of sepsis. We sought to evaluate the role of cytotoxic cells and CE in sepsis and determine if intracellular levels of CE in cytotoxic cells correlate with disease severity. We conducted a prospective cohort study of 40 patients enrolled into one of three groups: controls (C), acutely ill nonseptic illnesses, or patients with severe sepsis (SS) (lactate, >4 mmol/L; systolic blood pressure, <90 mmHg after 2 L normal saline). Peripheral blood mononuclear cells were isolated and stained for extracellular markers for defined subpopulations and for intracellular expression of GzmA and GzmB and perforin. Levels of CE were quantified by geometric mean fluorescent intensity (GMFI) via flow cytometry. Cytotoxic T lymphocyte (CTL) expression was higher in SS (P = 0.04). The GMFI of GzmB was significantly higher in CTLs of SS patients versus acutely ill nonseptic illnesses or C. The GMFI of each GzmA and GzmB in CTLs were associated with the Acute Physiology and Chronic Health Evaluation II score (P = 0.01). A significant increase in the number of granulocytes in the peripheral blood mononuclear cells of SS patients consisted primarily of low-density neutrophils, which expressed increased levels of GzmA (P < 0.01). The results suggest that CTLs are activated in SS and express significantly higher intracellular levels of GzmB and that GzmA and B levels correlate with disease severity.
Collapse
|
37
|
Ayres JS, Trinidad NJ, Vance RE. Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. Nat Med 2012; 18:799-806. [PMID: 22522562 PMCID: PMC3472005 DOI: 10.1038/nm.2729] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/13/2012] [Indexed: 12/14/2022]
Abstract
The mammalian intestine harbors a complex microbial community that provides numerous benefits to its host. However, the microbiota can also include potentially virulent species, termed pathobiont, which can cause disease when intestinal homeostasis is disrupted. The molecular mechanisms by which pathobionts cause disease remain poorly understood. Here we describe a sepsis-like disease that occurs upon gut injury in antibiotic-treated mice. Sepsis was associated with the systemic spread of a specific multidrug-resistant Escherichia coli pathobiont that expanded markedly in the microbiota of antibiotic-treated mice. Rapid sepsis-like death required a component of the innate immune system, the Naip5-Nlrc4 inflammasome. In accordance with Koch's postulates, we found the E. coli pathobiont was sufficient to activate Naip5-Nlrc4 and cause disease when injected intravenously into unmanipulated mice. These findings reveal how sepsis-like disease can result from recognition of pathobionts by the innate immune system.
Collapse
Affiliation(s)
- Janelle S Ayres
- Department of Molecular & Cell Biology, Division of Immunology & Pathogenesis, University of California, Berkeley, USA.
| | | | | |
Collapse
|
38
|
Souza-Fonseca-Guimaraes F, Adib-Conquy M, Cavaillon JM. Natural killer (NK) cells in antibacterial innate immunity: angels or devils? Mol Med 2012; 18:270-285. [PMID: 22105606 PMCID: PMC3324953 DOI: 10.2119/molmed.2011.00201] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/09/2011] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells were first described as immune leukocytes that could kill tumor cells and soon after were reported to kill virus-infected cells. In the mid-1980s, 10 years after their discovery, NK cells were also demonstrated to contribute to the fight against bacterial infection, particularly because of crosstalk with other leukocytes. A wide variety of immune cells are now recognized to interact with NK cells through the production of cytokines such as interleukin (IL)-2, IL-12, IL-15 and IL-18, which boost NK cell activities. The recent demonstration that NK cells express pattern recognition receptors, namely Toll-like and nucleotide oligomerization domain (NOD)-like receptors, led to the understanding that these cells are not only under the control of accessory cells, but can be directly involved in the antibacterial response thanks to their capacity to recognize pathogen-associated molecular patterns. Interferon (IFN)-γ is the predominant cytokine produced by activated NK cells. IFN-γ is a key contributor to antibacterial immune defense. However, in synergy with other inflammatory cytokines, IFN-γ can also lead to deleterious effects similar to those observed during sepsis. Accordingly, as the main source of IFN-γ in the early phase of infection, NK cells display both beneficial and deleterious effects, depending on the circumstances.
Collapse
Affiliation(s)
| | - Minou Adib-Conquy
- Institut Pasteur, Cytokines and Inflammation Unit, Department of Infection and Epidemiology, Paris, France
| | - Jean-Marc Cavaillon
- Institut Pasteur, Cytokines and Inflammation Unit, Department of Infection and Epidemiology, Paris, France
| |
Collapse
|
39
|
|
40
|
Herzig DS, Driver BR, Fang G, Toliver-Kinsky TE, Shute EN, Sherwood ER. Regulation of lymphocyte trafficking by CXC chemokine receptor 3 during septic shock. Am J Respir Crit Care Med 2011; 185:291-300. [PMID: 22135342 DOI: 10.1164/rccm.201108-1560oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Lymphocytes have been shown to facilitate systemic inflammation and physiologic dysfunction in experimental models of severe sepsis. Our previous studies show that natural killer (NK) cells migrate into the peritoneal cavity during intraabdominal sepsis, but the trafficking of NKT and T lymphocytes has not been determined. The factors that regulate lymphocyte trafficking during sepsis are currently unknown. OBJECTIVES To ascertain the importance of CXC chemokine receptor 3 (CXCR3) as a regulator of lymphocyte trafficking during sepsis and determine the contribution of CXCR3-mediated lymphocyte trafficking to the pathogenesis of septic shock. METHODS Lymphocyte trafficking was evaluated in control and CXCR3-deficient mice using flow cytometry during sepsis caused by cecal ligation and puncture (CLP). Survival, core temperature, cytokine production, and bacterial clearance were measured as pathobiological endpoints. MEASUREMENTS AND MAIN RESULTS This study shows that concentrations of the CXCR3 ligands CXCL9 (monokine induced by interferon γ, MIG) and CXCL10 (interferon γ-induced protein 10, IP-10) increase in plasma and the peritoneal cavity after CLP, peak at 8 hours after infection, and are higher in the peritoneal cavity than in plasma. The numbers of CXCR3(+) NK cells progressively decreased in spleen after CLP with a concomitant increase within the peritoneal cavity, a pattern that was ablated in CXCR3-deficient mice. CXCR3-dependent recruitment of T cells was also evident at 16 hours after CLP. Treatment of mice with anti-CXCR3 significantly attenuated CLP-induced hypothermia, decreased systemic cytokine production, and improved survival. CONCLUSIONS CXCR3 regulates NK- and T-cell trafficking during sepsis and blockade of CXCR3 attenuates the pathogenesis of septic shock.
Collapse
Affiliation(s)
- Daniela S Herzig
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, 77555-0591, USA
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Andaluz-Ojeda D, Iglesias V, Bobillo F, Almansa R, Rico L, Gandía F, Loma AM, Nieto C, Diego R, Ramos E, Nocito M, Resino S, Eiros JM, Tamayo E, de Lejarazu RO, Bermejo-Martin JF. Early natural killer cell counts in blood predict mortality in severe sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:R243. [PMID: 22018048 PMCID: PMC3334794 DOI: 10.1186/cc10501] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/05/2011] [Accepted: 10/21/2011] [Indexed: 12/19/2022]
Abstract
Introduction Host immunity should play a principal role in determining both the outcome and recovery of patients with sepsis that originated from a microbial infection. Quantification of the levels of key elements of the immune response could have a prognostic value in this disease. Methods In an attempt to evaluate the quantitative changes in the status of immunocompetence in severe sepsis over time and its potential influence on clinical outcome, we monitored the evolution of immunoglobulins (Igs) (IgG, IgA and IgM), complement factors (C3 and C4) and lymphocyte subsets (CD4+ T cells, CD8+ T cells, B cells (CD19+) and natural killer (NK) cells (CD3-CD16+CD56+)) in the blood of 50 patients with severe sepsis or septic shock at day 1, day 3 and day 10 following admission to the ICU. Results Twenty-one patients died, ten of whom died within the 72 hours following admission to the ICU. The most frequent cause of death (n = 12) was multiorgan dysfunction syndrome. At day 1, survivors showed significantly higher levels of IgG and C4 than those who ultimately died. On the contrary, NK cell levels were significantly higher in the patients who died. Survivors exhibited a progressive increase from day 1 to day 10 on most of the immunological parameters evaluated (IgG, IgA, IgM, C3, CD4+, CD8+ T cells and NK cells). Multivariate Cox regression analysis, including age, sex, APACHE II score, severe sepsis or septic shock status and each one of the immunological parameters showed that NK cell counts at day 1 were independently associated with increased risk of death at 28 days (hazard ratio = 3.34, 95% CI = 1.29 to 8.64; P = 0.013). Analysis of survival curves provided evidence that levels of NK cells at day 1 (> 83 cells/mm3) were associated with early mortality. Conclusions Our results demonstrate the prognostic role of NK cells in severe sepsis and provide evidence for a direct association of early counts of these cells in blood with mortality.
Collapse
Affiliation(s)
- David Andaluz-Ojeda
- Critical Care Medicine Service, Hospital Clínico Universitario-SACYL/ SEMICYUC, Avda Ramón y Cajal 3, E-47005, Valladolid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Myrrh inhibits LPS-induced inflammatory response and protects from cecal ligation and puncture-induced sepsis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:278718. [PMID: 21826187 PMCID: PMC3151005 DOI: 10.1155/2012/278718] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/30/2011] [Accepted: 05/30/2011] [Indexed: 12/22/2022]
Abstract
Myrrh has been used as an antibacterial and anti-inflammatory agent. However, effect of myrrh on peritoneal macrophages and clinically relevant models of septic shock, such as cecal ligation and puncture (CLP), is not well understood. Here, we investigated the inhibitory effect and mechanism(s) of myrrh on inflammatory responses. Myrrh inhibited LPS-induced productions of inflammatory mediators such as nitric oxide, prostaglandin E2, and tumor necrosis factor-α but not of interleukin (IL)-1β and IL-6 in peritoneal macrophages. In addition, Myrrh inhibited LPS-induced activation of c-jun NH2-terminal kinase (JNK) but not of extracellular signal-regulated kinase (ERK), p38, and nuclear factor-κB. Administration of Myrrh reduced the CLP-induced mortality and bacterial counts and inhibited inflammatory mediators. Furthermore, administration of Myrrh attenuated CLP-induced liver damages, which were mainly evidenced by decreased infiltration of leukocytes and aspartate aminotransferase/alanine aminotransferase level. Taken together, these results provide the evidence for the anti-inflammatory and antibacterial potential of Myrrh in sepsis.
Collapse
|
44
|
Murphey ED. Cecal ligation and puncture-induced impairment of innate immune function does not occur in the absence of caspase-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:905-10. [PMID: 21677131 PMCID: PMC3131453 DOI: 10.4049/jimmunol.1002102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mice that have been subjected to cecal ligation and puncture (CLP) have an impaired ability to clear a subsequent Pseudomonas aeruginosa challenge compared with that of sham CLP controls. We hypothesized that this outcome is dependent upon a caspase-1 mechanism and tested this hypothesis by measuring caspase-1 after CLP and by measuring clearance of a bacterial challenge in caspase-1-deficient mice after CLP. Wild-type mice subjected to CLP had increased caspase-1 activity as well as increased IL-1β and increased IL-18 production in splenocytes stimulated with heat-killed Pseudomonas and had increased plasma concentrations of IL-1β and IL-18 and impaired clearance of a P. aeruginosa challenge compared with sham controls. Healthy, uninjured caspase-1(-\-) mice did not differ from wild-type mice in their ability to clear a Pseudomonas challenge. However, unlike wild-type mice, caspase-1(-/-) mice subjected to CLP had no impairment of bacterial clearance of the Pseudomonas challenge, suggesting that caspase-1 induction after CLP played a role in impairment of bacterial clearance. This was further substantiated by the use of a specific caspase-1 inhibitor, Ac-YVAD-CMK. Wild-type mice treated with Ac-YVAD-CMK (10 mg/kg s.c. twice daily, initiated at time of CLP) did not have impaired clearance of a Pseudomonas challenge compared with that of sham mice and had significantly improved bacterial clearance compared with that of untreated CLP mice. Increased caspase-1 expression and activity after CLP injury appears to contribute to diminished innate immune function.
Collapse
Affiliation(s)
- E D Murphey
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555-0591, USA.
| |
Collapse
|
45
|
The role of natural killer cells in sepsis. J Biomed Biotechnol 2011; 2011:986491. [PMID: 21629707 PMCID: PMC3100670 DOI: 10.1155/2011/986491] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 03/16/2011] [Indexed: 01/20/2023] Open
Abstract
Severe sepsis and septic shock are still deadly conditions urging to develop novel therapies. A better understanding of the complex modifications of the immune system of septic patients is needed for the development of innovative immunointerventions. Natural killer (NK) cells are characterized as CD3−NKp46+CD56+ cells that can be cytotoxic and/or produce high amounts of cytokines such as IFN-γ. NK cells are also engaged in crosstalks with other immune cells, such as dendritic cells, macrophages, and neutrophils. During the early stage of septic shock, NK cells may play a key role in the promotion of the systemic inflammation, as suggested in mice models. Alternatively, at a later stage, NK cells-acquired dysfunction could favor nosocomial infections and mortality. Standardized biological tools defining patients' NK cell status during the different stages of sepsis are mandatory to guide potential immuno-interventions. Herein, we review the potential role of NK cells during severe sepsis and septic shock.
Collapse
|
46
|
Abstract
Survival during sepsis requires both swift control of infectious organisms and tight regulation of the associated inflammatory response. As the role of T cells in sepsis is somewhat controversial, we examined the impact of increasing antigen-dependent activation of CD4 T cells in a murine model of cecal ligation and puncture using T-cell receptor transgenic II (OT-II) mice that are specific for chicken ovalbumin (OVA) in the context of major histocompatibility complex II. Here, we injected OT-II mice with 0, 1, or 100 μg of OVA and demonstrate that increased antigen treatment resulted in increased numbers of activated splenic CD4 T cells. Vehicle-treated, septic OT-II mice had decreased survival, increased bacterial load, and increased levels of IL-6. Interestingly, this decrease in survival was abrogated when OT-II mice were injected with 1 μg OVA, which was correlated with normalized bacterial load and levels of IL-6. However, when OT-II mice were injected with 100 μg OVA, decreased survival was restored but, in contrast to vehicle-treated OT-II mice, had decreased bacterial load and enhanced IL-6 levels. We also observed that neutrophil oxidative burst and phagocytosis were dependent on CD4 T-cell activation. Further, at extreme levels of T-cell activation, intestinal permeability was significantly increased. Altogether, we conclude that too little CD4 T-cell activation produces dysfunctional neutrophils leading to decreased bacteria clearance and survival, whereas too much CD4 T-cell activation produces a neutrophil phenotype that leads to efficient bacterial clearance but with increased tissue damage and mortality.
Collapse
|
47
|
Romero CR, Herzig DS, Etogo A, Nunez J, Mahmoudizad R, Fang G, Murphey ED, Toliver-Kinsky T, Sherwood ER. The role of interferon-γ in the pathogenesis of acute intra-abdominal sepsis. J Leukoc Biol 2010; 88:725-35. [PMID: 20628064 DOI: 10.1189/jlb.0509307] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several studies indicate that IFN-γ facilitates systemic inflammation during endotoxin-induced shock. However, the pathobiology of IFN-γ in clinically relevant models of septic shock, such as CLP, is not well understood. In this study, the role of IFN-γ in the pathogenesis of CLP-induced septic shock was evaluated by examining IFN-γ production at the tissue and cellular levels. The impact of IFN-γ neutralization on systemic inflammation, bacterial clearance, and survival was also determined. Following CLP, concentrations of IFN-γ in plasma and peritoneal lavage fluid were low in comparison with concentrations of IL-6 and MIP-2, as was IFN-γ mRNA expression in liver and spleen. The overall percentage of IFN-γ+ splenocytes was <5% after CLP and not statistically different from control mice. Intracellular IFN-γ was present in a large proportion of peritoneal exudate cells after CLP, primarily in infiltrating myeloid cells and NK cells. i.p. myeloid cell activation was decreased in IFN-γKO mice, and plasma concentrations of IL-6 and MIP-2 were significantly lower in IFN-γKO mice and in mice treated with anti-IFN-γ compared with controls, but bacterial clearance was not affected. IFN-γKO mice were resistant to CLP-induced mortality when treated with systemic antibiotics. However, neutralization of IFN-γ with blocking antibodies did not improve survival significantly. These studies show that IFN-γ facilitates the proinflammatory response during CLP-induced septic shock. However, neutralization of IFN-γ did not improve survival uniformly.
Collapse
Affiliation(s)
- Christopher R Romero
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555-0591, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell 2009; 16:183-94. [PMID: 19732719 PMCID: PMC2754404 DOI: 10.1016/j.ccr.2009.06.017] [Citation(s) in RCA: 2497] [Impact Index Per Article: 156.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/02/2009] [Accepted: 06/24/2009] [Indexed: 12/12/2022]
Abstract
TGF-beta blockade significantly slows tumor growth through many mechanisms, including activation of CD8(+) T cells and macrophages. Here, we show that TGF-beta blockade also increases neutrophil-attracting chemokines, resulting in an influx of CD11b(+)/Ly6G(+) tumor-associated neutrophils (TANs) that are hypersegmented, more cytotoxic to tumor cells, and express higher levels of proinflammatory cytokines. Accordingly, following TGF-beta blockade, depletion of these neutrophils significantly blunts antitumor effects of treatment and reduces CD8(+) T cell activation. In contrast, in control tumors, neutrophil depletion decreases tumor growth and results in more activated CD8(+) T cells intratumorally. Together, these data suggest that TGF-beta within the tumor microenvironment induces a population of TAN with a protumor phenotype. TGF-beta blockade results in the recruitment and activation of TANs with an antitumor phenotype.
Collapse
Affiliation(s)
- Zvi G Fridlender
- Thoracic Oncology Research Laboratory, 1016B ARC, University of Pennsylvania, Philadelphia, PA 19104-6160, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Blockade of CD137 signaling counteracts polymicrobial sepsis induced by cecal ligation and puncture. Infect Immun 2009; 77:3932-8. [PMID: 19564374 DOI: 10.1128/iai.00407-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sepsis, a leading cause of death worldwide, involves proinflammatory responses and inefficient bacterial clearance. Previously, we have shown that CD137 (4-1BB), a member of the tumor necrosis factor receptor superfamily, plays critical roles in eradicating infective Listeria monocytogenes, a gram-positive bacterium, and that stimulation of CD137 protects mice from sepsis-induced death. In this study, we unexpectedly found that CD137 activation aggravated polymicrobial sepsis due to mixed gram-positive and gram-negative bacterial infection induced by cecal ligation and puncture (CLP). CD137-deficient (CD137(-/-)) mice showed significantly lower mortality than CD137-sufficient (CD137(+/+)) mice in the CLP model. Administration of an agonistic anti-CD137 monoclonal antibody (MAb) to CD137(+/+) mice decreased their survival in this infection model, while administration of a blocking anti-CD137 ligand MAb (TKS-1) to such mice increased their survival. CD137(-/-) mice and TKS-1-treated CD137(+/+) mice had lower levels of chemokines/proinflammatory cytokines (monocyte chemoattractant protein 1, interleukin-6 [IL-6], tumor necrosis factor alpha, IL-12) and an anti-inflammatory cytokine (IL-10), exhibited improved bacterial clearance in the peritoneum, liver, and blood, and had greater numbers of infiltrated peritoneal neutrophils and macrophages in the CLP model than control mice. Our data suggest that CD137 activation aggravates polymicrobial sepsis induced by CLP.
Collapse
|
50
|
Effect of ethyl pyruvate on physical and immunological barriers of the small intestine in a rat model of sepsis. ACTA ACUST UNITED AC 2009; 66:1355-64. [PMID: 19430239 DOI: 10.1097/ta.0b013e31817d0568] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Physical and immunologic barriers of the small intestine play an important role in development and treatment of sepsis, so a rat model of sepsis was used to investigate the effect of ethyl pyruvate (EP) on the barriers. METHODS Male Wistar rats were divided into sham operated, cecal ligation and puncture, and EP groups. Survival and bacterial translocation were measured in response to EP administration. Physical barrier (including mitochondria of enterocyte, tight junction, microvilli, and the grade of small intestinal mucosa damage) and immunologic barrier (including distribution of T-cell subgroups in small intestinal villi, proportion of T-cell subgroups in mesenteric lymph nodes and spleens, proliferation and cytokines release of splenocytes) were determined by electron and light microscopy, immunohistochemistry, flow cytometry, and enzyme-linked immunosorbent assay, respectively. RESULTS Sepsis induced morphologic alteration and immunosuppression in the small intestine. EP administration can prevent these changes, especially immunologic change. Distribution of CD4+ T cells in villi, proportions of CD4+ T cells in mesenteric lymph nodes and spleens, and proliferative capacity of splenocytes were increased in rats treated with EP. Interferon-gamma and Interleukin-4 release were also modulated. Moreover, EP improved survival from 37.1% to 57.1% and reduced bacterial translocation. CONCLUSIONS EP administration ameliorated physical and immunologic barriers dysfunction of small intestine in a rat model of sepsis. EP may be used to treat sepsis as an immunologic modulator.
Collapse
|