1
|
Khalilzad MA, Mohammadi J, Najafi S, Amirsaadat S, Zare S, Khalilzad M, Shamloo A, Khaghani A, Peyrovan A, Khalili SFS, Fayyaz N, Zare S. Harnessing the Anti-Inflammatory Effects of Perinatal Tissue Derived Therapies for the Treatment of Inflammatory Skin Diseases: A Comprehensive Review. Stem Cell Rev Rep 2025; 21:351-371. [PMID: 39531196 DOI: 10.1007/s12015-024-10822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Dealing with chronic inflammatory skin conditions like atopic dermatitis and psoriasis can be extremely difficult. Current treatments, such as topical corticosteroids, often have limitations and side effects. However, researchers have discovered that the placenta's remarkable properties may provide a breakthrough in effectively addressing these skin conditions. The placenta comprises three essential tissues: decidua, placental membrane, and umbilical cord. Placental derivatives have shown significant potential in treating psoriasis by reducing inflammatory cytokines and inhibiting keratinocyte proliferation. In the case of atopic dermatitis, umbilical cord stem cells have demonstrated anti-inflammatory effects by targeting critical factors and promoting anti-inflammatory cytokines. The scope of benefits associated with placental derivatives transcends these specific applications. They also potentially address other inflammatory skin diseases, such as vitiligo, by stimulating melanin production. Moreover, these derivatives have been leveraged in the treatment of pemphigus and epidermolysis bullosa (EB), showcasing potential as a wound dressing that could eliminate the necessity for painful dressing changes in EB patients. In summary, the integration of placental derivatives stands to revolutionize our approach to inflammatory skin conditions owing to their distinct properties and the prospective benefits they offer. This comprehensive review delves into the current applications of placental derivatives in addressing inflammatory skin diseases, presenting a novel treatment approach.
Collapse
Affiliation(s)
- Mohammad Amin Khalilzad
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Mohammadi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Soumaye Amirsaadat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mitra Khalilzad
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Ayoub Khaghani
- Department of Gynecological Surgery, Tehranpars Hospital, Tehran, Iran
| | - Aysan Peyrovan
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Negin Fayyaz
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Zare
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Mueller EJ, Rahimi S, Sauta P, Shojaeian T, Durrer L, Quinche S, Francois M, Locher E, Edler M, Illi M, Gentinetta T, Lau K, Pojer F, Borradori L, Hariton WVJ. Standardized Production of Anti-Desmoglein 3 Antibody AK23 for Translational Pemphigus Vulgaris Research. Curr Protoc 2024; 4:e1118. [PMID: 39169810 DOI: 10.1002/cpz1.1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Antibody-mediated receptor activation is successfully used to develop medical treatments. If the activation induces a pathological response, such antibodies are also excellent tools for defining molecular mechanisms of target receptor malfunction and designing rescue therapies. Prominent examples are naturally occurring autoantibodies inducing the severe blistering disease pemphigus vulgaris (PV). In the great majority of patients, the antibodies bind to the adhesion receptor desmoglein 3 (Dsg3) and interfere with cell signaling to provoke severe blistering in the mucous membranes and/or skin. The identification of a comprehensive causative signaling network downstream of antibody-targeted Dsg3 receptors (e.g., shown by pharmacological activators or inhibitors) is currently being discussed as a basis to develop urgently needed first-line treatments for PV patients. Although polyclonal PV IgG antibodies have been used as proof of principle for pathological signal activation, monospecific anti-Dsg3 antibodies are necessary and have been developed to identify pathological Dsg3 receptor-mediated signal transduction. The experimental monospecific PV antibody AK23, produced from hybridoma cells, was extensively tested in our laboratory in both in vitro and in vivo models for PV and proved to recapitulate the clinicopathological features of PV when generated using the standardized production and purification protocols described herein. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Bovine IgG stripping from FBS and quality control Basic Protocol 2: AK23 hybridoma expansion and IgG production Basic Protocol 3: AK23 IgG purification Basic Protocol 4: AK23 IgG quality control Support Protocol 1: Detection of endotoxin levels Support Protocol 2: Detection and removal of mycoplasma.
Collapse
Affiliation(s)
- Eliane J Mueller
- Department for Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Siavash Rahimi
- Department for Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Patrizia Sauta
- Department for Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Taravat Shojaeian
- Department for Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Laurence Durrer
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL Lausanne, Lausanne, Switzerland
| | - Soraya Quinche
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL Lausanne, Lausanne, Switzerland
| | - Michael Francois
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL Lausanne, Lausanne, Switzerland
| | - Elisabeth Locher
- CSL, CSL Biologics Research Centre, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Monika Edler
- CSL, CSL Biologics Research Centre, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Marlies Illi
- CSL, CSL Biologics Research Centre, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Thomas Gentinetta
- CSL, CSL Biologics Research Centre, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Kelvin Lau
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL Lausanne, Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL Lausanne, Lausanne, Switzerland
| | - Luca Borradori
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - William V J Hariton
- Department for Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Perl AL, Pokorny JL, Green KJ. Desmosomes at a glance. J Cell Sci 2024; 137:jcs261899. [PMID: 38940346 PMCID: PMC11234380 DOI: 10.1242/jcs.261899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Desmosomes are relatives of ancient cadherin-based junctions, which emerged late in evolution to ensure the structural integrity of vertebrate tissues by coupling the intermediate filament cytoskeleton to cell-cell junctions. Their ability to dynamically counter the contractile forces generated by actin-associated adherens junctions is particularly important in tissues under high mechanical stress, such as the skin and heart. Much more than the simple cellular 'spot welds' depicted in textbooks, desmosomes are in fact dynamic structures that can sense and respond to changes in their mechanical environment and external stressors like ultraviolet light and pathogens. These environmental signals are transmitted intracellularly via desmosome-dependent mechanochemical pathways that drive the physiological processes of morphogenesis and differentiation. This Cell Science at a Glance article and the accompanying poster review desmosome structure and assembly, highlight recent insights into how desmosomes integrate chemical and mechanical signaling in the epidermis, and discuss desmosomes as targets in human disease.
Collapse
Affiliation(s)
- Abbey L. Perl
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jenny L. Pokorny
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathleen J. Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Schmitt T, Hudemann C, Moztarzadeh S, Hertl M, Tikkanen R, Waschke J. Dsg3 epitope-specific signalling in pemphigus. Front Immunol 2023; 14:1163066. [PMID: 37143675 PMCID: PMC10151755 DOI: 10.3389/fimmu.2023.1163066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Pemphigus is an autoantibody driven disease that impairs the barrier function of the skin and mucosa by disrupting desmosomes and thereby impeding cellular cohesion. It is known that the different clinical phenotypes of pemphigus vulgaris (PV) and pemphigus foliaceus (PF) are dependent on the autoantibody profile and target antigens that, amongst others, are primarily desmoglein (Dsg)1 and/or Dsg3 for PV and Dsg1 for PF. However, it was reported that autoantibodiesagainst different epitopes of Dsg1 and Dsg3 can be pathogenic or not. The underlying mechanisms are very complex and involve both direct inhibition of Dsg interactions and downstream signalling. The aim of this study was to find out whether there is target-epitope-specific Dsg3 signalling by comparing the effects of the two pathogenic murine IgGs, 2G4 and AK23. Methods Dispase-based dissociation assay, Western Blot analysis, Stimulated emission depletion microscopy, Fura-based Ca2+ flux measurements, Rho/Rac G-Protein-linked immunosorbent assay, Enzyme-linked immunosorbent assay. Results The IgGs are directed against the EC5 and EC1 domain of Dsg3, respectively. The data show that 2G4 was less effective in causing loss of cell adhesion, compared to AK23. STED imaging revealed that both autoantibodies had similar effects on keratin retraction and reduction of desmosome number whereas only AK23 induced Dsg3 depletion. Moreover, both antibodies induced phosphorylation of p38MAPK and Akt whereas Src was phosphorylated upon treatment with AK23 only. Interestingly, Src and Akt activation were p38MAPK-dependent. All pathogenic effects were rescued by p38MAPK inhibition and AK23-mediated effects were also ameliorated by Src inhibition. Discussion The results give first insights into pemphigus autoantibody-induced Dsg3 epitope-specific signalling which is involved in pathogenic events such as Dsg3 depletion.
Collapse
Affiliation(s)
- Thomas Schmitt
- Instiute of Anatomy, Faculty of Medicine, Chair of Vegetative Anatomy, Ludwig-Maximilian -Universität (LMU) Munich, München, Germany
| | - Christoph Hudemann
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Sina Moztarzadeh
- Instiute of Anatomy, Faculty of Medicine, Chair of Vegetative Anatomy, Ludwig-Maximilian -Universität (LMU) Munich, München, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jens Waschke
- Instiute of Anatomy, Faculty of Medicine, Chair of Vegetative Anatomy, Ludwig-Maximilian -Universität (LMU) Munich, München, Germany
| |
Collapse
|
5
|
Fuchs M, Radeva MY, Spindler V, Vielmuth F, Kugelmann D, Waschke J. Cytoskeletal anchorage of different Dsg3 pools revealed by combination of hybrid STED/SMFS-AFM. Cell Mol Life Sci 2023; 80:25. [PMID: 36602635 PMCID: PMC9816259 DOI: 10.1007/s00018-022-04681-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Desmoglein 3 (Dsg3) is a desmosomal cadherin mediating cell adhesion within desmosomes and is the antigen of the autoimmune blistering skin disease pemphigus vulgaris. Therefore, understanding of the complex desmosome turnover process is of high biomedical relevance. Recently, super resolution microscopy was used to characterize desmosome composition and turnover. However, studies were limited because adhesion measurements on living cells were not possible in parallel. Before desmosomal cadherins are incorporated into nascent desmosomes, they are not bound to intermediate filaments but were suggested to be associated with the actin cytoskeleton. However, direct proof that adhesion of a pool of desmosomal cadherins is dependent on actin is missing. Here, we applied single-molecule force spectroscopy measurements with the novel single molecule hybrid-technique STED/SMFS-AFM to investigate the cytoskeletal anchorage of Dsg3 on living keratinocytes for the first time. By application of pharmacological agents we discriminated two different Dsg3 pools, only one of which is anchored to actin filaments. We applied the actin polymerization inhibitor Latrunculin B to modify the actin cytoskeleton and the PKCα activator PMA to modulate intermediate filament anchorage. On the cellular surface Dsg3 adhesion was actin-dependent. In contrast, at cell-cell contacts, Dsg3 adhesion was independent from actin but rather is regulated by PKC which is well established to control desmosome turn-over via intermediate filament anchorage. Taken together, using the novel STED/SMFS-AFM technique, we demonstrated the existence of two Dsg3 pools with different cytoskeletal anchorage mechanisms.
Collapse
Affiliation(s)
- Michael Fuchs
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Volker Spindler
- Department of Biomedicine and Institute of Anatomy, University of Basel, Basel, Switzerland
| | - Franziska Vielmuth
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Daniela Kugelmann
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| |
Collapse
|
6
|
Schmitt T, Waschke J. Autoantibody-Specific Signalling in Pemphigus. Front Med (Lausanne) 2021; 8:701809. [PMID: 34434944 PMCID: PMC8381052 DOI: 10.3389/fmed.2021.701809] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Pemphigus is a severe autoimmune disease impairing barrier functions of epidermis and mucosa. Autoantibodies primarily target the desmosomal adhesion molecules desmoglein (Dsg) 1 and Dsg 3 and induce loss of desmosomal adhesion. Strikingly, autoantibody profiles in pemphigus correlate with clinical phenotypes. Mucosal-dominant pemphigus vulgaris (PV) is characterised by autoantibodies (PV-IgG) against Dsg3 whereas epidermal blistering in PV and pemphigus foliaceus (PF) is associated with autoantibodies against Dsg1. Therapy in pemphigus is evolving towards specific suppression of autoantibody formation and autoantibody depletion. Nevertheless, during the acute phase and relapses of the disease additional treatment options to stabilise desmosomes and thereby rescue keratinocyte adhesion would be beneficial. Therefore, the mechanisms by which autoantibodies interfere with adhesion of desmosomes need to be characterised in detail. Besides direct inhibition of Dsg adhesion, autoantibodies engage signalling pathways interfering with different steps of desmosome turn-over. With this respect, recent data indicate that autoantibodies induce separate signalling responses in keratinocytes via specific signalling complexes organised by Dsg1 and Dsg3 which transfer the signal of autoantibody binding into the cell. This hypothesis may also explain the different clinical pemphigus phenotypes.
Collapse
Affiliation(s)
- Thomas Schmitt
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| | - Jens Waschke
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| |
Collapse
|
7
|
Autoimmune bullous skin diseases, pemphigus and pemphigoid. J Allergy Clin Immunol 2020; 145:1031-1047. [DOI: 10.1016/j.jaci.2020.02.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
|
8
|
Moch M, Schwarz N, Windoffer R, Leube RE. The keratin-desmosome scaffold: pivotal role of desmosomes for keratin network morphogenesis. Cell Mol Life Sci 2020; 77:543-558. [PMID: 31243490 PMCID: PMC7010626 DOI: 10.1007/s00018-019-03198-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/09/2019] [Accepted: 06/17/2019] [Indexed: 11/29/2022]
Abstract
Desmosome-anchored keratin intermediate filaments (KFs) are essential for epithelial coherence. Yet, desmosomal KF attachment and network organization are still unexplored in vivo. We, therefore, monitored KF network morphogenesis in fluorescent keratin 8 knock-in murine embryos revealing keratin enrichment at newly formed desmosomes followed by KF formation, KF elongation and KF fusion. To examine details of this process and its coupling to desmosome formation, we studied fluorescent keratin and desmosomal protein reporter dynamics in the periphery of expanding HaCaT keratinocyte colonies. Less than 3 min after the start of desmosomal proteins clustering non-filamentous keratin enriched at these sites followed by KF formation and elongation. Subsequently, desmosome-anchored KFs merged into stable bundles generating a rim-and-spokes system consisting of subcortical KFs connecting desmosomes to each other and radial KFs connecting desmosomes to the cytoplasmic KF network. We conclude that desmosomes are organizing centers for the KF cytoskeleton with a hitherto unknown nucleation capacity.
Collapse
Affiliation(s)
- Marcin Moch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
9
|
Yang M, Wu H, Zhao M, Chang C, Lu Q. The pathogenesis of bullous skin diseases. J Transl Autoimmun 2019; 2:100014. [PMID: 32743502 PMCID: PMC7388362 DOI: 10.1016/j.jtauto.2019.100014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023] Open
Abstract
Bullous skin diseases are a group of dermatoses characterized by blisters and bullae in the skin and mucous membranes. The etiology and pathogenesis of bullous skin diseases are not completely clear. The most common are pemphigus and bullous pemphigoid (BP). Autoantibodies play critical roles in their pathogenesis. Abnormalities in the adhesion between keratinocytes in patients with pemphigus leads to acantholysis and formation of intra-epidermal blisters. Anti-desmoglein autoantibodies are present both in the circulation and skin lesions of patients with pemphigus. The deficient adhesion of keratinocytes to the basement membrane in BP patients gives rise to subepidermal blisters. Autoantibodies against the components of hemidesmosome can be detected in BP patients. Many novel therapeutics based on knowledge of the pathogenesis have emerged in recent years.
Collapse
Affiliation(s)
- Miao Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children’s Hospital, Hollywood, FL, 33021, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| |
Collapse
|
10
|
Oktarina DAM, Sokol E, Kramer D, Jonkman MF, Pas HH. Endocytosis of IgG, Desmoglein 1, and Plakoglobin in Pemphigus Foliaceus Patient Skin. Front Immunol 2019; 10:2635. [PMID: 31781120 PMCID: PMC6861377 DOI: 10.3389/fimmu.2019.02635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/24/2019] [Indexed: 01/29/2023] Open
Abstract
Pemphigus foliaceus (PF) is one of the two main forms of pemphigus and is characterized by circulating IgG to the desmosomal cadherin desmoglein 1 (DSG1) and by subcorneal blistering of the skin. The pathomechanism of blister formation in PF is unknown. Previously we have shown that PF IgG induces aggregation of DSG1, plakoglobin (PG), and IgG outside of desmosomes, what in immunofluorescence of PF patient skin visualizes as a granular IgG deposition pattern with a limited number of coarse IgG aggregates between cells. Here we have investigated the fate of these aggregates in skin and found that these are cleared by endocytosis. We performed double immunofluorescence staining on snap-frozen skin biopsies of six PF patients for the following molecules: IgG, the desmosomal proteins DSG1 and DSG3, desmocollins 1 and 3, PG, desmoplakin and plakophilin 3, and for the endosomal marker early endosomal antigen 1 and the lysosomal markers cathepsin D and lysosomal-associated membrane protein 1. Endosomes were present in all cells but did not make contact with the aggregates in the basal and suprabasal layers. In the higher layers they moored to the aggregates, often symmetrically from two adjacent cells, and IgG, DSG1, and PG were taken up. Finally these endosomes became localized perinuclear. Endocytosis was only observed in perilesional or lesional skin but not in non-lesional skin. Older immunoelectron microscopic studies have suggested that in PF skin endocytosis of detached desmosomes takes place but we found no other desmosomal proteins to be present in these endosomes. Double staining with cathepsin D and LAMP-1 revealed no overlap with IgG, DSG1, or PG suggesting that lysosomes have no role in the clearing process. Collectively, our results show that endocytosis is part of the pathogenic process in PF but that no detached desmosomes are taken up but instead the deposited IgG is taken up together with DSG1 and PG.
Collapse
Affiliation(s)
- Dyah A M Oktarina
- Department of Dermatology, Centre for Blistering Diseases, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.,Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ena Sokol
- Department of Dermatology, Centre for Blistering Diseases, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Duco Kramer
- Department of Dermatology, Centre for Blistering Diseases, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Marcel F Jonkman
- Department of Dermatology, Centre for Blistering Diseases, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Hendri H Pas
- Department of Dermatology, Centre for Blistering Diseases, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Vielmuth F, Walter E, Fuchs M, Radeva MY, Buechau F, Magin TM, Spindler V, Waschke J. Keratins Regulate p38MAPK-Dependent Desmoglein Binding Properties in Pemphigus. Front Immunol 2018; 9:528. [PMID: 29616033 PMCID: PMC5868517 DOI: 10.3389/fimmu.2018.00528] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Keratins are crucial for the anchorage of desmosomes. Severe alterations of keratin organization and detachment of filaments from the desmosomal plaque occur in the autoimmune dermatoses pemphigus vulgaris and pemphigus foliaceus (PF), which are mainly caused by autoantibodies against desmoglein (Dsg) 1 and 3. Keratin alterations are a structural hallmark in pemphigus pathogenesis and correlate with loss of intercellular adhesion. However, the significance for autoantibody-induced loss of intercellular adhesion is largely unknown. In wild-type (wt) murine keratinocytes, pemphigus autoantibodies induced keratin filament retraction. Under the same conditions, we used murine keratinocytes lacking all keratin filaments (KtyII k.o.) as a model system to dissect the role of keratins in pemphigus. KtyII k.o. cells show compromised intercellular adhesion without antibody (Ab) treatment, which was not impaired further by pathogenic pemphigus autoantibodies. Nevertheless, direct activation of p38MAPK via anisomycin further decreased intercellular adhesion indicating that cell cohesion was not completely abrogated in the absence of keratins. Direct inhibition of Dsg3, but not of Dsg1, interaction via pathogenic autoantibodies as revealed by atomic force microscopy was detectable in both cell lines demonstrating that keratins are not required for this phenomenon. However, PF-IgG shifted Dsg1-binding events from cell borders toward the free cell surface in wt cells. This led to a distribution pattern of Dsg1-binding events similar to KtyII k.o. cells under resting conditions. In keratin-deficient keratinocytes, PF-IgG impaired Dsg1-binding strength, which was not different from wt cells under resting conditions. In addition, pathogenic autoantibodies were capable of activating p38MAPK in both KtyII wt and k.o. cells, the latter of which already displayed robust p38MAPK activation under resting conditions. Since inhibition of p38MAPK blocked autoantibody-induced loss of intercellular adhesion in wt cells and restored baseline cell cohesion in keratin-deficient cells, we conclude that p38MAPK signaling is (i) critical for regulation of cell adhesion, (ii) regulated by keratins, and (iii) targets both keratin-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elias Walter
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Fuchs
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mariya Y Radeva
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fanny Buechau
- Division of Cell and Developmental Biology, Institute of Biology, Sächsische Inkubator für Klinische Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Thomas M Magin
- Division of Cell and Developmental Biology, Institute of Biology, Sächsische Inkubator für Klinische Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Volker Spindler
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jens Waschke
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
12
|
Abstract
Pemphigus is a severe autoimmune blistering disease mediated by pathogenic anti-desmoglein antibodies leading to an inter keratinocyte disjunction. Rituximab is a monoclonal antibody that binds to the CD-20 antigen of B lymphocytes, which causes B-cell depletion and a subsequent reduction in pathogenic autoantibodies. Its therapeutic role in pemphigus has been progressively growing with increasing evidence of successful outcomes. Rituximab was initially off-labeled used as an alternative in patients with recalcitrant or relapsing pemphigus and in patients with contraindications to systemic corticosteroids. Recently, a large randomized clinical trial has shown that first-line use of rituximab combined with short-term prednisone regimen was both more effective and potentially safer than a standard regimen of high doses of corticosteroids in patients with moderate to severe pemphigus.
Collapse
Affiliation(s)
- Vivien Hebert
- Department of Dermatology, Rouen University Hospital, & INSERM U 1234, Centre de référence des maladies bulleuses autoimmunes, Normandie University, Rouen, France
| | - Pascal Joly
- Department of Dermatology, Rouen University Hospital, & INSERM U 1234, Centre de référence des maladies bulleuses autoimmunes, Normandie University, Rouen, France
| |
Collapse
|
13
|
Vielmuth F, Wanuske MT, Radeva MY, Hiermaier M, Kugelmann D, Walter E, Buechau F, Magin TM, Waschke J, Spindler V. Keratins Regulate the Adhesive Properties of Desmosomal Cadherins through Signaling. J Invest Dermatol 2017; 138:121-131. [PMID: 28899688 DOI: 10.1016/j.jid.2017.08.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/10/2017] [Accepted: 08/06/2017] [Indexed: 11/17/2022]
Abstract
Tightly controlled intercellular adhesion is crucial for the integrity and function of the epidermis. The keratin filament cytoskeleton anchors desmosomes, supramolecular complexes required for strong intercellular adhesion. We tested whether keratin filaments control cell adhesion by regulating the adhesive properties of desmosomal cadherins such as desmoglein (Dsg) 3. Atomic force microscopy and fluorescence recovery after photobleaching experiments showed reduced Dsg3 adhesive forces and membrane stability in murine keratinocytes lacking all keratin filaments. Impairment of the actin cytoskeleton also resulted in decreased Dsg3 immobilization but did not affect Dsg3 binding properties, indicating that the latter are exclusively controlled by keratins. Reduced binding forces were dependent on p38 mitogen-activated protein kinase activity, which was deregulated in keratin-deficient cells. In contrast, inhibition of protein kinase C signaling, which is known to be controlled by keratins, promoted and spatially stabilized Dsg3-mediated interactions in the membrane. These results show a previously unreported mechanism for how keratins stabilize intercellular adhesion on the level of single desmosomal adhesion molecules.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Marie-Therès Wanuske
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Mariya Y Radeva
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Matthias Hiermaier
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Daniela Kugelmann
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Elias Walter
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Fanny Buechau
- Institute of Biology and Translational Center for Regenerative Medicine, Sächsischer Inkubator für klinische Translation, University of Leipzig, Leipzig, Germany
| | - Thomas M Magin
- Institute of Biology and Translational Center for Regenerative Medicine, Sächsischer Inkubator für klinische Translation, University of Leipzig, Leipzig, Germany
| | - Jens Waschke
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Volker Spindler
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| |
Collapse
|
14
|
Abstract
Pemphigus is a group of IgG-mediated autoimmune diseases of stratified squamous epithelia, such as the skin and oral mucosa, in which acantholysis (the loss of cell adhesion) causes blisters and erosions. Pemphigus has three major subtypes: pemphigus vulgaris, pemphigus foliaceus and paraneoplastic pemphigus. IgG autoantibodies are characteristically raised against desmoglein 1 and desmoglein 3, which are cell-cell adhesion molecules found in desmosomes. The sites of blister formation can be physiologically explained by the anti-desmoglein autoantibody profile and tissue-specific expression pattern of desmoglein isoforms. The pathophysiological roles of T cells and B cells have been characterized in mouse models of pemphigus and patients, revealing insights into the mechanisms of autoimmunity. Diagnosis is based on clinical manifestations and confirmed with histological and immunochemical testing. The current first-line treatment is systemic corticosteroids and adjuvant therapies, including immunosuppressive agents, intravenous immunoglobulin and plasmapheresis. Rituximab, a monoclonal antibody against CD20+ B cells, is a promising therapeutic option that may soon become first-line therapy. Pemphigus is one of the best-characterized human autoimmune diseases and provides an ideal paradigm for both basic and clinical research, especially towards the development of antigen-specific immune suppression treatments for autoimmune diseases.
Collapse
|
15
|
Stahley SN, Warren MF, Feldman RJ, Swerlick RA, Mattheyses AL, Kowalczyk AP. Super-Resolution Microscopy Reveals Altered Desmosomal Protein Organization in Tissue from Patients with Pemphigus Vulgaris. J Invest Dermatol 2016; 136:59-66. [PMID: 26763424 PMCID: PMC4730957 DOI: 10.1038/jid.2015.353] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/29/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022]
Abstract
Pemphigus vulgaris (PV) is an autoimmune epidermal blistering disease in which autoantibodies (IgG) are directed against the desmosomal cadherin desmoglein 3 (Dsg3). In order to better understand how PV IgG alters desmosome morphology and function in vivo, PV patient biopsies were analyzed by structured illumination microscopy (SIM), a form of super-resolution fluorescence microscopy. In patient tissue, desmosomal proteins were aberrantly clustered and localized to PV IgG-containing endocytic linear arrays. Patient IgG also colocalized with markers for lipid rafts and endosomes. Additionally, steady-state levels of Dsg3 were decreased and desmosomes were reduced in size in patient tissue. Desmosomes at blister sites were occasionally split, with PV IgG decorating the extracellular faces of split desmosomes. Desmosome splitting was recapitulated in vitro by exposing cultured keratinocytes both to PV IgG and to mechanical stress, demonstrating that splitting at the blister interface in patient tissue is due to compromised desmosomal adhesive function. These findings indicate that Dsg3 clustering and endocytosis are associated with reduced desmosome size and adhesion defects in PV patient tissue. Further, this study reveals that super-resolution optical imaging is powerful approach for studying epidermal adhesion structures in normal and diseased skin.
Collapse
Affiliation(s)
- Sara N Stahley
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maxine F Warren
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ron J Feldman
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert A Swerlick
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alexa L Mattheyses
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
16
|
Rötzer V, Hartlieb E, Vielmuth F, Gliem M, Spindler V, Waschke J. E-cadherin and Src associate with extradesmosomal Dsg3 and modulate desmosome assembly and adhesion. Cell Mol Life Sci 2015; 72:4885-97. [PMID: 26115704 PMCID: PMC11113844 DOI: 10.1007/s00018-015-1977-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 06/11/2015] [Accepted: 06/22/2015] [Indexed: 11/28/2022]
Abstract
Desmosomes provide strong intercellular cohesion essential for the integrity of cells and tissues exposed to continuous mechanical stress. For desmosome assembly, constitutively synthesized desmosomal cadherins translocate to the cell-cell border, cluster and mature in the presence of Ca(2+) to stable cell contacts. As adherens junctions precede the formation of desmosomes, we investigated in this study the relationship between the classical cadherin E-cadherin and the desmosomal cadherin Desmoglein 3 (Dsg3), the latter of which is indispensable for cell-cell adhesion in keratinocytes. By using autoantibodies from patients with the blistering skin disease pemphigus vulgaris (PV), we showed in loss of function studies that E-cadherin compensates for effects of desmosomal disassembly. Overexpression of E-cadherin reduced the loss of cell cohesion induced by PV autoantibodies and attenuated activation of p38 MAPK. Silencing of E-cadherin abolished the localization of Dsg3 at the membrane and resulted in a shift of Dsg3 from the cytoskeletal to the non-cytoskeletal protein pool which conforms to the notion that E-cadherin regulates desmosome assembly. Mechanistically, we identified a complex consisting of extradesmosomal Dsg3, E-cadherin, β-catenin and Src and that the stability of this complex is regulated by Src. Moreover, Dsg3 and E-cadherin are phosphorylated on tyrosine residues in a Src-dependent manner and Src activity is required for recruiting Dsg3 to the cytoskeletal pool as well as for desmosome maturation towards a Ca(2+)-insensitive state. Our data provide new insights into the role of E-cadherin and the contribution of Src signaling for formation and maintenance of desmosomal junctions.
Collapse
Affiliation(s)
- Vera Rötzer
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität, Munich, Germany
| | - Eva Hartlieb
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franziska Vielmuth
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität, Munich, Germany
| | - Martin Gliem
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Volker Spindler
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität, Munich, Germany.
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
17
|
Vielmuth F, Waschke J, Spindler V. Loss of Desmoglein Binding Is Not Sufficient for Keratinocyte Dissociation in Pemphigus. J Invest Dermatol 2015; 135:3068-3077. [DOI: 10.1038/jid.2015.324] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/06/2015] [Accepted: 07/20/2015] [Indexed: 11/10/2022]
|
18
|
Kamiya K, Aoyama Y, Yamaguchi M, Ukida A, Mizuno-Ikeda K, Fujii K, Hamada T, Tokura Y, Iwatsuki K. Clues to diagnosis for unusual mucosal pemphigus demonstrating undetectable anti-desmoglein 3 serum antibodies by routine tests. J Dermatol 2015; 42:572-9. [DOI: 10.1111/1346-8138.12872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/02/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Koji Kamiya
- Department of Dermatology; Hamamatsu University School of Medicine; Hamamatsu Japan
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Yumi Aoyama
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Mari Yamaguchi
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Aya Ukida
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Kazuko Mizuno-Ikeda
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Kazuyasu Fujii
- Department of Dermatology; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Toshihisa Hamada
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Yoshiki Tokura
- Department of Dermatology; Hamamatsu University School of Medicine; Hamamatsu Japan
| | - Keiji Iwatsuki
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| |
Collapse
|
19
|
Abstract
Desmosomes are cell-cell junctions that mediate adhesion and couple the intermediate filament cytoskeleton to sites of cell-cell contact. This architectural arrangement integrates adhesion and cytoskeletal elements of adjacent cells. The importance of this robust adhesion system is evident in numerous human diseases, both inherited and acquired, which occur when desmosome function is compromised. This review focuses on autoimmune and infectious diseases that impair desmosome function. In addition, we discuss emerging evidence that desmosomal genes are often misregulated in cancer. The emphasis of our discussion is placed on the way in which human diseases can inform our understanding of basic desmosome biology and in turn, the means by which fundamental advances in the cell biology of desmosomes might lead to new treatments for acquired diseases of the desmosome.
Collapse
|
20
|
Kitajima Y. 150(th) anniversary series: Desmosomes and autoimmune disease, perspective of dynamic desmosome remodeling and its impairments in pemphigus. ACTA ACUST UNITED AC 2014; 21:269-80. [PMID: 25078507 DOI: 10.3109/15419061.2014.943397] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Desmosomes are the most important intercellular adhering junctions that adhere two adjacent keratinocytes directly with desmosomal cadherins, that is, desmogleins (Dsgs) and desmocollins, forming an epidermal sheet. Recently, two cell-cell adhesion states of desmosomes, that is, "stable hyper-adhesion" and "dynamic weak-adhesion" conditions have been recognized. They are mutually reversible through cell signaling events involving protein kinase C (PKC), Src and epidermal growth factor receptor (EGFR) during Ca(2+)-switching and wound healing. This remodeling is impaired in pemphigus vulgaris (PV, an autoimmune blistering disease), caused by anti-Dsg3 antibodies. The antibody binding to Dsg3 activates PKC, Src and EGFR, linked to generation of dynamic weak-adhesion desmosomes, followed by p38MAPK-mediated endocytosis of Dsg3, resulting in the specific depletion of Dsg3 from desmosomes and acantholysis. A variety of pemphigus outside-in signaling may explain different clinical (non-inflammatory, inflammatory, and necrolytic) types of pemphigus. Pemphigus could be referred to a "desmosome-remodeling disease involving pemphigus IgG-activated outside-in signaling events".
Collapse
Affiliation(s)
- Yasuo Kitajima
- Department of Dermatology, Kizawa Memorial Hospital, Professor Emeritus Gifu University School of Medicine , Minokamo City, Gifu Prefecture , Japan
| |
Collapse
|
21
|
Rötzer V, Breit A, Waschke J, Spindler V. Adducin is required for desmosomal cohesion in keratinocytes. J Biol Chem 2014; 289:14925-40. [PMID: 24711455 DOI: 10.1074/jbc.m113.527127] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adducin is a protein organizing the cortical actin cytoskeleton and a target of RhoA and PKC signaling. However, the role for intercellular cohesion is unknown. We found that adducin silencing induced disruption of the actin cytoskeleton, reduced intercellular adhesion of human keratinocytes, and decreased the levels of the desmosomal adhesion molecule desmoglein (Dsg)3 by reducing its membrane incorporation. Because loss of cell cohesion and Dsg3 depletion is observed in the autoantibody-mediated blistering skin disease pemphigus vulgaris (PV), we applied antibody fractions of PV patients. A rapid phosphorylation of adducin at serine 726 was detected in response to these autoantibodies. To mechanistically link autoantibody binding and adducin phosphorylation, we evaluated the role of several disease-relevant signaling molecules. Adducin phosphorylation at serine 726 was dependent on Ca(2+) influx and PKC but occurred independent of p38 MAPK and PKA. Adducin phosphorylation is protective, because phosphorylation-deficient mutants resulted in loss of cell cohesion and Dsg3 fragmentation. Thus, PKC elicits both positive and negative effects on cell adhesion, since its contribution to cell dissociation in pemphigus is well established. We additionally evaluated the effect of RhoA on adducin phosphorylation because RhoA activation was shown to block pemphigus autoantibody-induced cell dissociation. Our data demonstrate that the protective effect of RhoA activation was dependent on the presence of adducin and its phosphorylation at serine 726. These experiments provide novel mechanisms for regulation of desmosomal adhesion by RhoA- and PKC-mediated adducin phosphorylation in keratinocytes.
Collapse
Affiliation(s)
- Vera Rötzer
- From the Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich D-80336 and
| | - Andreas Breit
- the Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich D-80336, Germany
| | - Jens Waschke
- From the Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich D-80336 and
| | - Volker Spindler
- From the Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich D-80336 and
| |
Collapse
|
22
|
Waschke J, Spindler V. Desmosomes and Extradesmosomal Adhesive Signaling Contacts in Pemphigus. Med Res Rev 2014; 34:1127-45. [DOI: 10.1002/med.21310] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jens Waschke
- Institute of Anatomy and Cell Biology, Department I; Ludwig-Maximilians-Universität (LMU) Munich; Pettenkoferstrasse 11 D-80336 Munich Germany
| | - Volker Spindler
- Institute of Anatomy and Cell Biology, Department I; Ludwig-Maximilians-Universität (LMU) Munich; Pettenkoferstrasse 11 D-80336 Munich Germany
| |
Collapse
|
23
|
Spindler V, Waschke J. Desmosomal Cadherins and Signaling: Lessons from Autoimmune Disease. ACTA ACUST UNITED AC 2014; 21:77-84. [DOI: 10.3109/15419061.2013.877000] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Abstract
Desmosomes anchor intermediate filaments at sites of cell contact established by the interaction of cadherins extending from opposing cells. The incorporation of cadherins, catenin adaptors, and cytoskeletal elements resembles the closely related adherens junction. However, the recruitment of intermediate filaments distinguishes desmosomes and imparts a unique function. By linking the load-bearing intermediate filaments of neighboring cells, desmosomes create mechanically contiguous cell sheets and, in so doing, confer structural integrity to the tissues they populate. This trait and a well-established role in human disease have long captured the attention of cell biologists, as evidenced by a publication record dating back to the mid-1860s. Likewise, emerging data implicating the desmosome in signaling events pertinent to organismal development, carcinogenesis, and genetic disorders will secure a prominent role for desmosomes in future biological and biomedical investigations.
Collapse
Affiliation(s)
- Robert M Harmon
- Department of Pathology, Northwestern University Feinberg, School of Medicine , Chicago, IL , USA
| | | |
Collapse
|
25
|
Hiroyasu S, Ozawa T, Kobayashi H, Ishii M, Aoyama Y, Kitajima Y, Hashimoto T, Jones JC, Tsuruta D. Bullous pemphigoid IgG induces BP180 internalization via a macropinocytic pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:828-40. [PMID: 23337823 PMCID: PMC3590760 DOI: 10.1016/j.ajpath.2012.11.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/18/2012] [Accepted: 11/14/2012] [Indexed: 12/17/2022]
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering skin disease induced by pathogenic autoantibodies against a type II transmembrane protein (BP180, collagen type XVII, or BPAG2). In animal models, BP180 autoantibody-antigen interaction appears insufficient to develop blisters, but involvement of complement and neutrophils is required. However, cultured keratinocytes treated with BP-IgG exhibit a reduction in the adhesive strength and a loss of expression of BP180, suggesting that the autoantibodies directly affect epidermal cell-extracellular matrix integrity. In this study, we explored the consequences of two distinct epithelial cells treated with BP-IgG, particularly the fate of BP180. First, we followed the distribution of green fluorescent protein-tagged BP180 in an epithelial cell line, 804G, and normal human epidermal keratinocytes after autoantibody clustering. After BP-IgG treatment, the adhesive strength of the cells to their substrate was decreased, and BP180 was internalized in both cell types, together with the early endosomal antigen-1. By using various endocytosis inhibitors and a fluid-uptake assay, we demonstrated that BP-IgG-induced BP180 internalization is mediated via a macropinocytic pathway. Moreover, a macropinocytosis inhibitor rescued a BP-IgG-induced reduction in the adhesive strength of the cells from their substrate. The results of this study suggest that BP180 internalization induced by BP-IgG plays an important role in the initiation of disease pathogenesis.
Collapse
Affiliation(s)
- Sho Hiroyasu
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Toshiyuki Ozawa
- Department of Plastic and Reconstructive Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiromi Kobayashi
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masamitsu Ishii
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yumi Aoyama
- Department of Dermatology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Yasuo Kitajima
- Division of Dermatology, Kizawa Memorial Hospital, Gifu, Japan
| | - Takashi Hashimoto
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Fukuoka, Japan
| | - Jonathan C.R. Jones
- Department of Cell and Molecular Biology, Northwestern University the Feinberg School of Medicine, Chicago, Illinois
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Fukuoka, Japan
| |
Collapse
|
26
|
Kitajima Y. New insights into desmosome regulation and pemphigus blistering as a desmosome-remodeling disease. Kaohsiung J Med Sci 2013; 29:1-13. [DOI: 10.1016/j.kjms.2012.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/29/2012] [Indexed: 11/15/2022] Open
|
27
|
Signaling dependent and independent mechanisms in pemphigus vulgaris blister formation. PLoS One 2012; 7:e50696. [PMID: 23226536 PMCID: PMC3513318 DOI: 10.1371/journal.pone.0050696] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/23/2012] [Indexed: 11/26/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune epidermal blistering disease caused by autoantibodies directed against the desmosomal cadherin desmoglein-3 (Dsg3). Significant advances in our understanding of pemphigus pathomechanisms have been derived from the generation of pathogenic monoclonal Dsg3 antibodies. However, conflicting models for pemphigus pathogenicity have arisen from studies using either polyclonal PV patient IgG or monoclonal Dsg3 antibodies. In the present study, the pathogenic mechanisms of polyclonal PV IgG and monoclonal Dsg3 antibodies were directly compared. Polyclonal PV IgG cause extensive clustering and endocytosis of keratinocyte cell surface Dsg3, whereas pathogenic mouse monoclonal antibodies compromise cell-cell adhesion strength without causing these alterations in Dsg3 trafficking. Furthermore, tyrosine kinase or p38 MAPK inhibition prevents loss of keratinocyte adhesion in response to polyclonal PV IgG. In contrast, disruption of adhesion by pathogenic monoclonal antibodies is not prevented by these inhibitors either in vitro or in human skin explants. Our results reveal that the pathogenic activity of polyclonal PV IgG can be attributed to p38 MAPK-dependent clustering and endocytosis of Dsg3, whereas pathogenic monoclonal Dsg3 antibodies can function independently of this pathway. These findings have important implications for understanding pemphigus pathophysiology, and for the design of pemphigus model systems and therapeutic interventions.
Collapse
|
28
|
van der Wier G, Jonkman M, Pas H, Diercks G. Ultrastructure of acantholysis in pemphigus foliaceus re‐examined from the current perspective. Br J Dermatol 2012; 167:1265-71. [DOI: 10.1111/j.1365-2133.2012.11173.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- G. van der Wier
- Centre for Blistering Diseases, Department of Dermatology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - M.F. Jonkman
- Centre for Blistering Diseases, Department of Dermatology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - H.H. Pas
- Centre for Blistering Diseases, Department of Dermatology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - G.F.H. Diercks
- Centre for Blistering Diseases, Department of Dermatology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| |
Collapse
|
29
|
Abstract
Desmosomes are intercellular adhesive junctions that are particularly prominent in tissues experiencing mechanical stress, such as the heart and epidermis. Whereas the related adherens junction links actin to calcium-dependent adhesion molecules known as classical cadherins, desmosomes link intermediate filaments (IF) to the related subfamily of desmosomal cadherins. By tethering these stress-bearing cytoskeletal filaments to the plasma membrane, desmosomes serve as integrators of the IF cytoskeleton throughout a tissue. Recent evidence suggests that IF attachment in turn strengthens desmosomal adhesion. This collaborative arrangement results in formation of a supracellular network, which is critical for imparting mechanical integrity to tissues. Diseases and animal models targeting desmosomal components highlight the importance of desmosomes in development and tissue integrity, while the downregulation of individual protein components in cancer metastasis and wound healing suggests their importance in cell homeostasis. This chapter will provide an update on desmosome composition, function, and regulation, and will also discuss recent work which raises the possibility that desmosome proteins do more than play a structural role in tissues where they reside.
Collapse
|
30
|
Di Zenzo G, Di Lullo G, Corti D, Calabresi V, Sinistro A, Vanzetta F, Didona B, Cianchini G, Hertl M, Eming R, Amagai M, Ohyama B, Hashimoto T, Sloostra J, Sallusto F, Zambruno G, Lanzavecchia A. Pemphigus autoantibodies generated through somatic mutations target the desmoglein-3 cis-interface. J Clin Invest 2012; 122:3781-90. [PMID: 22996451 DOI: 10.1172/jci64413] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/12/2012] [Indexed: 11/17/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune blistering disease of skin and mucous membranes caused by autoantibodies to the desmoglein (DSG) family proteins DSG3 and DSG1, leading to loss of keratinocyte cell adhesion. To learn more about pathogenic PV autoantibodies, we isolated 15 IgG antibodies specific for DSG3 from 2 PV patients. Three antibodies disrupted keratinocyte monolayers in vitro, and 2 were pathogenic in a passive transfer model in neonatal mice. The epitopes recognized by the pathogenic antibodies were mapped to the DSG3 extracellular 1 (EC1) and EC2 subdomains, regions involved in cis-adhesive interactions. Using a site-specific serological assay, we found that the cis-adhesive interface on EC1 recognized by the pathogenic antibody PVA224 is the primary target of the autoantibodies present in the serum of PV patients. The autoantibodies isolated used different heavy- and light-chain variable region genes and carried high levels of somatic mutations in complementary-determining regions, consistent with antigenic selection. Remarkably, binding to DSG3 was lost when somatic mutations were reverted to the germline sequence. These findings identify the cis-adhesive interface of DSG3 as the immunodominant region targeted by pathogenic antibodies in PV and indicate that autoreactivity relies on somatic mutations generated in the response to an antigen unrelated to DSG3.
Collapse
Affiliation(s)
- Giovanni Di Zenzo
- Molecular and cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kamiya K, Aoyama Y, Shirafuji Y, Hamada T, Morizane S, Fujii K, Hisata K, Iwatsuki K. Detection of antibodies against the non-calcium-dependent epitopes of desmoglein 3 in pemphigus vulgaris and their pathogenic significance. Br J Dermatol 2012; 167:252-61. [PMID: 22404487 DOI: 10.1111/j.1365-2133.2012.10929.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Antidesmoglein (anti-Dsg) 3 serum antibody titres are usually correlated with the disease activity of pemphigus vulgaris (PV), but some patients retain high titres even in remission. OBJECTIVES The aim of our study was to determine whether anti-Dsg3 antibodies in PV sera recognized calcium (Ca(2+) )-dependent or non-Ca(2+) -dependent epitopes, and to evaluate their pathogenicity. METHODS Dsg3 baculoprotein-coated enzyme-linked immunosorbent assay (ELISA) plates were treated with 0.5 mmol L(-1) ethylenediaminetetraacetic acid (EDTA). The binding ability of anti-Dsg3 monoclonal antibodies (mAbs) was analysed. Eight of the 83 patients with PV who were screened had elevated Dsg3 ELISA index values > 00 in remission. The binding ability of these PV sera was analysed. We evaluated the pathogenicity of anti-Dsg3 serum antibodies against the non-Ca(2+) -dependent epitopes using a dissociation assay. RESULTS The reactivity of pathogenic anti-Dsg3 mAbs against the Ca(2+) -dependent epitopes diminished markedly in the EDTA-treated ELISA, whereas no such reduction was observed in mAbs against the non-Ca(2+) -dependent epitopes. The sera of all the patients contained antibodies against both Ca(2+) -dependent and non-Ca(2+) -dependent epitopes. In six out of the eight patients, the ratio of antibodies against Ca(2+) -dependent to non-Ca(2+) -dependent epitopes decreased in remission. EDTA-treated Dsg3 baculoproteins adsorbed anti-Dsg3 serum antibodies against the non-Ca(2+) -dependent epitopes, but the remnant PV antibodies retained the ability to induce acantholysis in the dissociation assay. CONCLUSIONS We have established an assay to measure indirectly the titres of anti-Dsg3 serum antibodies against the Ca(2+) -dependent epitopes, based on the differences between EDTA-untreated and EDTA-treated ELISA index values, as a routine laboratory test to reflect the pathogenic anti-Dsg3 serum antibody titres more accurately.
Collapse
Affiliation(s)
- K Kamiya
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Tsang SM, Brown L, Lin K, Liu L, Piper K, O'Toole EA, Grose R, Hart IR, Garrod DR, Fortune F, Wan H. Non-junctional human desmoglein 3 acts as an upstream regulator of Src in E-cadherin adhesion, a pathway possibly involved in the pathogenesis of pemphigus vulgaris. J Pathol 2012; 227:81-93. [DOI: 10.1002/path.3982] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/03/2011] [Accepted: 12/21/2011] [Indexed: 12/19/2022]
|
33
|
Brooke MA, Nitoiu D, Kelsell DP. Cell-cell connectivity: desmosomes and disease. J Pathol 2011; 226:158-71. [PMID: 21989576 DOI: 10.1002/path.3027] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 01/12/2023]
Abstract
Cell-cell connectivity is an absolute requirement for the correct functioning of cells, tissues and entire organisms. At the level of the individual cell, direct cell-cell adherence and communication is mediated by the intercellular junction complexes: desmosomes, adherens, tight and gap junctions. A broad spectrum of inherited, infectious and auto-immune diseases can affect the proper function of intercellular junctions and result in either diseases affecting specific individual tissues or widespread syndromic conditions. A particularly diverse group of diseases result from direct or indirect disruption of desmosomes--a consequence of their importance in tissue integrity, their extensive distribution, complex structure, and the wide variety of functions their components accomplish. As a consequence, disruption of desmosomal assembly, structure or integrity disrupts not only their intercellular adhesive function but also their functions in cell communication and regulation, leading to such diverse pathologies as cardiomyopathy, epidermal and mucosal blistering, palmoplantar keratoderma, woolly hair, keratosis, epidermolysis bullosa, ectodermal dysplasia and alopecia. Here, as well as describing the importance of the other intercellular junctions, we focus primarily on the desmosome, its structure and its role in disease. We will examine the various pathologies that result from impairment of desmosome function and thereby demonstrate the importance of desmosomes to tissues and to the organism as a whole.
Collapse
Affiliation(s)
- Matthew A Brooke
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | | | | |
Collapse
|
34
|
Spindler V, Waschke J. Role of Rho GTPases in desmosomal adhesion and pemphigus pathogenesis. Ann Anat 2011; 193:177-80. [PMID: 21441018 DOI: 10.1016/j.aanat.2011.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 02/25/2011] [Accepted: 02/25/2011] [Indexed: 12/12/2022]
Abstract
Desmosomes are distinct intercellular contacts essential to the integrity of epithelial tissues and the heart muscle. This function is impaired in the disease pemphigus, in which patients develop autoantibodies against the cadherin-type desmosomal core proteins desmogleins. Autoantibody binding induces loss of cell-cell adhesion leading to blisters within the epidermis and mucous membranes. Despite the relevance of desmosomes for integrity of such essential organs as the skin, data on the regulation of desmosome assembly and maintenance and desmosome-mediated adhesion are only slowly emerging. Small guanosine triphosphatases (GTPases) of the Rho family have long been established as regulators of other cell junctions such as adherens junctions, but also have been implicated in participating in the formation of desmosomes. In this short review we summarize two papers from our group dealing with the role of Rho family GTPases for desmosomal adhesion and pemphigus and discuss these data integrating novel work recently published.
Collapse
Affiliation(s)
- Volker Spindler
- Institute of Anatomy and Cell Biology, University of Würzburg, Germany.
| | | |
Collapse
|
35
|
Desmosome disassembly in response to pemphigus vulgaris IgG occurs in distinct phases and can be reversed by expression of exogenous Dsg3. J Invest Dermatol 2010; 131:706-18. [PMID: 21160493 DOI: 10.1038/jid.2010.389] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pemphigus vulgaris (PV) is an epidermal blistering disorder caused by antibodies directed against the desmosomal cadherin desmoglein-3 (Dsg3). The mechanism by which PV IgG disrupts adhesion is not fully understood. To address this issue, primary human keratinocytes (KCs) and patient IgG were used to define the morphological, biochemical, and functional changes triggered by PV IgG. Three phases of desmosome disassembly were distinguished. Analysis of fixed and living KCs demonstrated that PV IgG cause rapid Dsg3 internalization, which likely originates from a non-junctional pool of Dsg3. Subsequently, Dsg3 and other desmosomal components rearrange into linear arrays that run perpendicular to cell contacts. Dsg3 complexes localized at the cell surface are transported in a retrograde manner along with these arrays before being released into cytoplasmic vesicular compartments. These changes in Dsg3 distribution are followed by depletion of detergent-insoluble Dsg3 pools and by the loss of cell adhesion strength. Importantly, this process of disassembly can be prevented by expressing exogenous Dsg3, thereby driving Dsg3 biosynthesis and desmosome assembly. These data support a model in which PV IgG cause the loss of cell adhesion by altering the dynamics of Dsg3 assembly into desmosomes and the turnover of cell surface pools of Dsg3 through endocytic pathways.
Collapse
|
36
|
Tsang SM, Liu L, Teh MT, Wheeler A, Grose R, Hart IR, Garrod DR, Fortune F, Wan H. Desmoglein 3, via an interaction with E-cadherin, is associated with activation of Src. PLoS One 2010; 5:e14211. [PMID: 21151980 PMCID: PMC2997060 DOI: 10.1371/journal.pone.0014211] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/12/2010] [Indexed: 01/03/2023] Open
Abstract
Background Desmoglein 3 (Dsg3), a desmosomal adhesion protein, is expressed in basal and immediate suprabasal layers of skin and across the entire stratified squamous epithelium of oral mucosa. However, increasing evidence suggests that the role of Dsg3 may involve more than just cell-cell adhesion. Methodology/Principal Findings To determine possible additional roles of Dsg3 during epithelial cell adhesion we used overexpression of full-length human Dsg3 cDNA, and RNAi-mediated knockdown of this molecule in various epithelial cell types. Overexpression of Dsg3 resulted in a reduced level of E-cadherin but a colocalisation with the E-cadherin-catenin complex of the adherens junctions. Concomitantly these transfected cells exhibited marked migratory capacity and the formation of filopodial protrusions. These latter events are consistent with Src activation and, indeed, Src-specific inhibition reversed these phenotypes. Moreover Dsg3 knockdown, which also reversed the decreased level of E-cadherin, partially blocked Src phosphorylation. Conclusions/Significance Our data are consistent with the possibility that Dsg3, as an up-stream regulator of Src activity, helps regulate adherens junction formation.
Collapse
Affiliation(s)
- Siu Man Tsang
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Li Liu
- Centre for Infectious Disease, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Ann Wheeler
- Imaging Facility, Blizard Institute of Cell and Molecular Sciences, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Richard Grose
- Centre for Tumor Biology, Institute of Cancer, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Ian R. Hart
- Centre for Tumor Biology, Institute of Cancer, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - David R. Garrod
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- King Saud University, Riyadh, Saudi Arabia
| | - Farida Fortune
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Hong Wan
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Mimouni D, Blank M, Payne AS, Anhalt GJ, Avivi C, Barshack I, David M, Shoenfeld Y. Efficacy of intravenous immunoglobulin (IVIG) affinity-purified anti-desmoglein anti-idiotypic antibodies in the treatment of an experimental model of pemphigus vulgaris. Clin Exp Immunol 2010; 162:543-9. [PMID: 20964642 DOI: 10.1111/j.1365-2249.2010.04265.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pemphigus vulgaris is a rare life-threatening autoimmune bullous disease caused by immunoglobulin G (IgG) autoantibodies directed against desmogleins 1 and 3. Previously, we showed that intravenous immunoglobulin (IVIG) ameliorates anti-desmoglein-induced experimental pemphigus vulgaris in newborn naive mice. The aim of this study was to examine the efficacy of anti-anti-desmoglein-specific IVIG in a similar model. Pemphigus-vulgaris-specific IVIG (PV-sIVIG) was affinity-purified from IVIG on a column of single-chain variable fragment (scFv) anti-desmogleins 1 and 3. The anti-idiotypic activity of PV-sIVIG was confirmed by enzyme-linked immunosorbent assay, inhibition assay. After induction of pemphigus by injection of anti-desmogleins 1 and 3 scFv to newborn mice, the animals were treated with PV-sIVIG, IVIG (low or high dose) or IgG from a healthy donor (n = 10 each). The skin was examined 24-48 h later, and samples of affected areas were analysed by histology and immunofluorescence. In vitro study showed that PV-sIVIG significantly inhibited anti-desmogleins 1 and 3 scFv binding to recombinant desmoglein-3 in a dose-dependent manner. Specificity was confirmed by inhibition assay. In vivo analysis revealed cutaneous lesions of pemphigus vulgaris in mice injected with normal IgG (nine of 10 mice) or low-dose IVIG (nine of 10 mice), but not in mice treated with PV-sIVIG (none of 10) or high-dose IVIG (none of 10). On immunopathological study, PV-sIVIG and regular IVIG prevented the formation of acantholysis and deposition of IgG in intercellular spaces. In conclusion, the PV-sIVIG preparation is more effective than native IVIG in inhibiting anti-desmoglein-induced pemphigus vulgaris in mice and might serve as a future therapy in patients with the clinical disease.
Collapse
Affiliation(s)
- D Mimouni
- Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mao X, Nagler AR, Farber SA, Choi EJ, Jackson LH, Leiferman KM, Ishii N, Hashimoto T, Amagai M, Zone JJ, Payne AS. Autoimmunity to desmocollin 3 in pemphigus vulgaris. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2724-30. [PMID: 20952584 DOI: 10.2353/ajpath.2010.100483] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pemphigus vulgaris is a blistering disease associated with autoantibodies to the desmosomal adhesion protein, desmoglein 3. Genetic deficiency of desmoglein 3 in mice mimics autoimmunity to desmoglein 3 in pemphigus vulgaris, with mucosal-dominant blistering in the suprabasal layer of the epidermis. Mice with an epidermal-specific deletion of desmocollin 3, the other major desmosomal cadherin isoform expressed in the basal epidermis, develop suprabasal blisters in skin that are histologically identical to those observed in pemphigus vulgaris, suggesting that desmocollin 3 might be a target of autoantibodies in some pemphigus vulgaris patients. We now demonstrate that desmocollin 3 is an autoantigen in pemphigus vulgaris, illustrated in a patient with mucosal-dominant blistering. Six of 38 pemphigus vulgaris and one of 85 normal serum samples immunoprecipitate desmocollin 3 (P = 0.003). Incubation of patient IgG with human keratinocytes causes loss of intercellular adhesion, and adsorption with recombinant desmocollin 3 specifically prevents this pathogenic effect. Additionally, anti-desmocollin 3 sera cause loss of keratinocyte cell surface desmocollin 3, but not desmoglein 3 by immunofluorescence, indicating distinct cellular pathogenic effects in anti-desmocollin and anti-desmoglein pemphigus, despite their identical clinical presentations. These data demonstrate that desmocollin 3 is a pathogenic autoantigen in pemphigus vulgaris and suggest that pemphigus vulgaris is a histological reaction pattern that may result from autoimmunity to desmoglein 3, desmocollin 3, or both desmosomal cadherins.
Collapse
Affiliation(s)
- Xuming Mao
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Desmosomes are intercellular junctions that tether intermediate filaments to the plasma membrane. Desmogleins and desmocollins, members of the cadherin superfamily, mediate adhesion at desmosomes. Cytoplasmic components of the desmosome associate with the desmosomal cadherin tails through a series of protein interactions, which serve to recruit intermediate filaments to sites of desmosome assembly. These desmosomal plaque components include plakoglobin and the plakophilins, members of the armadillo gene family. Linkage to the cytoskeleton is mediated by the intermediate filament binding protein, desmoplakin, which associates with both plakoglobin and plakophilins. Although desmosomes are critical for maintaining stable cell-cell adhesion, emerging evidence indicates that they are also dynamic structures that contribute to cellular processes beyond that of cell adhesion. This article outlines the structure and function of the major desmosomal proteins, and explores the contributions of this protein complex to tissue architecture and morphogenesis.
Collapse
Affiliation(s)
- Emmanuella Delva
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
40
|
Green KJ, Getsios S, Troyanovsky S, Godsel LM. Intercellular junction assembly, dynamics, and homeostasis. Cold Spring Harb Perspect Biol 2010; 2:a000125. [PMID: 20182611 DOI: 10.1101/cshperspect.a000125] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intercellular anchoring junctions are highly specialized regions of the plasma membrane where members of the cadherin family of transmembrane adhesion molecules on opposing cells interact through their extracellular domains, and through their cytoplasmic domains serve as a platform for organizing cytoskeletal anchors and remodelers. Here we focus on assembly of so-called "anchoring" or "adhering" junctions-adherens junctions (AJs) and desmosomes (DSMs), which associate with actin and intermediate filaments, respectively. We will examine how the assembly and function of AJs and DSMs are intimately connected during embryogenesis and in adult cells and tissues, and in some cases even form specialized "mixed" junctions. We will explore signaling and trafficking machineries that drive assembly and remodeling and how these mechanisms are co-opted in human disease.
Collapse
Affiliation(s)
- Kathleen J Green
- Northwestern University Feinberg School of Medicine, Department of Pathology, R.H. Lurie Comprehensive Cancer Center, 303 E. Chicago Ave. Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
41
|
Aoyama Y, Nagai M, Kitajima Y. Binding of pemphigus vulgaris IgG to antigens in desmosome core domains excludes immune complexes rather than directly splitting desmosomes. Br J Dermatol 2010; 162:1049-55. [DOI: 10.1111/j.1365-2133.2010.09672.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Jolly PS, Berkowitz P, Bektas M, Lee HE, Chua M, Diaz LA, Rubenstein DS. p38MAPK signaling and desmoglein-3 internalization are linked events in pemphigus acantholysis. J Biol Chem 2010; 285:8936-41. [PMID: 20093368 DOI: 10.1074/jbc.m109.087999] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune blistering disease in which antibodies against the desmosomal cadherin, DSG3 (desmoglein-3), cause acantholysis. It has become increasingly clear that loss of cell-cell adhesion in PV is a complex and active process involving multiple signaling events such as activation of p38MAPK. It has also been demonstrated that incubating keratinocytes with PV IgG causes a redistribution of DSG3 from the cell surface to endosomes, which target these proteins for degradation. This study was undertaken to determine the relationship between p38MAPK and DSG3 endocytosis in pemphigus. In this work, we confirm that PV IgG causes internalization of cell-surface DSG3 into endosomes (as early as 4 h), which are then depleted from both detergent-soluble and detergent-insoluble pools. Cell-surface DSG3 internalization and depletion from both the detergent-soluble and detergent-insoluble fractions were blocked by the p38MAPK inhibitor SB202190. These data suggest that p38MAPK is capable of regulating PV IgG-mediated DSG3 internalization and that previously isolated mechanistic observations may be linked to a common pathway by which pemphigus autoantibodies lead to acantholysis.
Collapse
Affiliation(s)
- Puneet S Jolly
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina 27599-7287, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Bektas M, Rubenstein DS. Perp and pemphigus: a disease of desmosome destabilization. J Invest Dermatol 2009; 129:1606-8. [PMID: 19521407 DOI: 10.1038/jid.2009.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this issue, Nguyen et al. demonstrate a role for Perp in desmosome assembly and trafficking and pemphigus IgG-mediated acantholysis, providing further insights into the complexity of desmosome structure and regulation.
Collapse
Affiliation(s)
- Meryem Bektas
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina 27599-7287, USA
| | | |
Collapse
|
44
|
Aoyama Y, Yamamoto Y, Yamaguchi F, Kitajima Y. Low to high Ca2+ -switch causes phosphorylation and association of desmocollin 3 with plakoglobin and desmoglein 3 in cultured keratinocytes. Exp Dermatol 2009; 18:404-8. [PMID: 19348003 DOI: 10.1111/j.1600-0625.2008.00814.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although desmocollins (Dscs) and desmogleins (Dsgs) are known to be bound to each other to form desmosomes, neither their interactions nor regulations that occur in human keratinocytes grown in low and high Ca2+medium has been determined. In this study, we investigated whether Dsc3 interacts with Dsg3 in a cell line of human squamous cell carcinoma keratinocytes (DJM-1) grown in low (0.05 mm) or high (1.27 mm) Ca2+ medium. Anti-Dsc3 monoclonal antibody did not co-immunoprecipitate Dsg3 nor plakoglobin with Dsc3 in low Ca2+ culture, whereas it co-immunoprecipitated plakoglobin already at 10 min and Dsg3 at 60 min after Ca2+ -switch in association with Dsc3 phosphorylation at serine residues. These results suggest that both the binding of Dsc3 to plakoglobin and Dsc3 phosphorylation are involved in Dsc3 binding to Dsg3 during Ca2+ -induced desmosome assembly.
Collapse
Affiliation(s)
- Yumi Aoyama
- Department of Dermatology, Gifu University School of Medicine, Gifu City, Japan
| | | | | | | |
Collapse
|
45
|
Cirillo N, Femiano F, Gombos F, Lanza A. High-dose pemphigus antibodies against linear epitopes of desmoglein 3 (Dsg3) can induce acantholysis and depletion of Dsg3 from keratinocytes. Immunol Lett 2009; 122:208-13. [DOI: 10.1016/j.imlet.2009.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 12/18/2008] [Accepted: 01/14/2009] [Indexed: 10/21/2022]
|
46
|
Loss of the desmosomal protein perp enhances the phenotypic effects of pemphigus vulgaris autoantibodies. J Invest Dermatol 2009; 129:1710-8. [PMID: 19158843 DOI: 10.1038/jid.2008.419] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pemphigus vulgaris (PV) is an autoimmune bullous disease in which autoantibodies against proteins of the desmosomal adhesion complex perturb desmosomal function, leading to intercellular adhesion defects in the oral mucosa and skin. Previous studies have demonstrated a central role for downregulation of the desmosomal cadherin desmoglein 3 (DSG3) in the pathogenesis of PV. However, the effects of non-cadherin desmosomal proteins in modulating the cellular manifestations of PV remain poorly understood. Here, we characterize the expression and functional importance of Perp, a newly discovered tetraspan desmosomal protein, in PV. Our data demonstrate that PV autoantibodies disrupt Perp expression at the membrane and trigger its internalization along with DSG3 into the endosomal pathway, where it is ultimately targeted to the lysosome for degradation. We further show that Perp deficiency exacerbates the pathogenic effects of PV autoantibodies on keratinocytes by enhancing both the depletion of desmosomal DSG3 and intercellular adhesion defects. Together, our findings highlight the importance of non-cadherin desmosomal proteins in modulating PV phenotypes and provide new insight into Perp's role in the desmosome.
Collapse
|
47
|
Mao X, Choi EJ, Payne AS. Disruption of desmosome assembly by monovalent human pemphigus vulgaris monoclonal antibodies. J Invest Dermatol 2008; 129:908-18. [PMID: 19037235 DOI: 10.1038/jid.2008.339] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intercellular interactions of the desmosomal cadherins, desmoglein and desmocollin, are required for epidermal cell adhesion. Pemphigus vulgaris (PV) is a potentially fatal autoimmune blistering disease characterized by autoantibodies against desmoglein (Dsg) 3. During calcium-induced desmosome assembly, treatment of primary human keratinocytes with pathogenic monovalent anti-Dsg3 mAbs produced from a PV patient causes a decrease of Dsg3 and desmoplakin but not desmocollin (Dsc) 3 in the Triton-insoluble fraction of cell lysates within 2 hours. Immunofluorescence and antibody ELISA studies suggest that pathogenic mAbs cause internalization of cell-surface Dsg3 but not Dsc3 through early endosomes. Electron microscopy demonstrated a lack of well-formed desmosomes in keratinocytes treated with pathogenic compared to nonpathogenic mAbs. In contrast, pathogenic mAbs caused late depletion of Dsg3 from preformed desmosomes at 24 hours, with effects on multiple desmosomal proteins including Dsc3 and plakoglobin. Together, these studies indicate that pathogenic PV mAbs specifically cause internalization of newly synthesized Dsg3 during desmosome assembly, correlating with their pathogenic activity. Monovalent human PV anti-Dsg mAbs reproduce the effects of polyclonal PV IgG on Dsg3 and will facilitate future studies to further dissect the cellular mechanisms for the loss of cell adhesion in pemphigus.
Collapse
Affiliation(s)
- Xuming Mao
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
48
|
Cirillo N, Campisi G, Gombos F, Perillo L, Femiano F, Lanza A. Cleavage of desmoglein 3 can explain its depletion from keratinocytes in pemphigus vulgaris. Exp Dermatol 2008; 17:858-863. [PMID: 18505410 DOI: 10.1111/j.1600-0625.2008.00719.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that serum of patients with pemphigus vulgaris induces reduction of desmoglein 3 (Dsg3) half-life in keratinocytes (FEBS Lett 2006: 580: 3276). This phenomenon seems to occur as a consequence of the progressive depletion of Dsg3 from desmosomes. Here we reported that reduction of full-length Dsg3 may be due to its progressive cleavage, leading to the formation of two fragmentation products with apparent molecular masses of about 60 kDa (fragment 1) and 70 kDa (fragment 2), as revealed by Western blotting. Unexpectedly, analysis of fragmentation pattern suggested cleavage to occur intracellularly. Consistently, fragment 1 was shed and localized within the cytosol, as shown by living cell immunofluorescence microscopy. Total amounts of full-length plakoglobin and Dsg1 were apparently unchanged. Taken together, our findings provide evidence that proteolytic processing of Dsg3 can lead to depletion of Dsg3 from the cell.
Collapse
Affiliation(s)
- Nicola Cirillo
- Regional Center on Craniofacial Malformations-MRI, First School of Medicine and Surgery, Second University of Naples, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Desmosomes are patch-like intercellular adhering junctions ("maculae adherentes"), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca(2+)-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required.
Collapse
Affiliation(s)
- Jens Waschke
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr. 6, 97070, Würzburg, Germany.
| |
Collapse
|
50
|
Outside-in signaling through integrins and cadherins: a central mechanism to control epidermal growth and differentiation? J Invest Dermatol 2008; 128:501-16. [PMID: 18268536 DOI: 10.1038/sj.jid.5701248] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The process of epidermal renewal persists throughout the entire life of an organism. It begins when a keratinocyte progenitor leaves the stem cell compartment, undergoes a limited number of mitotic divisions, exits the cell cycle, and commits to terminal differentiation. At the end of this phase, the postmitotic keratinocytes detach from the basement membrane to build up the overlaying stratified epithelium. Although highly coordinated, this sequence of events is endowed with a remarkable versatility, which enables the quiescent keratinocyte to reintegrate into the cell cycle and become migratory when necessary, for example after wounding. It is this versatility that represents the Achilles heel of epithelial cells allowing for the development of severe pathologies. Over the past decade, compelling evidence has been provided that epithelial cancer cells achieve uncontrolled proliferation following hijacking of a "survival program" with PI3K/Akt and a "proliferation program" with growth factor receptor signaling at its core. Recent insights into adhesion receptor signaling now propose that integrins, but also cadherins, can centrally control these programs. It is suggested that the two types of adhesion receptors act as sensors to transmit extracellular stimuli in an outside-in mode, to inversely modulate epidermal growth factor receptor signaling and ensure cell survival. Hence, cell-matrix and cell-cell adhesion receptors likely play a more powerful and wide-ranging role than initially anticipated. This Perspective article discusses the relevance of this emerging field for epidermal growth and differentiation, which can be of importance for severe pathologies such as tumorigenesis and invasive metastasis, as well as psoriasis and Pemphigus vulgaris.
Collapse
|