1
|
Xie J, Shu X, Xie Z, Tang J, Wang G. Pharmacological modulation of cellular senescence: Implications for breast cancer progression and therapeutic strategies. Eur J Pharmacol 2025; 997:177475. [PMID: 40049574 DOI: 10.1016/j.ejphar.2025.177475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 05/02/2025]
Abstract
Senescence, defined by the cessation of cell proliferation, plays a critical and multifaceted role in breast cancer progression and treatment. Senescent cells produce senescence-associated secretory phenotypes (SASP) comprising inflammatory cytokines, chemokines, and small molecules, which actively shape the tumor microenvironment, influencing cancer development, progression, and metastasis. This review provides a comprehensive analysis of the types and origins of senescent cells in breast cancer, alongside their markers and detection methods. Special focus is placed on pharmacological strategies targeting senescence, including drugs that induce or inhibit senescence, their molecular mechanisms, and their roles in therapeutic outcomes when combined with chemotherapy and radiotherapy. By exploring these pharmacological interventions and their impact on breast cancer treatment, this review underscores the potential of senescence-targeting therapies to revolutionize breast cancer management.
Collapse
Affiliation(s)
- Jialing Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, People's Republic of China
| | - Xianlong Shu
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, People's Republic of China
| | - Zilan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, People's Republic of China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
| |
Collapse
|
2
|
Liu J, Li H, Sun R, Ying G, Liang Z. Targeting PIK3CB/YAP1 improves the sensitivity of paclitaxel by suppressing aging in head and neck squamous tumor cells. Cancer Cell Int 2025; 25:190. [PMID: 40413541 DOI: 10.1186/s12935-025-03818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 05/08/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Tumor cell senescence reduces sensitivity to anticancer drugs, making senescent cell elimination an ideal strategy to enhance chemotherapy sensitivity. The interaction between the PI3K/Akt and Hippo/YAP1 pathways is increasingly studied, but the role of PIK3CB, YAP1, and their impact on senescence and chemotherapy sensitivity in head and neck tumors is unclear. METHODS Public datasets (GEO, TCGA, HPA) were analyzed for PIK3CB expression and clinical associations. Immunohistochemistry, cell proliferation assays, DNA replication, colony formation, aging markers, and DNA damage assessments were conducted. Bulk and single-cell transcriptomics and proteomics data were analyzed. Cell passage effects on aging and the impact of PIK3CB modulation on YAP1 were evaluated. Potential drugs targeting PIK3CB were identified, and the effects of senescent cell clearance drugs on clonogenic abilities and chemotherapy sensitivity were assessed. RESULTS Elevated PIK3CB expression in HNSCC tumors correlated with advanced stages, older age, and decreased survival. PIK3CB and YAP1 expressions were strongly correlated, impacting aging pathways and cellular proliferation. Modulation of PIK3CB affected tumor cell proliferation, aging, and DNA damage. The combined application of navitoclax and paclitaxel can reduce tumor cell proliferation and autonomous migration ability, influenced by the levels of PIK3CB. CONCLUSION High PIK3CB expression in head and neck cancers is linked to poor prognosis and advanced tumor grades. PIK3CB promotes cell proliferation and reduces aging via the YAP1 pathway. The combination of navitoclax and paclitaxel reduces tumor cell proliferation and autonomous migration ability, providing a basis for further exploration of increasing chemotherapy sensitivity.
Collapse
Affiliation(s)
- Junzhi Liu
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Huimin Li
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ruotong Sun
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Guoguang Ying
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Zheng Liang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
3
|
Huang Y, Tang X, Xie H, Wu Z, Jin L, Zhang L, Lin X, Zhou H, Zou J. USP14/S100A11 axis promote colorectal cancer progression by inhibiting cell senescence. Cell Death Dis 2025; 16:384. [PMID: 40374593 DOI: 10.1038/s41419-025-07724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/23/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
The aberrant expression of S100A11 has been identified in various malignancies but its functional roles and underlying mechanisms in colorectal cancer (CRC) have not been fully elucidated. Therefore, this study was designed to investigate the expression of S100A11 and its functional significance in CRC, indicating that S100A11 is significantly upregulated and correlates with poor survival outcomes in CRC. Functionally, S100A11 knockdown in CRC cell lines inhibited cell proliferation, invasion, and migration, leading to decreased tumour growth and metastasis in vivo. Mechanistic investigations revealed that S100A11 promotes cell proliferation and invasion by suppressing cell senescence. In addition, USP14 interacts with and mediates S100A11 deubiquitination. More importantly, the overexpression of S100A11 was able to partially counteract the reduction in cell proliferation caused by the knockdown of USP14. In summary, the novel regulatory axis involving USP14 and S100A11 modulates the malignant biological behavior of CRC cells through inhibiting cell senescence, therefore the interaction between USP14 and S100A11 represents a promising therapeutic target in CRC.
Collapse
Affiliation(s)
- Yong Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Xiaolei Tang
- Center for Translational Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Hao Xie
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Zhaoying Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Lei Jin
- Department of Gastroenterology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Lei Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Xidong Lin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Hailang Zhou
- Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, Jiangsu, China.
| | - Junwei Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
4
|
Wang X, Li S, Fan D, Luo Y, Chen H, Wang Z, Yuan X, Liu J, Wang Z. Metformin induces apoptosis in pituitary-derived folliculostellate cells via the IL-6/ERK pathway. Discov Oncol 2025; 16:598. [PMID: 40268805 PMCID: PMC12018665 DOI: 10.1007/s12672-025-02372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
PURPOSE The aim of this study was to investigate the function and regulatory mechanism of Interleukin-6 (IL-6) in pituitary-derived folliculostellate (PDFS) cells and to explore the mechanism of metformin against PDFS cells growth through IL-6. METHODS Immunohistochemical staining was conducted on clinical samples from non-functioning pituitary adenomas (NFPA) patients and normal individuals to assess IL-6 and Programmed Death-Ligand 1(PD-L1) expression. PDFS cells were treated with IL-6 to evaluate their effects on cell viability, proliferation, and migration through various assays. Similar assays were performed to assess the counteractive effects of metformin, focusing on the IL-6/ERK pathway and PD-L1 expression. Western blot analysis was utilized to examine apoptosis-related proteins, and Annexin V-FITC/PI double staining was used to detect cell apoptosis. It also involves assessing the effects of metformin treatment on tumor IL-6 and PD-L1 expression, tumor size, and potential toxic side effects in PDFS xenograft mice. RESULTS Clinical samples showed increased IL-6 and PD-L1 expression in NFPA compared to normal pituitary tissues. IL-6 treatment significantly enhanced PDFS cell viability(Increased by 46% within 48 h), proliferation(Increased by 24% within 48 h), and migration(Increased by 19% within 48 h). Metformin treatment resulted in the downregulation of IL-6 expression and mitigated IL-6-induced effects on PDFS cells. Additionally, metformin-induced apoptosis and reduced tumor size in xenograft nude mice without observable toxic side effects. CONCLUSION Metformin downregulates the expression of IL-6 in PDFS cells, inhibits the activation of the ERK pathway, thereby suppressing cell proliferation and PD-L1 expression, and induces cell apoptosis.
Collapse
Affiliation(s)
- Xin Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Siyuan Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Dong Fan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yuyou Luo
- Guangzhou Huaxia Vocational College, Guangzhou, 510935, Guangdong, China
| | - Huitong Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Zhongyu Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Xingyi Yuan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Jing Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| | - Zongming Wang
- Department of Neurosurgery, Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
5
|
Thuya WL, Cao Y, Ho PCL, Wong ALA, Wang L, Zhou J, Nicot C, Goh BC. Insights into IL-6/JAK/STAT3 signaling in the tumor microenvironment: Implications for cancer therapy. Cytokine Growth Factor Rev 2025:S1359-6101(25)00003-6. [PMID: 39893129 DOI: 10.1016/j.cytogfr.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
The IL-6/JAK/STAT3 signaling pathway is a key regulator of tumor progression, immune evasion, and therapy resistance in various cancers. Frequently dysregulated in malignancies, this pathway drives cancer cell growth, survival, angiogenesis, and metastasis by altering the tumor microenvironment (TME). IL-6 activates JAK kinases and STAT3 through its receptor complex, leading to the transcription of oncogenic genes and fostering an immunosuppressive TME. This environment recruits tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs), collectively supporting immune evasion and tumor growth. IL-6/JAK/STAT3 axis also contributes to metabolic reprogramming, such as enhanced glycolysis and glutathione metabolism, helping cancer cells adapt to environmental stresses. Therapeutic targeting of this pathway has gained significant interest. Strategies include monoclonal antibodies against IL-6 or its receptor (e.g., Tocilizumab, Siltuximab), JAK inhibitors (e.g., Ruxolitinib), and STAT3-specific inhibitors (e.g., Napabucasin), which have exhibited promise in preclinical and initial clinical studies. These inhibitors can suppress tumor growth, reverse immune suppression, and enhance the efficacy of immunotherapies like immune checkpoint inhibitors. Combination therapies that integrate IL-6 pathway inhibitors with conventional treatments are particularly promising, addressing resistance mechanisms and improving patient outcomes. Advances in biomarker-driven patient selection, RNA-based therapies, and isoform-specific inhibitors pave the way for more precise interventions. This review delves into the diverse roles of IL-6/JAK/STAT3 signaling in cancer progression, therapeutic strategies targeting this pathway, and the potential for integrating these approaches into personalized medicine to enhance treatment outcomes.
Collapse
Affiliation(s)
- Win Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Yang Cao
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Laboratory Medicine, Lequn Brance, The First Hospital of Jilin University, Changchun, Jilin 130031, China
| | - Paul Chi-Lui Ho
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Jalan Lagoon, Selangor Darul Ehsan 47500, Malaysia
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, National University Health System, 119074, Singapore
| |
Collapse
|
6
|
Laouris P, Muñoz-Espín D. Current Methodologies to Assess Cellular Senescence in Cancer. Methods Mol Biol 2025; 2906:21-44. [PMID: 40082348 DOI: 10.1007/978-1-0716-4426-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Cellular senescence plays a critical role in cancer, acting as both a tumor-suppressive and tumor-promoting mechanism. Senescent cells undergo stable cell-cycle arrest in response to various stressors, including DNA damage and oncogenic signaling, and exhibit a complex secretory phenotype known as the senescence-associated secretory phenotype (SASP), which can impact the tumor microenvironment. The hallmarks of senescence include cell-cycle arrest, secretion of pro-inflammatory factors, structural changes, and metabolic alterations. These features, while initially suppressing tumorigenesis, can later contribute to cancer progression under certain conditions. Methods for studying senescence in preclinical models include in vitro assays, ex vivo tissue analysis, and in vivo detection techniques. Emerging therapeutic strategies focus on exploiting senescence for cancer treatment, particularly through the use of senolytic agents that selectively eliminate senescent cells and senomorphic compounds that modulate SASP activity. However, the identification of reliable and universal biomarkers for senescence remains a challenge, necessitating a multimarker approach to accurately detect and characterize senescent cells in various contexts.
Collapse
Affiliation(s)
- Panayiotis Laouris
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Daniel Muñoz-Espín
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK.
- CRUK Cambridge Centre Thoracic Cancer Programme, Cambridge, UK.
| |
Collapse
|
7
|
Wang Z, Chen C, Ai J, Gao Y, Wang L, Xia S, Jia Y, Qin Y. The crosstalk between senescence, tumor, and immunity: molecular mechanism and therapeutic opportunities. MedComm (Beijing) 2025; 6:e70048. [PMID: 39811803 PMCID: PMC11731108 DOI: 10.1002/mco2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Cellular senescence is characterized by a stable cell cycle arrest and a hypersecretory, proinflammatory phenotype in response to various stress stimuli. Traditionally, this state has been viewed as a tumor-suppressing mechanism that prevents the proliferation of damaged cells while activating the immune response for their clearance. However, senescence is increasingly recognized as a contributing factor to tumor progression. This dual role necessitates a careful evaluation of the beneficial and detrimental aspects of senescence within the tumor microenvironment (TME). Specifically, senescent cells display a unique senescence-associated secretory phenotype that releases a diverse array of soluble factors affecting the TME. Furthermore, the impact of senescence on tumor-immune interaction is complex and often underappreciated. Senescent immune cells create an immunosuppressive TME favoring tumor progression. In contrast, senescent tumor cells could promote a transition from immune evasion to clearance. Given these intricate dynamics, therapies targeting senescence hold promise for advancing antitumor strategies. This review aims to summarize the dual effects of senescence on tumor progression, explore its influence on tumor-immune interactions, and discuss potential therapeutic strategies, alongside challenges and future directions. Understanding how senescence regulates antitumor immunity, along with new therapeutic interventions, is essential for managing tumor cell senescence and remodeling the immune microenvironment.
Collapse
Affiliation(s)
- Zehua Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chen Chen
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiaoyu Ai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yaping Gao
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lei Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shurui Xia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yongxu Jia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yanru Qin
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
8
|
Shimizu K, Inuzuka H, Tokunaga F. The interplay between cell death and senescence in cancer. Semin Cancer Biol 2025; 108:1-16. [PMID: 39557316 DOI: 10.1016/j.semcancer.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Cellular senescence is a state of permanent proliferative arrest that occurs in response to DNA damage-inducing endogenous and exogenous stresses, and is often accompanied by dynamic molecular changes such as a senescence-associated secretory phenotype (SASP). Accumulating evidence indicates that age-associated increases in the upstream and downstream signals of regulated cell death, including apoptosis, necroptosis, pyroptosis, and ferroptosis, are closely related to the induction of cellular senescence and its phenotype. Furthermore, elevated levels of pro-inflammatory SASP factors with aging can be both a cause and consequence of several cell death modes, suggesting the reciprocal effects of cellular senescence and cells undergoing regulated cell death. Here, we review the critical molecular pathways of the regulated cell death forms and describe the crosstalk between aging-related signals and cancer. In addition, we discuss how targeting regulated cell death could be harnessed in therapeutic interventions for cancer. ABBREVIATIONS: Abbreviations that are not standard in this field are defined at their first occurrence in the article and are used consistently throughout the article.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan.
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, USA
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
9
|
Wang B, Han J, Elisseeff JH, Demaria M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat Rev Mol Cell Biol 2024; 25:958-978. [PMID: 38654098 DOI: 10.1038/s41580-024-00727-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Cellular senescence is a state of terminal growth arrest associated with the upregulation of different cell cycle inhibitors, mainly p16 and p21, structural and metabolic alterations, chronic DNA damage responses, and a hypersecretory state known as the senescence-associated secretory phenotype (SASP). The SASP is the major mediator of the paracrine effects of senescent cells in their tissue microenvironment and of various local and systemic biological functions. In this Review, we discuss the composition, dynamics and heterogeneity of the SASP as well as the mechanisms underlying its induction and regulation. We describe the various biological properties of the SASP, its beneficial and detrimental effects in different physiological and pathological settings, and its impact on overall health span. Finally, we discuss the use of the SASP as a biomarker and of SASP inhibitors as senomorphic interventions to treat cancer and other age-related conditions.
Collapse
Affiliation(s)
- Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands
| | - Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands.
| |
Collapse
|
10
|
Wang J, Gui R, Li Y, Li Z, Li Z, Liu S, Zhang M, Qian L, Fan X, Xiong Y. SFRP4 contributes to insulin resistance-induced polycystic ovary syndrome by triggering ovarian granulosa cell hyperandrogenism and apoptosis through the nuclear β-catenin/IL-6 signaling axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119822. [PMID: 39159685 DOI: 10.1016/j.bbamcr.2024.119822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by chronic ovulation dysfunction and overproduction of androgens. Women with PCOS are commonly accompanied by insulin resistance (IR), which can impair insulin sensitivity and elevate blood glucose levels. IR promotes ovarian cysts, ovulatory dysfunction, and menstrual irregularities in women patients, leading to the pathogenesis of PCOS. Secreted frizzled-related protein 4 (SFRP4), a secreted glycoprotein, exhibits significantly elevated expression levels in obese individuals with IR and PCOS. Whereas, whether it plays a role in regulating IR-induced PCOS still has yet to be understood. In this study, we respectively established in vitro IR-induced hyperandrogenism in human ovarian granular cells and in vivo IR-induced PCOS models in mice to investigate the action mechanisms of SFRP4 in modulating IR-induced PCOS. Here, we revealed that SFRP4 expression levels in both mRNA and protein were remarkably upregulated in the IR-induced hyperandrogenism with elevated testosterone in the human ovarian granulosa cell line KGN. Under normal conditions without hyperandrogenism, overexpressing SFRP4 triggered the remarkable elevation of testosterone along with the increased nuclear translocation of β-catenin, cell apoptosis and proinflammatory cytokine IL-6. Furthermore, we found that phytopharmaceutical disruption of SFRP4 by genistein ameliorated IR-induced increase in testosterone in ovarian granular cells, and IR-induced PCOS in high-fat diet obese mice. Our study reveals that SFRP4 contributes to IR-induced PCOS by triggering ovarian granulosa cell hyperandrogenism and apoptosis through the nuclear β-catenin/IL-6 signaling axis. Elucidating the role of SFRP4 in PCOS may provide a novel therapeutic strategy for IR-related PCOS therapy.
Collapse
Affiliation(s)
- Jiangxia Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Runlin Gui
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Zi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Shanshan Liu
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Miao Zhang
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Lu Qian
- Xi'an Mental Health Center, Xi'an, Shaanxi 710100, PR China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China.
| |
Collapse
|
11
|
Bazid HAS, Marae AH, Farag B, Abdallah RA. The value of immunohistochemical expression of SOX9 and CD34 in alopecia areata. J Immunoassay Immunochem 2024; 45:452-466. [PMID: 39041618 DOI: 10.1080/15321819.2024.2383676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
BACKGROUND Alopecia areata (AA), an immune-mediated disorder, is marked by temporary, nonscarring hair loss. The bulge area is protected from immune attacks by immune privilege; however, recent studies demonstrated immune cells infiltrating the bulge area. OBJECTIVE This study aims to investigate the immunohistochemical expression of the sex-determining region Y-box 9 (SOX9) and cluster of differentiation 34 (CD34) in AA patients as markers of hair follicle stem cells (HFSCs) and progenitor cells, respectively. METHODS Immunohistochemical staining of SOX9 and CD34 was applied on skin samples of 20 AA patients and 20 healthy controls. RESULTS SOX9 and CD34 were significantly lower in lesional samples of cases compared to perilesional and control skin biopsies. Furthermore, SOX9 level was negatively correlated with the severity of alopecia tool score (SALT score) among the studied AA patients. Moreover, lowered SOX9 expression was present in patients with recurrent attacks. CONCLUSIONS The significant reduction of stem cell markers (SOX9 and CD34) in our studied AA cases signifies the pathological affection of HFSCs and their progeny in AA. This is thought to cause a loss of competence in generating new hair in some AA cases, which needs to be validated in further research. LIMITATIONS OF THE STUDY This study has a small sample size.
Collapse
Affiliation(s)
- Heba A S Bazid
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Alaa H Marae
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Bassant Farag
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | | |
Collapse
|
12
|
Jha SK, De Rubis G, Devkota SR, Zhang Y, Adhikari R, Jha LA, Bhattacharya K, Mehndiratta S, Gupta G, Singh SK, Panth N, Dua K, Hansbro PM, Paudel KR. Cellular senescence in lung cancer: Molecular mechanisms and therapeutic interventions. Ageing Res Rev 2024; 97:102315. [PMID: 38679394 DOI: 10.1016/j.arr.2024.102315] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Lung cancer stands as the primary contributor to cancer-related fatalities worldwide, affecting both genders. Two primary types exist where non-small cell lung cancer (NSCLC), accounts for 80-85% and SCLC accounts for 10-15% of cases. NSCLC subtypes include adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Smoking, second-hand smoke, radon gas, asbestos, and other pollutants, genetic predisposition, and COPD are lung cancer risk factors. On the other hand, stresses such as DNA damage, telomere shortening, and oncogene activation cause a prolonged cell cycle halt, known as senescence. Despite its initial role as a tumor-suppressing mechanism that slows cell growth, excessive or improper control of this process can cause age-related diseases, including cancer. Cellular senescence has two purposes in lung cancer. Researchers report that senescence slows tumor growth by constraining multiplication of impaired cells. However, senescent cells also demonstrate the pro-inflammatory senescence-associated secretory phenotype (SASP), which is widely reported to promote cancer. This review will look at the role of cellular senescence in lung cancer, describe its diagnostic markers, ask about current treatments to control it, look at case studies and clinical trials that show how senescence-targeting therapies can be used in lung cancer, and talk about problems currently being faced, and possible solutions for the same in the future.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Shankar Raj Devkota
- Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Yali Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia
| | - Radhika Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Laxmi Akhileshwar Jha
- Naraina Vidya Peeth Group of Institutions, Faculty of Pharmacy, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh 0208020, India
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026, India; Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam 781035, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Nisha Panth
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| |
Collapse
|
13
|
Chen Q, Zheng Y, Chen X, Xing Y, Zhang J, Yan X, Zhang Q, Wu D, Chen Z. Bacteria Synergized with PD-1 Blockade Enhance Positive Feedback Loop of Cancer Cells-M1 Macrophages-T Cells in Glioma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308124. [PMID: 38520726 PMCID: PMC11132069 DOI: 10.1002/advs.202308124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/24/2024] [Indexed: 03/25/2024]
Abstract
Cancer immunotherapy is an attractive strategy because it stimulates immune cells to target malignant cells by regulating the intrinsic activity of the immune system. However, due to lacking many immunologic markers, it remains difficult to treat glioma, a representative "cold" tumor. Herein, to wake the "hot" tumor immunity of glioma, Porphyromonas gingivalis (Pg) is customized with a coating to create an immunogenic tumor microenvironment and further prove the effect in combination with the immune checkpoint agent anti-PD-1, exhibiting elevated therapeutic efficacy. This is accomplished not by enhancing the delivery of PD-1 blockade to enhance the effect of immunotherapy, but by introducing bacterial photothermal therapy to promote greater involvement of M1 cells in the immune response. After reaching glioma, the bacteria further target glioma cells and M2 phenotype macrophages selectively, enabling precise photothermal conversion for lysing tumor cells and M2 phenotype macrophages, which thereby enhances the positive feedback loop of cancer cells-M1 macrophages-T cells. Collectively, the bacteria synergized with PD-1 blockade strategy may be the key to overcoming the immunosuppressive glioma microenvironment and improving the outcome of immunotherapy toward glioma.
Collapse
Affiliation(s)
- Qi Chen
- Interdisciplinary Institute for Medical EngineeringFuzhou UniversityFuzhouFujian350108China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Yuan Xing
- Interdisciplinary Institute for Medical EngineeringFuzhou UniversityFuzhouFujian350108China
| | - Jiajie Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Xinyi Yan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Qi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| |
Collapse
|
14
|
Nisar H, Sanchidrián González PM, Labonté FM, Schmitz C, Roggan MD, Kronenberg J, Konda B, Chevalier F, Hellweg CE. NF-κB in the Radiation Response of A549 Non-Small Cell Lung Cancer Cells to X-rays and Carbon Ions under Hypoxia. Int J Mol Sci 2024; 25:4495. [PMID: 38674080 PMCID: PMC11050661 DOI: 10.3390/ijms25084495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cellular hypoxia, detectable in up to 80% of non-small cell lung carcinoma (NSCLC) tumors, is a known cause of radioresistance. High linear energy transfer (LET) particle radiation might be effective in the treatment of hypoxic solid tumors, including NSCLC. Cellular hypoxia can activate nuclear factor κB (NF-κB), which can modulate radioresistance by influencing cancer cell survival. The effect of high-LET radiation on NF-κB activation in hypoxic NSCLC cells is unclear. Therefore, we compared the effect of low (X-rays)- and high (12C)-LET radiation on NF-κB responsive genes' upregulation, as well as its target cytokines' synthesis in normoxic and hypoxic A549 NSCLC cells. The cells were incubated under normoxia (20% O2) or hypoxia (1% O2) for 48 h, followed by irradiation with 8 Gy X-rays or 12C ions, maintaining the oxygen conditions until fixation or lysis. Regulation of NF-κB responsive genes was evaluated by mRNA sequencing. Secretion of NF-κB target cytokines, IL-6 and IL-8, was quantified by ELISA. A greater fold change increase in expression of NF-κB target genes in A549 cells following exposure to 12C ions compared to X-rays was observed, regardless of oxygenation status. These genes regulate cell migration, cell cycle, and cell survival. A greater number of NF-κB target genes was activated under hypoxia, regardless of irradiation status. These genes regulate cell migration, survival, proliferation, and inflammation. X-ray exposure under hypoxia additionally upregulated NF-κB target genes modulating immunosurveillance and epithelial-mesenchymal transition (EMT). Increased IL-6 and IL-8 secretion under hypoxia confirmed NF-κB-mediated expression of pro-inflammatory genes. Therefore, radiotherapy, particularly with X-rays, may increase tumor invasiveness in surviving hypoxic A549 cells.
Collapse
Affiliation(s)
- Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Paulina Mercedes Sanchidrián González
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Frederik M. Labonté
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Claudia Schmitz
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - François Chevalier
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-University of Caen Normandy, 14000 Caen, France;
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| |
Collapse
|
15
|
Wang Y, Zheng J, Xiao X, Feng C, Li Y, Su H, Yuan D, Wang Q, Huang P, Jin L. Ginsenoside Rd Attenuates Myocardial Ischemia/Reperfusion Injury by Inhibiting Inflammation and Apoptosis through PI3K/Akt Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:433-451. [PMID: 38577825 DOI: 10.1142/s0192415x24500186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is the leading cause of death worldwide. Ginsenoside Rd (GRd) has cardioprotective properties but its efficacy and mechanism of action in myocardial I/R injury have not been clarified. This study investigated GRd as a potent therapeutic agent for myocardial I/R injury. Oxygen-glucose deprivation and reperfusion (OGD/R) and left anterior descending (LAD) coronary artery ligation were used to establish a myocardial I/R injury model in vitro and in vivo. In vivo, GRd significantly reduced the myocardial infarct size and markers of myocardial injury and improved the cardiac function in myocardial I/R injury mice. In vitro, GRd enhanced cell viability and protected the H9c2 rat cardiomyoblast cell line from OGD-induced injury GRd. The network pharmacology analysis predicted 48 potential targets of GRd for the treatment of myocardial I/R injury. GO and KEGG enrichment analysis indicated that the cardioprotective effects of GRd were closely related to inflammation and apoptosis mediated by the PI3K/Akt signaling pathway. Furthermore, GRd alleviated inflammation and cardiomyocyte apoptosis in vivo and inhibited OGD/R-induced apoptosis and inflammation in cardiomyocytes. GRd also increased PI3K and Akt phosphorylation, suggesting activation of the PI3K/Akt pathway, whereas LY294002, a PI3K inhibitor, blocked the GRd-induced inhibition of OGD/R-induced apoptosis and inflammation in H9c2 cells. The therapeutic effect of GRd in vivo and in vitro against myocardial I/R injury was primarily dependent on PI3K/Akt pathway activation to inhibit inflammation and cardiomyocyte apoptosis. This study provides new evidence for the use of GRd as a cardiovascular drug.
Collapse
Affiliation(s)
- Yuanping Wang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Jiading Zheng
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Xieyang Xiao
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Cailing Feng
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Yinghong Li
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Hui Su
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Ding Yuan
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Qinghai Wang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Peihong Huang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Lili Jin
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| |
Collapse
|
16
|
Suo Y, Du D, Chen C, Zhu H, Wang X, Song N, Lu D, Yang Y, Li J, Wang J, Luo Z, Zhou B, Luo C, Zhou H. Uncovering PROTAC Sensitivity and Efficacy by Multidimensional Proteome Profiling: A Case for STAT3. J Med Chem 2024; 67:4804-4818. [PMID: 38466231 DOI: 10.1021/acs.jmedchem.3c02371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Proteolysis-targeting chimera (PROTAC) is a powerful technology that can effectively trigger the degradation of target proteins. The intricate interplay among various factors leads to a heterogeneous drug response, bringing about significant challenges in comprehending drug mechanisms. Our study applied data-independent acquisition-based mass spectrometry to multidimensional proteome profiling of PROTAC (DIA-MPP) to uncover the efficacy and sensitivity of the PROTAC compound. We profiled the signal transducer and activator of transcription 3 (STAT3) PROTAC degrader in six leukemia and lymphoma cell lines under multiple conditions, demonstrating the pharmacodynamic properties and downstream biological responses. Through comparison between sensitive and insensitive cell lines, we revealed that STAT1 can be regarded as a biomarker for STAT3 PROTAC degrader, which was validated in cells, patient-derived organoids, and mouse models. These results set an example for a comprehensive description of the multidimensional PROTAC pharmacodynamic response and PROTAC drug sensitivity biomarker exploration.
Collapse
Affiliation(s)
- Yuying Suo
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Daohai Du
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Chao Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongwen Zhu
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiongjun Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Nixue Song
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Dayun Lu
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaxi Yang
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiacheng Li
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jun Wang
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhongyuan Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Bing Zhou
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hu Zhou
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
17
|
Marcello M, Virzì GM, Marturano D, de Cal M, Marchionna N, Sgarabotto L, De Rosa S, Ronco C, Zanella M. The Cytotoxic Effect of Septic Plasma on Healthy RBCs: Is Eryptosis a New Mechanism for Sepsis? Int J Mol Sci 2023; 24:14176. [PMID: 37762478 PMCID: PMC10531772 DOI: 10.3390/ijms241814176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Sepsis is a life-threatening multiple-organ dysfunction induced by infection and is one of the leading causes of mortality and critical illness worldwide. The pathogenesis of sepsis involves the alteration of several biochemical pathways such as immune response, coagulation, dysfunction of endothelium and tissue damage through cellular death and/or apoptosis. Recently, in vitro and in vivo studies reported changes in the morphology and in the shape of human red blood cells (RBCs) causing erythrocyte death (eryptosis) during sepsis. Characteristics of eryptosis include cell shrinkage, membrane blebbing, and surface exposure to phosphatidylserine (PS), which attract macrophages. The aim of this study was to evaluate the in vitro induction of eryptosis on healthy RBCs exposed to septic plasma at different time points. Furthermore, we preliminary investigated the in vivo levels of eryptosis in septic patients and its relationship with Endotoxin Activity Assay (EAA), mortality and other biological markers of inflammation and oxidative stress. We enrolled 16 septic patients and 16 healthy subjects (no systemic inflammation in the last 3 months) as a control group. At diagnosis, we measured Interleukin-6 (IL-6) and Myeloperoxidase (MPO). For in vitro study, healthy RBCs were exposed to the plasma of septic patients and CTR for 15 min, 1, 2, 4 and 24 h. Morphological markers of death and eryptosis were evaluated by flow cytometric analyses. The cytotoxic effect of septic plasma on RBCs was studied in vitro at 15 min, 1, 2, 4 and 24 h. Healthy RBCs incubated with plasma from septic patients went through significant morphological changes and eryptosis compared to those exposed to plasma from the control group at all time points (all, p < 0.001). IL-6 and MPO levels were significantly higher in septic patients than in controls (both, p < 0.001). The percentage of AnnexinV-binding RBCs was significantly higher in septic patients with EAA level ≥0.60 (positive EAA: 32.4%, IQR 27.6-36.2) compared to septic patients with EAA level <0.60 (negative EAA: 14.7%, IQR 5.7-30.7) (p = 0.04). Significant correlations were observed between eryptosis and EAA levels (Spearman rho2 = 0.50, p < 0.05), IL-6 (Spearman rho2 = 0.61, p < 0.05) and MPO (Spearman rho2 = 0.70, p < 0.05). In conclusion, we observed a quick and great cytotoxic effect of septic plasma on healthy RBCs and a strong correlation with other biomarkers of severity of sepsis. Based on these results, we confirmed the pathological role of eryptosis in sepsis and we hypothesized its use as a biomarker of sepsis, potentially helping physicians to face important treatment decisions.
Collapse
Affiliation(s)
- Matteo Marcello
- Department of Nephrology, Dialysis and Transplant, St Bortolo Hospital, 36100 Vicenza, Italy (M.Z.)
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy
| | - Grazia Maria Virzì
- Department of Nephrology, Dialysis and Transplant, St Bortolo Hospital, 36100 Vicenza, Italy (M.Z.)
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy
| | - Davide Marturano
- Department of Nephrology, Dialysis and Transplant, St Bortolo Hospital, 36100 Vicenza, Italy (M.Z.)
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35100 Padova, Italy
| | - Massimo de Cal
- Department of Nephrology, Dialysis and Transplant, St Bortolo Hospital, 36100 Vicenza, Italy (M.Z.)
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy
| | - Nicola Marchionna
- Department of Nephrology, Dialysis and Transplant, St Bortolo Hospital, 36100 Vicenza, Italy (M.Z.)
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy
| | - Luca Sgarabotto
- Department of Nephrology, Dialysis and Transplant, St Bortolo Hospital, 36100 Vicenza, Italy (M.Z.)
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy
| | - Silvia De Rosa
- Centre for Medical Sciences-CISMed, University of Trento, Via S. Maria Maddalena 1, 38122 Trento, Italy
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy
| | - Claudio Ronco
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy
| | - Monica Zanella
- Department of Nephrology, Dialysis and Transplant, St Bortolo Hospital, 36100 Vicenza, Italy (M.Z.)
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy
| |
Collapse
|
18
|
Szlasa W, Ślusarczyk S, Nawrot-Hadzik I, Abel R, Zalesińska A, Szewczyk A, Sauer N, Preissner R, Saczko J, Drąg M, Poręba M, Daczewska M, Kulbacka J, Drąg-Zalesińska M. Betulin and Its Derivatives Reduce Inflammation and COX-2 Activity in Macrophages. Inflammation 2023; 46:573-583. [PMID: 36282372 PMCID: PMC10024662 DOI: 10.1007/s10753-022-01756-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Betulin is a heavily studied natural compound for its use as an anticancer or pro-regenerative agent. The structural similarity between betulin to steroids gives rise to the idea that the substance may as well act as an anti-inflammatory drug. This study is the first to describe the anti-inflammatory properties of betulinic acid, betulin, and its derivatives with amino acids 1,4-diaminebutane (Dab), 1,3-diaminepropane (Dap), Ornithine (Orn), and lysine (Lys) on murine macrophages from lymphoma site. The compounds were compared to dexamethasone. To establish the response of the macrophages to the natural compounds, we tested the viability as well as sensitivity to the inflammatory signaling (IFNγR). IL-6 secretory properties and HSP-70 content in the cells were examined. Furthermore, we characterized the effects of compounds on the inhibition of cyclooxygenase-2 (COX-2) activity both in the enzymatic assays and molecular docking studies. Then, the changes in COX-2 expression after betulin treatment were assessed. Betulin and betulinic acid are the low-cytotoxicity compounds with the highest potential to decrease inflammation via reduced IL-6 secretion. To some extent, they induce the reorganization of IFNγR with nearly no effect on COX-2 activity. Conversely, Bet-Orn and Bet-Lys are highly cytotoxic and induce the aggregation of IFNγR. Besides, Bet-Lys reduces the activity of COX-2 to a higher degree than dexamethasone. Bet-Orn is the only one to increase the HSP-70 content in the macrophages. In case of IL-6 reduction, all compounds were more potent than dexamethasone.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | - Sylwester Ślusarczyk
- Department of Pharmaceutical Biology and Biotechnology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Izabela Nawrot-Hadzik
- Department of Pharmaceutical Biology and Biotechnology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Renata Abel
- Department of Pharmaceutical Biology and Biotechnology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany, Philippstrasse 12, 10115, Berlin, Germany
| | | | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Sauer
- Faculty of Pharmacy, Wrocław Medical University, Wroclaw, Poland
| | - Robert Preissner
- Science-IT and Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Marcin Poręba
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | | |
Collapse
|
19
|
Barutello G, Di Lorenzo A, Gasparetto A, Galiazzi C, Bolli E, Conti L, Cavallo F. Immunotherapy against the Cystine/Glutamate Antiporter xCT Improves the Efficacy of APR-246 in Preclinical Breast Cancer Models. Biomedicines 2022; 10:2843. [PMID: 36359363 PMCID: PMC9688020 DOI: 10.3390/biomedicines10112843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 08/19/2023] Open
Abstract
Breast cancer is the most frequent cancer in women. Despite recent clinical advances, new therapeutic approaches are still required. The cystine-glutamate antiporter xCT, encoded by the SLC7A11 gene, which imports cystine in exchange with glutamate, is a potentially new target for breast cancer therapy, being involved in tumor cell redox balance and resistance to therapies. xCT expression is regulated by the oncosuppressor p53, which is mutated in many breast cancers. Indeed, mutant p53 (mut-p53) can induce xCT post-transcriptional down modulation, rendering mut-p53 tumors susceptible to oxidative damage. Interestingly, the drug APR-246, developed to restore the wild-type function of p53 in tumors harboring its mutation, alters the cell redox balance in a p53-independent way, possibly rendering the cells more sensitive to xCT inhibition. Here, we propose a combinatorial treatment based on xCT immunetargeting and APR-246 treatment as a strategy for tackling breast cancer. We demonstrate that combining the inhibition of xCT with the APR-246 drug significantly decreased breast cancer cell viability in vitro and induced apoptosis and affected cancer stem cells' self-renewal compared to the single treatments. Moreover, the immunetargeting of xCT through DNA vaccination in combination with APR-246 treatment synergistically hinders tumor progression and prevents lung metastasis formation in vivo. These effects can be mediated by the production of anti-xCT antibodies that are able to induce the antibody dependent cellular cytotoxicity of tumor cells. Overall, we demonstrate that DNA vaccination against xCT can synergize with APR-246 treatment and enhance its therapeutic effect. Thus, APR-246 treatment in combination with xCT immunetargeting may open new perspectives in the management of breast cancer.
Collapse
|
20
|
Mokkapati S, Narayan VM, Manyam GC, Lim AH, Duplisea JJ, Kokorovic A, Miest TS, Mitra AP, Plote D, Anand SS, Metcalfe MJ, Dunner K, Johnson BA, Czerniak BA, Nieminen T, Heikura T, Yla-Herttuala S, Parker NR, Schluns KS, McConkey DJ, Dinney CP. Lentiviral interferon: A novel method for gene therapy in bladder cancer. Mol Ther Oncolytics 2022; 26:141-157. [PMID: 35847448 PMCID: PMC9251210 DOI: 10.1016/j.omto.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
Interferon alpha (IFNα) gene therapy is emerging as a new treatment option for patients with non-muscle invasive bladder cancer (NMIBC). Adenoviral vectors expressing IFNα have shown clinical efficacy treating bacillus Calmette-Guerin (BCG)-unresponsive bladder cancer (BLCA). However, transient transgene expression and adenoviral immunogenicity may limit therapeutic activity. Lentiviral vectors can achieve stable transgene expression and are less immunogenic. In this study, we evaluated lentiviral vectors expressing murine IFNα (LV-IFNα) and demonstrate IFNα expression by transduced murine BLCA cell lines, bladder urothelium, and within the urine following intravesical instillation. Murine BLCA cell lines (MB49 and UPPL1541) were sensitive to IFN-mediated cell death after LV-IFNα, whereas BBN975 was inherently resistant. Upregulation of interleukin-6 (IL-6) predicted sensitivity to IFN-mediated cell death mediated by caspase signaling, which when inhibited abrogated IFN-mediated cell killing. Intravesical therapy with LV-IFNα/Syn3 in a syngeneic BLCA model significantly improved survival, and molecular analysis of treated tumors revealed upregulation of apoptotic and immune-cell-mediated death pathways. In particular, biomarker discovery analysis identified three clinically actionable targets, PD-L1, epidermal growth factor receptor (EGFR), and ALDHA1A, in murine tumors treated with LV-IFNα/Syn3. Our findings warrant the comparison of adenoviral and LV-IFNα and the study of novel combination strategies with IFNα gene therapy for the BLCA treatment.
Collapse
Affiliation(s)
- Sharada Mokkapati
- University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA
- Corresponding author Sharada Mokkapati, PhD, University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA.
| | - Vikram M. Narayan
- University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA
| | - Ganiraju C. Manyam
- University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA
| | - Amy H. Lim
- University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA
| | - Jonathan J. Duplisea
- University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA
| | - Andrea Kokorovic
- University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA
| | - Tanner S. Miest
- University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA
| | - Anirban P. Mitra
- University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA
| | - Devin Plote
- University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA
| | - Selvalakshmi Selvaraj Anand
- University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA
| | - Michael J. Metcalfe
- University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA
| | - Kenneth Dunner
- University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA
| | - Burles A. Johnson
- James Buchanan Brady Urological Institute, John Hopkins Greenberg Bladder Cancer Institute, John Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Bogdan A. Czerniak
- University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA
| | - Tiina Nieminen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tommi Heikura
- University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA
| | - Seppo Yla-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Kimberley S. Schluns
- University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA
| | - David J. McConkey
- James Buchanan Brady Urological Institute, John Hopkins Greenberg Bladder Cancer Institute, John Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Colin P. Dinney
- University of Texas MD Anderson Cancer Center, Smith Research Building, 7777 Knight Road, Houston, TX 77584, USA
- Corresponding author Colin P. Dinney, MD, University of Texas MD Anderson Cancer Center, CPB7.3279, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
21
|
Schmitt CA, Wang B, Demaria M. Senescence and cancer - role and therapeutic opportunities. Nat Rev Clin Oncol 2022; 19:619-636. [PMID: 36045302 PMCID: PMC9428886 DOI: 10.1038/s41571-022-00668-4] [Citation(s) in RCA: 396] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable, terminal cell cycle arrest associated with various macromolecular changes and a hypersecretory, pro-inflammatory phenotype. Entry of cells into senescence can act as a barrier to tumorigenesis and, thus, could in principle constitute a desired outcome for any anticancer therapy. Paradoxically, studies published in the past decade have demonstrated that, in certain conditions and contexts, malignant and non-malignant cells with lastingly persistent senescence can acquire pro-tumorigenic properties. In this Review, we first discuss the major mechanisms involved in the antitumorigenic functions of senescent cells and then consider the cell-intrinsic and cell-extrinsic factors that participate in their switch towards a tumour-promoting role, providing an overview of major translational and emerging clinical findings. Finally, we comprehensively describe various senolytic and senomorphic therapies and their potential to benefit patients with cancer. The entry of cells into senescence can act as a barrier to tumorigenesis; however, in certain contexts senescent malignant and non-malignant cells can acquire pro-tumorigenic properties. The authors of this Review discuss the cell-intrinsic and cell-extrinsic mechanisms involved in both the antitumorigenic and tumour-promoting roles of senescent cells, and describe the potential of various senolytic and senomorphic therapeutic approaches in oncology. Cellular senescence is a natural barrier to tumorigenesis; senescent cells are widely detected in premalignant lesions from patients with cancer. Cellular senescence is induced by anticancer therapy and can contribute to some treatment-related adverse events (TRAEs). Senescent cells exert both protumorigenic and antitumorigenic effects via cell-autonomous and paracrine mechanisms. Pharmacological modulation of senescence-associated phenotypes has the potential to improve therapy efficacy and reduce the incidence of TRAEs.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Johannes Kepler University, Linz, Austria.,Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.,Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany
| | - Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands.
| |
Collapse
|
22
|
Di Lorenzo A, Bolli E, Ruiu R, Ferrauto G, Di Gregorio E, Avalle L, Savino A, Poggio P, Merighi IF, Riccardo F, Brancaccio M, Quaglino E, Cavallo F, Conti L. Toll-like receptor 2 promotes breast cancer progression and resistance to chemotherapy. Oncoimmunology 2022; 11:2086752. [PMID: 35756841 PMCID: PMC9225225 DOI: 10.1080/2162402x.2022.2086752] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Cancer stem cells (CSCs) are the main drivers of disease progression and chemotherapy resistance in breast cancer. Tumor progression and chemoresistance might then be prevented by CSC-targeted therapies. We previously demonstrated that Toll-like Receptor (TLR)2 is overexpressed in CSCs and fuels their self-renewal. Here, we show that high TLR2 expression is linked to poor prognosis in breast cancer patients, therefore representing a candidate target for breast cancer treatment. By using a novel mammary cancer-prone TLR2KO mouse model, we demonstrate that TLR2 is required for CSC pool maintenance and for regulatory T cell induction. Accordingly, cancer-prone TLR2KO mice display delayed tumor onset and increased survival. Transplantation of TLR2WT and TLR2KO cancer cells in either TLR2WT or TLR2KO hosts shows that tumor initiation is mostly sustained by TLR2 expression in cancer cells. TLR2 host deficiency partially impairs cancer cell growth, implying a pro-tumorigenic effect of TLR2 expression in immune cells. Finally, we demonstrate that doxorubicin-induced release of HMGB1 activates TLR2 signaling in cancer cells, leading to a chemotherapy-resistant phenotype. Unprecedented use of TLR2 inhibitors in vivo reduces tumor growth and potentiates doxorubicin efficacy with no negative impact on the host immune system, opening new perspectives for the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Antonino Di Lorenzo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Pietro Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Irene Fiore Merighi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
23
|
Wang SH, Chen YL, Hsiao JR, Tsai FY, Jiang SS, Lee AYL, Tsai HJ, Chen YW. Insulin-like growth factor binding protein 3 promotes radiosensitivity of oral squamous cell carcinoma cells via positive feedback on NF-κB/IL-6/ROS signaling. J Exp Clin Cancer Res 2021; 40:95. [PMID: 33712045 PMCID: PMC7955639 DOI: 10.1186/s13046-021-01898-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background Ectopic insulin-like growth factor binding protein 3 (IGFBP3) expression has been shown to enhance cell migration and lymph node metastasis of oral squamous cell carcinoma (OSCC) cells. However, OSCC patients with high IGFBP3 expression had improved survival compared with those with low expression. Therefore, we speculated that IGFBP3 expression may play a role in response to conventional OSCC therapies, such as radiotherapy. Methods We used in vitro and in vivo analyses to explore IGFBP3-mediated radiosensitivity. Reactive oxygen species (ROS) detection by flow cytometry was used to confirm IGFBP3-mediated ionizing radiation (IR)-induced apoptosis. Geneset enrichment analysis (GSEA) and ingenuity pathway analysis (IPA) were used to analyze the relationship between IGFBP3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling. Assays involving an NF-κB inhibitor, ROS scavenger or interleukin 6 (IL-6) were used to evaluate the NF-κB/IL-6/ROS signaling in IGFBP3-mediated radiosensitivity. Results Ectopic IGFBP3 expression enhanced IR-induced cell-killing in vitro. In vivo, IGFBP3 reduced tumor growth and increased apoptotic signals of tumor tissues in immunocompromised mice treated with IR. Combined with IR, ectopic IGFBP3 expression induced mitochondria-dependent apoptosis, which was apparent through mitochondrial destruction and increased ROS production. Ectopic IGFBP3 expression enhanced NK-κB activation and downstream cytokine expression. After IR exposure, IGFBP3-induced NF-κB activation was inhibited by the ROS scavenger N-acetyl-L-cysteine (NAC). IGFBP3-mediated ROS production was reduced by the NF-κB inhibitor BMS-345541, while exogenous IL-6 rescued the NF-κB-inhibited, IGFBP3-mediated ROS production. Conclusions Our data demonstrate that IGFBP3, a potential biomarker for radiosensitivity, promotes IR-mediated OSCC cell death by increasing ROS production through NF-κB activation and cytokine production. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01898-7.
Collapse
Affiliation(s)
- Ssu-Han Wang
- National Institute of Cancer Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
| | - Yu-Lin Chen
- National Institute of Cancer Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan. .,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
24
|
Tubin S, Gupta S, Grusch M, Popper HH, Brcic L, Ashdown ML, Khleif SN, Peter-Vörösmarty B, Hyden M, Negrini S, Fossati P, Hug E. Shifting the Immune-Suppressive to Predominant Immune-Stimulatory Radiation Effects by SBRT-PArtial Tumor Irradiation Targeting HYpoxic Segment (SBRT-PATHY). Cancers (Basel) 2020; 13:cancers13010050. [PMID: 33375357 PMCID: PMC7795882 DOI: 10.3390/cancers13010050] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary This review presents and summarizes the key components and outcomes of a novel, unconventional radiation approach aimed to exploit immune-stimulatory radiation effects which, being added to direct radiation tumor cell killing, may improve the therapeutic ratio of radiotherapy. This technique, as a product of translational oncology research, was intentionally developed for the induction of immune-mediated bystander and abscopal effects in the treatment of unresectable bulky tumors which have much fewer therapeutic options and show poor prognoses after conventional treatments. This review offers insights into a unique unconventional radiotherapy technique which, due to its higher immunogenic potential, may improve the prognosis of patients affected by highly complex malignancies, providing additional opportunities for future research in terms of combining novel immuno-modulating agents with more modern radiotherapy approaches. Abstract Radiation-induced immune-mediated abscopal effects (AE) of conventional radiotherapy are very rare. Whole-tumor irradiation leads to lymphopenia due to killing of immune cells in the tumor microenvironment, resulting in immunosuppression and weak abscopal potential. This limitation may be overcome by partial tumor irradiation sparing the peritumoral immune-environment, and consequent shifting of immune-suppressive to immune-stimulatory effect. This would improve the radiation-directed tumor cell killing, adding to it a component of immune-mediated killing. Our preclinical findings showed that the high-single-dose irradiation of hypoxic tumor cells generates a stronger bystander effect (BE) and AE than the normoxic cells, suggesting their higher “immunogenic potential”. This led to the development of a novel Stereotactic Body RadioTherapy (SBRT)-based PArtial Tumor irradiation targeting HYpoxic segment (SBRT-PATHY) for induction of the immune-mediated BE and AE. Encouraging SBRT-PATHY-clinical outcomes, together with immunohistochemical and gene-expression analyses of surgically removed abscopal-tumor sites, suggested that delivery of the high-dose radiation to the partial (hypoxic) tumor volume, with optimal timing based on the homeostatic fluctuation of the immune response and sparing the peritumoral immune-environment, would significantly enhance the immune-mediated anti-tumor effects. This review discusses the current evidence on the safety and efficacy of SBRT-PATHY in the treatment of unresectable hypoxic bulky tumors and its bystander and abscopal immunomodulatory potential.
Collapse
Affiliation(s)
- Slavisa Tubin
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria; (P.F.); (E.H.)
- Correspondence: ; Tel.: +43-676-9021-687
| | - Seema Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (S.G.); (S.N.K.)
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (M.G.); (B.P.-V.)
| | - Helmuth H. Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (H.H.P.); (L.B.)
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (H.H.P.); (L.B.)
| | - Martin L. Ashdown
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne 3010, Australia;
| | - Samir N. Khleif
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (S.G.); (S.N.K.)
| | - Barbara Peter-Vörösmarty
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (M.G.); (B.P.-V.)
| | - Martin Hyden
- Institute for Pathology, Kabeg Klinikum Klagenfurt, 9020 Klagenfurt am Wörthersee, Austria;
| | - Simone Negrini
- Internal Medicine, Clinical Immunology and Translational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Piero Fossati
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria; (P.F.); (E.H.)
| | - Eugen Hug
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria; (P.F.); (E.H.)
| |
Collapse
|
25
|
Toll-Like Receptor 2 at the Crossroad between Cancer Cells, the Immune System, and the Microbiota. Int J Mol Sci 2020; 21:ijms21249418. [PMID: 33321934 PMCID: PMC7763461 DOI: 10.3390/ijms21249418] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptor 2 (TLR2) expressed on myeloid cells mediates the recognition of harmful molecules belonging to invading pathogens or host damaged tissues, leading to inflammation. For this ability to activate immune responses, TLR2 has been considered a player in anti-cancer immunity. Therefore, TLR2 agonists have been used as adjuvants for anti-cancer immunotherapies. However, TLR2 is also expressed on neoplastic cells from different malignancies and promotes their proliferation through activation of the myeloid differentiation primary response protein 88 (MyD88)/nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) pathway. Furthermore, its activation on regulatory immune cells may contribute to the generation of an immunosuppressive microenvironment and of the pre-metastatic niche, promoting cancer progression. Thus, TLR2 represents a double-edge sword, whose role in cancer needs to be carefully understood for the setup of effective therapies. In this review, we discuss the divergent effects induced by TLR2 activation in different immune cell populations, cancer cells, and cancer stem cells. Moreover, we analyze the stimuli that lead to its activation in the tumor microenvironment, addressing the role of danger, pathogen, and microbiota-associated molecular patterns and their modulation during cancer treatments. This information will contribute to the scientific debate on the use of TLR2 agonists or antagonists in cancer treatment and pave the way for new therapeutic avenues.
Collapse
|
26
|
Conti L, Bolli E, Di Lorenzo A, Franceschi V, Macchi F, Riccardo F, Ruiu R, Russo L, Quaglino E, Donofrio G, Cavallo F. Immunotargeting of the xCT Cystine/Glutamate Antiporter Potentiates the Efficacy of HER2-Targeted Immunotherapies in Breast Cancer. Cancer Immunol Res 2020; 8:1039-1053. [PMID: 32532810 DOI: 10.1158/2326-6066.cir-20-0082] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/16/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
Despite HER2-targeted therapies improving the outcome of HER2+ breast cancer, many patients experience resistance and metastatic progression. Cancer stem cells (CSC) play a role in this resistance and progression, thus combining HER2 targeting with CSC inhibition could improve the management of HER2+ breast cancer. The cystine-glutamate antiporter, xCT, is overexpressed in mammary CSCs and is crucial for their redox balance, self-renewal, and resistance to therapies, representing a potential target for breast cancer immunotherapy. We developed a combined immunotherapy targeting HER2 and xCT using the Bovine Herpes virus-4 vector, a safe vaccine that can confer immunogenicity to tumor antigens. Mammary cancer-prone BALB-neuT mice, transgenic for rat Her2, were immunized with the single or combined vaccines. Anti-HER2 vaccination slowed primary tumor growth, whereas anti-xCT vaccination primarily prevented metastasis formation. The combination of the two vaccines exerted a complementary effect by mediating the induction of cytotoxic T cells and of HER2 and xCT antibodies that induce antibody-dependent cell-mediated cytotoxicity and hinder cancer cell proliferation. Antibodies targeting xCT, but not those targeting HER2, directly affected CSC viability, self-renewal, and migration, inducing the antimetastatic effect of xCT vaccination. Our findings present a new therapy for HER2+ breast cancer, demonstrating that CSC immunotargeting via anti-xCT vaccination synergizes with HER2-directed immunotherapy.
Collapse
Affiliation(s)
- Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Antonino Di Lorenzo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | - Francesca Macchi
- Department of Medical Veterinary Sciences, University of Parma, Parma, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luca Russo
- Department of Medical Veterinary Sciences, University of Parma, Parma, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Gaetano Donofrio
- Department of Medical Veterinary Sciences, University of Parma, Parma, Italy.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
27
|
Ruiu R, Tarone L, Rolih V, Barutello G, Bolli E, Riccardo F, Cavallo F, Conti L. Cancer stem cell immunology and immunotherapy: Harnessing the immune system against cancer's source. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:119-188. [PMID: 31383404 DOI: 10.1016/bs.pmbts.2019.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite recent advances in diagnosis and therapy having improved cancer outcome, many patients still do not respond to treatments, resulting in the progression or relapse of the disease, eventually impairing survival expectations. The limited efficacy of therapy is often attributable to its inability to affect cancer stem cells (CSCs), a small population of cells resistant to current radio- and chemo-therapies. CSCs are characterized by self-renewal and tumor-initiating capabilities, and function as a reservoir for the local and distant recurrence of the disease. Therefore, new therapeutic approaches able to effectively target and deplete CSCs are urgently needed. Immunotherapy is facing a renewed interest for its potential in cancer treatment, and the possibility of harnessing the immune system to target CSCs is being addressed by a new exciting research field. In this chapter, we discuss the cancer stem cell model and illustrate CSC biological and molecular properties, critically addressing theoretical and practical issues linked with their definition and study. We then review the existing literature regarding the immunological properties of CSCs and the complex interplay occurring between CSCs and immune cells. Finally, we present up-to-date studies on CSC immunotargeting and its potential future perspective. In conclusion, understanding the interplay between CSC biology and tumor immunology will provide a deeper understanding of the mechanisms that regulate CSC immunological properties. This will contribute to the design of new CSC-directed immunotherapeutic strategies with the potential of strongly improving cancer outcomes.
Collapse
Affiliation(s)
- Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
28
|
Differential Modulation of Transcription Factors and Cytoskeletal Proteins in Prostate Carcinoma Cells by a Bacterial Lactone. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6430504. [PMID: 29854771 PMCID: PMC5966677 DOI: 10.1155/2018/6430504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 01/05/2023]
Abstract
The present study tested the effect of a bacterial lactone N-(3-oxododecanoyl)-homoserine lactone (C12-HSL) on the cytoskeletal and transcriptional genes and proteins in prostate adenocarcinoma (PA) cells (DU145 and LNCaP) and prostate small cell neuroendocrine carcinoma (SCNC) PC3 cells including their cellular viability and apoptosis. Our data indicate that cell migration and colony formation were affected in the presence of C12-HSL. C12-HSL induced apoptosis and altered viability of both PA and SCNC cells in a concentration dependent manner as measured by fluorescence and chemiluminescence assays. Compared to PCa cells, noncancerous prostate epithelial cells (RWPE1) were resistant to modification by C12-HSL. Further, the viability of PC3 cells in 3D matrix was suppressed by C12-HSL treatment as detected using calcein AM fluorescence in situ. C12-HSL treatment induced cytoskeletal associated protein expression of vinculin and RhoC, which may have implications in cancer cell motility, adhesion, and metastasis. IQGAP protein expression was reduced in DU145 and RWPE1 cells in the presence of C12-HSL. C12-HSL decreased STAT3 phosphorylation in DU145 cells but increased STAT1 protein phosphorylation in PC3 and LNCaP cells. Overall, these studies indicate that C12-HSL can trigger changes in transcription factors and cytoskeletal proteins and thereby modulate growth and migration properties of PCa cells.
Collapse
|
29
|
Almeida RDS, Ramos AMDL, Luna CF, Pedrosa F, Donadi EA, Lucena-Silva N. Cytokines and soluble HLA-G levels in bone marrow stroma and their association with the survival rate of patients exhibiting childhood T-cell acute lymphoblastic leukemia. Cytokine 2018; 102:94-101. [DOI: 10.1016/j.cyto.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/07/2017] [Accepted: 07/19/2017] [Indexed: 12/27/2022]
|
30
|
Bolli E, O'Rourke JP, Conti L, Lanzardo S, Rolih V, Christen JM, Barutello G, Forni M, Pericle F, Cavallo F. A Virus-Like-Particle immunotherapy targeting Epitope-Specific anti-xCT expressed on cancer stem cell inhibits the progression of metastatic cancer in vivo. Oncoimmunology 2017; 7:e1408746. [PMID: 29399412 PMCID: PMC5790338 DOI: 10.1080/2162402x.2017.1408746] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 01/17/2023] Open
Abstract
Aggressive forms of breast cancer, such as Her2+ and triple negative breast cancer (TNBC), are enriched in breast cancer stem cells (BCSC) and have limited therapeutic options. BCSC represent a key cellular reservoir for relapse, metastatic progression and therapeutic resistance. Their ability to resist common cytotoxic therapies relies on different mechanisms, including improved detoxification. The cystine-glutamate antiporter protein xCT (SLC7A11) regulates cystine intake, conversion to cysteine and subsequent glutathione synthesis, protecting cells against oxidative and chemical insults. Our previous work showed that xCT is highly expressed in tumorspheres derived from breast cancer cell lines and downregulation of xCT altered BCSC function in vitro and inhibited pulmonary metastases in vivo. We further strengthened these observations by developing a virus-like-particle (VLP; AX09-0M6) immunotherapy targeting the xCT protein. AX09-0M6 elicited a strong antibody response against xCT including high levels of IgG2a antibody. IgG isolated from AX09-0M6 treated mice bound to tumorspheres, inhibited xCT function as assessed by reactive oxygen species generation and decreased BCSC growth and self-renewal. To assess if AX09-0M6 impacts BCSC in vivo seeding, Her2+ TUBO-derived tumorspheres were injected into the tail vein of AX09-0M6 or control treated female BALB/c mice. AX09-0M6 significantly inhibited formation of pulmonary nodules. To evaluate its ability to impact metastases, AX09-0M6 was administered to mice with established subcutaneous 4T1 tumors. AX09-0M6 administration significantly hampered tumor growth and development of pulmonary metastases. These data show that a VLP-based immunization approach inhibits xCT activity, impacts BCSC biology and significantly reduces metastatic progression in preclinical models.
Collapse
Affiliation(s)
- Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Stefania Lanzardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Marco Forni
- EuroClone S.p.A Research Laboratory, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
31
|
The role of STAT3 in leading the crosstalk between human cancers and the immune system. Cancer Lett 2017; 415:117-128. [PMID: 29222039 DOI: 10.1016/j.canlet.2017.12.003] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
Abstract
The development and progression of human cancers are continuously and dynamically regulated by intrinsic and extrinsic factors. As a converging point of multiple oncogenic pathways, signal transducer and activator of transcription 3 (STAT3) is constitutively activated both in tumor cells and tumor-infiltrated immune cells. Activated STAT3 persistently triggers tumor progression through direct regulation of oncogenic gene expression. Apart from its oncogenic role in regulating gene expression in tumor cells, STAT3 also paves the way for human cancer growth through immunosuppression. Activated STAT3 in immune cells results in inhibition of immune mediators and promotion of immunosuppressive factors. Therefore, STAT3 modulates the interaction between tumor cells and host immunity. Accumulating evidence suggests that targeting STAT3 may enhance anti-cancer immune responses and rescue the suppressed immunologic microenvironment in tumors. Taken together, STAT3 has emerged as a promising target in cancer immunotherapy.
Collapse
|
32
|
Tallerico R, Conti L, Lanzardo S, Sottile R, Garofalo C, Wagner AK, Johansson MH, Cristiani CM, Kärre K, Carbone E, Cavallo F. NK cells control breast cancer and related cancer stem cell hematological spread. Oncoimmunology 2017; 6:e1284718. [PMID: 28405511 DOI: 10.1080/2162402x.2017.1284718] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 10/20/2022] Open
Abstract
The growth and recurrence of a number of cancers is driven by a scarce population of cancer stem cells (CSCs), which are resistant to most current therapies. It has been shown previously that natural killer (NK) cells recognize human glioma, melanoma, colon and prostate CSCs in vitro. We herein show that human and mouse breast CSCs are also susceptible to NK cytotoxic activity in vitro. Moreover, CSC induced autologous NK cell activation and expansion in vivo, which correlate with the inhibition of CSC metastatic spread. These data suggest that NK cells control CSC metastatic spread in vivo and that their use in breast cancer therapy may well be fruitful.
Collapse
Affiliation(s)
- Rossana Tallerico
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro , Catanzaro, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin , Turin, Italy
| | - Stefania Lanzardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin , Turin, Italy
| | - Rosa Sottile
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy; Department of Microbiology, Cell and Tumor Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Cinzia Garofalo
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro , Catanzaro, Italy
| | - Arnika K Wagner
- Department of Microbiology, Cell and Tumor Biology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Maria H Johansson
- Department of Microbiology, Cell and Tumor Biology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Costanza Maria Cristiani
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro , Catanzaro, Italy
| | - Klas Kärre
- Department of Microbiology, Cell and Tumor Biology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Ennio Carbone
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy; Department of Microbiology, Cell and Tumor Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin , Turin, Italy
| |
Collapse
|
33
|
Yuzugullu H, Von T, Thorpe LM, Walker SR, Roberts TM, Frank DA, Zhao JJ. NTRK2 activation cooperates with PTEN deficiency in T-ALL through activation of both the PI3K-AKT and JAK-STAT3 pathways. Cell Discov 2016; 2:16030. [PMID: 27672444 PMCID: PMC5029543 DOI: 10.1038/celldisc.2016.30] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 07/13/2016] [Indexed: 12/14/2022] Open
Abstract
Loss of PTEN, a negative regulator of the phosphoinositide 3-kinase signaling pathway, is a frequent event in T-cell acute lymphoblastic leukemia, suggesting the importance of phosphoinositide 3-kinase activity in this disease. Indeed, hyperactivation of the phosphoinositide 3-kinase pathway is associated with the disease aggressiveness, poor prognosis and resistance to current therapies. To identify a molecular pathway capable of cooperating with PTEN deficiency to drive oncogenic transformation of leukocytes, we performed an unbiased transformation screen with a library of tyrosine kinases. We found that activation of NTRK2 is able to confer a full growth phenotype of Ba/F3 cells in an IL3-independent manner in the PTEN-null setting. NTRK2 activation cooperates with PTEN deficiency through engaging both phosphoinositide3-kinase/AKT and JAK/STAT3 pathway activation in leukocytes. Notably, pharmacological inhibition demonstrated that p110α and p110δ are the major isoforms mediating the phosphoinositide 3-kinase/AKT signaling driven by NTRK2 activation in PTEN-deficient leukemia cells. Furthermore, combined inhibition of phosphoinositide 3-kinase and STAT3 significantly suppressed proliferation of PTEN-mutant T-cell acute lymphoblastic leukemia both in culture and in mouse xenografts. Together, our data suggest that a unique conjunction of PTEN deficiency and NTRK2 activation in T-cell acute lymphoblastic leukemia, and combined pharmacologic inhibition of phosphoinositide 3-kinase and STAT3 signaling may serve as an effective and durable therapeutic strategy for T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Haluk Yuzugullu
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Thanh Von
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Lauren M Thorpe
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah R Walker
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas M Roberts
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - David A Frank
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Han Z, Wang X, Ma L, Chen L, Xiao M, Huang L, Cao Y, Bai J, Ma D, Zhou J, Hong Z. Inhibition of STAT3 signaling targets both tumor-initiating and differentiated cell populations in prostate cancer. Oncotarget 2015; 5:8416-28. [PMID: 25261365 PMCID: PMC4226693 DOI: 10.18632/oncotarget.2314] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite of tremendous research efforts to profile prostate cancer, the genetic alterations and biological processes that correlate with disease progression remain partially elusive. In this study we show that the STAT3 small molecule inhibitor Stattic caused S-phase accumulation at low-dose levels and led to massive apoptosis at a relatively high-dose level in prostate cancer cells. STAT3 knockdown led to the disruption of the microvascular niche which tumor-initiating cells (TICs) and non-tumor initiating cells (non-TICs)depend on. Primary human prostate cancer cells and prostate cancer cell line contained high aldehyde dehydrogenase activity (ALDHhigh) subpopulations with stem cell-like characteristics, which expressed higher levels of the active phosphorylated form of STAT3 (pSTAT3) than that of non-ALDHhigh subpopulations. Stattic could singnificantly decreas the population of ALDHhigh prostate cancer cells even at low-dose levels. IL-6 can convert non-ALDHhigh cells to ALDHhigh cells in prostate cancer cell line as well as from cells derived from human prostate tumors, the conversion mediated by IL-6 was abrogated in the presence of STAT3 inhibitor or upon STAT3 knockdown. STAT3 knockdown significantly impaired the ability of prostate cancer cells to initiate development of prostate adenocarcinoma. Moreover, blockade of STAT3 signaling was significantly effective in eradicating the tumor-initiating and bulk tumor cancer cell populations in both prostate cancer cell-line xenograft model and patient-derived tumor xenograft (PDTX) models. This data suggests that targeting both tumor initiating and differentiated cell populations by STAT3 inhibition is predicted to have greater efficacy for prostate cancer treatment.
Collapse
Affiliation(s)
- Zhiqiang Han
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. These authors contributed equally to this work
| | - Xiaoli Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. These authors contributed equally to this work
| | - Liang Ma
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lijuan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Liang Huang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Cao
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Bai
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianfeng Zhou
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenya Hong
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
35
|
Abstract
The transcription factors STAT1 and STAT3 appear to play opposite roles in tumorigenesis. While STAT3 promotes cell survival/proliferation, motility and immune tolerance and is considered as an oncogene, STAT1 mostly triggers anti-proliferative and pro-apoptotic responses while enhancing anti-tumor immunity. Despite being activated downstream of common cytokine and growth factor receptors, their activation is reciprocally regulated and perturbation in their balanced expression or phosphorylation levels may re-direct cytokine/growth factor signals from proliferative to apoptotic, or from inflammatory to anti-inflammatory. Here we review the functional canonical and non-canonical effects of STAT1 and STAT3 activation in tumorigenesis and their potential cross-regulation mechanisms.
Collapse
Affiliation(s)
- Lidia Avalle
- Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry; University of Turin; Turin, Italy
| | | | | | | | | |
Collapse
|
36
|
Qi YF, Huang YX, Wang HY, Zhang Y, Bao YL, Sun LG, Wu Y, Yu CL, Song ZB, Zheng LH, Sun Y, Wang GN, Li YX. Elucidating the crosstalk mechanism between IFN-gamma and IL-6 via mathematical modelling. BMC Bioinformatics 2013; 14:41. [PMID: 23384097 PMCID: PMC3599299 DOI: 10.1186/1471-2105-14-41] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 02/03/2013] [Indexed: 11/10/2022] Open
Abstract
Background Interferon-gamma (IFN-gamma) and interleukin-6 (IL-6) are multifunctional cytokines that regulate immune responses, cell proliferation, and tumour development and progression, which frequently have functionally opposing roles. The cellular responses to both cytokines are activated via the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. During the past 10 years, the crosstalk mechanism between the IFN-gamma and IL-6 pathways has been studied widely and several biological hypotheses have been proposed, but the kinetics and detailed crosstalk mechanism remain unclear. Results Using established mathematical models and new experimental observations of the crosstalk between the IFN-gamma and IL-6 pathways, we constructed a new crosstalk model that considers three possible crosstalk levels: (1) the competition between STAT1 and STAT3 for common receptor docking sites; (2) the mutual negative regulation between SOCS1 and SOCS3; and (3) the negative regulatory effects of the formation of STAT1/3 heterodimers. A number of simulations were tested to explore the consequences of cross-regulation between the two pathways. The simulation results agreed well with the experimental data, thereby demonstrating the effectiveness and correctness of the model. Conclusion In this study, we developed a crosstalk model of the IFN-gamma and IL-6 pathways to theoretically investigate their cross-regulation mechanism. The simulation experiments showed the importance of the three crosstalk levels between the two pathways. In particular, the unbalanced competition between STAT1 and STAT3 for IFNR and gp130 led to preferential activation of IFN-gamma and IL-6, while at the same time the formation of STAT1/3 heterodimers enhanced preferential signal transduction by sequestering a fraction of the activated STATs. The model provided a good explanation of the experimental observations and provided insights that may inform further research to facilitate a better understanding of the cross-regulation mechanism between the two pathways.
Collapse
Affiliation(s)
- Yun-feng Qi
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Icardi L, De Bosscher K, Tavernier J. The HAT/HDAC interplay: multilevel control of STAT signaling. Cytokine Growth Factor Rev 2012; 23:283-91. [PMID: 22989617 DOI: 10.1016/j.cytogfr.2012.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 12/13/2022]
Abstract
Besides the transcription-promoting role of histone acetyltransferases (HATs) and the transcription-delimiting function of histone deacetylases (HDACs) through histone acetylation and deacetylation respectively, HATs and HDACs also regulate the activity of several non-histone proteins. This includes signal transducers and activators of transcription (STATs), key proteins in cytokine signaling. Unlike Tyr phosphorylation/dephosphorylation, which mainly acts as an on/off switch of STAT activity, the control exerted by HATs and HDACs appears multifaceted and far more complex than initially imagined. Our review focuses on the latest trends and novel hypotheses to explain differential context-dependent STAT regulation by complex posttranslational modification patterns. We chart the knowledge on how STATs interact with HATs and HDACs, and additionally bring a transcriptional regulatory and gene-set specific role for HDACs in the picture. Indeed, a growing amount of evidence demonstrates, paradoxically, that not only HAT but also HDAC activity can be required for STAT-dependent transcription, in a STAT subtype- and cell type-dependent manner. Referring to recent reports, we review and discuss the various molecular mechanisms that have recently been proposed to account for this peculiar regulation, in an attempt to shed more light on the difficult yet important question on how STAT specificity is being generated.
Collapse
Affiliation(s)
- Laura Icardi
- Department of Medical Protein Research, VIB, Ghent, Belgium
| | | | | |
Collapse
|
38
|
The Sin3a repressor complex is a master regulator of STAT transcriptional activity. Proc Natl Acad Sci U S A 2012; 109:12058-63. [PMID: 22783022 DOI: 10.1073/pnas.1206458109] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tyrosine phosphorylation is a hallmark for activation of STAT proteins, but their transcriptional activity also depends on other secondary modifications. Type I IFNs can activate both the ISGF3 (STAT1:STAT2:IRF9) complex and STAT3, but with cell-specific, selective triggering of only the ISGF3 transcriptional program. Following a genome-wide RNAi screen, we identified the SIN3 transcription regulator homolog A (Sin3a) as an important mediator of this STAT3-targeted transcriptional repression. Sin3a directly interacts with STAT3 and promotes its deacetylation. SIN3A silencing results in a prolonged nuclear retention of activated STAT3 and enhances its recruitment to the SOCS3 promoter, concomitant with histone hyperacetylation and enhanced STAT3-dependent transcription. Conversely, Sin3a is required for ISGF3-dependent gene transcription and for an efficient IFN-mediated antiviral protection against influenza A and hepatitis C viruses. The Sin3a complex therefore acts as a context-dependent ISGF3/STAT3 transcriptional switch.
Collapse
|
39
|
Icardi L, Lievens S, Mori R, Piessevaux J, De Cauwer L, De Bosscher K, Tavernier J. Opposed regulation of type I IFN-induced STAT3 and ISGF3 transcriptional activities by histone deacetylases (HDACS) 1 and 2. FASEB J 2011; 26:240-9. [PMID: 21957129 DOI: 10.1096/fj.11-191122] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The antiviral and antiproliferative responses mediated by type I interferons (IFNs) depend on JAK/STAT signaling and ISGF3 (STAT1:STAT2:IRF9)-dependent transcription. In addition, type I IFNs stimulate STAT3 activation in many cell types, an event generally associated with cell cycle progression, survival, and proliferation. To gather more insight into this functionally contradictive phenomenon, we studied the regulation of STAT3 transcriptional activity upon type I IFN treatment. We show that IFNα2 stimulation strongly induces STAT3 phosphorylation, nuclear translocation, and promoter binding, yet the activation of transcription of a STAT3-dependent reporter and endogenous genes, such as SOCS3 and c-FOS, is impaired. Simultaneous treatment with IFNα2 and trichostatin A, as well as combined HDAC1/HDAC2 silencing, restores STAT3-dependent reporter gene and endogenous gene expression, strongly suggesting that HDAC1 and HDAC2 are directly involved in repressing IFNα2-activated STAT3. Of note, single silencing of only one of the two HDACs does not lead to enhanced STAT3 activity, supporting a functional redundancy between these two enzymes. In sharp contrast, HDAC1 and HDAC2 activities are required for ISGF3-dependent gene expression. We conclude that HDAC1 and HDAC2 differentially modulate STAT activity in response to IFNα2: while they are required for the induction of ISGF3-responsive genes, they impair the transcription of STAT3-dependent genes.
Collapse
Affiliation(s)
- Laura Icardi
- Department of Medical Protein Research, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
BACKGROUND RNA interference (RNAi) has become the method of choice for researchers wishing to target specific genes for silencing and has provided immense potential as therapeutic tools. This narrative review article aimed to understand potential benefits and limitations of RNAi technique for clinical application and in vivo studies through reading the articles published during the recent 3 years. MATERIALS AND METHODS Medline database was searched by using 'siRNA' or 'RNAi' and 'in vivo' with limits of dates 'published in the last 3 years', language 'English' and article type 'clinical trial' for obtaining articles on in vivo studies on the use of RNAi technique. Characteristics of clinical trials on siRNA registered at the http://www.ClinicalTrials.gov were analysed. RESULTS The only three clinical studies published so far and many in vivo studies in animals showed that the RNAi technique is safe and effective in treatment of cancers of many organ/systems and various other diseases including viral infection, arterial restenosis and some hereditary diseases with considerable benefits such as high specificity, many possible routes of administration and possibility of silencing multiple genes at the same time. Limitations and uncertainty include efficiency of cellular uptake, specific guidance to the target tissue or cell, long-term safety, sustained efficacy and rapid clearance from the body. CONCLUSIONS RNAi technique will become an important and potent weapon for fighting against various diseases. RNAi technique has benefits and limitations in its potential clinical applications. Overcoming the obstacles is still a formidable task.
Collapse
Affiliation(s)
- Shao-Hua Chen
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
41
|
Boselli D, Ragimbeau J, Orlando L, Cappello P, Capello M, Ambrogio C, Chiarle R, Marsili G, Battistini A, Giovarelli M, Pellegrini S, Novelli F. Expression of IFNγR2 mutated in a dileucine internalization motif reinstates IFNγ signaling and apoptosis in human T lymphocytes. Immunol Lett 2010; 134:17-25. [PMID: 20709103 DOI: 10.1016/j.imlet.2010.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 11/30/2022]
Abstract
In T lymphocytes, the internalization of the R2 chain of the IFN-γ receptor (IFN-γR2) prevents the switching-on of pro-apoptotic and anti-proliferative genes induced by the IFN-γ/STAT1 pathway. In fibroblasts, a critical role of controlling the IFN-γR2 internalization is played by the LI(255-256) intracellular motif. Here we show that, in human malignant T cells, the expression of a mutated IFN-γR2 chain in which the LI(255-256) internalization motif is replaced by two alanines (LI(255-256)AA) induces cell surface accumulation of the receptor and reinstates the cell sensitivity to IFN-γ. In comparison with T cells that expressed wild-type IFN-γR2, cells that expressed the mutated receptor displayed, in response to IFN-γ a sustained activation of STAT1. The activation of this signaling pathway leads to higher induction of MHC class I and FasL expression and triggered apoptosis. Malignant ST4 cells transduced with either wild-type or mutated receptor were able to grow in SCID mice, but only the proliferation of T cells expressing the mutated receptor was inhibited by IFN-γ. Finally, lentiviral-mediated transduction of the mutated receptor in T lymphoblasts from healthy donors reinstated their IFN-γ-dependent apoptosis. As a whole, these data indicate that perturbation of IFN-γR2 internalization by mutating the LI(255-256) motif induces a timely coordinated activation of IFN-γ/STAT1 signaling pathways that leads to the apoptosis of T cells.
Collapse
Affiliation(s)
- Daniela Boselli
- Center for Experimental Research and Medical Studies, San Giovanni Battista Hospital, University of Turin, 10126 Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
p53-Dependent anticancer effects of leptomycin B on lung adenocarcinoma. Cancer Chemother Pharmacol 2010; 67:1369-80. [PMID: 20803015 DOI: 10.1007/s00280-010-1434-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/13/2010] [Indexed: 01/21/2023]
Abstract
PURPOSE Leptomycin B (LMB) and/or its derivatives are considered a novel class of cancer therapeutics through blocking chromosome maintenance region 1, which mediates p53 nuclear export. The objectives of the present study were to first evaluate the cytotoxic effects of LMB on a normal human lung epithelial cell line (BEAS-2B) and three human lung adenocarcinoma cell lines with various p53 status (wild type: A549, mutant: NCI-H522, and null: NCI-H358) and then to identify LMB-induced gene expression alterations in human p53 signaling pathway. METHODS Cells were treated with 0.01-100 nM LMB or 0.1% ethanol (vehicle control) for 4-72 h. Gene expression analyses using gene array for 84 genes involved in p53-mediated signaling pathways were performed in A549 and NCI-H358 after treatment with 20 nM LMB or vehicle control for 24 h. RESULTS Cytotoxic results from MTS assays revealed a significant dose- and time-dependent effect of LMB on all cell lines. However, this effect was more pronounced in cancer cells than in normal cells, and cancer cells with p53 wild type tended to be less sensitive than those with p53 mutant or null. A total of 23 genes, predominantly involved in apoptosis and cell cycle/proliferation, were significantly altered in A549 after LMB treatment, while no strong modulating effects were observed in NCI-H358. The protein expression of two selected genes, p21 and survivin, was further confirmed by Western blots. CONCLUSION Our results suggest that LMB has anti-cancer potential and provides a new regimen of individualized therapy for lung cancer treatment.
Collapse
|
43
|
Najjar I, Fagard R. STAT1 and pathogens, not a friendly relationship. Biochimie 2010; 92:425-44. [PMID: 20159032 PMCID: PMC7117016 DOI: 10.1016/j.biochi.2010.02.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 02/09/2010] [Indexed: 12/21/2022]
Abstract
STAT1 belongs to the STAT family of transcription factors, which comprises seven factors: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6. STAT1 is a 91 kDa protein originally identified as the mediator of the cellular response to interferon (IFN) α, and thereafter found to be a major component of the cellular response to IFNγ. STAT1 is, in fact, involved in the response to several cytokines and to growth factors. It is activated by cytokine receptors via kinases of the JAK family. STAT1 becomes phosphorylated and forms a dimer which enters the nucleus and triggers the transcription of its targets. Although not lethal at birth, selective gene deletion of STAT1 in mice leads to rapid death from severe infections, demonstrating its major role in the response to pathogens. Similarly, in humans who do not express STAT1, there is a lack of resistance to pathogens leading to premature death. This indicates a key, non-redundant function of STAT1 in the defence against pathogens. Thus, to successfully infect organisms, bacterial, viral or parasitic pathogens must overcome the activity of STAT1, and almost all the steps of this pathway can be blocked or inhibited by proteins produced in infected cells. Interestingly, some pathogens, like the oncogenic Epstein–Barr virus, have evolved a strategy which uses STAT1 activation.
Collapse
Affiliation(s)
- Imen Najjar
- INSERM Unité 978, SMBH, 74 rue Marcel Cachin, Bobigny-cedex 93017, France.
| | | |
Collapse
|