1
|
Garrett MC, Carnwath T, Albano R, Zhuang Y, Behrmann CA, Pemberton M, Barakat F, Lober R, Hoeprich M, Paravati A, Reed M, Spry H, Woo D, O'Brien E, VanCauwenbergh B, Perentesis J, Nasser R, Medvedovic M, Plas DR. CPI203, a BET inhibitor, down-regulates a consistent set of DNA synthesis genes across a wide array of glioblastoma lines. PLoS One 2025; 20:e0306846. [PMID: 40378113 DOI: 10.1371/journal.pone.0306846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/15/2025] [Indexed: 05/18/2025] Open
Abstract
INTRODUCTION Glioblastomas utilize malignant gene expression pathways to drive growth. Many of these gene pathways are not directly accessible with molecularly targeted pharmacological agents. Chromatin-modifying compounds can alter gene expression and target glioblastoma growth pathways. In this study, we utilize a systematic screen of chromatin-modifying compounds on a panel of patient-derived glioblastoma lines to identify promising compounds and their associated gene targets. METHODS Five glioblastoma cell lines were subjected to a drug screen of 106 chromatin-modifying compounds representing 36 unique drug classes to determine the twelve most promising drug classes and the best candidate inhibitors in each class. These twelve drugs were then tested with a panel of twelve patient-derived gliomasphere lines to identify growth inhibition and corresponding gene expression patterns. Overlap analysis and weighted co-expression network analysis (WCGNA) were utilized to determine potential target genes and gene pathways. RESULTS The initial drug screen identified twelve candidate pharmacologic agents for further testing. Drug sensitivity testing indicated an overall high degree of variability between gliomasphere lines. However, CPI203 was the most consistently effective compound, and the BET inhibitor class was the most consistently effective class of compounds across the gliomasphere panel. Correspondingly, most of the compounds tested had highly variable effects on gene expression between gliomasphere lines. CPI203 stood out as the only compound to induce a consistent effect on gene expression across different gliomasphere lines, specifically down-regulation of DNA-synthesis genes. Amongst the twelve tested cell lines, high expression of CDKN2A and CDKN2B distinguished more drug sensitive from more drug resistant lines. WCGNA identified two oncogenic gene modules (FBXO5 and MELK) that were effectively downregulated by CPI203 (FBXO5) and ML228 (FBXO5 and MELK). CONCLUSIONS The bromodomain inhibitor CPI203 induced relatively consistent effects on gene expression and growth across a variety of glioblastoma lines, specifically down-regulating genes associated with DNA replication. We propose that clinically effective BET inhibitors have the potential to induce consistent beneficial effects across a spectrum of glioblastomas.
Collapse
Affiliation(s)
- Matthew C Garrett
- Department of Neurosurgery, Kettering Health Network, Kettering, Ohio, United States of America
| | - Troy Carnwath
- University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rebecca Albano
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yonghua Zhuang
- Biostatistics and Bioinformatics Shared Resource, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Catherine A Behrmann
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Merissa Pemberton
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Farah Barakat
- Alfaisal University, College of Medicine, Riyadh, Saudi Arabia
| | - Robert Lober
- Division of Neurosurgery, Dayton Children's Hospital, Dayton, Ohio, United States of America
| | - Mark Hoeprich
- Department of Neurosurgery, Kettering Health Network, Kettering, Ohio, United States of America
| | - Anthony Paravati
- Department of Radiation Oncology, Kettering Health Network, Kettering, Ohio, United States of America
| | - Marilyn Reed
- Department of Neurosurgery, Kettering Health Network, Kettering, Ohio, United States of America
| | - Hailey Spry
- Department of Neurosurgery, Kettering Health Network, Kettering, Ohio, United States of America
| | - Daniel Woo
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Eric O'Brien
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Brett VanCauwenbergh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - John Perentesis
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rani Nasser
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
2
|
Cui B, Ai L, Lei M, Duan Y, Tang C, Zhang J, Gao Y, Li X, Zhu C, Zhang Y, Zhu X, Isobe T, Yang W, Göttgens B, Zhu P. Single-cell epigenetic and clonal analysis decodes disease progression in pediatric acute myeloid leukemia. Blood 2025; 145:1211-1224. [PMID: 39661948 PMCID: PMC11923433 DOI: 10.1182/blood.2024025618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
ABSTRACT Pediatric acute myeloid leukemia (pAML) is a clonal disease with recurrent genetic alterations that affect epigenetic states. However, the implications of epigenetic dysregulation in disease progression remain unclear. Here, we interrogated single-cell and clonal level chromatin accessibility of bone marrow samples from 28 patients with pAML representing multiple subtypes using mitochondrial single-cell assay for transposase-accessible chromatin with sequencing, which revealed distinct differentiation hierarchies and abnormal chromatin accessibility in a subtype-specific manner. Innate immune signaling was commonly enhanced across subtypes and related to improved advantage of clonal competition and unfavorable prognosis, with further reinforcement in a relapse-associated leukemia stem cell-like population. We identified a panel of 31 innate immunity-related genes to improve the risk classification of patients with pAML. By comparing paired diagnosis and postchemotherapy relapse samples, we showed that primitive cells significantly reduced major histocompatibility complex class II signaling, suggesting an immune evasion mechanism to facilitate their expansion at relapse. Key regulators orchestrating cell cycle dysregulation were identified to contribute to pAML relapse in drug-resistant clones. Our work establishes the single-cell chromatin accessibility landscape at clonal resolution and reveals the critical involvement of epigenetic disruption, offering insights into classification and targeted therapies of patients with pAML.
Collapse
Affiliation(s)
- Boyu Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lanlan Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Minghui Lei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yongjuan Duan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chao Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jingliao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tomoya Isobe
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Wenyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Berthold Göttgens
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
3
|
Chideriotis S, Anastasiadi AT, Tzounakas VL, Fortis SP, Kriebardis AG, Valsami S. Morphogens and Cell-Derived Structures (Exosomes and Cytonemes) as Components of the Communication Between Cells. Int J Mol Sci 2025; 26:881. [PMID: 39940651 PMCID: PMC11816454 DOI: 10.3390/ijms26030881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Morphogens, which are non-classical transcription factors, according to several studies, display a crucial role in tissue patterning, organ architecture establishment, and human disease pathogenesis. Recent advances have expanded the morphogen participation to a wide range of human diseases. There are many genetic syndromes caused by mutations of components of morphogen signaling pathways. The aberrant morphogen pathways also promote cancer cell maintenance, renewal, proliferation, and migration. On the other hand, exosomes and their application in the biomedical field are of evolving significance. The evidence that membrane structures participate in the creation of morphogenic gradience and biodistribution of morphogen components renders them attractive as new therapeutic tools. This intercellular morphogen transport is performed by cell-derived structures, mainly exosomes and cytonemes, and extracellular substances like heparan sulphate proteoglycans and lipoproteins. The interaction between morphogens and Extracellular Vesicles has been observed at first in the most studied insect, Drosophila, and afterwards analogous findings have been proved in vertebrates. This review presents the protagonists and mechanisms of lipid-modified morphogens (Hedgehog and Wnt/β-catenin) biodistribution.
Collapse
Affiliation(s)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (S.P.F.); (A.G.K.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (S.P.F.); (A.G.K.)
| | - Serena Valsami
- Hematology Laboratory, Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
4
|
Ide AD, Carpenter KA, Elaswad M, Opria K, Marcellin K, Gilliland C, Grainger S. Secreted Frizzled-Related Protein 1a regulates hematopoietic development in a dose-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632371. [PMID: 39829913 PMCID: PMC11741364 DOI: 10.1101/2025.01.10.632371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) arise only during embryonic development, and their identity specification, emergence from the floor of the dorsal aorta, and proliferation are all tightly regulated by molecular mechanisms such as signaling cues. Among these, Wnt signaling plays an important role in HSPC specification, differentiation, and self-renewal, requiring precise modulation for proper development and homeostasis. Wnt signaling is initiated when a Wnt ligand binds to cell surface receptors such as those encoded by the frizzled gene family, activating intracellular signaling pathways that regulate gene expression. Secreted frizzled-related proteins (Sfrps) are known modulators of Wnt signaling, acting as both agonists and antagonists of this pathway. Yet, in vivo functions of Sfrps in HSPC development remain incompletely understood. Here, we demonstrate that Sfrp1a regulates zebrafish HSPC development and differentiation in a dose-dependent manner. In Sfrp1a loss of function animals, we observe an increase in HSPCs, an upregulation of canonical Wnt signaling, and a decrease in differentiation into both lymphoid and myeloid lineages. Conversely, at low-dose sfrp1a overexpression, there is a decrease in HSPCs and an increase in lymphoid differentiation. High-dose sfrp1a overexpression phenocopies the loss of function animals, with an increase in HSPCs, increased canonical Wnt signaling, and decreased lymphoid and myeloid differentiation. These findings highlight the importance of dose-dependent modulation of Sfrps, paralleling what is observed in hematopoietic cancers where SFRP1 loss-of-function and gain-of-function variants can drive tumorigenesis.
Collapse
Affiliation(s)
- Amber D. Ide
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Kelsey A. Carpenter
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Mohamed Elaswad
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Katherine Opria
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Kendersley Marcellin
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Carla Gilliland
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| |
Collapse
|
5
|
TANI A, NAKASE K, TOMIYASU H, NEO S, OHMI A, GOTO-KOSHINO Y, OHNO K, TSUJIMOTO H. Transcriptomic analysis of bone marrow specimens collected from Miniature Dachshunds diagnosed with non-neoplastic bone marrow disorders. J Vet Med Sci 2024; 86:737-743. [PMID: 38825482 PMCID: PMC11251810 DOI: 10.1292/jvms.23-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/22/2024] [Indexed: 06/04/2024] Open
Abstract
Non-neoplastic bone marrow disorders are main causes of non-regenerative anemia in dogs. Despite the high incidence of the diseases, their molecular pathophysiology has not been elucidated. We previously reported that Miniature Dachshund (MD) was a predisposed breed to be diagnosed with non-neoplastic bone marrow disorders in Japan, and immunosuppressive treatment-resistant MDs showed higher number of platelets and morphological abnormalities in peripheral blood cells. These data implied that treatment-resistant MDs might possess distinct pathophysiological features from treatment-responsive MDs. Therefore, we conducted transcriptomic analysis of bone marrow specimens to investigate the pathophysiology of treatment-resistant MDs. Transcriptomic analysis comparing treatment-resistant MDs and healthy control dogs identified 179 differentially expressed genes (DEGs). Pathway analysis using these DEGs showed that "Wnt signaling pathway" was a significantly enriched pathway. We further examined the expression levels of DEGs associated with Wnt signaling pathway and confirmed the upregulation of AXIN2 and CCND2 and the downregulation of SFRP2 in treatment-resistant MDs compared with treatment-responsive MDs and healthy control dogs. This alteration implied the activation of Wnt signaling pathway in treatment-resistant MDs. The activation of Wnt signaling pathway has been reported in human patients with myelodysplastic syndrome (MDS), which is characterized by dysplastic features of blood cells. Therefore, the results of this study implied that treatment-resistant MDs have distinct molecular pathological features from treatment-responsive MDs and the pathophysiology of treatment-resistant MDs might be similar to that of human MDS patients.
Collapse
Affiliation(s)
- Akiyoshi TANI
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kota NAKASE
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hirotaka TOMIYASU
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sakurako NEO
- Laboratory of Clinical Diagnostics, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Aki OHMI
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko GOTO-KOSHINO
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koichi OHNO
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hajime TSUJIMOTO
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Carbayo J, Verdalles Ú, Díaz-Crespo F, Lázaro A, González-Nicolás M, Arroyo D, Blanco D, García-Gámiz M, Goicoechea M. Tubular biomarkers in proteinuric kidney disease: histology correlation and kidney prognosis of tubular biomarkers. Clin Kidney J 2024; 17:sfae146. [PMID: 38803396 PMCID: PMC11129590 DOI: 10.1093/ckj/sfae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 05/29/2024] Open
Abstract
Background Proteinuria is not only a biomarker of chronic kidney disease (CKD) but also a driver of CKD progression. The aim of this study was to evaluate serum and urinary tubular biomarkers in patients with biopsied proteinuric kidney disease and to correlate them with histology and kidney outcomes. Methods A single-center retrospective study was conducted on a cohort of 156 patients from January 2016 to December 2021. The following urinary and serum biomarkers were analyzed on the day of kidney biopsy: beta 2 microglobulin (β2-mcg), alpha 1 microglobulin (α1-mcg), neutrophil gelatinase-associated lipocalin (NGAL), urinary kidney injury molecule-1 (uKIM-1), monocyte chemoattractant protein-1 (MCP-1), urinary Dickkopf-3 (uDKK3), uromodulin (urinary uUMOD), serum kidney injury molecule-1 (sKIM-1) and serum uromodulin (sUMOD). A composite outcome of kidney progression or death was recorded during a median follow-up period of 26 months. Results Multivariate regression analysis identified sUMOD (β-0.357, P < .001) and uDKK3 (β 0.483, P < .001) as independent predictors of interstitial fibrosis, adjusted for age, estimated glomerular filtration rate (eGFR) and log proteinuria. Elevated levels of MCP-1 [odds ratio 15.61, 95% confidence interval (CI) 3.52-69.20] were associated with a higher risk of cortical interstitial inflammation >10% adjusted for eGFR, log proteinuria and microhematuria. Upper tertiles of uDKK3 were associated with greater eGFR decline during follow-up. Although not a predictor of the composite outcome, doubling of uDKK3 was a predictor of kidney events (hazard ratio 2.26, 95% CI 1.04-4.94) after adjustment for interstitial fibrosis, eGFR and proteinuria. Conclusions Tubular markers may have prognostic value in proteinuric kidney disease, correlating with specific histologic parameters and identifying cases at higher risk of CKD progression.
Collapse
Affiliation(s)
- Javier Carbayo
- Department of Nephrology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Úrsula Verdalles
- Department of Nephrology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Francisco Díaz-Crespo
- Department of Pathology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alberto Lázaro
- Renal Pathophysiology Laboratory, Instituto Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Marian González-Nicolás
- Renal Pathophysiology Laboratory, Instituto Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - David Arroyo
- Department of Nephrology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - David Blanco
- Renal Pathophysiology Laboratory, Instituto Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Mercedes García-Gámiz
- Department of Biochemistry, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Marian Goicoechea
- Department of Nephrology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
8
|
Hu G, Du J, Wang B, Song P, Liu S. Comprehensive analysis of the clinical and prognostic significance of SFRP1 and PRKCB expression in non-small cell lung cancer: a retrospective analysis. Eur J Cancer Prev 2024; 33:45-52. [PMID: 37505453 PMCID: PMC10702695 DOI: 10.1097/cej.0000000000000832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES Secreted frizzled-related protein 1 (SFRP1) and protein kinase C-B (PRKCB) contribute to cancer progression and angiogenesis. This study intended to detect SFRP1 and PRKCB expression in non-small-cell lung cancer (NSCLC) patients and analyze its association with clinicopathological features. METHODS A total of 108 NSCLC patients who underwent surgical resection in our hospital between 2012 and 2017 were retrospectively analyzed. SFRP1 and PRKCB expression was detected using immunohistochemical staining. The relationships between SFRP1 and PRKCB expression and clinicopathological data were analyzed using the chi-square method. Kaplan-Meier analysis was used to investigate survival probability over time. The potential risk of NSCLC morbidity associated with SFRP1 and PRKCB levels was analyzed using univariate and multivariate Cox proportional risk models. RESULTS SFRP1 and PRKCB expression was negative in 114 and 109 of the 180 NSCLC specimens, respectively. SFRP1 expression was significantly associated with TNM stage ( P < 0.001) and tumor diameter ( P < 0.001). PRKCB expression was significantly associated with the TNM stage ( P < 0.001). The correlation between SFRP1 and PRKCB expression was evident ( P = 0.023). SFRP1(-) or PRKCB(-) patients shows lower survival rates than SFRP1(+) or PRKCB(+) patients ( P < 0.001). SFRP1(-)/PRKCB(-) patients had the worst prognosis ( P < 0.001). Furthermore, the mortality of SFRP1(-) or PRKCB(-) patients was significantly higher than that of SFRP1(+) or PRKCB(+). CONCLUSION SFRP1 and PRKCB expression can be used to predict prognosis in patients with NSCLC.
Collapse
Affiliation(s)
- GuoQiang Hu
- Department of Respiratory Medicine, Changxing Hospital of Traditional Chinese Medicine, Huzhou
| | - Juan Du
- Department of Respiratory Medicine, Guang’an District People’s Hospital of Guang’an City, Guang’an
| | - Bin Wang
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, China
| | - PengTao Song
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, China
| | - ShunLin Liu
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, China
| |
Collapse
|
9
|
Bao-Caamano A, Costa-Fraga N, Cayrefourcq L, Jácome MA, Rodriguez-Casanova A, Muinelo-Romay L, López-López R, Alix-Panabières C, Díaz-Lagares A. Epigenomic analysis reveals a unique DNA methylation program of metastasis-competent circulating tumor cells in colorectal cancer. Sci Rep 2023; 13:15401. [PMID: 37717096 PMCID: PMC10505142 DOI: 10.1038/s41598-023-42037-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023] Open
Abstract
Circulating tumor cells (CTCs) and epigenetic alterations are involved in the development of metastasis from solid tumors, such as colorectal cancer (CRC). The aim of this study was to characterize the DNA methylation profile of metastasis-competent CTCs in CRC. The DNA methylome of the human CRC-derived cell line CTC-MCC-41 was analyzed and compared with primary (HT29, Caco2, HCT116, RKO) and metastatic (SW620 and COLO205) CRC cells. The association between methylation and the transcriptional profile of CTC-MCC-41 was also evaluated. Differentially methylated CpGs were validated with pyrosequencing and qMSP. Compared to primary and metastatic CRC cells, the methylation profile of CTC-MCC-41 was globally different and characterized by a slight predominance of hypomethylated CpGs mainly distributed in CpG-poor regions. Promoter CpG islands and shore regions of CTC-MCC-41 displayed a unique methylation profile that was associated with the transcriptional program and relevant cancer pathways, mainly Wnt signaling. The epigenetic regulation of relevant genes in CTC-MCC-41 was validated. This study provides new insights into the epigenomic landscape of metastasis-competent CTCs, revealing biological information for metastasis development, as well as new potential biomarkers and therapeutic targets for CRC patients.
Collapse
Grants
- ISCIII and the European Regional Development Fund (FEDER), reference number PI18/00307. Juan Rodés, Instituto de Salud Carlos III (ISCIII) and Servizo Galego de Saúde (SERGAS), reference number JR17/00016
- PFIS, Instituto de Salud Carlos III (ISCIII) and Fondo Social Europeo, reference number FI19/00240
- Xunta de Galicia, reference number IN606A-2020/004
- Axencia Galega de Innovación (GAIN), Vicepresidencia Segunda e Consellería de Economía, Empresa e Innovación. Reference number IN853B 2018/03
- ISCIII and the European Regional Development Fund (FEDER), reference number PI18/00307. Instituto de Salud Carlos III (ISCII), reference number CP20/00129
- European Union Horizon 2020 Research and Innovation program under the Marie Skłodowska-Curie grant agreement No. 765492, The National Institute of Cancer (INCa, http://www.e-cancer.fr), SIRIC Montpellier Cancer Grant INCa_Inserm_DGOS_12553, and the ERA-NET TRANSCAN 2 JTC 2016 PROLIPSY, la Fondation ARC pour la Recherche sur le cancer and les Fonds de dotation AFER pour la recherche médicale
Collapse
Affiliation(s)
- Aida Bao-Caamano
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Nicolás Costa-Fraga
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, IURC, 641, Avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - María Amalia Jácome
- Department of Mathematics, MODES Group, CITIC, Faculty of Science, Universidade da Coruña, A Coruña, Spain
| | - Aitor Rodriguez-Casanova
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Laura Muinelo-Romay
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Rafael López-López
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain.
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain.
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain.
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, IURC, 641, Avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France.
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
| | - Angel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain.
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain.
- Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Abazari N, Stefanucci MR, Bossi LE, Trojani A, Cairoli R, Beghini A. Cordycepin (3'dA) Induces Cell Death of AC133 + Leukemia Cells via Re-Expression of WIF1 and Down-Modulation of MYC. Cancers (Basel) 2023; 15:3931. [PMID: 37568748 PMCID: PMC10417454 DOI: 10.3390/cancers15153931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Wnt/β-catenin signaling is critically required for the development and maintenance of leukemia stem cells (LSCs) in acute myeloid leukemia (AML) by constitutive activation of myeloid regeneration-related pathways. Cell-intrinsic activation of canonical Wnt signaling propagates in the nucleus by β-catenin translocation, where it induces expression of target oncogenes such as JUN, MYC and CCND1. As the Wnt/β-catenin pathway is now well established to be a key oncogenic signaling pathway promoting leukemic myelopoiesis, targeting it would be an effective strategy to impair LSC functionality. Although the effects of the adenosine analogue cordycepin in repressing β-catenins and destabilizing the LSC niche have been highlighted, the cellular and molecular effects on AML-LSC have not been fully clarified. In the present study, we evaluated the potency and efficacy of cordycepin, a selective repressor of Wnt/β-catenin signaling with anti-leukemia properties, on the AC133+ LSC fraction. Cordycepin effectively reduces cell viability of the AC133+ LSCs in the MUTZ-2 cell model and patient-derived cells through the induction of apoptosis. By Wnt-targeted RNA sequencing panel, we highlighted the re-expression of WIF1 and DKK1 among others, and the consequent downregulation of MYC and PROM1 (CD133) following MUTZ-2 cell exposure to increasing doses of cordycepin. Our results provide new insights into the molecular circuits involved in pharmacological inhibition mediated by cordycepin reinforcing the potential of targeting the Wnt/β-catenin and co-regulatory complexes in AML.
Collapse
Affiliation(s)
- Nazanin Abazari
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; (N.A.); (M.R.S.)
| | - Marta Rachele Stefanucci
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; (N.A.); (M.R.S.)
- Department of Hematology and Oncology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.E.B.); (A.T.); (R.C.)
| | - Luca Emanuele Bossi
- Department of Hematology and Oncology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.E.B.); (A.T.); (R.C.)
| | - Alessandra Trojani
- Department of Hematology and Oncology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.E.B.); (A.T.); (R.C.)
| | - Roberto Cairoli
- Department of Hematology and Oncology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.E.B.); (A.T.); (R.C.)
| | - Alessandro Beghini
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; (N.A.); (M.R.S.)
| |
Collapse
|
11
|
Bueno MLP, Saad STO, Roversi FM. The antitumor effects of WNT5A against hematological malignancies. J Cell Commun Signal 2023:10.1007/s12079-023-00773-8. [PMID: 37310653 DOI: 10.1007/s12079-023-00773-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
The bone marrow (BM) microenvironment (niche) is abnormally altered in acute myeloid leukemia (AML), leading to deficient secretion of proteins, soluble factors, and cytokines by mesenchymal stromal cells (MSC) that modifies the crosstalk between MSC and hematopoietic cells. We focused on a WNT gene/protein family member, WNT5A, which is downregulated in leukemia and correlated with disease progression and poor prognosis. We demonstrated that WNT5A protein upregulated the WNT non-canonical pathway only in leukemic cells, without modulating normal cell behavior. We also introduced a novel WNT5A-mimicking compound, Foxy-5. Our results showed reduction of crucial biological functions that are upregulated in leukemia cells, including ROS generation, cell proliferation, and autophagy, as well as G0/G1 cell cycle arrest. Additionally, Foxy-5 induced early-stage macrophage cell differentiation, a crucial process during leukemia development. At a molecular level, Foxy-5 led to the downregulation of two overexpressed leukemia pathways, PI3K and MAPK, which resulted in a disarrangement of actin polymerization with consequent impairment of CXCL12-induced chemotaxis. Notably, in a novel tri-dimensional bone marrow-mimicking model, Foxy-5 led to reduced leukemia cell growth and similar results were observed in a xenograft in vivo model. Overall, our findings highlight the pivotal role of WNT5A in leukemia and demonstrate that Foxy-5 acts as a specific antineoplastic agent in leukemia, counterbalancing several leukemic oncogenic processes related to the crosstalk in the bone marrow niche, and represents a promising therapeutic option for AML. WNT5A, a WNT gene/protein family member, is naturally secreted by mesenchymal stromal cells and contributes to the maintenance of the bone marrow microenvironment. WNT5A downregulation is correlated with disease progression and poor prognosis. The treatment with Foxy-5, a WNT5A mimetizing compound, counterbalanced several leukemogenic processes that are upregulated in leukemia cells, including ROS generation, cell proliferation, and autophagy and disruption of PI3K and MAPK signaling pathways.
Collapse
Affiliation(s)
- Maura Lima Pereira Bueno
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-878, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-878, Brazil
| | - Fernanda Marconi Roversi
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-878, Brazil.
- Department of Surgery Division of Transplantation, Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Láinez-González D, Alonso-Aguado AB, Alonso-Dominguez JM. Understanding the Wnt Signaling Pathway in Acute Myeloid Leukemia Stem Cells: A Feasible Key against Relapses. BIOLOGY 2023; 12:biology12050683. [PMID: 37237497 DOI: 10.3390/biology12050683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Wnt signaling is a highly conserved pathway in evolution which controls important processes such as cell proliferation, differentiation and migration, both in the embryo and in the adult. Dysregulation of this pathway can favor the development of different types of cancer, such as acute myeloid leukemia and other hematological malignancies. Overactivation of this pathway may promote the transformation of pre-leukemic stem cells into acute myeloid leukemia stem cells, as well as the maintenance of their quiescent state, which confers them with self-renewal and chemoresistance capacity, favoring relapse of the disease. Although this pathway participates in the regulation of normal hematopoiesis, its requirements seem to be greater in the leukemic stem cell population. In this review, we explore the possible therapeutic targeting of Wnt to eradicate the LSCs of AML.
Collapse
Affiliation(s)
- Daniel Láinez-González
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - Ana Belén Alonso-Aguado
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - Juan Manuel Alonso-Dominguez
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- Hematology Department, Hospital Universitario Fundación Jiménez Díaz, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| |
Collapse
|
13
|
Mathur A, Gangwar A, Saluja D. Esculetin releases maturation arrest and induces terminal differentiation in leukemic blast cells by altering the Wnt signaling axes. BMC Cancer 2023; 23:387. [PMID: 37127581 PMCID: PMC10150528 DOI: 10.1186/s12885-023-10818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The "Differentiation therapy" has been emerging as a promising and more effective strategy against acute leukemia relapses. OBJECTIVE In extension to the revolutionising therapeutic outcomes of All Trans Retinoic Acid (ATRA) to induce terminal differentiation of Acute Promyelocytic Leukemic (APL) blast cells, we decipher the potential effect of a natural compound "Esculetin" to serve as a differentiating agent in Acute Myeloid Leukemia (AML). Underlaying role of Wnt signaling pathways in esculetin mediated blast cell differentiation was also evaluated. METHODS Human acute myeloid leukemic cells (Kasumi-1) with t(8;21/AML-ETO) translocation were used as a model system. Growth inhibitory and cytotoxic activity of esculetin were analysed using growth kinetics and MTT assay. Morphological alterations, cell scatter characteristics, NBT reduction assay and cell surface marker expression patterns were analysed to detect terminally differentiated phenotypes. We employed RT2profiler PCR array system for the analysis of transcriptome profile of Wnt signaling components. Calcium inhibitors (TMB8 and Amlodipine) and Transforming growth factor beta (TGF-β) were used to modulate the Wnt signaling axes. RESULTS We illustrate cytotoxic as well as blast cell differentiation potential of esculetin on Kasumi-1 cells. Morphological alterations akin to neutrophilic differentiation as well as the corresponding acquisition of myeloid lineage markers indicate terminal differentiation potential of esculetin in leukemic blast cells. Exposure to esculetin also resulted in downregulation of canonical Wnt axis while upto ~ 21 fold upregulation of non-canonical axis associated genes. CONCLUSIONS Our study highlights the importance of selective use of calcium pools as well as "axis shift" of the canonical to non-canonical Wnt signaling upon esculetin treatment which might abrogate the inherent proliferation to release maturation arrest and induce the differentiation in leukemic blast cells. The current findings provide further therapeutic interventions to consider esculetin as a potent differentiating agent to counteract AML relapses.
Collapse
Affiliation(s)
- Ankit Mathur
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, 110007, India
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Aman Gangwar
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Daman Saluja
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, 110007, India.
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
14
|
Ciafrè SA, Russo M, Michienzi A, Galardi S. Long Noncoding RNAs and Cancer Stem Cells: Dangerous Liaisons Managing Cancer. Int J Mol Sci 2023; 24:ijms24031828. [PMID: 36768150 PMCID: PMC9915130 DOI: 10.3390/ijms24031828] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Decades of research have investigated the mechanisms that lead to the origin of cancer, striving to identify tumor-initiating cells. These cells, also known as cancer stem cells, are characterized by the ability to self-renew, to give rise to differentiated tumor populations, and on a larger scale, are deemed responsible not only for tumor initiation but also for recurrent tumors, often resistant to chemotherapy and radiotherapy. Long noncoding RNAs are RNA molecules longer than 200 nt, lacking the ability to code for proteins, with recognized roles as fine regulators of gene expression. They can exert these functions through a variety of mechanisms, acting at almost all steps of gene expression, from modulation of the epigenetic state of chromatin to modulation of protein stability. In all cases, lncRNAs do not work alone, but they always interact with other RNA molecules, either coding or non-coding, or with protein factors. In this review, we summarize the latest results obtained about the involvement of lncRNAs in the initiating cells of several types of tumors, and highlight the different mechanisms through which they work, while discussing how the modulation of a lncRNA can affect several aspects of tumor onset and progression.
Collapse
Affiliation(s)
- Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (S.A.C.); (S.G.)
| | - Monia Russo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Silvia Galardi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (S.A.C.); (S.G.)
| |
Collapse
|
15
|
"Losing the Brakes"-Suppressed Inhibitors Triggering Uncontrolled Wnt/ ß-Catenin Signaling May Provide a Potential Therapeutic Target in Elderly Acute Myeloid Leukemia. Curr Issues Mol Biol 2023; 45:604-613. [PMID: 36661526 PMCID: PMC9858232 DOI: 10.3390/cimb45010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Dysregulated Wnt/β-catenin signal transduction is implicated in initiation, propagation, and poor prognosis in AML. Epigenetic inactivation is central to Wnt/β-catenin hyperactivity, and Wnt/β-catenin inhibitors are being investigated as targeted therapy. Dysregulated Wnt/β-catenin signaling has also been linked to accelerated aging. Since AML is a disease of old age (>60 yrs), we hypothesized age-related differential activity of Wnt/β-catenin signaling in AML patients. We probed Wnt/β-catenin expression in a series of AML in the elderly (>60 yrs) and compared it to a cohort of pediatric AML (<18 yrs). RNA from diagnostic bone marrow biopsies (n = 101) were evaluated for key Wnt/β-catenin molecule expression utilizing the NanoString platform. Differential expression of significance was defined as >2.5-fold difference (p < 0.01). A total of 36 pediatric AML (<18 yrs) and 36 elderly AML (>60 yrs) were identified in this cohort. Normal bone marrows (n = 10) were employed as controls. Wnt/β-catenin target genes (MYC, MYB, and RUNX1) showed upregulation, while Wnt/β-catenin inhibitors (CXXR, DKK1-4, SFRP1-4, SOST, and WIFI) were suppressed in elderly AML compared to pediatric AML and controls. Our data denote that suppressed inhibitor expression (through mutation or hypermethylation) is an additional contributing factor in Wnt/β-catenin hyperactivity in elderly AML, thus supporting Wnt/β-catenin inhibitors as potential targeted therapy.
Collapse
|
16
|
Al Shareef Z, Ershaid MNA, Mudhafar R, Soliman SSM, Kypta RM. Dickkopf-3: An Update on a Potential Regulator of the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14235822. [PMID: 36497305 PMCID: PMC9738550 DOI: 10.3390/cancers14235822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Dickkopf-3 (Dkk-3) is a member of the Dickkopf family protein of secreted Wingless-related integration site (Wnt) antagonists that appears to modulate regulators of the host microenvironment. In contrast to the clear anti-tumorigenic effects of Dkk-3-based gene therapies, the role of endogenous Dkk-3 in cancer is context-dependent, with elevated expression associated with tumor promotion and suppression in different settings. The receptors and effectors that mediate the diverse effects of Dkk-3 have not been characterized in detail, contributing to an ongoing mystery of its mechanism of action. This review compares the various functions of Dkk-3 in the tumor microenvironment, where Dkk-3 has been found to be expressed by subpopulations of fibroblasts, endothelial, and immune cells, in addition to epithelial cells. We also discuss how the activation or inhibition of Dkk-3, depending on tumor type and context, might be used to treat different types of cancers.
Collapse
Affiliation(s)
- Zainab Al Shareef
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6505-7250
| | - Mai Nidal Asad Ershaid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rula Mudhafar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Robert M. Kypta
- CIC BioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48160 Derio, Spain
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| |
Collapse
|
17
|
Ma Y, Li Y, Huang M, Meng Y. Triptolide inhibits T-cell acute lymphoblastic leukaemia by affecting aberrant epigenetic events in the Wnt signalling pathway. J Chemother 2022:1-10. [PMID: 35666085 DOI: 10.1080/1120009x.2022.2082347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
T-cell acute lymphoblastic leukaemia (T-ALL) is an aggressive haematologic disease that accounts for 15% of childhood and 25% of adult ALL cases. Triptolide (TPL) is an active component of Tripterygium wilfordii and was recently discovered to suppress the growth of some cancers, including ALL, but the underlying mechanism has yet to be elucidated. Dysfunction of the Wnt signalling pathway has been reported to be an important event in the pathogenesis of T-ALL. In this study, we investigated the effects of TPL on the Wnt pathway and found that it suppressed the expression of TCF7, C-MYC and β-catenin in T-ALL cell lines. Then, we indicated that TPL induced the expression of Wnt pathway antagonists, including WIF1, SOX17, CDH1 and SFRP5, in T-ALL cells. Further analysis indicated that TPL induced the demethylation of these genes, which may be related to the inhibited expression of methyltransferases DNMT1 and DNMT3a. In conclusion, our results suggest that TPL inhibits T-ALL by inhibiting aberrant epigenetic events in dysregulated Wnt signalling.
Collapse
Affiliation(s)
- Yanna Ma
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ying Li
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Mei Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuesheng Meng
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Targeting β-catenin in acute myeloid leukaemia: past, present, and future perspectives. Biosci Rep 2022; 42:231097. [PMID: 35352805 PMCID: PMC9069440 DOI: 10.1042/bsr20211841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Acute myeloid leukaemia (AML) is an aggressive disease of the bone marrow with a poor prognosis. Evidence suggests long established chemotherapeutic regimens used to treat AML are reaching the limits of their efficacy, necessitating the urgent development of novel targeted therapies. Canonical Wnt signalling is an evolutionary conserved cascade heavily implicated in normal developmental and disease processes in humans. For over 15 years its been known that the central mediator of this pathway, β-catenin, is dysregulated in AML promoting the emergence, maintenance, and drug resistance of leukaemia stem cells. Yet, despite this knowledge, and subsequent studies demonstrating the therapeutic potential of targeting Wnt activity in haematological cancers, β-catenin inhibitors have not yet reached the clinic. The aim of this review is to summarise the current understanding regarding the role and mechanistic dysregulation of β-catenin in AML, and assess the therapeutic merit of pharmacologically targeting this molecule, drawing on lessons from other disease contexts.
Collapse
|
19
|
Huang R, Liao X, Li Q. Integrative genomic analysis of a novel small nucleolar RNAs prognostic signature in patients with acute myelocytic leukemia. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2424-2452. [PMID: 35240791 DOI: 10.3934/mbe.2022112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study mainly used The Cancer Genome Atlas (TCGA) RNA sequencing dataset to screen prognostic snoRNAs of acute myeloid leukemia (AML), and used for the construction of prognostic snoRNAs signature for AML. A total of 130 AML patients with RNA sequencing dataset were used for prognostic snoRNAs screenning. SnoRNAs co-expressed genes and differentially expressed genes (DEGs) were used for functional annotation, as well as gene set enrichment analysis (GSEA). Connectivity Map (CMap) also used for potential targeted drugs screening. Through genome-wide screening, we identified 30 snoRNAs that were significantly associated with the prognosis of AML. Then we used the step function to screen a prognostic signature composed of 14 snoRNAs (SNORD72, SNORD38, U3, SNORA73B, SNORD79, SNORA73, SNORD12B, SNORA74, SNORD116-12, SNORA65, SNORA14, snoU13, SNORA75, SNORA31), which can significantly divide AML patients into high- and low-risk groups. Through GSEA, snoRNAs co-expressed genes and DEGs functional enrichment analysis, we screened a large number of potential functional mechanisms of this prognostic signature in AML, such as phosphatidylinositol 3-kinase-Akt, Wnt, epithelial to mesenchymal transition, T cell receptors, NF-kappa B, mTOR and other classic cancer-related signaling pathways. In the subsequent targeted drug screening using CMap, we also identified six drugs that can be used for AML targeted therapy, they were alimemazine, MG-262, fluoxetine, quipazine, naltrexone and oxybenzone. In conclusion, our current study was constructed an AML prognostic signature based on the 14 prognostic snoRNAs, which may serve as a novel prognostic biomarker for AML.
Collapse
Affiliation(s)
- Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qiaochuan Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
20
|
Targeting Wnt Signaling in Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13102351. [PMID: 34068065 PMCID: PMC8152465 DOI: 10.3390/cancers13102351] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Wnt has diverse regulatory roles at multiple cellular levels and numerous targeting points, and aberrant Wnt signaling has crucial roles in carcinogenesis, metastasis, cancer recurrence, and chemotherapy resistance; based on these facts, Wnt represents an appealing therapeutic target for cancer treatment. Although preclinical data supports a role for the Wnt signaling pathway in uterine carcinogenesis, this area remains understudied. In this review, we identify the functions of several oncogenes of the Wnt/β-catenin signaling pathway in tumorigenesis and address the translation approach with potent Wnt inhibitors that have already been established or are being investigated to target key components of the pathway. Further research is likely to expand the potential for both biomarker and cancer drug development. There is a scarcity of treatment choices for advanced and recurrent endometrial cancer; investigating the sophisticated connections of Wnt signaling networks in endometrial cancer could address the unmet need for new therapeutic targets. Abstract This review presents new findings on Wnt signaling in endometrial carcinoma and implications for possible future treatments. The Wnt proteins are essential mediators in cell signaling during vertebrate embryo development. Recent biochemical and genetic studies have provided significant insight into Wnt signaling, in particular in cell cycle regulation, inflammation, and cancer. The role of Wnt signaling is well established in gastrointestinal and breast cancers, but its function in gynecologic cancers, especially in endometrial cancers, has not been well elucidated. Development of a subset of endometrial carcinomas has been attributed to activation of the APC/β-catenin signaling pathway (due to β-catenin mutations) and downregulation of Wnt antagonists by epigenetic silencing. The Wnt pathway also appears to be linked to estrogen and progesterone, and new findings implicate it in mTOR and Hedgehog signaling. Therapeutic interference of Wnt signaling remains a significant challenge. Herein, we discuss the Wnt-activating mechanisms in endometrial cancer and review the current advances and challenges in drug discovery.
Collapse
|
21
|
Wu Z, Zhang H, Wu M, Peng G, He Y, Wan N, Zeng Y. Targeting the NKG2D/NKG2D-L axis in acute myeloid leukemia. Biomed Pharmacother 2021; 137:111299. [PMID: 33508619 DOI: 10.1016/j.biopha.2021.111299] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Natural killer group 2, member D (NKG2D) receptor is a crucial activating receptor in the immune recognition and eradication of abnormal cells by natural killer (NK) cells, and T lymphocytes. NKG2D can transmit activation signals and activate the immune system by recognizing the NKG2D ligands (NKG2D-L) on acute myeloid leukemia (AML) cells. Downregulation of NKG2D-L in AML can circumvent resistance to chemotherapy and immune recognition. Considering this effect, the exploration of targeting the NKG2D/NKG2D-L axis is considered to have tremendous potential for the discovery of novel biomacromolecule antibodies and pharmacological modulators in AML. This review was to outline the impact of NKG2D/NKG2D-L axis on intrinsic immunosurveillance and the development of AML. Furthermore, the NKG2D/NKG2D-L axis related modulators and progress in preclinical and clinical trials was also to be reviewed.
Collapse
Affiliation(s)
- Zhenhui Wu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Huan Zhang
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Min Wu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Guorui Peng
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Yanqiu He
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Na Wan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yingjian Zeng
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
22
|
Zhu G, Song J, Chen W, Yuan D, Wang W, Chen X, Liu H, Su H, Zhu J. Expression and Role of Dickkopf-1 (Dkk1) in Tumors: From the Cells to the Patients. Cancer Manag Res 2021; 13:659-675. [PMID: 33536782 PMCID: PMC7847771 DOI: 10.2147/cmar.s275172] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Dickkopf-1 (Dkk1) is a secretory antagonist of the classical Wnt signaling pathway. Many studies have reported that Dkk1 is abnormally expressed in tumor cells, and abnormal expression of Dkk1 can inhibit cell proliferation or induce apoptosis through pro-apoptotic factors, However, due to the differences in tumor environment and the complex regulatory mechanisms in different tumors, Dkk1 has different effects on the progression of different tumors. In many tumors, high expression of Dkk1 may promote tumor metastasis. However, Dkk1, which is highly expressed in other tumors, can inhibit tumor invasion and metastasis. More and more evidence shows that Dkk1 plays a complex and different role in tumor occurrence, development and metastasis in different tumor environments and through a variety of complex regulatory mechanisms. Therefore, Dkk1 may not only be a useful biomarker of metastasis, but also a target for studying the metabolic mechanism of tumor cells and treating tumors in many tumor types. Therefore, this article reviews the research progress on the expression, mechanism and function of Dkk1 in different tumors, and at the same time, based on the public database data, we made a further analysis of the expression of Dkk1 in different tumors.
Collapse
Affiliation(s)
- Guohua Zhu
- Guizhou Medical University, Guiyang, Guizhou Province 550002, People's Republic of China.,Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China
| | - Jukun Song
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China.,Guizhou University School of Medicine, Guiyang, Guizhou Province 550025, People's Republic of China
| | - Weimin Chen
- Guizhou University School of Medicine, Guiyang, Guizhou Province 550025, People's Republic of China
| | - Dongbo Yuan
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China.,Guizhou University School of Medicine, Guiyang, Guizhou Province 550025, People's Republic of China
| | - Wei Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China
| | - Xiaoyue Chen
- Guizhou University School of Medicine, Guiyang, Guizhou Province 550025, People's Republic of China
| | - Hen Liu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China.,Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China
| | - Hao Su
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China.,Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China
| | - Jianguo Zhu
- Guizhou Medical University, Guiyang, Guizhou Province 550002, People's Republic of China.,Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China.,Guizhou University School of Medicine, Guiyang, Guizhou Province 550025, People's Republic of China.,Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China
| |
Collapse
|
23
|
Takam Kamga P, Bazzoni R, Dal Collo G, Cassaro A, Tanasi I, Russignan A, Tecchio C, Krampera M. The Role of Notch and Wnt Signaling in MSC Communication in Normal and Leukemic Bone Marrow Niche. Front Cell Dev Biol 2021; 8:599276. [PMID: 33490067 PMCID: PMC7820188 DOI: 10.3389/fcell.2020.599276] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Notch and Wnt signaling are highly conserved intercellular communication pathways involved in developmental processes, such as hematopoiesis. Even though data from literature support a role for these two pathways in both physiological hematopoiesis and leukemia, there are still many controversies concerning the nature of their contribution. Early studies, strengthened by findings from T-cell acute lymphoblastic leukemia (T-ALL), have focused their investigation on the mutations in genes encoding for components of the pathways, with limited results except for B-cell chronic lymphocytic leukemia (CLL); in because in other leukemia the two pathways could be hyper-expressed without genetic abnormalities. As normal and malignant hematopoiesis require close and complex interactions between hematopoietic cells and specialized bone marrow (BM) niche cells, recent studies have focused on the role of Notch and Wnt signaling in the context of normal crosstalk between hematopoietic/leukemia cells and stromal components. Amongst the latter, mesenchymal stromal/stem cells (MSCs) play a pivotal role as multipotent non-hematopoietic cells capable of giving rise to most of the BM niche stromal cells, including fibroblasts, adipocytes, and osteocytes. Indeed, MSCs express and secrete a broad pattern of bioactive molecules, including Notch and Wnt molecules, that support all the phases of the hematopoiesis, including self-renewal, proliferation and differentiation. Herein, we provide an overview on recent advances on the contribution of MSC-derived Notch and Wnt signaling to hematopoiesis and leukemia development.
Collapse
Affiliation(s)
- Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
- EA4340-BCOH, Biomarker in Cancerology and Onco-Haematology, UVSQ, Université Paris Saclay, Boulogne-Billancourt, France
| | - Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Giada Dal Collo
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Adriana Cassaro
- Hematology Unit, Department of Oncology, Niguarda Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Anna Russignan
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
24
|
Frenquelli M, Tonon G. WNT Signaling in Hematological Malignancies. Front Oncol 2020; 10:615190. [PMID: 33409156 PMCID: PMC7779757 DOI: 10.3389/fonc.2020.615190] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
The role of the WNT signaling pathway in key cellular processes, such as cell proliferation, differentiation and migration is well documented. WNT signaling cascade is initiated by the interaction of WNT ligands with receptors belonging to the Frizzled family, and/or the ROR1/ROR2 and RYK families. The downstream signaling cascade results in the activation of the canonical β-catenin dependent pathway, ultimately leading to transcriptional control of cell proliferation, or the non-canonical pathway, mainly acting on cell migration and cell polarity. The high level of expression of both WNT ligands and WNT receptors in cancer cells and in the surrounding microenvironment suggests that WNT may represent a central conduit of interactions between tumor cells and microenviroment. In this review we will focus on WNT pathways deregulation in hematological cancers, both at the ligand and receptor levels. We will review available literature regarding both the classical β-catenin dependent pathway as well as the non-canonical pathway, with particular emphasis on the possible exploitation of WNT aberrant activation as a therapeutic target, a notion supported by preclinical data.
Collapse
Affiliation(s)
- Michela Frenquelli
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
25
|
Olson OC, Kang YA, Passegué E. Normal Hematopoiesis Is a Balancing Act of Self-Renewal and Regeneration. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a035519. [PMID: 31988205 DOI: 10.1101/cshperspect.a035519] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hematopoietic system is highly organized to maintain its functional integrity and to meet lifelong organismal demands. Hematopoietic stem cells (HSCs) must balance self-renewal with differentiation and the regeneration of the blood system. It is a complex balancing act between these competing HSC functions. Although highly quiescent at steady state, HSCs become activated in response to inflammatory cytokines and regenerative challenges. This activation phase leads to many intrinsic stresses such as replicative, metabolic, and oxidative stress, which can cause functional decline, impaired self-renewal, and exhaustion of HSCs. To cope with these insults, HSCs use both built-in and emergency-triggered stress-response mechanisms to maintain homeostasis and to defend against disease development. In this review, we discuss how the hematopoietic system operates in steady state and stress conditions, what strategies are used to maintain functional integrity, and how deregulation in the balance between self-renewal and regeneration can drive malignant transformation.
Collapse
Affiliation(s)
- Oakley C Olson
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Yoon-A Kang
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
26
|
Koçak A, Harmancı D, Güner Akdoğan G, Birlik M. Relationship of Wnt pathway activity and organ involvement in scleroderma types. Int J Rheum Dis 2020; 23:1558-1567. [PMID: 32996251 DOI: 10.1111/1756-185x.13973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 08/30/2023]
Abstract
OBJECTIVE Scleroderma (SSc) is a chronic inflammatory autoimmune disease characterized by fibrosis in the skin and internal organs. In SSc, the heart, lung, kidney, gastrointestinal (GIS) system, muscle, and peri-articular structures are damaged. There is no study of the relationship between SSc type, stage, pathogenesis, organ involvement, and Wnt signaling. In this study, we aimed to show the relationship of the Wnt gene family and antagonists in SSc subtypes and different organ involvement. METHODS Eighty-five SSc patients and 77 controls were included in this study. The gene expressions and protein levels of the Wnt family and antagonists were analyzed from blood samples. The relationship between these parameters and disease stage, type, and organ involvement were evaluated. RESULTS Wnt-1, Wnt-10b, Wnt-2, and Wnt-6 gene expressions are increased and Axin-2, DKK-1, and Kremen protein expressions are decreased in SSc. Wnt-3a and Wnt-10a gene expressions are increased in generalized SSc compared to limited SSc. Wnt-1, Wnt-2 gene expressions are increased significantly in pulmonary arterial hypertension (PAH)(+) SSc compared to PAH(-) SSc. There was a positive correlation between the modified Rodnan skin score and Wnt-2 in SSc. There was a significant positive correlation between GIS involvement score and Wnt-1, Wnt-2, Wnt-4, Wnt-8a, Wnt-9b in SSc. CONCLUSION Wnt-1 and Wnt-2 were found higher in scleroderma and organ involvement. They may play a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Ayşe Koçak
- Kutahya Health Sciences University, Kutahya, Turkey
| | | | | | | |
Collapse
|
27
|
Kang YA, Pietras EM, Passegué E. Deregulated Notch and Wnt signaling activates early-stage myeloid regeneration pathways in leukemia. J Exp Med 2020; 217:133549. [PMID: 31886826 PMCID: PMC7062512 DOI: 10.1084/jem.20190787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/23/2019] [Accepted: 11/19/2019] [Indexed: 11/04/2022] Open
Abstract
Targeting commonly altered mechanisms in leukemia can provide additional treatment options. Here, we show that an inducible pathway of myeloid regeneration involving the remodeling of the multipotent progenitor (MPP) compartment downstream of hematopoietic stem cells (HSCs) is commonly hijacked in myeloid malignancies. We establish that differential regulation of Notch and Wnt signaling transiently triggers myeloid regeneration from HSCs in response to stress, and that constitutive low Notch and high Wnt activity in leukemic stem cells (LSCs) maintains this pathway activated in malignancies. We also identify compensatory crosstalk mechanisms between Notch and Wnt signaling that prevent damaging HSC function, MPP production, and blood output in conditions of high Notch and low Wnt activity. Finally, we demonstrate that restoring Notch and Wnt deregulated activity in LSCs attenuates disease progression. Our results uncover a mechanism that controls myeloid regeneration and early lineage decisions in HSCs and could be targeted in LSCs to normalize leukemic myeloid cell production.
Collapse
Affiliation(s)
- Yoon-A Kang
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California San Francisco, San Francisco, CA
| | - Eric M Pietras
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California San Francisco, San Francisco, CA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California San Francisco, San Francisco, CA
| |
Collapse
|
28
|
Matusek T, Marcetteau J, Thérond PP. Functions of Wnt and Hedgehog-containing extracellular vesicles in development and disease. J Cell Sci 2020; 133:133/18/jcs209742. [PMID: 32989011 DOI: 10.1242/jcs.209742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Secreted morphogens play a major role in the intercellular communication necessary for animal development. It was initially thought that, in order to organize tissue morphogenesis and control cell fate and proliferation, morphogens diffused freely in the extracellular space. This view has since changed following the discovery that morphogens of the Wnt and Hedgehog (Hh) families are modified by various lipid adducts during their biosynthesis, providing them with high affinity for the membrane bilayer. Recent work performed in model organisms suggests that Wnt and Hh proteins are carried on extracellular vesicles. In this Review, we provide our perspectives on the mechanisms of formation of Wnt- and Hh-containing extracellular vesicles, and discuss their functions during animal development, as well as in various human physiopathologies.
Collapse
Affiliation(s)
- Tamás Matusek
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Julien Marcetteau
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Pascal P Thérond
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
29
|
Cardona-Echeverry A, Prada-Arismendy J. Deciphering the role of Wnt signaling in acute myeloid leukemia prognosis: how alterations in DNA methylation come into play in patients' prognosis. J Cancer Res Clin Oncol 2020; 146:3097-3109. [PMID: 32980885 DOI: 10.1007/s00432-020-03407-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant clonal disorder affecting myeloid differentiation through mechanisms that include epigenetic dysregulation. Abnormal changes in DNA methylation and gene expression profiles of pathways involved in hematopoietic development, such as Wnt/β-catenin, contribute to the transformation, development, and maintenance of leukemic cells. This review summarizes the alterations of Wnt signaling-related genes at the epigenetic and transcriptional level and their implications for AML prognosis. Among the implications of epigenetic alterations in AML, methylation of Wnt antagonists is related to poor prognosis, whereas their upregulation has been associated with a better clinical outcome. Furthermore, Wnt target genes c-Myc and LEF-1 present distinct implications. LEF-1 expression positively influences the patient overall survival. c-Myc upregulation has been associated with treatment resistance in AML, although c-Myc expression is not exclusively dependent of Wnt signaling. Understanding the signaling abnormalities could help us to further understand leukemogenesis, improve the current risk stratification for AML patients, and even serve to propose novel therapeutic targets.
Collapse
Affiliation(s)
- Andrés Cardona-Echeverry
- Grupo de Investigación e innovación Biomédica-GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano-ITM, 050034, Medellín, Colombia
| | - Jeanette Prada-Arismendy
- Grupo de Investigación e innovación Biomédica-GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano-ITM, 050034, Medellín, Colombia.
| |
Collapse
|
30
|
Guo S, Li B, Xu X, Wang W, Wang S, Lv T, Wang H. Construction of a 14-lncRNA risk score system predicting survival of children with acute myelocytic leukemia. Exp Ther Med 2020; 20:1521-1531. [PMID: 32742384 PMCID: PMC7388210 DOI: 10.3892/etm.2020.8846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myelocytic leukemia (AML) is a frequent type of acute leukemia. The present study was performed to build a risk score system for the prognostic prediction of AML. AML RNA-sequencing data from samples from 111 children were downloaded from The Cancer Genome Atlas database. Using the DEseq and edgeR packages, the differentially expressed long non-coding RNAs (DE-lncRNAs) between bad and good prognosis groups were identified. A survival package was used to screen prognosis-associated lncRNAs and clinical factors. The optimal lncRNA combination was selected using the penalized package, and the risk-score system was built and evaluated. After the lncRNA-mRNA expression correlation network was constructed, the potential pathways involving the key lncRNAs were enriched using Gene Set Enrichment Analysis. Among the 61 DE-lncRNAs, 48 lncRNAs were significantly associated with prognosis. Relapse was an independent prognostic factor. The optimal 14-lncRNA risk score system was constructed. After 730 differentially expressed mRNAs were identified between the good and bad prognosis groups divided using a prognostic index, the lncRNA-mRNA expression correlation network was constructed. Enrichment analysis showed that semaphorin-3C [SEMA3C; regulated by probable leucine-tRNA ligase, mitochondrial (LARS2-AS1)] and secreted frizzled-related protein 5 [SFRP5; mediated by WASH complex subunit 5 (WASHC5)-antisense RNA 1 (AS1)] were involved in axon guidance and the Wnt signaling pathway, respectively. A 14-lncRNA (including paired box protein Pax8-AS1 and MYB AS1) risk-score system might be effective in predicting the prognosis of AML. Axon guidance (involving SEMA3C and LARS2-AS1) and the Wnt signaling pathway (involving SFRP5 and WASHC5-AS1) might be two important pathways affecting the prognosis of AML.
Collapse
Affiliation(s)
- Shuli Guo
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Bo Li
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Xiaoyan Xu
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Wanli Wang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Songyun Wang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Tao Lv
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Huirui Wang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| |
Collapse
|
31
|
Soares-Lima SC, Pombo-de-Oliveira MS, Carneiro FRG. The multiple ways Wnt signaling contributes to acute leukemia pathogenesis. J Leukoc Biol 2020; 108:1081-1099. [PMID: 32573851 DOI: 10.1002/jlb.2mr0420-707r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 01/19/2023] Open
Abstract
WNT proteins constitute a very conserved family of secreted glycoproteins that act as short-range ligands for signaling with critical roles in hematopoiesis, embryonic development, and tissue homeostasis. These proteins transduce signals via the canonical pathway, which is β-catenin-mediated and better-characterized, or via more diverse noncanonical pathways that are β-catenin independent and comprise the planar cell polarity (PCP) pathway and the WNT/Ca++ pathways. Several proteins regulate Wnt signaling through a variety of sophisticated mechanisms. Disorders within the pathway can contribute to various human diseases, and the dysregulation of Wnt pathways by different molecular mechanisms is implicated in the pathogenesis of many types of cancer, including the hematological malignancies. The types of leukemia differ considerably and can be subdivided into chronic, myeloid or lymphocytic, and acute, myeloid or lymphocytic, leukemia, according to the differentiation stage of the predominant cells, the progenitor lineage, the diagnostic age strata, and the specific molecular drivers behind their development. Here, we review the role of Wnt signaling in normal hematopoiesis and discuss in detail the multiple ways canonical Wnt signaling can be dysregulated in acute leukemia, including alterations in gene expression and protein levels, epigenetic regulation, and mutations. Furthermore, we highlight the different impacts of these alterations, considering the distinct forms of the disease, and the therapeutic potential of targeting Wnt signaling.
Collapse
Affiliation(s)
- Sheila C Soares-Lima
- Epigenetics Group, Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Maria S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program Research Center, National Cancer Institute, Rio de Janeiro, Brazil
| | - Flávia R G Carneiro
- FIOCRUZ, Center of Technological Development in Health (CDTS), Rio de Janeiro, Brazil.,FIOCRUZ, Laboratório Interdisciplinar de Pesquisas Médicas-Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Deutsch JL, Heath JL. MLLT10 in benign and malignant hematopoiesis. Exp Hematol 2020; 87:1-12. [PMID: 32569758 DOI: 10.1016/j.exphem.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023]
Abstract
Non-random chromosomal translocations involving the putative transcription factor Mixed Lineage Leukemia Translocated to 10 (MLLT10, also known as AF10) are commonly observed in both acute myeloid and lymphoid leukemias and are indicative of a poor prognosis. Despite the well-described actions of oncogenic MLLT10 fusion proteins, the role of wild-type MLLT10 in hematopoiesis is not well characterized. The protein structure and several interacting partners have been described and provide indications as to the potential functions of MLLT10. This review examines these aspects of MLLT10, contextualizing its function in benign and malignant hematopoiesis.
Collapse
Affiliation(s)
- Jamie L Deutsch
- Department of Pediatrics, University of Vermont, Burlington, VT
| | - Jessica L Heath
- Department of Pediatrics, University of Vermont, Burlington, VT; Department of Biochemistry, University of Vermont, Burlington, VT 05405; University of Vermont Cancer Center, Burlington, VT.
| |
Collapse
|
33
|
Ponnulakshmi R, Vishnupriya V, Mohan SK, Abilasha S, Ramajayam G, Vijayalakshmi P, Rajalakshmi M, Selvaraj J. Molecular docking analysis of alkaloid compounds with beta-catenin towards the treatment of colon cancer. Bioinformation 2020; 16:283-287. [PMID: 32308271 PMCID: PMC7147492 DOI: 10.6026/97320630016283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 11/23/2022] Open
Abstract
It is known that beta-catenin is associated with fibromatosis, sarcoma and mesenchymal tumor. Therefore, it is of interest to design an effective inhibtitor to the target protein
beta-catenin. In this study, we report the molecular docking analysis of alkaloid compounds (aristolochicacid, cryptopleurine, demecolcine, fagaronine and thalicarpine) with beta-catenin
for further consideration towards the design and development of potential inhintors for the treatmnet of colon cancer.
Collapse
Affiliation(s)
- Rajagopal Ponnulakshmi
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai-600 078, India
| | - Veeraraghavan Vishnupriya
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Panimalar Medical College Hospital and Research Institute, Varadharajapuram, Poonamallee, Chennai-600 123, Chennai, Tamil Nadu, India
| | - Srinivasan Abilasha
- Department of Anatomy, Asan Memorial Dental College and Hospital, Asan Nagar, Chengalpattu, Tamil Nadu, India
| | - Govindan Ramajayam
- Multi Disciplinary Research Unit, Madurai Medical College, TamilNadu, India
| | - Periyasamy Vijayalakshmi
- DBT-BIF Centre, PG and Research Department of Biotechnology & Bioinformatics, Holy Cross College (autonomous), Trichy, Tamil Nadu, India
| | - Manikkam Rajalakshmi
- DBT-BIF Centre, PG and Research Department of Biotechnology & Bioinformatics, Holy Cross College (autonomous), Trichy, Tamil Nadu, India
| | - Jayaraman Selvaraj
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| |
Collapse
|
34
|
Lu PCW, Shahbaz S, Winn LM. Benzene and its effects on cell signaling pathways related to hematopoiesis and leukemia. J Appl Toxicol 2020; 40:1018-1032. [PMID: 32112456 DOI: 10.1002/jat.3961] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
Benzene is an environmental toxicant found in many consumer products. It is an established human carcinogen and is known to cause acute myeloid leukemia in adults. Epidemiological evidence has since shown that benzene can cross the placenta and affect the fetal liver. Animal studies have shown that in utero exposure to benzene can increase tumor incidence in offspring. Although there have been risk factors established for acute myeloid leukemia, they still do not account for many of the cases. Clearly then, current efforts to elucidate the mechanism by which benzene exerts its carcinogenic properties have been superficial. Owing to the critical role of cell signaling pathways in the development of an organism and its various organ systems, it seems plausible to suspect that these pathways may have a role in leukemogenesis. This review article assesses current evidence of the effects of benzene on critical hematopoietic signaling pathways. Pathways discussed included Hedgehog, Notch/Delta, Wingless/Integrated, nuclear factor-kappaB and others. Following a review of the literature, it seems that current evidence about the effects of benzene on these critical signaling pathways remains limited. Given the important role of these pathways in hematopoiesis, more attention should be given to them.
Collapse
Affiliation(s)
- Peter C W Lu
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sara Shahbaz
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Louise M Winn
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,School of Environmental Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
35
|
Katase N, Nagano K, Fujita S. DKK3 expression and function in head and neck squamous cell carcinoma and other cancers. J Oral Biosci 2020; 62:9-15. [PMID: 32032750 DOI: 10.1016/j.job.2020.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cancer arises from cumulative genetic or epigenetic aberrations, or the destabilization of central signaling pathways that regulate cell proliferation, differentiation, cell cycle, gene transcription, migration, angiogenesis and apoptosis. Investigating the cancer-specific genetic background is important to get deeper apprehension of cancer biology. In this review, we aimed to identify head and neck squamous cell carcinoma (HNSCC)-specific genes and identified DKK3 gene as a candidate. HIGHLIGHT DKK3 belongs to the DKK family (DKK1, DKK2, DKK3 and DKK4), which codes for an evolutionally conserved secreted glycoprotein that is characterized by two distinct cysteine rich domains and functions as an antagonist of the oncogenic Wnt signaling pathway. It has been reported that DKK3 expression is decreased in many kinds of cancers, and it is thus thought to be a tumor suppressor gene. However, our investigations have demonstrated unique expression and function of DKK3 in HNSCC. DKK3 protein expression is predominantly positive in HNSCC, and DKK3-positive patients show significantly shorter disease-free survival rates, whereas DKK3-negative cases do not show metastasis. Molecular biological analyses demonstrated that DKK3 over expression significantly increased HNSCC cell proliferation, migration, and invasion via increased phosphorylation of AKT. Moreover, DKK3 knockdown in HNSCC cells significantly decreased these malignant potentials through decreased AKT phosphorylation. CONCLUSION Our previously published data, alongside those from other reports, indicate that DKK3 may have an additional oncogenic function other than tumor suppression.
Collapse
Affiliation(s)
- Naoki Katase
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan.
| | - Kenichi Nagano
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan
| | - Shuichi Fujita
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan
| |
Collapse
|
36
|
Bigas A, Guillén Y, Schoch L, Arambilet D. Revisiting β-Catenin Signaling in T-Cell Development and T-Cell Acute Lymphoblastic Leukemia. Bioessays 2019; 42:e1900099. [PMID: 31854474 DOI: 10.1002/bies.201900099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/28/2019] [Indexed: 12/25/2022]
Abstract
β-Catenin/CTNNB1 is critical for leukemia initiation or the stem cell capacity of several hematological malignancies. This review focuses on a general evaluation of β-catenin function in normal T-cell development and T-cell acute lymphoblastic leukemia (T-ALL). The integration of the existing literature offers a state-of-the-art dissection of the complexity of β-catenin function in leukemia initiation and maintenance in both Notch-dependent and independent contexts. In addition, β-catenin mutations are screened for in T-ALL primary samples, and it is found that they are rare and with little clinical relevance. Transcriptional analysis of Wnt family members (Ctnnb1, Axin2, Tcf7, and Lef1) and Myc in different publicly available T-ALL cohorts indicates that the expression of these genes may correlate with T-ALL subtypes and/or therapy outcomes.
Collapse
Affiliation(s)
- Anna Bigas
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Yolanda Guillén
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Leonie Schoch
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - David Arambilet
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| |
Collapse
|
37
|
Clara JA, Monge C, Yang Y, Takebe N. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat Rev Clin Oncol 2019; 17:204-232. [PMID: 31792354 DOI: 10.1038/s41571-019-0293-2] [Citation(s) in RCA: 487] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) have important roles in tumour development, relapse and metastasis; the intrinsic self-renewal characteristics and tumorigenic properties of these cells provide them with unique capabilities to resist diverse forms of anticancer therapy, seed recurrent tumours, and disseminate to and colonize distant tissues. The findings of several studies indicate that CSCs originate from non-malignant stem or progenitor cells. Accordingly, inhibition of developmental signalling pathways that are crucial for stem and progenitor cell homeostasis and function, such as the Notch, WNT, Hedgehog and Hippo signalling cascades, continues to be pursued across multiple cancer types as a strategy for targeting the CSCs hypothesized to drive cancer progression - with some success in certain malignancies. In addition, with the renaissance of anticancer immunotherapy, a better understanding of the interplay between CSCs and the tumour immune microenvironment might be the key to unlocking a new era of oncological treatments associated with a reduced propensity for the development of resistance and with enhanced antimetastatic activity, thus ultimately resulting in improved patient outcomes. Herein, we provide an update on the progress to date in the clinical development of therapeutics targeting the Notch, WNT, Hedgehog and Hippo pathways. We also discuss the interactions between CSCs and the immune system, including the potential immunological effects of agents targeting CSC-associated developmental signalling pathways, and provide an overview of the emerging approaches to CSC-targeted immunotherapy.
Collapse
Affiliation(s)
- Joseph A Clara
- National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Cecilia Monge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
38
|
Feder K, Edmaier-Schröger K, Rawat VPS, Kirsten N, Metzeler K, Kraus JM, Döhner K, Döhner H, Kestler HA, Feuring-Buske M, Buske C. Differences in expression and function of LEF1 isoforms in normal versus leukemic hematopoiesis. Leukemia 2019; 34:1027-1037. [DOI: 10.1038/s41375-019-0635-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
|
39
|
Wnt Signalling in Acute Myeloid Leukaemia. Cells 2019; 8:cells8111403. [PMID: 31703382 PMCID: PMC6912424 DOI: 10.3390/cells8111403] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a group of malignant diseases of the haematopoietic system. AML occurs as the result of mutations in haematopoietic stem/progenitor cells, which upregulate Wnt signalling through a variety of mechanisms. Other mechanisms of Wnt activation in AML have been described such as Wnt antagonist inactivation through promoter methylation. Wnt signalling is necessary for the maintenance of leukaemic stem cells. Several molecules involved in or modulating Wnt signalling have a prognostic value in AML. These include: β-catenin, LEF-1, phosphorylated-GSK3β, PSMD2, PPARD, XPNPEP, sFRP2, RUNX1, AXIN2, PCDH17, CXXC5, LLGL1 and PTK7. Targeting Wnt signalling for tumour eradication is an approach that is being explored in haematological and solid tumours. A number of preclinical studies confirms its feasibility, albeit, so far no reliable clinical trial data are available to prove its utility and efficacy.
Collapse
|
40
|
Wiggers CR, Baak ML, Sonneveld E, Nieuwenhuis EE, Bartels M, Creyghton MP. AML Subtype Is a Major Determinant of the Association between Prognostic Gene Expression Signatures and Their Clinical Significance. Cell Rep 2019; 28:2866-2877.e5. [DOI: 10.1016/j.celrep.2019.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/24/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
|
41
|
Xie B, Zhao L, Guo L, Liu H, Fu S, Fan W, Lin L, Chen J, Wang B, Fan L, Wei H. Benzyl isothiocyanate suppresses development and metastasis of murine mammary carcinoma by regulating the Wnt/β‑catenin pathway. Mol Med Rep 2019; 20:1808-1818. [PMID: 31257529 PMCID: PMC6625404 DOI: 10.3892/mmr.2019.10390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Benzyl isothiocyanate (BITC) has been reported to exhibit antitumor properties in various cancer types; however, the underlying mechanisms of its action remain unclear. In the present study, the efficacy of BITC on murine mammary carcinoma cells was evaluated in vitro and in vivo, revealing a potential mechanism for its action. In vivo bioluminescence imaging indicated dynamic inhibition of murine mammary carcinoma cell growth and metastasis by BITC. A terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay demonstrated that BITC also induced apoptosis. BITC further exhibited antitumorigenic activity in 4T1-Luc cells in vitro via the inhibition of cell proliferation, induction of apoptosis and cell cycle arrest, and inhibition of cell migration and invasion. Furthermore, the activity of key molecules of the adenomatous polyposis coli (APC)/β-catenin complex was altered following treatment with BITC, which suggested a potential role for the APC/β-catenin complex in the BITC-mediated induction of apoptosis and inhibition of metastasis in murine mammary carcinoma. BITC upregulated the activity of glycogen synthase kinase-3β and APC proteins, whereas it downregulated β-catenin expression. The inhibition of metastasis was accompanied with the downregulation of vimentin and upregulation of E-cadherin. Conversely, BITC did not exhibit toxicity or side effects in the normal mammary epithelial cell line MCF-10A. The present study indicated that BITC exhibited anticancer properties due to the induction of breast cancer cell apoptosis and inhibition of breast cancer cell metastasis mediated by the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Bei Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lei Zhao
- Shaanxi Meili Omni‑Honesty Animal Health Co., Ltd., Xi'an, Shaanxi 710000, P.R. China
| | - Lanlan Guo
- Students of Clinical Medicine, School of Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hang Liu
- Students of Clinical Medicine, School of Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Siyu Fu
- Students of Clinical Medicine, School of Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wenjuan Fan
- Students of Clinical Medicine, School of Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Li Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Bei Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Linlan Fan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
42
|
Deshmukh A, Arfuso F, Newsholme P, Dharmarajan A. Epigenetic demethylation of sFRPs, with emphasis on sFRP4 activation, leading to Wnt signalling suppression and histone modifications in breast, prostate, and ovary cancer stem cells. Int J Biochem Cell Biol 2019; 109:23-32. [DOI: 10.1016/j.biocel.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/23/2022]
|
43
|
Fetisov TI, Lesovaya EA, Yakubovskaya MG, Kirsanov KI, Belitsky GA. Alterations in WNT Signaling in Leukemias. BIOCHEMISTRY (MOSCOW) 2019; 83:1448-1458. [PMID: 30878020 DOI: 10.1134/s0006297918120039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The WNT/β-catenin signaling pathway plays an important role in the differentiation and proliferation of hematopoietic cells. In recent years, special attention has been paid to the role of impairments in the WNT signaling pathway in pathogenesis of malignant neoplasms of the hematopoietic system. Disorders in the WNT/β-catenin signaling in leukemias identified to date include hypersensitivity to the WNT ligands, epigenetic repression of WNT antagonists, overexpression of WNT ligands, impaired β-catenin degradation in the cytoplasm, and changes in the activity of the TCF/Lef transcription factors. At the molecular level, these impairments involve overexpression of the FZD protein, hypermethylation of the SFRP, DKK, WiF, Sox, and CXXC gene promoters, overexpression of Lef1 and plakoglobin, mutations in GSK3β, and β-catenin phosphorylation by the BCR-ABL kinase. This review is devoted to the systematization of these data.
Collapse
Affiliation(s)
- T I Fetisov
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - E A Lesovaya
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.,Pavlov Ryazan State Medical University, Ryazan, 390026, Russia
| | - M G Yakubovskaya
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - K I Kirsanov
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.,Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - G A Belitsky
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.
| |
Collapse
|
44
|
Jin Y, Xu L, Wu X, Feng J, Shu M, Gu H, Gao G, Zhang J, Dong B, Chen X. Synergistic Efficacy of the Demethylation Agent Decitabine in Combination With the Protease Inhibitor Bortezomib for Treating Multiple Myeloma Through the Wnt/β-Catenin Pathway. Oncol Res 2019; 27:729-737. [PMID: 30837032 PMCID: PMC7848415 DOI: 10.3727/096504018x15443011011637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a hematopoietic malignancy characterized by the clonal proliferation of antibody-secreting plasma cells. Bortezomib (BZM), the first FDA-approved proteasome inhibitor, has significant antimyeloma activity and prolongs the median survival of MM patients. However, MM remains incurable predominantly due to acquired drug resistance and disease relapse. β-Catenin, a key effector protein in the canonical Wnt signaling pathway, has been implicated in regulating myeloma cell sensitivity to BZM. Decitabine (DAC) is an epigenetic modulating agent that induces tumor suppressor gene reexpression based on its gene-specific DNA hypomethylation. DAC has been implicated in modulating Wnt/β-catenin signaling by promoting the demethylation of the Wnt/β-catenin antagonists sFRP and DKK. In this study, we report the effects of single reagent DAC therapy and DAC combined with BZM on β-catenin accumulation, myeloma cell survival, apoptosis, and treatment sensitivity. Our study proved that DAC demethylated and induced the reexpression of the Wnt antagonists sFRP3 and DKK1. DAC also reduced GSK3β (Ser9) phosphorylation and decreased β-catenin accumulation in the nucleus, which were induced by BZM. Thus, the transcription of cyclin D1, c-Myc, and LEF/TCF was reduced, which synergistically inhibited cell proliferation, enhanced BZM-induced apoptosis, and promoted BZM-induced cell cycle arrest in myeloma cells. In summary, these results indicated that DAC could synergistically enhance myeloma cell sensitivity to BZM at least partly by regulating Wnt/β-catenin signaling. Our results can be used to optimize therapeutic regimens for MM.
Collapse
Affiliation(s)
- Yulong Jin
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Li Xu
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Xiaodong Wu
- Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Juan Feng
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Mimi Shu
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Hongtao Gu
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Guangxun Gao
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Jinyi Zhang
- Department of School of Life Sciences, Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Baoxia Dong
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Xiequn Chen
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
45
|
Harb J, Lin PJ, Hao J. Recent Development of Wnt Signaling Pathway Inhibitors for Cancer Therapeutics. Curr Oncol Rep 2019; 21:12. [PMID: 30715618 DOI: 10.1007/s11912-019-0763-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Review current understanding of both canonical and non-canonical Wnt signaling in cancer and provide updated knowledge in current clinical trials of Wnt signaling drugs. RECENT FINDINGS Important roles of both canonical and non-canonical Wnt signaling in cancer have been increasingly recognized. Recent clinical trials of several Wnt-signaling drugs have showed promising outcomes. In addition, some drugs that were originally approved for the treatment of other diseases have been recently found to block Wnt signaling, highlighting their potential to treat Wnt-dependent cancer. Dysfunction of Wnt signaling is implicated in cancer, and targeting Wnt signaling represents a useful approach to treat cancer. Current clinical trials of Wnt signaling drugs have showed promising outcomes, and repurposing the previously approved drugs for other diseases to treat Wnt-dependent cancer requires further studies.
Collapse
Affiliation(s)
- Jerry Harb
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Pen-Jen Lin
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Jijun Hao
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA. .,College of Veterinary Medicine, Western University of Health Sciences, 309 E 2nd Street, Pomona, CA, 91766, USA.
| |
Collapse
|
46
|
Ren L, Chen H, Song J, Chen X, Lin C, Zhang X, Hou N, Pan J, Zhou Z, Wang L, Huang D, Yang J, Liang Y, Li J, Huang H, Jiang L. MiR-454-3p-Mediated Wnt/β-catenin Signaling Antagonists Suppression Promotes Breast Cancer Metastasis. Am J Cancer Res 2019; 9:449-465. [PMID: 30809286 PMCID: PMC6376193 DOI: 10.7150/thno.29055] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
The Wnt/β-catenin pathway is constitutively active and promotes multiple tumor processes, including breast cancer metastasis. However, the underlying mechanism by which the Wnt/β-catenin pathway is constitutively activated in breast cancer metastasis remains unclear. Inhibition of Wnt antagonists is important for Wnt/β-catenin signaling activation, and post-transcriptional regulation of these antagonists by microRNAs (miRNAs) might be a possible mechanism underlying signaling activation. Regulation of nuclear pre-mRNA domain-containing 1A (RPRD1A) is a known inhibitor of cell growth and Wnt/β-catenin signaling activity, but the function and regulatory mechanism of RPRD1A in breast cancer have not been clarified. The aim of this study was to understand how regulators of the Wnt/β-catenin pathway may play a role in the metastasis of this cancer. Methods: RPRD1A expression and its association with multiple clinicopathological characteristics was analyzed immunohistochemically in human breast cancer specimens. miR-454-3p expression was analyzed using real-time PCR. RPRD1A or miR-454-3p knockdown and overexpression were used to determine the underlying mechanism of their functions in breast cancer cells. Xenografted tumor model, 3D invasive culture, cell migration and invasion assays and sphere formation assay were used to determine the biofunction of RPRD1A and miR-454-3p in breast cancer. Electrophoretic mobility shift assay (EMSA), luciferase reporter assay, and RNA immunoprecipitation (RIP) were performed to study the regulation and underlying mechanisms of RPRD1A and miR-454-3p expression and their correlation with the Wnt/β-catenin pathway in breast cancer. Results: The Wnt/β-catenin signaling antagonist RPRD1A was downregulated and its upstream regulator miR-454-3p was amplified and overexpressed in metastatic breast cancer, and both were correlated with overall and relapse-free survival in breast cancer patients. The suppression by miR-454-3p on RPRD1A was found to activate Wnt/β-catenin signaling, thereby promoting metastasis. Simultaneously, three other negative regulators of the Wnt/β-catenin pathway, namely, AXIN2, dickkopf WNT signaling pathway inhibitor (DKK) 3 and secreted frizzled related protein (SFRP) 1, were also found to be targets of miR-454-3p and were involved in the signaling activation. miR-454-3p was found to be involved in early metastatic processes and to promote the stemness of breast cancer cells and early relapse under both in vitro and in vivo conditions. Conclusions: The findings indicate that miR-454-3p-mediated suppression of Wnt/β-catenin antagonist RPRD1A, as well as AXIN2, DKK3 and SFRP1, sustains the constitutive activation of Wnt/β-catenin signaling; thus, miR-454-3p and RPRD1A might be potential diagnostic and therapeutic targets for breast cancer metastasis.
Collapse
|
47
|
Xu ZJ, Tang CY, Zhou JD, Ma JC, Wen XM, Deng ZQ, Leng JY, Qiu ZY, Qian J, Lin J. SOX7 methylation is an independent prognostic factor in myelodysplastic syndromes. Pathol Res Pract 2018; 215:322-328. [PMID: 30554866 DOI: 10.1016/j.prp.2018.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE SOX7 downregulation caused by its promoter methylation was associated with poor survival in several types of human solid tumors. However, the pattern of SOX7 methylation and its clinical significance are less studied in hematological malignancies. Herein, we evaluated the methylation pattern of SOX7 in myelodysplastic syndrome (MDS) and determined its clinical implication in patients with MDS. METHODS SOX7 methylation was determined by real-time quantitative methylation-specific PCR (RQ-MSP) in 99 MDS patients. Bisulfite sequencing PCR was applied to confirm the results of RQ-MSP. RESULTS SOX7 methylation was detected in 55.6% of 99 patients but not in healthy donors. No correlation was found between SOX7 methylation and clinical parameters including patient age, gender, white blood cell count, hemoglobin, and platelet count. However, patients with SOX7 methylation harbored more U2AF1 mutation than patients without SOX7 methylation (P = 0.015). Kaplan-Meier curves indicated that the patients with SOX7 methylation presented reduced overall survival (OS) (P = 0.034). Furthermore, subgroup analysis indicated that SOX7 methylation was associated with poor OS in male patients (P = 0.034) and in patients older than 60 years (P = 0.019). According to the multivariate analysis, SOX7 methylation remained as an independent prognosis factor in MDS patients both as dichotomous (HR = 2.14, P = 0.041) and as continuous (HR = 1.55, P = 0.042) variable. Importantly, SOX7 methylation was significantly increased during progression from MDS to secondary acute myeloid leukemia (sAML). CONCLUSIONS Our findings demonstrated that SOX7 methylation conferred adverse prognosis in MDS patients and was associated with leukemia progression.
Collapse
Affiliation(s)
- Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Zhenjiang Clinical Research Center of Hematology, Zhenjiang 212002, Jiangsu, P.R. China; The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang 212002, Jiangsu, P.R. China
| | - Chun-Yan Tang
- Department of Nephropathy and Hematology, The First People's Hospital of Aksu Prefecture of Xinjiang, Aksu 843000, Xinjiang, P.R. China
| | - Jing-Dong Zhou
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang 212002, Jiangsu, P.R. China; Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, P.R. China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Zhenjiang Clinical Research Center of Hematology, Zhenjiang 212002, Jiangsu, P.R. China; The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang 212002, Jiangsu, P.R. China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Zhenjiang Clinical Research Center of Hematology, Zhenjiang 212002, Jiangsu, P.R. China; The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang 212002, Jiangsu, P.R. China
| | - Zhao-Qun Deng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Zhenjiang Clinical Research Center of Hematology, Zhenjiang 212002, Jiangsu, P.R. China; The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang 212002, Jiangsu, P.R. China.
| | - Jia-Yan Leng
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang 212002, Jiangsu, P.R. China; Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, P.R. China
| | - Zhi-Yuan Qiu
- Department of Oncology, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, P.R. China
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang 212002, Jiangsu, P.R. China; Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, P.R. China.
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Zhenjiang Clinical Research Center of Hematology, Zhenjiang 212002, Jiangsu, P.R. China; The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang 212002, Jiangsu, P.R. China.
| |
Collapse
|
48
|
Abstract
Although we have come a long way in our understanding of the signals that drive cancer growth, and how these signals can be targeted, effective control of this disease remains a key scientific and medical challenge. The therapy resistance and relapse that are commonly seen are driven in large part by the inherent heterogeneity within cancers that allows drugs to effectively eliminate some, but not all, malignant cells. Here, we focus on the fundamental drivers of this heterogeneity by examining emerging evidence that shows that these traits are often controlled by the disruption of normal cell fate and aberrant adoption of stem cell signals. We discuss how undifferentiated cells are preferentially primed for transformation and often serve as the cell of origin for cancers. We also consider evidence showing that activation of stem cell programmes in cancers can lead to progression, therapy resistance and metastatic growth and that targeting these attributes may enable better control over a difficult disease.
Collapse
Affiliation(s)
- Nikki K Lytle
- Departments of Pharmacology and Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA
- Moores Cancer Center, San Diego School of Medicine, University of California, La Jolla, CA, USA
| | - Alison G Barber
- Departments of Pharmacology and Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA
- Moores Cancer Center, San Diego School of Medicine, University of California, La Jolla, CA, USA
| | - Tannishtha Reya
- Departments of Pharmacology and Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA.
- Moores Cancer Center, San Diego School of Medicine, University of California, La Jolla, CA, USA.
| |
Collapse
|
49
|
Peng JX, Liang SY, Li L. sFRP1 exerts effects on gastric cancer cells through GSK3β/Rac1‑mediated restraint of TGFβ/Smad3 signaling. Oncol Rep 2018; 41:224-234. [PMID: 30542739 PMCID: PMC6278527 DOI: 10.3892/or.2018.6838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
Secreted frizzled-related protein 1 (sFRP1) is an inhibitor of canonical Wnt signaling; however, previous studies have determined a tumor-promoting function of sFRP1 in a number of different cancer types. A previous study demonstrated that sFRP1 overexpression was associated with an aggressive phenotype and the activation of transforming growth factor β (TGFβ) signaling. sFRP1 overexpression and sFRP1 knockdown cell models were established. Immunoblotting was conducted to examine the protein levels of the associated molecules. Immunofluorescence staining followed by confocal microscopy was performed to visualize the cytoskeleton alterations and subcellular localization of key proteins. sFRP1 overexpression restored glycogen synthase kinase 3β (GSK3β) activity, which activated Rac family small GTPase 1 (Rac1). GSK3β and Rac1 mediated the effect of sFRP1 on the positive regulation of cell growth and migration/invasion. Inhibition of GSK3β or Rac1 abolished the regulation of sFRP1 on TGFβ/SMAD family member 3 (Smad3) signaling and the aggressive phenotype; however, GSK3β or Rac1 overexpression increased cell migration/invasion and restrained Smad3 activity by preventing its nuclear translocation and limiting its transcriptional activity. The present study demonstrated a tumor-promoting function of sFRP1-overexpression by selectively activating TGFβ signaling in gastric cancer cells. GSK3β and Rac1 serve an important function in mediating the sFRP1-induced malignant alterations and signaling changes.
Collapse
Affiliation(s)
- Ji-Xiang Peng
- Department of Gastrointestinal Surgery, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Shun-Yu Liang
- Department of Gastrointestinal Surgery, Guangzhou First Municipal People's Hospital, Affiliated Guangzhou Medical College, Guangzhou, Guangdong 510180, P.R. China
| | - Li Li
- Department of Gastrointestinal Surgery, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
50
|
Lin Y, Wu W, Sun Z, Shen L, Shen B. MiRNA-BD: an evidence-based bioinformatics model and software tool for microRNA biomarker discovery. RNA Biol 2018; 15:1093-1105. [PMID: 30081733 DOI: 10.1080/15476286.2018.1502590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with the potential as biomarkers for disease diagnosis, prognosis and therapy. In the era of big data and biomedical informatics, computer-aided biomarker discovery has become the current frontier. However, most of the computational models are highly dependent on specific prior knowledge and training-testing procedures, very few are mechanism-guided or evidence-based. To the best of our knowledge, untill now no general rules have been uncovered and applied to miRNA biomarker screening. In this study, we manually collected literature-reported cancer miRNA biomarkers and analyzed their regulatory patterns, including the regulatory modes, biological functions and evolutionary characteristics of their targets in the human miRNA-mRNA network. Two evidences were statistically detected and used to distinguish biomarker miRNAs from others. Based on these observations, we developed a novel bioinformatics model and software tool for miRNA biomarker discovery ( http://sysbio.suda.edu.cn/MiRNA-BD/ ). In contrast to routine methods that focus on miRNA synergic functions, our method searches for vulnerable sites in the miRNA-mRNA network and considers the independent regulatory power of miRNAs, i.e., single-line regulations between miRNAs and mRNAs. The performance comparison demonstrates the generality and precision of our model, which identifies miRNA biomarkers for cancers as well as other complex diseases without training or specific prior knowledge.
Collapse
Affiliation(s)
- Yuxin Lin
- a Center for Systems Biology , Soochow University , Suzhou, Jiangsu , China
| | - Wentao Wu
- a Center for Systems Biology , Soochow University , Suzhou, Jiangsu , China
| | - Zhandong Sun
- a Center for Systems Biology , Soochow University , Suzhou, Jiangsu , China
| | - Li Shen
- a Center for Systems Biology , Soochow University , Suzhou, Jiangsu , China.,b Department of Genetics & Systems Biology Institute , Yale University School of Medicine , West Haven , CT USA
| | - Bairong Shen
- a Center for Systems Biology , Soochow University , Suzhou, Jiangsu , China.,c Center for Translational Biomedical Informatics , Guizhou University School of Medicine , Guiyang , China.,d Institute for Systems Genetics, West China Hospital , Sichuan University , Chengdu , China
| |
Collapse
|