1
|
Anis HM, Rakha NM, Kassem DH, Kamal AM. Emerging roles of ADAM6 and PRSS1 as novel diagnostic/prognostic biomarkers for acute lymphoblastic and myeloid leukemia in adults. BMC Cancer 2025; 25:884. [PMID: 40382561 PMCID: PMC12085065 DOI: 10.1186/s12885-025-14292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Acute leukemia is an aggressive, highly heterogeneous hematological malignancy. A Disintegrin And Metalloproteinase Domain-6 (ADAM6), a member of ADAMs family, has emerged recently as a potential novel player in pediatric acute lymphoblastic leukemia (ALL), and its function remains largely elusive. Serine Protease-1 (PRSS1) is another emerging molecular mediator in cancer development. However, its role in acute leukemia has not been adequately studied. Interestingly, ADAM6 and PRSS1 were identified among the genes with the highest percentage of chromosomal changes in profiled B-cell precursor ALL patients. Both are emerging novel mediators of extracellular matrix (ECM) remodeling. Thus, this study was designed to investigate the roles of ADAM6 and PRSS1 in ALL and acute myeloid leukemia (AML) in adults. METHODS Adult patients with de novo ALL (n = 36), de novo AML (n = 40), and healthy control subjects (n = 55) were enrolled in this study. Circulating serum levels of ADAM6 and PRSS1 were measured by ELISA technique. RESULTS Serum levels of ADAM6 were significantly higher in ALL and AML patients compared to healthy control subjects (208.7(178.3-337.3), 186.4(155.3-479.6), and 78.6(55.8-101.8) pg/ml, p < 0.0001), respectively. Whereas, serum levels of PRSS1 were found to be significantly lower in ALL and AML patients compared to healthy controls (175.1(153.7-232.2), 177.9(145.3-206.4), and 247.5(204.3-375.3) ng/ml, p < 0.0001), respectively. Both ADAM6 and PRSS1 exhibited a very good diagnostic potential by ROC analyses. ADAM6 levels significantly varied between CD22+/CD22- and CD45+/CD45-, while PRSS1 levels significantly varied between HLA-DR+/HLA-DR- ALL patients, suggesting their prognostic implications. Also, ADAM6 and PRSS1 were found to be significantly correlated with each other. CONCLUSION The results of the current study portray ADAM6 and PRSS1 as new potential diagnostic/prognostic biomarkers and potential therapeutic targets in adult acute leukemia patients, and shed light on their role as novel interrelated mediators possibly implicated in tumor micro-environment remodeling.
Collapse
Affiliation(s)
- Heba M Anis
- Children's Cancer Hospital 57357, Cairo, Egypt
| | - Nahed M Rakha
- Clinical Hematology Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Dina H Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Amany M Kamal
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
2
|
Rosenbaum D, Saftig P. New insights into the function and pathophysiology of the ectodomain sheddase A Disintegrin And Metalloproteinase 10 (ADAM10). FEBS J 2024; 291:2733-2766. [PMID: 37218105 DOI: 10.1111/febs.16870] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
The 'A Disintegrin And Metalloproteinase 10' (ADAM10) has gained considerable attention due to its discovery as an 'α-secretase' involved in the nonamyloidogenic processing of the amyloid precursor protein, thereby possibly preventing the excessive generation of the amyloid beta peptide, which is associated with the pathogenesis of Alzheimer's disease. ADAM10 was found to exert many additional functions, cleaving about 100 different membrane proteins. ADAM10 is involved in many pathophysiological conditions, ranging from cancer and autoimmune disorders to neurodegeneration and inflammation. ADAM10 cleaves its substrates close to the plasma membrane, a process referred to as ectodomain shedding. This is a central step in the modulation of the functions of cell adhesion proteins and cell surface receptors. ADAM10 activity is controlled by transcriptional and post-translational events. The interaction of ADAM10 with tetraspanins and the way they functionally and structurally depend on each other is another topic of interest. In this review, we will summarize findings on how ADAM10 is regulated and what is known about the biology of the protease. We will focus on novel aspects of the molecular biology and pathophysiology of ADAM10 that were previously poorly covered, such as the role of ADAM10 on extracellular vesicles, its contribution to virus entry, and its involvement in cardiac disease, cancer, inflammation, and immune regulation. ADAM10 has emerged as a regulator controlling cell surface proteins during development and in adult life. Its involvement in disease states suggests that ADAM10 may be exploited as a therapeutic target to treat conditions associated with a dysfunctional proteolytic activity.
Collapse
Affiliation(s)
- David Rosenbaum
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Germany
| |
Collapse
|
3
|
Hounjet J, Groot AJ, Piepers JP, Kranenburg O, Zwijnenburg DA, Rapino FA, Koster JB, Kampen KR, Vooijs MA. Iron-responsive element of Divalent metal transporter 1 (Dmt1) controls Notch-mediated cell fates. FEBS J 2023; 290:5811-5834. [PMID: 37646174 DOI: 10.1111/febs.16946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/12/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
Notch receptor activation is regulated by the intramembrane protease γ-secretase, which cleaves and liberates the Notch intracellular domain (Nicd) that regulates gene transcription. While γ-secretase cleavage is necessary, we demonstrate it is insufficient for Notch activation and requires vesicular trafficking. Here, we report Divalent metal transporter 1 (Dmt1, Slc11A2) as a novel and essential regulator of Notch signalling. Dmt1-deficient cells are defective in Notch signalling and have perturbed endolysosomal trafficking and function. Dmt1 encodes for two isoforms, with and without an iron response element (ire). We show that isoform-specific silencing of Dmt1-ire and Dmt1+ire has opposite consequences on Notch-dependent cell fates in cell lines and intestinal organoids. Loss of Dmt1-ire suppresses Notch activation and promotes differentiation, whereas loss of Dmt1+ire causes Notch activation and maintains stem-progenitor cell fates. Dmt1 isoform expression correlates with Notch and Wnt signalling in Apc-deficient intestinal organoids and human colorectal cancers. Consistently, Dmt1-ire silencing induces Notch-dependent differentiation in colorectal cancer cells. These data identify Dmt1 isoforms as binary switches controlling Notch cell fate decisions in normal and tumour cells.
Collapse
Affiliation(s)
- Judith Hounjet
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Arjan J Groot
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jolanda P Piepers
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Onno Kranenburg
- Lab Translational Oncology, Division Imaging and Cancer, University Medical Center Utrecht, The Netherlands
| | - Danny A Zwijnenburg
- Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Francesca A Rapino
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Pharmacy, Giga Stem Cells, University of Liege, Belgium
| | - Jan B Koster
- Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Kim R Kampen
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marc A Vooijs
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
4
|
Lipper CH, Egan ED, Gabriel KH, Blacklow SC. Structural basis for membrane-proximal proteolysis of substrates by ADAM10. Cell 2023; 186:3632-3641.e10. [PMID: 37516108 PMCID: PMC10528452 DOI: 10.1016/j.cell.2023.06.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 07/31/2023]
Abstract
The endopeptidase ADAM10 is a critical catalyst for the regulated proteolysis of key drivers of mammalian development, physiology, and non-amyloidogenic cleavage of APP as the primary α-secretase. ADAM10 function requires the formation of a complex with a C8-tetraspanin protein, but how tetraspanin binding enables positioning of the enzyme active site for membrane-proximal cleavage remains unknown. We present here a cryo-EM structure of a vFab-ADAM10-Tspan15 complex, which shows that Tspan15 binding relieves ADAM10 autoinhibition and acts as a molecular measuring stick to position the enzyme active site about 20 Å from the plasma membrane for membrane-proximal substrate cleavage. Cell-based assays of N-cadherin shedding establish that the positioning of the active site by the interface between the ADAM10 catalytic domain and the bound tetraspanin influences selection of the preferred cleavage site. Together, these studies reveal the molecular mechanism underlying ADAM10 proteolysis at membrane-proximal sites and offer a roadmap for its modulation in disease.
Collapse
Affiliation(s)
- Colin H Lipper
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emily D Egan
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Khal-Hentz Gabriel
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
5
|
Bahrami E, Schmid JP, Jurinovic V, Becker M, Wirth AK, Ludwig R, Kreissig S, Duque Angel TV, Amend D, Hunt K, Öllinger R, Rad R, Frenz JM, Solovey M, Ziemann F, Mann M, Vick B, Wichmann C, Herold T, Jayavelu AK, Jeremias I. Combined proteomics and CRISPR‒Cas9 screens in PDX identify ADAM10 as essential for leukemia in vivo. Mol Cancer 2023; 22:107. [PMID: 37422628 PMCID: PMC10329331 DOI: 10.1186/s12943-023-01803-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 06/08/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Acute leukemias represent deadly malignancies that require better treatment. As a challenge, treatment is counteracted by a microenvironment protecting dormant leukemia stem cells. METHODS To identify responsible surface proteins, we performed deep proteome profiling on minute numbers of dormant patient-derived xenograft (PDX) leukemia stem cells isolated from mice. Candidates were functionally screened by establishing a comprehensive CRISPR‒Cas9 pipeline in PDX models in vivo. RESULTS A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) was identified as an essential vulnerability required for the survival and growth of different types of acute leukemias in vivo, and reconstitution assays in PDX models confirmed the relevance of its sheddase activity. Of translational importance, molecular or pharmacological targeting of ADAM10 reduced PDX leukemia burden, cell homing to the murine bone marrow and stem cell frequency, and increased leukemia response to conventional chemotherapy in vivo. CONCLUSIONS These findings identify ADAM10 as an attractive therapeutic target for the future treatment of acute leukemias.
Collapse
Affiliation(s)
- Ehsan Bahrami
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
| | - Jan Philipp Schmid
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Vindi Jurinovic
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martin Becker
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
| | - Anna-Katharina Wirth
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
| | - Romina Ludwig
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Sophie Kreissig
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Tania Vanessa Duque Angel
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
| | - Diana Amend
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
| | - Katharina Hunt
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
| | - Rupert Öllinger
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, and Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, Technische Universität München, Munich, Germany
| | - Roland Rad
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, and Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, Technische Universität München, Munich, Germany
| | - Joris Maximilian Frenz
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg and Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
| | - Maria Solovey
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Chair of Physiological Chemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Frank Ziemann
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Munich, Germany
| | - Binje Vick
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Tobias Herold
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ashok Kumar Jayavelu
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg and Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Feodor-Lynen-Str. 21, Munich, 81377 Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Department of Pediatrics, Dr. Von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
6
|
Zhu S, Xing C, Li R, Cheng Z, Deng M, Luo Y, Li H, Zhang G, Sheng Y, Peng H, Wang Z. Proteomic profiling of plasma exosomes from patients with B-cell acute lymphoblastic leukemia. Sci Rep 2022; 12:11975. [PMID: 35831551 PMCID: PMC9279438 DOI: 10.1038/s41598-022-16282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
We aimed to comprehensively investigate the proteomic profile and underlying biological function of exosomal proteins associated with B-cell acute lymphoblastic leukemia. Exosomes were isolated from plasma samples collected from five patients with B-ALL and five healthy individuals, and their protein content was quantitatively analyzed by liquid chromatography with tandem mass spectrometry. A total of 342 differentially expressed proteins were identified in patients with B-ALL. The DEPs were mainly associated with protein metabolic processes and protein activity regulation and were significantly enriched in the Notch and autophagy pathways. Furthermore, we found that ADAM17 and ATG3 were upregulated in patients with B-ALL and enriched in the Notch and autophagy pathways, respectively. Further western blot analysis of exosomes collected from additional 18 patients with B-ALL and 10 healthy controls confirmed that both ADAM17 and ATG3 were overexpressed in exosomes derived from patients with B-ALL (p < 0.001). The areas under the curves of ADAM17 and ATG3 were 0.989 and 0.956, respectively, demonstrating their diagnostic potential. In conclusion, ADAM17 and ATG3 in plasma-derived exosomes may contribute to the progression of B-ALL by regulating the Notch and autophagy pathways. Hence, these proteins may represent valuable diagnostic biomarkers and therapeutic targets for B-ALL.
Collapse
Affiliation(s)
- Shicong Zhu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Mingyang Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yunya Luo
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Heng Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yue Sheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Heib M, Weiß J, Saggau C, Hoyer J, Fuchslocher Chico J, Voigt S, Adam D. Ars moriendi: Proteases as sculptors of cellular suicide. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119191. [PMID: 34973300 DOI: 10.1016/j.bbamcr.2021.119191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The Ars moriendi, which translates to "The Art of Dying," encompasses two Latin texts that gave advice on how to die well and without fear according to the Christian precepts of the late Middle Ages. Given that ten to hundred billion cells die in our bodies every day, it is obvious that the concept of a well and orderly ("regulated") death is also paramount at the cellular level. In apoptosis, as the most well-studied form of regulated cell death, proteases of the caspase family are the central mediators. However, caspases are not the only proteases that act as sculptors of cellular suicide, and therefore, we here provide an overview of the impact of proteases in apoptosis and other forms of regulated cell death.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Jonas Weiß
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Carina Saggau
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Justus Hoyer
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | | | - Susann Voigt
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany.
| |
Collapse
|
8
|
Yin H, Hong M, Deng J, Yao L, Qian C, Teng Y, Li T, Wu Q. Prognostic Significance of Comprehensive Gene Mutations and Clinical Characteristics in Adult T-Cell Acute Lymphoblastic Leukemia Based on Next-Generation Sequencing. Front Oncol 2022; 12:811151. [PMID: 35280829 PMCID: PMC8908046 DOI: 10.3389/fonc.2022.811151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Adult T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignant tumor with poor prognosis. However, accurate prognostic stratification factors are still unclear. Methods Data from 90 adult T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) patients were collected. The association of gene mutations detected by next-generation sequencing and clinical characteristics with the outcomes of T-ALL/LBL patients were retrospectively analyzed to build three novel risk stratification models through Cox proportional hazards model. Results Forty-seven mutated genes were identified. Here, 73.3% of patients had at least one mutation, and 36.7% had ≥3 mutations. The genes with higher mutation frequency were NOTCH1, FBXW7, and DNMT3A. The most frequently altered signaling pathways were NOTCH pathway, transcriptional regulation pathway, and DNA methylation pathway. Age (45 years old), platelet (PLT) (50 G/L), actate dehydrogenase (LDH) (600 U/L), response in D19-BMR detection, TP53 and cell cycle signaling pathway alterations, and hematopoietic stem cell transplantation (HSCT) were integrated into a risk stratification model of event-free survival (EFS). Age (45 years old), white blood cell (WBC) count (30 G/L), response in D19-BMR detection, TP53 and cell cycle signaling pathway alterations, and HSCT were integrated into a risk stratification model of overall survival (OS). According to our risk stratification models, the 1-year EFS and OS rates in the low-risk group were significantly higher than those in the high-risk group. Conclusions Our risk stratification models exhibited good prognostic roles in adult T-ALL/LBL patients and might guide individualized treatment and ultimately improve their outcomes.
Collapse
Affiliation(s)
- Hua Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Hong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenjing Qian
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Teng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Hounjet J, Vooijs M. The Role of Intracellular Trafficking of Notch Receptors in Ligand-Independent Notch Activation. Biomolecules 2021; 11:biom11091369. [PMID: 34572582 PMCID: PMC8466058 DOI: 10.3390/biom11091369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aberrant Notch signaling has been found in a broad range of human malignancies. Consequently, small molecule inhibitors and antibodies targeting Notch signaling in human cancers have been developed and tested; however, these have failed due to limited anti-tumor efficacy because of dose-limiting toxicities in normal tissues. Therefore, there is an unmet need to discover novel regulators of malignant Notch signaling, which do not affect Notch signaling in healthy tissues. This review provides a comprehensive overview of the current knowledge on the role of intracellular trafficking in ligand-independent Notch receptor activation, the possible mechanisms involved, and possible therapeutic opportunities for inhibitors of intracellular trafficking in Notch targeting.
Collapse
|
10
|
Harrison N, Koo CZ, Tomlinson MG. Regulation of ADAM10 by the TspanC8 Family of Tetraspanins and Their Therapeutic Potential. Int J Mol Sci 2021; 22:ijms22136707. [PMID: 34201472 PMCID: PMC8268256 DOI: 10.3390/ijms22136707] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The ubiquitously expressed transmembrane protein a disintegrin and metalloproteinase 10 (ADAM10) functions as a “molecular scissor”, by cleaving the extracellular regions from its membrane protein substrates in a process termed ectodomain shedding. ADAM10 is known to have over 100 substrates including Notch, amyloid precursor protein, cadherins, and growth factors, and is important in health and implicated in diseases such as cancer and Alzheimer’s. The tetraspanins are a superfamily of membrane proteins that interact with specific partner proteins to regulate their intracellular trafficking, lateral mobility, and clustering at the cell surface. We and others have shown that ADAM10 interacts with a subgroup of six tetraspanins, termed the TspanC8 subgroup, which are closely related by protein sequence and comprise Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33. Recent evidence suggests that different TspanC8/ADAM10 complexes have distinct substrates and that ADAM10 should not be regarded as a single scissor, but as six different TspanC8/ADAM10 scissor complexes. This review discusses the published evidence for this “six scissor” hypothesis and the therapeutic potential this offers.
Collapse
Affiliation(s)
- Neale Harrison
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (N.H.); (C.Z.K.)
| | - Chek Ziu Koo
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (N.H.); (C.Z.K.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Michael G. Tomlinson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (N.H.); (C.Z.K.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
- Correspondence: ; Tel.: +44-(0)121-414-2507
| |
Collapse
|
11
|
Analysis of the Conditions That Affect the Selective Processing of Endogenous Notch1 by ADAM10 and ADAM17. Int J Mol Sci 2021; 22:ijms22041846. [PMID: 33673337 PMCID: PMC7918056 DOI: 10.3390/ijms22041846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Notch signaling is critical for controlling a variety of cell fate decisions during metazoan development and homeostasis. This unique, highly conserved signaling pathway relies on cell-to-cell contact, which triggers the proteolytic release of the cytoplasmic domain of the membrane-anchored transcription factor Notch from the membrane. A disintegrin and metalloproteinase (ADAM) proteins are crucial for Notch activation by processing its S2 site. While ADAM10 cleaves Notch1 under physiological, ligand-dependent conditions, ADAM17 mainly cleaves Notch1 under ligand-independent conditions. However, the mechanism(s) that regulate the distinct contributions of these ADAMs in Notch processing remain unclear. Using cell-based assays in mouse embryonic fibroblasts (mEFs) lacking ADAM10 and/or ADAM17, we aimed to clarify what determines the relative contributions of ADAM10 and ADAM17 to ligand-dependent or ligand-independent Notch processing. We found that EDTA-stimulated ADAM17-dependent Notch1 processing is rapid and requires the ADAM17-regulators iRhom1 and iRhom2, whereas the Delta-like 4-induced ligand-dependent Notch1 processing is slower and requires ADAM10. The selectivity of ADAM17 for EDTA-induced Notch1 processing can most likely be explained by a preference for ADAM17 over ADAM10 for the Notch1 cleavage site and by the stronger inhibition of ADAM10 by EDTA. The physiological ADAM10-dependent processing of Notch1 cannot be compensated for by ADAM17 in Adam10-/- mEFs, or by other ADAMs shown here to be able to cleave the Notch1 cleavage site, such as ADAMs9, 12, and 19. Collectively, these results provide new insights into the mechanisms underlying the substrate selectivity of ADAM10 and ADAM17 towards Notch1.
Collapse
|
12
|
ADAM10 is involved in the oncogenic process and chemo-resistance of triple-negative breast cancer via regulating Notch1 signaling pathway, CD44 and PrPc. Cancer Cell Int 2021; 21:32. [PMID: 33413403 PMCID: PMC7791678 DOI: 10.1186/s12935-020-01727-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype to treat, because it is so aggressive with shorter survival. Chemotherapy remains the standard treatment due to the lack of specific and effective molecular targets. The aim of the present study is to investigate the potential roles of A Disintegrin and Metalloproteinase 10 (ADAM10) on TNBC cells and the effects of combining ADAM10 expression and neoadjuvant chemotherapy treatment (NACT) to improve the overall survival in breast cancer patients. Methods Using a series of breast cancer cell lines, we measured the expression of ADAM10 and its substrates by quantitative real-time PCR assay (qRT-PCR) and western blot analysis. Cell migration and invasion, cell proliferation, drug sensitivity assay, cell cycle and apoptosis were conducted in MDA-MB-231 cells cultured with ADAM10 siRNA. The effect of ADAM10 down-regulation by siRNA on its substrates was assessed by western blot analysis. We performed immunohistochemical staining for ADAM10 in clinical breast cancer tissues in 94 patients receiving NACT. Results The active form of ADAM10 was highly expressed in TNBC cell lines. Knockdown of ADAM10 in MDA-MB-231 cells led to a significant decrease in cell proliferation, migration, invasion and the IC50 value of paclitaxel and adriamycin, while induced cell cycle arrest and apoptosis. And these changes were correlated with down-regulation of Notch signaling, CD44 and cellular prion protein (PrPc). In clinical breast cancer cases, a high ADAM10 expression in pre-NACT samples was strongly associated with poorer response to NACT and shorter overall survival. Conclusions These data suggest the previously unrecognized roles of ADAM10 in contributing to the progression and chemo-resistance of TNBC.
Collapse
|
13
|
López-López S, Monsalve EM, Romero de Ávila MJ, González-Gómez J, Hernández de León N, Ruiz-Marcos F, Baladrón V, Nueda ML, García-León MJ, Screpanti I, Felli MP, Laborda J, García-Ramírez JJ, Díaz-Guerra MJM. NOTCH3 signaling is essential for NF-κB activation in TLR-activated macrophages. Sci Rep 2020; 10:14839. [PMID: 32908186 PMCID: PMC7481794 DOI: 10.1038/s41598-020-71810-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Macrophage activation by Toll receptors is an essential event in the development of the response against pathogens. NOTCH signaling pathway is involved in the control of macrophage activation and the inflammatory processes. In this work, we have characterized NOTCH signaling in macrophages activated by Toll-like receptor (TLR) triggering and determined that DLL1 and DLL4 are the main ligands responsible for NOTCH signaling. We have identified ADAM10 as the main protease implicated in NOTCH processing and activation. We have also observed that furin, which processes NOTCH receptors, is induced by TLR signaling in a NOTCH-dependent manner. NOTCH3 is the only NOTCH receptor expressed in resting macrophages. Its expression increased rapidly in the first hours after TLR4 activation, followed by a gradual decrease, which was coincident with an elevation of the expression of the other NOTCH receptors. All NOTCH1, 2 and 3 contribute to the increased NOTCH signaling detected in activated macrophages. We also observed a crosstalk between NOTCH3 and NOTCH1 during macrophage activation. Finally, our results highlight the relevance of NOTCH3 in the activation of NF-κB, increasing p65 phosphorylation by p38 MAP kinase. Our data identify, for the first time, NOTCH3 as a relevant player in the control of inflammation.
Collapse
Affiliation(s)
- Susana López-López
- Universidad de Castilla-La Mancha, Medical School/CRIB, Laboratory of Biochemistry and Molecular Biology, Department of Inorganic and Organic Chemistry and Biochemistry, UCLM, C/Almansa 14, 02008, Albacete, Spain.,Unidad Asociada de Biomedicina UCLM, Unidad Asociada CSIC, Albacete, Spain
| | - Eva María Monsalve
- Universidad de Castilla-La Mancha, Medical School/CRIB, Laboratory of Biochemistry and Molecular Biology, Department of Inorganic and Organic Chemistry and Biochemistry, UCLM, C/Almansa 14, 02008, Albacete, Spain.,Unidad Asociada de Biomedicina UCLM, Unidad Asociada CSIC, Albacete, Spain
| | - María José Romero de Ávila
- Universidad de Castilla-La Mancha, Medical School/CRIB, Laboratory of Biochemistry and Molecular Biology, Department of Inorganic and Organic Chemistry and Biochemistry, UCLM, C/Almansa 14, 02008, Albacete, Spain.,Unidad Asociada de Biomedicina UCLM, Unidad Asociada CSIC, Albacete, Spain
| | - Julia González-Gómez
- Universidad de Castilla-La Mancha, CRIB/Biomedicine Unit, Pharmacy School, UCLM/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | | | | | - Victoriano Baladrón
- Universidad de Castilla-La Mancha, Medical School/CRIB, Laboratory of Biochemistry and Molecular Biology, Department of Inorganic and Organic Chemistry and Biochemistry, UCLM, C/Almansa 14, 02008, Albacete, Spain.,Unidad Asociada de Biomedicina UCLM, Unidad Asociada CSIC, Albacete, Spain
| | - María Luisa Nueda
- Universidad de Castilla-La Mancha, CRIB/Biomedicine Unit, Pharmacy School, UCLM/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | - María Jesús García-León
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain.,INSERM UMR_S1109, Tumor Biomechanics, 67000, Strasbourg, France.,Université de Strasbourg, 67000, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161, Roma, Italy
| | - María Pía Felli
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Jorge Laborda
- Universidad de Castilla-La Mancha, CRIB/Biomedicine Unit, Pharmacy School, UCLM/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | - José Javier García-Ramírez
- Universidad de Castilla-La Mancha, Medical School/CRIB, Laboratory of Biochemistry and Molecular Biology, Department of Inorganic and Organic Chemistry and Biochemistry, UCLM, C/Almansa 14, 02008, Albacete, Spain. .,Unidad Asociada de Biomedicina UCLM, Unidad Asociada CSIC, Albacete, Spain.
| | - María José M Díaz-Guerra
- Universidad de Castilla-La Mancha, Medical School/CRIB, Laboratory of Biochemistry and Molecular Biology, Department of Inorganic and Organic Chemistry and Biochemistry, UCLM, C/Almansa 14, 02008, Albacete, Spain. .,Unidad Asociada de Biomedicina UCLM, Unidad Asociada CSIC, Albacete, Spain.
| |
Collapse
|
14
|
Heib M, Rose-John S, Adam D. Necroptosis, ADAM proteases and intestinal (dys)function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:83-152. [PMID: 32381179 DOI: 10.1016/bs.ircmb.2020.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Recently, an unexpected connection between necroptosis and members of the a disintegrin and metalloproteinase (ADAM) protease family has been reported. Necroptosis represents an important cell death routine which helps to protect from viral, bacterial, fungal and parasitic infections, maintains adult T cell homeostasis and contributes to the elimination of potentially defective organisms before parturition. Equally important for organismal homeostasis, ADAM proteases control cellular processes such as development and differentiation, immune responses or tissue regeneration. Notably, necroptosis as well as ADAM proteases have been implicated in the control of inflammatory responses in the intestine. In this review, we therefore provide an overview of the physiology and pathophysiology of necroptosis, ADAM proteases and intestinal (dys)function, discuss the contribution of necroptosis and ADAMs to intestinal (dys)function, and review the current knowledge on the role of ADAMs in necroptotic signaling.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
15
|
ADAM10 in Alzheimer's disease: Pharmacological modulation by natural compounds and its role as a peripheral marker. Biomed Pharmacother 2019; 113:108661. [PMID: 30836275 DOI: 10.1016/j.biopha.2019.108661] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) represents a global burden in the economics of healthcare systems. Amyloid-β (Aβ) peptides are formed by amyloid-β precursor protein (AβPP) cleavage, which can be processed by two pathways. The cleavage by the α-secretase A Disintegrin And Metalloprotease 10 (ADAM10) releases the soluble portion (sAβPPα) and prevents senile plaques. This pathway remains largely unknown and ignored, mainly regarding pharmacological approaches that may act via different signaling cascades and thus stimulate non-amyloidogenic cleavage through ADAM10. This review emphasizes the effects of natural compounds on ADAM10 modulation, which eventuates in a neuroprotective mechanism. Moreover, ADAM10 as an AD biomarker is revised. New treatments and preventive interventions targeting ADAM10 regulation for AD are necessary, considering the wide variety of ADAM10 substrates.
Collapse
|
16
|
Alabi RO, Farber G, Blobel CP. Intriguing Roles for Endothelial ADAM10/Notch Signaling in the Development of Organ-Specific Vascular Beds. Physiol Rev 2019; 98:2025-2061. [PMID: 30067156 DOI: 10.1152/physrev.00029.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The vasculature is a remarkably interesting, complex, and interconnected organ. It provides a conduit for oxygen and nutrients, filtration of waste products, and rapid communication between organs. Much remains to be learned about the specialized vascular beds that fulfill these diverse, yet vital functions. This review was prompted by the discovery that Notch signaling in mouse endothelial cells is crucial for the development of specialized vascular beds found in the heart, kidneys, liver, intestines, and bone. We will address the intriguing questions raised by the role of Notch signaling and that of its regulator, the metalloprotease ADAM10, in the development of specialized vascular beds. We will cover fundamentals of ADAM10/Notch signaling, the concept of Notch-dependent cell fate decisions, and how these might govern the development of organ-specific vascular beds through angiogenesis or vasculogenesis. We will also consider common features of the affected vessels, including the presence of fenestra or sinusoids and their occurrence in portal systems with two consecutive capillary beds. We hope to stimulate further discussion and study of the role of ADAM10/Notch signaling in the development of specialized vascular structures, which might help uncover new targets for the repair of vascular beds damaged in conditions like coronary artery disease and glomerulonephritis.
Collapse
Affiliation(s)
- Rolake O Alabi
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| | - Gregory Farber
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| | - Carl P Blobel
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| |
Collapse
|
17
|
Matthews AL, Koo CZ, Szyroka J, Harrison N, Kanhere A, Tomlinson MG. Regulation of Leukocytes by TspanC8 Tetraspanins and the "Molecular Scissor" ADAM10. Front Immunol 2018; 9:1451. [PMID: 30013551 PMCID: PMC6036176 DOI: 10.3389/fimmu.2018.01451] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/12/2018] [Indexed: 01/16/2023] Open
Abstract
A disintegrin and metalloproteinase 10 (ADAM10) is a ubiquitous transmembrane protein that functions as a "molecular scissor" to cleave the extracellular regions from its transmembrane target proteins. ADAM10 is well characterized as the ligand-dependent activator of Notch proteins, which control cell fate decisions. Indeed, conditional knockouts of ADAM10 in mice reveal impaired B-, T-, and myeloid cell development and/or function. ADAM10 cleaves many other leukocyte-expressed substrates. On B-cells, ADAM10 cleavage of the low-affinity IgE receptor CD23 promotes allergy and asthma, cleavage of ICOS ligand impairs antibody responses, and cleavage of the BAFF-APRIL receptor transmembrane activator and CAML interactor, and BAFF receptor, reduce B-cell survival. On microglia, increased ADAM10 cleavage of a rare variant of the scavenger receptor triggering receptor expressed on myeloid cells 2 may increase susceptibility to Alzheimer's disease. We and others recently showed that ADAM10 interacts with one of six different regulatory tetraspanin membrane proteins, which we termed the TspanC8 subgroup, comprising Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33. The TspanC8s are required for ADAM10 exit from the endoplasmic reticulum, and emerging evidence suggests that they dictate ADAM10 subcellular localization and substrate specificity. Therefore, we propose that ADAM10 should not be regarded as a single scissor, but as six different scissors with distinct substrate specificities, depending on the associated TspanC8. In this review, we collate recent transcriptomic data to present the TspanC8 repertoires of leukocytes, and we discuss the potential role of the six TspanC8/ADAM10 scissors in leukocyte development and function.
Collapse
Affiliation(s)
- Alexandra L Matthews
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chek Ziu Koo
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Justyna Szyroka
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neale Harrison
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Aditi Kanhere
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michael G Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
Moharram SA, Shah K, Khanum F, Marhäll A, Gazi M, Kazi JU. Efficacy of the CDK inhibitor dinaciclib in vitro and in vivo in T-cell acute lymphoblastic leukemia. Cancer Lett 2017; 405:73-78. [DOI: 10.1016/j.canlet.2017.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 11/28/2022]
|
19
|
Wetzel S, Seipold L, Saftig P. The metalloproteinase ADAM10: A useful therapeutic target? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28624438 DOI: 10.1016/j.bbamcr.2017.06.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteolytic cleavage represents a unique and irreversible posttranslational event regulating the function and half-life of many intracellular and extracellular proteins. The metalloproteinase ADAM10 has raised attention since it cleaves an increasing number of protein substrates close to the extracellular membrane leaflet. This "ectodomain shedding" regulates the turnover of a number of transmembrane proteins involved in cell adhesion and receptor signaling. It can initiate intramembrane proteolysis followed by nuclear transport and signaling of the cytoplasmic domain. ADAM10 has also been implicated in human disorders ranging from neurodegeneration to dysfunction of the immune system and cancer. Targeting proteases for therapeutic purposes remains a challenge since these enzymes including ADAM10 have a wide range of substrates. Accelerating or inhibiting a specific protease activity is in most cases associated with unwanted side effects and a therapeutic useful window of application has to be carefully defined. A better understanding of the regulatory mechanisms controlling the expression, subcellular localization and activity of ADAM10 will likely uncover suitable drug targets which will allow a more specific and fine-tuned modulation of its proteolytic activity.
Collapse
Affiliation(s)
- Sebastian Wetzel
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Lisa Seipold
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| |
Collapse
|
20
|
Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood 2017; 129:1113-1123. [PMID: 28115373 PMCID: PMC5363819 DOI: 10.1182/blood-2016-10-706465] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy caused by the accumulation of genomic lesions that affect the development of T cells. For many years, it has been established that deregulated expression of transcription factors, impairment of the CDKN2A/2B cell-cycle regulators, and hyperactive NOTCH1 signaling play prominent roles in the pathogenesis of this leukemia. In the past decade, systematic screening of T-ALL genomes by high-resolution copy-number arrays and next-generation sequencing technologies has revealed that T-cell progenitors accumulate additional mutations affecting JAK/STAT signaling, protein translation, and epigenetic control, providing novel attractive targets for therapy. In this review, we provide an update on our knowledge of T-ALL pathogenesis, the opportunities for the introduction of targeted therapy, and the challenges that are still ahead.
Collapse
Affiliation(s)
- Tiziana Girardi
- Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Carmen Vicente
- Leuven Cancer Institute (LKI), Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Jan Cools
- Leuven Cancer Institute (LKI), Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute (LKI), Leuven, Belgium
| |
Collapse
|
21
|
Revandkar A, Perciato ML, Toso A, Alajati A, Chen J, Gerber H, Dimitrov M, Rinaldi A, Delaleu N, Pasquini E, D'Antuono R, Pinton S, Losa M, Gnetti L, Arribas A, Fraering P, Bertoni F, Nepveu A, Alimonti A. Inhibition of Notch pathway arrests PTEN-deficient advanced prostate cancer by triggering p27-driven cellular senescence. Nat Commun 2016; 7:13719. [PMID: 27941799 PMCID: PMC5159884 DOI: 10.1038/ncomms13719] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/27/2016] [Indexed: 12/17/2022] Open
Abstract
Activation of NOTCH signalling is associated with advanced prostate cancer and treatment resistance in prostate cancer patients. However, the mechanism that drives NOTCH activation in prostate cancer remains still elusive. Moreover, preclinical evidence of the therapeutic efficacy of NOTCH inhibitors in prostate cancer is lacking. Here, we provide evidence that PTEN loss in prostate tumours upregulates the expression of ADAM17, thereby activating NOTCH signalling. Using prostate conditional inactivation of both Pten and Notch1 along with preclinical trials carried out in Pten-null prostate conditional mouse models, we demonstrate that Pten-deficient prostate tumours are addicted to the NOTCH signalling. Importantly, we find that pharmacological inhibition of γ-secretase promotes growth arrest in both Pten-null and Pten/Trp53-null prostate tumours by triggering cellular senescence. Altogether, our findings describe a novel pro-tumorigenic network that links PTEN loss to ADAM17 and NOTCH signalling, thus providing the rational for the use of γ-secretase inhibitors in advanced prostate cancer patients.
Collapse
Affiliation(s)
- Ajinkya Revandkar
- Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona CH 6500, Switzerland
- Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne CH 1011, Switzerland
| | - Maria Luna Perciato
- Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona CH 6500, Switzerland
| | - Alberto Toso
- Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona CH 6500, Switzerland
| | - Abdullah Alajati
- Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona CH 6500, Switzerland
| | - Jingjing Chen
- Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona CH 6500, Switzerland
- Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne CH 1011, Switzerland
| | - Hermeto Gerber
- Brain Mind Institute and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland
- Foundation Eclosion, Plan-Les-Ouates CH 1228, Switzerland
- Campus Biotech Innovation Park, Geneva CH 1202, Switzerland
| | - Mitko Dimitrov
- Brain Mind Institute and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona CH 6500, Switzerland
| | - Nicolas Delaleu
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona CH 6500, Switzerland
| | - Rocco D'Antuono
- Institute for Research in Biomedicine, University of Italian Switzerland, Via Vincenzo Vela 6, Bellinzona 6500, Switzerland
| | - Sandra Pinton
- Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona CH 6500, Switzerland
| | - Marco Losa
- Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona CH 6500, Switzerland
| | - Letizia Gnetti
- Pathology Unit, University Hospital of Parma, Parma 43126, Italy
| | - Alberto Arribas
- Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona CH 6500, Switzerland
| | - Patrick Fraering
- Brain Mind Institute and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland
- Foundation Eclosion, Plan-Les-Ouates CH 1228, Switzerland
- Campus Biotech Innovation Park, Geneva CH 1202, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona CH 6500, Switzerland
| | - Alain Nepveu
- Rosalind and Morris Goodman Cancer Research Center, Department of Oncology, Biochemistry and Medicine, McGill University, Montreal, Quebec, Canada H3A1A3
| | - Andrea Alimonti
- Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona CH 6500, Switzerland
- Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne CH 1011, Switzerland
| |
Collapse
|
22
|
Yahyanejad S, Theys J, Vooijs M. Targeting Notch to overcome radiation resistance. Oncotarget 2016; 7:7610-28. [PMID: 26713603 PMCID: PMC4884942 DOI: 10.18632/oncotarget.6714] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy represents an important therapeutic strategy in the treatment of cancer cells. However, it often fails to eliminate all tumor cells because of the intrinsic or acquired treatment resistance, which is the most common cause of tumor recurrence. Emerging evidences suggest that the Notch signaling pathway is an important pathway mediating radiation resistance in tumor cells. Successful targeting of Notch signaling requires a thorough understanding of Notch regulation and the context-dependent interactions between Notch and other therapeutically relevant pathways. Understanding these interactions will increase our ability to design rational combination regimens that are more likely to be safe and effective. Here we summarize the role of Notch in mediating resistance to radiotherapy, the different strategies to block Notch in cancer cells and how treatment scheduling can improve tumor response. Finally, we discuss a need for reliable Notch related biomarkers in specific tumors to measure pathway activity and to allow identification of a subset of patients who are likely to benefit from Notch targeted therapies.
Collapse
Affiliation(s)
- Sanaz Yahyanejad
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Jan Theys
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
23
|
Qiu H, Tang X, Ma J, Shaverdashvili K, Zhang K, Bedogni B. Notch1 Autoactivation via Transcriptional Regulation of Furin, Which Sustains Notch1 Signaling by Processing Notch1-Activating Proteases ADAM10 and Membrane Type 1 Matrix Metalloproteinase. Mol Cell Biol 2015; 35:3622-32. [PMID: 26283728 PMCID: PMC4589600 DOI: 10.1128/mcb.00116-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/27/2015] [Accepted: 08/02/2015] [Indexed: 01/06/2023] Open
Abstract
Notch1 is an evolutionarily conserved transmembrane receptor involved in melanoma growth. Notch1 is first cleaved by furin in the Golgi apparatus to produce the biologically active heterodimer. Following ligand binding, Notch1 is cleaved at the cell membrane by proteases such as ADAM10 and -17 and membrane type 1 matrix metalloproteinase (MT1-MMP), the latter of which we recently identified as a novel protease involved in Notch1 processing. The final cleavage is γ-secretase dependent and releases the active Notch intracellular domain (NIC). We now demonstrate that Notch1 directly regulates furin expression. Aside from activating Notch1, furin cleaves and activates several proteases, including MT1-MMP, ADAM10, and ADAM17. By chromatin immunoprecipitation and a reporter assay, we demonstrate that Notch1 binds at position -1236 of the furin promoter and drives furin expression. The Notch1-dependent enhancement of furin expression increases the activities of MT1-MMP and ADAM10 but not that of ADAM17, as demonstrated by short hairpin RNA (shRNA) knockdown of furin, and promotes the cleavage of Notch1 itself. These data highlight a novel positive-feedback loop whereby Notch1-dependent furin expression can induce Notch1 signaling by increasing Notch1 processing and by potentiating the activity of the proteases responsible for Notch1 activation. This leads to Notch1 signal amplification, which can promote melanoma tumor growth and progression, as demonstrated by the inhibition of cell migration and invasion upon furin inhibition downstream of Notch1. Disruption of such feedback signaling might represent an avenue for the treatment of melanoma.
Collapse
Affiliation(s)
- Hong Qiu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Xiaoying Tang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jun Ma
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Khvaramze Shaverdashvili
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Keman Zhang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Barbara Bedogni
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Habets RAJ, Groot AJ, Yahyanejad S, Tiyanont K, Blacklow SC, Vooijs M. Human NOTCH2 Is Resistant to Ligand-independent Activation by Metalloprotease Adam17. J Biol Chem 2015; 290:14705-16. [PMID: 25918160 DOI: 10.1074/jbc.m115.643676] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 12/22/2022] Open
Abstract
Cell surface receptors of the NOTCH family of proteins are activated by ligand induced intramembrane proteolysis. Unfolding of the extracellular negative regulatory region (NRR), enabling successive proteolysis by the enzymes Adam10 and γ-secretase, is rate-limiting in NOTCH activation. Mutations in the NOTCH1 NRR are associated with ligand-independent activation and frequently found in human T-cell malignancies. In mammals four NOTCH receptors and five Delta/Jagged ligands exist, but mutations in the NRR are only rarely reported for receptors other than NOTCH1. Using biochemical and functional assays, we compared the molecular mechanisms of ligand-independent signaling in NOTCH1 and the highly related NOTCH2 receptor. Both murine Notch1 and Notch2 require the metalloprotease protease Adam17, but not Adam10 during ligand-independent activation. Interestingly, the human NOTCH2 receptor is resistant to ligand-independent activation compared with its human homologs or murine orthologs. Taken together, our data reveal subtle but functionally important differences for the NRR among NOTCH paralogs and homologs.
Collapse
Affiliation(s)
- Roger A J Habets
- From the Department of Radiotherapy (MaastRO)/GROW, School for Developmental Biology & Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Arjan J Groot
- From the Department of Radiotherapy (MaastRO)/GROW, School for Developmental Biology & Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Sanaz Yahyanejad
- From the Department of Radiotherapy (MaastRO)/GROW, School for Developmental Biology & Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Kittichoat Tiyanont
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02215, and
| | - Stephen C Blacklow
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02215, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Marc Vooijs
- From the Department of Radiotherapy (MaastRO)/GROW, School for Developmental Biology & Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands,
| |
Collapse
|
25
|
Kushwah R, Guezguez B, Lee JB, Hopkins CI, Bhatia M. Pleiotropic roles of Notch signaling in normal, malignant, and developmental hematopoiesis in the human. EMBO Rep 2014; 15:1128-38. [PMID: 25252682 DOI: 10.15252/embr.201438842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Notch signaling pathway is evolutionarily conserved across species and plays an important role in regulating cell differentiation, proliferation, and survival. It has been implicated in several different hematopoietic processes including early hematopoietic development as well as adult hematological malignancies in humans. This review focuses on recent developments in understanding the role of Notch signaling in the human hematopoietic system with an emphasis on hematopoietic initiation from human pluripotent stem cells and regulation within the bone marrow. Based on recent insights, we summarize potential strategies for treatment of human hematological malignancies toward the concept of targeting Notch signaling for fate regulation.
Collapse
Affiliation(s)
- Rahul Kushwah
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Borhane Guezguez
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Jung Bok Lee
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Claudia I Hopkins
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Mickie Bhatia
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
26
|
Caolo V, Swennen G, Chalaris A, Wagenaar A, Verbruggen S, Rose-John S, Molin DGM, Vooijs M, Post MJ. ADAM10 and ADAM17 have opposite roles during sprouting angiogenesis. Angiogenesis 2014; 18:13-22. [PMID: 25218057 DOI: 10.1007/s10456-014-9443-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
Abstract
During angiogenesis, endothelial tip cells start sprouting and express delta-like 4 (DLL4) downstream of vascular endothelial growth factor (VEGF). DLL4 subsequently activates Notch in the adjacent stalk cells suppressing sprouting. VEGF also activates A disintegrin and metalloproteases (ADAMs) that induce Notch ectodomain shedding. Although two major ADAMs, i.e. ADAM10 and ADAM17, have been implicated in Notch-signalling activation, their apparent different roles in angiogenesis have not been fully understood yet. The objective of this study was to determine the roles of ADAM10 and ADAM17 activity in angiogenesis. In mouse retinas, ADAM10 or γ-secretase inhibition induced vascular sprouting and density in vivo, whereas attenuation of both ADAM10 and ADAM17 activity produced the opposite phenotype. Retinal blood vessel analysis in ADAM17 hypomorphic mice confirmed the requirement for ADAM17 activity in angiogenesis. However, ADAM17 inhibition did not phenocopy blood vessel increase by Notch blockage. These observations suggest that ADAM17 regulates other fundamental players during angiogenesis besides Notch, which were not affected by ADAM10. By means of an angiogenesis proteome assay, we found that ADAM17 inhibition induced the expression of a naturally occurring inhibitor of angiogenesis Thrombospondin 1 (TSP1), whereas ADAM10 inhibition did not. Accordingly, ADAM17 overexpression downregulated TSP1 expression, and the TSP1 inhibitor LSKL rescued angiogenesis in the tube formation assay downstream of VEGF in the presence of ADAM17 inhibition. Finally, genetic and pharmacological ADAM17 blockade resulted in increased TSP1 expression in mouse retina. Altogether, our results show that ADAM10 and ADAM17 have opposite effects on sprouting angiogenesis that may be unrelated to Notch signalling and involves differentially expressed anti-angiogenic proteins such as TSP1.
Collapse
Affiliation(s)
- V Caolo
- Department of Physiology, CARIM, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Regulated proteolysis of NOTCH2 and NOTCH3 receptors by ADAM10 and presenilins. Mol Cell Biol 2014; 34:2822-32. [PMID: 24842903 DOI: 10.1128/mcb.00206-14] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammals, there are four NOTCH receptors and five Delta-Jagged-type ligands regulating many aspects of embryonic development and adult tissue homeostasis. NOTCH proteins are type I transmembrane receptors that interact with ligands on adjacent cells and are activated by regulated intramembrane proteolysis (RIP). The activation mechanism of NOTCH1 receptors upon ligand binding is well understood and requires cleavage by ADAM10 metalloproteases prior to intramembranous cleavage by γ-secretase. How the other human NOTCH receptor homologues are activated upon ligand binding is not known. Here, we dissect the proteolytic activation mechanism of the NOTCH2 and NOTCH3 receptors. We show that NOTCH2 and NOTCH3 signaling can be triggered by both Delta-Jagged-type ligands and requires ADAM10 and presenilin-1 or -2. Importantly, we did not find any role for the highly related ADAM17/TACE (tumor necrosis factor alpha-converting enzyme) protease in ligand-induced NOTCH2 or NOTCH3 signaling. These results demonstrate that canonical ligand-induced proteolysis of the NOTCH1, -2, and -3 receptors strictly depends on consecutive cleavage of these receptors by ADAM10 and the presenilin-containing γ-secretase complex, leading to transcriptional activation.
Collapse
|
28
|
Ma J, Tang X, Wong P, Jacobs B, Borden EC, Bedogni B. Noncanonical activation of Notch1 protein by membrane type 1 matrix metalloproteinase (MT1-MMP) controls melanoma cell proliferation. J Biol Chem 2014; 289:8442-9. [PMID: 24492617 DOI: 10.1074/jbc.m113.516039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Notch1 is an evolutionarily conserved signaling molecule required for stem cell maintenance that is inappropriately reactivated in several cancers. We have previously shown that melanomas reactivate Notch1 and require its function for growth and survival. However, no Notch1-activating mutations have been observed in melanoma, suggesting the involvement of other activating mechanisms. Notch1 activation requires two cleavage steps: first by a protease and then by γ-secretase, which releases the active intracellular domain (Notch1(NIC)). Interestingly, although ADAM10 and -17 are generally accepted as the proteases responsible of Notch1 cleavage, here we show that MT1-MMP, a membrane-tethered matrix metalloproteinase involved in the pathogenesis of a number of tumors, is a novel protease required for the cleavage of Notch1 in melanoma cells. We find that active Notch1 and MT1-MMP expression correlate significantly in over 70% of melanoma tumors and 80% of melanoma cell lines, whereas such correlation does not exist between Notch1(NIC) and ADAM10 or -17. Modulation of MT1-MMP expression in melanoma cells affects Notch1 cleavage, whereas MT1-MMP expression in ADAM10/17 double knock-out fibroblasts restores the processing of Notch1, indicating that MT1-MMP is sufficient to promote Notch1 activation independently of the canonical proteases. Importantly, we find that MT1-MMP interacts with Notch1 at the cell membrane, supporting a potential direct cleavage mechanism of MT1-MMP on Notch1, and that MT1-MMP-dependent activation of Notch1 sustains melanoma cell growth. Together, the data highlight a novel mechanism of activation of Notch1 in melanoma cells and identify Notch1 as a new MT1-MMP substrate that plays important biological roles in melanoma.
Collapse
Affiliation(s)
- Jun Ma
- From the Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | | | | | | | | | | |
Collapse
|
29
|
Tosello V, Ferrando AA. The NOTCH signaling pathway: role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy. Ther Adv Hematol 2013; 4:199-210. [PMID: 23730497 DOI: 10.1177/2040620712471368] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) is characterized by aberrant activation of NOTCH1 in over 60% of T-ALL cases. The high prevalence of activating NOTCH1 mutations highlights the critical role of NOTCH signaling in the pathogenesis of this disease and has prompted the development of therapeutic approaches targeting the NOTCH signaling pathway. Small molecule gamma secretase inhibitors (GSIs) can effectively inhibit oncogenic NOTCH1 and are in clinical testing for the treatment of T-ALL. Treatment with GSIs and glucocorticoids are strongly synergistic and may overcome the gastrointestinal toxicity associated with systemic inhibition of the NOTCH pathway. In addition, emerging new anti-NOTCH1 therapies include selective inhibition of NOTCH1 with anti-NOTCH1 antibodies and stapled peptides targeting the NOTCH transcriptional complex in the nucleus.
Collapse
|
30
|
Abstract
Proteolytic enzymes belonging to the A Disintegin And Metalloproteinase (ADAM) family are able to cleave transmembrane proteins close to the cell surface, in a process referred to as ectodomain shedding. Substrates for ADAMs include growth factors, cytokines, chemokines and adhesion molecules, and, as such, many ADAM proteins play crucial roles in cell-cell adhesion, extracellular and intracellular signaling, cell differentiation and cell proliferation. In this Review, we summarize the fascinating roles of ADAMs in embryonic and adult tissue development in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Silvio Weber
- Heart Research Centre Göttingen, Universitaetsmedizin Göttingen, Department of Cardiology and Pneumology, Georg-August-University Göttingen, Germany
| | | |
Collapse
|
31
|
|
32
|
Simioni C, Neri LM, Tabellini G, Ricci F, Bressanin D, Chiarini F, Evangelisti C, Cani A, Tazzari PL, Melchionda F, Pagliaro P, Pession A, McCubrey JA, Capitani S, Martelli AM. Cytotoxic activity of the novel Akt inhibitor, MK-2206, in T-cell acute lymphoblastic leukemia. Leukemia 2012; 26:2336-42. [PMID: 22614243 DOI: 10.1038/leu.2012.136] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplastic disorder arising from T-cell progenitors. T-ALL accounts for 15% of newly diagnosed ALL cases in children and 25% in adults. Although the prognosis of T-ALL has improved, due to the use of polychemotherapy schemes, the outcome of relapsed/chemoresistant T-ALL cases is still poor. A signaling pathway that is frequently upregulated in T-ALL, is the phosphatidylinositol 3-kinase/Akt/mTOR network. To explore whether Akt could represent a target for therapeutic intervention in T-ALL, we evaluated the effects of the novel allosteric Akt inhibitor, MK-2206, on a panel of human T-ALL cell lines and primary cells from T-ALL patients. MK-2206 decreased T-ALL cell line viability by blocking leukemic cells in the G(0)/G(1) phase of the cell cycle and inducing apoptosis. MK-2206 also induced autophagy, as demonstrated by an increase in the 14-kDa form of LC3A/B. Western blotting analysis documented a concentration-dependent dephosphorylation of Akt and its downstream targets, GSK-3α/β and FOXO3A, in response to MK-2206. MK-2206 was cytotoxic to primary T-ALL cells and induced apoptosis in a T-ALL patient cell subset (CD34(+)/CD4(-)/CD7(-)), which is enriched in leukemia-initiating cells. Taken together, our findings indicate that Akt inhibition may represent a potential therapeutic strategy in T-ALL.
Collapse
Affiliation(s)
- C Simioni
- Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tzoneva G, Ferrando AA. Recent advances on NOTCH signaling in T-ALL. Curr Top Microbiol Immunol 2012; 360:163-82. [PMID: 22673746 DOI: 10.1007/82_2012_232] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NOTCH1 receptor signaling plays a central role in T-cell lineage specification and in supporting the growth and proliferation of immature T-cell progenitors in the thymus during lymphoid development. In T-cell acute lymphoblastic leukemia (T-ALL), a tumor resulting from the malignant transformation of T-cell progenitors, aberrant and constitutively active NOTCH1 signaling triggered by activating mutations in the NOTCH1 gene contributes to oncogenic transformation and is a hallmark of this disease. Most notably, small molecule γ-secretase inhibitors (GSIs) can effectively block NOTCH1 signaling in T-ALL, and could be exploited as a targeted therapy in this disease. In addition, a number of emerging anti-NOTCH therapeutic strategies including anti-NOTCH1 inhibitory antibodies, small peptide inhibitors of NOTCH signaling and combination therapies with GSIs and glucocorticoids, have recently been proposed. Finally, the identification of NOTCH1 mutations in solid tumors and chronic lymphocytic leukemias has increased even further the clinical relevance of NOTCH signaling as a therapeutic target in human cancer. Here we review our current understanding of NOTCH1-induced transformation, the mechanisms of action of oncogenic NOTCH1 in T-ALL and the therapeutic and prognostic implications of NOTCH1 mutations in T-ALL.
Collapse
Affiliation(s)
- Gannie Tzoneva
- Institute for Cancer Genetics and Graduate Program in Pathobiology and Molecular Medicine, Columbia University Medical Center, New York 10032, USA
| | | |
Collapse
|