1
|
Luo J, Zhou Y, Wang M, Zhang J, Jiang E. Inflammasomes: potential therapeutic targets in hematopoietic stem cell transplantation. Cell Commun Signal 2024; 22:596. [PMID: 39695742 DOI: 10.1186/s12964-024-01974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
The realm of hematopoietic stem cell transplantation (HSCT) has witnessed remarkable advancements in elevating the cure and survival rates for patients with both malignant and non-malignant hematologic diseases. Nevertheless, a considerable number of patients continue to face challenges, including transplant-related complications, infection, graft failure, and mortality. Inflammasomes, the multi-protein complexes of the innate immune system, respond to various danger signals by releasing inflammatory cytokines and even mediating cell death. While moderate activation of inflammasomes is essential for immune defense and homeostasis maintenance, excessive activation precipitates inflammatory damage. The intricate interplay between HSCT and inflammasomes arises from their pivotal roles in immune responses and inflammation. This review examines the molecular architecture and composition of various types of inflammasomes, highlighting their activation and effector mechanisms within the context of the HSCT process and its associated complications. Additionally, we summarize the therapeutic implications of targeting inflammasomes and related factors in HSCT.
Collapse
Affiliation(s)
- Jieya Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yunxia Zhou
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, 300051, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Junan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
2
|
Deng J, Tan Y, Xu Z, Wang H. Advances in hematopoietic stem cells ex vivo expansion associated with bone marrow niche. Ann Hematol 2024; 103:5035-5057. [PMID: 38684510 DOI: 10.1007/s00277-024-05773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Hematopoietic stem cells (HSCs) are an ideal source for the treatment of many hematological diseases and malignancies, as well as diseases of other systems, because of their two important features, self-renewal and multipotential differentiation, which have the ability to rebuild the blood system and immune system of the body. However, so far, the insufficient number of available HSCs, whether from bone marrow (BM), mobilized peripheral blood or umbilical cord blood, is still the main restricting factor for the clinical application. Therefore, strategies to expand HSCs numbers and maintain HSCs functions through ex vivo culture are urgently required. In this review, we outline the basic biology characteristics of HSCs, and focus on the regulatory factors in BM niche affecting the functions of HSCs. Then, we introduce several representative strategies used for HSCs from these three sources ex vivo expansion associated with BM niche. These findings have deepened our understanding of the mechanisms by which HSCs balance self-renewal and differentiation and provided a theoretical basis for the efficient clinical HSCs expansion.
Collapse
Affiliation(s)
- Ju Deng
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Tan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhifang Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Şeker ME, Erol ÖD, Pervin B, Wagemaker G, van Til NP, Aerts-Kaya F. Assessment of non-myelotoxic agents as a preparatory regimen for hematopoietic stem cell gene therapy. Hum Cell 2024; 38:9. [PMID: 39460845 DOI: 10.1007/s13577-024-01130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
RAG2 deficiency is characterized by a lack of B and T lymphocytes, causing severe lethal infections. Currently, RAG2 deficiency is treated with a Hematopoietic Stem Cell transplantation (HSCT). Most conditioning regimens used before HSCT consist of alkylating myelotoxic agents with or without irradiation and affect growth and development of pediatric patients. Here, we developed a non-myelotoxic regimen using G-CSF, VLA-4I or AMD3100. These agents are known HSC mobilizers or affect bone marrow (BM) permeability and may support the homing of HSCs to the BM, without inducing major side effects. Female Rag2-/- mice were pre-treated with Busulfan (BU), G-CSF, VLA-4I or AMD3100 and transplanted with male BM cells transduced with a lentiviral vector carrying codon optimized human RAG2 (RAG2co). Peripheral blood cell counts increased significantly after G-CSF, VLA-4I and AMD3100 treatment, but not after BU. Reconstitution of PB lymphocytes was comparable for all groups with full immune reconstitution at 6 months post transplantation, despite different methods of conditioning. Survival of mice pre-treated with non-myelotoxic agents was significantly higher than after BU treatment. Here, we show that the non-myelotoxic agents G-CSF, VLA-4I, and AMD3100 are highly effective as conditioning regimen before HSC gene therapy and can be used as an alternative to BU.
Collapse
Affiliation(s)
- Mehmet Emin Şeker
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Özgür Doğuş Erol
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Burcu Pervin
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Gerard Wagemaker
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
- Department of Hematology, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Niek P van Til
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey.
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
- Hacettepe University Experimental Animals Application and Research Center (HÜDHAM), Hacettepe University, Ankara, Turkey.
- Hacettepe University Advanced Techologies Application and Research Center (HÜNİTEK), Hacettepe University, Ankara, Turkey.
| |
Collapse
|
4
|
Rodríguez-Eguren A, Bueno-Fernandez C, Gómez-Álvarez M, Francés-Herrero E, Pellicer A, Bellver J, Seli E, Cervelló I. Evolution of biotechnological advances and regenerative therapies for endometrial disorders: a systematic review. Hum Reprod Update 2024; 30:584-613. [PMID: 38796750 PMCID: PMC11369227 DOI: 10.1093/humupd/dmae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/12/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND The establishment and maintenance of pregnancy depend on endometrial competence. Asherman syndrome (AS) and intrauterine adhesions (IUA), or endometrial atrophy (EA) and thin endometrium (TE), can either originate autonomously or arise as a result from conditions (i.e. endometritis or congenital hypoplasia), or medical interventions (e.g. surgeries, hormonal therapies, uterine curettage or radiotherapy). Affected patients may present an altered or inadequate endometrial lining that hinders embryo implantation and increases the risk of poor pregnancy outcomes and miscarriage. In humans, AS/IUA and EA/TE are mainly treated with surgeries or pharmacotherapy, however the reported efficacy of these therapeutic approaches remains unclear. Thus, novel regenerative techniques utilizing stem cells, growth factors, or tissue engineering have emerged to improve reproductive outcomes. OBJECTIVE AND RATIONALE This review comprehensively summarizes the methodologies and outcomes of emerging biotechnologies (cellular, acellular, and bioengineering approaches) to treat human endometrial pathologies. Regenerative therapies derived from human tissues or blood which were studied in preclinical models (in vitro and in vivo) and clinical trials are discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase was conducted to identify original peer-reviewed studies published in English between January 2000 and September 2023. The search terms included: human, uterus, endometrium, Asherman syndrome, intrauterine adhesions, endometrial atrophy, thin endometrium, endometritis, congenital hypoplasia, curettage, radiotherapy, regenerative therapy, bioengineering, stem cells, vesicles, platelet-rich plasma, biomaterials, microfluidic, bioprinting, organoids, hydrogel, scaffold, sheet, miRNA, sildenafil, nitroglycerine, aspirin, growth hormone, progesterone, and estrogen. Preclinical and clinical studies on cellular, acellular, and bioengineering strategies to repair or regenerate the human endometrium were included. Additional studies were identified through manual searches. OUTCOMES From a total of 4366 records identified, 164 studies (3.8%) were included for systematic review. Due to heterogeneity in the study design and measured outcome parameters in both preclinical and clinical studies, the findings were evaluated qualitatively and quantitatively without meta-analysis. Groups using stem cell-based treatments for endometrial pathologies commonly employed mesenchymal stem cells (MSCs) derived from the human bone marrow or umbilical cord. Alternatively, acellular therapies based on platelet-rich plasma (PRP) or extracellular vesicles are gaining popularity. These are accompanied by the emergence of bioengineering strategies based on extracellular matrix (ECM)-derived hydrogels or synthetic biosimilars that sustain local delivery of cells and growth factors, reporting promising results. Combined therapies that target multiple aspects of tissue repair and regeneration remain in preclinical testing but have shown translational value. This review highlights the myriad of therapeutic material sources, administration methods, and carriers that have been tested. WIDER IMPLICATIONS Therapies that promote endometrial proliferation, vascular development, and tissue repair may help restore endometrial function and, ultimately, fertility. Based on the existing evidence, cost, accessibility, and availability of the therapies, we propose the development of triple-hit regenerative strategies, potentially combining high-yield MSCs (e.g. from bone marrow or umbilical cord) with acellular treatments (PRP), possibly integrated in ECM hydrogels. Advances in biotechnologies together with insights from preclinical models will pave the way for developing personalized treatment regimens for patients with infertility-causing endometrial disorders such as AS/IUA, EA/TE, and endometritis. REGISTRATION NUMBER https://osf.io/th8yf/.
Collapse
Affiliation(s)
- Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Clara Bueno-Fernandez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - María Gómez-Álvarez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Emilio Francés-Herrero
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Antonio Pellicer
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Rome, Rome, Italy
| | - José Bellver
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Valencia, Valencia, Spain
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| |
Collapse
|
5
|
Woo SY, Shim WS, Lee H, Baryawno N, Song P, Kim BS, Yoon S, Oh SO, Lee D. 27-Hydroxycholesterol Negatively Affects the Function of Bone Marrow Endothelial Cells in the Bone Marrow. Int J Mol Sci 2024; 25:10517. [PMID: 39408846 PMCID: PMC11477443 DOI: 10.3390/ijms251910517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Hematopoietic stem cells (HSCs) reside in specific microenvironments that facilitate their regulation through both internal mechanisms and external cues. Bone marrow endothelial cells (BMECs), which are found in one of these microenvironments, play a vital role in controlling the self-renewal and differentiation of HSCs during hematological stress. We previously showed that 27-hydroxycholesterol (27HC) administration of exogenous 27HC negatively affected the population of HSCs and progenitor cells by increasing the reactive oxygen species levels in the bone marrow. However, the effect of 27HC on BMECs is unclear. To determine the function of 27HC in BMECs, we employed magnetic-activated cell sorting to isolate CD31+ BMECs and CD31- cells. We demonstrated the effect of 27HC on CD31+ BMECs and HSCs. Treatment with exogenous 27HC led to a decrease in the number of BMECs and reduced the expression of adhesion molecules that are crucial for maintaining HSCs. Our results demonstrate that BMECs are sensitively affected by 27HC and are crucial for HSC survival.
Collapse
Affiliation(s)
- Soo-Yeon Woo
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.-Y.W.); (W.-S.S.); (H.L.); (P.S.)
| | - Wan-Seog Shim
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.-Y.W.); (W.-S.S.); (H.L.); (P.S.)
| | - Hyejin Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.-Y.W.); (W.-S.S.); (H.L.); (P.S.)
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Parkyong Song
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.-Y.W.); (W.-S.S.); (H.L.); (P.S.)
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.-Y.W.); (W.-S.S.); (H.L.); (P.S.)
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
6
|
Ludwig-Husemann A, Schertl P, Shrivastava A, Geckle U, Hafner J, Schaarschmidt F, Willenbacher N, Freudenberg U, Werner C, Lee-Thedieck C. A Multifunctional Nanostructured Hydrogel as a Platform for Deciphering Niche Interactions of Hematopoietic Stem and Progenitor Cells. Adv Healthc Mater 2024; 13:e2304157. [PMID: 38870600 DOI: 10.1002/adhm.202304157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/10/2024] [Indexed: 06/15/2024]
Abstract
For over half a century, hematopoietic stem cells (HSCs) have been used for transplantation therapy to treat severe hematologic diseases. Successful outcomes depend on collecting sufficient donor HSCs as well as ensuring efficient engraftment. These processes are influenced by dynamic interactions of HSCs with the bone marrow niche, which can be revealed by artificial niche models. Here, a multifunctional nanostructured hydrogel is presented as a 2D platform to investigate how the interdependencies of cytokine binding and nanopatterned adhesive ligands influence the behavior of human hematopoietic stem and progenitor cells (HSPCs). The results indicate that the degree of HSPC polarization and motility, observed when cultured on gels presenting the chemokine SDF-1α and a nanoscale-defined density of a cellular (IDSP) or extracellular matrix (LDV) α4β1 integrin binding motif, are differently influenced on hydrogels functionalized with the different ligand types. Further, SDF-1α promotes cell polarization but not motility. Strikingly, the degree of differentiation correlates negatively with the nanoparticle spacing, which determines ligand density, but only for the cellular-derived IDSP motif. This mechanism potentially offers a means of predictably regulating early HSC fate decisions. Consequently, the innovative multifunctional hydrogel holds promise for deciphering dynamic HSPC-niche interactions and refining transplantation therapy protocols.
Collapse
Affiliation(s)
- Anita Ludwig-Husemann
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter Schertl
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Ananya Shrivastava
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Udo Geckle
- Institute for Applied Materials - Energy Storage Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Johanna Hafner
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, 76131, Karlsruhe, Germany
| | - Frank Schaarschmidt
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, 76131, Karlsruhe, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden e.V, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden e.V, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technical University Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
7
|
Wang HC, Chen R, Yang W, Li Y, Muthukumar R, Patel RM, Casey EB, Denby E, Magee JA. Kmt2c restricts G-CSF-driven HSC mobilization and granulocyte production in a methyltransferase-independent manner. Cell Rep 2024; 43:114542. [PMID: 39046877 PMCID: PMC11423277 DOI: 10.1016/j.celrep.2024.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) is widely used to enhance myeloid recovery after chemotherapy and to mobilize hematopoietic stem cells (HSCs) for transplantation. Unfortunately, through the course of chemotherapy, cancer patients can acquire leukemogenic mutations that cause therapy-related myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). This raises the question of whether therapeutic G-CSF might potentiate therapy-related MDS/AML by disproportionately stimulating mutant HSCs and other myeloid progenitors. A common mutation in therapy-related MDS/AML involves chromosome 7 deletions that inactivate many tumor suppressor genes, including KMT2C. Here, we show that Kmt2c deletions hypersensitize murine HSCs and myeloid progenitors to G-CSF, as evidenced by increased HSC mobilization and enhanced granulocyte production from granulocyte-monocyte progenitors (GMPs). Furthermore, Kmt2c attenuates the G-CSF response independently from its SET methyltransferase function. Altogether, the data raise concerns that monosomy 7 can hypersensitize progenitors to G-CSF, such that clinical use of G-CSF may amplify the risk of therapy-related MDS/AML.
Collapse
Affiliation(s)
- Helen C Wang
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Ran Chen
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Yanan Li
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Rohini Muthukumar
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Riddhi M Patel
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Emily B Casey
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Elisabeth Denby
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeffrey A Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Ruminski PG, Rettig MP, DiPersio JF. Development of VLA4 and CXCR4 Antagonists for the Mobilization of Hematopoietic Stem and Progenitor Cells. Biomolecules 2024; 14:1003. [PMID: 39199390 PMCID: PMC11353233 DOI: 10.3390/biom14081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
The treatment of patients diagnosed with hematologic malignancies typically includes hematopoietic stem cell transplantation (HSCT) as part of a therapeutic standard of care. The primary graft source of hematopoietic stem and progenitor cells (HSPCs) for HSCT is mobilized from the bone marrow into the peripheral blood of allogeneic donors or patients. More recently, these mobilized HSPCs have also been the source for gene editing strategies to treat diseases such as sickle-cell anemia. For a HSCT to be successful, it requires the infusion of a sufficient number of HSPCs that are capable of adequate homing to the bone marrow niche and the subsequent regeneration of stable trilineage hematopoiesis in a timely manner. Granulocyte-colony-stimulating factor (G-CSF) is currently the most frequently used agent for HSPC mobilization. However, it requires five or more daily infusions to produce an adequate number of HSPCs and the use of G-CSF alone often results in suboptimal stem cell yields in a significant number of patients. Furthermore, there are several undesirable side effects associated with G-CSF, and it is contraindicated for use in sickle-cell anemia patients, where it has been linked to serious vaso-occlusive and thrombotic events. The chemokine receptor CXCR4 and the cell surface integrin α4β1 (very late antigen 4 (VLA4)) are both involved in the homing and retention of HSPCs within the bone marrow microenvironment. Preclinical and/or clinical studies have shown that targeted disruption of the interaction of the CXCR4 or VLA4 receptors with their endogenous ligands within the bone marrow niche results in the rapid and reversible mobilization of HSPCs into the peripheral circulation and is synergistic when combined with G-CSF. In this review, we discuss the roles CXCR4 and VLA4 play in bone marrow homing and retention and will summarize more recent development of small-molecule CXCR4 and VLA4 inhibitors that, when combined, can synergistically improve the magnitude, quality and convenience of HSPC mobilization for stem cell transplantation and ex vivo gene therapy after the administration of just a single dose. This optimized regimen has the potential to afford a superior alternative to G-CSF for HSPC mobilization.
Collapse
Affiliation(s)
| | | | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St Louis, MO 63105, USA
| |
Collapse
|
9
|
Li C, Anderson AK, Ruminski P, Rettig M, Karpova D, Kiem HP, DiPersio JF, Lieber A. A simplified G-CSF-free procedure allows for in vivo HSC gene therapy of sickle cell disease in a mouse model. Blood Adv 2024; 8:4089-4101. [PMID: 38843380 PMCID: PMC11342186 DOI: 10.1182/bloodadvances.2024012757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 07/17/2024] Open
Abstract
ABSTRACT We have reported the direct repair of the sickle cell mutation in vivo in a disease model using vectorized prime editors after hematopoietic stem cell (HSC) mobilization with granulocyte colony-stimulating factor (G-CSF)/AMD3100. The use of G-CSF for HSC mobilization is a hurdle for the clinical translation of this approach. Here, we tested a G-CSF-free mobilization regimen using WU-106, an inhibitor of integrin α4β1, plus AMD3100 for in vivo HSC prime editing in sickle cell disease (SCD) mice. Mobilization with WU-106 + AMD3100 in SCD mice was rapid and efficient. In contrast to the G-CSF/AMD3100 approach, mobilization of activated granulocytes and elevation of the key proinflammatory cytokine interleukin-6 in the serum were minimal. The combination of WU-106 + AMD3100 mobilization and IV injection of the prime editing vector together with in vivo selection resulted in ∼23% correction of the SCD mutation in the bone marrow and peripheral blood cells of SCD mice. The treated mice demonstrated phenotypic correction, as reflected by normalized blood parameters and spleen size. Editing frequencies were significantly increased (29%) in secondary recipients, indicating the preferential mobilization/transduction of long-term repopulating HSCs. Using this approach, we found <1% undesired insertions/deletions and no detectable off-target editing at the top-scored potential sites. Our study shows that in vivo transduction to treat SCD can now be done within 2 hours involving only simple IV injections with a good safety profile. The same-day mobilization regimen makes in vivo HSC gene therapy more attractive for resource-poor settings, where SCD does the most damage.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Anna K. Anderson
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Peter Ruminski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michael Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Darja Karpova
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Hans-Peter Kiem
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
10
|
Shi H, Duan Y, Bu X. Analysis of Factors Affecting Hematopoietic Stem Cell Mobilization Efficiency and Early Hematopoietic Reconstruction Indicators during Autologous Peripheral Blood Hematopoietic Stem Cell Transplantation. Glob Med Genet 2024; 11:159-166. [PMID: 38638371 PMCID: PMC11026139 DOI: 10.1055/s-0044-1786006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Purpose To analyze the factors affecting the mobilization efficiency of hematopoietic stem cells and hematopoietic reconstruction indicators during autologous peripheral hematopoietic stem cell transplantation. Methods The clinical data of 54 patients who underwent autologous peripheral blood hematopoietic stem cell mobilization and transplantation at Xuzhou Central Hospital from May 2016 to April 2023 were retrospectively analyzed. The gender, age, disease type, mobilization regimen, number of chemotherapy sessions, G-CSF (granulocyte colony-stimulating factor) dosage, and platelet number at the time of collection were also collected. Moreover, the relationship between these indicators with mobilization results and hematopoietic reconstruction was analyzed. Results Results showed that age, disease type, and number of collections were significantly related to the mobilization results (number of CD34+ hematopoietic stem cells). Furthermore, multivariate analysis showed that the number of collections was an independent factor affecting mobilization efficiency. Similarly, age, platelet value at the time of collection, CD34+ stem cell value during collection, white blood cell count, and number of chemotherapy times were significantly related to the time of megakaryocytic hematopoietic reconstruction. Multifactor analysis found that age and platelet count were independent factors affecting the reconstruction time of the megakaryocytic system. However, no factor was related to the time of granulocyte hematopoietic reconstruction. Conclusion Platelet count and age when collecting hematopoietic stem cells are closely related to megakaryocytic hematopoietic reconstruction and are key indicators of early hematopoietic reconstruction after autologous hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Hao Shi
- Department of Hematology, Xuzhou Central Hospital, Xuzhou, Jiangsu Province, China
| | - Yaya Duan
- Department of Hematology, Xuzhou Central Hospital, Xuzhou, Jiangsu Province, China
| | - Xinting Bu
- Department of Hematology, Xuzhou Central Hospital, Xuzhou, Jiangsu Province, China
| |
Collapse
|
11
|
Biswas N, Bahr A, Howard J, Bonin JL, Grazda R, MacNamara KC. Survivors of polymicrobial sepsis are refractory to G-CSF-induced emergency myelopoiesis and hematopoietic stem and progenitor cell mobilization. Stem Cell Reports 2024; 19:639-653. [PMID: 38608679 PMCID: PMC11103789 DOI: 10.1016/j.stemcr.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Sepsis survivors exhibit immune dysfunction, hematological changes, and increased risk of infection. The long-term impacts of sepsis on hematopoiesis were analyzed using a surgical model of murine sepsis, resulting in 50% survival. During acute disease, phenotypic hematopoietic stem and progenitor cells (HSPCs) were reduced in the bone marrow (BM), concomitant with increased myeloid colony-forming units and extramedullary hematopoiesis. Upon recovery, BM HSPCs were increased and exhibited normal function in the context of transplantation. To evaluate hematopoietic responses in sepsis survivors, we treated recovered sham and cecal ligation and puncture mice with a mobilizing regimen of granulocyte colony-stimulating factor (G-CSF) at day 20 post-surgery. Sepsis survivors failed to undergo emergency myelopoiesis and HSPC mobilization in response to G-CSF administration. G-CSF is produced in response to acute infection and injury to expedite the production of innate immune cells; therefore, our findings contribute to a new understanding of how sepsis predisposes to subsequent infection.
Collapse
Affiliation(s)
- Nirupam Biswas
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Amber Bahr
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Jennifer Howard
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Jesse L Bonin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Rachel Grazda
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Gene therapy for sickle cell disease (SCD) is advancing rapidly, with two transformative products recently approved by the US Food and Drug Administration and numerous others under study. All current gene therapy protocols require ex vivo modification of autologous hematopoietic stem cells (HSCs). However, several SCD-related problems impair HSC collection, including a stressed and damaged bone marrow, potential cytotoxicity by the major therapeutic drug hydroxyurea, and inability to use granulocyte colony stimulating factor, which can precipitate severe vaso-occlusive events. RECENT FINDINGS Peripheral blood mobilization of HSCs using the CXCR4 antagonist plerixafor followed by apheresis collection was recently shown to be safe and effective for most SCD patients and is the current strategy for mobilizing HSCs. However, exceptionally large numbers of HSCs are required to manufacture an adequate cellular product, responses to plerixafor are variable, and most patients require multiple mobilization cycles, increasing the risk for adverse events. For some, gene therapy is prohibited by the failure to obtain adequate numbers of HSCs. SUMMARY Here we review the current knowledge on HSC collection from individuals with SCD and potential improvements that may enhance the safety, efficacy, and availability of gene therapy for this disorder.
Collapse
Affiliation(s)
- Alexis Leonard
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
13
|
Klaus T, Hieber C, Bros M, Grabbe S. Integrins in Health and Disease-Suitable Targets for Treatment? Cells 2024; 13:212. [PMID: 38334604 PMCID: PMC10854705 DOI: 10.3390/cells13030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Integrin receptors are heterodimeric surface receptors that play multiple roles regarding cell-cell communication, signaling, and migration. The four members of the β2 integrin subfamily are composed of an alternative α (CD11a-d) subunit, which determines the specific receptor properties, and a constant β (CD18) subunit. This review aims to present insight into the multiple immunological roles of integrin receptors, with a focus on β2 integrins that are specifically expressed by leukocytes. The pathophysiological role of β2 integrins is confirmed by the drastic phenotype of patients suffering from leukocyte adhesion deficiencies, most often resulting in severe recurrent infections and, at the same time, a predisposition for autoimmune diseases. So far, studies on the role of β2 integrins in vivo employed mice with a constitutive knockout of all β2 integrins or either family member, respectively, which complicated the differentiation between the direct and indirect effects of β2 integrin deficiency for distinct cell types. The recent generation and characterization of transgenic mice with a cell-type-specific knockdown of β2 integrins by our group has enabled the dissection of cell-specific roles of β2 integrins. Further, integrin receptors have been recognized as target receptors for the treatment of inflammatory diseases as well as tumor therapy. However, whereas both agonistic and antagonistic agents yielded beneficial effects in animal models, the success of clinical trials was limited in most cases and was associated with unwanted side effects. This unfavorable outcome is most probably related to the systemic effects of the used compounds on all leukocytes, thereby emphasizing the need to develop formulations that target distinct types of leukocytes to modulate β2 integrin activity for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (T.K.); (C.H.); (M.B.)
| |
Collapse
|
14
|
Epah J, Spohn G, Preiß K, Müller MM, Dörr J, Bauer R, Daqiq-Mirdad S, Schwäble J, Bernas SN, Schmidt AH, Seifried E, Schäfer R. Small volume bone marrow aspirates with high progenitor cell concentrations maximize cell therapy dose manufacture and substantially reduce donor hemoglobin loss. BMC Med 2023; 21:360. [PMID: 37726769 PMCID: PMC10510270 DOI: 10.1186/s12916-023-03059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Bone marrow (BM) transplantation is a life-saving therapy for hematological diseases, and the BM harbors also highly useful (progenitor) cell types for novel cell therapies manufacture. Yet, the BM collection technique is not standardized. METHODS Benchmarking our collection efficiency to BM collections worldwide (N = 1248), we noted a great variability of total nucleated cell (TNC) yields in BM products (HPC-M) with superior performance of our center, where we have implemented a small volume aspirate policy. Thus, we next prospectively aimed to assess the impact of BM collection technique on HPC-M quality. For each BM collection (N = 20 donors), small volume (3 mL) and large volume (10 mL) BM aspirates were sampled at 3 time points and analyzed for cell composition. RESULTS Compared to large volume aspirates, small volume aspirates concentrated more TNCs, immune cells, platelets, hematopoietic stem/progenitor cells, mesenchymal stromal cells (MSCs), and endothelial progenitors. Inversely, the hemoglobin concentration was higher in large volume aspirates indicating more hemoglobin loss. Manufacturing and dosing scenarios showed that small volume aspirates save up to 42% BM volume and 44% hemoglobin for HPC-M donors. Moreover, MSC production efficiency can be increased by more than 150%. CONCLUSIONS We propose to consider small volume BM aspiration as standard technique for BM collection.
Collapse
Affiliation(s)
- Jeremy Epah
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt Am Main, Germany
| | - Gabriele Spohn
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt Am Main, Germany
| | - Kathrin Preiß
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt Am Main, Germany
| | - Markus M Müller
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt Am Main, Germany
| | - Johanna Dörr
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt Am Main, Germany
| | - Rainer Bauer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt Am Main, Germany
| | - Shabnam Daqiq-Mirdad
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt Am Main, Germany
| | - Joachim Schwäble
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt Am Main, Germany
| | | | | | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt Am Main, Germany
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt Am Main, Germany.
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
15
|
Canarutto D, Omer Javed A, Pedrazzani G, Ferrari S, Naldini L. Mobilization-based engraftment of haematopoietic stem cells: a new perspective for chemotherapy-free gene therapy and transplantation. Br Med Bull 2023; 147:108-120. [PMID: 37460391 PMCID: PMC10502445 DOI: 10.1093/bmb/ldad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION In haematopoietic stem cell transplantation (HSCT), haematopoietic stem cells (HSCs) from a healthy donor replace the patient's ones. Ex vivo HSC gene therapy (HSC-GT) is a form of HSCT in which HSCs, usually from an autologous source, are genetically modified before infusion, to generate a progeny of gene-modified cells. In HSCT and HSC-GT, chemotherapy is administered before infusion to free space in the bone marrow (BM) niche, which is required for the engraftment of infused cells. Here, we review alternative chemotherapy-free approaches to niche voidance that could replace conventional regimens and alleviate the morbidity of the procedure. SOURCES OF DATA Literature was reviewed from PubMed-listed peer-reviewed articles. No new data are presented in this article. AREAS OF AGREEMENT Chemotherapy exerts short and long-term toxicity to haematopoietic and non-haematopoietic organs. Whenever chemotherapy is solely used to allow engraftment of donor HSCs, rather than eliminating malignant cells, as in the case of HSC-GT for inborn genetic diseases, non-genotoxic approaches sparing off-target tissues are highly desirable. AREAS OF CONTROVERSY In principle, HSCs can be temporarily moved from the BM niches using mobilizing drugs or selectively cleared with targeted antibodies or immunotoxins to make space for the infused cells. However, translation of these principles into clinically relevant settings is only at the beginning, and whether therapeutically meaningful levels of chimerism can be safely established with these approaches remains to be determined. GROWING POINTS In pre-clinical models, mobilization of HSCs from the niche can be tailored to accommodate the exchange and engraftment of infused cells. Infused cells can be further endowed with a transient engraftment advantage. AREAS TIMELY FOR DEVELOPING RESEARCH Inter-individual efficiency and kinetics of HSC mobilization need to be carefully assessed. Investigations in large animal models of emerging non-genotoxic approaches will further strengthen the rationale and encourage application to the treatment of selected diseases.
Collapse
Affiliation(s)
- Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Attya Omer Javed
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Gabriele Pedrazzani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
| |
Collapse
|
16
|
Magee G, Ragon BK. Allogeneic hematopoietic cell transplantation in acute myeloid leukemia. Best Pract Res Clin Haematol 2023; 36:101466. [PMID: 37353286 DOI: 10.1016/j.beha.2023.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/25/2023]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a curative treatment modality for select patients with acute myeloid leukemia (AML), functioning as a restorative agent following intensified chemo- and/or radiotherapy and also engendering the disease-directed immunologic threat of graft-versus-leukemia effect. Advancements in conditioning regimen intensity, donor availability, and supportive care have broadened the eligibility for allogeneic HCT, reduced rates of transplant related mortality, and improved outcomes over time. There are still obstacles to transplant in AML, offering opportunities for ongoing discovery, including poor recipient fitness, insufficient donor availability for certain populations, and limited access to care. Relapse remains the most common cause of treatment failure and a high priority area of investigative efforts. Post-transplant maintenance and novel applications of cellular therapeutics are expected to usher in a new era of promise for successful HCT in AML and will aim to overcome the remaining barriers impeding favorable outcomes for these patients.
Collapse
Affiliation(s)
- Gray Magee
- Department of Hematologic Oncology and Blood Disorders, The Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Brittany Knick Ragon
- Department of Hematologic Oncology and Blood Disorders, The Levine Cancer Institute, Atrium Health, Charlotte, NC, USA.
| |
Collapse
|
17
|
Crees ZD, Rettig MP, DiPersio JF. Innovations in hematopoietic stem-cell mobilization: a review of the novel CXCR4 inhibitor motixafortide. Ther Adv Hematol 2023; 14:20406207231174304. [PMID: 37250913 PMCID: PMC10214082 DOI: 10.1177/20406207231174304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Hematopoietic stem-cell transplantation (HCT) and stem-cell-based gene therapies rely on the ability to collect sufficient CD34+ hematopoietic stem and progenitor cells (HSPCs), typically via peripheral blood mobilization. Commonly used HSPC mobilization regimens include single-agent granulocyte colony-stimulating factor (G-CSF), plerixafor, chemotherapy, or a combination of these agents. These regimens, however, frequently require multiple days of injections and leukapheresis procedures to collect adequate HSPCs for HCT (minimum = >2 × 106 CD34+ cells/kg; optimal = 5-6 × 106 CD34+ cells/kg). In addition, these regimens frequently yield suboptimal CD34+ HSPC numbers for HSPC-based gene-edited therapies, given the significantly higher HSPC number needed for successful gene-editing and manufacturing. Meanwhile, G-CSF is associated with common adverse events such as bone pain as well as an increased risk of rare but potentially life-threatening splenic rupture. Moreover, G-CSF is unsafe in patients with sickle-cell disease, a key patient population that may benefit from autologous HSPC-based gene-edited therapies, where it has been associated with unacceptable rates of serious vaso-occlusive and thrombotic events. Motixafortide is a novel CXCR4 inhibitor with extended in vivo activity (>48 h) that has been shown in preclinical and clinical trials to rapidly mobilize robust numbers of HSPCs in preparation for HCT, while preferentially mobilizing increased numbers of more primitive HSPCs by immunophenotyping and single-cell RNA expression profiling. In this review, we present a history of stem-cell mobilization and update of recent innovations in novel mobilization strategies with a specific focus on the development of motixafortide, a long-acting CXCR4 inhibitor, as a novel HSPC mobilizing agent.
Collapse
Affiliation(s)
- Zachary D. Crees
- Division of Oncology, School of Medicine,
Washington University in St. Louis, 660 S. Euclid Avenue, Campus Box 8007,
St. Louis, MO 63131, USA
| | - Michael P. Rettig
- Division of Oncology, School of Medicine,
Washington University in St. Louis, St. Louis, MO, USA
| | - John F. DiPersio
- Division of Oncology, School of Medicine,
Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
18
|
Lee EJ, Lee KJ, Jung S, Park KH, Park SI. Mobilization of monocytic myeloid-derived suppressor cells is regulated by PTH1R activation in bone marrow stromal cells. Bone Res 2023; 11:22. [PMID: 37085481 PMCID: PMC10121701 DOI: 10.1038/s41413-023-00255-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/23/2023] [Accepted: 03/01/2023] [Indexed: 04/23/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are bone marrow (BM)-derived immunosuppressive cells in the tumor microenvironment, but the mechanism of MDSC mobilization from the BM remains unclear. We investigated how BM stromal cell activation by PTH1R contributes to MDSC mobilization. PTH1R activation by parathyroid hormone (PTH) or PTH-related peptide (PTHrP), a tumor-derived counterpart, mobilized monocytic (M-) MDSCs from murine BM without increasing immunosuppressive activity. In vitro cell-binding assays demonstrated that α4β1 integrin and vascular cell adhesion molecule (VCAM)-1, expressed on M-MDSCs and osteoblasts, respectively, are key to M-MDSC binding to osteoblasts. Upon PTH1R activation, osteoblasts express VEGF-A and IL6, leading to Src family kinase phosphorylation in M-MDSCs. Src inhibitors suppressed PTHrP-induced MDSC mobilization, and Src activation in M-MDSCs upregulated two proteases, ADAM-17 and MMP7, leading to VCAM1 shedding and subsequent disruption of M-MDSC tethering to osteoblasts. Collectively, our data provide the molecular mechanism of M-MDSC mobilization in the bones of tumor hosts.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
- The BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Jin Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
- The BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seungpil Jung
- Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Kyong Hwa Park
- Division of Oncology and Hematology, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Serk In Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea.
- The BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
- Vanderbilt Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
19
|
Bhoopalan SV, Yen JS, Levine RM, Sharma A. Editing human hematopoietic stem cells: advances and challenges. Cytotherapy 2023; 25:261-269. [PMID: 36123234 DOI: 10.1016/j.jcyt.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023]
Abstract
Genome editing of hematopoietic stem and progenitor cells is being developed for the treatment of several inherited disorders of the hematopoietic system. The adaptation of CRISPR-Cas9-based technologies to make precise changes to the genome, and developments in altering the specificity and efficiency, and improving the delivery of nucleases to target cells have led to several breakthroughs. Many clinical trials are ongoing, and several pre-clinical models have been reported that would allow these genetic therapies to one day offer a potential cure to patients with diseases where limited options currently exist. However, there remain several challenges with respect to establishing safety, expanding accessibility and improving the manufacturing processes of these therapeutic products. This review focuses on some of the recent advances in the field of genome editing of hematopoietic stem and progenitor cells and illustrates the ongoing challenges.
Collapse
Affiliation(s)
- Senthil Velan Bhoopalan
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jonathan S Yen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
20
|
Intermediate-dose cyclophosphamide and bortezomib for PBSC mobilization in multiple myeloma. Transfus Apher Sci 2023:103649. [PMID: 36739175 DOI: 10.1016/j.transci.2023.103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Although the incorporation of bortezomib into induction regimens has improved, response rates in patients with multiple myeloma (MM), the role of bortezomib in the, peripheral blood stem cell (PBSC) mobilization remains unclear. We assessed the, PBSC mobilization efficacy, safety, and disease response of intermediate-dose, cyclophosphamide and bortezomib in the PBSC mobilization. Twenty-one patients with, newly diagnosed MM were enrolled in a phase II, non-randomized study that used, bortezomib (1.3 mg/m2/day on days 1, 4, 8, and 11) and intermediate-dose, cyclophosphamide (2 g/m2/day on days 2, 3) (Bor-ID-CY). The data from 15 patients, who received intermediate-dose cyclophosphamide (ID-CY) were used as a historical, control group. The total CD34 + cell yield of Bor-ID-CY and ID-CY groups were not, significantly different (median 6.3 ×106/kg vs. 6.5 ×106/kg, p = 0.19). All three patients, with mobilization failure of two groups had t(11;14). Six patients in Bor-ID-CY group, were upgraded from a status that was less than a very good partial response (VGPR), at the time of PBSC mobilization to a VGPR or better after PBSC mobilization, (p = 0.014). Four patients in Bor-ID-CY group developed sepsis. The time to, engraftment was similar in the two groups. The addition of bortezomib to ID-CY did not, impact the stem cell yield or quality.
Collapse
|
21
|
Guo B, Huang X, Chen Y, Broxmeyer HE. Ex Vivo Expansion and Homing of Human Cord Blood Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:85-104. [PMID: 38228960 DOI: 10.1007/978-981-99-7471-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Cord blood (CB) has been proven to be an alternative source of haematopoietic stem cells (HSCs) for clinical transplantation and has multiple advantages, including but not limited to greater HLA compatibility, lower incidence of graft-versus-host disease (GvHD), higher survival rates and lower relapse rates among patients with minimal residual disease. However, the limited number of HSCs in a single CB unit limits the wider use of CB in clinical treatment. Many efforts have been made to enhance the efficacy of CB HSC transplantation, particularly by ex vivo expansion or enhancing the homing efficiency of HSCs. In this chapter, we will document the major advances regarding human HSC ex vivo expansion and homing and will also discuss the possibility of clinical translation of such laboratory work.
Collapse
Affiliation(s)
- Bin Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xinxin Huang
- Xuhui Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yandan Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
22
|
Nengroo MA, Khan MA, Verma A, Datta D. Demystifying the CXCR4 conundrum in cancer biology: Beyond the surface signaling paradigm. Biochim Biophys Acta Rev Cancer 2022; 1877:188790. [PMID: 36058380 DOI: 10.1016/j.bbcan.2022.188790] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
The oncogenic chemokine duo CXCR4-CXCL12/SDF-1 (C-X-C Receptor 4-C-X-C Ligand 12/ Stromal-derived factor 1) has been the topic of intense scientific disquisitions since Muller et al., in her ground-breaking research, described this axis as a critical determinant of organ-specific metastasis in breast cancer. Elevated CXCR4 levels correlate with distant metastases, poor prognosis, and unfavourable outcomes in most solid tumors. Therapeutic impediment of the axis in clinics with Food and Drug Administration (FDA) approved inhibitors like AMD3100 or Plerixafor yield dubious results, contrary to pre-clinical developments. Clinical trials entailing inhibition of CXCR7 (C-X-C Receptor 7), another convicted chemokine receptor that exhibits affinity for CXCL12, reveal outcomes analogous to that of CXCR4-CXCL12 axis blockade. Of note, the cellular CXCR4 knockout phenotype varies largely from that of inhibitor treatments. These shaky findings pique great curiosity to delve further into the realm of this infamous chemokine receptor to provide a probable explanation. A multitude of recent reports suggests the presence of an increased intracellular CXCR4 pool in various cancers, both cytoplasmic and nuclear. This intracellular CXCR4 protein reserve seems active as it correlates with vital tumor attributes, viz. prognosis, aggressiveness, metastasis, and disease-free survival. Diminishing this entire intracellular CXCR4 load apart from the surface signals looks encouraging from a therapeutic point of view. Transcending beyond the classically accepted concept of ligand-mediated surface signaling, this review sheds new light on plausible associations of intracellularly compartmentalised CXCR4 with various aspects of tumorigenesis. Besides, this review also puts forward a comprehensive account of CXCR4 regulation in different cancers.
Collapse
Affiliation(s)
- Mushtaq Ahmad Nengroo
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Muqtada Ali Khan
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Ayushi Verma
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
23
|
Shafiei SL, Movassaghpour A, Hosseini SF, Talebi M, Edalati M, Torabi Goudarzi S, Soltani-Zangbar MS, Mehdizadeh A, Yousefi M. The altered expression of homing factors in CD34 + hematopoietic stem cells following G-CSF injection and its effects on transplantation quality in ALL patients. Cell Biol Int 2022; 46:1876-1885. [PMID: 35880847 DOI: 10.1002/cbin.11865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022]
Abstract
Hematopoietic stem cells (HSCs) transplantation is considered a suitable treatment for malignant or nonmalignant hematological diseases. This study aims to investigate the HSCs homing factors in bone marrow (BM) donors of acute lymphoblastic leukemia (ALL) patients following granulocyte colony-stimulating factor (G-CSF) injection, as well as the G-CSF effects on BM transplantation quality in these patients. To mobilize HSCs into peripheral blood, G-CSF was used for ALL patient's BM donors. For HSCs counting, CD34+ cells were evaluated in analogous and autologous donors using flow cytometry. The expression of stem cell homing factors in CD34+ cells and peripheral blood mononuclear cells (PBMCs) were investigated using a real-time polymerase chain reaction. Finally, hematological factors after BM transplantation in ALL patients were assessed. According to our results, after G-CSF injection, the level of CD34+ HSCs was statistically increased. Besides, autologous donors showed a higher level of CD34+ cells compared to analogous donors before and after G-CSF injection. Additionally, a higher number of CD34+ HSCs was achieved in the autologous samples following G-CSF injection. Furthermore, after G-CSF injection, the expression of matrix metalloproteinase (MMP)-2, MMP-9 was increased; while, stromal cell-derived factor 1, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 expression were decreased. Moreover, the expression of C-X-C chemokine receptor type 4, lymphocyte function-associated antigen 1, and very late antigen-4 in CD34+ cells and PBMCs were decreased. BM transplantation on Day 90 also caused an increased level of white blood cells, red blood cells, and platelets as compared to the first day; however, no statistical differences were observed in hemoglobin level. In conclusion, G-CSF by altering the expression of HSCs homing factors in ALL donors improves BM transplantation quality in ALL patients.
Collapse
Affiliation(s)
- Seyede-Leila Shafiei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyede Fatemeh Hosseini
- Department of Anatomy, Faculty of Tabas, School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Edalati
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeedeh Torabi Goudarzi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Integrin Signaling Shaping BTK-Inhibitor Resistance. Cells 2022; 11:cells11142235. [PMID: 35883678 PMCID: PMC9322986 DOI: 10.3390/cells11142235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Integrins are adhesion molecules that function as anchors in retaining tumor cells in supportive tissues and facilitating metastasis. Beta1 integrins are known to contribute to cell adhesion-mediated drug resistance in cancer. Very late antigen-4 (VLA-4), a CD49d/CD29 heterodimer, is a beta1 integrin implicated in therapy resistance in both solid tumors and haematological malignancies such as chronic lymphocytic leukemia (CLL). A complex inside-out signaling mechanism activates VLA-4, which might include several therapeutic targets for CLL. Treatment regimens for this disease have recently shifted towards novel agents targeting BCR signaling. Bruton’s tyrosine kinase (BTK) is a component of B cell receptor signaling and BTK inhibitors such as ibrutinib are highly successful; however, their limitations include indefinite drug administration, the development of therapy resistance, and toxicities. VLA-4 might be activated independently of BTK, resulting in an ongoing interaction of CD49d-expressing leukemic cells with their surrounding tissue, which may reduce the success of therapy with BTK inhibitors and increases the need for alternative therapies. In this context, we discuss the inside-out signaling cascade culminating in VLA-4 activation, consider the advantages and disadvantages of BTK inhibitors in CLL and elucidate the mechanisms behind cell adhesion-mediated drug resistance.
Collapse
|
25
|
Zhang J, Qi L, Wang T, An J, Zhou B, Fang Y, Liu Y, Shan M, Hong D, Wu D, Xu Y, Liu T. FEV Maintains Homing and Expansion by Activating ITGA4 Transcription in Primary and Relapsed AML. Front Oncol 2022; 12:890346. [PMID: 35875066 PMCID: PMC9300928 DOI: 10.3389/fonc.2022.890346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy that recurs in approximately 50% of cases. Elevated homing and uncontrolled expansion are characteristics of AML cells. Here, we identified that Fifth Ewing Variant (FEV) regulates the homing and expansion of AML cells. We found that FEV was re-expressed in 30% of primary AML samples and in almost all relapsed AML samples, and FEV expression levels were significantly higher in relapsed samples compared to primary samples. Interference of FEV expression in AML cell lines delayed leukemic progression and suppressed homing and proliferation. Moreover, FEV directly activated integrin subunit alpha 4 (ITGA4) transcription in a dose-dependent manner. Inhibition of integrin α4 activity with natalizumab (NZM) reduced the migration and colony-forming abilities of blasts and leukemic-initiating cells (LICs) in both primary and relapsed AML. Thus, our study suggested that FEV maintains the homing and expansion of AML cells by activating ITGA4 transcription and that targeting ITGA4 inhibits the colony-forming and migration capacities of blasts and LICs. Thus, these findings suggested that the FEV-ITGA4 axis may be a therapeutic target for both primary and relapsed AML.
Collapse
Affiliation(s)
- Jubin Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lijuan Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tanzhen Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jingnan An
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Biqi Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yanglan Fang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yujie Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Meng Shan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Dengli Hong
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Tianhui Liu, ; Yang Xu, ; Depei Wu,
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Tianhui Liu, ; Yang Xu, ; Depei Wu,
| | - Tianhui Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Tianhui Liu, ; Yang Xu, ; Depei Wu,
| |
Collapse
|
26
|
Sottoriva K, Paik NY, White Z, Bandara T, Shao L, Sano T, Pajcini KV. A Notch/IL-21 signaling axis primes bone marrow T cell progenitor expansion. JCI Insight 2022; 7:e157015. [PMID: 35349492 PMCID: PMC9090257 DOI: 10.1172/jci.insight.157015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term impairment in T cell-mediated adaptive immunity is a major clinical obstacle following treatment of blood disorders with hematopoietic stem cell transplantation. Although T cell development in the thymus has been extensively characterized, there are significant gaps in our understanding of prethymic processes that influence early T cell potential. We have uncovered a Notch/IL-21 signaling axis in bone marrow common lymphoid progenitor (CLP) cells. IL-21 receptor expression was driven by Notch activation in CLPs, and in vivo treatment with IL-21 induced Notch-dependent CLP proliferation. Taking advantage of this potentially novel signaling axis, we generated T cell progenitors ex vivo, which improved repopulation of the thymus and peripheral lymphoid organs of mice in an allogeneic transplant model. Importantly, Notch and IL-21 activation were equally effective in the priming and expansion of human cord blood cells toward the T cell fate, confirming the translational potential of the combined treatment.
Collapse
Affiliation(s)
| | - Na Yoon Paik
- Department of Pharmacology and Regenerative Medicine and
| | - Zachary White
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | | - Lijian Shao
- Department of Pharmacology and Regenerative Medicine and
| | - Teruyuki Sano
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
27
|
Rausch I, Beitzke D, Li X, Pfaff S, Rasul S, Haug AR, Mayerhoefer ME, Hacker M, Beyer T, Cal-González J. Accuracy of PET quantification in [ 68Ga]Ga-pentixafor PET/MR imaging of carotid plaques. J Nucl Cardiol 2022; 29:492-502. [PMID: 32696137 PMCID: PMC8993720 DOI: 10.1007/s12350-020-02257-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/15/2020] [Indexed: 12/29/2022]
Abstract
AIM The aim of this study was to evaluate and correct for partial-volume-effects (PVE) on [68Ga]Ga-Pentixafor uptake in atherosclerotic plaques of the carotid arteries, and the impact of ignoring bone in MR-based attenuation correction (MR-AC). METHODS Twenty [68Ga]Ga-pentixafor PET/MR examinations including a high-resolution T2-TSE MR of the neck were included in this study. Carotid plaques located at the carotid bifurcation were delineated and the anatomical information was used for partial-volume-correction (PVC). Mean and max tissue-to-background ratios (TBR) of the [68Ga]Ga-Pentixafor uptake were compared for standard and PVC-PET images. A potential influence of ignoring bone in MR-AC was assessed in a subset of the data reconstructed after incorporating bone into MR-AC and a subsequent comparison of standardized-uptake values (SUV). RESULTS In total, 34 atherosclerotic plaques were identified. Following PVC, mean and max TBR increased by 77 and 95%, respectively, when averaged across lesions. When accounting for bone in the MR-AC, SUV of plaque changed by 0.5%. CONCLUSION Quantitative readings of [68Ga]Ga-pentixafor uptake in plaques are strongly affected by PVE, which can be reduced by PVC. Including bone information into the MR-AC yielded no clinically relevant effect on tracer quantification.
Collapse
Affiliation(s)
- Ivo Rausch
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Dietrich Beitzke
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sahra Pfaff
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sazan Rasul
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexander R Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Lab for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - Marius E Mayerhoefer
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Beyer
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Jacobo Cal-González
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
28
|
Cancer Stem Cell Markers for Urinary Carcinoma. Stem Cells Int 2022; 2022:3611677. [PMID: 35342431 PMCID: PMC8941535 DOI: 10.1155/2022/3611677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer stem cell (CSC) refers to cancer cells with stem cell properties, that is, they have the ability of “self-renewal” and “differentiation.” Cancer stem cells exist in cancer cells and are the “culprit” of cancer recurrence and metastasis. It is difficult to be found because of its small amount, and it is difficult for anticancer drugs to produce effects on it. At present, the isolation and identification of cancer stem cells from many solid tumors are still quite difficult, mainly due to the lack of specific molecular markers of cancer stem cells. In this review, cancer stem cell surface markers and functional markers in urinary system were summarized. These markers can provide molecular targets for cancer therapy.
Collapse
|
29
|
Cohen JT, Danise M, Hinman KD, Neumann BM, Johnson R, Wilson ZS, Chorzalska A, Dubielecka PM, Lefort CT. Engraftment, Fate, and Function of HoxB8-Conditional Neutrophil Progenitors in the Unconditioned Murine Host. Front Cell Dev Biol 2022; 10:840894. [PMID: 35127689 PMCID: PMC8812959 DOI: 10.3389/fcell.2022.840894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 01/13/2023] Open
Abstract
The development and use of murine myeloid progenitor cell lines that are conditionally immortalized through expression of HoxB8 has provided a valuable tool for studies of neutrophil biology. Recent work has extended the utility of HoxB8-conditional progenitors to the in vivo setting via their transplantation into irradiated mice. Here, we describe the isolation of HoxB8-conditional progenitor cell lines that are unique in their ability to engraft in the naïve host in the absence of conditioning of the hematopoietic niche. Our results indicate that HoxB8-conditional progenitors engraft in a β1 integrin-dependent manner and transiently generate donor-derived mature neutrophils. Furthermore, we show that neutrophils derived in vivo from transplanted HoxB8-conditional progenitors are mobilized to the periphery and recruited to sites of inflammation in a manner that depends on the C-X-C chemokine receptor 2 and β2 integrins, the same mechanisms that have been described for recruitment of endogenous primary neutrophils. Together, our studies advance the understanding of HoxB8-conditional neutrophil progenitors and describe an innovative tool that, by virtue of its ability to engraft in the naïve host, will facilitate mechanistic in vivo experimentation on neutrophils.
Collapse
Affiliation(s)
- Joshua T. Cohen
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States
| | - Michael Danise
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States
| | - Kristina D. Hinman
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States
- Graduate Program in Pathobiology, Brown University, Providence, RI, United States
| | - Brittany M. Neumann
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States
| | - Renita Johnson
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States
| | - Zachary S. Wilson
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States
- Graduate Program in Pathobiology, Brown University, Providence, RI, United States
| | - Anna Chorzalska
- Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, United States
| | | | - Craig T. Lefort
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States
- *Correspondence: Craig T. Lefort,
| |
Collapse
|
30
|
Spiess DA, Campos RMP, Conde L, Didwischus N, Boltze J, Mendez-Otero R, Pimentel-Coelho PM. Subacute AMD3100 Treatment Is Not Efficient in Neonatal Hypoxic-Ischemic Rats. Stroke 2021; 53:586-594. [PMID: 34794335 DOI: 10.1161/strokeaha.120.033768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Despite the advances in treating neonatal hypoxic-ischemic encephalopathy (HIE) with induced hypothermia, the rates of severe disability are still high among survivors. Preclinical studies have indicated that cell therapies with hematopoietic stem/progenitor cells could improve neurological outcomes in HIE. In this study, we investigated whether the administration of AMD3100, a CXCR4 antagonist that mobilizes hematopoietic stem/progenitor cells into the circulation, has therapeutic effects in HIE. METHODS P10 Wistar rats of both sexes were subjected to right common carotid artery occlusion or sham procedure, and then were exposed to hypoxia for 120 minutes. Two subcutaneous injections of AMD3100 or vehicle were given on the third and fourth day after HIE. We first assessed the interindividual variability in brain atrophy after experimental HIE and vehicle treatment in a small cohort of rats. Based on this exploratory analysis, we designed and conducted an experiment to test the efficacy of AMD3100. Brain atrophy on day 21 after HIE was defined as the primary end point. Secondary efficacy end points were cognitive (T-water maze) and motor function (rotarod) on days 17 and 18 after HIE, respectively. RESULTS AMD3100 did not decrease the brain atrophy in animals of either sex. Cognitive impairments were not observed in the T-water maze, but male hypoxic-ischemic animals exhibited motor coordination deficits on the rotarod, which were not improved by AMD3100. A separate analysis combining data from animals of both sexes also revealed no evidence of the effectiveness of AMD3100 treatment. CONCLUSIONS These results indicate that the subacute treatment with AMD3100 does not improve structural and functional outcomes in a rat HIE model.
Collapse
Affiliation(s)
- Daiane Aparecida Spiess
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (D.A.S., R.M.P.C., L.C., R.M.-O., P.M.P.-C.)
| | - Raquel Maria Pereira Campos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (D.A.S., R.M.P.C., L.C., R.M.-O., P.M.P.-C.).,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil (R.M.-O., P.M.P.-C.)
| | - Luciana Conde
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (D.A.S., R.M.P.C., L.C., R.M.-O., P.M.P.-C.)
| | - Nadine Didwischus
- School of Life Sciences, University of Warwick, United Kingdom (N.D., J.B.)
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, United Kingdom (N.D., J.B.)
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (D.A.S., R.M.P.C., L.C., R.M.-O., P.M.P.-C.).,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil (R.M.-O., P.M.P.-C.)
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (D.A.S., R.M.P.C., L.C., R.M.-O., P.M.P.-C.)
| |
Collapse
|
31
|
Porfyriou E, Letsa S, Kosmas C. Hematopoietic stem cell mobilization strategies to support high-dose chemotherapy: A focus on relapsed/refractory germ cell tumors. World J Clin Oncol 2021; 12:746-766. [PMID: 34631440 PMCID: PMC8479351 DOI: 10.5306/wjco.v12.i9.746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/19/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
High-dose chemotherapy (HDCT) with autologous hematopoietic stem cell transplantation has been explored and has played an important role in the management of patients with high-risk germ cell tumors (GCTs) who failed to be cured by conventional chemotherapy. Hematopoietic stem cells (HSCs) collected from the peripheral blood, after appropriate pharmacologic mobilization, have largely replaced bone marrow as the principal source of HSCs in transplants. As it is currently common practice to perform tandem or multiple sequential cycles of HDCT, it is anticipated that collection of large numbers of HSCs from the peripheral blood is a prerequisite for the success of the procedure. Moreover, the CD34+ cell dose/kg of body weight infused after HDCT has proven to be a major determinant of hematopoietic engraftment, with patients who receive > 2 × 106 CD34+ cells/kg having consistent, rapid, and sustained hematopoietic recovery. However, many patients with relapsed/refractory GCTs have been exposed to multiple cycles of myelosuppressive chemotherapy, which compromises the efficacy of HSC mobilization with granulocyte colony-stimulating factor with or without chemotherapy. Therefore, alternative strategies that use novel agents in combination with traditional mobilizing regimens are required. Herein, after an overview of the mechanisms of HSCs mobilization, we review the existing literature regarding studies reporting various HSC mobilization approaches in patients with relapsed/refractory GCTs, and finally report newer experimental mobilization strategies employing novel agents that have been applied in other hematologic or solid malignancies.
Collapse
Affiliation(s)
- Eleni Porfyriou
- Department of Medical Oncology and Hematopoietic Cell Transplant Unit, “Metaxa” Cancer Hospital, Piraeus 18537, Greece
| | - Sylvia Letsa
- Department of Medical Oncology and Hematopoietic Cell Transplant Unit, “Metaxa” Cancer Hospital, Piraeus 18537, Greece
| | - Christos Kosmas
- Department of Medical Oncology and Hematopoietic Cell Transplant Unit, “Metaxa” Cancer Hospital, Piraeus 18537, Greece
| |
Collapse
|
32
|
Machine learning-based scoring models to predict hematopoietic stem cell mobilization in allogeneic donors. Blood Adv 2021; 6:1991-2000. [PMID: 34555850 PMCID: PMC9006268 DOI: 10.1182/bloodadvances.2021005149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
Mobilized peripheral blood has become the primary source of hematopoietic stem cells for both autologous and allogeneic stem cell transplantation. Granulocyte Colony-Stimulating Factor (G-CSF) is currently the standard agent used in the allogeneic setting. Despite the high mobilization efficacy in most donors, G-CSF requires 4-5 days of daily administration, and a small percentage of the donors fail to mobilize an optimal number of stem cells necessary for a safe allogeneic stem cell transplant. In this study, we retrospectively reviewed 1361 related allogeneic donors who underwent stem cell mobilization at Washington University. We compared the standard mobilization agent G-CSF with five alternative mobilization regimens, including GM-CSF, G-CSF+GM-CSF, GM-CSF + Plerixafor, Plerixafor and BL-8040. Cytokine-based mobilization strategies (G-CSF or in combination with GM-CSF) induce higher CD34 cell yield after 4-5 consecutive days of treatment, while CXCR4 antagonists (plerixafor and BL-8040) induce significantly less but rapid mobilization on the same day. Next, using a large dataset containing the demographic and baseline laboratory data from G-CSF-mobilized donors, we established machine learning (ML)-based scoring models that can be used to predict patients who may have less than optimal stem cell yields after a single leukapheresis session. To our knowledge, this is the first prediction model at the early donor screening stage, which may help identify allogeneic stem cell donors who may benefit from alternative approaches to enhance stem cell yields thus insuring safe and effective stem cell transplantation.
Collapse
|
33
|
Canarutto D, Tucci F, Gattillo S, Zambelli M, Calbi V, Gentner B, Ferrua F, Marktel S, Migliavacca M, Barzaghi F, Consiglieri G, Gallo V, Fumagalli F, Massariello P, Parisi C, Viarengo G, Albertazzi E, Silvani P, Milani R, Santoleri L, Ciceri F, Cicalese MP, Bernardo ME, Aiuti A. Peripheral blood stem and progenitor cell collection in pediatric candidates for ex vivo gene therapy: a 10-year series. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:76-83. [PMID: 34485596 PMCID: PMC8390560 DOI: 10.1016/j.omtm.2021.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/26/2021] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem and progenitor cell (HSPC)-based gene therapy (GT) requires the collection of a large number of cells. While bone marrow (BM) is the most common source of HSPCs in pediatric donors, the collection of autologous peripheral blood stem cells (PBSCs) is an attractive alternative for GT. We present safety and efficacy data of a 10-year cohort of 45 pediatric patients who underwent PBSC collection for backup and/or purification of CD34+ cells for ex vivo gene transfer. Median age was 3.7 years and median weight 15.8 kg. After mobilization with lenograstim/plerixafor (n = 41) or lenograstim alone (n = 4) and 1−3 cycles of leukapheresis, median collection was 37 × 106 CD34+ cells/kg. The procedures were well tolerated. Patients who collected ≥7 and ≥13 × 106 CD34+ cells/kg in the first cycle had pre-apheresis circulating counts of at ≥42 and ≥86 CD34+ cells/μL, respectively. Weight-adjusted CD34+ cell yield was positively correlated with peripheral CD34+ cell counts and influenced by female gender, disease, and drug dosage. All patients received a GT product above the minimum target, ranging from 4 to 30.9 × 106 CD34+ cells/kg. Pediatric PBSC collection compares well to BM harvest in terms of CD34+ cell yields for the purpose of GT, with a favorable safety profile.
Collapse
Affiliation(s)
- Daniele Canarutto
- Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy.,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Francesca Tucci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy.,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Salvatore Gattillo
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Matilde Zambelli
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Valeria Calbi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy.,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy.,Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy.,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Sarah Marktel
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Maddalena Migliavacca
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy.,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy.,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Giulia Consiglieri
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy.,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Vera Gallo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy.,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Francesca Fumagalli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy.,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | | | - Cristina Parisi
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Gianluca Viarengo
- Immunohematology and Transfusion Medicine Service, Fondazione IRCCS Policlinico S. Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | - Elena Albertazzi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Paolo Silvani
- Department of Anesthesia and Critical Care, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Raffaella Milani
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Luca Santoleri
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy.,Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy.,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Maria Ester Bernardo
- Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy.,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Alessandro Aiuti
- Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy.,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| |
Collapse
|
34
|
Engraftment characterization of risk-stratified AML patients in NSGS mice. Blood Adv 2021; 5:4842-4854. [PMID: 34470043 PMCID: PMC9153030 DOI: 10.1182/bloodadvances.2020003958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/19/2021] [Indexed: 11/24/2022] Open
Abstract
PDXs from risk-stratified AML samples are crucial for studying AML biology and testing novel therapeutics. We characterize human AML engraftment in NSGS mice, offering a valuable platform for in vivo testing of targeted therapies.
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Disease heterogeneity is well documented, and patient stratification determines treatment decisions. Patient-derived xenografts (PDXs) from risk-stratified AML are crucial for studying AML biology and testing novel therapeutics. Despite recent advances in PDX modeling of AML, reproducible engraftment of human AML is primarily limited to high-risk (HR) cases, with inconsistent or very protracted engraftment observed for favorable-risk (FR) and intermediate-risk (IR) patients. We used NSGS mice to characterize the engraftment robustness/kinetics of 28 AML patient samples grouped according to molecular/cytogenetic classification and assessed whether the orthotopic coadministration of patient-matched bone marrow mesenchymal stromal cells (BM MSCs) improves AML engraftment. PDX event-free survival correlated well with the predictable prognosis of risk-stratified AML patients. The majority (85-94%) of the mice were engrafted in bone marrow (BM) independently of the risk group, although HR AML patients showed engraftment levels that were significantly superior to those of FR or IR AML patients. Importantly, the engraftment levels observed in NSGS mice by week 6 remained stable over time. Serial transplantation and long-term culture-initiating cell (LTC-IC) assays revealed long-term engraftment limited to HR AML patients, fitter leukemia-initiating cells (LICs) in HR AML samples, and the presence of AML LICs in the CD34− leukemic fraction, regardless of the risk group. Finally, orthotopic coadministration of patient-matched BM MSCs and AML cells was dispensable for BM engraftment levels but favored peripheralization of engrafted AML cells. This comprehensive characterization of human AML engraftment in NSGS mice offers a valuable platform for in vivo testing of targeted therapies in risk-stratified AML patient samples.
Collapse
|
35
|
Khare T, Bissonnette M, Khare S. CXCL12-CXCR4/CXCR7 Axis in Colorectal Cancer: Therapeutic Target in Preclinical and Clinical Studies. Int J Mol Sci 2021; 22:7371. [PMID: 34298991 PMCID: PMC8305488 DOI: 10.3390/ijms22147371] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Chemokines are chemotactic cytokines that promote cancer growth, metastasis, and regulate resistance to chemotherapy. Stromal cell-derived factor 1 (SDF1) also known as C-X-C motif chemokine 12 (CXCL12), a prognostic factor, is an extracellular homeostatic chemokine that is the natural ligand for chemokine receptors C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or cluster of differentiation 184 (CD184) and chemokine receptor type 7 (CXCR7). CXCR4 is the most widely expressed rhodopsin-like G protein coupled chemokine receptor (GPCR). The CXCL12-CXCR4 axis is involved in tumor growth, invasion, angiogenesis, and metastasis in colorectal cancer (CRC). CXCR7, recently termed as atypical chemokine receptor 3 (ACKR3), is amongst the G protein coupled cell surface receptor family that is also commonly expressed in a large variety of cancer cells. CXCR7, like CXCR4, regulates immunity, angiogenesis, stem cell trafficking, cell growth and organ-specific metastases. CXCR4 and CXCR7 are expressed individually or together, depending on the tumor type. When expressed together, CXCR4 and CXCR7 can form homo- or hetero-dimers. Homo- and hetero-dimerization of CXCL12 and its receptors CXCR4 and CXCR7 alter their signaling activity. Only few drugs have been approved for clinical use targeting CXCL12-CXCR4/CXCR7 axis. Several CXCR4 inhibitors are in clinical trials for solid tumor treatment with limited success whereas CXCR7-specific inhibitors are still in preclinical studies for CRC. This review focuses on current knowledge of chemokine CXCL12 and its receptors CXCR4 and CXCR7, with emphasis on targeting the CXCL12-CXCR4/CXCR7 axis as a treatment strategy for CRC.
Collapse
Affiliation(s)
- Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Marc Bissonnette
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
36
|
Integrin VLA-4 as a PET imaging biomarker of hyper-adhesion in transgenic sickle mice. Blood Adv 2021; 4:4102-4112. [PMID: 32882004 DOI: 10.1182/bloodadvances.2020002642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
In sickle cell disease (SCD), very late antigen-4 (VLA-4 or integrin α4β1) mediates the adhesion of reticulocytes to inflamed, proinflammatory endothelium, a key process in promoting vaso-occlusive episodes (VOEs). We hypothesized that a radionuclide tracer targeting VLA-4 could be harnessed as a positron emission tomography (PET) imaging biomarker of VOEs. We tested the VLA-4 peptidomimetic PET tracer 64Cu-CB-TE1A1P-PEG4-LLP2A (64Cu-LLP2A) for imaging hyper-adhesion-associated VOEs in the SCD Townes mouse model. With lipopolysaccharide (LPS)-induced VOEs, 64Cu-LLP2A uptake was increased in the bone marrow of the humeri and femurs, common sites of VOEs in SCD mice compared with non-SCD mice. Treatment with a proven inhibitor of VOEs (the anti-mouse anti-P-selectin monoclonal antibody [mAb] RB40.34) during LPS stimulation led to a reduction in the uptake of 64Cu-LLP2A in the humeri and femurs to baseline levels, implying blockade of VOE hyper-adhesion. Flow cytometry with Cy3-LLP2A demonstrated an increased percentage of VLA-4-positive reticulocytes in SCD vs non-SCD mice in the bone and peripheral blood after treatment with LPS, which was abrogated by anti-P-selectin mAb treatment. These data, for the first time, show in vivo imaging of VLA-4-mediated hyper-adhesion, primarily of SCD reticulocytes, during VOEs. PET imaging with 64Cu-LLP2A may serve as a valuable, noninvasive method for identifying sites of vaso-occlusion and may provide an objective biomarker of disease severity and anti-P-selectin treatment efficacy in patients with SCD.
Collapse
|
37
|
Matsumoto T, Takamatsu Y, Moriyama H, Terada K, Mori M, Ono K, Migita K, Hara S. Bortezomib enhances G-CSF-induced hematopoietic stem cell mobilization by decreasing CXCL12 levels and increasing vascular permeability. Exp Hematol 2021; 97:21-31. [PMID: 33617894 DOI: 10.1016/j.exphem.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
Bortezomib (BTZ) is known to enhance the mobilization of hematopoietic stem and progenitor cells (HSPCs) induced by granulocyte colony-stimulating factor (G-CSF). However, the most effective time at which to administer BTZ to produce this enhancing effect remains debatable, and the precise mechanism underlying the effect of BTZ is poorly understood. We addressed these questions in this article by performing animal experiments. First, in agreement with previous studies, BTZ administration 12 hours before blood collection was most effective for HSPC mobilization; in contrast, BTZ administration 3 days before blood collection negatively affected HSPC harvesting. Next, in terms of the mechanism of action, G-CSF, but not BTZ, downregulated the expression of very late antigen-4 on HSPCs and vascular cell adhesion molecule-1 on bone marrow (BM) stromal cells; however, intriguingly, both G-CSF and BTZ downregulated CXCL12 chemokine expression in BM. Notably, BTZ treatment also increased BM vascular permeability. These results suggest that the pro-mobilization effect of BTZ could involve the dissociation of HSPCs from BM stromal cells triggered by G-CSF, vascular hyperpermeability elicited by BTZ, and downregulation of CXCL12 concomitantly induced by G-CSF and BTZ.
Collapse
Affiliation(s)
- Taichi Matsumoto
- Faculty of Drug Informatics and Translational Research, Department of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Yasushi Takamatsu
- Division of Medical Oncology, Hematology and Infectious Diseases, Department of Medicine, Fukuoka University, Fukuoka, Japan
| | - Hanae Moriyama
- Faculty of Drug Informatics and Translational Research, Department of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kazuki Terada
- Laboratory of Drug Design and Drug Delivery, Department of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kazuhiko Ono
- Faculty of Drug Informatics and Translational Research, Department of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Keisuke Migita
- Faculty of Drug Informatics and Translational Research, Department of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shuuji Hara
- Faculty of Drug Informatics and Translational Research, Department of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
38
|
Reshef R. Peripheral blood stem cell grafts in allogeneic hematopoietic cell transplantation: It is not all about the CD34+ cell dose. Transfus Apher Sci 2021; 60:103081. [PMID: 33593707 DOI: 10.1016/j.transci.2021.103081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Allogeneic Hematopoietic Cell Transplantation is a curative approach in various malignant and non-malignant disorders. The majority of adult transplants in the current era are performed using mobilized stem cells, harvested from the peripheral blood by leukapheresis. Peripheral blood stem cell (PBSC) collections are designed to target a dose of stem cells that will result in safe engraftment and hematopoietic recovery; however, 99 % of the cells contained in a PBSC graft are not stem cells and a growing number of studies attempt to characterize the associations between graft composition and transplant outcomes. A better understanding of the impact of the quantity and quality of various cell types in PBSC grafts may lead to development of novel collection strategies or improved donor selection algorithms. Here we review relevant findings from recent studies in this area.
Collapse
Affiliation(s)
- Ran Reshef
- Blood and Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, NY, 630 W. 168th St. Mailbox 127, New York, NY, United States.
| |
Collapse
|
39
|
Implications of hematopoietic stem cells heterogeneity for gene therapies. Gene Ther 2021; 28:528-541. [PMID: 33589780 PMCID: PMC8455331 DOI: 10.1038/s41434-021-00229-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/30/2020] [Accepted: 01/18/2021] [Indexed: 12/29/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) is the therapeutic concept to cure the blood/immune system of patients suffering from malignancies, immunodeficiencies, red blood cell disorders, and inherited bone marrow failure syndromes. Yet, allogeneic HSCT bear considerable risks for the patient such as non-engraftment, or graft-versus host disease. Transplanting gene modified autologous HSCs is a promising approach not only for inherited blood/immune cell diseases, but also for the acquired immunodeficiency syndrome. However, there is emerging evidence for substantial heterogeneity of HSCs in situ as well as ex vivo that is also observed after HSCT. Thus, HSC gene modification concepts are suggested to consider that different blood disorders affect specific hematopoietic cell types. We will discuss the relevance of HSC heterogeneity for the development and manufacture of gene therapies and in exemplary diseases with a specific emphasis on the key target HSC types myeloid-biased, lymphoid-biased, and balanced HSCs.
Collapse
|
40
|
Stefaniuk P, Onyszczuk J, Szymczyk A, Podhorecka M. Therapeutic Options for Patients with TP53 Deficient Chronic Lymphocytic Leukemia: Narrative Review. Cancer Manag Res 2021; 13:1459-1476. [PMID: 33603488 PMCID: PMC7886107 DOI: 10.2147/cmar.s283903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL), which is the most common type of leukemia in western countries in adults, is characterized by heterogeneity in clinical course, prognosis and response to the treatment. Although, in recent years a number of factors with probable prognostic value in CLL have been identified (eg NOTCH1, SF3B1 and BIRC-3 mutations, or evaluation of microRNA expression), TP53 aberrations are still the most important single factors of poor prognosis. It was found that approximately 30% of all TP53 defects are mutations lacking 17p13 deletion, whereas sole 17p13 deletion with the absence of TP53 mutation consists of 10% of all TP53 defects. The detection of del(17)(p13) and/or TP53 mutation is not a criterion itself for starting antileukemic therapy, but it is associated with an aggressive course of the disease and poor response to the standard chemoimmunotherapy. Treatment of patients with CLL harbouring TP53-deficiency requires drugs that promote cell death independently of TP53. Novel and smarter therapies revolutionize the treatment of del(17p) and/or aberrant TP53 CLL, but development of alternative therapeutic approaches still remains an issue of critical importance.
Collapse
Affiliation(s)
- Paulina Stefaniuk
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Julia Onyszczuk
- Students Scientific Association, Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Szymczyk
- Department of Clinical Transplantology, Medical University of Lublin, Lublin, Poland
| | - Monika Podhorecka
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
41
|
Liu W, Li Y, Wang Q, Su H, Ding K, Shuang Y, Gao S, Zou D, Jing H, Chai Y, Zhang Y, Liu L, Wang C, Liu H, Lin J, Zhu H, Yao C, Yan X, Shang M, Wang S, Chang F, Wang X, Zhu J, Song Y. YF-H-2015005, a CXCR4 Antagonist, for the Mobilization of Hematopoietic Stem Cells in Non-Hodgkin Lymphoma Patients: A Randomized, Controlled, Phase 3 Clinical Trial. Front Med (Lausanne) 2021; 8:609116. [PMID: 33604348 PMCID: PMC7884449 DOI: 10.3389/fmed.2021.609116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Background: YF-H-2015005, a novel CXCR4 antagonist, has been proven to increase the quantities of circulating hematopoietic stem cells (HSCs), which results in an adequate collection of HSCs in non-Hodgkin lymphoma (NHL) patients. Methods: This was a multicenter, double-blind, randomized (1:1), placebo-controlled phase III clinical trial. All patients received granulocyte colony-stimulating factor (G-CSF) for up to 8 consecutive days. YF-H-2015005 or placebo was administrated on the evening of day 4 and continued daily for up to 4 days. Apheresis was conducted 9-10 h after each dose of YF-H-2015005 or placebo. The primary endpoint was the proportion of NHL patients procuring ≥5 × 106/kg CD34+ HSCs within ≤4 apheresis sessions. Results: In total, 101 patients with NHL were enrolled. The proportions of patients achieving primary endpoint were 57 and 12% in YF-H-2015005 and placebo groups, respectively (P < 0.001). Moreover, a higher proportion of YF-H-2015005-treated patients reached a minimum target collection of ≥2 × 106/kg CD34+ HSCs in ≤4 apheresis days compared to placebo-treated patients (86 vs. 38%, P < 0.001). Furthermore, the median time to collect ≥2 or 5 × 106/kg CD34+ HSCs were 1 and 3 days in YF-H-2015005-treated patients, but 4 days and not reached in placebo-treated patients, respectively. No severe treatment emergent adverse events were observed in both YF-H-2015005 treatment and placebo groups. Conclusions: YF-H-2015005 plus G-CSF regimen was a tolerable combination with high efficacy, which might be used to rapidly mobilize and collect HSCs in NHL patients.
Collapse
Affiliation(s)
- Weiping Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yufu Li
- Department of Hematology, Henan Cancer Hospital, Zhengzhou, China
| | - Quanshun Wang
- Department of Hematology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hang Su
- Department of Lymphoma, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Kaiyang Ding
- Department of Hematology, Anhui Provincial Cancer Hospital, Hefei, China
| | - Yuerong Shuang
- Department of Lymphoma & Hematology, Jiangxi Cancer Hospital, Nanchang, China
| | - Sujun Gao
- Department of Hematology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Dehui Zou
- Department of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hongmei Jing
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Ye Chai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lihong Liu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunling Wang
- Department of Hematology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, Beijing, China
| | - Jinying Lin
- Department of Hematology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Haiyan Zhu
- Department of Hematology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chen Yao
- Department of Medical Statistics, Peking University First Hospital, Beijing, China
| | - Xiaoyan Yan
- Peking University Clinical Research Institute, Beijing, China
| | - Meixia Shang
- Department of Medical Statistics, Peking University First Hospital, Beijing, China
| | - Shufang Wang
- Hefei Yifan Biopharmaceuticals Inc., Economic Development Zone, Hefei, China
| | - Fengyuan Chang
- Hefei Yifan Biopharmaceuticals Inc., Economic Development Zone, Hefei, China
| | - Xiaopei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
42
|
Ratajczak MZ, Kucia M. Extracellular Adenosine Triphosphate (eATP) and Its Metabolite, Extracellular Adenosine (eAdo), as Opposing "Yin-Yang" Regulators of Nlrp3 Inflammasome in the Trafficking of Hematopoietic Stem/Progenitor Cells. Front Immunol 2021; 11:603942. [PMID: 33584673 PMCID: PMC7878390 DOI: 10.3389/fimmu.2020.603942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Nlrp3 inflammasome plays a pleiotropic role in hematopoietic cells. On the one hand, physiological activation of this intracellular protein complex is crucial to maintaining normal hematopoiesis and the trafficking of hematopoietic stem progenitor cells (HSPCs). On the other hand, its hyperactivation may lead to cell death by pyroptosis, and prolonged activity is associated with sterile inflammation of the BM and, as a consequence, with the HSPCs aging and origination of myelodysplasia and leukemia. Thus, we need to understand better this protein complex's actions to define the boundaries of its safety window and study the transition from being beneficial to being detrimental. As demonstrated, the Nlrp3 inflammasome is expressed and active both in HSPCs and in the non-hematopoietic cells that are constituents of the bone marrow (BM) microenvironment. Importantly, the Nlrp3 inflammasome responds to mediators of purinergic signaling, and while extracellular adenosine triphosphate (eATP) activates this protein complex, its metabolite extracellular adenosine (eAdo) has the opposite effect. In this review, we will discuss and focus on the physiological consequences of the balance between eATP and eAdo in regulating the trafficking of HSPCs in an Nlrp3 inflammasome-dependent manner, as seen during pharmacological mobilization from BM into peripheral blood (PB) and in the reverse mechanism of homing from PB to BM and engraftment. We propose that both mediators of purinergic signaling and the Nlrp3 inflammasome itself may become important therapeutic targets in optimizing the trafficking of HSPCs in clinical settings.
Collapse
Affiliation(s)
- Mariusz Z. Ratajczak
- Stem Cell Institute at Division of Hematology, Department of Medicine and James Graham Brown Cancer Center, University of Louisville, KY, United States
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| | - Magda Kucia
- Stem Cell Institute at Division of Hematology, Department of Medicine and James Graham Brown Cancer Center, University of Louisville, KY, United States
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
43
|
Schmid M, Kröpfl JM, Spengler CM. Changes in Circulating Stem and Progenitor Cell Numbers Following Acute Exercise in Healthy Human Subjects: a Systematic Review and Meta-analysis. Stem Cell Rev Rep 2021; 17:1091-1120. [PMID: 33389632 PMCID: PMC8316227 DOI: 10.1007/s12015-020-10105-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/22/2022]
Abstract
Despite of the increasing number of investigations on the effects of acute exercise on circulating stem and progenitor cell (SC) numbers, and in particular on respective subgroups, i.e. endothelial (ESC), hematopoietic (HSC), and mesenchymal (MSC) stem and progenitor cells, a consensus regarding mechanisms and extent of these effects is still missing. The aim of this meta-analysis was to systematically evaluate the overall-effects of acute exercise on the different SC-subgroups and investigate possible subject- and intervention-dependent factors affecting the extent of SC-mobilization in healthy humans. Trials assessing SC numbers before and at least one timepoint after acute exercise, were identified in a systematic computerized search. Compared to baseline, numbers were significantly increased for early and non-specified SCs (enSCs) until up to 0.5 h after exercise (0–5 min: +0.64 [Standardized difference in means], p < 0.001; 6–20 min: +0.42, p < 0.001; 0.5 h: +0.29, p = 0.049), for ESCs until 12–48 h after exercise (0–5 min: +0.66, p < 0.001; 6–20 min: +0.43 p < 0.001; 0.5 h: +0.43, p = 0.002; 1 h: +0.58, p = 0.001; 2 h: +0.50, p = 0.002; 3–8 h: +0.70, p < 0.001; 12–48 h: +0.38, p = 0.003) and for HSCs at 0–5 min (+ 0.47, p < 0.001) and at 3 h after exercise (+ 0.68, p < 0.001). Sex, intensity and duration of the intervention had generally no influence. The extent and kinetics of the exercise-induced mobilization of SCs differ between SC-subpopulations. However, also definitions of SC-subpopulations are non-uniform. Therefore, finding a consensus with a clear definition of cell surface markers defining ESCs, HSCs and MSCs is a first prerequisite for understanding this important topic. ![]()
Collapse
Affiliation(s)
- M Schmid
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - J M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - C M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
44
|
Jurberg AD, Chaves B, Pinho LG, da Silva JHM, Savino W, Cotta-de-Almeida V. VLA-4 as a Central Target for Modulating Neuroinflammatory Disorders. Neuroimmunomodulation 2021; 28:213-221. [PMID: 34515173 DOI: 10.1159/000518721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022] Open
Abstract
The complex steps leading to the central nervous system (CNS) inflammation and the progress to neuroinflammatory and neurodegenerative disorders have opened up new research and intervention avenues. This review focuses on the therapeutic targeting of the VLA-4 integrin to discuss the clear-cut effect on immune cell trafficking into brain tissues. Besides, we explore the possibility that blocking VLA-4 may have a relevant impact on nonmigratory activities of immune cells, such as antigen presentation and T-cell differentiation, during the neuroinflammatory process. Lastly, the recent refinement of computational techniques is highlighted as a way to increase specificity and to reduce the detrimental side effects of VLA-4 immunotherapies aiming at developing better clinical interventions.
Collapse
Affiliation(s)
- Arnon Dias Jurberg
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Medicine, Estácio de Sá University, Rio de Janeiro, Brazil
| | - Beatriz Chaves
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Computational Modeling Group, Oswaldo Cruz Foundation (Fiocruz), Eusébio, Brazil
| | - Lia Gonçalves Pinho
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - João Hermínio Martins da Silva
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Computational Modeling Group, Oswaldo Cruz Foundation (Fiocruz), Eusébio, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinicius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Medicine, Estácio de Sá University, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Kim S, Kim YM, Kim H, Kang YW, Park S, Yang SI, Choi D, Sung YC, Lee SW. Fc-fused IL-7 mobilizes long-term HSCs in a pro-B cell-dependent manner and synergizes with G-CSF and AMD3100. Leukemia 2021; 35:3030-3034. [PMID: 34007048 PMCID: PMC8478653 DOI: 10.1038/s41375-021-01274-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/02/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Sora Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Young-Min Kim
- grid.49100.3c0000 0001 0742 4007Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyekang Kim
- grid.49100.3c0000 0001 0742 4007Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yeon-Woo Kang
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Subin Park
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sang-In Yang
- grid.488254.7Genexine, Inc., Seongnam-si, Gyeonggi-do Republic of Korea
| | - Donghoon Choi
- Research Institute of NeoImmunetech, Co., ltd. Bio Open Innovation Center, Pohang, Republic of Korea
| | - Young Chul Sung
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea ,grid.488254.7Genexine, Inc., Seongnam-si, Gyeonggi-do Republic of Korea
| | - Seung-Woo Lee
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea ,grid.49100.3c0000 0001 0742 4007Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
46
|
Chen YY, Liu YF, Liu YD, Deng XH, Zhou J. IRF7 suppresses hematopoietic regeneration under stress via CXCR4. STEM CELLS (DAYTON, OHIO) 2020; 39:183-195. [PMID: 33252829 DOI: 10.1002/stem.3308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/08/2020] [Indexed: 11/06/2022]
Abstract
Hematopoietic stem cells (HSCs) maintain quiescence under steady state; however, they are compelled to proliferate and expand to replenish the blood system under stress. The molecular basis underlying stress hematopoiesis remains to be fully understood. In this study, we reported that IRF7 represents an important regulator of stress hematopoiesis. Interferon regulatory factor 7 (IRF7) was dispensable for normal hematopoiesis, whereas its deficiency significantly enhanced hematopoietic stem and progenitor cells (HSPCs) regeneration and improved long-term repopulation of HSCs under stress. Mechanistic studies showed that CXCR4 was identified as a downstream target of IRF7. Overexpression of CXCR4 abrogated the enhanced proliferation and regeneration of IRF7-deficient HSPCs under stress. Similar results were obtained in HSCs from human umbilical cord blood. These observations demonstrated that IRF7 plays an important role in hematopoietic regeneration under stress.
Collapse
Affiliation(s)
- Ying-Ying Chen
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yu-Feng Liu
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yong-Dong Liu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiao-Hui Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jie Zhou
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
47
|
Bewersdorf JP, Zeidan AM. Hyperleukocytosis and Leukostasis in Acute Myeloid Leukemia: Can a Better Understanding of the Underlying Molecular Pathophysiology Lead to Novel Treatments? Cells 2020; 9:cells9102310. [PMID: 33080779 PMCID: PMC7603052 DOI: 10.3390/cells9102310] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Up to 18% of patients with acute myeloid leukemia (AML) present with a white blood cell (WBC) count of greater than 100,000/µL, a condition that is frequently referred to as hyperleukocytosis. Hyperleukocytosis has been associated with an adverse prognosis and a higher incidence of life-threatening complications such as leukostasis, disseminated intravascular coagulation (DIC), and tumor lysis syndrome (TLS). The molecular processes underlying hyperleukocytosis have not been fully elucidated yet. However, the interactions between leukemic blasts and endothelial cells leading to leukostasis and DIC as well as the processes in the bone marrow microenvironment leading to the massive entry of leukemic blasts into the peripheral blood are becoming increasingly understood. Leukemic blasts interact with endothelial cells via cell adhesion molecules such as various members of the selectin family which are upregulated via inflammatory cytokines released by leukemic blasts. Besides their role in the development of leukostasis, cell adhesion molecules have also been implicated in leukemic stem cell survival and chemotherapy resistance and can be therapeutically targeted with specific inhibitors such as plerixafor or GMI-1271 (uproleselan). However, in the absence of approved targeted therapies supportive treatment with the uric acid lowering agents allopurinol and rasburicase as well as aggressive intravenous fluid hydration for the treatment and prophylaxis of TLS, transfusion of blood products for the management of DIC, and cytoreduction with intensive chemotherapy, leukapheresis, or hydroxyurea remain the mainstay of therapy for AML patients with hyperleukocytosis.
Collapse
Affiliation(s)
| | - Amer M. Zeidan
- Correspondence: ; Tel.: +1-203-737-7103; Fax: +1-203-785-7232
| |
Collapse
|
48
|
Facts and Challenges in Immunotherapy for T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21207685. [PMID: 33081391 PMCID: PMC7589289 DOI: 10.3390/ijms21207685] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL), a T-cell malignant disease that mainly affects children, is still a medical challenge, especially for refractory patients for whom therapeutic options are scarce. Recent advances in immunotherapy for B-cell malignancies based on increasingly efficacious monoclonal antibodies (mAbs) and chimeric antigen receptors (CARs) have been encouraging for non-responding or relapsing patients suffering from other aggressive cancers like T-ALL. However, secondary life-threatening T-cell immunodeficiency due to shared expression of targeted antigens by healthy and malignant T cells is a main drawback of mAb—or CAR-based immunotherapies for T-ALL and other T-cell malignancies. This review provides a comprehensive update on the different immunotherapeutic strategies that are being currently applied to T-ALL. We highlight recent progress on the identification of new potential targets showing promising preclinical results and discuss current challenges and opportunities for developing novel safe and efficacious immunotherapies for T-ALL.
Collapse
|
49
|
Cancilla D, Rettig MP, DiPersio JF. Targeting CXCR4 in AML and ALL. Front Oncol 2020; 10:1672. [PMID: 33014834 PMCID: PMC7499473 DOI: 10.3389/fonc.2020.01672] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
The interaction of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) blasts with the bone marrow microenvironment regulates self-renewal, growth signaling, as well as chemotherapy resistance. The chemokine receptor, CXC receptor 4 (CXCR4), with its ligand chemokine ligand 12 (CXCL12), plays a key role in the survival and migration of normal and malignant stem cells to the bone marrow. High expression of CXCR4 on AML and ALL blasts has been shown to be a predictor of poor prognosis for these diseases. Several small molecule inhibitors, short peptides, antibodies, and antibody drug conjugates have been developed for the purposes of more effective targeting and killing of malignant cells expressing CXCR4. In this review we will discuss recent results and strategies in targeting CXCR4 with these agents in patients with AML or ALL.
Collapse
Affiliation(s)
| | | | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
50
|
Bagal B, Gokarn A, Punatar S, Das S, Bonda A, Nayak L, Chichra A, Kannan S, Mathew LJ, Tembhare P, Patkar N, Poojary M, Ojha S, Subramanian PG, Gujral S, Khattry N. Bortezomib and cyclophosphamide based chemo-mobilization in multiple myeloma. Int J Hematol 2020; 112:835-840. [PMID: 32876851 DOI: 10.1007/s12185-020-02973-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/04/2020] [Accepted: 08/16/2020] [Indexed: 10/23/2022]
Abstract
Hematopoietic stem and progenitor cell (HSPC) mobilization regimens in multiple myeloma typically use filgrastim (GCSF) alone or combination of GCSF with plerixafor or high-dose cyclophosphamide. Murine model and human studies have shown HSPC mobilization potential of bortezomib. A total of 37 patients underwent mobilization using bortezomib 1.3 mg/m2 on day 1, 4, 8 and 11, cyclophosphamide 1 g/m2 on day 8 and 9, and GCSF 10 μg/kg from day 10 (B-Cy-GCSF). This regimen was compared with our earlier cohort of patients where cyclophosphamide was given at dose of 1 g/m2 on day 1 and day 2 followed by GCSF 10 μg/kg from day 4 (Cy-GCSF). In B-Cy-GCSF group, median CD34 cells collected were 9.21 × 106/kg (range 4.95-17.1) while in the Cy-GCSF cohort, the median CD34 cell yield was 8.2 × 106/kg (0.4-24.2). Target CD34 cells yield of 5 × 106/kg was achieved with single apheresis in 58.6% of patients after B-Cy-GCSF mobilization as compared to 44.3% in Cy-GCSF group (p = 0.07). Three patients failed mobilization after Cy-GCSF, while no patients failed mobilization in bortezomib group. Addition of bortezomib to Cy-GCSF mobilization showed a trend towards increased CD34 collection and reduced need for apheresis sessions.
Collapse
Affiliation(s)
- Bhausaheb Bagal
- Department of Medical Oncology, CRC, ACTREC, Tata Memorial Centre, 3rd floor, Paymaster Shodhika, Navi Mumbai, Maharashtra, 410210, India.,Homi Bhabha National Institute, Mumbai, India
| | - Anant Gokarn
- Department of Medical Oncology, CRC, ACTREC, Tata Memorial Centre, 3rd floor, Paymaster Shodhika, Navi Mumbai, Maharashtra, 410210, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sachin Punatar
- Department of Medical Oncology, CRC, ACTREC, Tata Memorial Centre, 3rd floor, Paymaster Shodhika, Navi Mumbai, Maharashtra, 410210, India.,Homi Bhabha National Institute, Mumbai, India
| | - Shashank Das
- Department of Medical Oncology, CRC, ACTREC, Tata Memorial Centre, 3rd floor, Paymaster Shodhika, Navi Mumbai, Maharashtra, 410210, India
| | - Avinash Bonda
- Department of Medical Oncology, CRC, ACTREC, Tata Memorial Centre, 3rd floor, Paymaster Shodhika, Navi Mumbai, Maharashtra, 410210, India.,Homi Bhabha National Institute, Mumbai, India
| | - Lingaraj Nayak
- Department of Medical Oncology, CRC, ACTREC, Tata Memorial Centre, 3rd floor, Paymaster Shodhika, Navi Mumbai, Maharashtra, 410210, India.,Homi Bhabha National Institute, Mumbai, India
| | - Akanksha Chichra
- Department of Medical Oncology, CRC, ACTREC, Tata Memorial Centre, 3rd floor, Paymaster Shodhika, Navi Mumbai, Maharashtra, 410210, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sadhana Kannan
- Department of Biostatistics, ACTREC, Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Libin J Mathew
- Department of Medical Oncology, CRC, ACTREC, Tata Memorial Centre, 3rd floor, Paymaster Shodhika, Navi Mumbai, Maharashtra, 410210, India
| | - Prashant Tembhare
- Department of Hematopathology, Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Nikhil Patkar
- Department of Hematopathology, Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Minal Poojary
- Department of Transfusion Medicine, ACTREC, Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Shashank Ojha
- Department of Transfusion Medicine, ACTREC, Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Papagudi Ganesan Subramanian
- Department of Hematopathology, Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sumeet Gujral
- Department of Hematopathology, Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Navin Khattry
- Department of Medical Oncology, CRC, ACTREC, Tata Memorial Centre, 3rd floor, Paymaster Shodhika, Navi Mumbai, Maharashtra, 410210, India. .,Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|