1
|
Mehta D, Rajput K, Jain D, Bajaj A, Dasgupta U. Unveiling the Role of Mechanistic Target of Rapamycin Kinase (MTOR) Signaling in Cancer Progression and the Emergence of MTOR Inhibitors as Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:3758-3779. [PMID: 39698262 PMCID: PMC11650738 DOI: 10.1021/acsptsci.4c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
The mechanistic target of rapamycin kinase (MTOR) is pivotal for cell growth, metabolism, and survival. It functions through two distinct complexes, mechanistic TORC1 and mechanistic TORC2 (mTORC1 and mTORC2). These complexes function in the development and progression of cancer by regulating different cellular processes, such as protein synthesis, lipid metabolism, and glucose homeostasis. The mTORC1 complex senses nutrients and initiates proliferative signals, and mTORC2 is crucial for cell survival and cytoskeletal rearrangements. mTORC1 and mTORC2 have therefore emerged as potential targets for cancer treatment. Several mTOR inhibitors, including rapamycin and its analogs (rapalogs), primarily target mTORC1 and are effective for specific cancer types. However, these inhibitors often lead to resistance and limited long-term advantages due to the activation of survival pathways through feedback mechanisms. Researchers have created next-generation inhibitors targeting mTORC1 and mTORC2 and dual PI3K/mTOR inhibitors to address these difficulties. These inhibitors demonstrate enhanced anti-tumor effects by simultaneously disrupting multiple signaling pathways and show promise for improved and long-lasting therapies. However, development of resistance and adverse side effects remain a significant obstacle. Recent additions known as RapaLinks have emerged as a boon to counter drug-resistant cancer cells, as they are more potent and provide a more comprehensive blockade of mTOR signaling pathways. This Review combines current research findings and clinical insights to enhance our understanding of the crucial role of mTOR signaling in cancer biology and highlights the evolution of mTOR inhibitors as promising therapeutic approaches.
Collapse
Affiliation(s)
- Devashish Mehta
- Amity
Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| | - Kajal Rajput
- Amity
Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| | - Dolly Jain
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
| | - Avinash Bajaj
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
| | - Ujjaini Dasgupta
- Amity
Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| |
Collapse
|
2
|
Marafie SK, Alshawaf E, Al-Mulla F, Abubaker J, Mohammad A. Targeting mTOR Kinase with Natural Compounds: Potent ATP-Competitive Inhibition Through Enhanced Binding Mechanisms. Pharmaceuticals (Basel) 2024; 17:1677. [PMID: 39770519 PMCID: PMC11677242 DOI: 10.3390/ph17121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The mammalian target of the rapamycin (mTOR) signaling pathway is a central regulator of cell growth, proliferation, metabolism, and survival. Dysregulation of mTOR signaling contributes to many human diseases, including cancer, diabetes, and obesity. Therefore, inhibitors against mTOR's catalytic kinase domain (KD) have been developed and have shown significant antitumor activities, making it a promising therapeutic target. The ATP-KD interaction is particularly important for mTOR to exert its cellular functions, and such inhibitors have demonstrated efficient attenuation of overall mTOR activity. Methods: In this study, we screened the Traditional Chinese Medicine (TCM) database, which enlists natural products that capture the relationships between drugs targets and diseases. Our aim was to identify potential ATP-competitive agonists that target the mTOR-KD and compete with ATP to bind the mTOR-KD serving as potential potent mTOR inhibitors. Results: We identified two compounds that demonstrated interatomic interactions similar to those of ATP-mTOR. The conformational stability and dynamic features of the mTOR-KD bound to the selected compounds were tested by subjecting each complex to 200 ns molecular dynamic (MD) simulations and molecular mechanics/generalized Born surface area (MM/GBSA) to extract free binding energies. We show the effectiveness of both compounds in forming stable complexes with the mTOR-KD, which is more effective than the mTOR-KD-ATP complex with more robust binding affinities. Conclusions: This study implies that both compounds could serve as potential therapeutic inhibitors of mTOR, regulating its function and, therefore, mitigating human disease progression.
Collapse
Affiliation(s)
- Sulaiman K. Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (E.A.)
| | - Eman Alshawaf
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (E.A.)
| | - Fahd Al-Mulla
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (E.A.)
| | - Anwar Mohammad
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (E.A.)
| |
Collapse
|
3
|
Liu X, Guo B, Li Q, Nie J. mTOR in metabolic homeostasis and disease. Exp Cell Res 2024; 441:114173. [PMID: 39047807 DOI: 10.1016/j.yexcr.2024.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The ability to maintain cellular metabolic homeostasis is critical to life, in which mTOR plays an important role. This kinase integrates upstream nutrient signals and performs essential functions in physiology and metabolism by increasing metabolism and suppressing autophagy. Thus, dysregulation of mTOR activity leads to diseases, especially metabolic diseases such as cancer, type 2 diabetes and neurological disorders. Therefore, inhibition of overactivated mTOR becomes a rational approach to treat a variety of metabolic diseases. In this review, we discuss how mTOR responds to upstream signals and how mTOR regulates metabolic processes, including protein, nucleic acid, and lipid metabolism. Furthermore, we discuss the possible causes and consequences of dysregulated mTOR signaling activity, and summarize relevant applications, such as inhibition of mTOR activity to treat these diseases. This review will advance our comprehensive knowledge of the association between mTOR and metabolic homeostasis, which has significant ramifications for human health.
Collapse
Affiliation(s)
- Xuejia Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Bin Guo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qiye Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
4
|
Marafie SK, Al-Mulla F, Abubaker J. mTOR: Its Critical Role in Metabolic Diseases, Cancer, and the Aging Process. Int J Mol Sci 2024; 25:6141. [PMID: 38892329 PMCID: PMC11173325 DOI: 10.3390/ijms25116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The mammalian target of rapamycin (mTOR) is a pivotal regulator, integrating diverse environmental signals to control fundamental cellular functions, such as protein synthesis, cell growth, survival, and apoptosis. Embedded in a complex network of signaling pathways, mTOR dysregulation is implicated in the onset and progression of a range of human diseases, including metabolic disorders such as diabetes and cardiovascular diseases, as well as various cancers. mTOR also has a notable role in aging. Given its extensive biological impact, mTOR signaling is a prime therapeutic target for addressing these complex conditions. The development of mTOR inhibitors has proven advantageous in numerous research domains. This review delves into the significance of mTOR signaling, highlighting the critical components of this intricate network that contribute to disease. Additionally, it addresses the latest findings on mTOR inhibitors and their clinical implications. The review also emphasizes the importance of developing more effective next-generation mTOR inhibitors with dual functions to efficiently target the mTOR pathways. A comprehensive understanding of mTOR signaling will enable the development of effective therapeutic strategies for managing diseases associated with mTOR dysregulation.
Collapse
Affiliation(s)
- Sulaiman K. Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait;
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
5
|
Subbiah V, Coleman N, Piha-Paul SA, Tsimberidou AM, Janku F, Rodon J, Pant S, Dumbrava EEI, Fu S, Hong DS, Zhang S, Sun M, Jiang Y, Roszik J, Song J, Yuan Y, Meric-Bernstam F, Naing A. Phase I Study of mTORC1/2 Inhibitor Sapanisertib (CB-228/TAK-228) in Combination with Metformin in Patients with mTOR/AKT/PI3K Pathway Alterations and Advanced Solid Malignancies. CANCER RESEARCH COMMUNICATIONS 2024; 4:378-387. [PMID: 38126764 PMCID: PMC10860536 DOI: 10.1158/2767-9764.crc-22-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 02/20/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Sapanisertib (CB-228/TAK-228) is a potent, selective ATP-competitive, dual inhibitor of mTORC1/2. Metformin is thought to inhibit the mTOR pathway through upstream activation of 5'-AMP-activated protein kinase (AMPK) suggesting combination therapy may enhance antitumor activity of sapanisertib. We report preliminary safety, tolerability, and efficacy from the dose-escalation study of sapanisertib in combination with metformin in patients with advanced solid tumors. METHODS Patients with advanced metastatic solid tumors resistant or refractory to standard treatment, with and without mTOR/AKT/PI3K pathway alterations, received sapanisertib 3 or 4 mg daily together with metformin once to three times daily (500-1,500 mg). All patients underwent 14-day titration period for metformin in cycle 1. Tumor measurements were performed following cycle 2 and subsequently every 8 weeks. RESULTS A total of 30 patients were enrolled across four cohorts (3 mg/500 mg; 3 mg/1,000 mg, 4 mg/1,000 mg; 4 mg/1,500 mg). 19 were female (63%), median age was 57 (range: 30-77), all were Eastern Cooperative Oncology Group performance status 1. Tumor types included sarcoma (6), breast (4), ovarian (4), head and neck (3), colorectal (2), lung (2), renal cell (2), endometrial (2), gastroesophageal junction (1), prostate (1), stomach (1), urachus (1), and cervical cancer (1). Median number of prior lines of therapy was 4. Most common genomic alterations included PIK3CA (27%), PTEN (17%), AKT1/2 (10%), mTOR (10%). Of 30 patients evaluable for response, 4 patients achieved partial response (PR); 15 patients achieved stable disease (SD) as best response. Disease control rate (PR+SD) was 63%. Of the responders in PR, 3 of 4 patients had documented PTEN mutations (3/5 patients enrolled with PTEN mutations had PR); 2 of 4 of patients in PR had comutations (patient with leiomyosarcoma had both PTEN and TSC; patient with breast cancer had both PTEN and STK11); 1 of 4 patients in PR had AKT and mTOR mutation; tumor types included leiomyosarcoma (n = 2), breast (n = 1), and endometrial cancer (n = 1). Most common treatment-emergent adverse events included nausea, anorexia, diarrhea, and rash. Grade (G) 3-5 treatment-related adverse events included hyperglycemia (4/30; 13%), fatigue (2/30; 7%), hypertriglyceridemia (1/30; 3%), rash (2/20; 7%), diarrhea (2/30; 7%), creatinine increase (1/30; 3%), acidosis (1/30; 3%). No dose-limiting toxicities (DLT) were reported in the 3 mg/500 mg cohort. One of 6 patient had DLT in the 3 mg/1,000 mg cohort (G3 diarrhea) and 2 of 11 patients had DLTs in the 4 mg/1,500 mg cohort (G3 fatigue, G3 rash). 4 mg/1,000 mg was defined as the MTD. CONCLUSIONS The safety profile of mTORC1/2 inhibitor sapanisertib in combination with metformin was generally tolerable, with antitumor activity observed in patients with advanced malignancies harboring PTEN mutations and AKT/mTOR pathway alterations. SIGNIFICANCE Sapanisertib (CB-228/TAK-228) is a potent, selective ATP-competitive, next-generation dual inhibitor of mTORC1/2. Metformin is thought to inhibit the mTOR pathway through upstream activation of AMPK suggesting combination therapy may enhance antitumor activity of sapanisertib. This dose-escalation study of sapanisertib and metformin in advanced solid tumors and mTOR/AKT/PI3K pathway alterations, demonstrates safety, tolerability, and early clinical activity in advanced malignancies harboring PTEN mutations and AKT/mTOR pathway alterations.Clinical trial information: NCT03017833.
Collapse
Affiliation(s)
- Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Niamh Coleman
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarina A. Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shubham Pant
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ecaterina E. Ileana Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S. Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shizhen Zhang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ming Sun
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yunfang Jiang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Biostatistics, MD Anderson Cancer Center, Houston, Texas
| | - Juhee Song
- Department of Biostatistics, MD Anderson Cancer Center, Houston, Texas
| | - Ying Yuan
- Department of Biostatistics, MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Khalifa Institute for Personalized Cancer Therapy, MD Anderson Cancer Center, Houston, Texas
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
6
|
Coleman N, Stephen B, Fu S, Karp D, Subbiah V, Ahnert JR, Piha‐Paul SA, Wright J, Fessahaye SN, Ouyang F, Yilmaz B, Meric‐Bernstam F, Naing A. Phase I study of sapanisertib (CB-228/TAK-228/MLN0128) in combination with ziv-aflibercept in patients with advanced solid tumors. Cancer Med 2024; 13:e6877. [PMID: 38400671 PMCID: PMC10891443 DOI: 10.1002/cam4.6877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Sapanisertib is a potent ATP-competitive, dual inhibitor of mTORC1/2. Ziv-aflibercept is a recombinant fusion protein comprising human VEGF receptor extracellular domains fused to human immunoglobulin G1. HIF-1α inhibition in combination with anti-angiogenic therapy is a promising anti-tumor strategy. This Phase 1 dose-escalation/expansion study assessed safety/ tolerability of sapanisertib in combination with ziv-aflibercept in advanced solid tumors. METHODS Fifty-five patients with heavily pre-treated advanced metastatic solid tumors resistant or refractory to standard treatment received treatment on a range of dose levels. RESULTS Fifty-five patients were enrolled and treated across a range of dose levels. Forty were female (73%), median age was 62 (range: 21-79), and ECOG PS was 0 (9, 16%) or 1 (46, 84%). Most common tumor types included ovarian (8), colorectal (8), sarcoma (8), breast (3), cervical (4), and endometrial (4). Median number of prior lines of therapy was 4 (range 2-11). Sapanisertib 4 mg orally 3 days on and 4 days off plus 3 mg/kg ziv-aflibercept IV every 2 weeks on a 28-day cycle was defined as the maximum tolerated dose. Most frequent treatment-related grade ≥2 adverse events included hypertension, fatigue, anorexia, hypertriglyceridemia, diarrhea, nausea, mucositis, and serum lipase increase. There were no grade 5 events. In patients with evaluable disease (n = 50), 37 patients (74%) achieved stable disease (SD) as best response, two patients (4%) achieved a confirmed partial response (PR); disease control rate (DCR) (CR + SD + PR) was 78%. CONCLUSION The combination of sapanisertib and ziv-aflibercept was generally tolerable and demonstrated anti-tumor activity in heavily pre-treated patients with advanced malignancies.
Collapse
Affiliation(s)
- Niamh Coleman
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Present address:
Department of Medical OncologyTrinity St. James' Cancer Institute, St. James's Hospital Trinity College MedicineDublinIreland
| | - Bettzy Stephen
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Siqing Fu
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Daniel Karp
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Vivek Subbiah
- Early Phase Drug DevelopmentSarah Cannon Research InstituteNashvilleTennesseeUSA
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sarina A. Piha‐Paul
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - John Wright
- National Cancer Institute (NCI), Cancer Therapy Evaluation Program (CTEP)BethesdaMarylandUSA
| | - Senait N. Fessahaye
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Fengying Ouyang
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Bulent Yilmaz
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Funda Meric‐Bernstam
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Khalifa Institute for Personalized Cancer TherapyMD Anderson Cancer CenterHoustonTexasUSA
- Department of Surgical OncologyMD Anderson Cancer CenterHoustonTexasUSA
| | - Aung Naing
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
7
|
Al‐Kali A, Aldoss I, Atherton PJ, Strand CA, Shah B, Webster J, Bhatnagar B, Flatten KS, Peterson KL, Schneider PA, Buhrow SA, Kong J, Reid JM, Adjei AA, Kaufmann SH. A phase 2 and pharmacological study of sapanisertib in patients with relapsed and/or refractory acute lymphoblastic leukemia. Cancer Med 2023; 12:21229-21239. [PMID: 37960985 PMCID: PMC10726920 DOI: 10.1002/cam4.6701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Despite recent approval of several new agents, relapsed acute lymphoblastic leukemia (ALL) remains challenging to treat. Sapanisertib (MLN0128/TAK-228) is an oral TORC1/2 inhibitor that exhibited preclinical activity against ALL. METHODS We conducted a single-arm multi-center Phase II study of sapanisertib monotherapy (3 mg orally daily of the milled formulation for 21 days every 28 days) in patients with ALL through the Experimental Therapeutics Clinical Trials Network (NCI-9775). RESULTS Sixteen patients, 15 of whom were previously treated (median 3 prior lines of therapy), were enrolled. Major grade 3-4 non-hematologic toxicities included mucositis (3 patients) and hyperglycemia (2 patients) as well as hepatic failure, seizures, confusion, pneumonitis, and anorexia (1 patient each). Grade >2 hematological toxicity included leukopenia (3), lymphopenia (2), thrombocytopenia, and neutropenia (1). The best response was stable disease in 2 patients (12.5%), while only 3 patients (19%) were able to proceed to Cycle 2. Pharmacokinetic analysis demonstrated drug exposures similar to those observed in solid tumor patients. Immunoblotting in serially collected samples indicated limited impact of treatment on phosphorylation of mTOR pathway substrates such as 4EBP1, S6, and AKT. CONCLUSION In summary, single-agent sapanisertib had a good safety profile but limited target inhibition or efficacy in ALL as a single agent. This trial was registered at ClinicalTrials.gov as NCT02484430.
Collapse
Affiliation(s)
- Aref Al‐Kali
- Division of HematologyMayo ClinicRochesterMinnesotaUSA
| | - Ibrahim Aldoss
- Division of Hematology and Hematopoietic Cell TransplantationCity of Hope National Medical CenterDuarteCaliforniaUSA
| | | | | | - Bijal Shah
- Division of HematologyMoffitt Cancer CenterTampaFloridaUSA
| | - Jonathan Webster
- Division of Hematological MalignanciesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Bhavana Bhatnagar
- Section of Hematology and Medical OncologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | | | | | | | - Sarah A. Buhrow
- Division of Oncology ResearchMayo ClinicRochesterMinnesotaUSA
| | - Jianping Kong
- Division of Oncology ResearchMayo ClinicRochesterMinnesotaUSA
| | - Joel M. Reid
- Division of Oncology ResearchMayo ClinicRochesterMinnesotaUSA
| | - Alex A. Adjei
- Division of Medical OncologyMayo ClinicRochesterMinnesotaUSA
- Present address:
Tausig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| | - Scott H. Kaufmann
- Division of HematologyMayo ClinicRochesterMinnesotaUSA
- Division of Oncology ResearchMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
8
|
Cao Y, Ye Q, Ma M, She QB. Enhanced bypass of PD-L1 translation reduces the therapeutic response to mTOR kinase inhibitors. Cell Rep 2023; 42:112764. [PMID: 37405918 PMCID: PMC10491412 DOI: 10.1016/j.celrep.2023.112764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/23/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Increased PD-L1 expression in cancer cells is known to enhance immunosuppression, but the mechanism underlying PD-L1 upregulation is incompletely characterized. We show that PD-L1 expression is upregulated through internal ribosomal entry site (IRES)-mediated translation upon mTORC1 inhibition. We identify an IRES element in the PD-L1 5'-UTR that permits cap-independent translation and promotes continuous production of PD-L1 protein despite effective inhibition of mTORC1. eIF4A is found to be a key PD-L1 IRES-binding protein that enhances PD-L1 IRES activity and protein production in tumor cells treated with mTOR kinase inhibitors (mTORkis). Notably, treatment with mTORkis in vivo elevates PD-L1 levels and reduces the number of tumor-infiltrating lymphocytes in immunogenic tumors, but anti-PD-L1 immunotherapy restores antitumor immunity and enhances the therapeutic efficacy of mTORkis. These findings report a molecular mechanism for regulating PD-L1 expression through bypassing mTORC1-mediated cap-dependent translation and provide a rationale for targeting PD-L1 immune checkpoint to improve mTOR-targeted therapy.
Collapse
Affiliation(s)
- Yanan Cao
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40506, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Qing Ye
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40506, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Murong Ma
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40506, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Qing-Bai She
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40506, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40506, USA.
| |
Collapse
|
9
|
Satta T, Li L, Chalasani SL, Hu X, Nkwocha J, Sharma K, Kmieciak M, Rahmani M, Zhou L, Grant S. Dual mTORC1/2 Inhibition Synergistically Enhances AML Cell Death in Combination with the BCL2 Antagonist Venetoclax. Clin Cancer Res 2023; 29:1332-1343. [PMID: 36652560 PMCID: PMC10073266 DOI: 10.1158/1078-0432.ccr-22-2729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
PURPOSE Acute myelogenous leukemia (AML) is an aggressive disease with a poor outcome. We investigated mechanisms by which the anti-AML activity of ABT-199 (venetoclax) could be potentiated by dual mTORC1/TORC2 inhibition. EXPERIMENTAL DESIGN Venetoclax/INK128 synergism was assessed in various AML cell lines and primary patient AML samples in vitro. AML cells overexpressing MCL-1, constitutively active AKT, BAK, and/or BAX knockout, and acquired venetoclax resistance were investigated to define mechanisms underlying interactions. The antileukemic efficacy of this regimen was also examined in xenograft and patient-derived xenograft (PDX) models. RESULTS Combination treatment with venetoclax and INK128 (but not the mTORC1 inhibitor rapamycin) dramatically enhanced cell death in AML cell lines. Synergism was associated with p-AKT and p-4EBP1 downregulation and dependent upon MCL-1 downregulation and BAK/BAX upregulation as MCL-1 overexpression and BAX/BAK knockout abrogated cell death. Constitutive AKT activation opposed synergism between venetoclax and PI3K or AKT inhibitors, but not INK128. Combination treatment also synergistically induced cell death in venetoclax-resistant AML cells. Similar events occurred in primary patient-derived leukemia samples but not normal CD34+ cells. Finally, venetoclax and INK128 co-treatment displayed increased antileukemia effects in in vivo xenograft and PDX models. CONCLUSIONS The venetoclax/INK128 regimen exerts significant antileukemic activity in various preclinical models through mechanisms involving MCL-1 downregulation and BAK/BAX activation, and offers potential advantages over PI3K or AKT inhibitors in cells with constitutive AKT activation. This regimen is active against primary and venetoclax-resistant AML cells, and in in vivo AML models. Further investigation of this strategy appears warranted.
Collapse
Affiliation(s)
- Toshihisa Satta
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Laboratory Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lin Li
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Sri Lakshmi Chalasani
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Xiaoyan Hu
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Jewel Nkwocha
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Kanika Sharma
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Maciej Kmieciak
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohamed Rahmani
- Department of Molecular Biology and Genetics, College of Medicine & Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Liang Zhou
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
10
|
Boutilier AJ, Huang L, Elsawa SF. Waldenström Macroglobulinemia: Mechanisms of Disease Progression and Current Therapies. Int J Mol Sci 2022; 23:11145. [PMID: 36232447 PMCID: PMC9569492 DOI: 10.3390/ijms231911145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Waldenström macroglobulinemia is an indolent, B-cell lymphoma without a known cure. The bone marrow microenvironment and cytokines both play key roles in Waldenström macroglobulinemia (WM) tumor progression. Only one FDA-approved drug exists for the treatment of WM, Ibrutinib, but treatment plans involve a variety of drugs and inhibitors. This review explores avenues of tumor progression and targeted drug therapy that have been investigated in WM and related B-cell lymphomas.
Collapse
Affiliation(s)
- Ava J. Boutilier
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Lina Huang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Sherine F. Elsawa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
11
|
Mao B, Zhang Q, Ma L, Zhao DS, Zhao P, Yan P. Overview of Research into mTOR Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165295. [PMID: 36014530 PMCID: PMC9413691 DOI: 10.3390/molecules27165295] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that belongs to the phosphoinositide 3-kinase (PI3K)-related kinase (PIKK) family. The kinase exists in the forms of two complexes, mTORC1 and mTORC2, and it participates in cell growth, proliferation, metabolism, and survival. The kinase activity is closely related to the occurrence and development of multiple human diseases. Inhibitors of mTOR block critical pathways to produce antiviral, anti-inflammatory, antiproliferative and other effects, and they have been applied to research in cancer, inflammation, central nervous system diseases and viral infections. Existing mTOR inhibitors are commonly divided into mTOR allosteric inhibitors, ATP-competitive inhibitors and dual binding site inhibitors, according to their sites of action. In addition, there exist several dual-target mTOR inhibitors that target PI3K, histone deacetylases (HDAC) or ataxia telangiectasia mutated and Rad-3 related (ATR) kinases. This review focuses on the structure of mTOR protein and related signaling pathways as well as the structure and characteristics of various mTOR inhibitors. Non-rapalog allosteric inhibitors will open new directions for the development of new therapeutics specifically targeting mTORC1. The applications of ATP-competitive inhibitors in central nervous system diseases, viral infections and inflammation have laid the foundation for expanding the indications of mTOR inhibitors. Both dual-binding site inhibitors and dual-target inhibitors are beneficial in overcoming mTOR inhibitor resistance.
Collapse
Affiliation(s)
- Beibei Mao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| | - Qi Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Dong-Sheng Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| | - Peizheng Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| |
Collapse
|
12
|
Vo TT, Herzog LO, Buono R, Lee JHS, Mallya S, Duong MR, Thao J, Gotesman M, Fruman DA. Targeting eIF4F translation complex sensitizes B-ALL cells to tyrosine kinase inhibition. Sci Rep 2021; 11:21689. [PMID: 34737376 PMCID: PMC8569117 DOI: 10.1038/s41598-021-00950-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 11/08/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a kinase whose activation is associated with poor prognosis in pre-B cell acute lymphoblastic leukemia (B-ALL). These and other findings have prompted diverse strategies for targeting mTOR signaling in B-ALL and other B-cell malignancies. In cellular models of Philadelphia Chromosome-positive (Ph+) B-ALL, mTOR kinase inhibitors (TOR-KIs) that inhibit both mTOR-complex-1 (mTORC1) and mTOR-complex-2 (mTORC2) enhance the cytotoxicity of tyrosine kinase inhibitors (TKIs) such as dasatinib. However, TOR-KIs have not shown substantial efficacy at tolerated doses in blood cancer clinical trials. Selective inhibition of mTORC1 or downstream effectors provides alternative strategies that may improve selectivity towards leukemia cells. Of particular interest is the eukaryotic initiation factor 4F (eIF4F) complex that mediates cap-dependent translation. Here we use novel chemical and genetic approaches to show that selective targeting of either mTORC1 kinase activity or components of the eIF4F complex sensitizes murine BCR-ABL-dependent pre-B leukemia cells to dasatinib. SBI-756, a small molecule inhibitor of eIF4F assembly, sensitizes human Ph+ and Ph-like B-ALL cells to dasatinib cytotoxicity without affecting survival of T lymphocytes or natural killer cells. These findings support the further evaluation of eIF4F-targeted molecules in combination therapies with TKIs in B-ALL and other blood cancers.
Collapse
Affiliation(s)
- Thanh-Trang Vo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Lee-Or Herzog
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Roberta Buono
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Jong-Hoon Scott Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Sharmila Mallya
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Madeleine R Duong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Joshua Thao
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Moran Gotesman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
13
|
Lee BJ, Mallya S, Dinglasan N, Fung A, Nguyen T, Herzog LO, Thao J, Lorenzana EG, Wildes D, Singh M, Smith JAM, Fruman DA. Efficacy of a Novel Bi-Steric mTORC1 Inhibitor in Models of B-Cell Acute Lymphoblastic Leukemia. Front Oncol 2021; 11:673213. [PMID: 34408976 PMCID: PMC8366290 DOI: 10.3389/fonc.2021.673213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a kinase whose activity is elevated in hematological malignancies. mTOR-complex-1 (mTORC1) phosphorylates numerous substrates to promote cell proliferation and survival. Eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs) are mTORC1 substrates with an integral role in oncogenic protein translation. Current pharmacological approaches to inhibit mTORC1 activity and 4E-BP phosphorylation have drawbacks. Recently we described a series of bi-steric compounds that are potent and selective inhibitors of mTORC1, inhibiting 4E-BP phosphorylation at lower concentrations than mTOR kinase inhibitors (TOR-KIs). Here we report the activity of the mTORC1-selective bi-steric inhibitor, RMC-4627, in BCR-ABL-driven models of B-cell acute lymphoblastic leukemia (B-ALL). RMC-4627 exhibited potent and selective inhibition of 4E-BP1 phosphorylation in B-ALL cell lines without inhibiting mTOR-complex-2 (mTORC2) activity. RMC-4627 suppressed cell cycle progression, reduced survival, and enhanced dasatinib cytotoxicity. Compared to a TOR-KI compound, RMC-4627 was more potent, and its effects on cell viability were sustained after washout in vitro. Notably, a once-weekly, well tolerated dose reduced leukemic burden in a B-ALL xenograft model and enhanced the activity of dasatinib. These preclinical studies suggest that intermittent dosing of a bi-steric mTORC1-selective inhibitor has therapeutic potential as a component of leukemia regimens, and further study is warranted.
Collapse
Affiliation(s)
- Bianca J Lee
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, United States
| | - Sharmila Mallya
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States
| | - Nuntana Dinglasan
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, United States
| | - Amos Fung
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States
| | - Tram Nguyen
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, United States
| | - Lee-Or Herzog
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States
| | - Joshua Thao
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States
| | - Edward G Lorenzana
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, United States
| | - David Wildes
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, United States
| | - Mallika Singh
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, United States
| | - Jacqueline A M Smith
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, United States
| | - David A Fruman
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States
| |
Collapse
|
14
|
Xu T, Zhang J, Yang C, Pluta R, Wang G, Ye T, Ouyang L. Identification and optimization of 3-bromo-N'-(4-hydroxybenzylidene)-4-methylbenzohydrazide derivatives as mTOR inhibitors that induce autophagic cell death and apoptosis in triple-negative breast cancer. Eur J Med Chem 2021; 219:113424. [PMID: 33862514 DOI: 10.1016/j.ejmech.2021.113424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023]
Abstract
Triple negative breast cancer (TNBC) has a worse prognosis than other types of breast cancer due to its special biological behavior and clinicopathological characteristics. TNBC cell proliferation and progression to metastasis can be suppressed by inducing cytostatic autophagy. mTOR is closely related to autophagy and is involved in protein synthesis, nutrient metabolism and activating mTOR promotes tumor growth and metastasis. In this paper, we adopted the strategy of structure simplification, aimed to look for novel small-molecule inhibitors of mTOR by pharmacophore-based virtual screening and biological activity determination. We found a lead compound with 3-bromo-N'-(4-hydroxybenzylidene)-4-methylbenzohydrazide for rational drug design and structural modification, then studied its structure-activity relationship. After that, compound 7c with the best TNBC cells inhibitory activities and superior mTOR enzyme inhibitory activity was obtained. In addition, we found that compound 7c could induce autophagic cell death and apoptosis in MDA-MB-231 and MDA-MB-468 cell lines. In conclusion, these findings provide new clues for our 3-bromo-N'-(4-hydroxybenzylidene)-4-methylbenzohydrazide derivatives, which are expected to become drug candidates for the treatment of TNBC in the future.
Collapse
Affiliation(s)
- Tian Xu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
15
|
Herzog LO, Walters B, Buono R, Lee JS, Mallya S, Fung A, Chiu H, Nguyen N, Li B, Pinkerton AB, Jackson MR, Schneider RJ, Ronai ZA, Fruman DA. Targeting eIF4F translation initiation complex with SBI-756 sensitises B lymphoma cells to venetoclax. Br J Cancer 2021; 124:1098-1109. [PMID: 33318657 PMCID: PMC7960756 DOI: 10.1038/s41416-020-01205-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/30/2020] [Accepted: 11/20/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The BCL2 inhibitor venetoclax has shown efficacy in several hematologic malignancies, with the greatest response rates in indolent blood cancers such as chronic lymphocytic leukaemia. There is a lower response rate to venetoclax monotherapy in diffuse large B-cell lymphoma (DLBCL). METHODS We tested inhibitors of cap-dependent mRNA translation for the ability to sensitise DLBCL and mantle cell lymphoma (MCL) cells to apoptosis by venetoclax. We compared the mTOR kinase inhibitor (TOR-KI) MLN0128 with SBI-756, a compound targeting eukaryotic translation initiation factor 4G1 (eIF4G1), a scaffolding protein in the eIF4F complex. RESULTS Treatment of DLBCL and MCL cells with SBI-756 synergised with venetoclax to induce apoptosis in vitro, and enhanced venetoclax efficacy in vivo. SBI-756 prevented eIF4E-eIF4G1 association and cap-dependent translation without affecting mTOR substrate phosphorylation. In TOR-KI-resistant DLBCL cells lacking eIF4E binding protein-1, SBI-756 still sensitised to venetoclax. SBI-756 selectively reduced translation of mRNAs encoding ribosomal proteins and translation factors, leading to a reduction in protein synthesis rates in sensitive cells. When normal lymphocytes were treated with SBI-756, only B cells had reduced viability, and this correlated with reduced protein synthesis. CONCLUSIONS Our data highlight a novel combination for treatment of aggressive lymphomas, and establishes its efficacy and selectivity using preclinical models.
Collapse
Affiliation(s)
- Lee-or Herzog
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - Beth Walters
- grid.137628.90000 0004 1936 8753New York University School of Medicine, New York, NY USA
| | - Roberta Buono
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - J. Scott Lee
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA ,grid.418185.10000 0004 0627 6737Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121 USA
| | - Sharmila Mallya
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - Amos Fung
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - Honyin Chiu
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA ,grid.416879.50000 0001 2219 0587Benaroya Research Institute, Seattle, WA 98101 USA
| | - Nancy Nguyen
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - Boyang Li
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - Anthony B. Pinkerton
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Michael R. Jackson
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Robert J. Schneider
- grid.137628.90000 0004 1936 8753New York University School of Medicine, New York, NY USA
| | - Ze’ev A. Ronai
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - David A. Fruman
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| |
Collapse
|
16
|
Al Abo M, Hyslop T, Qin X, Owzar K, George DJ, Patierno SR, Freedman JA. Differential alternative RNA splicing and transcription events between tumors from African American and White patients in The Cancer Genome Atlas. Genomics 2021; 113:1234-1246. [PMID: 33705884 DOI: 10.1016/j.ygeno.2021.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
Individuals of African ancestry suffer disproportionally from higher incidence, aggressiveness, and mortality for particular cancers. This disparity likely results from an interplay among differences in multiple determinants of health, including differences in tumor biology. We used The Cancer Genome Atlas (TCGA) SpliceSeq and TCGA aggregate expression datasets and identified differential alternative RNA splicing and transcription events (ARS/T) in cancers between self-identified African American (AA) and White (W) patients. We found that retained intron events were enriched among race-related ARS/T. In addition, on average, 12% of the most highly ranked race-related ARS/T overlapped between any two analyzed cancers. Moreover, the genes undergoing race-related ARS/T functioned in cancer-promoting pathways, and a number of race-related ARS/T were associated with patient survival. We built a web-application, CanSplice, to mine genomic datasets by self-identified race. The race-related targets have the potential to aid in the development of new biomarkers and therapeutics to mitigate cancer disparity.
Collapse
Affiliation(s)
- Muthana Al Abo
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Terry Hyslop
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xiaodi Qin
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Daniel J George
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Steven R Patierno
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jennifer A Freedman
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
17
|
Calissi G, Lam EWF, Link W. Therapeutic strategies targeting FOXO transcription factors. Nat Rev Drug Discov 2021; 20:21-38. [PMID: 33173189 DOI: 10.1038/s41573-020-0088-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
FOXO proteins are transcription factors that are involved in numerous physiological processes and in various pathological conditions, including cardiovascular disease, cancer, diabetes and chronic neurological diseases. For example, FOXO proteins are context-dependent tumour suppressors that are frequently inactivated in human cancers, and FOXO3 is the second most replicated gene associated with extreme human longevity. Therefore, pharmacological manipulation of FOXO proteins is a promising approach to developing therapeutics for cancer and for healthy ageing. In this Review, we overview the role of FOXO proteins in health and disease and discuss the pharmacological approaches to modulate FOXO function.
Collapse
Affiliation(s)
- Giampaolo Calissi
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
18
|
Phase 1 study of mTORC1/2 inhibitor sapanisertib (TAK-228) in advanced solid tumours, with an expansion phase in renal, endometrial or bladder cancer. Br J Cancer 2020; 123:1590-1598. [PMID: 32913286 PMCID: PMC7686313 DOI: 10.1038/s41416-020-01041-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background This Phase 1 dose-escalation/expansion study assessed safety/tolerability of sapanisertib, an oral, highly selective inhibitor of mTORC1/mTORC2, in advanced solid tumours. Methods Eligible patients received increasing sapanisertib doses once daily (QD; 31 patients), once weekly (QW; 30 patients), QD for 3 days on/4 days off QW (QD × 3dQW; 33 patients) or QD for 5 days on/2 days off QW (QD × 5dQW; 22 patients). In expansion cohorts, 82 patients with renal cell carcinoma (RCC), endometrial or bladder cancer received sapanisertib 5 mg QD (39 patients), 40 mg QW (26 patients) or 30 mg QW (17 patients). Results Maximum tolerated doses of sapanisertib were 6 mg QD, 40 mg QW, 9 mg QD × 3dQW and 7 mg QD × 5dQW. Frequent dose-limiting toxicities (DLTs) included hyperglycaemia, maculo-papular rash (QD), asthenia and stomatitis (QD × 3dQW/QD × 5dQW); expansion phase doses of 5 mg QD and 30 mg QW were selected based on tolerability beyond the DLT evaluation period. One patient with RCC achieved complete response; nine experienced partial responses (RCC: seven patients; carcinoid tumour/endometrial cancer: one patient each). Sapanisertib pharmacokinetics were time-linear and supported multiple dosing. Pharmacodynamic findings demonstrated treatment-related reductions in TORC1/2 biomarkers. Conclusions Sapanisertib demonstrated a manageable safety profile, with preliminary antitumour activity observed in RCC and endometrial cancer. Clinical trial registration ClinicalTrials.gov, NCT01058707.
Collapse
|
19
|
Van Nostrand JL, Hellberg K, Luo EC, Van Nostrand EL, Dayn A, Yu J, Shokhirev MN, Dayn Y, Yeo GW, Shaw RJ. AMPK regulation of Raptor and TSC2 mediate metformin effects on transcriptional control of anabolism and inflammation. Genes Dev 2020; 34:1330-1344. [PMID: 32912901 PMCID: PMC7528705 DOI: 10.1101/gad.339895.120] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Here, Van Nostrand et al. investigated the mechanisms of action of the biguanide drug metformin by using a new RaptorAA mouse model, in which AMPK phospho-serine sites Ser722 and Ser792 of RAPTOR were mutated to alanine. The hepatic transcriptional response in mice on a high-fat diet treated with metformin was largely ablated by AMPK deficiency under the conditions examined, indicating the essential role of this kinase and its targets in metformin action in vivo. Despite being the frontline therapy for type 2 diabetes, the mechanisms of action of the biguanide drug metformin are still being discovered. In particular, the detailed molecular interplays between the AMPK and the mTORC1 pathway in the hepatic benefits of metformin are still ill defined. Metformin-dependent activation of AMPK classically inhibits mTORC1 via TSC/RHEB, but several lines of evidence suggest additional mechanisms at play in metformin inhibition of mTORC1. Here we investigated the role of direct AMPK-mediated serine phosphorylation of RAPTOR in a new RaptorAA mouse model, in which AMPK phospho-serine sites Ser722 and Ser792 of RAPTOR were mutated to alanine. Metformin treatment of primary hepatocytes and intact murine liver requires AMPK regulation of both RAPTOR and TSC2 to fully inhibit mTORC1, and this regulation is critical for both the translational and transcriptional response to metformin. Transcriptionally, AMPK and mTORC1 were both important for regulation of anabolic metabolism and inflammatory programs triggered by metformin treatment. The hepatic transcriptional response in mice on high-fat diet treated with metformin was largely ablated by AMPK deficiency under the conditions examined, indicating the essential role of this kinase and its targets in metformin action in vivo.
Collapse
Affiliation(s)
- Jeanine L Van Nostrand
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Kristina Hellberg
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - En-Ching Luo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92037, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92037, USA
| | - Alina Dayn
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jingting Yu
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Yelena Dayn
- Transgenic Core Facility, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92037, USA
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
20
|
Angus SP, Oblinger JL, Stuhlmiller TJ, DeSouza PA, Beauchamp RL, Witt L, Chen X, Jordan JT, Gilbert TSK, Stemmer-Rachamimov A, Gusella JF, Plotkin SR, Haggarty SJ, Chang LS, Johnson GL, Ramesh V. EPH receptor signaling as a novel therapeutic target in NF2-deficient meningioma. Neuro Oncol 2019; 20:1185-1196. [PMID: 29982664 DOI: 10.1093/neuonc/noy046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Meningiomas are the most common primary brain tumor in adults, and somatic loss of the neurofibromatosis 2 (NF2) tumor suppressor gene is a frequent genetic event. There is no effective treatment for tumors that recur or continue to grow despite surgery and/or radiation. Therefore, targeted therapies that either delay tumor progression or cause tumor shrinkage are much needed. Our earlier work established mammalian target of rapamycin complex mTORC1/mTORC2 activation in NF2-deficient meningiomas. Methods High-throughput kinome analyses were performed in NF2-null human arachnoidal and meningioma cell lines to identify functional kinome changes upon NF2 loss. Immunoblotting confirmed the activation of kinases and demonstrated effectiveness of drugs to block the activation. Drugs, singly and in combination, were screened in cells for their growth inhibitory activity. Antitumor drug efficacy was tested in an orthotopic meningioma model. Results Erythropoietin-producing hepatocellular receptor tyrosine kinases (EPH RTKs), c-KIT, and Src family kinase (SFK) members, which are biological targets of dasatinib, were among the top candidates activated in NF2-null cells. Dasatinib significantly inhibited phospho-EPH receptor A2 (pEPHA2), pEPHB1, c-KIT, and Src/SFK in NF2-null cells, showing no cross-talk with mTORC1/2 signaling. Posttreatment kinome analyses showed minimal adaptive changes. While dasatinib treatment showed some activity, dual mTORC1/2 inhibitor and its combination with dasatinib elicited stronger growth inhibition in meningiomas. Conclusion Co-targeting mTORC1/2 and EPH RTK/SFK pathways could be a novel effective treatment strategy for NF2-deficient meningiomas.
Collapse
Affiliation(s)
- Steven P Angus
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Janet L Oblinger
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Timothy J Stuhlmiller
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Patrick A DeSouza
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Roberta L Beauchamp
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Luke Witt
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Xin Chen
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Justin T Jordan
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Thomas S K Gilbert
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Scott R Plotkin
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Stephen J Haggarty
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Gary L Johnson
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Vijaya Ramesh
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
21
|
Scuoppo C, Wang J, Persaud M, Mittan SK, Basso K, Pasqualucci L, Rabadan R, Inghirami G, Grandori C, Bosch F, Dalla-Favera R. Repurposing dasatinib for diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 2019; 116:16981-16986. [PMID: 31383760 PMCID: PMC6708382 DOI: 10.1073/pnas.1905239116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To repurpose compounds for diffuse large B cell lymphoma (DLBCL), we screened a library of drugs and other targeted compounds approved by the US Food and Drug Administration on 9 cell lines and validated the results on a panel of 32 genetically characterized DLBCL cell lines. Dasatinib, a multikinase inhibitor, was effective against 50% of DLBCL cell lines, as well as against in vivo xenografts. Dasatinib was more broadly active than the Bruton kinase inhibitor ibrutinib and overcame ibrutinib resistance. Tumors exhibiting dasatinib resistance were commonly characterized by activation of the PI3K pathway and loss of PTEN expression as a specific biomarker. PI3K suppression by mTORC2 inhibition synergized with dasatinib and abolished resistance in vitro and in vivo. These results provide a proof of concept for the repurposing approach in DLBCL, and point to dasatinib as an attractive strategy for further clinical development in lymphomas.
Collapse
Affiliation(s)
- Claudio Scuoppo
- Institute for Cancer Genetics, Columbia University, New York, NY 10032;
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Jiguang Wang
- Department of Systems Biology, Columbia University, New York, NY 10032
| | - Mirjana Persaud
- Institute for Cancer Genetics, Columbia University, New York, NY 10032
| | - Sandeep K Mittan
- Institute for Cancer Genetics, Columbia University, New York, NY 10032
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY 10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY 10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY 10032
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Carla Grandori
- Cure First and SEngine Precision Medicine, Seattle, WA 98109
| | - Francesc Bosch
- Institute for Cancer Genetics, Columbia University, New York, NY 10032
- Department of Hematology and Vall d'Hebron Institute of Oncology, University Hospital Vall d'Hebron, 08035 Barcelona, Spain
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY 10032;
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
- Department of Genetics and Development, Columbia University, New York, NY 10032
- Department of Microbiology and Immunology, Columbia University, New York, NY 10032
| |
Collapse
|
22
|
Liang X, Deng M, Zhang C, Ping F, Wang H, Wang Y, Fan Z, Ren X, Tao X, Wu T, Xu J, Cheng B, Xia J. Combined class I histone deacetylase and mTORC1/C2 inhibition suppresses the initiation and recurrence of oral squamous cell carcinomas by repressing SOX2. Cancer Lett 2019; 454:108-119. [PMID: 30981761 DOI: 10.1016/j.canlet.2019.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
Treatment of oral squamous cell carcinoma (OSCC) remains a challenge because of the lack of effective early treatment strategies and high incidence of relapse. Here, we showed that combined 4SC-202 (a novel selective class I HDAC inhibitor) and INK128 (a selective mTORC1/C2 inhibitor) treatment exhibited synergistic effects on inhibiting cell growth, sphere-forming ability, subcutaneous tumor formation and ALDH1+ cancer stem cells (CSCs) in OSCC. The initiation of OSCC was significantly inhibited by combined treatment in 4NQO-induced rat model. In addition, upregulated SOX2 was associated with advanced and metastatic tumors in OSCC patients and was responsible for the drug-resistance property of OSCC cells. The inhibitory effect of combined treatment on cell viability and ALDH1+ CSCs were attenuated by SOX2 verexpression. Furthermore, combined treatment can effectively overcome chemoresistance and inhibit the growth of recurrent OSCC in vitro and in vivo. Mechanistically, 4SC-202 and INK128 repressed SOX2 expression through miR-429/miR-1181-mediated mRNA degradation and preventing cap-dependent mRNA translation, respectively. These results suggest that combined class I histone deacetylase and mTORC1/C2 inhibition suppresses the carcinogenesis and recurrence of OSCC by repressing SOX2.
Collapse
Affiliation(s)
- Xueyi Liang
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Miao Deng
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Chi Zhang
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Fan Ping
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Hongfei Wang
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Yun Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Zhaona Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Xianyue Ren
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaoan Tao
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Tong Wu
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Jian Xu
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Bin Cheng
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| | - Juan Xia
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
23
|
Wang Z, Feng X, Molinolo AA, Martin D, Vitale-Cross L, Nohata N, Ando M, Wahba A, Amornphimoltham P, Wu X, Gilardi M, Allevato M, Wu V, Steffen DJ, Tofilon P, Sonenberg N, Califano J, Chen Q, Lippman SM, Gutkind JS. 4E-BP1 Is a Tumor Suppressor Protein Reactivated by mTOR Inhibition in Head and Neck Cancer. Cancer Res 2019; 79:1438-1450. [PMID: 30894372 DOI: 10.1158/0008-5472.can-18-1220] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 11/07/2018] [Accepted: 02/01/2019] [Indexed: 02/05/2023]
Abstract
Aberrant activation of the PI3K-mTOR signaling pathway occurs in >80% of head and neck squamous cell carcinomas (HNSCC), and overreliance on this signaling circuit may in turn represent a cancer-specific vulnerability that can be exploited therapeutically. mTOR inhibitors (mTORi) promote tumor regression in genetically defined and chemically induced HNSCC animal models, and encouraging results have been recently reported. However, the mTOR-regulated targets contributing to the clinical response have not yet been identified. Here, we focused on EIF4E-BP1 (4E-BP1), a direct target of mTOR that serves as key effector for protein synthesis. A systematic analysis of genomic alterations in the PIK3CA-mTOR pathway in HNSCC revealed that 4E-BP1 is rarely mutated, but at least one 4E-BP1 gene copy is lost in over 35% of the patients with HNSCC, correlating with decreased 4E-BP1 protein expression. 4E-BP1 gene copy number loss correlated with poor disease-free and overall survival. Aligned with a tumor-suppressive role, 4e-bp1/2 knockout mice formed larger and more lesions in models of HNSCC carcinogenesis. mTORi treatment or conditional expression of a mutant 4E-BP1 that cannot be phosphorylated by mTOR was sufficient to disrupt the translation-initiation complex and prevent tumor growth. Furthermore, CRISPR/Cas9-targeted 4E-BP1 HNSCC cells resulted in reduced sensitivity to mTORi in vitro and in vivo. Overall, these findings indicate that in HNSCC, mTOR persistently restrains 4E-BP1 via phosphorylation and that mTORi can restore the tumor-suppressive function of 4E-BP1. Our findings also support 4E-BP1 expression and phosphorylation status as a mechanistic biomarker of mTORi sensitivity in patients with HNSCC. SIGNIFICANCE: These findings suggest that EIF4E-BP1 acts as a tumor suppressor in HNSCC and that 4E-BP1 dephosphorylation mediates the therapeutic response to mTORi, providing a mechanistic biomarker for future precision oncology trials.
Collapse
Affiliation(s)
- Zhiyong Wang
- Moores Cancer Center, University of California, San Diego, La Jolla, California.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaodong Feng
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Alfredo A Molinolo
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Daniel Martin
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Lynn Vitale-Cross
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Nijiro Nohata
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Mizuo Ando
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Amy Wahba
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Panomwat Amornphimoltham
- Moores Cancer Center, University of California, San Diego, La Jolla, California.,International College of Dentistry, Walailak University, Nakhon Si Thammarat, Thailand
| | - Xingyu Wu
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Mara Gilardi
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Michael Allevato
- Moores Cancer Center, University of California, San Diego, La Jolla, California.,Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Victoria Wu
- Moores Cancer Center, University of California, San Diego, La Jolla, California.,Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Dana J Steffen
- Moores Cancer Center, University of California, San Diego, La Jolla, California.,Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Philip Tofilon
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Joseph Califano
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Scott M Lippman
- Moores Cancer Center, University of California, San Diego, La Jolla, California.
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, California. .,Department of Pharmacology, University of California, San Diego, La Jolla, California
| |
Collapse
|
24
|
Targeting mTOR in Acute Lymphoblastic Leukemia. Cells 2019; 8:cells8020190. [PMID: 30795552 PMCID: PMC6406494 DOI: 10.3390/cells8020190] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic disorder and constitutes approximately 25% of cancer diagnoses among children and teenagers. Pediatric patients have a favourable prognosis, with 5-years overall survival rates near 90%, while adult ALL still correlates with poorer survival. However, during the past few decades, the therapeutic outcome of adult ALL was significantly ameliorated, mainly due to intensive pediatric-based protocols of chemotherapy. Mammalian (or mechanistic) target of rapamycin (mTOR) is a conserved serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase family (PIKK) and resides in two distinct signalling complexes named mTORC1, involved in mRNA translation and protein synthesis and mTORC2 that controls cell survival and migration. Moreover, both complexes are remarkably involved in metabolism regulation. Growing evidence reports that mTOR dysregulation is related to metastatic potential, cell proliferation and angiogenesis and given that PI3K/Akt/mTOR network activation is often associated with poor prognosis and chemoresistance in ALL, there is a constant need to discover novel inhibitors for ALL treatment. Here, the current knowledge of mTOR signalling and the development of anti-mTOR compounds are documented, reporting the most relevant results from both preclinical and clinical studies in ALL that have contributed significantly into their efficacy or failure.
Collapse
|
25
|
Murtuza A, Bulbul A, Shen JP, Keshavarzian P, Woodward BD, Lopez-Diaz FJ, Lippman SM, Husain H. Novel Third-Generation EGFR Tyrosine Kinase Inhibitors and Strategies to Overcome Therapeutic Resistance in Lung Cancer. Cancer Res 2019; 79:689-698. [DOI: 10.1158/0008-5472.can-18-1281] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/16/2018] [Accepted: 12/17/2018] [Indexed: 11/16/2022]
|
26
|
Wang H, Shao X, He Q, Wang C, Xia L, Yue D, Qin G, Jia C, Chen R. Quantitative Proteomics Implicates Rictor/mTORC2 in Cell Adhesion. J Proteome Res 2018; 17:3360-3369. [PMID: 30156101 DOI: 10.1021/acs.jproteome.8b00218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mammalian target of rapamycin complex 2 (mTORC2) plays critical roles in various biological processes. To better understand the functions of mTORC2 and the underlying molecular mechanisms, we established a stable cell line with reduced Rictor, a specific component in mTORC2, and investigated the quantitative changes of the cellular proteome. As a result, we observed that 101 proteins were down-regulated and 50 proteins were up-regulated in Rictor knockdown cells. A protein-protein interaction network regulated by Rictor/mTORC2 was established, showing that Rictor/mTORC2 was involved in various cellular processes. Intriguingly, gene ontology analysis indicated that the proteome regulated by Rictor/mTORC2 was significantly involved with cell adhesion. Rictor knockdown affected the expressions of multiple cell adhesion associated molecules, e.g. integrin α-5 (ITGA5), transforming growth factor beta-1-induced transcript 1 protein (TGFB1I1), lysyl oxidase homologue 2 (LOXL2), etc. Further study suggested that Rictor/mTORC2 may regulate cell adhesion and invasion by modulating the expressions of these cell adhesion molecules through AKT. Taken together, this study maps the proteome regulated by Rictor/mTORC2 and reveals its role in promoting renal cancer cell invasion through modulating cell adhesion and migration.
Collapse
Affiliation(s)
- Hao Wang
- Department of Genetics, School of Basic Medical Sciences , Tianjin Medical University , Tianjin 300070 , P.R. China
| | - Xianfeng Shao
- Tianjin Medical University Eye Hospital , Eye Institute & School of Optometry and Ophthalmology , Tianjin , 300384 , P.R. China
| | - Qian He
- Tianjin Medical University General Hospital , Tianjin 300052 , P.R. China
| | - Chunqing Wang
- Department of Genetics, School of Basic Medical Sciences , Tianjin Medical University , Tianjin 300070 , P.R. China
| | - Linhuan Xia
- Department of Genetics, School of Basic Medical Sciences , Tianjin Medical University , Tianjin 300070 , P.R. China
| | - Dan Yue
- School of Medical Laboratory , Tianjin Medical University , Tianjin 300070 , China
| | - Guoxuan Qin
- School of Microelectronics , Tianjin University , Tianjin 300072 , P.R. China
| | - Chenxi Jia
- National Center for Protein Sciences-Beijing , State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206 , P.R. China
| | - Ruibing Chen
- Department of Genetics, School of Basic Medical Sciences , Tianjin Medical University , Tianjin 300070 , P.R. China
| |
Collapse
|
27
|
Li X, Zhang X, Pan Y, Shi G, Ren J, Fan H, Dou H, Hou Y. mTOR regulates NLRP3 inflammasome activation via reactive oxygen species in murine lupus. Acta Biochim Biophys Sin (Shanghai) 2018; 50:888-896. [PMID: 30060081 DOI: 10.1093/abbs/gmy088] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 11/13/2022] Open
Abstract
Inflammasomes are protein complexes responsible for the release of IL-1 family cytokines, and they play critical roles in immunity and inflammation. The best-characterized inflammasome, the NOD-like receptor protein 3 (NLRP3) inflammasome, is involved in the development of multiple autoimmune diseases. However, the underlying mechanisms of abnormal NLRP3 inflammasome activation in systemic lupus erythematosus (SLE) remain elusive. Here, western blot analysis was used to detect the level of NLRP3 components and mTORC1/2 substrate in the kidney tissues from B6.MRL-FASlpr/J lupus mice and C57BL/6 mice, and the results showed that mammalian target of rapamycin (mTOR) complex 1/2 (mTORC1/2) and the NLRP3 inflammasome were hyperactivated in B6.MRL-FASlpr/J lupus mice. The inhibition of mTOR by INK128, a novel mTORC1/2 inhibitor, suppressed LPS/ATP and LPS/nigericin-induced NLRP3 inflammasome activation in bone marrow-derived macrophages (BMDMs) in vitro. INK128 decreased both the mRNA and protein levels of NLRP3 in an NF-κB-independent manner. Moreover, we reported for the first time that the inhibition of mTOR suppressed mitochondrial reactive oxygen species (ROS) production in BMDMs stimulated by an NLRP3 agonist. Furthermore, N-acetyl-L-cysteine, a ROS inhibitor, decreased NLRP3 expression, and rotenone, a robust ROS inducer, partially reversed the inhibitory effect of INK128 on NLRP3. These results demonstrated that mTOR regulated the activation of the NLRP3 inflammasome at least partially via ROS-induced NLRP3 expression. Importantly, in vivo data demonstrated that INK128 treatment prominently attenuated lupus nephritis and suppressed NLRP3 inflammasome activation in B6.MRL-FASlpr/J lupus mice. Taken together, our results suggest that activation of mTOR/ROS/NLRP3 signaling may contribute to the development of SLE.
Collapse
Affiliation(s)
- Xiaojing Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Xuefang Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Hongye Fan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| |
Collapse
|
28
|
Shi G, Li D, Ren J, Li X, Wang T, Dou H, Hou Y. mTOR inhibitor INK128 attenuates dextran sodium sulfate-induced colitis by promotion of MDSCs on Treg cell expansion. J Cell Physiol 2018; 234:1618-1629. [PMID: 30132862 DOI: 10.1002/jcp.27032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/25/2018] [Indexed: 12/24/2022]
Abstract
Accumulating evidence has shown that mammalian target of rapamycin (mTOR) pathway and myeloid-derived suppressor cells (MDSCs) are involved in pathogenesis of inflammatory bowel diseases (IBDs). INK128 is a novel mTOR kinase inhibitor in clinical development. However, the exact roles of MDSCs and INK128 in IBD are unclear. Here, we showed that the INK128 treatment enhanced the resistance of mice to dextran sodium sulfate (DSS)-induced colitis and inhibited the differentiation of MDSCs into macrophages. Moreover, interferon (IFN)-α level was elevated in INK128-treated colitis mice. When stimulated with IFN-α in vitro, MDSCs showed a superior immunosuppression activity. Of note, the regulatory T cells (Tregs) increased but Th1 cells decreased in INK128-treated colitis mice. These results indicate that mTOR inhibitor INK128 attenuates DSS-induced colitis via Treg expansion promoted by MDSCs. Our work provides a new evidence that INK128 is potential to be a therapeutic drug on DSS-induced colitis via regulating MDSCs as well as maintaining Treg expansion.
Collapse
Affiliation(s)
- Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Xiaojing Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Nanjing University, Nanjing, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Nanjing University, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Nanjing University, Nanjing, China
| |
Collapse
|
29
|
Cross Talk Networks of Mammalian Target of Rapamycin Signaling With the Ubiquitin Proteasome System and Their Clinical Implications in Multiple Myeloma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 343:219-297. [PMID: 30712673 DOI: 10.1016/bs.ircmb.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy and results from the clonal amplification of plasma cells. Despite recent advances in treatment, MM remains incurable with a median survival time of only 5-6years, thus necessitating further insights into MM biology and exploitation of novel therapeutic approaches. Both the ubiquitin proteasome system (UPS) and the PI3K/Akt/mTOR signaling pathways have been implicated in the pathogenesis, and treatment of MM and different lines of evidence suggest a close cross talk between these central cell-regulatory signaling networks. In this review, we outline the interplay between the UPS and mTOR pathways and discuss their implications for the pathophysiology and therapy of MM.
Collapse
|
30
|
Rubens JA, Wang SZ, Price A, Weingart MF, Allen SJ, Orr BA, Eberhart CG, Raabe EH. The TORC1/2 inhibitor TAK228 sensitizes atypical teratoid rhabdoid tumors to cisplatin-induced cytotoxicity. Neuro Oncol 2018; 19:1361-1371. [PMID: 28582547 DOI: 10.1093/neuonc/nox067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Atypical teratoid/rhabdoid tumors (AT/RTs) are deadly pediatric brain tumors driven by LIN28. Mammalian target of rapamycin (mTOR) is activated in many deadly, drug-resistant cancers and governs important cellular functions such as metabolism and survival. LIN28 regulates mTOR in normal cells. We therefore hypothesized that mTOR is activated downstream of LIN28 in AT/RT, and the brain-penetrating mTOR complex 1 and 2 (mTORC1/2) kinase inhibitor TAK228 would reduce AT/RT tumorigenicity. Methods Activation of mTOR in AT/RT was determined by measuring pS6 and pAKT (Ser473) by immunohistochemistry on tissue microarray of 18 primary AT/RT tumors. In vitro growth assays (BrdU and MTS), death assays (CC3, c-PARP by western blot), and survival curves of AT/RT orthotopic xenograft models were used to measure the efficacy of TAK228 alone and in combination with cisplatin. Results Lentiviral short hairpin RNA-mediated knockdown of LIN28A led to decreased mTOR activation. Primary human AT/RT had high levels of pS6 and pAKT (Ser473) in 21% and 87% of tumors by immunohistochemistry. TAK228 slowed cell growth, induced apoptosis in vitro, and nearly doubled median survival of orthotopic xenograft models of AT/RT. TAK228 combined with cisplatin synergistically slowed cell growth and enhanced cisplatin-induced apoptosis. Suppression of AKT sensitized cells to cisplatin-induced apoptosis and forced activation of AKT protected cells. Combined treatment with TAK228 and cisplatin significantly extended survival of orthotopic xenograft models of AT/RT compared with each drug alone. Conclusions TAK228 has efficacy in AT/RT as a single agent and synergizes with conventional chemotherapies by sensitizing tumors to cisplatin-induced apoptosis. These results suggest TAK228 may be an effective new treatment for AT/RT.
Collapse
Affiliation(s)
- Jeffrey A Rubens
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center and Division of Pediatric Oncology and Bloomberg Children's Hospital, Johns Hopkins Hospital, Baltimore, Maryland; St Jude Children's Research Hospital, Memphis, Tennessee
| | - Sabrina Z Wang
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center and Division of Pediatric Oncology and Bloomberg Children's Hospital, Johns Hopkins Hospital, Baltimore, Maryland; St Jude Children's Research Hospital, Memphis, Tennessee
| | - Antoinette Price
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center and Division of Pediatric Oncology and Bloomberg Children's Hospital, Johns Hopkins Hospital, Baltimore, Maryland; St Jude Children's Research Hospital, Memphis, Tennessee
| | - Melanie F Weingart
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center and Division of Pediatric Oncology and Bloomberg Children's Hospital, Johns Hopkins Hospital, Baltimore, Maryland; St Jude Children's Research Hospital, Memphis, Tennessee
| | - Sariah J Allen
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center and Division of Pediatric Oncology and Bloomberg Children's Hospital, Johns Hopkins Hospital, Baltimore, Maryland; St Jude Children's Research Hospital, Memphis, Tennessee
| | - Brent A Orr
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center and Division of Pediatric Oncology and Bloomberg Children's Hospital, Johns Hopkins Hospital, Baltimore, Maryland; St Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles G Eberhart
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center and Division of Pediatric Oncology and Bloomberg Children's Hospital, Johns Hopkins Hospital, Baltimore, Maryland; St Jude Children's Research Hospital, Memphis, Tennessee
| | - Eric H Raabe
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center and Division of Pediatric Oncology and Bloomberg Children's Hospital, Johns Hopkins Hospital, Baltimore, Maryland; St Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
31
|
Zhang J, Wang G, Zhou Y, Chen Y, Ouyang L, Liu B. Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy. Cell Mol Life Sci 2018; 75:1803-1826. [PMID: 29417176 PMCID: PMC11105210 DOI: 10.1007/s00018-018-2759-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 02/05/2023]
Abstract
Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process for the clearance of damaged or superfluous proteins and organelles. Accumulating studies have recently revealed that autophagy is closely related to a variety of types of cancer; however, elucidation of its Janus role of either tumor-suppressive or tumor-promoting still remains to be discovered. In this review, we focus on summarizing the context-dependent role of autophagy and its complicated molecular mechanisms in different types of cancer. Moreover, we discuss a series of small-molecule compounds targeting autophagy-related proteins or the autophagic process for potential cancer therapy. Taken together, these findings would shed new light on exploiting the intricate mechanisms of autophagy and relevant small-molecule compounds as potential anti-cancer drugs to improve targeted cancer therapy.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yuxin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
32
|
Simioni C, Martelli AM, Zauli G, Vitale M, McCubrey JA, Capitani S, Neri LM. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update. J Cell Physiol 2018; 233:6440-6454. [PMID: 29667769 DOI: 10.1002/jcp.26539] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 12/26/2022]
Abstract
Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
33
|
Wang Z, Valera JC, Zhao X, Chen Q, Gutkind JS. mTOR co-targeting strategies for head and neck cancer therapy. Cancer Metastasis Rev 2018; 36:491-502. [PMID: 28822012 PMCID: PMC5613059 DOI: 10.1007/s10555-017-9688-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. There is an urgent need to develop effective therapeutic approaches to prevent and treat HNSCC. Recent deep sequencing of the HNSCC genomic landscape revealed a multiplicity and diversity of genetic alterations in this malignancy. Although a large variety of specific molecules were found altered in each individual tumor, they all participate in only a handful of driver signaling pathways. Among them, the PI3K/mTOR pathway is the most frequently activated, which plays a central role in cancer initiation and progression. In turn, targeting of mTOR may represent a precision therapeutic approach for HNSCC. Indeed, mTOR inhibition exerts potent anti-tumor activity in HNSCC experimental systems, and mTOR targeting clinical trials show encouraging results. However, advanced HNSCC patients may exhibit unpredictable drug resistance, and the analysis of its molecular basis suggests that co-targeting strategies may provide a more effective option. In addition, although counterintuitive, emerging evidence suggests that mTOR inhibition may enhance the anti-tumor immune response. These new findings raise the possibility that the combination of mTOR inhibitors and immune oncology agents may provide novel precision therapeutic options for HNSCC.
Collapse
Affiliation(s)
- Zhiyong Wang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | | | - Xuefeng Zhao
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
34
|
Abstract
Regulation of gene expression at the level of protein synthesis is a crucial element in driving how the genetic landscape is expressed. However, we are still limited in technologies that can quantitatively capture the immediate proteomic changes that allow cells to respond to specific stimuli. Here, we present a method to capture and identify nascent proteomes in situ across different cell types without disturbing normal growth conditions, using O-propargyl-puromycin (OPP). Cell-permeable OPP rapidly labels nascent elongating polypeptides, which are subsequently conjugated to biotin-azide, using click chemistry, and captured with streptavidin beads, followed by digestion and analysis, using liquid chromatography-tandem mass spectrometry. Our technique of OPP-mediated identification (OPP-ID) allows detection of widespread proteomic changes within a short 2-hour pulse of OPP. We illustrate our technique by recapitulating alterations of proteomic networks induced by a potent mammalian target of rapamycin inhibitor, MLN128. In addition, by employing OPP-ID, we identify more than 2,100 proteins and uncover distinct protein networks underlying early erythroid progenitor and differentiation states not amenable to alternative approaches such as amino acid analog labeling. We present OPP-ID as a method to quantitatively identify nascent proteomes across an array of biological contexts while preserving the subtleties directing signaling in the native cellular environment.
Collapse
|
35
|
Alameen AAM, Simioni C, Martelli AM, Zauli G, Ultimo S, McCubrey JA, Gonelli A, Marisi G, Ulivi P, Capitani S, Neri LM. Healthy CD4+ T lymphocytes are not affected by targeted therapies against the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia. Oncotarget 2018; 7:55690-55703. [PMID: 27494886 PMCID: PMC5342446 DOI: 10.18632/oncotarget.10984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022] Open
Abstract
An attractive molecular target for novel anti-cancer therapies is the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway which is commonly deregulated in many types of cancer. Nevertheless, the effects of PI3K/Akt/mTOR inhibitors on T lymphocytes, a key component of immune responses, have been seldom explored. In this study we investigated the effects on human CD4+ T-cells of a panel of PI3K/Akt/mTOR inhibitors: BGT226, Torin-2, MK-2206, and ZSTK474. We also assessed their efficacy against two acute leukemia T cell lines. T lymphocytes were stimulated with phytohemagglutinin. Inhibitor effects on cell cycle and apoptosis were analyzed by flow cytometry, while cytotoxicity was assessed by MTT assays. In addition, the activation status of the pathway as well as induction of autophagy were analyzed by Western blotting. Quiescent healthy T lymphocytes were unaffected by the drugs whereas mitogen-stimulated lymphocytes as well as leukemic cell lines displayed a cell cycle block, caspase-dependent apoptosis, and dephosphorylation of key components of the signaling pathway. Autophagy was also induced in proliferating lymphocytes and in JURKAT and MOLT-4 cell lines. When autophagy was inhibited by 3-methyladenine or Bafilomycin A1, drug cytotoxicity was increased, indicating that autophagy is a protective mechanism. Therefore, our findings suggest that PI3K/Akt/mTOR inhibitors preserve lymphocyte viability. This is a valuable result to be taken into account when selecting drugs for targeted cancer therapy in order to minimize detrimental effects on immune function.
Collapse
Affiliation(s)
- Ayman A M Alameen
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Department of Chemical Pathology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Arianna Gonelli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgia Marisi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA Center, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
36
|
Eke I, Makinde AY, Aryankalayil MJ, Sandfort V, Palayoor ST, Rath BH, Liotta L, Pierobon M, Petricoin EF, Brown MF, Stommel JM, Ahmed MM, Coleman CN. Exploiting Radiation-Induced Signaling to Increase the Susceptibility of Resistant Cancer Cells to Targeted Drugs: AKT and mTOR Inhibitors as an Example. Mol Cancer Ther 2018; 17:355-367. [PMID: 28802252 PMCID: PMC5805592 DOI: 10.1158/1535-7163.mct-17-0262] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
Implementing targeted drug therapy in radio-oncologic treatment regimens has greatly improved the outcome of cancer patients. However, the efficacy of molecular targeted drugs such as inhibitory antibodies or small molecule inhibitors essentially depends on target expression and activity, which both can change during the course of treatment. Radiotherapy has previously been shown to activate prosurvival pathways, which can help tumor cells to adapt and thereby survive treatment. Therefore, we aimed to identify changes in signaling induced by radiation and evaluate the potential of targeting these changes with small molecules to increase the therapeutic efficacy on cancer cell survival. Analysis of "The Cancer Genome Atlas" database disclosed a significant overexpression of AKT1, AKT2, and MTOR genes in human prostate cancer samples compared with normal prostate gland tissue. Multifractionated radiation of three-dimensional-cultured prostate cancer cell lines with a dose of 2 Gy/day as a clinically relevant schedule resulted in an increased protein phosphorylation and enhanced protein-protein interaction between AKT and mTOR, whereas gene expression of AKT, MTOR, and related kinases was not altered by radiation. Similar results were found in a xenograft model of prostate cancer. Pharmacologic inhibition of mTOR/AKT signaling after activation by multifractionated radiation was more effective than treatment prior to radiotherapy. Taken together, our findings provide a proof-of-concept that targeting signaling molecules after activation by radiotherapy may be a novel and promising treatment strategy for cancers treated with multifractionated radiation regimens such as prostate cancer to increase the sensitivity of tumor cells to molecular targeted drugs. Mol Cancer Ther; 17(2); 355-67. ©2017 AACRSee all articles in this MCT Focus section, "Developmental Therapeutics in Radiation Oncology."
Collapse
Affiliation(s)
- Iris Eke
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Adeola Y Makinde
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Veit Sandfort
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Sanjeewani T Palayoor
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Barbara H Rath
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Matthew F Brown
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jayne M Stommel
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mansoor M Ahmed
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
37
|
Zeng Z, Wang RY, Qiu YH, Mak DH, Coombes K, Yoo SY, Zhang Q, Jessen K, Liu Y, Rommel C, Fruman DA, Kantarjian HM, Kornblau SM, Andreeff M, Konopleva M. MLN0128, a novel mTOR kinase inhibitor, disrupts survival signaling and triggers apoptosis in AML and AML stem/ progenitor cells. Oncotarget 2018; 7:55083-55097. [PMID: 27391151 PMCID: PMC5342403 DOI: 10.18632/oncotarget.10397] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/02/2016] [Indexed: 12/24/2022] Open
Abstract
mTOR activation leads to enhanced survival signaling in acute myeloid leukemia (AML) cells. The active-site mTOR inhibitors (asTORi) represent a promising new approach to targeting mTOR in AKT/mTOR signaling. MLN0128 is an orally-administered, second-generation asTORi, currently in clinical development. We examined the anti-leukemic effects and the mechanisms of action of MLN0128 in AML cell lines and primary samples, with a particular focus on its effect in AML stem/progenitor cells. MLN0128 inhibited cell proliferation and induced apoptosis in AML by attenuating the activity of mTOR complex 1 and 2. Using time-of-flight mass cytometry, we demonstrated that MLN0128 selectively targeted and functionally inhibited AML stem/progenitor cells with high AKT/mTOR signaling activity. Using the reverse-phase protein array technique, we measured expression and phosphorylation changes in response to MLN0128 in 151 proteins from 24 primary AML samples and identified several pro-survival pathways that antagonize MLN0128-induced cellular stress. A combined blockade of AKT/mTOR signaling and these pro-survival pathways facilitated AML cell killing. Our findings provide a rationale for the clinical use of MLN0128 to target AML and AML stem/progenitor cells, and support the use of combinatorial multi-targeted approaches in AML therapy.
Collapse
Affiliation(s)
- Zhihong Zeng
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rui-Yu Wang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi Hua Qiu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Duncan H Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin Coombes
- Department of Biomedical Informatics, Ohio State University College of Medicine, Columbus, OH, USA
| | - Suk Young Yoo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Zhang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katti Jessen
- Oncology-Rinat Research & Development, San Diego, CA, USA
| | - Yi Liu
- Wellspring Bioscience, San Diego, CA, USA
| | | | - David A Fruman
- Institute for Immunology, and Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, USA
| | - Hagop M Kantarjian
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven M Kornblau
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
38
|
mTOR inhibition enhances efficacy of dasatinib in ABL-rearranged Ph-like B-ALL. Oncotarget 2018; 9:6562-6571. [PMID: 29464092 PMCID: PMC5814232 DOI: 10.18632/oncotarget.24020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/29/2017] [Indexed: 02/05/2023] Open
Abstract
High-risk subtypes of B-cell acute lymphoblastic leukemia (B-ALL) include Philadelphia chromosome-positive (Ph+) B-ALL driven by the BCR-ABL1 oncogene and a more recently identified subtype known as BCR-ABL-like or Ph-like B-ALL. A hallmark of both Ph+ and Ph-like B-ALL is constitutive activation of tyrosine kinase signaling that is potentially targetable with tyrosine kinase inhibitors (TKIs). B-ALL cells also receive extracellular signals from the microenvironment that can maintain proliferation and survival following treatment with TKIs. Therefore, there is strong rationale for combining TKIs with other therapies targeting signal transduction pathways. Here we show that combinations of the ABL-directed TKI dasatinib with mTOR kinase inhibitors (TOR-KIs) are more effective than TKI alone against patient-derived Ph-like B-ALL cells harboring rearrangements of ABL1 or ABL2. We also report the establishment of a new human Ph-like B-ALL cell line that is stromal cell-independent in vitro and can be used for xenograft experiments in vivo. These findings provide rationale for clinical testing of TKI plus TOR-KIs in children and adults with Ph-like B-ALL and a new experimental tool to test promising therapeutic strategies in this poor prognosis subtype of B-ALL.
Collapse
|
39
|
Guduru SKR, Arya P. Synthesis and biological evaluation of rapamycin-derived, next generation small molecules. MEDCHEMCOMM 2018; 9:27-43. [PMID: 30108899 PMCID: PMC6072512 DOI: 10.1039/c7md00474e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Over the years, rapamycin has attracted serious attention due to its remarkable biological properties and as a potent inhibitor of the mammalian target of rapamycin (mTOR) protein through its binding with FKBP-12. Several efficient strategies that utilize synthetic and biosynthetic approaches have been utilized to develop small molecule rapamycin analogs or for synthesizing hybrid compounds containing a partial rapamycin structure to improve pharmacokinetic properties. Herein, we report selected case studies related to the synthesis of rapamycin-derived compounds and hybrid molecules to explore their biological properties.
Collapse
Affiliation(s)
- Shiva Krishna Reddy Guduru
- Center for Drug Discovery , Department of Pharmacology and Chemical Biology , Baylor College of Medicine , One Baylor Plaza , Houston , Texas 77030 , USA . ; ; Tel: +1 713 798 8794
- Department of Pharmacology and Chemical Biology , Baylor College of Medicine , One Baylor Plaza , Houston , Texas 77030 , USA
| | - Prabhat Arya
- Chemistry and Chemical Biology , Dr. Reddy's Institute of Life Sciences (DRILS) , University of Hyderabad Campus , Hyderabad 500046 , India
| |
Collapse
|
40
|
Zhang S, Song X, Cao D, Xu Z, Fan B, Che L, Hu J, Chen B, Dong M, Pilo MG, Cigliano A, Evert K, Ribback S, Dombrowski F, Pascale RM, Cossu A, Vidili G, Porcu A, Simile MM, Pes GM, Giannelli G, Gordan J, Wei L, Evert M, Cong W, Calvisi DF, Chen X. Pan-mTOR inhibitor MLN0128 is effective against intrahepatic cholangiocarcinoma in mice. J Hepatol 2017; 67:1194-1203. [PMID: 28733220 PMCID: PMC5696057 DOI: 10.1016/j.jhep.2017.07.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (ICC) is a lethal malignancy without effective treatment options. MLN0128, a second generation pan-mTOR inhibitor, shows efficacy for multiple tumor types. We evaluated the therapeutic potential of MLN0128 vs. gemcitabine/oxaliplatin in a novel ICC mouse model. METHODS We established a novel ICC mouse model via hydrodynamic transfection of activated forms of AKT (myr-AKT) and Yap (YapS127A) protooncogenes (that will be referred to as AKT/YapS127A). Genetic approaches were applied to study the requirement of mTORC1 and mTORC2 in mediating AKT/YapS127A driven tumorigenesis. Gemcitabine/oxaliplatin and MLN0128 were administered in AKT/YapS127A tumor-bearing mice to study their anti-tumor efficacy in vivo. Multiple human ICC cell lines were used for in vitro experiments. Hematoxylin and eosin staining, immunohistochemistry and immunoblotting were applied for the characterization and mechanistic study. RESULTS Co-expression of myr-AKT and YapS127A promoted ICC development in mice. Both mTORC1 and mTORC2 complexes were required for AKT/YapS127A ICC development. Gemcitabine/oxaliplatin had limited efficacy in treating late stage AKT/YapS127A ICC. In contrast, partial tumor regression was achieved when MLN0128 was applied in the late stage of AKT/YapS127A cholangiocarcinogenesis. Furthermore, when MLN0128 was administered in the early stage of AKT/YapS127A carcinogenesis, it led to disease stabilization. Mechanistically, MLN0128 efficiently inhibited AKT/mTOR signaling both in vivo and in vitro, inducing strong ICC cell apoptosis and only marginally affecting proliferation. CONCLUSIONS This study suggests that mTOR kinase inhibitors may be beneficial for the treatment of ICC, even in tumors that are resistant to standard of care chemotherapeutics, such as gemcitabine/oxaliplatin-based regimens, especially in the subset of tumors exhibiting activated AKT/mTOR cascade. Lay summary: We established a novel mouse model of intrahepatic cholangiocarcinoma (ICC). Using this new preclinical model, we evaluated the therapeutic potential of mTOR inhibitor MLN0128 vs. gemcitabine/oxaliplatin (the standard chemotherapy for ICC treatment). Our study shows the anti-neoplastic potential of MLN0128, suggesting that it may be superior to gemcitabine/oxaliplatin-based chemotherapy for the treatment of ICC, especially in the tumors exhibiting activated AKT/mTOR cascade.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Xinhua Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Dan Cao
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Zhong Xu
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guizhou, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Biao Fan
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Junjie Hu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA; School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Bin Chen
- Department of Pediatrics and Institute for Computational Health Sciences, University of California, San Francisco, CA, USA
| | - Mingjie Dong
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA; Department of Gastroenterology, 307 Hospital of PLA, Beijing, China
| | - Maria G Pilo
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Antonio Cigliano
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Frank Dombrowski
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Rosa M Pascale
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Antonio Cossu
- Unit of Pathology, Azienda Ospedaliero Universitaria Sassari, Sassari, Italy
| | - Gianpaolo Vidili
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Alberto Porcu
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Maria M Simile
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Giovanni M Pes
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - John Gordan
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Wenming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Diego F Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA; School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| |
Collapse
|
41
|
Li H, Li X, Liu S, Guo L, Zhang B, Zhang J, Ye Q. Programmed cell death-1 (PD-1) checkpoint blockade in combination with a mammalian target of rapamycin inhibitor restrains hepatocellular carcinoma growth induced by hepatoma cell-intrinsic PD-1. Hepatology 2017; 66:1920-1933. [PMID: 28732118 DOI: 10.1002/hep.29360] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 06/04/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED Inhibitors of programmed cell death 1 (PD-1) administered as single agents have resulted in durable tumor regression in advanced cancer patients. However, only a minority of cancer patients respond to anti-PD-1 immunotherapy. Here, we show that PD-1 expression in hepatocellular carcinoma promotes tumor growth independently of adaptive immunity. Knockdown of PD-1 suppresses tumor growth, whereas PD-1 overexpression enhances tumorigenesis in immunodeficient xenografted mice. Mechanistically, PD-1 binds the downstream mammalian target of rapamycin effectors eukaryotic initiation factor 4E and ribosomal protein S6, thus promoting their phosphorylation. Moreover, combining mammalian target of rapamycin inhibition with anti-PD-1 antibody treatment results in more durable and synergistic tumor regression than either single agent alone, each of which presents only modest efficacy. CONCLUSION Targeting mammalian target of rapamycin pathways in combination with PD-1 may result in increased antitumor efficacy in cancer patients. (Hepatology 2017;66:1920-1933).
Collapse
Affiliation(s)
- Hui Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shuang Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Lei Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Bo Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jubo Zhang
- Department of Infectious Disease, Huashan Hospital, Fudan University, Shanghai, China
| | - Qinghai Ye
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
42
|
Khanna A, Bhushan B, Chauhan PS, Saxena S, Gupta DK, Siraj F. High mTOR expression independently prognosticates poor clinical outcome to induction chemotherapy in acute lymphoblastic leukemia. Clin Exp Med 2017; 18:221-227. [PMID: 29076004 DOI: 10.1007/s10238-017-0478-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/13/2017] [Indexed: 01/12/2023]
Abstract
In acute lymphoblastic leukemia (ALL), limited data are available on mTOR gene expression in clinical samples and its role in predicting response to induction chemotherapy. mRNA expression of mTOR gene was determined quantitatively by real-time PCR in 50 ALL patients (30 B-ALL and 20 T-ALL) and correlated with clinical outcome after induction chemotherapy. Expression level of mTOR was upregulated in more than 50% of cases of ALL. In T-ALL, high expression of mTOR was commonly seen, more in adults than children (82 vs. 55% cases), while in B-ALL it was same (~ 63% cases) in both adults and children. Mean fold change of mTOR expression was significantly higher in non-responders compared to responders of both adult B-ALL (7.4 vs. 2.7, p = 0.05) and T-ALL (13.9 vs. 2.4, p = 0.001). Similar results were seen in pediatric non-responders when compared to responders of both B-ALL (14.5 vs. 2.5, p = 0.006) and T-ALL (24.2 vs. 1.7, p = 0.002). Interestingly, we have observed that mTOR expression was two times higher in non-responders of children compared to adults in both B-ALL (14.5 vs. 7.4, p = 0.05) and T-ALL (24.2 vs. 13.9, p = 0.01). Multivariate analysis with other known prognostic factors revealed that mTOR expression independently predicts clinical response to induction chemotherapy in ALL. This study demonstrates that high mTOR expression is associated with poor clinical outcome in ALL and can serve as a potential target for novel therapeutic strategies.
Collapse
Affiliation(s)
- Asheema Khanna
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, 110029, India
- Symbiosis School of Biomedical Sciences, Symbiosis International University, Pune, Maharashtra, 412115, India
| | - Bharat Bhushan
- Department of Medical Oncology, DR.B.R, Ambedkar Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pradeep Singh Chauhan
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Sunita Saxena
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, 110029, India
| | | | - Fouzia Siraj
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, 110029, India.
| |
Collapse
|
43
|
Zeng Z, Liu W, Tsao T, Qiu Y, Zhao Y, Samudio I, Sarbassov DD, Kornblau SM, Baggerly KA, Kantarjian HM, Konopleva M, Andreeff M. High-throughput profiling of signaling networks identifies mechanism-based combination therapy to eliminate microenvironmental resistance in acute myeloid leukemia. Haematologica 2017; 102:1537-1548. [PMID: 28659338 PMCID: PMC5685227 DOI: 10.3324/haematol.2016.162230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
The bone marrow microenvironment is known to provide a survival advantage to residual acute myeloid leukemia cells, possibly contributing to disease recurrence. The mechanisms by which stroma in the microenvironment regulates leukemia survival remain largely unknown. Using reverse-phase protein array technology, we profiled 53 key protein molecules in 11 signaling pathways in 20 primary acute myeloid leukemia samples and two cell lines, aiming to understand stroma-mediated signaling modulation in response to the targeted agents temsirolimus (MTOR), ABT737 (BCL2/BCL-XL), and Nutlin-3a (MDM2), and to identify the effective combination therapy targeting acute myeloid leukemia in the context of the leukemia microenvironment. Stroma reprogrammed signaling networks and modified the sensitivity of acute myeloid leukemia samples to all three targeted inhibitors. Stroma activated AKT at Ser473 in the majority of samples treated with single-agent ABT737 or Nutlin-3a. This survival mechanism was partially abrogated by concomitant treatment with temsirolimus plus ABT737 or Nutlin-3a. Mapping the signaling networks revealed that combinations of two inhibitors increased the number of affected proteins in the targeted pathways and in multiple parallel signaling, translating into facilitated cell death. These results demonstrated that a mechanism-based selection of combined inhibitors can be used to guide clinical drug selection and tailor treatment regimens to eliminate microenvironment-mediated resistance in acute myeloid leukemia.
Collapse
Affiliation(s)
- Zhihong Zeng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenbin Liu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Twee Tsao
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - YiHua Qiu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Zhao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ismael Samudio
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Dos D Sarbassov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith A Baggerly
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
44
|
Vo TTT, Lee JS, Nguyen D, Lui B, Pandori W, Khaw A, Mallya S, Lu M, Müschen M, Konopleva M, Fruman DA. mTORC1 Inhibition Induces Resistance to Methotrexate and 6-Mercaptopurine in Ph + and Ph-like B-ALL. Mol Cancer Ther 2017; 16:1942-1953. [PMID: 28566433 DOI: 10.1158/1535-7163.mct-17-0024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/01/2017] [Accepted: 05/17/2017] [Indexed: 11/16/2022]
Abstract
Elevated activity of mTOR is associated with poor prognosis and higher incidence of relapse in B-cell acute lymphoblastic leukemia (B-ALL). Thus, ongoing clinical trials are testing mTOR inhibitors in combination with chemotherapy in B-ALL. However, the combination of mTOR inhibitors with standard of care chemotherapy drugs has not been studied extensively in high-risk B-ALL subtypes. Therefore, we tested whether mTOR inhibition can augment the efficacy of current chemotherapy agents in Ph+ and Ph-like B-ALL models. Surprisingly, inhibiting mTOR complex 1 (mTORC1) protected B-ALL cells from killing by methotrexate and 6-mercaptopurine, two antimetabolite drugs used in maintenance chemotherapy. The cytoprotective effects correlated with decreased cell-cycle progression and were recapitulated using cell-cycle inhibitors, palbociclib or aphidicolin. Dasatinib, a tyrosine kinase inhibitor currently used in Ph+ patients, inhibits ABL kinase upstream of mTOR. Dasatinib resistance is mainly caused by ABL kinase mutations, but is also observed in a subset of ABL unmutated cases. We identified dasatinib-resistant Ph+ cell lines and patient samples in which dasatinib can effectively reduce ABL kinase activity and mTORC1 signaling without causing cell death. In these cases, dasatinib protected leukemia cells from killing by 6-mercaptopurine. Using xenograft models, we observed that mTOR inhibition or dasatinib increased the numbers of leukemia cells that emerge after cessation of chemotherapy treatment. These results demonstrate that inhibitors targeting mTOR or upstream signaling nodes should be used with caution when combined with chemotherapeutic agents that rely on cell-cycle progression to kill B-ALL cells. Mol Cancer Ther; 16(9); 1942-53. ©2017 AACR.
Collapse
Affiliation(s)
- Thanh-Trang T Vo
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California
| | - J Scott Lee
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California
| | - Duc Nguyen
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California
| | - Brandon Lui
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California
| | - William Pandori
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California
| | - Andrew Khaw
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California
| | - Sharmila Mallya
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California
| | - Mengrou Lu
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California
| | - Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Marina Konopleva
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David A Fruman
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California.
| |
Collapse
|
45
|
Kim ST, Lee J, Park SH, Park JO, Park YS, Kang WK, Lim HY. Prospective phase II trial of everolimus in PIK3CA amplification/mutation and/or PTEN loss patients with advanced solid tumors refractory to standard therapy. BMC Cancer 2017; 17:211. [PMID: 28330462 PMCID: PMC5363054 DOI: 10.1186/s12885-017-3196-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 03/14/2017] [Indexed: 02/08/2023] Open
Abstract
Background We designed a single-arm, open-label phase II trial of everolimus in PIK3CA amplification/mutation and/or PTEN loss patients with advanced solid tumors refractory to standard therapy (#NCT02449538). Methods Everolimus was administered orally at a daily dose of 10 mg continuously (28-day cycles). Treatment was continued until progression of the disease or intolerable toxicity was observed. Based on Simon’s two-stage optimal design, 10 patients were treated with everolimus during the first stage. Results The median age of the patients was 55.5 years (range, 42–72), and the median Eastern Cooperative Oncology Group (ECOG) performance status (PS) was 2 (range, 1–2). Most of the patients (50.0%) had gastric cancer (GC) as the site of their primary tumor followed by colorectal cancer (CRC), pancreatic cancer, and cholangiocarcinoma. Patients received everolimus as a third-line (3 patients), fourth-line (4 patients), fifth-line (1 patient) or sixth-line (2 patients) treatment. Complete or partial responses were not observed in any of the patients. Four patients showed stable disease, resulting in a disease control rate of 40%. The median PFS was 1.6 months (95% CI, 0.8–2.4 months). Grade 3 or greater hematologic/non-hematologic toxicity was not observed. Grade 2 diarrhea and stomatitis were reported in one patient each. There were no treatment-related deaths. There was less than one response out of the 10 initial patients during the first stage, and the study did not progress to the second stage. Conclusions The study did not meet its primary objective of demonstrating the anti-tumor activity of everolimus in PIK3CA amplification/mutation and/or PTEN loss patients with advanced solid tumors refractory to standard therapy. Further investigation using other genomic candidates and new-generation mTOR inhibitors is warranted in patients with treatment-refractory cancer. Trial registration #NCT02449538, April 2015.
Collapse
Affiliation(s)
- Seung Tae Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul, 135-710, Korea
| | - Jeeyun Lee
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul, 135-710, Korea
| | - Se Hoon Park
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul, 135-710, Korea
| | - Joon Oh Park
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul, 135-710, Korea
| | - Young Suk Park
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul, 135-710, Korea
| | - Won Ki Kang
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul, 135-710, Korea
| | - Ho Yeong Lim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul, 135-710, Korea.
| |
Collapse
|
46
|
Dual mTOR inhibitor MLN0128 suppresses Merkel cell carcinoma (MCC) xenograft tumor growth. Oncotarget 2016; 7:6576-92. [PMID: 26536665 PMCID: PMC4872734 DOI: 10.18632/oncotarget.5878] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/13/2015] [Indexed: 12/28/2022] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. Pathologic activation of PI3K/mTOR pathway and elevated expression of c-Myc are frequently detected in MCC. Yet, there is no targeted therapy presently available for this lethal disease. Recently, MLN0128, a second-generation dual TORC1/2 inhibitor is shown to have therapeutic efficacy in preclinical studies. MLN0128 is currently in clinical trials as a potential therapy for advanced cancers. Here we characterize the therapeutic efficacy of MLN0128 in the preclinical setting of MCC and delineate downstream targets of mTORC1/2 in MCC cellular systems. MLN0128 significantly attenuates xenograft MCC tumor growth independent of Merkel cell polyomavirus. Moreover, MLN0128 markedly diminishes MCC cell proliferation and induces apoptosis. Further investigations indicate that senescence does not contribute to MLN0128-mediated repression of xenograft MCC tumor growth. Finally, we also observe robust antitumor effects of MLN0128 when administered as a dual therapy with JQ1, a bromodomain protein BRD4 inhibitor. These results suggest dual blockade of PI3K/mTOR pathway and c-Myc axis is effective in the control of MCC tumor growth. Our results demonstrate that MLN0128 is potent as monotherapy or as a member of combination therapy with JQ1 for advanced MCC.
Collapse
|
47
|
Lee JHS, Vo TT, Fruman DA. Targeting mTOR for the treatment of B cell malignancies. Br J Clin Pharmacol 2016; 82:1213-1228. [PMID: 26805380 PMCID: PMC5061788 DOI: 10.1111/bcp.12888] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/12/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions as a key regulator of cell growth, division and survival. Many haematologic malignancies exhibit elevated or aberrant mTOR activation, supporting the launch of numerous clinical trials aimed at evaluating the potential of single agent mTOR-targeted therapies. While promising early clinical data using allosteric mTOR inhibitors (rapamycin and its derivatives, rapalogs) have suggested activity in a subset of haematologic malignancies, these agents have shown limited efficacy in most contexts. Whether the efficacy of these partial mTOR inhibitors might be enhanced by more complete target inhibition is being actively addressed with second generation ATP-competitive mTOR kinase inhibitors (TOR-KIs), which have only recently entered clinical trials. However, emerging preclinical data suggest that despite their biochemical advantage over rapalogs, TOR-KIs may retain a primarily cytostatic response. Rather, combinations of mTOR inhibition with other targeted therapies have demonstrated promising efficacy in several preclinical models. This review investigates the current status of rapalogs and TOR-KIs in B cell malignancies, with an emphasis on emerging preclinical evidence of synergistic combinations involving mTOR inhibition.
Collapse
Affiliation(s)
- Jong-Hoon Scott Lee
- Department of Molecular Biology & Biochemistry, University of California, Irvine, USA
| | - Thanh-Trang Vo
- Department of Molecular Biology & Biochemistry, University of California, Irvine, USA
| | - David A Fruman
- Department of Molecular Biology & Biochemistry, University of California, Irvine, USA.
| |
Collapse
|
48
|
Kunati SR, Xu Y. Determination of MLN0128, an investigational antineoplastic agent, in human plasma by LC-MS/MS. Biomed Chromatogr 2016; 31. [PMID: 27554984 DOI: 10.1002/bmc.3818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 08/07/2016] [Accepted: 08/20/2016] [Indexed: 11/06/2022]
Abstract
MLN0128, an mTOR kinase inhibitor, is currently undergoing clinical investigation for treatment of a variety of cancers. To support this work, an LC-MS/MS method has been developed for the determination of MLN0128 in human plasma. A structural analog STK040263 was used as the internal standard. Both MLN0128 and the IS were first extracted from plasma using methyl tert-butyl ether; then separated on a Waters XTerra® MS C18 column using a mobile phase consisting of methanol-acetonitrile-10.0 mm ammonium formate (34:6:60, v/v/v) at a flow rate of 0.300 mL min-1 . Quantitation of MLN0128 was done by positive electrospray ionization tandem mass spectrometry in multiple-reaction-monitoring mode. This method has a total run time of <4 min with the retention times of 1.95 and 2.94 min for the IS and MLN0128, respectively. The method has been validated per the US Food and Drug Administration guidance for bioanalytical method validation. It has a calibration range of 0.100-50.0 ng mL-1 in human plasma with a correlation coefficient > 0.999. The overall assay accuracy and precision were ≤ ± 4 and ≤8%, respectively. The IS normalized recovery of MLN0128 was 98-100%. The stability studies showed that MLN0128 was stable under all tested conditions. The method developed may be useful for clinical studies of MLN0128.
Collapse
Affiliation(s)
- Sandeep R Kunati
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Yan Xu
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
49
|
Co-targeting of Bcl-2 and mTOR pathway triggers synergistic apoptosis in BH3 mimetics resistant acute lymphoblastic leukemia. Oncotarget 2016; 6:32089-103. [PMID: 26392332 PMCID: PMC4741661 DOI: 10.18632/oncotarget.5156] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023] Open
Abstract
Several chemo-resistance mechanisms including the Bcl-2 protein family overexpression and constitutive activation of the PI3K/Akt/mTOR signaling have been documented in acute lymphoblastic leukemia (ALL), encouraging targeted approaches to circumvent this clinical problem. Here we analyzed the activity of the BH3 mimetic ABT-737 in ALL, exploring the synergistic effects with the mTOR inhibitor CCI-779 on ABT-737 resistant cells. We showed that a low Mcl-1/Bcl-2 plus Bcl-xL protein ratio determined ABT-737 responsiveness. ABT-737 exposure further decreased Mcl-1, inducing apoptosis on sensitive models and primary samples, while not affecting resistant cells. Co-inhibition of Bcl-2 and the mTOR pathway resulted cytotoxic on ABT-737 resistant models, by downregulating mTORC1 activity and Mcl-1 in a proteasome-independent manner. Although Mcl-1 seemed to be critical, ectopic modulation did not correlate with apoptosis changes. Importantly, dual targeting proved effective on ABT-737 resistant samples, showing additive/synergistic effects. Together, our results show the efficacy of BH3 mimetics as single agent in the majority of the ALL samples and demonstrate that resistance to ABT-737 mostly correlated with Mcl-1 overexpression. Co-targeting of the Bcl-2 protein family and mTOR pathway enhanced drug-induced cytotoxicity by suppressing Mcl-1, providing a novel therapeutic approach to overcome BH3 mimetics resistance in ALL.
Collapse
|
50
|
Liu ZG, Tang J, Chen Z, Zhang H, Wang H, Yang J, Zhang H. The novel mTORC1/2 dual inhibitor INK128 enhances radiosensitivity of breast cancer cell line MCF-7. Int J Oncol 2016; 49:1039-45. [DOI: 10.3892/ijo.2016.3604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/11/2016] [Indexed: 11/06/2022] Open
|