1
|
Hamova I, Maco M, Tkachenko A, Kupcova K, Velasova A, Trneny M, Mocikova H, Havranek O. Circulating tumor DNA as a powerful tool in diagnostics and treatment outcome prediction - focus on large B-cell lymphomas and follicular lymphomas. Expert Rev Mol Diagn 2025:1-21. [PMID: 40326242 DOI: 10.1080/14737159.2025.2500659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 04/04/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION Pathogenesis of large B-cell lymphomas (LBCL) and follicular lymphomas (FL) is a multistep process associated with the development of diverse DNA alterations and consequent deregulation of critical cellular processes. Detection of tumor-associated mutations within non-tumor compartments (mainly plasma) is the basis of the 'liquid biopsy' concept. Apart from tumor mutational profiling, quantitative analysis of circulating tumor DNA (ctDNA) allows longitudinal assessment of tumor burden. ctDNA-based technologies provide a new tool for tumor diagnostics and treatment personalization. AREAS COVERED Our review provides a comprehensive overview and summary of available ctDNA studies in LBCL and FL. The accuracy of ctDNA-based detection of lymphoma-associated DNA alterations is correlated to known LBCL and FL molecular landscape. Additionally, we summarized available evidence that supports and justifies the clinical use of ctDNA for lymphoma risk stratification, treatment response evaluation, and treatment response-adapted therapy. Lastly, we discuss other clinically important ctDNA applications: monitoring of lymphoma clonal evolution within resistance and/or relapse development and utilization of ctDNA for diagnostics in non-blood fluids and compartments (e.g. cerebrospinal fluid in primary CNS lymphomas). EXPERT OPINION Despite certain challenges, including methodological standardization, ctDNA holds promise to soon become an integral part of lymphoma diagnostics and treatment management.
Collapse
Affiliation(s)
- Iva Hamova
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Maria Maco
- Department of Haematology, Fakultni nemocnice Kralovske Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anton Tkachenko
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristyna Kupcova
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Adriana Velasova
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marek Trneny
- First Department of Medicine - Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Heidi Mocikova
- Department of Haematology, Fakultni nemocnice Kralovske Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondrej Havranek
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
2
|
Fu X, Jiang Q, Mo W, Zhang J, Li Y, Miao Y, Zhang R. Germline mutations predispose a concurrent thymoma and diffuse large B-cell lymphoma. Ann Hematol 2025:10.1007/s00277-025-06322-0. [PMID: 40327098 DOI: 10.1007/s00277-025-06322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 03/14/2025] [Indexed: 05/07/2025]
Abstract
Although thymoma is a rare malignancy, it is usually accompanied by secondary cancers. Non-Hodgkin's B-cell lymphoma is one of the most common secondary neoplasms observed in patients with thymoma, presenting before, concurrently with, or after the diagnosis. However, the underlying molecular mechanism of concomitant thymoma and lymphoma remains unclear. This study aimed to report a case with concurrent extrathymic, diffuse large B-cell lymphoma (DLBCL), and thymoma. Published studies and the SEER database were queried to summarize the features of patients with these concomitant cancers. Whole-exome sequencing (WES) was performed on tumor specimens and buccal swab mucosa. Six germline mutations and several specific somatic alterations were found on each neoplastic tissue, which may elucidate the potential pathogenesis of concurrent cancers. This study was novel in reporting concurrent extrathymic DLBCL and thymoma by applying WES on matched neoplasm-normal samples to explore the pathogenesis of these distinct neoplasms.
Collapse
Affiliation(s)
- Xiaoyan Fu
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Qiao Jiang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wenbin Mo
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Jinjing Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yan Li
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yuan Miao
- Department of Pathology, The College of Basic Medical Sciences and The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Rui Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
- , No. 155 Nanjing North Street, Heping District, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
3
|
Petersen M, Dubielecka P. Adaptor protein Abelson interactor 1 in homeostasis and disease. Cell Commun Signal 2024; 22:468. [PMID: 39354505 PMCID: PMC11446139 DOI: 10.1186/s12964-024-01738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Dysregulation of Abelson interactor 1 (ABI1) is associated with various states of disease including developmental defects, pathogen infections, and cancer. ABI1 is an adaptor protein predominantly known to regulate actin cytoskeleton organization processes such as those involved in cell adhesion, migration, and shape determination. Linked to cytoskeleton via vasodilator-stimulated phosphoprotein (VASP), Wiskott-Aldrich syndrome protein family (WAVE), and neural-Wiskott-Aldrich syndrome protein (N-WASP)-associated protein complexes, ABI1 coordinates regulation of various cytoplasmic protein signaling complexes dysregulated in disease states. The roles of ABI1 beyond actin cytoskeleton regulation are much less understood. This comprehensive, protein-centric review describes molecular roles of ABI1 as an adaptor molecule in the context of its dysregulation and associated disease outcomes to better understand disease state-specific protein signaling and affected interconnected biological processes.
Collapse
Affiliation(s)
- Max Petersen
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
- Center for the Biology of Aging, Brown University, Providence, RI, USA
- Legoretta Cancer Center, Brown University, Providence, RI, USA
| | - Pat Dubielecka
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA.
- Center for the Biology of Aging, Brown University, Providence, RI, USA.
- Legoretta Cancer Center, Brown University, Providence, RI, USA.
| |
Collapse
|
4
|
Corcoran SR, Phelan JD, Choi J, Shevchenko G, Fenner RE, Yu X, Scheich S, Hsiao T, Morris VM, Papachristou EK, Kishore K, D'Santos CS, Ji Y, Pittaluga S, Wright GW, Urlaub H, Pan KT, Oellerich T, Muppidi J, Hodson DJ, Staudt LM. Molecular Determinants of Sensitivity to Polatuzumab Vedotin in Diffuse Large B-Cell Lymphoma. Cancer Discov 2024; 14:1653-1674. [PMID: 38683128 DOI: 10.1158/2159-8290.cd-23-0802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Polatuzumab vedotin (Pola-V) is an antibody-drug conjugate directed to the CD79B subunit of the B-cell receptor (BCR). When combined with conventional immunochemotherapy, Pola-V improves outcomes in diffuse large B-cell lymphoma (DLBCL). To identify determinants of Pola-V sensitivity, we used CRISPR-Cas9 screening for genes that modulated Pola-V toxicity for lymphomas or the surface expression of its target, CD79B. Our results reveal the striking impact of CD79B glycosylation on Pola-V epitope availability on the lymphoma cell surface and on Pola-V toxicity. Genetic, pharmacological, and enzymatic approaches that remove sialic acid from N-linked glycans enhanced lymphoma killing by Pola-V. Pola-V toxicity was also modulated by KLHL6, an E3 ubiquitin ligase that is recurrently inactivated in germinal center derived lymphomas. We reveal how KLHL6 targets CD79B for degradation in normal and malignant germinal center B cells, thereby determining expression of the surface BCR complex. Our findings suggest precision medicine strategies to optimize Pola-V as a lymphoma therapeutic. Significance: These findings unravel the molecular basis of response heterogeneity to Pola-V and identify approaches that might be deployed therapeutically to enhance the efficacy of CD79B-specific tumor killing. In addition, they reveal a novel post-translational mechanism used by normal and malignant germinal center B cells to regulate expression of the BCR. See related commentary by Leveille, p. 1577 See related article by Meriranta et al.
Collapse
Affiliation(s)
- Sean R Corcoran
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Galina Shevchenko
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Rachel E Fenner
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Tony Hsiao
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Vivian M Morris
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | | | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Yanlong Ji
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - George W Wright
- Biometrics Research Program, National Cancer Institute, NIH, Bethesda, Maryland
| | - Henning Urlaub
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kuan-Ting Pan
- University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Thomas Oellerich
- University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
5
|
Fend F, Quintanilla-Martinez L. Clonal evolution and relapse in early-stage follicular lymphoma - a tree with many branches †. J Pathol 2024; 263:271-274. [PMID: 38775014 DOI: 10.1002/path.6294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024]
Abstract
Follicular lymphoma (FL) is an indolent B-cell neoplasm characterised by multistep evolution from premalignant precursor cells carrying the hallmark t(14;18) translocation in the majority of cases. In a new article in The Journal of Pathology, samples of relapsed early-stage FL - primary manifestation and relapse with or without transformation - initially treated with radiotherapy only, were studied for clonal relationships and evolution. Using somatic mutations and the rearranged immunoglobulin sequences as markers, the majority of paired lymphoma samples showed so-called branched evolution from a common, possibly premalignant progenitor cell, with both shared and private mutations. In addition, clonally unrelated cases were identified. This and previous studies with similar findings clearly document that relapse or transformation of FL in many instances not necessarily represents a linear progression of disease due to acquisition of additional mutations and therapy resistance, but rather new outgrowths derived from a pool of clonally related, long-lived, and low proliferating precursor cells, or even unrelated second neoplasms. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Falko Fend
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Tuebingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Tuebingen, Germany
| |
Collapse
|
6
|
Yang X, Ji Y, Mei L, Jing W, Yang X, Liu Q. Potential role of the P2X7 receptor in the proliferation of human diffused large B-cell lymphoma. Purinergic Signal 2024; 20:273-284. [PMID: 37222921 PMCID: PMC11189370 DOI: 10.1007/s11302-023-09947-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of invasive non-Hodgkin lymphoma. 60-70% of patients are curable with current chemoimmunotherapy, whereas the rest are refractory or relapsed. Understanding of the interaction between DLBCL cells and tumor microenvironment raises the hope of improving overall survival of DLBCL patients. P2X7, a member of purinergic receptors P2X family, is activated by extracellular ATP and subsequently promotes the progression of various malignancies. However, its role in DLBCL has not been elucidated. In this study, the expression level of P2RX7 in DLBCL patients and cell lines was analyzed. MTS assay and EdU incorporation assay were carried out to study the effect of activated/inhibited P2X7 signaling on the proliferation of DLBCL cells. Bulk RNAseq was performed to explore potential mechanism. The results demonstrated high level expression of P2RX7 in DLBCL patients, typically in patients with relapse DLBCL. 2'(3')-O-(4-benzoylbenzoyl) adenosine 5-triphosphate (Bz-ATP), an agonist of P2X7, significantly accelerated the proliferation of DLBCL cells, whereas delayed proliferation was detected when administrated with antagonist A740003. Furthermore, a urea cycle enzyme named CPS1 (carbamoyl phosphate synthase 1), which up-regulated in P2X7-activated DLBCL cells while down-regulated in P2X7-inhibited group, was demonstrated to involve in such process. Our study reveals the role of P2X7 in the proliferation of DLBCL cells and implies that P2X7 may serve as a potential molecular target for the treatment of DLBCL.
Collapse
Affiliation(s)
- Xiao Yang
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Yuanyuan Ji
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Lin Mei
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wenwen Jing
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xin Yang
- Department of Rheumatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qianwei Liu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
7
|
Hare L, Trotman J, Tarpey P, Hook E, Burke GAA, Genomics England Research Consortium. Challenging our understanding of B-cell lymphomagenesis and risk: Paediatric high-grade B-cell lymphoma, not otherwise specified with a DDX3X::MLLT10 fusion and an IGH deletion. Pediatr Blood Cancer 2024; 71:e30810. [PMID: 38102963 PMCID: PMC11497301 DOI: 10.1002/pbc.30810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
We report a unique case of high-grade B-cell lymphoma, not otherwise specified in a 5-year-old child. Whole-genome sequencing revealed a DDX3X::MLLT10 fusion, usually seen in T-cell acute lymphoblastic leukaemia (ALL). This suggests the novel idea that MLLT10 fusions are capable of driving B-cell malignancies. An IGH deletion usually only seen in adults was also found. These unique genetic findings provide novel insights into B-cell lymphomagenesis. The child remains in remission 7 year post chemotherapy, which demonstrates that novel complex molecular findings do not always denote high-risk disease.
Collapse
Affiliation(s)
- Lucy Hare
- Department of PathologyUniversity of CambridgeCambridgeUK
- Department of Paediatric Haematology, Oncology and Palliative CareAddenbrooke's HospitalCambridgeUK
| | - Jamie Trotman
- East‐Genomics Laboratory Hub (GLH) Genetics LaboratoryCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Patrick Tarpey
- East‐Genomics Laboratory Hub (GLH) Genetics LaboratoryCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Elizabeth Hook
- Department of PathologyUniversity of CambridgeCambridgeUK
- Department of PathologyAddenbrooke's HospitalCambridgeUK
| | - G. A. Amos Burke
- Department of Paediatric Haematology, Oncology and Palliative CareAddenbrooke's HospitalCambridgeUK
| | | |
Collapse
|
8
|
Kim PM, Nejati R, Lu P, Thakkar D, Mackrides N, Dupoux V, Nakhoda S, Baldwin DA, Pei J, Dave SS, Wang YL, Wasik MA. Leukemic presentation and progressive genomic alterations of MCD/C5 diffuse large B-cell lymphoma (DLBCL). Cold Spring Harb Mol Case Stud 2023; 9:a006283. [PMID: 37730436 PMCID: PMC10815299 DOI: 10.1101/mcs.a006283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/30/2023] [Indexed: 09/22/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogenous group of lymphoid malignancies. Based on gene expression profiling, it has been subdivided into germinal center (GC)-derived and activated B-cell (ABC) types. Advances in molecular methodologies have further refined the subclassification of DLBCL, based on recurrent genetic abnormalities. Here, we describe a distinct case of DLBCL that presented in leukemic form. DNA sequencing targeting 275 genes revealed pathogenically relevant mutations of CD79B, MyD88, TP53, TBL1XR1, and PIM1 genes, indicating that this lymphoma would be best classified as MCD/C5 DLBCL, an ABC subtype. Despite an initial good clinical response to BTK inhibitor ibrutinib, anti-CD20 antibody rituxan, alkylating agent bendamustine, and hematopoietic stem-cell transplant, the lymphoma relapsed, accompanied by morphologic and molecular evidence of disease progression. Specifically, the recurrent tumor developed loss of TP53 heterozygosity (LOH) and additional chromosomal changes central to ABC DLBCL pathogenesis, such as PRDM1 loss. Acquired resistance to ibrutinib and rituxan was indicated by the emergence of BTK and FOXO1 mutations, respectively, as well as apparent activation of alternative cell-activation pathways, through copy-number alterations (CNAs), detected by high-resolution chromosomal microarrays. In vitro, studies of relapsed lymphoma cells confirmed resistance to standard BTK inhibitors but sensitivity to vecabrutinib, a noncovalent inhibitor active against both wild-type as well as mutated BTK. In summary, we provide in-depth molecular characterization of a de novo leukemic DLBCL and discuss mechanisms that may have contributed to the lymphoma establishment, progression, and development of drug resistance.
Collapse
Affiliation(s)
- Patricia M Kim
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Pin Lu
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | - Nicholas Mackrides
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Vanessa Dupoux
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Shazia Nakhoda
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Don A Baldwin
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Jianming Pei
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Sandeep S Dave
- Duke University, Durham, North Carolina 27708, USA
- Data Driven Bioscience, Durham, North Carolina 27707, USA
| | - Y Lynn Wang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Mariusz A Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA;
| |
Collapse
|
9
|
Hilton LK, Ngu HS, Collinge B, Dreval K, Ben-Neriah S, Rushton CK, Wong JC, Cruz M, Roth A, Boyle M, Meissner B, Slack GW, Farinha P, Craig JW, Gerrie AS, Freeman CL, Villa D, Rodrigo JA, Song K, Crump M, Shepherd L, Hay AE, Kuruvilla J, Savage KJ, Kridel R, Karsan A, Marra MA, Sehn LH, Steidl C, Morin RD, Scott DW. Relapse Timing Is Associated With Distinct Evolutionary Dynamics in Diffuse Large B-Cell Lymphoma. J Clin Oncol 2023; 41:4164-4177. [PMID: 37319384 PMCID: PMC10852398 DOI: 10.1200/jco.23.00570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE Diffuse large B-cell lymphoma (DLBCL) is cured in more than 60% of patients, but outcomes remain poor for patients experiencing disease progression or relapse (refractory or relapsed DLBCL [rrDLBCL]), particularly if these events occur early. Although previous studies examining cohorts of rrDLBCL have identified features that are enriched at relapse, few have directly compared serial biopsies to uncover biological and evolutionary dynamics driving rrDLBCL. Here, we sought to confirm the relationship between relapse timing and outcomes after second-line (immuno)chemotherapy and determine the evolutionary dynamics that underpin that relationship. PATIENTS AND METHODS Outcomes were examined in a population-based cohort of 221 patients with DLBCL who experienced progression/relapse after frontline treatment and were treated with second-line (immuno)chemotherapy with an intention-to-treat with autologous stem-cell transplantation (ASCT). Serial DLBCL biopsies from a partially overlapping cohort of 129 patients underwent molecular characterization, including whole-genome or whole-exome sequencing in 73 patients. RESULTS Outcomes to second-line therapy and ASCT are superior for late relapse (>2 years postdiagnosis) versus primary refractory (<9 months) or early relapse (9-24 months). Diagnostic and relapse biopsies were mostly concordant for cell-of-origin classification and genetics-based subgroup. Despite this concordance, the number of mutations exclusive to each biopsy increased with time since diagnosis, and late relapses shared few mutations with their diagnostic counterpart, demonstrating a branching evolution pattern. In patients with highly divergent tumors, many of the same genes acquired new mutations independently in each tumor, suggesting that the earliest mutations in a shared precursor cell constrain tumor evolution toward the same genetics-based subgroups at both diagnosis and relapse. CONCLUSION These results suggest that late relapses commonly represent genetically distinct and chemotherapy-naïve disease and have implications for optimal patient management.
Collapse
Affiliation(s)
- Laura K. Hilton
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Henry S. Ngu
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Brett Collinge
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kostiantyn Dreval
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Christopher K. Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jasper C.H. Wong
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Manuela Cruz
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Andrew Roth
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Merrill Boyle
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Barbara Meissner
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pedro Farinha
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey W. Craig
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alina S. Gerrie
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ciara L. Freeman
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Diego Villa
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith A. Rodrigo
- Department of Hematology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Leukemia/BMT Program of BC, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Kevin Song
- Department of Hematology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Leukemia/BMT Program of BC, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Michael Crump
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Lois Shepherd
- Canadian Cancer Trials Group, Queens University, Kingston, Ontario, Canada
- Department of Medicine, Queens University, Kingston, Ontario, Canada
| | - Annette E. Hay
- Canadian Cancer Trials Group, Queens University, Kingston, Ontario, Canada
- Department of Medicine, Queens University, Kingston, Ontario, Canada
| | - John Kuruvilla
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Kridel
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Aly Karsan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Marco A. Marra
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan D. Morin
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Xu P, Liu J, Chen H, Shang L, Wang F, Zhu Y, Guo Y, Li F, Yan F, Xie X, Li L, Gu W, Lin Y. Clinical significance of plasma PD-L1 + exosomes in the management of diffuse large B cell lymphoma. Ann Hematol 2023; 102:2435-2444. [PMID: 37162517 DOI: 10.1007/s00277-023-05259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
PD-L1+ exosome have been reported to be a promising prognostic biomarker in various cancers. However, its clinical value in diffuse large B cell lymphoma (DLBCL) has not been defined yet. In this study, a total of 165 plasma samples from 78 patients with DLBCL undergoing standard first-line R-CHOP regimens were collected at three different time points (pretreatment, and after 3 and 6 cycles of R-CHOP) to determine the proportions of PD-L1+ exosomes by flow cytometry. We found that high pretreatment plasma PD-L1+ exosome correlated with indicators of poor clinical outcome that included high Ki-67 expression (P = 0.02), double expressor lymphoma (P = 0.005), immunohistochemical PD-L1+ tumor tissue (P = 0.006), and the baseline maximal standardized uptake values (P = 0.0003). Pretreatment plasma PD-L1+ exosome was an independent factor by multivariate analysis with logistic regression (P = 0.0301). Moreover, the pretreatment PD-L1+ exosome was a strong predictor of final treatment responses of either CR or non-CR by ROC analysis (P < 0.001). PD-L1+ exosome level declined significantly in patients who experienced CR (pretreatment vs. after 3 cycles/after 6 cycles, P < 0.05), but not in the non-CR group. Intriguingly, plasma PD-L1+ exosome after 3 cycles (AUC = 0.857; 95%CI: 0.728-0.939) might represent a more sensitive indicator than radiographic assessment after 3 cycles (AUC = 0.626; 95%CI: 0.477-0.758) for evaluating the therapeutic response of DLBCL patients (P = 0.0136). Our results suggest that plasma PD-L1+ exosomes may represent a new biomarker for the dynamic monitoring of treatment response.
Collapse
Affiliation(s)
- Peng Xu
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Juan Liu
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Huijuan Chen
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Limei Shang
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Fei Wang
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yuandong Zhu
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yanting Guo
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Feng Li
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Feng Yan
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaobao Xie
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Liang Li
- National Center for Liver Cancer, Shanghai, China.
| | - Weiying Gu
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Yan Lin
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
11
|
Michot JM, Quivoron C, Sarkozy C, Danu A, Lazarovici J, Saleh K, El-Dakdouki Y, Goldschmidt V, Bigenwald C, Dragani M, Bahleda R, Baldini C, Arfi-Rouche J, Martin-Romano P, Tselikas L, Gazzah A, Hollebecque A, Lacroix L, Ghez D, Vergé V, Marzac C, Cotteret S, Rahali W, Soria JC, Massard C, Bernard OA, Dartigues P, Camara-Clayette V, Ribrag V. Sequence analyses of relapsed or refractory diffuse large B-cell lymphomas unravel three genetic subgroups of patients and the GNA13 mutant as poor prognostic biomarker, results of LNH-EP1 study. Am J Hematol 2023; 98:645-657. [PMID: 36606708 DOI: 10.1002/ajh.26835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Advances in molecular profiling of newly diagnosed diffuse large B-cell lymphoma (DLBCL) have recently refine genetic subgroups. Genetic subgroups remain undetermined at the time of relapse or refractory (RR) disease. This study aims to decipher genetic subgroups and search for prognostic molecular biomarkers in patients with RR-DLBCL. From 2015 to 2021, targeted next-generation sequencing analyses of germline-matched tumor samples and fresh tissue from RR-DLBCL patients were performed. Unsupervised clustering of somatic mutations was performed and correlations with patient outcome were sought. A number of 120 patients with RR-DLBCL were included in LNH-EP1 study and a molecular tumor landscape was successfully analyzed in 87% of patients (104/120 tumor samples). The median age was 67.5 years (range 27.4-87.4), median number of previous treatments was 2 (range 1-9). The most frequently mutated genes were TP53 (n = 53 mutations; 42% of samples), CREBBP (n = 39; 32%), BCL2 (n = 86; 31%), KMT2D (n = 39; 28%) and PIM1 (n = 54; 22%). Unsupervised clustering separated three genetic subgroups entitled BST (enriched in BCL2, SOCS1, and TNFRSF14 mutations); TKS (enriched in TP53, KMT2D, and STAT6 mutations); and PCM (enriched in PIM1, CD79B, and MYD88 mutations). Median overall survival (OS) was 11.0 (95% confidence interval [CI]: 8.1-12.6) months. OS was not significantly different between the three genetic subgroups. GNA13 mutant was significantly associated with an increased risk of death (hazard ratio: 6.6 [95% CI: 2.1-20.6]; p = .0011) and shorter OS (p = .0340). At the time of relapse or refractory disease, three genetic subgroups of DLBCL patients were delineated, which could help advance precision molecular medicine programs.
Collapse
Affiliation(s)
- Jean-Marie Michot
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Cyril Quivoron
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Clémentine Sarkozy
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Alina Danu
- Hematology Department, Gustave Roussy, Villejuif, France
| | | | - Khalil Saleh
- Hematology Department, Gustave Roussy, Villejuif, France
| | | | - Vincent Goldschmidt
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | | | - Matteo Dragani
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Rastislav Bahleda
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Capucine Baldini
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | | | | | | | - Anas Gazzah
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Antoine Hollebecque
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Ludovic Lacroix
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - David Ghez
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Veronique Vergé
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Christophe Marzac
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Sophie Cotteret
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Wassila Rahali
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Jean-Charles Soria
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Christophe Massard
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Olivier A Bernard
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Peggy Dartigues
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Valérie Camara-Clayette
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Biological Resource Center, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
| | - Vincent Ribrag
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Hematology Department, Gustave Roussy, Villejuif, France
| |
Collapse
|
12
|
Hilton LK, Ngu HS, Collinge B, Dreval K, Ben-Neriah S, Rushton CK, Wong JC, Cruz M, Roth A, Boyle M, Meissner B, Slack GW, Farinha P, Craig JW, Gerrie AS, Freeman CL, Villa D, Crump M, Shepherd L, Hay AE, Kuruvilla J, Savage KJ, Kridel R, Karsan A, Marra MA, Sehn LH, Steidl C, Morin RD, Scott DW. Relapse timing is associated with distinct evolutionary dynamics in DLBCL. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.06.23286584. [PMID: 36945587 PMCID: PMC10029038 DOI: 10.1101/2023.03.06.23286584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is cured in over 60% of patients, but outcomes are poor for patients with relapsed or refractory disease (rrDLBCL). Here, we performed whole genome/exome sequencing (WGS/WES) on tumors from 73 serially-biopsied patients with rrDLBCL. Based on the observation that outcomes to salvage therapy/autologous stem cell transplantation are related to time-to-relapse, we stratified patients into groups according to relapse timing to explore the relationship to genetic divergence and sensitivity to salvage immunochemotherapy. The degree of mutational divergence increased with time between biopsies, yet tumor pairs were mostly concordant for cell-of-origin, oncogene rearrangement status and genetics-based subgroup. In patients with highly divergent tumors, several genes acquired exclusive mutations independently in each tumor, which, along with concordance of genetics-based subgroups, suggests that the earliest mutations in a shared precursor cell constrain tumor evolution. These results suggest that late relapses commonly represent genetically distinct and chemotherapy-naïve disease.
Collapse
Affiliation(s)
- Laura K. Hilton
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Henry S. Ngu
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Brett Collinge
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kostiantyn Dreval
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Christopher K. Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Jasper C.H. Wong
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Manuela Cruz
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Andrew Roth
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Merrill Boyle
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Barbara Meissner
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pedro Farinha
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey W. Craig
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alina S. Gerrie
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ciara L. Freeman
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Diego Villa
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael Crump
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Lois Shepherd
- Canadian Cancer Trials Group, Queens University, Kingston, ON, Canada
- Department of Medicine, Queens University, Kingston, ON, Canada
| | - Annette E. Hay
- Canadian Cancer Trials Group, Queens University, Kingston, ON, Canada
- Department of Medicine, Queens University, Kingston, ON, Canada
| | - John Kuruvilla
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robert Kridel
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Aly Karsan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Marco A. Marra
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ryan D. Morin
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Groenen PJTA, van den Brand M, Kroeze LI, Amir AL, Hebeda KM. Read the clonotype: Next-generation sequencing-based lymphocyte clonality analysis and perspectives for application in pathology. Front Oncol 2023; 13:1107171. [PMID: 36845702 PMCID: PMC9945094 DOI: 10.3389/fonc.2023.1107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Clonality assessment using the unique rearrangements of immunoglobulin (IG) and T-cell receptor (TR) genes in lymphocytes is a widely applied supplementary test for the diagnosis of B-cell and T-cell lymphoma. To enable a more sensitive detection and a more precise comparison of clones compared with conventional clonality analysis based on fragment analysis, the EuroClonality NGS Working Group developed and validated a next-generation sequencing (NGS)-based clonality assay for detection of the IG heavy and kappa light chain and TR gene rearrangements for formalin-fixed and paraffin-embedded tissues. We outline the features and advantages of NGS-based clonality detection and discuss potential applications for NGS-based clonality testing in pathology, including site specific lymphoproliferations, immunodeficiency and autoimmune disease and primary and relapsed lymphomas. Also, we briefly discuss the role of T-cell repertoire of reactive lymphocytic infiltrations in solid tumors and B-lymphoma.
Collapse
Affiliation(s)
- Patricia J. T. A. Groenen
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michiel van den Brand
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
- Pathology-DNA, Location Rijnstate Hospital, Arnhem, Netherlands
| | - Leonie I. Kroeze
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Avital L. Amir
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
14
|
Nan Y, Zhang X, Wang S, Xu C, Wang Y, Han L, Luan J, Hu X, Chen W, Cao Z, Zhu Z, Zeng X, Fan J, Ye L, Shi X, Ju D. Targeting CD47 enhanced the antitumor immunity of PD-L1 blockade in B-cell lymphoma. Immunotherapy 2023; 15:175-187. [PMID: 36727256 DOI: 10.2217/imt-2022-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: Only a subset of B-cell lymphoma (BCL) patients can benefit from immune checkpoint inhibitors targeting PD-1/PD-L1. Materials & methods: In the A20 model, SIRPα-Fc and anti-PD-L1 were employed to target CD47 and PD-L1 simultaneously. Flow cytometry, immunofluorescence and quantitative polymerase chain reaction were used to unravel the potential mechanisms. Results: Simultaneously targeting CD47 and PD-L1 activated CD8+ T cells with an increased release of effector molecules. Furthermore, infiltration of F4/80+iNOS+ M1 macrophages was enhanced by the dual therapy. Conclusion: Anti-CD47 therapy could sensitize BCL tumors to anti-PD-L1 therapy in a CD8+ T-cell- and M1-macrophage-dependent manner by promoting cytotoxic lymphocyte infiltration, which may provide a potential strategy for BCL treatment by simultaneously targeting CD47 and PD-L1.
Collapse
Affiliation(s)
- Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shaofei Wang
- Department of Cellular & Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yichen Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lei Han
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jingyun Luan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xiaozhi Hu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wei Chen
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhonglian Cao
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zeguo Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Li Ye
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xunlong Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
15
|
Berendsen MR, Bladel DAGV, Hesius E, de Groot FA, Kroeze LI, Rijntjes J, Luijks JACW, Hoevenaars B, Halilovic A, Nooijen P, Bladel EV, Jonge-Peeters SD, Lensen C, Pruijt H, van der Spek E, Vermaat JSP, Hess C, Hebeda KM, Stevens WBC, van Krieken JHJM, van den Brand M, Groenen PJTA, Scheijen B. Detection of Second Primary Lymphoma in Late Diffuse Large B-cell Lymphoma Recurrences. Mod Pathol 2023; 36:100119. [PMID: 36805792 DOI: 10.1016/j.modpat.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Approximately one-third of patients with diffuse large B-cell lymphoma (DLBCL) relapse and often require salvage chemotherapy followed by autologous stem cell transplantation. In most cases, the clonal relationship between the first diagnosis and subsequent relapse is not assessed, thereby potentially missing the identification of second primary lymphoma. In this study, the clonal relationship of 59 paired DLBCL diagnoses and recurrences was established by next-generation sequencing-based detection of immunoglobulin gene rearrangements. Among 50 patients with interpretable results, 43 patients (86%) developed clonally related relapsed disease. This was observed in 100% of early recurrences (<2 years), 80% of the recurrences with an interval between 2 and 5 years, and 73% of late recurrences (≥5 years). On the other hand, 7 (14%) out of 50 patients displayed different dominant clonotypes in primary DLBCL and clinical recurrences, confirming the occurrence of second primary DLBCL; 37% of DLBCL recurrences that occurred ≥4 years after diagnosis were shown to be second primary lymphomas. The clonally unrelated cases were Epstein-Barr virus positive in 43% of the cases, whereas this was only 5% in the relapsed DLBCL cases. In conclusion, next-generation sequencing-based clonality testing in late recurrences should be considered in routine diagnostics to distinguish relapse from second primary lymphoma, as this latter group of patients with DLBCL may benefit from less-intensive treatment strategies.
Collapse
Affiliation(s)
- Madeleine R Berendsen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Diede A G van Bladel
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Eva Hesius
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fleur A de Groot
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonie I Kroeze
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jos Rijntjes
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen A C W Luijks
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brigiet Hoevenaars
- Department of Pathology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Altuna Halilovic
- Department of Pathology, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - Peet Nooijen
- Department of Pathology, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - Esther van Bladel
- Department of Hematology, Slingeland Hospital, Doetinchem, The Netherlands
| | | | - Chantal Lensen
- Department of Hematology, Bernhoven Hospital, Uden, The Netherlands
| | - Hans Pruijt
- Department of Hematology Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | | | - Joost S P Vermaat
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Corine Hess
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Konnie M Hebeda
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wendy B C Stevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Han J M van Krieken
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Hirsiger JR, Tzankov A, Alborelli I, Recher M, Daikeler T, Parmentier S, Berger CT. Case Report: mRNA vaccination-mediated STAT3 overactivation with agranulocytosis and clonal T-LGL expansion. Front Immunol 2023; 14:1087502. [PMID: 36817454 PMCID: PMC9933345 DOI: 10.3389/fimmu.2023.1087502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
Vaccines against SARS-CoV-2 are the most effective measure against the COVID-19 pandemic. The safety profile of mRNA vaccines in patients with rare diseases has not been assessed systematically in the clinical trials, as these patients were typically excluded. This report describes the occurrence of agranulocytosis within days following the first dose of an mRNA-1273 vaccination against COVID-19 in a previously healthy older adult. The patient was diagnosed with a suspected STAT3 wild-type T-cell large granular lymphocytic leukaemia (T-LGL). Neutropenia was successfully treated with IVIG, glucocorticoids, and G-CSF. In vitro experiments aimed at elucidating the pathways potentially causing the mRNA vaccine-associated neutropenia indicated that the mRNA, but not the adenoviral Ad26.COV2.S vector vaccine, triggered strong IL-6/STAT3 activation in vitro, resulting in excessive T-cell activation and neutrophil degranulation in the patient but not in controls. mRNA-1273 activated TLR-3 suggesting TLR mediated IL-6/STAT3 pathway activation. To complete the primary series of COVID-19 immunization, we used a single dose of Ad26.COV2.S vector vaccine without reoccurrence of neutropenia. The T-LGL clone remained stable during the follow-up of more than 12 months without ongoing therapy. Our data suggest that switching the immunization platform may be a reasonable approach in subjects with rare associated hematologic side effects due to excess STAT3-mediated stimulation following mRNA vaccination. Using in vitro testing before re-administration of a (COVID) vaccine also has relevance for other rare immune events after (mRNA) vaccination.
Collapse
Affiliation(s)
- Julia R Hirsiger
- Translational Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute for Pathology, University Hospital Basel, Basel, Switzerland.,University of Basel and ETH Zurich, Botnar Research Centre for Child Health, Basel, Switzerland
| | - Ilaria Alborelli
- Pathology, Institute of Medical Genetics and Pathology, University Hospital, Basel, Switzerland
| | - Mike Recher
- Primary Immunodeficiency, Department of Biomedicine, University of Basel, Basel, Switzerland.,University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Thomas Daikeler
- University Center for Immunology, University Hospital Basel, Basel, Switzerland.,Rheumatology Clinic, University Hospital Basel, Basel, Switzerland
| | | | - Christoph T Berger
- Translational Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.,University of Basel and ETH Zurich, Botnar Research Centre for Child Health, Basel, Switzerland.,University Center for Immunology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
17
|
Li W, Lv L, Ruan M, Xu J, Zhu W, Li Q, Jiang X, Zheng L, Zhu W. Qin Huang formula enhances the effect of Adriamycin in B-cell lymphoma via increasing tumor infiltrating lymphocytes by targeting toll-like receptor signaling pathway. BMC Complement Med Ther 2022; 22:185. [PMID: 35818037 PMCID: PMC9272877 DOI: 10.1186/s12906-022-03660-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/29/2022] [Indexed: 12/05/2022] Open
Abstract
Background As an original traditional Chinese medicinal formula, Qin Huang formula (QHF) is used as adjuvant therapy for treating lymphoma in our hospital and has proven efficacy when combined with chemotherapy. However, the underlying mechanisms of QHF have not been elucidated. Methods A network pharmacological-based analysis method was used to screen the active components and predict the potential mechanisms of QHF in treating B cell lymphoma. Then, a murine model was built to verify the antitumor effect of QHF combined with Adriamycin (ADM) in vivo. Finally, IHC, ELISA, 18F-FDG PET-CT scan, and western blot were processed to reveal the intriguing mechanism of QHF in treating B cell lymphoma. Results The systemic pharmacological study revealed that QHF took effect following a multiple-target and multiple-pathway pattern in the human body. In vivo study showed that combination therapy with QHF and ADM potently inhibited the growth of B cell lymphoma in a syngeneic murine model, and significantly increased the proportion of tumor infiltrating CD4+ and CD8+ T cells in the tumor microenvironment (TME). Furthermore, the level of CXCL10 and IL-6 was significantly increased in the combination group. Finally, the western blot exhibited that the level of TLR2 and p38 MAPK increased in the combination therapy group. Conclusion QHF in combination of ADM enhances the antitumor effect of ADM via modulating tumor immune microenvironment and can be a combination therapeutic strategy for B cell lymphoma patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03660-8.
Collapse
|
18
|
Guan T, Zhang M, Liu X, Li J, Xin B, Ren Y, Yang Y, Wang H, Zhao M, Huang Y, Guo X, Du J, Qian W, Su L. Circulating tumor DNA mutation profile is associated with the prognosis and treatment response of Chinese patients with newly diagnosed diffuse large B-cell lymphoma. Front Oncol 2022; 12:1003957. [DOI: 10.3389/fonc.2022.1003957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
BackgroundCharacterization of gene mutation profiles can provide new treatment options for patients with diffuse large B-cell lymphoma (DLBCL). However, this method is challenged by the limited source of tissue specimens, especially those of DLBCL patients at advanced stages. Therefore, in the current study, we aimed to describe the gene mutation landscape of DLBCL using circulating tumor DNA (ctDNA) samples obtained from patients’ blood samples, as well as to explore the relationship between ctDNA mutations and the prognosis and treatment response of patients with newly diagnosed DLBCL.MethodsA total of 169 newly diagnosed Chinese DLBCL patients were included in this study, among which 85 patients were divided into a training set and 84 were assigned into a validation set. The mutation profile of a 59-gene panel was analyzed by targeted next generation sequencing (NGS) of the patients’ ctDNA samples. Differences in clinical factors between patients with and without ctDNA mutations were analyzed. In addition, we also explored gene mutation frequencies between GCB and non-GCB subtypes, and the relationship between gene mutation status, clinical factors, mean VAF (variant allele frequencies) and the patients’ overall survival (OS) and progression-free survival (PFS).ResultsctDNA mutations were detected in 64 (75.3%) patients of the training set and 67 (79.8%) patients of the validation set. The most commonly mutated genes in both sets were PCLO, PIM1, MYD88, TP53, KMT2D, CD79B, HIST1H1E and LRP1B, with mutation frequencies of >10%. Patients with detectable ctDNA mutations trended to present advanced Ann Arbor stages (III-IV), elevated LDH (lactate dehydrogenase) levels, shorter OS and PFS, and a lower complete response (CR) rate to the R-CHOP regimen compared with DLBCL patients without ctDNA mutations. In addition, mean VAF (≥4.94%) and PCLO mutations were associated with poor OS and PFS.ConclusionWe investigated the ctDNA mutation landscape in Chinese patients with newly diagnosed DLBCL and found that ctDNA could reflect tumor burden and patients with detectable ctDNA mutations trended to have shorter OS and PFS and a lower CR rate.
Collapse
|
19
|
Yenamandra AK, Smith RB, Senaratne TN, Kang SHL, Fink JM, Corboy G, Hodge CA, Lu X, Mathew S, Crocker S, Fang M. Evidence-based review of genomic aberrations in diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS): Report from the cancer genomics consortium lymphoma working group. Cancer Genet 2022; 268-269:1-21. [PMID: 35970109 DOI: 10.1016/j.cancergen.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 01/25/2023]
Abstract
Diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS) is the most common type of non-Hodgkin lymphoma (NHL). The 2016 World Health Organization (WHO) classification defined DLBCL, NOS and its subtypes based on clinical findings, morphology, immunophenotype, and genetics. However, even within the WHO subtypes, it is clear that additional clinical and genetic heterogeneity exists. Significant efforts have been focused on utilizing advanced genomic technologies to further subclassify DLBCL, NOS into clinically relevant subtypes. These efforts have led to the implementation of novel algorithms to support optimal risk-oriented therapy and improvement in the overall survival of DLBCL patients. We gathered an international group of experts to review the current literature on DLBCL, NOS, with respect to genomic aberrations and the role they may play in the diagnosis, prognosis and therapeutic decisions. We comprehensively surveyed clinical laboratory directors/professionals about their genetic testing practices for DLBCL, NOS. The survey results indicated that a variety of diagnostic approaches were being utilized and that there was an overwhelming interest in further standardization of routine genetic testing along with the incorporation of new genetic testing modalities to help guide a precision medicine approach. Additionally, we present a comprehensive literature summary on the most clinically relevant genomic aberrations in DLBCL, NOS. Based upon the survey results and literature review, we propose a standardized, tiered testing approach which will help laboratories optimize genomic testing in order to provide the maximum information to guide patient care.
Collapse
Affiliation(s)
- Ashwini K Yenamandra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37215, United States.
| | | | - T Niroshi Senaratne
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Sung-Hae L Kang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - James M Fink
- Department of Pathology and Laboratory Medicine, Hennepin Healthcare, Minneapolis, MN, United States
| | - Gregory Corboy
- Haematology, Pathology Queensland, Herston, Queensland, Australia; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; School of Clinical Sciences, Monash University, Clayton, Vic, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Vic, Australia
| | - Casey A Hodge
- Department of Pathology and Immunology, Barnes Jewish Hospital, St. Louis, MO, United States
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Susan Mathew
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Crocker
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Min Fang
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, United States
| |
Collapse
|
20
|
Deng X, Zhang M, Zhou J, Xiao M. Next-generation sequencing for MRD monitoring in B-lineage malignancies: from bench to bedside. Exp Hematol Oncol 2022; 11:50. [PMID: 36057673 PMCID: PMC9440501 DOI: 10.1186/s40164-022-00300-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/21/2022] [Indexed: 12/02/2022] Open
Abstract
Minimal residual disease (MRD) is considered the strongest relevant predictor of prognosis and an effective decision-making factor during the treatment of hematological malignancies. Remarkable breakthroughs brought about by new strategies, such as epigenetic therapy and chimeric antigen receptor-T (CAR-T) therapy, have led to considerably deeper responses in patients than ever, which presents difficulties with the widely applied gold-standard techniques of MRD monitoring. Urgent demands for novel approaches that are ultrasensitive and provide sufficient information have put a spotlight on high-throughput technologies. Recently, advances in methodology, represented by next-generation sequencing (NGS)-based clonality assays, have proven robust and suggestive in numerous high-quality studies and have been recommended by some international expert groups as disease-monitoring modalities. This review demonstrates the applicability of NGS-based clonality assessment for MRD monitoring of B-cell malignancies by summarizing the oncogenesis of neoplasms and the corresponding status of immunoglobulin (IG) rearrangements. Furthermore, we focused on the performance of NGS-based assays compared with conventional approaches and the interpretation of results, revealing directions for improvement and prospects in clinical practice.
Collapse
Affiliation(s)
- Xinyue Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Meilan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China.
| |
Collapse
|
21
|
Zhou X, He YZ, Liu D, Lin CR, Liang D, Huang R, Wang L. An Autophagy-Related Gene Signature can Better Predict Prognosis and Resistance in Diffuse Large B-Cell Lymphoma. Front Genet 2022; 13:862179. [PMID: 35846146 PMCID: PMC9280409 DOI: 10.3389/fgene.2022.862179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous disease, and about 30%–40% of patients will develop relapsed/refractory DLBCL. In this study, we aimed to develop a gene signature to predict survival outcomes of DLBCL patients based on the autophagy-related genes (ARGs). Methods: We sequentially used the univariate, least absolute shrinkage and selector operation (LASSO), and multivariate Cox regression analyses to build a gene signature. The Kaplan–Meier curve and the area under the receiver operating characteristic curve (AUC) were performed to estimate the prognostic capability of the gene signature. GSEA analysis, ESTIMATE and ssGSEA algorithms, and one-class logistic regression were performed to analyze differences in pathways, immune response, and tumor stemness between the high- and low-risk groups. Results: Both in the training cohort and validation cohorts, high-risk patients had inferior overall survival compared with low-risk patients. The nomogram consisted of the autophagy-related gene signature, and clinical factors had better discrimination of survival outcomes, and it also had a favorable consistency between the predicted and actual survival. GSEA analysis found that patients in the high-risk group were associated with the activation of doxorubicin resistance, NF-κB, cell cycle, and DNA replication pathways. The results of ESTIMATE, ssGSEA, and mRNAsi showed that the high-risk group exhibited lower immune cell infiltration and immune activation responses and had higher similarity to cancer stem cells. Conclusion: We proposed a novel and reliable autophagy-related gene signature that was capable of predicting the survival and resistance of patients with DLBCL and could guide individualized treatment in future.
Collapse
Affiliation(s)
- Xuan Zhou
- Second Clinical Medical College of Southern Medical University, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ying-Zhi He
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Dan Liu
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Chao-Ran Lin
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Dan Liang
- Second Clinical Medical College of Southern Medical University, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Rui Huang
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Rui Huang, ; Liang Wang,
| | - Liang Wang
- Department of Hematology, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- *Correspondence: Rui Huang, ; Liang Wang,
| |
Collapse
|
22
|
Isaev K, Liu T, Bakhtiari M, Tong K, Goswami R, Lam B, Lungu I, Krzyzanowski PM, Oza A, Dhani N, Prica A, Crump M, Kridel R. In-depth characterization of intratumoral heterogeneity in refractory B-cell non-Hodgkin lymphoma through the lens of a Research Autopsy Program. Haematologica 2022; 108:196-206. [PMID: 35734926 PMCID: PMC9827161 DOI: 10.3324/haematol.2022.280900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Intratumoral heterogeneity (ITH) provides the substrate for tumor evolution and treatment resistance, yet is remarkably understudied in lymphoma, due to the often limited amount of tissue that gets sampled during the routine diagnostic process, generally from a single nodal or extranodal site. Furthermore, the trajectory of how lymphoma, and especially non-Hodgkin lymphoma, spreads throughout the human body remains poorly understood. Here, we present a detailed characterization of ITH by applying whole-genome sequencing to spatially separated tumor samples harvested at the time of autopsy (n=24) and/or diagnosis (n=3) in three patients presenting with refractory B-cell non-Hodgkin lymphoma. Through deconvolution of bulk samples into clonal mixtures and inference of phylogenetic trees, we found evidence that polyclonal seeding underlies tumor dissemination in lymphoma. We identify mutation signatures associated with ancestral and descendant clones. In our series of patients with highly refractory lymphoma, the determinants of resistance were often harbored by founding clones, although there was also evidence of positive selection of driver mutations, likely under the influence of therapy. Lastly, we show that circulating tumor DNA is suitable for the detection of ancestral mutations but may miss a significant proportion of private mutations that can be detected in tissue. Our study clearly shows the existence of intricate patterns of regional and anatomical evolution that can only be disentangled through multi-regional tumor tissue profiling.
Collapse
Affiliation(s)
- Keren Isaev
- Princess Margaret Cancer Center - University Health Network
| | - Ting Liu
- Princess Margaret Cancer Center - University Health Network
| | | | - Kit Tong
- Princess Margaret Cancer Center - University Health Network
| | | | - Bernard Lam
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ilinca Lungu
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | - Amit Oza
- Princess Margaret Cancer Center - University Health Network
| | - Neesha Dhani
- Princess Margaret Cancer Center - University Health Network
| | - Anca Prica
- Princess Margaret Cancer Center - University Health Network
| | - Michael Crump
- Princess Margaret Cancer Center - University Health Network
| | - Robert Kridel
- Princess Margaret Cancer Center - University Health Network,R. Kridel
| |
Collapse
|
23
|
Lund S, Ngisa V, Weber K, Rutz A, Guidinger J, Hartert KT. Enrichment of TP53 alterations within GCB-like DNA subclassifications of diffuse large B-cell lymphoma after transition from de-novo to relapsed or refractory disease. Blood Res 2022; 57:164-169. [PMID: 35551110 PMCID: PMC9242832 DOI: 10.5045/br.2022.2022052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Shelby Lund
- College of Science Engineering and Technology - Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, USA
| | - Valentine Ngisa
- College of Science Engineering and Technology - Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, USA
| | - Kennedee Weber
- College of Science Engineering and Technology - Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, USA
| | - Alison Rutz
- College of Science Engineering and Technology - Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, USA
| | - Jinda Guidinger
- College of Science Engineering and Technology - Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, USA
| | - Keenan T Hartert
- College of Science Engineering and Technology - Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, USA
| |
Collapse
|
24
|
Genta S, Ghilardi G, Cascione L, Juskevicius D, Tzankov A, Schär S, Milan L, Pirosa MC, Esposito F, Ruberto T, Giovanella L, Hayoz S, Mamot C, Dirnhofer S, Zucca E, Ceriani L. Integration of Baseline Metabolic Parameters and Mutational Profiles Predicts Long-Term Response to First-Line Therapy in DLBCL Patients: A Post Hoc Analysis of the SAKK38/07 Study. Cancers (Basel) 2022; 14:cancers14041018. [PMID: 35205765 PMCID: PMC8870624 DOI: 10.3390/cancers14041018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/16/2022] Open
Abstract
Accurate estimation of the progression risk after first-line therapy represents an unmet clinical need in diffuse large B-cell lymphoma (DLBCL). Baseline (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) parameters, together with genetic analysis of lymphoma cells, could refine the prediction of treatment failure. We evaluated the combined impact of mutation profiling and baseline PET/CT functional parameters on the outcome of DLBCL patients treated with the R-CHOP14 regimen in the SAKK38/07 clinical trial (NCT00544219). The concomitant presence of mutated SOCS1 with wild-type CREBBP and EP300 defined a group of patients with a favorable prognosis and 2-year progression-free survival (PFS) of 100%. Using an unsupervised recursive partitioning approach, we generated a classification-tree algorithm that predicts treatment outcomes. Patients with elevated metabolic tumor volume (MTV) and high metabolic heterogeneity (MH) (15%) had the highest risk of relapse. Patients with low MTV and favorable mutational profile (9%) had the lowest risk, while the remaining patients constituted the intermediate-risk group (76%). The resulting model stratified patients among three groups with 2-year PFS of 100%, 82%, and 42%, respectively (p < 0.001).
Collapse
Affiliation(s)
- Sofia Genta
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; (S.G.); (M.C.P.); (F.E.); (E.Z.)
| | - Guido Ghilardi
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Darius Juskevicius
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (D.J.); (A.T.); (S.D.)
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (D.J.); (A.T.); (S.D.)
| | - Sämi Schär
- Swiss Group for Clinical Cancer Research (SAKK) Coordinating Center, 3008 Bern, Switzerland; (S.S.); (S.H.)
| | - Lisa Milan
- Clinic of Nuclear Medicine and PET/CT Center, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; (L.M.); (T.R.); (L.G.)
| | - Maria Cristina Pirosa
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; (S.G.); (M.C.P.); (F.E.); (E.Z.)
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
| | - Fabiana Esposito
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; (S.G.); (M.C.P.); (F.E.); (E.Z.)
| | - Teresa Ruberto
- Clinic of Nuclear Medicine and PET/CT Center, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; (L.M.); (T.R.); (L.G.)
| | - Luca Giovanella
- Clinic of Nuclear Medicine and PET/CT Center, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; (L.M.); (T.R.); (L.G.)
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
| | - Stefanie Hayoz
- Swiss Group for Clinical Cancer Research (SAKK) Coordinating Center, 3008 Bern, Switzerland; (S.S.); (S.H.)
| | - Christoph Mamot
- Division of Oncology, Cantonal Hospital Aarau, 5001 Aarau, Switzerland;
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (D.J.); (A.T.); (S.D.)
| | - Emanuele Zucca
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; (S.G.); (M.C.P.); (F.E.); (E.Z.)
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
- Department of Medical Oncology, Bern University Hospital, University of Bern, 3008 Bern, Switzerland
| | - Luca Ceriani
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
- Clinic of Nuclear Medicine and PET/CT Center, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; (L.M.); (T.R.); (L.G.)
- Correspondence:
| |
Collapse
|
25
|
Vela V, Juskevicius D, Dirnhofer S, Menter T, Tzankov A. Mutational landscape of marginal zone B-cell lymphomas of various origin: organotypic alterations and diagnostic potential for assignment of organ origin. Virchows Arch 2022; 480:403-413. [PMID: 34494161 PMCID: PMC8986713 DOI: 10.1007/s00428-021-03186-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
This meta-analysis aims to concisely summarize the genetic landscape of splenic, nodal and extranodal marginal zone lymphomas (MZL) in the dura mater, salivary glands, thyroid, ocular adnexa, lung, stomach and skin with respect to somatic variants. A systematic PubMed search for sequencing studies of MZL was executed. All somatic mutations of the organs mentioned above were combined, uniformly annotated, and a dataset containing 25 publications comprising 6016 variants from 1663 patients was created. In splenic MZL, KLF2 (18%, 103/567) and NOTCH2 (16%, 118/725) were the most frequently mutated genes. Pulmonary and nodal MZL displayed recurrent mutations in chromatin-modifier-encoding genes, especially KMT2D (25%, 13/51, and 20%, 20/98, respectively). In contrast, ocular adnexal, gastric, and dura mater MZL had mutations in genes encoding for NF-κB pathway compounds, in particular TNFAIP3, with 39% (113/293), 15% (8/55), and 45% (5/11), respectively. Cutaneous MZL frequently had FAS mutations (63%, 24/38), while MZL of the thyroid had a higher prevalence for TET2 variants (61%, 11/18). Finally, TBL1XR1 (24%, 14/58) was the most commonly mutated gene in MZL of the salivary glands. Mutations of distinct genes show origin-preferential distribution among nodal and splenic MZL as well as extranodal MZL at/from different anatomic locations. Recognition of such mutational distribution patterns may help assigning MZL origin in difficult cases and possibly pave the way for novel more tailored treatment concepts.
Collapse
Affiliation(s)
- Visar Vela
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Darius Juskevicius
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland.
| |
Collapse
|
26
|
Gao F, Tian L, Shi H, Zheng P, Wang J, Dong F, Hu K, Ke X. Genetic Landscape of Relapsed and Refractory Diffuse Large B-Cell Lymphoma: A Systemic Review and Association Analysis With Next-Generation Sequencing. Front Genet 2021; 12:677650. [PMID: 34925435 PMCID: PMC8675234 DOI: 10.3389/fgene.2021.677650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
In our research, we screened 1,495 documents, compiled the whole-exome sequencing data of several studies, formed a data set including 92 observations of RRDLBCL (Relapsed and refractory diffuse large B-cell lymphoma), and performed association analysis on the high-frequency mutations among them. The most common mutations in the data set include TTN, KMT2D, TP53, IGLL5, CREBBP, BCL2, MYD88, and SOCS1 etc. Among these, CREBBP, KMT2D, and BCL2 have a strong association with each other, and SOCS1 has a strong association with genes such as STAT6, ACTB, CIITA, ITPKB, and GNA13. TP53 lacks significant associations with most genes. Through SOM clustering, expression-level analysis and protein interaction analysis of common gene mutations, we believe that RRDLBCL can be divided into five main types. We tested the function of the model and described the clinical characteristics of each subtype through a targeted sequencing RRDLBCL cohort of 96 patients. The classification is stated as follows: 1) JAK-STAT-related type: including STAT6, SOCS1, CIITA, etc. The genetic lineage is similar to PMBL and cHL. Retrospective analysis suggests that this subtype responds poorly to induction therapy (R-CHOP, p < 0.05). 2) BCL-CREBBP type: Epigenetic mutations such as KMT2D and CREBBP are more common in this type, and are often accompanied by BCL2 and EZH2 mutations. 3) MCD type: including MYD88 and CD79B, PIM1 is more common in this subtype. 4) TP53 mutation: TP53 mutant patients, which suggests the worst prognosis (p < 0.05) and worst response to CART treatment. 5) Undefined type (Sparse item type): Major Genetic Change Lacking Type, which has a better prognosis and better response to CART treatment. We also reviewed the literature from recent years concerning the previously mentioned common gene mutations.
Collapse
Affiliation(s)
- Fan Gao
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Lei Tian
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Hui Shi
- Department of Adult Lymphoma, Beijing Boren Hospital, Beijing, China
| | - Peihao Zheng
- Department of Adult Lymphoma, Beijing Boren Hospital, Beijing, China
| | - Jing Wang
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Fei Dong
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Kai Hu
- Department of Adult Lymphoma, Beijing Boren Hospital, Beijing, China
| | - Xiaoyan Ke
- Department of Hematology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
27
|
Wilson WH, Wright GW, Huang DW, Hodkinson B, Balasubramanian S, Fan Y, Vermeulen J, Shreeve M, Staudt LM. Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL. Cancer Cell 2021; 39:1643-1653.e3. [PMID: 34739844 PMCID: PMC8722194 DOI: 10.1016/j.ccell.2021.10.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
In diffuse large B cell lymphoma (DLBCL), tumors belonging to the ABC but not GCB gene expression subgroup rely upon chronic active B cell receptor signaling for viability, a dependency that is targetable by ibrutinib. A phase III trial ("Phoenix;" ClinicalTrials.gov: NCT01855750) showed a survival benefit of ibrutinib addition to R-CHOP chemotherapy in younger patients with non-GCB DLBCL, but the molecular basis for this benefit was unclear. Analysis of biopsies from Phoenix trial patients revealed three previously characterized genetic subtypes of DLBCL: MCD, BN2, and N1. The 3-year event-free survival of younger patients (age ≤60 years) treated with ibrutinib plus R-CHOP was 100% in the MCD and N1 subtypes while the survival of patients with these subtypes treated with R-CHOP alone was significantly inferior (42.9% and 50%, respectively). This work provides a mechanistic understanding of the benefit of ibrutinib addition to chemotherapy, supporting its use in younger patients with non-GCB DLBCL.
Collapse
Affiliation(s)
- Wyndham H Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brendan Hodkinson
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA
| | | | - Yue Fan
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA
| | - Jessica Vermeulen
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA
| | - Martin Shreeve
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Center for Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Poynton E, Okosun J. Liquid biopsy in lymphoma: Is it primed for clinical translation? EJHAEM 2021; 2:616-627. [PMID: 35844685 PMCID: PMC9175672 DOI: 10.1002/jha2.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022]
Abstract
The simultaneous growth in our understanding of lymphoma biology and the burgeoning therapeutic options has come with a renewed drive for precision-based approaches and how best to incorporate them into contemporary and future patient care. In the hunt for accurate and sensitive biomarkers, liquid biopsies, particularly circulating tumour DNA, have come to the forefront as a promising tool in multiple cancer types including lymphomas, with considerable implications for clinical practice. Liquid biopsy analyses could supplement existing tissue biopsies with distinct advantages including the minimally invasive nature and the ease with which it can be repeated during a patient's clinical journey. Circulating tumour DNA (ctDNA) analyses has been and continues to be evaluated across lymphoma subtypes with potential applications as a diagnostic, disease monitoring and treatment selection tool. To make the leap into the clinic, these assays must demonstrate accuracy, reliability and a quick turnaround to be employed in the real-time clinical management of lymphoma patients. Here, we review the available ctDNA assays and discuss key practical and technical issues around improving sensitivity. We then focus on their potential roles in several lymphoma subtypes exemplified by recent studies and provide a glimpse of different features that can be analysed beyond ctDNA.
Collapse
Affiliation(s)
- Edward Poynton
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Jessica Okosun
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| |
Collapse
|
29
|
He MY, Kridel R. Treatment resistance in diffuse large B-cell lymphoma. Leukemia 2021; 35:2151-2165. [PMID: 34017074 DOI: 10.1038/s41375-021-01285-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 01/29/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous disease and represents the most common subtype of lymphoma. Although 60-70% of all patients can be cured by the current standard of care in the frontline setting, the majority of the remaining patients will experience treatment resistance and have a poor clinical outcome. Numerous efforts have been made to improve the efficacy of the standard regimen by, for example, dose intensification or adding novel agents. However, these results generally failed to demonstrate significant clinical benefits. Hence, understanding treatment resistance is a pressing need to optimize the outcome of those patients. In this Review, we first describe the conceptual sources of treatment resistance in DLBCL and then provide detailed and up-to-date molecular insight into the mechanisms of resistance to the current treatment options in DLBCL. We lastly highlight the potential strategies for rationally managing treatment resistance from both the preventive and interventional perspectives.
Collapse
Affiliation(s)
- Michael Y He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Robert Kridel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
30
|
Lopez-Santillan M, Lopez-Lopez E, Alvarez-Gonzalez P, Martinez G, Arzuaga-Mendez J, Ruiz-Diaz I, Guerra-Merino I, Gutierrez-Camino A, Martin-Guerrero I. Prognostic and therapeutic value of somatic mutations in diffuse large B-cell lymphoma: A systematic review. Crit Rev Oncol Hematol 2021; 165:103430. [PMID: 34339834 DOI: 10.1016/j.critrevonc.2021.103430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/05/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common type of Non-Hodgkin lymphoma (NHL), is a highly heterogeneous and aggressive disease. Regardless of this heterogeneity, all patients receive the same first-line therapy, which fails in 30-40 % of patients, who are either refractory or relapse after remission. With the aim of stratifying patients to improve treatment outcome, different clinical and genetic biomarkers have been studied. The present systematic review aimed to identify somatic mutations that could serve as prognosis biomarkers or as therapeutic target mutations in DLBCL. Regarding their role as prognostic markers, mutations in CD58 and TP53 seem the most promising predictors of poor outcome although the combination of different alterations and other prognostic factors could be a more powerful strategy. On the other hand, different approaches regarding targeted therapy have been proposed. Therefore, mutational analysis could help guide treatment choice in DLBCL yet further studies and clinical trials are needed.
Collapse
Affiliation(s)
- Maria Lopez-Santillan
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain; Medical Oncology Service, Basurto University Hospital, Avenida De Montevideo, 18, 48013, Bilbao, Spain
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain; Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, 48903, Barakaldo, Spain
| | - Paula Alvarez-Gonzalez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain
| | - Garazi Martinez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain
| | - Javier Arzuaga-Mendez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain; Hematologic Neoplasm Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, Barakaldo, Spain
| | - Irune Ruiz-Diaz
- Pathology Department, Donostia University Hospital, Paseo Doctor Begiristain, 109, 20014, San Sebastián, Spain
| | - Isabel Guerra-Merino
- Pathology Department, Araba University Hospital, Calle Jose Atxotegi s/n, 01009, Vitoria-Gasteiz, Spain
| | - Angela Gutierrez-Camino
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain; Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, 48903, Barakaldo, Spain; Division of Hematology-Oncology, CHU Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, H3T 1C5, Montreal, Canada
| | - Idoia Martin-Guerrero
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, 48903, Barakaldo, Spain; Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain.
| |
Collapse
|
31
|
Wang J, Shang Z, Wang J, Xu J, Li W, Guan Y, Yang L, Zhang W, Shen K, Zhang M, Wang J, Chen L, Li Q, He C, Wang N, Huang L, Xiao Y, Xiao M, Zhou J. MYC/BCL2/BCL6 triple hit and TP53 deletion in a case of high-grade B cell lymphoma receiving CAR T cell immunotherapy. J Immunother Cancer 2021; 9:e002029. [PMID: 34078654 PMCID: PMC8173290 DOI: 10.1136/jitc-2020-002029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Jiachen Wang
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen Shang
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jue Wang
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinhuan Xu
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weigang Li
- Department of Orthopedics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuqi Guan
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Yang
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Zhang
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kefeng Shen
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meilan Zhang
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Wang
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liting Chen
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinlu Li
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cheng He
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Wang
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Xiao
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
32
|
Abstract
Diffuse large B-cell lymphomas (DLBCL)s, the most common type of Non-Hodgkin’s Lymphoma, constitute a heterogeneous group of disorders including different disease sites, strikingly diverse molecular features and a profound variability in the clinical behavior. Molecular studies and clinical trials have partially revealed the underlying causes for this variability and have made possible the recognition of some molecular variants susceptible of specific therapeutic approaches. The main histogenetic groups include the germinal center, activated B cells, thymic B cells and terminally differentiated B cells, a basic scheme where the large majority of DLBCL cases can be ascribed. The nodal/extranodal origin, specific mutational changes and microenvironment peculiarities provide additional layers of complexity. Here, we summarize the status of the knowledge and make some specific proposals for addressing the future development of targeted therapy for DLBC cases.
Collapse
|
33
|
Isaev K, Ennishi D, Hilton L, Skinnider B, Mungall KL, Mungall AJ, Bakhtiari M, Tremblay-LeMay R, Silva A, Ben-Neriah S, Boyle M, Villa D, Marra MA, Steidl C, Gascoyne RD, Morin R, Savage KJ, Scott DW, Kridel R. Molecular attributes underlying central nervous system and systemic relapse in diffuse large B-cell lymphoma. Haematologica 2021; 106:1466-1471. [PMID: 32817292 PMCID: PMC8094129 DOI: 10.3324/haematol.2020.255950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 01/20/2023] Open
Affiliation(s)
- Keren Isaev
- Princess Margaret Cancer Centre - University Health Network, Toronto, ON, Canada
| | - Daisuke Ennishi
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | | | - Brian Skinnider
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - Karen L Mungall
- Canada Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Mehran Bakhtiari
- Princess Margaret Cancer Centre - University Health Network, Toronto, ON, Canada
| | | | - Anjali Silva
- Princess Margaret Cancer Centre - University Health Network, Toronto, ON, Canada
| | | | | | - Diego Villa
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Canada Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | | | | | - Ryan Morin
- Simon Fraser University, Burnaby, BC, Canada
| | - Kerry J Savage
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - Robert Kridel
- Princess Margaret Cancer Centre - University Health Network, Toronto, ON, Canada
| |
Collapse
|
34
|
Genetic Events Inhibiting Apoptosis in Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13092167. [PMID: 33946435 PMCID: PMC8125500 DOI: 10.3390/cancers13092167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL). Despite the genetic heterogeneity of the disease, most patients are initially treated with a combination of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), but relapse occurs in ~50% of patients. One of the hallmarks of DLBCL is the occurrence of genetic events that inhibit apoptosis, which contributes to disease development and resistance to therapy. These events can affect the intrinsic or extrinsic apoptotic pathways, or their modulators. Understanding the factors that contribute to inhibition of apoptosis in DLBCL is crucial in order to be able to develop targeted therapies and improve outcomes, particularly in relapsed and refractory DLBCL (rrDLBCL). This review provides a description of the genetic events inhibiting apoptosis in DLBCL, their contribution to lymphomagenesis and chemoresistance, and their implication for the future of DLBCL therapy. Abstract Diffuse large B cell lymphoma (DLBCL) is curable with chemoimmunotherapy in ~65% of patients. One of the hallmarks of the pathogenesis and resistance to therapy in DLBCL is inhibition of apoptosis, which allows malignant cells to survive and acquire further alterations. Inhibition of apoptosis can be the result of genetic events inhibiting the intrinsic or extrinsic apoptotic pathways, as well as their modulators, such as the inhibitor of apoptosis proteins, P53, and components of the NF-kB pathway. Mechanisms of dysregulation include upregulation of anti-apoptotic proteins and downregulation of pro-apoptotic proteins via point mutations, amplifications, deletions, translocations, and influences of other proteins. Understanding the factors contributing to resistance to apoptosis in DLBCL is crucial in order to be able to develop targeted therapies that could improve outcomes by restoring apoptosis in malignant cells. This review describes the genetic events inhibiting apoptosis in DLBCL, provides a perspective of their interactions in lymphomagenesis, and discusses their implication for the future of DLBCL therapy.
Collapse
|
35
|
Quesada AE, Zhang Y, Ptashkin R, Ho C, Horwitz S, Benayed R, Dogan A, Arcila ME. Next generation sequencing of breast implant-associated anaplastic large cell lymphomas reveals a novel STAT3-JAK2 fusion among other activating genetic alterations within the JAK-STAT pathway. Breast J 2021; 27:314-321. [PMID: 33660353 DOI: 10.1111/tbj.14205] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/29/2022]
Abstract
Breast implant associated anaplastic large cell lymphoma (BIA-ALCL) is a distinct type of ALCL, and a new provisional entity by the 2016 revision of the World Health Organization (WHO) classification of tumors of hematopoietic and lymphoid tissues. In contrast to systemic and primary cutaneous ALCLs, BIA-ALCLs have been genetically characterized by the absence of fusions and frequent activation of the JAK-STAT3 pathway through mutations in JAK1 and STAT3. In this study, we report the results of the genetic profiling of 9 BIA-ALCL cases supporting the role of the JAK-STAT pathway activation in this entity, including the identification of an activating STAT3-JAK2 fusion similar to those recently reported in T-cell lymphoproliferative disorders of the gastrointestinal tract. To our knowledge, this is the first fusion reported in BIA-ALCL, providing further insight into the overall genetic landscape of this rare entity as well as uncovering potential options for targeted therapy in cases with advanced disease.
Collapse
Affiliation(s)
- Andrés E Quesada
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan Ptashkin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caleb Ho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steven Horwitz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
36
|
Genomic Landscape of Hodgkin Lymphoma. Cancers (Basel) 2021; 13:cancers13040682. [PMID: 33567641 PMCID: PMC7915917 DOI: 10.3390/cancers13040682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Hodgkin lymphoma (HL) is composed of many reactive and only a few cancer cells, so-called Hodgkin and Reed-Sternberg (HRS) or lymphocyte predominant (LP) cells. Due to the scarcity of these cells, it was difficult to perform high-throughput molecular investigations on them for a long time. With the help of recently developed methods, it is now possible to analyze their genomes. This review summarizes the genetic alterations found in HRS and LP cells that impact immune evasion, proliferation and circumvention of programmed cell death in HL. Understanding these underlying molecular mechanisms is essential, as they may be of prognostic and predictive value and help to improve the therapy especially for patients with recurrent or treatment-resistant disease. Abstract Background: Hodgkin lymphoma (HL) is predominantly composed of reactive, non-neoplastic cells surrounding scarcely distributed tumor cells, that is, so-called Hodgkin and Reed-Sternberg (HRS) or lymphocyte predominant (LP) cells. This scarcity impeded the analysis of the tumor cell genomes for a long time, but recently developed methods (especially laser capture microdissection, flow cytometry/fluorescence-activated cell sorting) facilitated molecular investigation, elucidating the pathophysiological principles of “Hodgkin lymphomagenesis”. Methods: We reviewed the relevant literature of the last three decades focusing on the genomic landscape of classic and nodular lymphocyte predominant HL (NLPHL) and summarized molecular cornerstones. Results: Firstly, the malignant cells of HL evade the immune system by altered expression of PDL1/2, B2M and MHC class I and II due to various genetic alterations. Secondly, tumor growth is promoted by permanently activated JAK/STAT signaling due to pervasive mutations of multiple genes involved in the pathway. Thirdly, apoptosis of neoplastic cells is prevented by alterations of NF-κB compounds and the PI3K/AKT/mTOR axis. Additionally, Epstein-Barr virus infection can simultaneously activate JAK/STAT and NF-κB, similarly leading to enhanced survival and evasion of apoptosis. Finally, epigenetic phenomena such as promoter hypermethylation lead to the downregulation of B-lineage-specific, tumor-suppressor and immune regulation genes. Conclusion: The blueprint of HL genomics has been laid, paving the way for future investigations into its complex pathophysiology.
Collapse
|
37
|
Suzuki T, Fukuhara S, Nomoto J, Yamashita S, Maeshima AM, Ito Y, Hatta S, Yuda S, Makita S, Munakata W, Suzuki T, Maruyama D, Taniguchi H, Ushijima T, Izutsu K, Tobinai K, Kobayashi Y. Clinicopathological and genetic features of limited-stage diffuse large B-cell lymphoma with late relapse: targeted sequencing analysis of gene alterations in the initial and late relapsed tumors. Haematologica 2021; 106:593-596. [PMID: 32336683 PMCID: PMC7849574 DOI: 10.3324/haematol.2019.235598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/24/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Tomotaka Suzuki
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Suguru Fukuhara
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Junko Nomoto
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Satoshi Yamashita
- Department of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akiko M Maeshima
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuta Ito
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Shunsuke Hatta
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Sayako Yuda
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Shinichi Makita
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Wataru Munakata
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuya Suzuki
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Dai Maruyama
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | | | - Toshikazu Ushijima
- Department of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Izutsu
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Kensei Tobinai
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Yukio Kobayashi
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
38
|
Menter T, Dirnhofer S, Tzankov A. [Routine high-throughput targeted sequencing of lymphoproliferative diseases : Clinical utility and challenges]. DER PATHOLOGE 2020; 41:143-148. [PMID: 33270163 DOI: 10.1007/s00292-020-00863-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In contrast to other tumour entities such as lung carcinoma, melanoma or gynaecological and gastrointestinal tumours, the routine application of mutation analyses using high-throughput sequencing via next-generation sequencing (NGS) has not yet been widely established in haematopathology, especially not in lymphomas.Here we describe our experience with the use and routine implementation of a lymphoma NGS panel primarily developed for research purposes.In addition to a discussion of the steps necessary for transferring such a panel into the routine framework of an accredited institute, we show by the comprehensive workup of 80 investigations and the presentation of several case studies how the panel was able to guide us to the correct diagnosis and how it also provided clinicians with indications for possible tailored therapy options.Even if NGS does not (yet) have to be routinely applied in lymphoma diagnostics for every case, a respectively dedicated NGS panel offers the advantage of having an additional option in the case of difficult differential diagnostic considerations or uncertainties as well as at the request of the treating oncologist to identify potential targets for tailored treatment of the patients.
Collapse
Affiliation(s)
- T Menter
- Pathologie, Institut für Medizinische Genetik und Pathologie, Universitätsspital Basel, Universität Basel, Schönbeinstrasse 40, 4031, Basel, Schweiz.
| | - S Dirnhofer
- Pathologie, Institut für Medizinische Genetik und Pathologie, Universitätsspital Basel, Universität Basel, Schönbeinstrasse 40, 4031, Basel, Schweiz
| | - A Tzankov
- Pathologie, Institut für Medizinische Genetik und Pathologie, Universitätsspital Basel, Universität Basel, Schönbeinstrasse 40, 4031, Basel, Schweiz
| |
Collapse
|
39
|
Berendsen MR, Stevens WBC, van den Brand M, van Krieken JH, Scheijen B. Molecular Genetics of Relapsed Diffuse Large B-Cell Lymphoma: Insight into Mechanisms of Therapy Resistance. Cancers (Basel) 2020; 12:E3553. [PMID: 33260693 PMCID: PMC7760867 DOI: 10.3390/cancers12123553] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
The majority of patients with diffuse large B-cell lymphoma (DLBCL) can be treated successfully with a combination of chemotherapy and the monoclonal anti-CD20 antibody rituximab. Nonetheless, approximately one-third of the patients with DLBCL still experience relapse or refractory (R/R) disease after first-line immunochemotherapy. Whole-exome sequencing on large cohorts of primary DLBCL has revealed the mutational landscape of DLBCL, which has provided a framework to define novel prognostic subtypes in DLBCL. Several studies have investigated the genetic alterations specifically associated with R/R DLBCL, thereby uncovering molecular pathways linked to therapy resistance. Here, we summarize the current state of knowledge regarding the genetic alterations that are enriched in R/R DLBCL, and the corresponding pathways affected by these gene mutations. Furthermore, we elaborate on their potential role in mediating therapy resistance, also in connection with findings in other B-cell malignancies, and discuss alternative treatment options. Hence, this review provides a comprehensive overview on the gene lesions and molecular mechanisms underlying R/R DLBCL, which are considered valuable parameters to guide treatment.
Collapse
Affiliation(s)
- Madeleine R. Berendsen
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Wendy B. C. Stevens
- Department of Hematology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands;
| | - Michiel van den Brand
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Pathology-DNA, Rijnstate Hospital, 6815AD Arnhem, The Netherlands
| | - J. Han van Krieken
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
| | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
40
|
Sun R, Zheng Z, Wang L, Cheng S, Shi Q, Qu B, Fu D, Leboeuf C, Zhao Y, Ye J, Janin A, Zhao WL. A novel prognostic model based on four circulating miRNA in diffuse large B-cell lymphoma: implications for the roles of MDSC and Th17 cells in lymphoma progression. Mol Oncol 2020; 15:246-261. [PMID: 33107145 PMCID: PMC7782091 DOI: 10.1002/1878-0261.12834] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/14/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA) have been emerged as prognostic biomarkers in diffuse large B-cell lymphoma (DLBCL). To understand the potential underlying mechanisms and translate these findings into clinical prediction on lymphoma progression, large patient cohorts should be evaluated. Here, using miRNA PCR array, we analyzed the miRNA expression profiles in serum samples of 20 DLBCL patients at diagnosis, remission and relapse. Four candidate miRNA were identified and subsequently evaluated for their ability to predict relapse and survival. A prognostic model based on four circulating miRNA (miR21, miR130b, miR155 and miR28) was established and tested in a training cohort of 279 patients and in a validation cohort of 225 patients (NCT01852435). The prognostic value of the 4-circulating miRNA model was assessed by univariate and multivariate analyses. The novel 4-circulating miRNA prognostic model significantly predicted clinical outcome of DLBCL, independent of International Prognostic Index in the training cohort [hazard ratio (HR) = 2.83, 95% CI 2.14-3.51, P < 0.001] and in the validation cohort (HR = 2.71, 95% CI 1.91-3.50, P < 0.001). Moreover, DNA- and RNA-sequencing was performed on tumor samples to detect genetic mutations and signaling pathway dysregulation. DNA-sequencing data showed no significant difference of tumor mutation burden between the low-risk and the high-risk groups of the 4-circulating miRNA model. RNA-sequencing revealed a correlation between the 4-circulating miRNA model and aberrant Ras protein signaling transduction. The impact of the miRNA signature on oncogenic signaling and tumor microenvironment was analyzed in vitro and in vivo. In B-lymphoma cells, modulation of the miRNA regulated IGF1 and JUN expression, thereby altering MDSC and Th17 cells. In DLBCL patients, the high-risk group presented Ras signaling activation, increased MDSC and Th17 cells, and immunosuppressive status compared with the low-risk group. In conclusion, the easy-to-use 4-circulating miRNA prognostic model effectively predicted relapse and survival in DLBCL. Moreover, the tumor microenvironment contributes to the role of the 4-circulating miRNA model in DLBCL progression.
Collapse
Affiliation(s)
- Rui Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Zhong Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China.,Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Qing Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Bin Qu
- Department of Laboratory Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | | | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Jing Ye
- Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, China
| | - Anne Janin
- U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Paris, France
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China.,Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, China
| |
Collapse
|
41
|
Zhang MC, Fang Y, Wang L, Cheng S, Fu D, He Y, Zhao Y, Wang CF, Jiang XF, Song Q, Xu PP, Zhao WL. Clinical efficacy and molecular biomarkers in a phase II study of tucidinostat plus R-CHOP in elderly patients with newly diagnosed diffuse large B-cell lymphoma. Clin Epigenetics 2020; 12:160. [PMID: 33097085 PMCID: PMC7585299 DOI: 10.1186/s13148-020-00948-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Elderly patients with diffuse large B-cell lymphoma (DLBCL) present with poor clinical outcome and intolerance to intensive chemotherapy. Histone deacetylase inhibitors (HDACIs) show anti-lymphoma activities and can be applied to treat DLBCL. This study aimed to evaluate efficacy and safety of oral HDACI tucidinostat (formerly known as chidamide) plus R-CHOP (CR-CHOP) in elderly patients with newly diagnosed DLBCL (International Prognostic Index ≥ 2). RESULTS Among 49 patients, the complete response rate was 86%, with overall response rate achieving 94%. The 2-year progression survival (PFS) and overall survival (OS) rates were 68% (95% CI 52-79) and 83% (95% CI 68-91). Comparing with historical control (NCT01852435), the 2-year PFS and OS rates of double-expressor lymphoma phenotype (DEL) were improved, and negative prognostic effect of histone acetyltransferases CREBBP/EP300 mutations was also mitigated by CR-CHOP. Grade 3-4 neutropenia was reported in 171, grade 3-4 thrombocytopenia in 27, and grade 3 anemia in 11 of 283 cycles. No grade 4 non-hematological adverse event was reported. CONCLUSION CR-CHOP is effective and safe in elderly patients with newly diagnosed DLBCL. Relevance of DEL phenotype and molecular biomarkers on CR-CHOP response warrants further investigation in DLBCL. Trial registration ClinicalTrial.gov, NCT02753647. Registered on April 28, 2016.
Collapse
Affiliation(s)
- Mu-Chen Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pôle de Recherches Sino-Français en Science du Vivant Et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang He
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao-Fu Wang
- Department of Pathology, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu-Feng Jiang
- Department of Nuclear Medicine, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Song
- Department of Radiology, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant Et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
42
|
Prognostic implications of 5-hydroxymethylcytosines from circulating cell-free DNA in diffuse large B-cell lymphoma. Blood Adv 2020; 3:2790-2799. [PMID: 31570490 DOI: 10.1182/bloodadvances.2019000175] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/18/2019] [Indexed: 12/17/2022] Open
Abstract
An elevated level of circulating cell-free DNA (cfDNA) has been associated with tumor bulk and poor prognosis in diffuse large B-cell lymphoma (DLBCL), but the tumor-specific molecular alterations in cfDNA with prognostic significance remain unclear. We investigated the association between 5-hydroxymethylcytosines (5hmC), a mark of active demethylation and gene activation, in cfDNA from blood plasma and prognosis in newly diagnosed DLBCL patients. We used 5hmC-Seal, a highly sensitive chemical labeling technique, to profile genome-wide 5hmC in plasma cfDNA from 48 DLBCL patients at the University of Chicago Medical Center between 2010 and 2013. Patients were followed through 31 December 2017. We found a distinct genomic distribution of 5hmC in cfDNA marking tissue-specific enhancers, consistent with their putative roles in gene regulation. The 5hmC profiles in cfDNA differed by cell of origin and were associated with clinical prognostic factors, including stage and the International Prognostic Index. We developed a 29 gene-based weighted prognostic score (wp-score) for predicting event-free survival (EFS) and overall survival (OS) by applying the elastic net regularization on the Cox proportional-hazards model. The wp-scores outperformed (eg, prognostic accuracy, sensitivity, specificity) established prognostic factors in predicting EFS and OS. In multivariate Cox models, patients with high wp-scores had worse EFS (hazard ratio, 9.17; 95% confidence interval, 2.01-41.89; P = .004) compared with those in the low-risk group. Our findings suggest that the 5hmC signatures in cfDNA at the time of diagnosis are associated with clinical outcomes and may provide a novel minimally invasive prognostic approach for DLBCL.
Collapse
|
43
|
Vogelsberg A, Steinhilber J, Mankel B, Federmann B, Schmidt J, Montes-Mojarro IA, Hüttl K, Rodriguez-Pinilla M, Baskaran P, Nahnsen S, Piris MA, Ott G, Quintanilla-Martinez L, Bonzheim I, Fend F. Genetic evolution of in situ follicular neoplasia to aggressive B-cell lymphoma of germinal center subtype. Haematologica 2020; 106:2673-2681. [PMID: 32855278 PMCID: PMC8485666 DOI: 10.3324/haematol.2020.254854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 11/09/2022] Open
Abstract
In situ follicular neoplasia (ISFN) is the earliest morphologically identifiable precursor of follicular lymphoma (FL). Although it is genetically less complex than FL and has low risk for progression, ISFN already harbors secondary genetic alterations, in addition to the defining t(14;18)(q32;q21) translocation. FL, in turn, frequently progresses to diffuse large B-cell lymphoma (DLBCL) or high-grade B-cell lymphoma (HGBL). By BCL2 staining of available reactive lymphoid tissue obtained at any time point in patients with aggressive B-cell lymphoma (BCL), we identified ten paired cases of ISFN and DLBCL/HGBL, including six de novo tumors and four tumors transformed from FL as an intermediate step, and investigated their clonal evolution using microdissection and next-generation sequencing. A clonal relationship between ISFN and aggressive BCL was established by immunoglobulin and/or BCL2 rearrangements and/or the demonstration of shared somatic mutations for all ten cases. Targeted sequencing revealed CREBBP, KMT2D, EZH2, TNFRSF14 and BCL2 as the genes most frequently mutated already in ISFN. Based on the distribution of private and shared mutations, two patterns of clonal evolution were evident. In most cases, the aggressive lymphoma, ISFN and, when present, FL revealed divergent evolution from a common progenitor, whereas linear evolution with sequential accumulation of mutations was less frequent. In conclusion, we demonstrate for the first time that t(14;18)+ aggressive BCL can arise from ISFN without clinically evident FL as an intermediate step and that during this progression, branched evolution is common.
Collapse
Affiliation(s)
- Antonio Vogelsberg
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Tuebingen, Germany
| | - Julia Steinhilber
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Tuebingen, Germany
| | - Barbara Mankel
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Tuebingen, Germany
| | - Birgit Federmann
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Tuebingen, Germany
| | - Janine Schmidt
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Tuebingen, Germany
| | - Ivonne A Montes-Mojarro
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Tuebingen, Germany
| | - Katrin Hüttl
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | | | - Praveen Baskaran
- Quantitative Biology Center, University of Tuebingen, Tuebingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center, University of Tuebingen, Tuebingen, Germany
| | - Miguel A Piris
- Department of Pathology, Fundación Jiménez Díaz, Madrid, Spain
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Tuebingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Tuebingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Tuebingen, Germany;
| |
Collapse
|
44
|
Pillonel V, Juskevicius D, Bihl M, Stenner F, Halter JP, Dirnhofer S, Tzankov A. Routine next generation sequencing of lymphoid malignancies: clinical utility and challenges from a 3-Year practical experience. Leuk Lymphoma 2020; 61:2568-2583. [PMID: 32623938 DOI: 10.1080/10428194.2020.1786560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since 2016, a next-generation sequencing (NGS) panel targeting 68 genes frequently mutated in lymphoid malignancies is an accredited part of routine diagnostics at the Institute of Pathology in Basel, Switzerland. Here, we retrospectively evaluate the feasibility and utility of integrating this NGS platform into routine practice on 80 diagnostic cases of lymphoid proliferations. NGS analysis was useful in most instances, yielding a diagnostically, predictively and/or prognostically meaningful result. In 35 out of the 50 cases, in which conventional histopathological evaluation remained indecisive, molecular subtyping with the NGS panel was helpful to either confirm or support the favored diagnosis, enable a differential diagnosis, or seriously question a suspected diagnosis. A total of 61 actionable or potentially actionable mutations in 34 out of 80 cases that might have enabled patient selection for targeted therapies was detected. NGS panel analysis had implications for prognosis in all 15 cases interrogated for risk assessment.
Collapse
Affiliation(s)
- Vincent Pillonel
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland.,Department of Medical Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Darius Juskevicius
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Michel Bihl
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Frank Stenner
- Department of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Jörg P Halter
- Department of Medicine, Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Stefan Dirnhofer
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
45
|
Prieto-Torres L, Trascasa Á, Manso R, Machan S, Cieza-Diaz D, Olmedilla G, García-García M, Ara-Martín M, Requena L, Piris MÁ, Rodríguez-Pinilla SM. Two independent consecutive lymphoma cases carry an identical MYD88 mutation but differ in their IGVH rearrangement. Br J Haematol 2020; 190:e352-e356. [PMID: 32578872 DOI: 10.1111/bjh.16917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Álvaro Trascasa
- Department of Pathology, Fundación Jimenez Diaz, Madrid, Spain
| | - Rebeca Manso
- Department of Pathology, Fundación Jimenez Diaz, Madrid, Spain
| | - Salma Machan
- Department of Dermatology, Fundación Jimenez Diaz, Madrid, Spain
| | - Deisy Cieza-Diaz
- Department of Dermatology, Fundación Jimenez Diaz, Madrid, Spain
| | - Gabriel Olmedilla
- Department of Pathology Hospital, Universitario La Paz, Madrid, Spain
| | - Mar García-García
- Department of Pathology, Hospital Clínico Lozano Blesa, Zaragoza, Spain
| | - Mariano Ara-Martín
- Department of Dermatology, Hospital Clínico Lozano Blesa, Zaragoza, Spain
| | - Luis Requena
- Department of Dermatology, Fundación Jimenez Diaz, Madrid, Spain
| | - Miguel Á Piris
- Department of Pathology, Fundación Jimenez Diaz, Madrid, Spain
| | | |
Collapse
|
46
|
Araf S, Korfi K, Bewicke-Copley F, Wang J, Cogliatti S, Kumar E, Forrer F, Barrington SF, Graham TA, Scott DW, Rimsza LM, Davies A, Johnson P, Okosun J, Fitzgibbon J, Fehr M. Genetic heterogeneity highlighted by differential FDG-PET response in diffuse large B-cell lymphoma. Haematologica 2020; 105:318-321. [PMID: 32273479 PMCID: PMC7271579 DOI: 10.3324/haematol.2019.242206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shamzah Araf
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Koorosh Korfi
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Findlay Bewicke-Copley
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Sergio Cogliatti
- Institute of Pathology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Emil Kumar
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Flavio Forrer
- Department of Nuclear Medicine, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Sally F Barrington
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, UK
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Andrew Davies
- Cancer Research UK Centre, University of Southampton, Southampton, UK
| | - Peter Johnson
- Cancer Research UK Centre, University of Southampton, Southampton, UK
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jude Fitzgibbon
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Martin Fehr
- Clinic for Medical Oncology and Haematology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| |
Collapse
|
47
|
Cai MC, Cheng S, Wang X, Hu JD, Song YP, Huang YH, Yan ZX, Jiang YJ, Fang XS, Zheng XY, Dong LH, Ji MM, Wang L, Xu PP, Zhao WL. CEOP/IVE/GDP alternating regimen compared with CEOP as the first-line therapy for newly diagnosed patients with peripheral T cell lymphoma: results from a phase 2, multicenter, randomized, controlled clinical trial. Genome Med 2020; 12:41. [PMID: 32349779 PMCID: PMC7191773 DOI: 10.1186/s13073-020-00739-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/10/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cyclophosphamide, doxorubicin, vincristine, and prednisolone (CHOP)/CHOP-like chemotherapy is widely used in peripheral T cell lymphoma (PTCL). Here we conducted a phase 2, multicenter, randomized, controlled trial, comparing the efficacy and safety of CEOP/IVE/GDP alternating regimen with CEOP in newly diagnosed PTCL. METHODS PTCL patients, except for anaplastic large cell lymphoma-anaplastic lymphoma kinase positive, were 1:1 randomly assigned to receive CEOP/IVE/GDP (CEOP, cyclophosphamide 750 mg/m2, epirubicin 70 mg/m2, vincristine 1.4 mg/m2 [maximum 2 mg] on day 1, and prednisone 60 mg/m2 [maximum 100 mg] on days 1-5 every 21 days, at the first and fourth cycle; IVE, ifosfamide 2000 mg/m2 on days 1-3, epirubicin 70 mg/m2 on day 1, and etoposide 100 mg/m2 on days 1-3 every 21 days, at the second and fifth cycle; and GDP, gemcitabine 1000 mg/m2 on days 1 and 8, cisplatin 25 mg/m2 on days 1-3, and dexamethasone 40 mg on days 1-4 every 21 days, at the third and sixth cycle) and CEOP (every 21 days for 6 cycles). Analysis of efficacy and safety was of the intent-to-treatment population. The primary endpoint was a complete response rate at the end of treatment. Meanwhile, whole exome sequencing and targeted sequencing were performed in 62 patients with available tumor samples to explore prognostic biomarkers in this cohort as an exploratory post hoc analysis. RESULTS Among 106 patients, 53 each were enrolled to CEOP/IVE/GDP and CEOP. With 51 evaluable patients each in two groups, a complete response rate of the CEOP/IVE/GDP group was similar to that of the CEOP group (37.3% vs. 31.4%, p = 0.532). There was no difference in median progression-free survival (PFS; 15.4 months vs. 9.2 months, p = 0.122) or overall survival (OS; 24.3 months vs. 21.9 months, p = 0.178). Grade 3-4 hematological and non-hematological adverse events were comparable. Histone modification genes were most frequently mutated (25/62, 40.3%), namely KMT2D, KMT2A, SETD2, EP300, and CREBBP. Multivariate analysis indicated that CREBBP and IDH2 mutations were independent factors predicting poor PFS and OS (all p < 0.001), while KMT2D predicting poor PFS (p = 0.002). CONCLUSIONS CEOP/IVE/GDP alternating regimen showed no remission or survival advantage to standard chemotherapy. Future clinical trials should aim to develop alternative regimen targeting disease biology as demonstrated by recurrent mutations in epigenetic factors. TRIAL REGISTRATION The study was registered on ClinicalTrial.gov (NCT02533700) on August 27, 2015.
Collapse
Affiliation(s)
- Ming-Ci Cai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Shu Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jian-Da Hu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yong-Ping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao-Hui Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Zi-Xun Yan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Yu-Jie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiao-Sheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiao-Yun Zheng
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Li-Hua Dong
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng-Meng Ji
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Peng-Peng Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
48
|
Faulkner J, Jiang P, Farris D, Walker R, Dai Z. CRISPR/CAS9-mediated knockout of Abi1 inhibits p185 Bcr-Abl-induced leukemogenesis and signal transduction to ERK and PI3K/Akt pathways. J Hematol Oncol 2020; 13:34. [PMID: 32276588 PMCID: PMC7147029 DOI: 10.1186/s13045-020-00867-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Abl interactor 1 (Abi1) is a downstream target of Abl tyrosine kinases and a component of the WAVE regulatory complex (WRC) that plays an important role in regulating actin cytoskeleton remodeling and membrane receptor signaling. While studies using short hairpin RNA (shRNA) have suggested that Abi1 plays a critical role in Bcr-Abl-induced leukemogenesis, the mechanism involved is not clear. Methods In this study, we knocked out Abi1 expression in p185Bcr-Abl-transformed hematopoietic cells using CRISPR/Cas9-mediated gene editing technology. The effects of Abi1 deficiency on actin cytoskeleton remodeling, the Bcr-Abl signaling, IL-3 independent growth, and SDF-induced chemotaxis in these cells were examined by various in vitro assays. The leukemogenic activity of these cells was evaluated by a syngeneic mouse transplantation model. Results We show here that Abi1 deficiency reduced the IL3-independent growth and SDF-1α-mediated chemotaxis in p185Bcr-Abl-transformed hematopoietic cells and inhibited Bcr-Abl-induced abnormal actin remodeling. Depletion of Abi1 also impaired the Bcr-Abl signaling to the ERK and PI3 kinase/Akt pathways. Remarkably, the p185Bcr-Abl-transformed cells with Abi1 deficiency lost their ability to develop leukemia in syngeneic mice. Even though these cells developed drug tolerance in vitro after prolonged selection with imatinib as their parental cells, the imatinib-tolerant cells remain incapable of leukemogenesis in vivo. Conclusions Together, this study highlights an essential role of Abi1 in Bcr-Abl-induced leukemogenesis and provides a model system for dissecting the Abi1 signaling in Bcr-Abl-positive leukemia.
Collapse
Affiliation(s)
- James Faulkner
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA
| | - Peixin Jiang
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA
| | - Delaney Farris
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA
| | - Ryan Walker
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA
| | - Zonghan Dai
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA.
| |
Collapse
|
49
|
Drug Resistance in Non-Hodgkin Lymphomas. Int J Mol Sci 2020; 21:ijms21062081. [PMID: 32197371 PMCID: PMC7139754 DOI: 10.3390/ijms21062081] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/15/2022] Open
Abstract
Non-Hodgkin lymphomas (NHL) are lymphoid tumors that arise by a complex process of malignant transformation of mature lymphocytes during various stages of differentiation. The WHO classification of NHL recognizes more than 90 nosological units with peculiar pathophysiology and prognosis. Since the end of the 20th century, our increasing knowledge of the molecular biology of lymphoma subtypes led to the identification of novel druggable targets and subsequent testing and clinical approval of novel anti-lymphoma agents, which translated into significant improvement of patients’ outcome. Despite immense progress, our effort to control or even eradicate malignant lymphoma clones has been frequently hampered by the development of drug resistance with ensuing unmet medical need to cope with relapsed or treatment-refractory disease. A better understanding of the molecular mechanisms that underlie inherent or acquired drug resistance might lead to the design of more effective front-line treatment algorithms based on reliable predictive markers or personalized salvage therapy, tailored to overcome resistant clones, by targeting weak spots of lymphoma cells resistant to previous line(s) of therapy. This review focuses on the history and recent advances in our understanding of molecular mechanisms of resistance to genotoxic and targeted agents used in clinical practice for the therapy of NHL.
Collapse
|
50
|
Vincenten JPL, van Essen HF, Lissenberg-Witte BI, Bulkmans NWJ, Krijgsman O, Sie D, Eijk PP, Smit EF, Ylstra B, Thunnissen E. Clonality analysis of pulmonary tumors by genome-wide copy number profiling. PLoS One 2019; 14:e0223827. [PMID: 31618260 PMCID: PMC6795528 DOI: 10.1371/journal.pone.0223827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/30/2019] [Indexed: 01/15/2023] Open
Abstract
Multiple tumors in patients are frequently diagnosed, either synchronous or metachronous. The distinction between a second primary and a metastasis is important for treatment. Chromosomal DNA copy number aberrations (CNA) patterns are highly unique to specific tumors. The aim of this study was to assess genome-wide CNA-patterns as method to identify clonally related tumors in a prospective cohort of patients with synchronous or metachronous tumors, with at least one intrapulmonary tumor. In total, 139 tumor pairs from 90 patients were examined: 35 synchronous and 104 metachronous pairs. Results of CNA were compared to histological type, clinicopathological methods (Martini-Melamed-classification (MM) and ACCP-2013-criteria), and, if available, EGFR- and KRAS-mutation analysis. CNA-results were clonal in 74 pairs (53%), non-clonal in 33 pairs (24%), and inconclusive in 32 pairs (23%). Histological similarity was found in 130 pairs (94%). Concordance between histology and conclusive CNA-results was 69% (74 of 107 pairs: 72 clonal and two non-clonal). In 31 of 103 pairs with similar histology, genetics revealed non-clonality. In two out of four pairs with non-matching histology, genetics revealed clonality. The subgroups of synchronous and metachronous pairs showed similar outcome for the comparison of histological versus CNA-results. MM-classification and ACCP-2013-criteria, applicable on 34 pairs, and CNA-results were concordant in 50% and 62% respectively. Concordance between mutation matching and conclusive CNA-results was 89% (8 of 9 pairs: six clonal and two non-clonal). Interestingly, in one patient both tumors had the same KRAS mutation, but the CNA result was non-clonal. In conclusion, although some concordance between histological comparison and CNA profiling is present, arguments exist to prefer extensive molecular testing to determine whether a second tumor is a metastasis or a second primary.
Collapse
Affiliation(s)
- Julien P. L. Vincenten
- Amsterdam UMC, location VUmc, Department of Pulmonary Diseases, Amsterdam, The Netherlands
- Albert Schweitzer Hospital, Department of Pulmonary Diseases, Dordrecht, The Netherlands
| | - Hendrik F. van Essen
- Amsterdam UMC, location VUmc, Tumor Genome Analysis Core, Cancer Center Amsterdam, The Netherlands
| | | | | | - Oscar Krijgsman
- Netherlands Cancer Institute - Antoni van Leeuwenhoek, Department of Molecular Oncology & Immunology, Amsterdam, The Netherlands
| | - Daoud Sie
- Amsterdam UMC, location VUmc, Tumor Genome Analysis Core, Cancer Center Amsterdam, The Netherlands
| | - Paul P. Eijk
- Amsterdam UMC, location VUmc, Tumor Genome Analysis Core, Cancer Center Amsterdam, The Netherlands
| | - Egbert F. Smit
- Amsterdam UMC, location VUmc, Department of Pulmonary Diseases, Amsterdam, The Netherlands
- Netherlands Cancer Institute - Antoni van Leeuwenhoek, Department of Thoracic Oncology, Amsterdam, The Netherlands
| | - Bauke Ylstra
- Amsterdam UMC, location VUmc, Tumor Genome Analysis Core, Cancer Center Amsterdam, The Netherlands
| | - Erik Thunnissen
- Amsterdam UMC, location VUmc, Department of Pathology, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|