1
|
Ding W, Cheng Y, Liu X, Zhu Z, Wu L, Gao J, Lei W, Li Y, Zhou X, Wu J, Gao Y, Ling Z, Jiang R. Harnessing the human gut microbiota: an emerging frontier in combatting multidrug-resistant bacteria. Front Immunol 2025; 16:1563450. [PMID: 40165964 PMCID: PMC11955657 DOI: 10.3389/fimmu.2025.1563450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Antimicrobial resistance (AMR) has become a major and escalating global health threat, undermining the effectiveness of current antibiotic and antimicrobial therapies. The rise of multidrug-resistant bacteria has led to increasingly difficult-to-treat infections, resulting in higher morbidity, mortality, and healthcare costs. Tackling this crisis requires the development of novel antimicrobial agents, optimization of current therapeutic strategies, and global initiatives in infection surveillance and control. Recent studies highlight the crucial role of the human gut microbiota in defending against AMR pathogens. A balanced microbiota protects the body through mechanisms such as colonization resistance, positioning it as a key ally in the fight against AMR. In contrast, gut dysbiosis disrupts this defense, thereby facilitating the persistence, colonization, and dissemination of resistant pathogens. This review will explore how gut microbiota influence drug-resistant bacterial infections, its involvement in various types of AMR-related infections, and the potential for novel microbiota-targeted therapies, such as fecal microbiota transplantation, prebiotics, probiotics, phage therapy. Elucidating the interactions between gut microbiota and AMR pathogens will provide critical insights for developing novel therapeutic strategies to prevent and treat AMR infections. While previous reviews have focused on the general impact of the microbiota on human health, this review will specifically look at the latest research on the interactions between the gut microbiota and the evolution and spread of AMR, highlighting potential therapeutic strategies.
Collapse
Affiliation(s)
- Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingbin Wu
- Department of Intensive Care Unit, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Yating Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford, CA, United States
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Yongtao Gao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruilai Jiang
- Department of Intensive Care Unit, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
2
|
Yu T, Chae M, Wang Z, Ryu G, Kim GB, Lee SY. Microbial Technologies Enhanced by Artificial Intelligence for Healthcare Applications. Microb Biotechnol 2025; 18:e70131. [PMID: 40100535 PMCID: PMC11917392 DOI: 10.1111/1751-7915.70131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
The combination of artificial intelligence (AI) with microbial technology marks the start of a major transformation, improving applications throughout biotechnology, especially in healthcare. With the capability of AI to process vast amounts of biological big data, advanced microbial technology allows for a comprehensive understanding of complex biological systems, advancing disease diagnosis, treatment and the development of microbial therapeutics. This mini review explores the impact of AI-integrated microbial technologies in healthcare, highlighting advancements in microbial biomarker-based diagnosis, the development of microbial therapeutics and the microbial production of therapeutic compounds. This exploration promises significant improvements in the design and implementation of health-related solutions, steering a new era in biotechnological applications.
Collapse
Affiliation(s)
- Taeho Yu
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four)KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeonRepublic of Korea
| | - Minjee Chae
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four)KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeonRepublic of Korea
- Graduate School of Engineering BiologyKAISTDaejeonRepublic of Korea
| | - Ziling Wang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four)KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeonRepublic of Korea
| | - Gahyeon Ryu
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four)KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeonRepublic of Korea
| | - Gi Bae Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four)KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeonRepublic of Korea
- BioProcess Engineering Research CenterKAISTDaejeonRepublic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four)KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeonRepublic of Korea
- Graduate School of Engineering BiologyKAISTDaejeonRepublic of Korea
- BioProcess Engineering Research CenterKAISTDaejeonRepublic of Korea
- Center for Synthetic BiologyKAISTDaejeonRepublic of Korea
| |
Collapse
|
3
|
Gurung B, Courreges MC, Pollak J, Malgor R, Jiang L, Wang B, Wang S. Non-invasive treatment of Clostridioides difficile infection with a human-origin probiotic cocktail through gut microbiome-gut metabolome modulations. Front Microbiol 2025; 16:1555220. [PMID: 40078549 PMCID: PMC11897039 DOI: 10.3389/fmicb.2025.1555220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Clostridioides difficile (C. difficile) is a leading cause of hospital-associated diarrhea, primarily due to gut dysbiosis following antibiotic use. Probiotics have been found to provide several benefits to hosts via modulation of the gut microbiota and their metabolites. However, till now, no conventional probiotics have been clearly proven to be an effective prophylactic option for CDI prevention. Therefore, more studies on developing specific probiotic candidates targeting CDI and improving diversity of probiotics administrated are needed. In this study, a human-origin highly diverse and highly targeted probiotic cocktail (Pro11) containing 11 various probiotic species was developed against C. difficile. Pro11 protected mice against CDI with lower clinical scores and higher survival rates, and inhibited C. difficile in vivo with less C. difficile burden and toxins production determined in colon. Histological analysis demonstrated that Pro11 strengthened gut barrier, reducing gut permeability (less secreted sCD14 in serum) and gut inflammation. In addition, gut microbiome analysis demonstrated that Pro11 increased gut microbiome diversity and beneficial species. Along with gut microbiome modulation, gut metabolites including butyrate, were significantly increased in the probiotics-fed group. Results from this study highlighted probiotics as a promising CDI therapy as gut microbiota modulators, which will lay the foundation for translating probiotics in mitigating CDI and other intestinal pathogens for clinical use.
Collapse
Affiliation(s)
- Bijay Gurung
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH, United States
| | - Maria C. Courreges
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Julie Pollak
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, United States
| | - Ramiro Malgor
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Lin Jiang
- Division of Natural Sciences, New College of Florida, Sarasota, FL, United States
| | - Bo Wang
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, United States
| | - Shaohua Wang
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH, United States
| |
Collapse
|
4
|
Liu YH, Chen J, Chen X, Liu H. Factors of faecal microbiota transplantation applied to cancer management. J Drug Target 2024; 32:101-114. [PMID: 38174845 DOI: 10.1080/1061186x.2023.2299724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 01/05/2024]
Abstract
The homeostasis of the microbiota is essential for human health. In particular, the gut microbiota plays a critical role in the regulation of the immune system. Thus, faecal microbiota transplantation (FMT), a technology that has rapidly developed in the last decade, has specifically been utilised for the treatment of intestinal inflammation and has recently been found to be able to treat tumours in combination with immunotherapy. FMT has become a breakthrough in enhancing the response rate to immunotherapy in cancer patients by altering the composition of the patient's gut microbiota. This review discusses the mechanisms of faecal microorganism effects on tumour development, drug treatment efficacy, and adverse effects and describes the recent clinical research trials on FMT. Moreover, the factors influencing the efficacy and safety of FMT are described. We summarise the possibilities of faecal transplantation in the treatment of tumours and its complications and propose directions to explore the development of FMT.
Collapse
Affiliation(s)
- Yi-Huang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
He H, Li M, Qiu Y, Wu Z, Wu L. Washed microbiota transplantation improves sleep quality in patients with sleep disorder by the gut-brain axis. Front Neurosci 2024; 18:1415167. [PMID: 38979127 PMCID: PMC11228149 DOI: 10.3389/fnins.2024.1415167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Background The clinical impact of washed microbiota transplantation (WMT) from healthy donors in sleep disorder (SD) patients is unclear. This study aimed to investigate the effect of WMT in SD patients. Methods The clinical data were collected from patients with different indications receiving 1-3 courses of WMT, divided into two groups by 7 points of PSQI scale. The score of PQSI and SF-36 scale was used to assess the improvement in sleep quality and life quality among patients with sleep disorders following WMT. Finally, 16S rRNA gene amplicon sequencing was performed on fecal samples of patients with sleep disorders before and after WMT. Results WMT significantly improved sleep quality in patients with sleep disorder in the short and medium term. WMT significantly improved sleep latency, sleep time and total score in the short term. WMT significantly improved sleep quality and total score in the medium term. In terms of sleep quality and sleep latency, the improvement value also increased with the increase of treatment course, and the improvement effect of multiple treatment course was better than that of single and double treatment course. In the total score, the improvement effect of double and multiple treatment was better than that of single treatment. WMT also improved quality of life in the sleep disorder group. WMT significantly improved general health, vitality, social function and mental health in the short term. WMT significantly improved role-physical, general health, vitality, and mental health in the medium term. WMT regulated the disturbed gut microbiota in patients with sleep disorders. In the normal sleep group, WMT had no effect on the decline of sleep quality in the short, medium and long term, and had an improving effect on the quality of life. Conclusion WMT could significantly improve sleep quality and life quality in patients with sleep disorders with no adverse events. The improvement in sleep quality resulting from WMT could lead to an overall enhancement in life quality. WMT could be a potentially effective treatment for patients with sleep disorders by regulating the gut microbiota.
Collapse
Affiliation(s)
- Hongxin He
- Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Manqing Li
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangzhou Xinhai Hospital, Guangzhou, China
| | - Yifan Qiu
- Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Zhiqing Wu
- Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Lei Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Biological Sciences and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Zhao H, Zhou Y, Xu J, Zhang Y, Wang H, Zhao C, Huang H, Yang J, Huang C, Li Y, Wang L, Nie Y. Short-chain fatty acid-producing bacterial strains attenuate experimental ulcerative colitis by promoting M2 macrophage polarization via JAK/STAT3/FOXO3 axis inactivation. J Transl Med 2024; 22:369. [PMID: 38637862 PMCID: PMC11025230 DOI: 10.1186/s12967-024-05122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD), dysbiosis, and immunosuppression who receive fecal microbiota transplantation (FMT) from healthy donors are at an increased risk of developing bacteremia. This study investigates the efficacy of a mixture of seven short-chain fatty acid (SCFA)-producing bacterial strains (7-mix), the resulting culture supernatant mixture (mix-sup), and FMT for treating experimental ulcerative colitis (UC) and evaluates underlying mechanisms. METHODS Utilizing culturomics, we isolated and cultured SCFA-producing bacteria from the stool of healthy donors. We used a mouse model of acute UC induced by dextran sulfate sodium (DSS) to assess the effects of 7-mix, mix-sup, and FMT on intestinal inflammation and barrier function, microbial abundance and diversity, and gut macrophage polarization by flow cytometry, immunohistochemistry, 16S rRNA gene sequencing, and transwell assays. RESULTS The abundance of several SCFA-producing bacterial taxa decreased in patients with UC. Seven-mix and mix-sup suppressed the inflammatory response and enhanced intestinal mucosal barrier function in the mouse model of UC to an extent similar to or superior to that of FMT. Moreover, 7-mix and mix-sup increased the abundance of SCFA-producing bacteria and SCFA concentrations in colitic mice. The effects of these interventions on the inflammatory response and gut barrier function were mediated by JAK/STAT3/FOXO3 axis inactivation in macrophages by inducing M2 macrophage polarization in vivo and in vitro. CONCLUSIONS Our approach provides new opportunities to rationally harness live gut probiotic strains and metabolites to reduce intestinal inflammation, restore gut microbial composition, and expedite the development of safe and effective treatments for IBD.
Collapse
Affiliation(s)
- Hailan Zhao
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yong Zhang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hong Wang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Chong Zhao
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jing Yang
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yingfei Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Chen H, Liu H, Sun Y, Su M, Lin J, Wang J, Lin J, Zhao X. Analysis of fecal microbiota and related clinical indicators in ICU patients with sepsis. Heliyon 2024; 10:e28480. [PMID: 38586361 PMCID: PMC10998127 DOI: 10.1016/j.heliyon.2024.e28480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Background To analyze the characteristics of fecal microbiota disturbance in the intensive care unit (ICU) patients with sepsis and the correlation with related clinical indicators. Methods This study included 31 patients with sepsis admitted to the emergency ICU ward between September 2019 and December 2021. They were divided into Group without septic shock (ND_NS group, 7 cases) and Group with septic shock (ND_S group, 24 cases) according to the presence or absence of septic shock. Furthermore, we divided these 31 sepsis patients into Clinical Improvement group (21 cases) and Death or DAMA group (10 cases) based on clinical outcome, 15 cases of Physical Examiner recruited in the same period were included as control group: ND_HC group (15 cases). The fecal samples of the patients with sepsis within 24 h of admission and random fecal samples of the control group were collected and analyzed by 16S rDNA gene sequencing used for the analysis of fecal microbiota. At the same time, the relevant clinical data of these patients with sepsis were also collected for analysis. Results There were 15 cases with drug-resistant bacteria in the ND_S group and only 2 cases in the ND_NS group (P = 0.015). There were significant differences in APACHE II score, length of ICU stay, lactate level, and oxygenation index of patients between the Death or DAMA group and Clinical Improvement group (all P < 0.05). For phylum level, the abundance of Firmicutes, Actinobacteria, and Bacteroidetes decreased in the ND group compared with the ND_HC group, while the abundance of Proteobacteria increased (P < 0.05). For genus level, the relative abundance of Escherichia-Shigella and Klebsiella were significantly increased in the ND group compared with the ND_HC group (P < 0.05). The top six genera in relative abundance in the ND_S group were Escherichia-Shigella, Enterococcus, Bifidobacterium, Lactobacillus, Akkermansia, and Klebsiella. Compared with the Clinical Improvement group, the relative abundance of Escherichia-Shigella and Klebsiella in the Death or DAMA group showed an increasing trend with no significant significance, while the relative abundance of Enterococcus and Faecalibacterium decreased in the Death or DAMA group (P < 0.05). Alpha diversity analysis showed that compared with the ND_HC group, the alpha diversity of the fecal microbiota in the ND group decreased. There were significant differences in the Observed_species index, Chao1 index, and ACE index of patients between the ND_HC group and ND group (all P < 0.05). Moreover, compared with the ND_NS group, the Alpha diversity of the ND_S group was more abundant. PCoA analysis showed significant differences in microbial community structure between the ND group and ND_HC group (P = 0.001). There also were significant differences in microbial community structure between the ND_S group and ND_NS group (P = 0.008). LEfSe analysis showed that compared with the ND_HC group, there were significant differences in the species of the ND group, including Enterobacteriaceae, Escherichia-Shigella, Enterococcus, Elizabethkingia, and Family_XIII_AD3011_group. Conclusions ICU patients with sepsis suffered intestinal microecological disturbances with significantly decreased abundance of fecal microbiota, diversity, and beneficial symbiotic bacteria. For these patients, the ratio of pathogenic bacteria, including Escherichia-Shigella and Klebsiella increased and became the main bacterial genus in some samples. Moreover, the increasing trend of these two pathogenic bacteria may be correlated with the development of septic shock and the risk of death in patients with sepsis.
Collapse
Affiliation(s)
- Huaying Chen
- Emergency Intensive Care Unit, Zhongshan Hospital of Xiamen University, No.201, South Hubin Road, Xiamen, 361000, Fujian, China
| | - Huiheng Liu
- Emergency Intensive Care Unit, Zhongshan Hospital of Xiamen University, No.201, South Hubin Road, Xiamen, 361000, Fujian, China
| | - Yujing Sun
- Emergency Intensive Care Unit, Zhongshan Hospital of Xiamen University, No.201, South Hubin Road, Xiamen, 361000, Fujian, China
| | - Meiqin Su
- Department of Pharmacy, Zhongshan Hospital of Xiamen University, No.201, South Hubin Road, Xiamen, 361000, Fujian, China
| | - Jinzhou Lin
- Emergency Intensive Care Unit, Zhongshan Hospital of Xiamen University, No.201, South Hubin Road, Xiamen, 361000, Fujian, China
| | - Junsheng Wang
- Emergency Intensive Care Unit, Zhongshan Hospital of Xiamen University, No.201, South Hubin Road, Xiamen, 361000, Fujian, China
| | - Jueying Lin
- Emergency Intensive Care Unit, Zhongshan Hospital of Xiamen University, No.201, South Hubin Road, Xiamen, 361000, Fujian, China
| | - Xiaoyan Zhao
- Emergency Intensive Care Unit, Zhongshan Hospital of Xiamen University, No.201, South Hubin Road, Xiamen, 361000, Fujian, China
| |
Collapse
|
8
|
Muraleedharan A, Ray SK. Epigallocatechin-3-Gallate and Genistein for Decreasing Gut Dysbiosis, Inhibiting Inflammasomes, and Aiding Autophagy in Alzheimer's Disease. Brain Sci 2024; 14:96. [PMID: 38275516 PMCID: PMC10813550 DOI: 10.3390/brainsci14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
There are approximately 24 million cases of Alzheimer's disease (AD) worldwide, and the number of cases is expected to increase four-fold by 2050. AD is a neurodegenerative disease that leads to severe dementia in most patients. There are several neuropathological signs of AD, such as deposition of amyloid beta (Aβ) plaques, formation of neurofibrillary tangles (NFTs), neuronal loss, activation of inflammasomes, and declining autophagy. Several of these hallmarks are linked to the gut microbiome. The gastrointestinal (GI) tract contains microbial diversity, which is important in regulating several functions in the brain via the gut-brain axis (GBA). The disruption of the balance in the gut microbiota is known as gut dysbiosis. Recent studies strongly support that targeting gut dysbiosis with selective bioflavonoids is a highly plausible solution to attenuate activation of inflammasomes (contributing to neuroinflammation) and resume autophagy (a cellular mechanism for lysosomal degradation of the damaged components and recycling of building blocks) to stop AD pathogenesis. This review is focused on two bioflavonoids, specifically epigallocatechin-3-gallate (EGCG) and genistein (GS), as a possible new paradigm of treatment for maintaining healthy gut microbiota in AD due to their implications in modulating crucial AD signaling pathways. The combination of EGCG and GS has a higher potential than either agent alone to attenuate the signaling pathways implicated in AD pathogenesis. The effects of EGCG and GS on altering gut microbiota and GBA were also explored, along with conclusions from various delivery methods to increase the bioavailability of these bioflavonoids in the body.
Collapse
Affiliation(s)
- Ahalya Muraleedharan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA;
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
9
|
de Nies L, Kobras CM, Stracy M. Antibiotic-induced collateral damage to the microbiota and associated infections. Nat Rev Microbiol 2023; 21:789-804. [PMID: 37542123 DOI: 10.1038/s41579-023-00936-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/06/2023]
Abstract
Antibiotics have transformed medicine, saving millions of lives since they were first used to treat a bacterial infection. However, antibiotics administered to target a specific pathogen can also cause collateral damage to the patient's resident microbial population. These drugs can suppress the growth of commensal species which provide protection against colonization by foreign pathogens, leading to an increased risk of subsequent infection. At the same time, a patient's microbiota can harbour potential pathogens and, hence, be a source of infection. Antibiotic-induced selection pressure can cause overgrowth of resistant pathogens pre-existing in the patient's microbiota, leading to hard-to-treat superinfections. In this Review, we explore our current understanding of how antibiotic therapy can facilitate subsequent infections due to both loss of colonization resistance and overgrowth of resistant microorganisms, and how these processes are often interlinked. We discuss both well-known and currently overlooked examples of antibiotic-associated infections at various body sites from various pathogens. Finally, we describe ongoing and new strategies to overcome the collateral damage caused by antibiotics and to limit the risk of antibiotic-associated infections.
Collapse
Affiliation(s)
- Laura de Nies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Carolin M Kobras
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Mathew Stracy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Wu L, Lin ZH, Lu XJ, Hu X, Zhong HJ, Lin DJ, Liu T, Xu JT, Lin WY, Wu QP, He XX. Washed Microbiota Transplantation Improves Patients with Overweight by the Gut Microbiota and Sphingolipid Metabolism. Biomedicines 2023; 11:2415. [PMID: 37760856 PMCID: PMC10525780 DOI: 10.3390/biomedicines11092415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Overweight (OW) and obesity have become increasingly serious public health problems worldwide. The clinical impact of washed microbiota transplantation (WMT) from healthy donors in OW patients is unclear. This study aimed to investigate the effect of WMT in OW patients. METHODS The changes in body mass index (BMI = weight (kg)/height (m)2), blood glucose, blood lipids and other indicators before and after WMT were compared. At the same time, 16S rRNA gene amplicon sequencing was performed on fecal samples of OW patients before and after transplantation. Finally, serum samples were tested for sphingolipids targeted by lipid metabolomics. RESULTS A total of 166 patients were included, including 52 in the OW group and 114 in the normal weight (NOW) group. For OW patients, WMT significantly improved the comprehensive efficacy of OW. In the short term (about 1 month) and medium term (about 2 months), a significant reduction in BMI was seen. At the same time, in the short term (about 1 month), liver fat attenuation (LFA), triglyceride (TG) and fasting blood glucose (FBG) were significantly reduced. In the long term (about 5 months), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), non-high-density lipoprotein (non-HDL-c), etc. were significantly reduced. WMT improved the gut microbiota of OW patients, and also had an improvement effect on OW patients by regulating sphingolipid metabolism. CONCLUSION WMT had a significant improvement effect on OW patients. WMT could restore gut microbiota homeostasis and improve OW patients by regulating sphingolipid metabolism.
Collapse
Affiliation(s)
- Lei Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zi-Han Lin
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| | - Xin-Jian Lu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| | - Xuan Hu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| | - Hao-Jie Zhong
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| | - De-Jiang Lin
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| | - Tao Liu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| | - Jia-Ting Xu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| | - Wen-Ying Lin
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| | - Qing-Ping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xing-Xiang He
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| |
Collapse
|
11
|
Jamal R, Messaoudene M, de Figuieredo M, Routy B. Future indications and clinical management for fecal microbiota transplantation (FMT) in immuno-oncology. Semin Immunol 2023; 67:101754. [PMID: 37003055 DOI: 10.1016/j.smim.2023.101754] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 04/01/2023]
Abstract
The gut microbiota has rapidly emerged as one of the "hallmarks of cancers" and a key contributor to cancer immunotherapy. Metagenomics profiling has established the link between microbiota compositions and immune checkpoint inhibitors response and toxicity, while murine experiments demonstrating the synergistic benefits of microbiota modification with immune checkpoint inhibitors (ICIs) pave a clear path for translation. Fecal microbiota transplantation (FMT) is one of the most effective treatments for patients with Clostridioides difficile, but its utility in other disease contexts has been limited. Nonetheless, promising data from the first trials combining FMT with ICIs have provided strong clinical rationale to pursue this strategy as a novel therapeutic avenue. In addition to the safety considerations surrounding new and emerging pathogens potentially transmissible by FMT, several other challenges must be overcome in order to validate the use of FMT as a therapeutic option in oncology. In this review, we will explore how the lessons learned from FMT in other specialties will help shape the design and development of FMT in the immuno-oncology arena.
Collapse
|
12
|
Boicean A, Birlutiu V, Ichim C, Anderco P, Birsan S. Fecal Microbiota Transplantation in Inflammatory Bowel Disease. Biomedicines 2023; 11:biomedicines11041016. [PMID: 37189634 DOI: 10.3390/biomedicines11041016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammatory bowel diseases represent a complex array of diseases of incompletely known etiology that led to gastrointestinal tract chronic inflammation. In inflammatory bowel disease, a promising method of treatment is represented by fecal microbiota transplantation (FMT), FMT has shown its increasing effectiveness and safety in recent years for recurrent CDI; moreover, it showed real clinical benefits in treating SARS-CoV-2 and CDI co-infection. Crohn’s disease and ulcerative colitis are characterized by immune dysregulation, resulting in digestive tract damage caused by immune responses. Most current therapeutic strategies are associated with high costs and many adverse effects by directly targeting the immune response, so modifying the microbial environment by FMT offers an alternative approach that could indirectly influence the host’s immune system in a safe way. Studies outline the endoscopic and clinical improvements in UC and CD in FMT patients versus control groups. This review outlines the multiple benefits of FMT in the case of IBD by improving patients unbalanced gut, therefore improving endoscopic and clinical symptomatology. We aim to emphasize the clinical importance and benefits of FMT in order to prevent flares or complications of IBD and to highlight that further validation is needed for establishing a clinical protocol for FMT in IBD.
Collapse
|
13
|
Microbiome-mediated fructose depletion restricts murine gut colonization by vancomycin-resistant Enterococcus. Nat Commun 2022; 13:7718. [PMID: 36513659 PMCID: PMC9748033 DOI: 10.1038/s41467-022-35380-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Multidrug-resistant organisms (MDRO) are a major threat to public health. MDRO infections, including those caused by vancomycin-resistant Enterococcus (VRE), frequently begin by colonization of the intestinal tract, a crucial step that is impaired by the intestinal microbiota. However, the specific members of the microbiota that suppress MDRO colonization and the mechanisms of such protection are largely unknown. Here, using metagenomics and mouse models that mimic the patients' exposure to antibiotics, we identified commensal bacteria associated with protection against VRE colonization. We further found a consortium of five strains that was sufficient to restrict VRE gut colonization in antibiotic treated mice. Transcriptomics in combination with targeted metabolomics and in vivo assays indicated that the bacterial consortium inhibits VRE growth through nutrient depletion, specifically by reducing the levels of fructose, a carbohydrate that boosts VRE growth in vivo. Finally, in vivo RNA-seq analysis of each strain of the consortium in combination with ex vivo and in vivo assays demonstrated that a single bacterium (Olsenella sp.) could recapitulate the effect of the consortium. Our results indicate that nutrient depletion by specific commensals can reduce VRE intestinal colonization, which represents a novel non-antibiotic based strategy to prevent infections caused by this multidrug-resistant organism.
Collapse
|
14
|
Wu L, Lu XJ, Lin DJ, Chen WJ, Xue XY, Liu T, Xu JT, Xie YT, Li MQ, Lin WY, Zhang Q, Wu QP, He XX. Washed microbiota transplantation improves patients with metabolic syndrome in South China. Front Cell Infect Microbiol 2022; 12:1044957. [PMID: 36457852 PMCID: PMC9705737 DOI: 10.3389/fcimb.2022.1044957] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background Metabolic syndrome (MS) is a growing public health problem worldwide. The clinical impact of fecal microbiota transplantation (FMT) from healthy donors in MS patients is unclear, especially in southern Chinese populations. This study aimed to investigate the effect of washed microbiota transplantation (WMT) in MS patients in southern China. Methods The clinical data of patients with different indications receiving 1-3 courses of WMT were retrospectively collected. The changes of BMI, blood glucose, blood lipids, blood pressure and other indicators before and after WMT were compared, such as fasting blood glucose (FBG), glycated hemoglobin (HbA1c), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c)), high-density lipoprotein cholesterol (HDL-c), non-high-density lipoprotein (non-HDL-c), systolic blood pressure (SBP), diastolic blood pressure (DBP), etc. At the same time, comprehensive efficacy evaluation and atherosclerotic cardiovascular disease (ASCVD) grade assessment were performed on MS patients. Finally, 16S rRNA gene amplicon sequencing was performed on fecal samples of MS patients before and after transplantation. Results A total of 237 patients were included, including 42 in the MS group and 195 in the non-MS group. For MS patients, WMT significantly improved the comprehensive efficacy of MS in short term 40.48% (p<0.001), medium term 36.00% (p=0.003), and long term 46.15% (p=0.020). Short-term significantly reduced FBG (p=0.023), TG (p=0.030), SBP (p=0.026) and BMI (p=0.031), and increased HDL-c (p=0.036). The medium term had a significant reduction in FBG (p=0.048), TC (p=0.022), LDL-c (p=0.043), non-HDL-c (p=0.024) and BMI (p=0.048). WMT had a significant short term (p=0.029) and medium term (p=0.011) ASCVD downgrading effect in the high-risk group of MS patients. WMT improved gut microbiota in MS patients. Conclusion WMT had a significant improvement effect on MS patients and a significant downgrade effect on ASCVD risk in the high-risk group of patients with MS. WMT could restore gut microbiota homeostasis in MS patients. Therefore, the regulation of gut microbiota by WMT may provide a new clinical approach for the treatment of MS.
Collapse
Affiliation(s)
- Lei Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xin-Jian Lu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - De-Jiang Lin
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Wen-Jia Chen
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xing-Ying Xue
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Tao Liu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jia-Ting Xu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya-Ting Xie
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Man-Qing Li
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Wen-Ying Lin
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Zhang
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing-Ping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xing-Xiang He
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
15
|
Salim S, Ahmad F, Banu A, Mohammad F. Gut microbiome and Parkinson's disease: Perspective on pathogenesis and treatment. J Adv Res 2022:S2090-1232(22)00242-9. [PMID: 36332796 PMCID: PMC10403695 DOI: 10.1016/j.jare.2022.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a disease of ⍺-synuclein aggregation-mediated dopaminergic neuronal loss in the substantia nigra pars compacta, which leads to motor and non-motor symptoms. Through the last two decades of research, there has been growing consensus that inflammation-mediated oxidative stress, mitochondrial dysfunction, and cytokine-induced toxicity are mainly involved in neuronal damage and loss associated with PD. However, it remains unclear how these mechanisms relate to sporadic PD, a more common form of PD. Both enteric and central nervous systems have been implicated in the pathogenesis of sporadic PD, thus highlighting the crosstalk between the gut and brain. AIM of Review: In this review, we summarize how alterations in the gut microbiome can affect PD pathogenesis. We highlight various mechanisms increasing/decreasing the risk of PD development. Based on the previous supporting evidence, we suggest how early interventions could protect against PD development and how controlling specific factors, including our diet, could modify our perspective on disease mechanisms and therapeutics. We explain the strong relationship between the gut microbiota and the brain in PD subjects, by delineating the multiple mechanisms involved inneuroinflammation and oxidative stress. We conclude that the neurodetrimental effects of western diet (WD) and the neuroprotective effects of Mediterranean diets should be further exploredin humans through clinical trials. Key Scientific Concepts of Review: Alterations in the gut microbiome and associated metabolites may contribute to pathogenesis in PD. In some studies, probiotics have been shown to exert anti-oxidative effects in PD via improved mitochondrial dynamics and homeostasis, thus reducing PD-related consequences. However, there is a significant unmet need for randomized clinical trials to investigate the effectiveness of microbial products, probiotic-based supplementation, and dietary intervention in reversing gut microbial dysbiosis in PD.
Collapse
|
16
|
Wu L, Li MQ, Xie YT, Zhang Q, Lu XJ, Liu T, Lin WY, Xu JT, Wu QP, He XX. Washed microbiota transplantation improves patients with high blood glucose in South China. Front Endocrinol (Lausanne) 2022; 13:985636. [PMID: 36213281 PMCID: PMC9539914 DOI: 10.3389/fendo.2022.985636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/08/2022] [Indexed: 12/08/2022] Open
Abstract
Background and Aims Although fecal microbiota transplantation (FMT) from healthy donors has been shown to have hypoglycemic effects in animal models of diabetes, its clinical impact in patients with abnormal blood glucose metabolism is unclear, especially in southern Chinese populations. The aim of this study was to investigate the feasibility and efficacy of washed microbiota transplantation (WMT) in the treatment of abnormal blood glucose metabolism in a population in southern China. Methods The clinical data of patients with different indications who received 1-3 treatments of WMT were retrospectively collected. The changes of blood glucose, blood lipids, blood pressure, liver function and blood routine before and after WMT were compared, such as fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c), total cholesterol (TC), triglyceride (TG), systolic blood pressure (SBP), white blood cells (WBC), lymphocytes (LY) and platelets (PLT), etc. Results A total of 195 patients were included in the First Affiliated Hospital of Guangdong Pharmaceutical University, including 20 patients with high blood glucose and 175 patients with normal blood glucose. WMT has a significant effect in reducing short term blood glucose level (FBG) in patients with high blood glucose (p < 0.05). The fasting blood glucose (FBG) of 72.22% of patients with high blood glucose decreased to normal in a short term (about 1 month) (p < 0.001); In the medium term (about 2 months), there was a significant hypolipidemic (TG) (p = 0.043) effect, long term (about 6 months) significant blood pressure lowering (SBP, p = 0.048) effect. Overall, WMT significantly reduced the risk of high risk classes of Atherosclerotic Cardiovascular Disease (ASCVD) in the short term (p = 0.029) and medium term (p = 0.050). Conclusion WMT can significantly improve blood glucose in patients with high blood glucose, and there is no long-term elevated risk of blood glucose and ASCVD. FBG levels were significantly reduced in both the short and medium term in patients with high blood glucose treated with WMT. Therefore, the regulation of gut microbiota by WMT may provide a new clinical approach for the treatment of abnormal blood glucose metabolism.
Collapse
Affiliation(s)
- Lei Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Man-Qing Li
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya-Ting Xie
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Zhang
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin-Jian Lu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Tao Liu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Wen-Ying Lin
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jia-Ting Xu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing-Ping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xing-Xiang He
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
17
|
Shor EK, Brown SP, Freeman DA. Bacteria and Bellicosity: Photoperiodic Shifts in Gut Microbiota Drive Seasonal Aggressive Behavior in Male Siberian Hamsters. J Biol Rhythms 2022; 37:296-309. [PMID: 35502701 DOI: 10.1177/07487304221092105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The existence of a microbiome-gut-brain axis has been established wherein gut microbiota significantly impacts host behavior and physiology, with increasing evidence suggesting a role for the gut microbiota in maintaining host homeostasis. Communication between the gut microbiota and the host is bidirectional, and shifts in the composition of the gut microbiota are dependent on both internal and external cues (host-derived signals, such as stress and immunity, and endocrine and environmental signals, such as photoperiod). Although there is host-driven seasonal variation in the composition of the microbiota, the mechanisms linking photoperiod, gut microbiota, and host behavior have not been characterized. The results of the present study suggest that seasonal changes in the gut microbiota drive seasonal changes in aggression. Implanting short-day Siberian hamsters (Phodopus sungorus) with fecal microbiota from long-day hamsters resulted in a reversal of seasonal aggression, whereby short-day hamsters displayed aggression levels typical of long-day hamsters. In addition, there are correlations between aggressive behavior and several bacterial taxa. These results implicate the gut microbiota as part of the photoperiodic mechanism regulating seasonal host behavior and contribute toward a more comprehensive understanding of the relationships between the microbiota, host, and environment.
Collapse
Affiliation(s)
- Elyan K Shor
- Department of Biological Sciences, Center for Biodiversity Research, The University of Memphis, Memphis, Tennessee, USA
| | - Shawn P Brown
- Department of Biological Sciences, Center for Biodiversity Research, The University of Memphis, Memphis, Tennessee, USA
| | - David A Freeman
- Department of Biological Sciences, Center for Biodiversity Research, The University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
18
|
Ding D, Yong H, You N, Lu W, Yang X, Ye X, Wang Y, Cai T, Zheng X, Chen H, Cui B, Zhang F, Liu X, Mao JH, Lu Y, Chang H. Prospective Study Reveals Host Microbial Determinants of Clinical Response to Fecal Microbiota Transplant Therapy in Type 2 Diabetes Patients. Front Cell Infect Microbiol 2022; 12:820367. [PMID: 35402293 PMCID: PMC8990819 DOI: 10.3389/fcimb.2022.820367] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Increasing evidence shows that alterations in gut microbiome (GM) contribute to the development of type 2 diabetes mellitus (T2DM), and fecal microbiota transplantation (FMT) successfully treats various human diseases. However, the benefits of FMT therapy to T2DM patients remain unknown. METHODS We enrolled 17 patients with T2DM for nonblinded, one-armed intervention trial of FMT. A total of 20 healthy individuals were recruited as the baseline control. HbA1c% and metabolic parameter change were evaluated in 17 T2DM patients 12 weeks after they received FMT from healthy donors. The GM composition was characterized by 16S rRNA gene amplicon sequencing from fecal samples prior to and 12 weeks after FMT treatment. RESULTS We found that the GM of T2DM patients was reconstituted by FMT. We observed a statistically significant decrease in HbA1c% (from 7.565 ± 0.148 to 7.190 ± 0.210, p<0.01), blood glucose (from 8.483 ± 0.497 to 7.286 ± 0.454 mmol/L, p<0.01), and uric acid (from 309.4 ± 21.5 to 259.1 ± 15.8 µmol/L, p<0.01) while a significant increase in postprandial C-peptide (from 4.503 ± 0.600 to 5.471 ± 0.728 ng/ml, p<0.01) at 12 weeks after FMT. Closely evaluating the changes in these assays, we found individual variability in response to FMT treatment. Out of 17 T2DM patients, 11 were found to significantly improve T2DM symptoms. The FMT responders have significantly higher levels of the family Rikenellaceae and the genus Anaerotruncus (family Ruminococcaceae) in their pretreated fecal in comparison to nonresponders, which could predict the clinical response with an area under the curve of 0.83. CONCLUSION Our findings suggest that certain T2DM patients can potentially benefit from FMT, and the pretreated abundance of Rikenellaceae and Anaerotruncus in the fecal of patients may serve as potential biomarkers for selecting T2DM patients to receive FMT.
Collapse
Affiliation(s)
- Dafa Ding
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huijuan Yong
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Na You
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Yang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Xiaolong Ye
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yayun Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Cai
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoling Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Chen
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bota Cui
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Faming Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xingyin Liu
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Yibing Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
19
|
Abstract
Symbiotic microorganisms inhabiting the gastrointestinal tract promote health by decreasing susceptibility to infection and enhancing resistance to a range of diseases. In this Review, we discuss our increasing understanding of the impact of the microbiome on the mammalian host and recent efforts to culture and characterize intestinal symbiotic microorganisms that produce or modify metabolites that impact disease pathology. Manipulation of the intestinal microbiome has great potential to reduce the incidence and/or severity of a wide range of human conditions and diseases, and the biomedical research community now faces the challenge of translating our understanding of the microbiome into beneficial medical therapies. Our increasing understanding of symbiotic microbial species and the application of ecological principles and machine learning are providing exciting opportunities for microbiome-based therapeutics to progress from faecal microbiota transplantation to the administration of precisely defined and clinically validated symbiotic microbial consortia that optimize disease resistance.
Collapse
|
20
|
Edwards V, Smith DL, Meylan F, Tiffany L, Poncet S, Wu WW, Phue JN, Santana-Quintero L, Clouse KA, Gabay O. Analyzing the Role of Gut Microbiota on the Onset of Autoimmune Diseases Using TNF ΔARE Murine Model. Microorganisms 2021; 10:73. [PMID: 35056521 PMCID: PMC8779571 DOI: 10.3390/microorganisms10010073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Very little is known about disease transmission via the gut microbiome. We hypothesized that certain inflammatory features could be transmitted via the gut microbiome and tested this hypothesis using an animal model of inflammatory diseases. Twelve-week-old healthy C57 Bl/6 and Germ-Free (GF) female and male mice were fecal matter transplanted (FMT) under anaerobic conditions with TNFΔARE-/+ donors exhibiting spontaneous Rheumatoid Arthritis (RA) and Inflammatory Bowel Disease (IBD) or with conventional healthy mice control donors. The gut microbiome analysis was performed using 16S rRNA sequencing amplification and bioinformatics analysis with the HIVE bioinformatics platform. Histology, immunohistochemistry, ELISA Multiplex analysis, and flow cytometry were conducted to confirm the inflammatory transmission status. We observed RA and IBD features transmitted in the GF mice cohort, with gut tissue disruption, cartilage alteration, elevated inflammatory mediators in the tissues, activation of CD4/CD8+ T cells, and colonization and transmission of the gut microbiome similar to the donors' profile. We did not observe a change or transmission when conventional healthy mice were FMT with TNFΔARE-/+ donors, suggesting that a healthy microbiome might withstand an unhealthy transplant. These findings show the potential involvement of the gut microbiome in inflammatory diseases. We identified a cluster of bacteria playing a role in this mechanism.
Collapse
Affiliation(s)
- Vivienne Edwards
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Dylan L. Smith
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Francoise Meylan
- Translational Immunology Section, NIH, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA;
| | - Linda Tiffany
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Sarah Poncet
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Wells W. Wu
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (W.W.W.); (J.-N.P.)
| | - Je-Nie Phue
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (W.W.W.); (J.-N.P.)
| | - Luis Santana-Quintero
- U.S. Food and Drug Administration, Center for Biologics Evaluation & Research, Office of Biostatistics and Epidemiology, HIVE, Silver Spring, MD 20993, USA;
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Office of Hematology and Oncology Products, Silver Spring, MD 20993, USA
| | - Kathleen A. Clouse
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Odile Gabay
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| |
Collapse
|
21
|
Secombe KR, Crame EE, Tam JSY, Wardill HR, Gibson RJ, Coller JK, Bowen JM. Intestinal toll-like receptor 4 knockout alters the functional capacity of the gut microbiome following irinotecan treatment. Cancer Chemother Pharmacol 2021; 89:275-281. [PMID: 34854953 DOI: 10.1007/s00280-021-04382-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/22/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Irinotecan can cause high levels of diarrhea caused by toxic injury to the gastrointestinal microenvironment. Toll-like receptor 4 (TLR4) and the gut microbiome have previously been implicated in gastrointestinal toxicity and diarrhea; however, the link between these two factors has not been definitively determined. We used a tumor-bearing, intestinal epithelial cell (IEC) TLR4 knockout model (Tlr4ΔIEC) to assess microbiome changes following irinotecan treatment. We then determined if a fecal microbiota transplant (FMT) between Tlr4ΔIEC and wild-type (WT) mice altered irinotecan-induced gastrointestinal toxicity. METHODS MC-38 colorectal cancer cells were injected into WT and Tlr4ΔIEC mice. Fecal samples were collected prior to tumor inoculation, prior to irinotecan treatment and at cull. 16S rRNA gene sequencing was used to assess changes in the microbiome. Next, FMT was used to transfer the microbiome phenotype between Tlr4ΔIEC and WT mice prior to irinotecan treatment. Gastrointestinal toxicity symptoms were assessed. RESULTS In study 1, there were no compositional differences in the microbiome between Tlr4ΔIEC and WT mice at baseline. However, predicted functional capacity of the microbiome was different between WT and Tlr4ΔIEC at baseline and post-irinotecan. In study 2, Tlr4ΔIEC mice were protected from grade 3 diarrhea. Additionally, WT mice who did not receive FMT had more colonic damage in the colon compared to controls (P = 0.013). This was not seen in Tlr4ΔIEC mice or WT mice who received FMT (P > 0.05). CONCLUSION Tlr4ΔIEC and WT had no baseline compositional microbiome differences, but functional differences at baseline and following irinotecan. FMT altered some aspects of irinotecan-induced gastrointestinal toxicity.
Collapse
Affiliation(s)
- Kate R Secombe
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia.
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.
| | - Elise E Crame
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Janine S Y Tam
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Hannah R Wardill
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Precision Medicine Theme (Cancer), The South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Rachel J Gibson
- School of Allied Health and Practice, University of Adelaide, Adelaide, South Australia, Australia
| | - Janet K Coller
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Joanne M Bowen
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
22
|
Gopalakrishnan V, Dozier EA, Glover MS, Novick S, Ford M, Morehouse C, Warrener P, Caceres C, Hess S, Sellman BR, Cohen TS. Engraftment of Bacteria after Fecal Microbiota Transplantation Is Dependent on Both Frequency of Dosing and Duration of Preparative Antibiotic Regimen. Microorganisms 2021; 9:1399. [PMID: 34209573 PMCID: PMC8306289 DOI: 10.3390/microorganisms9071399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota has emerged as a key mediator of human physiology, and germ-free mice have been essential in demonstrating a role for the microbiome in disease. Preclinical models using conventional mice offer the advantage of working with a mature immune system. However, optimal protocols for fecal microbiota transplant (FMT) engraftment in conventional mice are yet to be established. Conventional BALB/c mice were randomized to receive 3-day (3d) or 3-week (3w) antibiotic (ABX) regimen in their drinking water followed by 1 or 5-daily FMTs from a human donor. Fecal samples were collected longitudinally and characterized using 16S ribosomal RNA (rRNA) sequencing. Semi-targeted metabolomic profiling of fecal samples was also done with liquid chromatography-mass spectrometry (LC-MS). Lastly, we sought to confirm our findings in BKS mice. Recovery of baseline diversity scores were greatest in the 3d groups, driven by re-emergence of mouse commensal microbiota, whereas the most resemblance to donor microbiota was seen in the 3w + 5-FMT group. Amplicon sequence variants (ASVs) that were linked to the input material (human ASVs) engrafted to a significantly greater extent when compared to mouse ASVs in the 3-week groups but not the 3-day groups. Lastly, comparison of metabolomic profiles revealed distinct functional profiles by ABX regimen. These results indicate successful model optimization and emphasize the importance of ABX duration and frequency of FMT dosing; the most stable and reliable colonization by donor ASVs was seen in the 3wk + 5-FMT group.
Collapse
Affiliation(s)
- Vancheswaran Gopalakrishnan
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Elizabeth Ashley Dozier
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Matthew S. Glover
- Dynamic Omics, Antibody Discovery & Protein Engineering, R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (M.S.G.); (S.H.)
| | - Steven Novick
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Michael Ford
- Animal Sciences and Technologies, R & D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Christopher Morehouse
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Paul Warrener
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Carolina Caceres
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Sonja Hess
- Dynamic Omics, Antibody Discovery & Protein Engineering, R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (M.S.G.); (S.H.)
| | - Bret R. Sellman
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Taylor S. Cohen
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| |
Collapse
|
23
|
Lin S, Mukherjee S, Li J, Hou W, Pan C, Liu J. Mucosal immunity-mediated modulation of the gut microbiome by oral delivery of probiotics into Peyer's patches. SCIENCE ADVANCES 2021; 7:7/20/eabf0677. [PMID: 33980483 PMCID: PMC8115924 DOI: 10.1126/sciadv.abf0677] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/23/2021] [Indexed: 05/02/2023]
Abstract
Methods capable of maintaining gut microbiota homeostasis to prevent bacterial translocation and infection under external threats are critical for multiple facets of human health but have been rarely reported. Here, we describe the elicitation of mucosal immunity to modulate the gut microbiota by oral delivery of living probiotics into Peyer's patches. Probiotics are individually camouflaged within a yeast membrane, on which the embedded β-glucan can facilitate the phagocytosis of microfold cells that locate in the intestinal epithelium. The delivery of probiotics into lymphoid follicles after oral ingestion promotes robust mucosal immune responses and notably upgrades the production of secretory immunoglobulin A. The provoked immunity positively regulates the gut microflora, which, in turn, retains gut homeostasis and provides defense against environmental attacks. In two murine models of gut barrier impairment, oral administration with camouflaged probiotics effectively prevents the breakdown of intestinal barrier and evidences limited bacterial translocation and systemic inflammation.
Collapse
Affiliation(s)
- Sisi Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Subhajit Mukherjee
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Juanjuan Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Weiliang Hou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chao Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jinyao Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
24
|
Zhang SL, Mao YQ, Zhang ZY, Li ZM, Kong CY, Chen HL, Cai PR, Han B, Ye T, Wang LS. Pectin supplement significantly enhanced the anti-PD-1 efficacy in tumor-bearing mice humanized with gut microbiota from patients with colorectal cancer. Am J Cancer Res 2021; 11:4155-4170. [PMID: 33754054 PMCID: PMC7977465 DOI: 10.7150/thno.54476] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Anti-PD-1-based immunotherapy has emerged as a promising therapy for several cancers. However, it only benefits a small subset of colorectal cancer (CRC) patients. Mounting data supports the pivotal role of gut microbiota in shaping immune system. Pectin, a widely consumed soluble fiber, has been reported to ameliorate the imbalance of gut microbiota. Therefore, we aimed to explore the effect and the underlying mechanisms of pectin in improving anti-PD-1 mAb efficacy. Methods: The C57BL/6 mice were treated with a broad-spectrum antibiotic (ATB) cocktail to depleted endogenous gut microbiota and subsequently humanized with feces from healthy controls or newly diagnosed CRC patients. The antitumor efficacies of anti-PD-1 mAb combined with or without pectin were assessed using these mice. Flow cytometry and immunohistochemistry (IHC) were conducted to investigate the tumor immune microenvironment after treatment. The gut microbiota profiles and short-chain fatty acids (SCFAs) levels were determined by 16S ribosomal RNA (16S rRNA) gene sequencing and gas chromatography-mass spectrometry (GC-MS), respectively. The effect of gut microbiota on anti-PD-1 mAb efficacy after pectin supplement was further tested by fecal microbiota transplantation (FMT). Results: The anti-PD-1 mAb efficacy was largely impaired in the mice humanized with feces from newly diagnosed CRC patients compared to those from healthy controls. However, pectin significantly enhanced the anti-PD-1 mAb efficacy in the tumor-bearing mice humanized with CRC patient gut microbiota. Flow cytometry and IHC analysis revealed increased T cell infiltration and activation in the tumor microenvironment of mice treated with anti-PD-1 mAb plus pectin. In vivo depletion of CD8+ T cells diminished the anti-tumor effect of anti-PD-1 mAb combined with pectin. 16S rRNA gene sequencing showed that pectin significantly increased gut microbial diversity and beneficially regulated microbial composition. In addition, we identified unique bacterial modules that were significantly enriched in the anti-PD-1 mAb + pectin group, which composed of butyrate-producing bacteria indicative of good response to immunotherapy. Meanwhile, GC-MS showed that pectin altered the level of SCFA butyrate. Furthermore, butyrate, a main product of dietary fiber in gut microbial fermentation, was found to be sufficient to promote T cells infiltration and thus enhance the efficacy of anti-PD-1 mAb. In addition, FMT demonstrated the effects of pectin were dependent on gut microbiota. Importantly, the beneficial effects of pectin were confirmed in the mice humanized with gut microbiota from patient with resistance to anti-PD-1 mAb. Conclusion: Pectin facilitated the anti-PD-1 mAb efficacy in CRC via regulating the T cell infiltration in the tumor microenvironment, which was potentially mediated by the metabolite butyrate.
Collapse
|
25
|
Stacy A, Andrade-Oliveira V, McCulloch JA, Hild B, Oh JH, Perez-Chaparro PJ, Sim CK, Lim AI, Link VM, Enamorado M, Trinchieri G, Segre JA, Rehermann B, Belkaid Y. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell 2021; 184:615-627.e17. [PMID: 33453153 PMCID: PMC8786454 DOI: 10.1016/j.cell.2020.12.011] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/19/2020] [Accepted: 12/08/2020] [Indexed: 01/13/2023]
Abstract
The microbiota shields the host against infections in a process known as colonization resistance. How infections themselves shape this fundamental process remains largely unknown. Here, we show that gut microbiota from previously infected hosts display enhanced resistance to infection. This long-term functional remodeling is associated with altered bile acid metabolism leading to the expansion of taxa that utilize the sulfonic acid taurine. Notably, supplying exogenous taurine alone is sufficient to induce this alteration in microbiota function and enhance resistance. Mechanistically, taurine potentiates the microbiota's production of sulfide, an inhibitor of cellular respiration, which is key to host invasion by numerous pathogens. As such, pharmaceutical sequestration of sulfide perturbs the microbiota's composition and promotes pathogen invasion. Together, this work reveals a process by which the host, triggered by infection, can deploy taurine as a nutrient to nourish and train the microbiota, promoting its resistance to subsequent infection.
Collapse
Affiliation(s)
- Apollo Stacy
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Vinicius Andrade-Oliveira
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A McCulloch
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benedikt Hild
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ji Hoon Oh
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - P Juliana Perez-Chaparro
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Choon K Sim
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Liu J, Liu C, Yue J. Radiotherapy and the gut microbiome: facts and fiction. Radiat Oncol 2021; 16:9. [PMID: 33436010 PMCID: PMC7805150 DOI: 10.1186/s13014-020-01735-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
An ever-growing body of evidence has linked the gut microbiome with both the effectiveness and the toxicity of cancer therapies. Radiotherapy is an effective way to treat tumors, although large variations exist among patients in tumor radio-responsiveness and in the incidence and severity of radiotherapy-induced side effects. Relatively little is known about whether and how the microbiome regulates the response to radiotherapy. Gut microbiota may be an important player in modulating "hot" versus "cold" tumor microenvironment, ultimately affecting treatment efficacy. The interaction of the gut microbiome and radiotherapy is a bidirectional function, in that radiotherapy can disrupt the microbiome and those disruptions can influence the effectiveness of the anticancer treatments. Limited data have shown that interactions between the radiation and the microbiome can have positive effects on oncotherapy. On the other hand, exposure to ionizing radiation leads to changes in the gut microbiome that contribute to radiation enteropathy. The gut microbiome can influence radiation-induced gastrointestinal mucositis through two mechanisms including translocation and dysbiosis. We propose that the gut microbiome can be modified to maximize the response to treatment and minimize adverse effects through the use of personalized probiotics, prebiotics, or fecal microbial transplantation. 16S rRNA sequencing is the most commonly used approach to investigate distribution and diversity of gut microbiome between individuals though it only identifies bacteria level other than strain level. The functional gut microbiome can be studied using methods involving metagenomics, metatranscriptomics, metaproteomics, as well as metabolomics. Multiple '-omic' approaches can be applied simultaneously to the same sample to obtain integrated results. That said, challenges and remaining unknowns in the future that persist at this time include the mechanisms by which the gut microbiome affects radiosensitivity, interactions between the gut microbiome and combination treatments, the role of the gut microbiome with regard to predictive and prognostic biomarkers, the need for multi "-omic" approach for in-depth exploration of functional changes and their effects on host-microbiome interactions, and interactions between gut microbiome, microbial metabolites and immune microenvironment.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Chao Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
27
|
Keskey R, Cone JT, DeFazio JR, Alverdy JC. The use of fecal microbiota transplant in sepsis. Transl Res 2020; 226:12-25. [PMID: 32649987 PMCID: PMC7572598 DOI: 10.1016/j.trsl.2020.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
Sepsis is defined as a dysregulated inflammatory response, which ultimately results from a perturbed interaction of both an altered immune system and the biomass and virulence of involved pathogens. This response has been tied to the intestinal microbiota, as the microbiota and its associated metabolites play an essential role in regulating the host immune response to infection. In turn, critical illness as well as necessary health care treatments result in a collapse of the intestinal microbiota diversity and a subsequent loss of health-promoting short chain fatty acids, such as butyrate, leading to the development of a maladaptive pathobiome. These perturbations of the microbiota contribute to the dysregulated immune response and organ failure associated with sepsis. Several case series have reported the ability of fecal microbiota transplant (FMT) to restore the host immune response and aid in recovery of septic patients. Additionally, animal studies have revealed the mechanism of FMT rescue in sepsis is likely related to the ability of FMT to restore butyrate producing bacteria and alter the innate immune response aiding in pathogen clearance. However, several studies have reported lethal complications associated with FMT, including bacteremia. Therefore, FMT in the treatment of sepsis is and should remain investigational until a more detailed mechanism of how FMT restores the host immune response in sepsis is determined, allowing for the development of more fine-tuned microbiota therapies.
Collapse
Affiliation(s)
- Robert Keskey
- Section of General Surgery, Department of Surgery, University of Chicago, Chicago, Illinois
| | - Jennifer T Cone
- Section of Trauma and Acute Care Surgery, Department of Surgery, University of Chicago, Chicago, Illinois
| | - Jennifer R DeFazio
- Division of Pediatric Surgery, New York-Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York
| | - John C Alverdy
- Section of General Surgery, Department of Surgery, University of Chicago, Chicago, Illinois.
| |
Collapse
|
28
|
Kong L, Lloyd-Price J, Vatanen T, Seksik P, Beaugerie L, Simon T, Vlamakis H, Sokol H, Xavier RJ. Linking Strain Engraftment in Fecal Microbiota Transplantation With Maintenance of Remission in Crohn's Disease. Gastroenterology 2020; 159:2193-2202.e5. [PMID: 32860788 PMCID: PMC7725862 DOI: 10.1053/j.gastro.2020.08.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/02/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Crohn's disease (CD) is a chronic gastrointestinal disease resulting from the dysfunctional interplay between genetic susceptibility, the immune system, and commensal intestinal microbiota. Emerging evidence suggests that treatment by suppression of the immune response and replacement of the microbiota through fecal microbiota transplantation (FMT) is a promising approach for the treatment of CD. METHODS We obtained stool metagenomes from CD patients in remission and assessed gut microbiome composition before and after FMT at the species and strain levels. Longitudinal follow-up evaluation allowed us to identify the gain, loss, and strain replacement of specific species and link these events to the maintenance of remission in CD. RESULTS We found that FMT had a significant long-term effect on patient microbial compositions, although this was primarily driven by the engraftment of donor species, which remained at low abundance. Thirty-eight percent of FMT-driven changes were strain replacements, emphasizing the importance of detailed profiling methods, such as metagenomics. Several instances of long-term coexistence between donor and patient strains were also observed. Engraftment of some Actinobacteria, and engraftment or loss of Proteobacteria, were related to better disease outcomes in CD patients who received FMT, and transmission of Bacteroidetes was deleterious. CONCLUSIONS Our results suggest clades that may be beneficial to transmit/eliminate through FMT, and provide criteria that may help identify personalized FMT donors to more effectively maintain remission in CD patients. The framework established here creates a foundation for future studies centered around the application of FMT and defined microbial communities as a therapeutic approach for treating CD.
Collapse
Affiliation(s)
- Lingjia Kong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Tommi Vatanen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Philippe Seksik
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroenterologie, Sorbonne Université, Inserm, 75012, Paris, France.,Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France.,French Group of Fecal Transplantation (GFTF), Paris, France.,Paris Center for Microbiome Medicine (FHU PaCeMM), Paris, France
| | - Laurent Beaugerie
- Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France.,Paris Center for Microbiome Medicine (FHU PaCeMM), Paris, France
| | - Tabassome Simon
- Clinical Research Platform (URC-CRC-CRB), AP-HP Saint-Antoine Hospital, Paris, France.,Department of Clinical Pharmacology, APHP, Saint Antoine Hospital, Paris, France
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Harry Sokol
- Centre de Recherche Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Service de Gastroenterologie, Sorbonne Université, INSERM 75012, Paris, France; Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique-Hopitaux de Paris, Paris, France; French Group of Fecal Transplantation, Paris, France; Paris Center for Microbiome Medicine, Paris, France.
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA,Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Correspondence:;
| |
Collapse
|
29
|
Ferreira RDS, Mendonça LABM, Ribeiro CFA, Calças NC, Guimarães RDCA, Nascimento VAD, Gielow KDCF, Carvalho CME, Castro APD, Franco OL. Relationship between intestinal microbiota, diet and biological systems: an integrated view. Crit Rev Food Sci Nutr 2020; 62:1166-1186. [PMID: 33115284 DOI: 10.1080/10408398.2020.1836605] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The health-disease process can be influenced by the intestinal microbiota. As this plays a fundamental role in protecting the organism, the importance of studying the composition and diversity of this community becomes increasingly evident. Changes in the composition of the intestinal bacterial community may result in dysbiosis, and this process may contribute to triggering various diseases in all biological systems. This imbalance of intestinal microbiota homeostasis may alter commensal bacteria and the host metabolism, as well as immune function. Dysbiosis also causes an increase in intestinal permeability due to exposure to molecular patterns associated with the pathogen and lipopolysaccharides, leading to a chronic inflammatory process that can result in diseases for all biological systems. In this context, dietary intervention through the use of probiotics, prebiotics and antioxidant foods can be considered a contribution to the modulation of intestinal microbiota. Probiotics have been used to provide up to 10 billion colony forming units, and probiotic foods, Kefir and fermented natural yogurt are also used. Prebiotics, in turn, are found in supplemental formulations of processed foods and in functional foods that are also sources of phenolic compounds, such as flavonoids, antioxidant and anti-inflammatory substances, polyunsaturated fatty acids, vitamins, and minerals. In this review, we will discuss the relationship between an imbalance in the intestinal microbiota with the development of diseases, besides indicating the need for future studies that can establish bacterial parameters for the gastrointestinal tract by modulating the intestinal microbiota, associated with the adoption of healthy habits during all life cycles.
Collapse
Affiliation(s)
- Rosângela Dos Santos Ferreira
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Camila Fontoura Acosta Ribeiro
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Natali Camposano Calças
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Valter Aragão do Nascimento
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Karine de Cássia Freitas Gielow
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Alinne Pereira de Castro
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil.,Center of Proteomic and Biochemical Analysis, Post Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia, Distrito Federal, Brazil
| |
Collapse
|
30
|
Naclerio GA, Abutaleb NS, Li D, Seleem MN, Sintim HO. Ultrapotent Inhibitor of Clostridioides difficile Growth, Which Suppresses Recurrence In Vivo. J Med Chem 2020; 63:11934-11944. [PMID: 32960605 DOI: 10.1021/acs.jmedchem.0c01198] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clostridioides difficile is the leading cause of healthcare-associated infection in the U.S. and considered an urgent threat by the Centers for Disease Control and Prevention (CDC). Only two antibiotics, vancomycin and fidaxomicin, are FDA-approved for the treatment of C. difficile infection (CDI), but these therapies still suffer from high treatment failure and recurrence. Therefore, new chemical entities to treat CDI are needed. Trifluoromethylthio-containing N-(1,3,4-oxadiazol-2-yl)benzamides displayed very potent activities [sub-μg/mL minimum inhibitory concentration (MIC) values] against Gram-positive bacteria. Here, we report remarkable antibacterial activity enhancement via halogen substitutions, which afforded new anti-C. difficile agents with ultrapotent activities [MICs as low as 0.003 μg/mL (0.007 μM)] that surpassed the activity of vancomycin against C. difficile clinical isolates. The most promising compound in the series, HSGN-218, is nontoxic to mammalian colon cells and is gut-restrictive. In addition, HSGN-218 protected mice from CDI recurrence. Not only does this work provide a potential clinical lead for the development of C. difficile therapeutics but also highlights dramatic drug potency enhancement via halogen substitution.
Collapse
Affiliation(s)
- George A Naclerio
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana 47907, United States
| | - Daoyi Li
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana 47907, United States
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana 47907, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States.,Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| | - Herman O Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| |
Collapse
|
31
|
Sorbara MT, Littmann ER, Fontana E, Moody TU, Kohout CE, Gjonbalaj M, Eaton V, Seok R, Leiner IM, Pamer EG. Functional and Genomic Variation between Human-Derived Isolates of Lachnospiraceae Reveals Inter- and Intra-Species Diversity. Cell Host Microbe 2020; 28:134-146.e4. [PMID: 32492369 DOI: 10.1016/j.chom.2020.05.005] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/11/2020] [Accepted: 05/06/2020] [Indexed: 02/03/2023]
Abstract
Bacteria belonging to the Lachnospiraceae family are abundant, obligate anaerobic members of the microbiota in healthy humans. Lachnospiraceae impact their hosts by producing short-chain fatty acids, converting primary to secondary bile acids, and facilitating colonization resistance against intestinal pathogens. To increase our understanding of genomic and functional diversity between members of this family, we cultured 273 Lachnospiraceae isolates representing 11 genera and 27 species from human donors and performed whole-genome sequencing assembly and annotation. This analysis revealed substantial inter- and intra-species diversity in pathways that likely influence an isolate's ability to impact host health. These differences are likely to impact colonization resistance through lantibiotic expression or intestinal acidification, influence host mucosal immune cells and enterocytes via butyrate production, or contribute to synergism within a consortium by heterogenous polysaccharide metabolism. Identification of these specific functions could facilitate development of probiotic bacterial consortia that drive and/or restore in vivo microbiome functions.
Collapse
Affiliation(s)
- Matthew T Sorbara
- Duchossois Family Institute, The University of Chicago, Chicago, IL 60637, USA; Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Infectious Diseases and Global Health, The University of Chicago, Chicago, IL 60637, USA.
| | - Eric R Littmann
- Duchossois Family Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Emily Fontana
- Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thomas U Moody
- Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Claire E Kohout
- Duchossois Family Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Mergim Gjonbalaj
- Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vincent Eaton
- Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ruth Seok
- Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ingrid M Leiner
- Duchossois Family Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Eric G Pamer
- Duchossois Family Institute, The University of Chicago, Chicago, IL 60637, USA; Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Infectious Diseases and Global Health, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
32
|
Wang X, Cao Z, Zhang M, Meng L, Ming Z, Liu J. Bioinspired oral delivery of gut microbiota by self-coating with biofilms. SCIENCE ADVANCES 2020; 6:eabb1952. [PMID: 32637620 PMCID: PMC7314526 DOI: 10.1126/sciadv.abb1952] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/08/2020] [Indexed: 05/05/2023]
Abstract
Transplanting beneficial bacteria to the gut microbiome can positively modulate the bacterial composition and remains of great interest in prevention and treatment. However, environmental assaults and rapid transit times in the gastrointestinal (GI) tract result in low oral bioavailability and limited intestinal colonization. Here, we describe a bioinspired strategy of self-coating with biofilms that endows the transplanted gut microbiota with superior resistance and adhesion capacity. Using clinical Bacillus subtilis as a model probiotic bacterium, biofilm-coated probiotics demonstrate substantially improved GI tract tolerance and mucoadhesion in mice and swine. In particular, coated probiotics exhibit a 125-fold higher oral bioavailability and a 17 times greater intestinal colonization than uncoated bacteria in the porcine model. With notable ability to survive and reside in the GI tract, coated bacteria further show a significantly enhanced decolonization effect in mice colonized with Staphylococcus aureus. Self-coating with biofilms suggests a robust platform for oral doses of gut microbiota.
Collapse
|
33
|
Repurposing the Antiamoebic Drug Diiodohydroxyquinoline for Treatment of Clostridioides difficile Infections. Antimicrob Agents Chemother 2020; 64:AAC.02115-19. [PMID: 32253206 DOI: 10.1128/aac.02115-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile, the leading cause of nosocomial infections, is an urgent health threat worldwide. The increased incidence and severity of disease, the high recurrence rates, and the dearth of effective anticlostridial drugs have created an urgent need for new therapeutic agents. In an effort to discover new drugs for the treatment of Clostridioides difficile infections (CDIs), we investigated a panel of FDA-approved antiparasitic drugs against C. difficile and identified diiodohydroxyquinoline (DIHQ), an FDA-approved oral antiamoebic drug. DIHQ exhibited potent activity against 39 C. difficile isolates, inhibiting growth of 50% and 90% of these isolates at concentrations of 0.5 μg/ml and 2 μg/ml, respectively. In a time-kill assay, DIHQ was superior to vancomycin and metronidazole, reducing a high bacterial inoculum by 3 log10 within 6 h. Furthermore, DIHQ reacted synergistically with vancomycin and metronidazole against C. difficile in vitro. Moreover, at subinhibitory concentrations, DIHQ was superior to vancomycin and metronidazole in inhibiting two key virulence factors of C. difficile, toxin production and spore formation. Additionally, DIHQ did not inhibit the growth of key species that compose the host intestinal microbiota, such as Bacteroides, Bifidobacterium, and Lactobacillus spp. Collectively, our results indicate that DIHQ is a promising anticlostridial drug that warrants further investigation as a new therapeutic for CDIs.
Collapse
|
34
|
Ávila PRM, Michels M, Vuolo F, Bilésimo R, Burger H, Milioli MVM, Sonai B, Borges H, Carneiro C, Abatti M, Santana IVV, Michelon C, Dal-Pizzol F. Protective effects of fecal microbiota transplantation in sepsis are independent of the modulation of the intestinal flora. Nutrition 2020; 73:110727. [DOI: 10.1016/j.nut.2020.110727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/02/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
|
35
|
Shui L, Yang X, Li J, Yi C, Sun Q, Zhu H. Gut Microbiome as a Potential Factor for Modulating Resistance to Cancer Immunotherapy. Front Immunol 2020; 10:2989. [PMID: 32010123 PMCID: PMC6978681 DOI: 10.3389/fimmu.2019.02989] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota refers to the diverse community of more than 100 trillion microorganisms residing in our intestines. It is now known that any shift in the composition of gut microbiota from that present during the healthy state in an individual is associated with predisposition to multiple pathological conditions, such as diabetes, autoimmunity, and even cancer. Currently, therapies targeting programmed cell death protein 1/programmed cell death 1 ligand 1 or cytotoxic T-lymphocyte antigen-4 are the focus of cancer immunotherapy and are widely applied in clinical treatment of various tumors. Owing to relatively low overall response rate, however, it has been an ongoing research endeavor to identify the mechanisms or factors for improving the therapeutic efficacy of these immunotherapies. Other than causing mutations that affect gene expression, some gut bacteria may also activate or repress the host's response to immune checkpoint inhibitors. In this review, we have described recent advancements made in understanding the regulatory relationship between gut microbiome and cancer immunotherapy. We have also summarized the potential molecular mechanisms behind this interaction, which can serve as a basis for utilizing different kinds of gut bacteria as promising tools for reversing immunotherapy resistance in cancer.
Collapse
Affiliation(s)
- Lin Shui
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Sun
- Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Affiliation(s)
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
| | | | - Sasha G. Tetu
- Department of Molecular Sciences Macquarie University North Ryde NSW Australia
| | - Michael R. Gillings
- Department of Biological Sciences Macquarie University North Ryde NSW Australia
| |
Collapse
|
37
|
Lin DM, Koskella B, Ritz NL, Lin D, Carroll-Portillo A, Lin HC. Transplanting Fecal Virus-Like Particles Reduces High-Fat Diet-Induced Small Intestinal Bacterial Overgrowth in Mice. Front Cell Infect Microbiol 2019; 9:348. [PMID: 31750259 PMCID: PMC6843071 DOI: 10.3389/fcimb.2019.00348] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is an effective tool for treating Clostridium difficile infection in the setting of dysbiosis of the intestinal microbiome. FMT for other forms of human disorders linked to dysbiosis have been less effective. The fecal microbiota contains a high density of virus-like particles (VLP), up to 90% of which are bacteriophages, thought to have a role in regulating gut bacterial populations. We hypothesized that transplantation of the phage-containing fecal VLP fraction may reduce bacterial density in the dysbiotic setting of small intestinal bacterial overgrowth (SIBO). In an experiment using fecal transplantation, we compared the effect of the fecal VLP fraction (bacteria removed) against “Whole” FMT (bacteria intact) on the ileal microbiome. Recipients were either treated with a 30-day high-fat diet (HFD) as a model of dysbiosis to induce SIBO or were on a standard diet (SD). We observed that transplantation of fecal VLPs from donors on a HFD was sufficient to alter the ileal microbiota, but the effect was dependent on diet of the recipient. In recipients on a HFD, ileal bacterial density was reduced. In recipients on a SD, the ileal microbiome transitioned toward the composition associated with a HFD. In both recipient groups, transplantation of fecal VLP fraction alone produced the same outcome as whole FMT. Neither treatment altered expression of antimicrobial peptides. These findings demonstrated a potential role of VLPs, likely phages, for modifying the gut microbiome during dysbiosis.
Collapse
Affiliation(s)
- Derek M Lin
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Nathaniel L Ritz
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Dongdong Lin
- Mind Research Network, University of New Mexico, Albuquerque, NM, United States
| | | | - Henry C Lin
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM, United States.,Division of Gastroenterology and Hepatology, The University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
38
|
Wang F, Wu J, Wang Y, Jin Y, Jiang X, Qiu Z, Qin Y, Liu Y, Qi X, Ge X, Mao Y, Cheng Y, Hua D. Gut Microbiota Functional Biomolecules With Immune-Lipid Metabolism for a Prognostic Compound Score in Epstein-Barr Virus-Associated Gastric Adenocarcinoma: A Pilot Study. Clin Transl Gastroenterol 2019; 10:e00074. [PMID: 31609743 PMCID: PMC6884346 DOI: 10.14309/ctg.0000000000000074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Increasing evidence has indicated an association between gut microbiota in gastrointestinal cancer and clinical outcome. Herein, we aim to develop a prognosis-prediction tool based on an immune-lipid metabolism signature, tumor cell-associated immune microenvironment, and lipid metabolism proteins inferred from the function of gut microbiota. METHODS 16S gene ribosomal RNA sequencing was performed on 10 fecal samples obtained after tumor resection but before chemotherapy (EBVaGC = 4 and EBVnGC = 6). Least absolute shrinkage and selection operator (LASSO) Cox regression was applied to screening for highly accurate marker proteins. A compound score based on the fraction of screened markers was then constructed using a LASSO logistic regression model. RESULTS The Tax4Fun analysis based on Kyoto Encyclopedia of Genes and Genomes data indicated differentially expressed tumor pathway between EBVnGC and EBVaGC. Using the LASSO logistic model, a compound score was established consisting of 14 types of immune microenvironment and lipid metabolism proteins. In the training set (378 patients), significant differences were found between high- and low-compound score groups in overall survival across and within subpopulations with an identical EBV. Multivariable analysis revealed that the compound score was an independent prognostic factor (hazard ratio, 2.26; 95% confidence interval = 2.28-3.36). The prognostic value ;of the compound score was also confirmed in the validation (162 patients) and entire (540 patients) sets. DISCUSSION The proposed compound score is a promising signature for estimating overall survival in patients with gastric cancer having EBVaGCs or EBVnGCs.
Collapse
Affiliation(s)
- Fang Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jingyi Wu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry & Biotechnology (Jiangnan University), Ministry of Education, Wuxi, China
| | - Yufen Jin
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xin Jiang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhichao Qiu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry & Biotechnology (Jiangnan University), Ministry of Education, Wuxi, China
| | - Yan Qin
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yankui Liu
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaowei Qi
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaosong Ge
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yang Cheng
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dong Hua
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
39
|
Gazerani P. Probiotics for Parkinson's Disease. Int J Mol Sci 2019; 20:E4121. [PMID: 31450864 PMCID: PMC6747430 DOI: 10.3390/ijms20174121] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a complex neurological disorder classically characterized by impairments in motor system function associated with loss of dopaminergic neurons in the substantia nigra. After almost 200 years since the first description of PD by James Parkinson, unraveling the complexity of PD continues to evolve. It is now recognized that an interplay between genetic and environmental factors influences a diverse range of cellular processes, reflecting on other clinical features including non-motor symptoms. This has consequently highlighted the extensive value of early clinical diagnosis to reduce difficulties of later stage management of PD. Advancement in understanding of PD has made remarkable progress in introducing new tools and strategies such as stem cell therapy and deep brain stimulation. A link between alterations in gut microbiota and PD has also opened a new line. Evidence exists of a bidirectional pathway between the gastrointestinal tract and the central nervous system. Probiotics, prebiotics and synbiotics are being examined that might influence gut-brain axis by altering gut microbiota composition, enteric nervous system, and CNS. This review provides status on use of probiotics for PD. Limitations and future directions will also be addressed to promote further research considering use of probiotics for PD.
Collapse
Affiliation(s)
- Parisa Gazerani
- Biomedicine: Department of Health Science and Technology, Faculty of Medicine, Aalborg University,Frederik Bajers Vej 3B, 9220 Aalborg East, Denmark.
| |
Collapse
|
40
|
Fan P, Nelson CD, Driver JD, Elzo MA, Jeong KC. Animal Breed Composition Is Associated With the Hindgut Microbiota Structure and β-Lactam Resistance in the Multibreed Angus-Brahman Herd. Front Microbiol 2019; 10:1846. [PMID: 31456774 PMCID: PMC6700273 DOI: 10.3389/fmicb.2019.01846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/26/2019] [Indexed: 01/03/2023] Open
Abstract
Antibiotics have been widely used in livestock to treat and prevent bacterial diseases. However, use of antibiotics has led to the emergence of antibiotic resistant microorganisms (ARMs) in food animals. Due to the decreased efficacy of antibiotics, alternatives to antibiotics that can reduce infectious diseases in food animals to enhance animal health and growth performance are urgently required. Here, we show that animal genetics is associated with the hindgut microbiome, which is related to fat deposition and beta-lactam resistance in the gastrointestinal tract. We investigated the hindgut microbiota structure in 95 postweaning heifers belonging to the unique multibreed Angus-Brahman herd with breed composition ranging from 100% Angus to 100% Brahman. The hindgut microbial composition of postweaning heifers differed among breed groups. The mucin-degrading bacterium Akkermansia known for promoting energy expenditure was enriched in Brahman calves that contained less intramuscular fat content, while butyrate-producing bacterium Faecalibacterium was linearly positively correlated with Angus proportion. Moreover, the higher relative abundance of beta-lactam resistant genes including ampC gene and arcA gene was associated with the greater Brahman proportion. As the first study aimed at understanding changes in hindgut microbiota among beef cattle with linear gradient of breed composition and its association with marbling in meat, our results suggest that the effects of animal genetics on the gut microbiota structure is associated with fat deposition and potentially a factor affecting the gut antimicrobial resistance.
Collapse
Affiliation(s)
- Peixin Fan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Corwin D Nelson
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - J Danny Driver
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Mauricio A Elzo
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Kwangcheol Casey Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
Miro-Blanch J, Yanes O. Epigenetic Regulation at the Interplay Between Gut Microbiota and Host Metabolism. Front Genet 2019; 10:638. [PMID: 31338107 PMCID: PMC6628876 DOI: 10.3389/fgene.2019.00638] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023] Open
Abstract
Gut microbiota communities have coevolved for millions of years in a symbiotic relationship with their mammalian hosts. Elucidating and understanding the molecular mechanisms by which microbiota interacts with its host and how this contributes to the homeostasis of the host is crucial. One of these molecular relationships is the so-called chemical crosstalk between microbiota and host metabolisms, including the poorly explored epigenetic regulation of host tissues by the metabolic activity of gut microbiota in response to changes in diet. DNA methylation and histone modifications are epigenetic marks partly regulated by enzymes such as methylases and acetylases, whose activity depend on host and microbiota metabolites that act as substrates and cofactors for these reactions. However, providing a complete mechanistic description of the regulatory interactions between both metabolisms and the impact on the expression of host genes through an epigenetic modulation, remains elusive. This article presents our perspective on how metabolomic, metagenomic, transcriptomic, and epigenomic data can be used to investigate the "microbiota-nutrient metabolism-epigenetics axis." We also discuss the implications and opportunities this knowledge may have for basic and applied science, such as the impact on the way we structure future research, understand, and prevent diseases like type 2 diabetes or obesity.
Collapse
Affiliation(s)
- Joan Miro-Blanch
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Oscar Yanes
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
42
|
Henrot C, Kuksin M. [The intestinal virobiota, a new component in the interactions between the microbiota and the immune system]. Med Sci (Paris) 2019; 35:578-580. [PMID: 31274092 DOI: 10.1051/medsci/2019113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Caroline Henrot
- École normale supérieure de Lyon, département de biologie, Master biologie, Lyon, France
| | - Maria Kuksin
- École normale supérieure de Lyon, département de biologie, Master biologie, Lyon, France
| |
Collapse
|
43
|
Xia GH, You C, Gao XX, Zeng XL, Zhu JJ, Xu KY, Tan CH, Xu RT, Wu QH, Zhou HW, He Y, Yin J. Stroke Dysbiosis Index (SDI) in Gut Microbiome Are Associated With Brain Injury and Prognosis of Stroke. Front Neurol 2019; 10:397. [PMID: 31068891 PMCID: PMC6491752 DOI: 10.3389/fneur.2019.00397] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Significant dysbiosis occurs in the gut microbiome of stroke patients. Condensing these broad, complex changes into one index would greatly facilitate the clinical usage of gut microbiome data. Here, we formulated a gut microbiota index in patients with acute ischemic stroke based on their gut microbiota dysbiosis patterns and tested whether the index was correlated with brain injury and early outcome. Methods: A total of 104 patients with acute ischemic stroke and 90 healthy individuals were recruited, and their gut microbiotas were compared and to model a Stroke Dysbiosis Index (SDI), which representing stroke-associated dysbiosis patterns overall. Another 83 patients and 70 controls were recruited for validation. The association of SDI with stroke severity (National Institutes of Health Stroke Scale [NIHSS] score) and outcome (modified Rankin scale [mRS] score: favorable, 0–2; unfavorable, >2) at discharge was also assessed. A middle cerebral artery occlusion (MCAO) model was used in human flora-associated (HFA) animals to explore the causal relationship between gut dysbiosis and stroke outcome. Results: Eighteen genera were significantly different between stroke patients and healthy individuals. The SDI formula was devised based on these microbiome differences; SDI was significantly higher in stroke patients than in healthy controls. SDI alone discriminated stroke patients from controls with AUCs of 74.9% in the training cohort and 84.3% in the validation cohort. SDI was significantly and positively correlated with NIHSS score on admission and mRS score at discharge. Logistic regression analysis showed that SDI was an independent predictor of severe stroke (NIHSS ≥8) and early unfavorable outcome (mRS >2). Mice receiving fecal transplants from high-SDI patients developed severe brain injury with elevated IL-17+ γδ T cells in gut compared to mice receiving transplants from low-SDI patients (all P < 0.05). Conclusions: We developed an index to measure gut microbiota dysbiosis in stroke patients; this index was significantly correlated with patients' outcome and was causally related to outcome in a mouse model of stroke. Our model facilitates the potential clinical application of gut microbiota data in stroke and adds quantitative evidence linking the gut microbiota to stroke.
Collapse
Affiliation(s)
- Geng-Hong Xia
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao You
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurology, The First People's Hospital of Zunyi, Zunyi, China
| | - Xu-Xuan Gao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiu-Li Zeng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Jia Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai-Yu Xu
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chu-Hong Tan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruo-Ting Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi-Heng Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Wei Zhou
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yan He
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
44
|
Quigley L, Coakley M, Alemayehu D, Rea MC, Casey PG, O’Sullivan Ó, Murphy E, Kiely B, Cotter PD, Hill C, Ross RP. Lactobacillus gasseri APC 678 Reduces Shedding of the Pathogen Clostridium difficile in a Murine Model. Front Microbiol 2019; 10:273. [PMID: 30842760 PMCID: PMC6391587 DOI: 10.3389/fmicb.2019.00273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/01/2019] [Indexed: 01/09/2023] Open
Abstract
Clostridium difficile is a common cause of health-care acquired diarrhea, resulting in a spectrum of disease from mild diarrhea to life-threatening illness. Sixty Lactobacillus strains were screened for anti-C. difficile activity using a co-culture method. Based on their ability to inhibit C. difficile, L. gasseri APC 678 and L. rhamnosus DPC 6111 were selected for study in a murine model of C. difficile infection. L. gasseri ATCC 33323, was included as a control. It was established that, relative to control mice not fed Lactobacillus, feeding with L. gasseri APC 678 resulted in a significant reduction by day 7 (8-fold, p = 0.017) of viable C. difficile VPI 10463 in the feces of mice. In contrast, neither L. rhamnosus DPC 6111 nor L. gasseri ATCC 33323 significantly reduced fecal C. difficile shedding. Sequencing of the cecal microbiota showed that in mice fed L. gasseri APC 678 there was a significant increase in bacterial diversity across a number of indices when compared to the control or other Lactobacillus-fed groups. There was no significant change in the relative abundance of Firmicutes or Bacteroidetes in the group fed L. gasseri APC 678 relative to the control, while the groups fed L. rhamnosus DPC 6111 or L. gasseri ATCC 33323 showed a significant decrease in the relative abundance of Firmicutes (p = 0.002 and p = 0.019, respectively) and a significant increase in Bacteroidetes (p = 0.002 and p = 0.023, respectively). These results highlight the potential of L. gasseri APC 678 as a live therapeutic agent to target C. difficile infection.
Collapse
Affiliation(s)
- Lisa Quigley
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mairéad Coakley
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Debebe Alemayehu
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mary C. Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Patrick G. Casey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Órla O’Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
45
|
Zarei S, Eggert J, Franqui-Dominguez L, Carl Y, Boria F, Stukova M, Avila A, Rubi C, Chinea A. Comprehensive review of neuromyelitis optica and clinical characteristics of neuromyelitis optica patients in Puerto Rico. Surg Neurol Int 2018; 9:242. [PMID: 30603227 PMCID: PMC6293609 DOI: 10.4103/sni.sni_224_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Neuromyelitis optica (NMO) is an immune-mediated inflammatory disorder of the central nervous system. It is characterized by concurrent inflammation and demyelination of the optic nerve (optic neuritis [ON]) and the spinal cord (myelitis). Multiple studies show variations in prevalence, clinical, and demographic features of NMO among different populations. In addition, ethnicity and race are known as important factors on disease phenotype and clinical outcomes. There are little data on information about NMO patients in underserved groups, including Puerto Rico (PR). In this research, we will provide a comprehensive overview of all aspects of NMO, including epidemiology, environmental risk factors, genetic factors, molecular mechanism, symptoms, comorbidities and clinical differentiation, diagnosis, treatment, its management, and prognosis. We will also evaluate the demographic features and clinical phenotype of NMO patients in PR. This will provide a better understanding of NMO and establish a basis of knowledge that can be used to improve care. Furthermore, this type of population-based study can distinguish the clinical features variation among NMO patients and will provide insight into the potential mechanisms that cause these variations.
Collapse
Affiliation(s)
- Sara Zarei
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - James Eggert
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | | | - Yonatan Carl
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Fernando Boria
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Marina Stukova
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | | | - Cristina Rubi
- Caribbean Neurological Center, Guaynabo, Puerto Rico, USA
| | - Angel Chinea
- Caribbean Neurological Center, Guaynabo, Puerto Rico, USA
| |
Collapse
|
46
|
Fang X. Microbial treatment: the potential application for Parkinson's disease. Neurol Sci 2018; 40:51-58. [PMID: 30415447 DOI: 10.1007/s10072-018-3641-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
Alterations in the composition of the intestinal flora are associated with the pathophysiology of Parkinson's disease (PD). More importantly, the possible cause-effect links between gut flora and PD pathogenesis have been identified using PD animal models. Recent studies have found that probiotics improve the symptoms associated with constipation in PD patients. In addition, fecal microbiota transplantation (FMT) was recently shown to provide a protective effect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice. Effective microbial therapy for PD includes probiotics and FMT. Therefore, microbial therapy may be a useful and novel approach for treatment of PD. In this review, I discuss the use of microbial treatment in PD.
Collapse
Affiliation(s)
- Xin Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
47
|
Coleman M, Elkins C, Gutting B, Mongodin E, Solano-Aguilar G, Walls I. Microbiota and Dose Response: Evolving Paradigm of Health Triangle. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2018; 38:2013-2028. [PMID: 29900563 DOI: 10.1111/risa.13121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 01/31/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
SRA Dose-Response and Microbial Risk Analysis Specialty Groups jointly sponsored symposia that addressed the intersections between the "microbiome revolution" and dose response. Invited speakers presented on innovations and advances in gut and nasal microbiota (normal microbial communities) in the first decade after the Human Microbiome Project began. The microbiota and their metabolites are now known to influence health and disease directly and indirectly, through modulation of innate and adaptive immune systems and barrier function. Disruption of healthy microbiota is often associated with changes in abundance and diversity of core microbial species (dysbiosis), caused by stressors including antibiotics, chemotherapy, and disease. Nucleic-acid-based metagenomic methods demonstrated that the dysbiotic host microbiota no longer provide normal colonization resistance to pathogens, a critical component of innate immunity of the superorganism. Diverse pathogens, probiotics, and prebiotics were considered in human and animal models (in vivo and in vitro). Discussion included approaches for design of future microbial dose-response studies to account for the presence of the indigenous microbiota that provide normal colonization resistance, and the absence of the protective microbiota in dysbiosis. As NextGen risk analysis methodology advances with the "microbiome revolution," a proposed new framework, the Health Triangle, may replace the old paradigm based on the Disease Triangle (focused on host, pathogen, and environment) and germophobia. Collaborative experimental designs are needed for testing hypotheses about causality in dose-response relationships for pathogens present in our environments that clearly compete in complex ecosystems with thousands of bacterial species dominating the healthy superorganism.
Collapse
|
48
|
Ding C, Tang W, Fan X, Wu G. Intestinal microbiota: a novel perspective in colorectal cancer biotherapeutics. Onco Targets Ther 2018; 11:4797-4810. [PMID: 30147331 PMCID: PMC6097518 DOI: 10.2147/ott.s170626] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is believed that genetic factors, immune system dysfunction, chronic inflammation, and intestinal microbiota (IM) dysbiosis contribute to the pathogenesis of colorectal cancer (CRC). The beneficial role played by the direct regulation of IM in inflammatory bowel disease treatment is identified by the decreased growth of harmful bacteria and the increased production of anti-inflammatory factors. Interestingly, gut microbiota has been proven to inhibit tumor formation and progression in inflammation/carcinogen-induced CRC mouse models. Recently, evidence has indicated that IM is involved in the negative regulation of tumor immune response in tumor microenvironment, which then abolishes or accelerates anticancer immunotherapy in several tumor animals. In clinical trials, a benefit of IM-based CRC therapies in improving the intestinal immunity balance, epithelial barrier function, and quality of life has been reported. Meanwhile, specific microbiota signature can modulate host's sensitivity to chemo-/radiotherapy and the prognosis of CRC patients. In this review, we aim to 1) summarize the potential methods of IM-based therapeutics according to the recent results; 2) explore its roles and underlying mechanisms in combination with other therapies, especially in biotherapeutics; 3) discuss its safety, deficiency, and future perspectives.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
| | - Wendong Tang
- Medical School of Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
| |
Collapse
|
49
|
Bauer E, Thiele I. From metagenomic data to personalized in silico microbiotas: predicting dietary supplements for Crohn's disease. NPJ Syst Biol Appl 2018; 4:27. [PMID: 30083388 PMCID: PMC6068170 DOI: 10.1038/s41540-018-0063-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
Crohn's disease (CD) is associated with an ecological imbalance of the intestinal microbiota, consisting of hundreds of species. The underlying complexity as well as individual differences between patients contributes to the difficulty to define a standardized treatment. Computational modeling can systematically investigate metabolic interactions between gut microbes to unravel mechanistic insights. In this study, we integrated metagenomic data of CD patients and healthy controls with genome-scale metabolic models into personalized in silico microbiotas. We predicted short chain fatty acid (SFCA) levels for patients and controls, which were overall congruent with experimental findings. As an emergent property, low concentrations of SCFA were predicted for CD patients and the SCFA signatures were unique to each patient. Consequently, we suggest personalized dietary treatments that could improve each patient's SCFA levels. The underlying modeling approach could aid clinical practice to find dietary treatment and guide recovery by rationally proposing food aliments.
Collapse
Affiliation(s)
- Eugen Bauer
- Luxembourg Centre for Systems Biomedicine, Universite du Luxembourg, Esch-sur-Alzette, Luxembourg, L-4362 Luxembourg
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, Universite du Luxembourg, Esch-sur-Alzette, Luxembourg, L-4362 Luxembourg
| |
Collapse
|
50
|
McCormack UM, Curião T, Wilkinson T, Metzler-Zebeli BU, Reyer H, Ryan T, Calderon-Diaz JA, Crispie F, Cotter PD, Creevey CJ, Gardiner GE, Lawlor PG. Fecal Microbiota Transplantation in Gestating Sows and Neonatal Offspring Alters Lifetime Intestinal Microbiota and Growth in Offspring. mSystems 2018; 3:e00134-17. [PMID: 29577087 PMCID: PMC5864416 DOI: 10.1128/msystems.00134-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/16/2018] [Indexed: 12/29/2022] Open
Abstract
Previous studies suggest a link between intestinal microbiota and porcine feed efficiency (FE). Therefore, we investigated whether fecal microbiota transplantation (FMT) in sows and/or neonatal offspring, using inocula derived from highly feed-efficient pigs, could improve offspring FE. Pregnant sows were assigned to control or FMT treatments and the subsequent offspring to control treatment, FMT once (at birth), or FMT four times (between birth and weaning). FMT altered sow fecal and colostrum microbiota compositions and resulted in lighter offspring body weight at 70 and 155 days of age when administered to sows and/or offspring. This was accompanied by FMT-associated changes within the offspring's intestinal microbiota, mostly in the ileum. These included transiently higher fecal bacterial diversity and load and numerous compositional differences at the phylum and genus levels (e.g., Spirochaetes and Bacteroidetes at high relative abundances and mostly members of Clostridia, respectively), as well as differences in the abundances of predicted bacterial pathways. In addition, intestinal morphology was negatively impacted, duodenal gene expression altered, and serum protein and cholesterol concentrations reduced due to FMT in sows and/or offspring. Taken together, the results suggest poorer absorptive capacity and intestinal health, most likely explaining the reduced body weight. An additive effect of FMT in sows and offspring also occurred for some parameters. Although these findings have negative implications for the practical use of the FMT regime used here for improving FE in pigs, they nonetheless demonstrate the enormous impact of early-life intestinal microbiota on the host phenotype. IMPORTANCE Here, for the first time, we investigate FMT as a novel strategy to modulate the porcine intestinal microbiota in an attempt to improve FE in pigs. However, reprogramming the maternal and/or offspring microbiome by using fecal transplants derived from highly feed-efficient pigs did not recapitulate the highly efficient phenotype in the offspring and, in fact, had detrimental effects on lifetime growth. Although these findings may not be wholly attributable to microbiota transplantation, as antibiotic and purgative were also part of the regime in sows, similar effects were also seen in offspring, in which these interventions were not used. Nonetheless, additional work is needed to unravel the effects of each component of the FMT regime and to provide additional mechanistic insights. This may lead to the development of an FMT procedure with practical applications for the improvement of FE in pigs, which could in turn improve the profitability of pig production.
Collapse
Affiliation(s)
- Ursula M. McCormack
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Tânia Curião
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Toby Wilkinson
- Animal and Microbial Sciences, Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Barbara U. Metzler-Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Henry Reyer
- Leibeniz institute (FBN), Dummerstorf, Germany
| | - Tomas Ryan
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Julia A. Calderon-Diaz
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
- Department of Animal Behaviour and Welfare, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Magdalenka, Poland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- APC Microbiome Institute, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- APC Microbiome Institute, Cork, Ireland
| | - Christopher J. Creevey
- Animal and Microbial Sciences, Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Gillian E. Gardiner
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Peadar G. Lawlor
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|