6
|
Bertolini TB, Biswas M, Terhorst C, Daniell H, Herzog RW, Piñeros AR. Role of orally induced regulatory T cells in immunotherapy and tolerance. Cell Immunol 2020; 359:104251. [PMID: 33248367 DOI: 10.1016/j.cellimm.2020.104251] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022]
Abstract
Oral antigen administration to induce regulatory T cells (Treg) takes advantage of regulatory mechanisms that the gastrointestinal tract utilizes to promote unresponsiveness against food antigens or commensal microorganisms. Recently, antigen-based oral immunotherapies (OITs) have shown efficacy as treatment for food allergy and autoimmune diseases. Similarly, OITs appear to prevent anti-drug antibody responses in replacement therapy for genetic diseases. Intestinal epithelial cells and microbiota possibly condition dendritic cells (DC) toward a tolerogenic phenotype that induces Treg via expression of several mediators, e.g. IL-10, transforming growth factor-β, retinoic acid. Several factors, such as metabolites derived from microbiota or diet, impact the stability and expansion of these induced Treg, which include, but are not limited to, FoxP3+ Treg, LAP+ Treg, and/or Tr1 cells. Here, we review various orally induced Treg, their plasticity and cooperation between the Treg subsets, as well as underlying mechanisms controlling their induction and role in oral tolerance.
Collapse
Affiliation(s)
- Thais B Bertolini
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Annie R Piñeros
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
9
|
Costes LMM, Lindenbergh-Kortleve DJ, van Berkel LA, Veenbergen S, Raatgeep HRC, Simons-Oosterhuis Y, van Haaften DH, Karrich JJ, Escher JC, Groeneweg M, Clausen BE, Cupedo T, Samsom JN. IL-10 signaling prevents gluten-dependent intraepithelial CD4 + cytotoxic T lymphocyte infiltration and epithelial damage in the small intestine. Mucosal Immunol 2019; 12:479-490. [PMID: 30542112 DOI: 10.1038/s41385-018-0118-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/18/2018] [Accepted: 11/16/2018] [Indexed: 02/04/2023]
Abstract
Breach of tolerance to gluten leads to the chronic small intestinal enteropathy celiac disease. A key event in celiac disease development is gluten-dependent infiltration of activated cytotoxic intraepithelial lymphocytes (IELs), which cytolyze epithelial cells causing crypt hyperplasia and villous atrophy. The mechanisms leading to gluten-dependent small intestinal IEL infiltration and activation remain elusive. We have demonstrated that under homeostatic conditions in mice, gluten drives the differentiation of anti-inflammatory T cells producing large amounts of the immunosuppressive cytokine interleukin-10 (IL-10). Here we addressed whether this dominant IL-10 axis prevents gluten-dependent infiltration of activated cytotoxic IEL and subsequent small intestinal enteropathy. We demonstrate that IL-10 regulation prevents gluten-induced cytotoxic inflammatory IEL infiltration. In particular, IL-10 suppresses gluten-induced accumulation of a specialized population of cytotoxic CD4+CD8αα+ IEL (CD4+ CTL) expressing Tbx21, Ifng, and Il21, and a disparate non-cytolytic CD4+CD8α- IEL population expressing Il17a, Il21, and Il10. Concomitantly, IL-10 suppresses gluten-dependent small intestinal epithelial hyperproliferation and upregulation of stress-induced molecules on epithelial cells. Remarkably, frequencies of granzyme B+CD4+CD8α+ IEL are increased in pediatric celiac disease patient biopsies. These findings demonstrate that IL-10 is pivotal to prevent gluten-induced small intestinal inflammation and epithelial damage, and imply that CD4+ CTL are potential new players into these processes.
Collapse
Affiliation(s)
- L M M Costes
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands
| | - D J Lindenbergh-Kortleve
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands
| | - L A van Berkel
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands
| | - S Veenbergen
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands
| | - H R C Raatgeep
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands
| | - Y Simons-Oosterhuis
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands
| | - D H van Haaften
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands
| | - J J Karrich
- Department of Hematology, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - J C Escher
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - M Groeneweg
- Department of Pediatrics, Maasstad Hospital, Rotterdam, 3079 DZ, The Netherlands
| | - B E Clausen
- Institute for Molecular Medicine, University Medical Center of Johannes Gutenberg University, Mainz, 55131, Germany
| | - T Cupedo
- Department of Hematology, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - J N Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands.
| |
Collapse
|
11
|
Bouziat R, Hinterleitner R, Brown JJ, Stencel-Baerenwald JE, Ikizler M, Mayassi T, Meisel M, Kim SM, Discepolo V, Pruijssers AJ, Ernest JD, Iskarpatyoti JA, Costes LMM, Lawrence I, Palanski BA, Varma M, Zurenski MA, Khomandiak S, McAllister N, Aravamudhan P, Boehme KW, Hu F, Samsom JN, Reinecker HC, Kupfer SS, Guandalini S, Semrad CE, Abadie V, Khosla C, Barreiro LB, Xavier RJ, Ng A, Dermody TS, Jabri B. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 2017; 356:44-50. [PMID: 28386004 PMCID: PMC5506690 DOI: 10.1126/science.aah5298] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/22/2017] [Indexed: 12/11/2022]
Abstract
Viral infections have been proposed to elicit pathological processes leading to the initiation of T helper 1 (TH1) immunity against dietary gluten and celiac disease (CeD). To test this hypothesis and gain insights into mechanisms underlying virus-induced loss of tolerance to dietary antigens, we developed a viral infection model that makes use of two reovirus strains that infect the intestine but differ in their immunopathological outcomes. Reovirus is an avirulent pathogen that elicits protective immunity, but we discovered that it can nonetheless disrupt intestinal immune homeostasis at inductive and effector sites of oral tolerance by suppressing peripheral regulatory T cell (pTreg) conversion and promoting TH1 immunity to dietary antigen. Initiation of TH1 immunity to dietary antigen was dependent on interferon regulatory factor 1 and dissociated from suppression of pTreg conversion, which was mediated by type-1 interferon. Last, our study in humans supports a role for infection with reovirus, a seemingly innocuous virus, in triggering the development of CeD.
Collapse
Affiliation(s)
- Romain Bouziat
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Reinhard Hinterleitner
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Judy J Brown
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer E Stencel-Baerenwald
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mine Ikizler
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Toufic Mayassi
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Marlies Meisel
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Sangman M Kim
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Valentina Discepolo
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, and CeInGe-Biotecnologie Avanzate, Naples, Italy
| | - Andrea J Pruijssers
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordan D Ernest
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Jason A Iskarpatyoti
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Léa M M Costes
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Ian Lawrence
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Brad A Palanski
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Mukund Varma
- Division of Gastroenterology, Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Matthew A Zurenski
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Solomiia Khomandiak
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicole McAllister
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pavithra Aravamudhan
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karl W Boehme
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fengling Hu
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Hans-Christian Reinecker
- Division of Gastroenterology, Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sonia S Kupfer
- Department of Medicine, University of Chicago, Chicago, IL, USA
- University of Chicago Celiac Disease Center, University of Chicago, Chicago, IL, USA
| | - Stefano Guandalini
- University of Chicago Celiac Disease Center, University of Chicago, Chicago, IL, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Carol E Semrad
- Department of Medicine, University of Chicago, Chicago, IL, USA
- University of Chicago Celiac Disease Center, University of Chicago, Chicago, IL, USA
| | - Valérie Abadie
- Department of Microbiology, Infectiology, and Immunology, University of Montreal, and the Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Stanford University, Stanford, California, USA
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Ramnik J Xavier
- Division of Gastroenterology, Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Aylwin Ng
- Division of Gastroenterology, Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Terence S Dermody
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- University of Chicago Celiac Disease Center, University of Chicago, Chicago, IL, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| |
Collapse
|