1
|
Ducreux B, Patrat C, Firmin J, Ferreux L, Chapron C, Marcellin L, Parpex G, Bourdon M, Vaiman D, Santulli P, Fauque P. Systematic review on the DNA methylation role in endometriosis: current evidence and perspectives. Clin Epigenetics 2025; 17:32. [PMID: 39985111 PMCID: PMC11846336 DOI: 10.1186/s13148-025-01828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/30/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Endometriosis appears to have a multilayered etiology, with genetic and epigenetic factors each contributing half of the pathogenesis. The molecular processes that underlie the onset of endometriosis are yet unclear, but it is assumed that an important contributor in the etiopathology of the disease is DNA methylation. METHODS We conducted a systematic review of the literature regarding DNA methylation in endometriosis following PRISMA guidelines. Records were obtained from PubMed and Web of Science on May 31, 2024. Original research articles analyzing regional or genome-wide DNA methylation in patients with confirmed endometriosis (by surgery and/or histological examination) were given consideration for inclusion. Only human studies were included, and there were no restrictions on the types of tissue that was analyzed (i.e., endometrium, blood, or fetal tissue). The study selection process was run by two manual reviewers. In parallel, an adapted virtual artificial intelligence-powered reviewer operated study selection and results were compared with the manual reviewers' selection. Studies were divided into targeted (e.g., single gene or region level) and epigenome-wide association studies. For each, we extracted a list of genes studied with precise location of CpGs analyzed and the DNA methylation status according to the groups compared. Quality assessment of studies was performed following the Newcastle-Ottawa scale. Quality of evidence was graded following the Grading of Recommendations Assessment, Development and Evaluation. RESULTS A total of 955 studies were screened, and 70 were identified as relevant for systematic review. Our analyses displayed that endometriosis could be polyepigenetic and with alterations in specific genes implicated in major signaling pathways contributing to the disease etiopathology (cell proliferation, differentiation, and division [PI3K-Akt and Wnt-signaling pathway], cell division [MAPK pathway], cell adhesion, cell communication, developmental processes, response to hormone, apoptosis, immunity, neurogenesis, and cancer). CONCLUSION Our systematic review indicates that endometriosis is associated with DNA methylation modifications at specific genes involved in key endometrial biological processes, particularly in the ectopic endometrium. As DNA methylation appears to be an integral component of the pathogenesis of endometriosis, the identification of DNA methylation biomarkers would likely help better understand its causes and aggravating factors as well as potentially facilitate its diagnosis and support the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Bastien Ducreux
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Centre Hospitalier Universitaire (CHU), Faculty of Medicine, INSERM 1231, Université de Bourgogne-Europe, Dijon, France
| | - Catherine Patrat
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Department of Reproductive Biology-CECOS, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France
| | - Julie Firmin
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Department of Reproductive Biology-CECOS, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France
| | - Lucile Ferreux
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Department of Reproductive Biology-CECOS, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France
| | - Charles Chapron
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Department of Gynecology-Obstetric and Assisted Reproduction, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France
| | - Louis Marcellin
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Department of Gynecology-Obstetric and Assisted Reproduction, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France
| | - Guillaume Parpex
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Department of Gynecology-Obstetric and Assisted Reproduction, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France
| | - Mathilde Bourdon
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Department of Gynecology-Obstetric and Assisted Reproduction, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France
| | - Daniel Vaiman
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
| | - Pietro Santulli
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Department of Gynecology-Obstetric and Assisted Reproduction, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France
| | - Patricia Fauque
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France.
- Department of Reproductive Biology-CECOS, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France.
| |
Collapse
|
2
|
Atmaca HN, Gun S, Onal M, Tural S. Promoter methylation status of RASSF1A and RASSF2A tumor suppressor genes in endometrial endometrioid carcinomas. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1369-1381. [PMID: 38830238 DOI: 10.1080/15257770.2024.2356744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/04/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
We aimed to investigate the promoter methylation status of RASSF1A and RASSF2A tumor suppressor genes in endometrial endometrioid carcinomas with p53 wild type and mismatch repair proficient. Genomic DNAs were isolated from 50 specimens (15 formalin-fixed paraffin embedded tumor tissues, 15 paired blood samples and 20 normal endometrial tissues). Bisulfide modification and methylation-specific polymerase chain reaction were performed. As a result of the study, while no significance was found for RASSF1A gene (p = 0.08), a statistically significance was found for RASSF2A gene (p < 0.001), RASSF2A gene methylation status was also found higher in high grade tumors, advanced age (≥50) and nonsmokers groups. Our results indicate that RASSF2A gene may play a role in the carcinogenesis of endometrioid and it could be potential biomarker for early detection for endometrioid carcinoma. Further and larger investigations are needed to confirm our results.
Collapse
Affiliation(s)
- Habibe Nur Atmaca
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Türkiye
| | - Seda Gun
- Department of Pathology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Türkiye
| | - Mesut Onal
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Türkiye
| | - Sengul Tural
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Türkiye
| |
Collapse
|
3
|
Khan NA, Elsori D, Rashid G, Tamanna S, Chakraborty A, Farooqi A, Kar A, Sambyal N, Kamal MA. Unraveling the relationship between the renin-angiotensin system and endometrial cancer: a comprehensive review. Front Oncol 2023; 13:1235418. [PMID: 37869088 PMCID: PMC10585148 DOI: 10.3389/fonc.2023.1235418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023] Open
Abstract
Endometrial cancer (EC), the most common adenocarcinoma, represents 90% of uterine cancer in women with an increased incidence of occurrence attributed to age, obesity, hypertension, and hypoestrogenism. Being the most common gynecological malignancy in women, it shows a relation with the activation of different components of the renin-angiotensin system (RAS), which is predominantly involved in maintaining blood pressure, salt, water, and aldosterone secretion, thereby playing a significant role in the etiology of hypertension. The components of the RAS, i.e., ACE-I, ACE-II, AT1R, AT2R, and Pro(renin) receptor, are widely expressed in both glandular and stromal cells of the endometrium, with varying levels throughout the different phases of the menstrual cycle. This causes the endometrial RAS to implicate angiogenesis, neovascularization, and cell proliferation. Thus, dysfunctioning of the endometrial RAS could predispose the growth and spread of EC. Interestingly, the increased expression of AngII, AGTR1, and AGTR2 showed advancement in the stages and progression of EC via the prorenin/ATP6AP2 and AngII/AGTR1 pathway. Therefore, this review corresponds to unraveling the relationship between the progression and development of endometrial cancer with the dysfunction in the expression of various components associated with RAS in maintaining blood pressure.
Collapse
Affiliation(s)
- Nihad Ashraf Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, Delhi, India
| | - Deena Elsori
- Faculty of Resillience, Deans Office Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Gowhar Rashid
- Amity Medical School, Amity University, Gurgaon, Haryana, India
| | - Sonia Tamanna
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Ananya Chakraborty
- Department of Biotechnology, Adamas University, Kolkata, West Bengal, India
| | - Adeeba Farooqi
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | - Ayman Kar
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | - Niti Sambyal
- Department of Biotechnology, Shri Mata Vashino Devi University, Katra, Jammu, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
4
|
Xu T, Ding H, Chen J, Lei J, Zhao M, Ji B, Chen Y, Qin S, Gao Q. Research Progress of DNA Methylation in Endometrial Cancer. Biomolecules 2022; 12:938. [PMID: 35883495 PMCID: PMC9312849 DOI: 10.3390/biom12070938] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Endometrial cancer (EC)) is one of the most common malignant tumors of the female genital system, with an increasing incidence and mortality, worldwide. Although the therapeutic strategy of EC is still complicated and challenging, further understanding of carcinogenesis from a gene perspective would allow an effort to improve therapeutic precision in this complex malignancy. DNA methylation is the most widely studied epigenetic alteration in human tumors. Aberrant DNA methylation events, resulting in altered gene expression, are features of many tumor types. In this review, we provide an update on evidence about the roles of aberrant DNA methylation within some classical tumor suppressor genes and oncogenes in endometrial carcinogenesis, and report on recent advances in the understanding of the contribution of aberrant DNA methylation to EC, as well as opportunities and challenges of DNA methylation in EC management and prevention.
Collapse
Affiliation(s)
- Ting Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (T.X.); (J.L.); (M.Z.); (B.J.)
| | - Hongmei Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (H.D.); (J.C.)
| | - Jie Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (H.D.); (J.C.)
| | - Jiahui Lei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (T.X.); (J.L.); (M.Z.); (B.J.)
| | - Meng Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (T.X.); (J.L.); (M.Z.); (B.J.)
| | - Bingyu Ji
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (T.X.); (J.L.); (M.Z.); (B.J.)
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (H.D.); (J.C.)
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qinqin Gao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (T.X.); (J.L.); (M.Z.); (B.J.)
| |
Collapse
|
5
|
Kovalenko TF, Morozova KV, Pavlyukov MS, Anufrieva KS, Bobrov MY, Gamisoniya AM, Ozolinya LA, Dobrokhotova YE, Shakhparonov MI, Patrushev LI. Methylation of the PTENP1 pseudogene as potential epigenetic marker of age-related changes in human endometrium. PLoS One 2021; 16:e0243093. [PMID: 33481830 PMCID: PMC7822536 DOI: 10.1371/journal.pone.0243093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/16/2020] [Indexed: 01/09/2023] Open
Abstract
The processed pseudogene PTENP1 is involved in the regulation of the expression of the PTEN and acts as a tumor suppressor in many types of malignances. In our previous study we showed that PTENP1 methylation is present not only in tumor, but also in normal endometrium tissues of women over 45 years old. Here we used methylation-specific PCR to analyze methylation status of CpG island located near promoter region of PTENP1 in malignant and non-malignant endometrium tissues collected from 236 women of different age groups. To confirm our results, we also analyzed RNA sequencing and microarray data from 431 women with endometrial cancer from TCGA database. We demonstrated that methylation of PTENP1 is significantly increased in older patients. We also found an age-dependent increase in the level of PTENP1 expression in endometrial tissue. According to our data, PTENP1 methylation elevates the level of the pseudogene sense transcript. In turn, a high level of this transcript correlates with a more favorable prognosis in endometrial cancer. The data obtained suggested that PTENP1 methylation is associated with age-related changes in normal and hyperplastic endometrial tissues. We assumed that age-related increase in PTENP1 methylation and subsequent elevation of its expression may serve as a protective mechanism aimed to prevent malignant transformation of endometrial tissue in women during the perimenopause, menopause, and postmenopause periods.
Collapse
Affiliation(s)
- Tatyana F. Kovalenko
- Laboratory of membrane bioenergetics, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| | - Ksenia V. Morozova
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Marat S. Pavlyukov
- Laboratory of membrane bioenergetics, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - Ksenia S. Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Moscow Region, Russia
| | - Mikhail Yu. Bobrov
- Laboratory of Molecular Pathophysiology, Kulakov Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alina M. Gamisoniya
- Laboratory of Molecular Pathophysiology, Kulakov Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of oxylipins, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - Lyudmila A. Ozolinya
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Yulia E. Dobrokhotova
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mikhail I. Shakhparonov
- Laboratory of membrane bioenergetics, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - Lev I. Patrushev
- Educational & scientific center, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Zhong Q, Fan J, Chu H, Pang M, Li J, Fan Y, Liu P, Wu C, Qiao J, Li R, Hang J. Integrative analysis of genomic and epigenetic regulation of endometrial cancer. Aging (Albany NY) 2020; 12:9260-9274. [PMID: 32412912 PMCID: PMC7288931 DOI: 10.18632/aging.103202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/17/2020] [Indexed: 11/25/2022]
Abstract
Endometrial carcinomas (EC) are characterized by high DNA copy numbers and DNA methylation aberrations. In this study, we sought to comprehensively explore the effect of these two factors on development and progression of EC by analyzing integrated genomic and epigenetic analysis to. We found high DNA copy number and DNA methylation abnormalities in EC, with 6308 copy-number variation genes (CNV-G) and 4376 methylation genes (MET-G). We used these CNV-G and MET-G to subcategorize the samples for prognostic analysis, and identified three molecular subtypes (iC1, iC2, iC3). Moreover, the subtypes exhibited different tumor immune microenvironment characteristics. A further analysis of their molecular characteristics revealed three potential prognostic markers (KIAA1324, nonexpresser of pathogenesis-related genes1 (NPR1) and idiopathic hypogonadotropic hypogonadism (IHH)). Notably, all three markers showed distinct CNV, DNA methylation, and gene expression profiles. Analysis of mutations among the three subtypes revealed that iC2 had fewer mutations than the other subtypes. Conversely, iC2 showed significantly higher CNV levels than other subtypes. This comprehensive analysis of genomic and epigenetic profiles identified three prognostic markers, therefore, provides new insights into the multi-layered pathology of EC. These can be utilized for accurate treatment of EC patients.
Collapse
Affiliation(s)
- Qihang Zhong
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Junpeng Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Honglei Chu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Mujia Pang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Junsheng Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| |
Collapse
|
7
|
Li N, Zeng Y, Huang J. Signaling pathways and clinical application of RASSF1A and SHOX2 in lung cancer. J Cancer Res Clin Oncol 2020; 146:1379-1393. [PMID: 32266538 DOI: 10.1007/s00432-020-03188-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND An increasing number of studies have focused on the early diagnostic value of the methylation of RASSF1A and SHOX2 in lung cancer. However, the intricate cellular events related to RASSF1A and SHOX2 in lung cancer are still a mystery. For researchers and clinicians aiming to more profoundly understand the diagnostic value of methylated RASSF1A and SHOX2 in lung cancer, this review will provide deeper insights into the molecular events of RASSF1A and SHOX2 in lung cancer. METHODOLOGY We searched for relevant publications in the PubMed and Google Scholar databases using the keywords "RASSF1A", "SHOX2" and "lung cancer" etc. First, we reviewed the RASSF1A and SHOX2 genes, from their family structures to the functions of their basic structural domains. Then we mainly focused on the roles of RASSF1A and SHOX2 in lung cancer, especially on their molecular events in recent decades. Finally, we compared the value of measuring RASSF1A and SHOX2 gene methylation with that of the common methods for the diagnosis of lung cancer patients. RESULTS The RASSF1A and SHOX2 genes were confirmed to be regulators or effectors of multiple cancer signaling pathways, driving tumorigenesis and lung cancer progression. The detection of RASSF1A and SHOX2 gene methylation has higher sensitivity and specificity than other commonly used methods for diagnosing lung cancer, especially in the early stage. CONCLUSIONS The RASSF1A and SHOX2 genes are critical for the processes of tumorigenesis, development, metastasis, drug resistance, and recurrence in lung cancer. The combined detection of RASSF1A and SHOX2 gene methylation was identified as an excellent method for the screening and surveillance of lung cancer that exhibits high sensitivity and specificity.
Collapse
Affiliation(s)
- Nanhong Li
- Department of Pathology, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yu Zeng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, China
| | - Jian Huang
- Department of Pathology, Guangdong Medical University, Zhanjiang, 524023, China.
- Pathological Diagnosis and Research Center, Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
8
|
Waheed S, Cheng RY, Casablanca Y, Maxwell GL, Wink DA, Syed V. Nitric Oxide Donor DETA/NO Inhibits the Growth of Endometrial Cancer Cells by Upregulating the Expression of RASSF1 and CDKN1A. Molecules 2019; 24:molecules24203722. [PMID: 31623109 PMCID: PMC6832369 DOI: 10.3390/molecules24203722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) is implicated in several biological processes, including cancer progression. At low concentrations, it promotes cell survival and tumor progression, and at high concentrations it causes apoptosis and cell death. Until now, the impact of NO donors has not been investigated on human endometrial tumors. Four cancer cell lines were exposed to different concentrations of DETA/NO for 24 to 120 h. The effects of DETA/NO on cell proliferation and invasion were determined utilizing MTS and Boyden chamber assays, respectively. The DETA/NO induced a dose and time-dependent reduction in cell viability by the activation of caspase-3 and cell cycle arrest at the G0/G1 phase that was associated with the attenuated expression of cyclin-D1 and D3. Furthermore, the reduction in the amount of CD133-expressing cancer stem-like cell subpopulation was observed following DETA/NO treatment of cells, which was associated with a decreased expression of stem cell markers and attenuation of cell invasiveness. To understand the mechanisms by which DETA/NO elicits anti-cancer effects, RNA sequencing (RNA-seq) was used to ascertain alterations in the transcriptomes of human endometrial cancer cells. RNA-seq analysis revealed that 14 of the top 21 differentially expressed genes were upregulated and seven were downregulated in endometrial cancer cells with DETA/NO. The genes that were upregulated in all four cell lines with DETA/NO were the tumor suppressors Ras association domain family 1 isoform A (RASSF1) and Cyclin-dependent kinase inhibitor 1A (CDKN1A). The expression patterns of these genes were confirmed by Western blotting. Taken together, the results provide the first evidence in support of the anti-cancer effects of DETA/NO in endometrial cancer.
Collapse
Affiliation(s)
- Sana Waheed
- Department of Obstetrics & Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Robert Ys Cheng
- Molecular Mechanism Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Yovanni Casablanca
- Department of Obstetrics & Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
- John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
| | - G Larry Maxwell
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
- John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
- Department of Obstetrics & Gynecology, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, VA 22042, USA.
| | - David A Wink
- Molecular Mechanism Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Viqar Syed
- Department of Obstetrics & Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
- John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
- Department of Molecular and Cell Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
9
|
Pankova D, Jiang Y, Chatzifrangkeskou M, Vendrell I, Buzzelli J, Ryan A, Brown C, O'Neill E. RASSF1A controls tissue stiffness and cancer stem-like cells in lung adenocarcinoma. EMBO J 2019; 38:e100532. [PMID: 31268606 PMCID: PMC6600643 DOI: 10.15252/embj.2018100532] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 01/03/2023] Open
Abstract
Lung cancer remains the leading cause of cancer-related death due to poor treatment responses and resistance arising from tumour heterogeneity. Here, we show that adverse prognosis associated with epigenetic silencing of the tumour suppressor RASSF1A is due to increased deposition of extracellular matrix (ECM), tumour stiffness and metastatic dissemination in vitro and in vivo. We find that lung cancer cells with RASSF1A promoter methylation display constitutive nuclear YAP1 accumulation and expression of prolyl 4-hydroxylase alpha-2 (P4HA2) which increases collagen deposition. Furthermore, we identify that elevated collagen creates a stiff ECM which in turn triggers cancer stem-like programming and metastatic dissemination in vivo. Re-expression of RASSF1A or inhibition of P4HA2 activity reverses these effects and increases markers of lung differentiation (TTF-1 and Mucin 5B). Our study identifies RASSF1A as a clinical biomarker associated with mechanical properties of ECM which increases the levels of cancer stemness and risk of metastatic progression in lung adenocarcinoma. Moreover, we highlight P4HA2 as a potential target for uncoupling ECM signals that support cancer stemness.
Collapse
Affiliation(s)
| | - Yanyan Jiang
- Department of OncologyUniversity of OxfordOxfordUK
- Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | | | - Iolanda Vendrell
- Department of OncologyUniversity of OxfordOxfordUK
- TDI Mass Spectrometry LaboratoryNuffield Department of MedicineTarget Discovery Institute University of OxfordOxfordUK
| | - Jon Buzzelli
- Department of OncologyUniversity of OxfordOxfordUK
| | - Anderson Ryan
- Department of OncologyUniversity of OxfordOxfordUK
- Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Cameron Brown
- School of Chemistry, Physics and Mechanical EngineeringQueensland University of TechnologyBrisbaneQldAustralia
| | - Eric O'Neill
- Department of OncologyUniversity of OxfordOxfordUK
- Systems Biology IrelandUniversity College DublinDublin 4Ireland
| |
Collapse
|
10
|
Jové M, Gatius S, Yeramian A, Portero-Otin M, Eritja N, Santacana M, Colas E, Ruiz M, Pamplona R, Matias-Guiu X. Metabotyping human endometrioid endometrial adenocarcinoma reveals an implication of endocannabinoid metabolism. Oncotarget 2018; 7:52364-52374. [PMID: 27429042 PMCID: PMC5239558 DOI: 10.18632/oncotarget.10564] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022] Open
Abstract
Metabolomics, an essential technique in precision medicine, contributes to the molecular fingerprinting of tumours, further helping to understand their pathogenesis. In this work, using a LC-ESI-QTOF-MS/MS platform, we demonstrated the existence of a specific metabolomic signature which could define endometrioid endometrial carcinoma (EEC), arising the endocannabinoid system as a potential pathway involved in EC pathogenesis. Metabolomics could also shed light in the processes involved in myometrial invasion, proposing new targets for possible therapeutic intervention. Consequently, we also described a different metabolomic profile in surface endometrioid carcinoma and myometrial invasive front. We validated pathways disclosed by metabolomics by immunohistochemistry. Specifically, endocannabinoid and purine metabolism could be involved in tumor myometrial invasion.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Universitat de Lleida, IRBLleida, E-25198, Lleida, Spain
| | - Sònia Gatius
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, E-25198, Lleida, Spain
| | - Andree Yeramian
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, E-25198, Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Universitat de Lleida, IRBLleida, E-25198, Lleida, Spain
| | - Núria Eritja
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, E-25198, Lleida, Spain
| | - Maria Santacana
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, E-25198, Lleida, Spain
| | - Eva Colas
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, E-25198, Lleida, Spain
| | - Maria Ruiz
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, E-25198, Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Universitat de Lleida, IRBLleida, E-25198, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, E-25198, Lleida, Spain
| |
Collapse
|
11
|
Yanokura M, Banno K, Kobayashi Y, Nomura H, Hayashi S, Tominaga E, Aoki D. Recent findings on epigenetic gene abnormalities involved in uterine cancer. Mol Clin Oncol 2017; 7:733-737. [PMID: 29181164 DOI: 10.3892/mco.2017.1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/29/2017] [Indexed: 11/05/2022] Open
Abstract
Selective aberrant genetic effects that do not depend on abnormal DNA sequences are referred to as epigenetic abnormalities and are involved in carcinogenesis. In uterine cancer, various genes involved in apoptosis, cell cycle, DNA repair, cell proliferation and cell adhesion are abnormally methylated, resulting in gene silencing. Reversal of such epigenetic abnormalities in cancer cells is a potential strategy for cancer therapy, and studies on epigenetic abnormalities and treatment methods in uterine cancer are in progress. These include the evaluation of 5-hydroxymethylcytosine, which is present in cancer tissues at lower levels compared with those in normal tissues, as a prognostic marker in cervical cancer; combination therapy with 5-azacytidine and cisplatin; combination treatment focusing on tumor necrosis factor-related apoptosis-inducing ligand in cervical cancer; studies focusing on DNA mismatch repair in endometrial cancer; and use of a demethylating agent to reactivate tumor suppressor genes and inhibit tumor proliferation. Detection of epigenetic changes using biomarkers may be used for histological classification, evaluation of disease progression and identification of compounds that are able to modulate epigenetic changes and may be useful for uterine cancer treatment.
Collapse
Affiliation(s)
- Megumi Yanokura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroyuki Nomura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shigenori Hayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eiichiro Tominaga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
12
|
Eritja N, Yeramian A, Chen BJ, Llobet-Navas D, Ortega E, Colas E, Abal M, Dolcet X, Reventos J, Matias-Guiu X. Endometrial Carcinoma: Specific Targeted Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:149-207. [PMID: 27910068 DOI: 10.1007/978-3-319-43139-0_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy in the western world with more than 280,000 cases per year worldwide. Prognosis for EC at early stages, when primary surgical resection is the most common initial treatment, is excellent. Five-year survival rate is around 70 %.Several molecular alterations have been described in the different types of EC. They occur in genes involved in important signaling pathways. In this chapter, we will review the most relevant altered pathways in EC, including PI3K/AKT/mTOR, RAS-RAF-MEK-ERK, Tyrosine kinase, WNT/β-Catenin, cell cycle, and TGF-β signaling pathways. At the end of the chapter, the most significant clinical trials will be briefly discussed.This information is important to identify specific targets for therapy.
Collapse
Affiliation(s)
- Nuria Eritja
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Andree Yeramian
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Bo-Juen Chen
- New York Genome Center, New York, NY, 10013, USA
| | - David Llobet-Navas
- Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne, NE1 3BZ, UK
| | - Eugenia Ortega
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Eva Colas
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Miguel Abal
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Jaume Reventos
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
| |
Collapse
|
13
|
Pabalan N, Kunjantarachot A, Ruangpratheep C, Jarjanazi H, Christofolini DM, Barbosa CP, Bianco B. Potential of RASSF1A promoter methylation as biomarker for endometrial cancer: A systematic review and meta-analysis. Gynecol Oncol 2017; 146:603-608. [PMID: 28669560 DOI: 10.1016/j.ygyno.2017.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND An epigenetic approach to explaining endometrial carcinogenesis necessitates good understanding of Ras association domain family 1 isoform A (RASSF1A) promoter methylation data from primary studies. AIMS Differential magnitude of reported associations between RASSF1A promoter methylation and endometrial cancer (EC) prompted a meta-analysis to obtain more precise estimates. METHODS Literature search yielded eight included articles. We calculated pooled odds ratios (OR) and 95% confidence intervals and subgrouped the data by race. Sources of heterogeneity were investigated with outlier analysis. RESULTS The pooled ORs indicated increased risk, mostly significant. The overall effect (OR 11.46) was reflected in the European outcome (OR 15.07). However, both findings were heterogeneous (I2=57-70%) which when subjected to outlier treatment, erased heterogeneity (I2=0%) and retained significance (OR 9.85-12.66). Significance of these pre- and post-outlier outcomes were pegged at P≤0.0001. Only the Asian pre-outlier (OR 6.85) and heterogeneous (I2=82%) outcome was not significant (P=0.12) but when subjected to outlier treatment, erased heterogeneity (I2=0%) and generated significance (OR 23.74, P≤0.0001). CONCLUSIONS Consistent increased risk associations underpinned by significance and robustness render RASSF1A with good biomarker potential for EC.
Collapse
Affiliation(s)
- Noel Pabalan
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand.
| | | | | | - Hamdi Jarjanazi
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Toronto, Ontario, Canada
| | - Denise Maria Christofolini
- Human Reproduction and Genetics Center, Department of Collective Health, Faculdade de Medicina do ABC, Santo André/SP, Brazil
| | - Caio Parente Barbosa
- Human Reproduction and Genetics Center, Department of Collective Health, Faculdade de Medicina do ABC, Santo André/SP, Brazil
| | - Bianca Bianco
- Human Reproduction and Genetics Center, Department of Collective Health, Faculdade de Medicina do ABC, Santo André/SP, Brazil
| |
Collapse
|
14
|
Bartosch C, Lopes JM, Jerónimo C. Epigenetics in endometrial carcinogenesis - part 1: DNA methylation. Epigenomics 2017; 9:737-755. [PMID: 28470096 DOI: 10.2217/epi-2016-0166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Carcinogenesis is a multistep multifactorial process that involves the accumulation of genetic and epigenetic alterations. In the past two decades, there has been an exponential growth of knowledge establishing the importance of epigenetic changes in cancer. Our work focused on reviewing the main role of epigenetics in the pathogenesis of endometrial carcinoma, highlighting the reported results concerning each epigenetic mechanistic layer. The present review is the first part of this work, in which we examined the contribution of DNA methylation alterations for endometrial carcinogenesis.
Collapse
Affiliation(s)
- Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| | - José Manuel Lopes
- Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology & Immunology, University of Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal.,Department of Pathology & Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Promoter Hypermethylation Analysis of the Tumor Suppressor Genes RASSF1A and RASSF2A in Iranian Endometrial Carcinoma Patients. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.8629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Le Gallo M, Lozy F, Bell DW. Next-Generation Sequencing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:119-148. [DOI: 10.1007/978-3-319-43139-0_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Náger M, Santacana M, Bhardwaj D, Valls J, Ferrer I, Nogués P, Cantí C, Herreros J. Nuclear phosphorylated Y142 β-catenin accumulates in astrocytomas and glioblastomas and regulates cell invasion. Cell Cycle 2016; 14:3644-55. [PMID: 26654598 DOI: 10.1080/15384101.2015.1104443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a fast growing brain tumor characterized by extensive infiltration into the surrounding tissue and one of the most aggressive cancers. GBM is the most common glioma (originating from glial-derived cells) that either evolves from a low grade astrocytoma or appears de novo. Wnt/β-catenin and Hepatocyte Growth Factor (HGF)/c-Met signaling are hyperactive in human gliomas, where they regulate cell proliferation, migration and stem cell behavior. We previously demonstrated that β-catenin is phosphorylated at Y142 by recombinant c-Met kinase and downstream of HGF signaling in neurons. Here we studied phosphoY142 (PY142) β-catenin and dephospho S/T β-catenin (a classical Wnt transducer) in glioma biopsies, GBM cell lines and biopsy-derived glioma cell cultures. We found that PY142 β-catenin mainly localizes in the nucleus and signals through transcriptional activation in GBM cells. Tissue microarray analysis confirmed strong nuclear PY142 β-catenin immunostaining in astrocytoma and GBM biopsies. By contrast, active β-catenin showed nuclear localization only in GBM samples. Western blot analysis of tumor biopsies further indicated that PY142 and active β-catenin accumulate independently, correlating with the expression of Snail/Slug (an epithelial-mesenchymal transition marker) and Cyclin-D1 (a regulator of cell cycle progression), respectively, in high grade astrocytomas and GBMs. Moreover, GBM cells stimulated with HGF showed increasing levels of PY142 β-catenin and Snail/Slug. Importantly, the expression of mutant Y142F β-catenin decreased cell detachment and invasion induced by HGF in GBM cell lines and biopsy-derived cell cultures. Our results identify PY142 β-catenin as a nuclear β-catenin signaling form that downregulates adhesion and promotes GBM cell invasion.
Collapse
Affiliation(s)
- Mireia Náger
- a Departments of Basic Medical Sciences & Experimental Medicine ; University of Lleida & IRBLleida ; Lleida , Spain
| | - Maria Santacana
- b Immunohistochemical and Biostatistics and Epidemiology Units; IRBLleida ; Lleida , Spain
| | - Deepshikha Bhardwaj
- a Departments of Basic Medical Sciences & Experimental Medicine ; University of Lleida & IRBLleida ; Lleida , Spain
| | - Joan Valls
- b Immunohistochemical and Biostatistics and Epidemiology Units; IRBLleida ; Lleida , Spain
| | - Isidre Ferrer
- c Institute of Neuropathology; Hospital de Bellvitge-IDIBELL ; Barcelona , Spain
| | - Pere Nogués
- d Neurosurgery Unit; Hospital Arnau de Vilanova ; Lleida , Spain
| | - Carles Cantí
- a Departments of Basic Medical Sciences & Experimental Medicine ; University of Lleida & IRBLleida ; Lleida , Spain
| | - Judit Herreros
- a Departments of Basic Medical Sciences & Experimental Medicine ; University of Lleida & IRBLleida ; Lleida , Spain
| |
Collapse
|
18
|
Wu YU, Zhang M, Zhang X, Xu Z, Jin W. Methylation status and protein expression of RASSF1A in endometriosis. Oncol Lett 2016; 11:4107-4112. [PMID: 27313749 DOI: 10.3892/ol.2016.4512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 04/05/2016] [Indexed: 12/28/2022] Open
Abstract
Ras association domain family 1A (RASSF1A) gene inactivation by promoter hypermethylation is a common event in the development of a variety of types of human cancer. Accumulated evidence has demonstrated that DNA methylation serve a critical role in the pathogenesis of endometriosis. The aim of the present study was to analyze the methylation status and protein expression of RASSF1A in endometriosis (EMS). The ectopic and corresponding eutopic endometrium tissues were collected from 45 women with EMS (EMS group) and normal endometrium tissues from 20 women without EMS (control group). The methylation status of RASSF1A was examined by methylation specific polymerase chain reaction (MSP). Immunohistochemistry was performed to measure RASSF1A protein level in endometrium tissues. In normal endometrium samples, RASSF1A protein expression was significantly higher at the secretory phase than the proliferative phase. RASSF1A protein expression in the ectopic endometrium tissues and eutopic endometrium tissues were significantly reduced than in normal endometrium (P<0.05). The frequency of aberrant methylation of RASSF1A was 55.56% in ectopic endometrium and 33.33% in paired eutopic endometrium, whereas such methylation was not detected in normal endometrium. Moreover, RASSF1A promoter hypermethylation was frequently associated with reduced expression of RASSF1A, and was common in advanced stage in ectopic endometrium of EMS. Epigenetic inactivation of RASSF1A through aberrant promoter methylation may be important in the formation and progression of EMS, and assessment of RASSF1A methylation status in eutopic endometrium may be a potentially useful biomarker to enhance the early detection of EMS.
Collapse
Affiliation(s)
- Y U Wu
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shangdong 252000, P.R. China
| | - Mingde Zhang
- Department of Ear and Throat, Dongchang People's Hospital, Liaocheng, Shangdong 252000, P.R. China
| | - Xian Zhang
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shangdong 252000, P.R. China
| | - Zhenzhou Xu
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shangdong 252000, P.R. China
| | - Weiguo Jin
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shangdong 252000, P.R. China
| |
Collapse
|
19
|
Zuberi M, Khan I, Mir R, Gandhi G, Ray PC, Saxena A. Utility of Serum miR-125b as a Diagnostic and Prognostic Indicator and Its Alliance with a Panel of Tumor Suppressor Genes in Epithelial Ovarian Cancer. PLoS One 2016; 11:e0153902. [PMID: 27092777 PMCID: PMC4836713 DOI: 10.1371/journal.pone.0153902] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) have been found to be dysregulated in epithelial ovarian cancer (EOC) and may function as either tumor suppressor genes (TSGs) or as oncogenes. Hypermethylation of miRNA silences the tumour suppressive function of a miRNA or hypermethylation of a TSG regulating that miRNA (or vice versa) leads to its loss of function. The present study aims to evaluate the impact of aberrant microRNA-125b (miR-125b) expression on various clinicopathological features in epithelial ovarian cancer and its association with anomalous methylation of several TSGs. We enrolled 70 newly diagnosed cases of epithelial ovarian cancer, recorded their clinical history and 70 healthy female volunteers. Serum miR-125b levels were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and the methylation status of various TSGs was investigated by methylation specific PCR. ROC curves were constructed to estimate the diagnostic and prognostic usefulness of miR-125b. The Kaplan-Meier method was applied to compare survival curves. Expression of miR-125b was found to be significantly upregulated (p<0.0001) in comparison with healthy controls. The expression level of miR-125b was found to be significantly associated with FIGO stage, lymph node and distant metastasis. ROC curve for diagnostic potential yielded significant AUC with an equitable sensitivity and specificity. ROC curves for prognosis yielded significant AUCs for histological grade, distal metastasis, lymph node status and survival. The expression of miR-125b also correlated significantly with the hypermethylation of TSGs. Our results indicate that DNA hypermethylation may be involved in the inactivation of miR-125b and miR-125b may function as a potential independent biomarker for clinical outcome in EOC.
Collapse
Affiliation(s)
- Mariyam Zuberi
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Imran Khan
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Faculty of Applied Medical Sciences, University of Tabuk, Saudi Arabia, Tabuk-71491
| | - Gauri Gandhi
- Department of Gynaecology and Obstetrics, Lok Nayak Hospital, New Delhi, India
| | - Prakash Chandra Ray
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Alpana Saxena
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| |
Collapse
|
20
|
Duenas-Gonzalez A, Medina-Franco JL, Chavez-Blanco A, Dominguez-Gomez G, Fernández-de Gortari E. Developmental DNA methyltransferase inhibitors in the treatment of gynecologic cancers. Expert Opin Pharmacother 2015; 17:323-38. [PMID: 26559668 DOI: 10.1517/14656566.2016.1118053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION DNA methylation has become an attractive target for the treatment of cancer. DNA methyltransferase inhibitors have proven useful for the treatment of myelodysplastic syndrome and are being evaluated in gynecological neoplasias. AREAS COVERED We provide an overview of the current knowledge on DNA methylation and cancer and the role of DNA methylation in cervical, ovarian and endometrial carcinomas. The results of recent clinical trials with demethylating agents for cervical and ovarian cancer treatment are also discussed. EXPERT OPINION There are few studies of DNA demethylating agents for cervical and ovarian cancer treatment; nevertheless, the results are promising. To accelerate these advances, there are at least two actions that can be simultaneously pursued. One is to greatly increase the number of small clinical exploratory trials with existing demethylating drugs and using methylome analyses to identify predictive factors for response and/or toxicity. The second is finding out epigenetic 'drivers' unique to gynecological cancers and their subtypes, and then proceed to clinical trials in a highly selected population of patients. It is expected that in the future, DNA demethylation could have a role in the treatment of gynecologic cancers.
Collapse
Affiliation(s)
- Alfonso Duenas-Gonzalez
- a Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México/Instituto Nacional de Cancerología , Mexico City , Mexico
| | - José L Medina-Franco
- b Facultad de Química, Departamento de Farmacia , Universidad Nacional Autónoma de México , México City , México
| | - Alma Chavez-Blanco
- c Division of Basic Research , Instituto Nacional de Cancerología , Mexico City , México
| | | | - Eli Fernández-de Gortari
- b Facultad de Química, Departamento de Farmacia , Universidad Nacional Autónoma de México , México City , México
| |
Collapse
|
21
|
Systematic Analysis of Endometrial Cancer-Associated Hub Proteins Based on Text Mining. BIOMED RESEARCH INTERNATIONAL 2015; 2015:615825. [PMID: 26366417 PMCID: PMC4561104 DOI: 10.1155/2015/615825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/11/2015] [Indexed: 01/01/2023]
Abstract
Objective. The aim of this study was to systematically characterize the expression of endometrial cancer- (EC-) associated genes and to analysis the functions, pathways, and networks of EC-associated hub proteins. Methods. Gene data for EC were extracted from the PubMed (MEDLINE) database using text mining based on NLP. PPI networks and pathways were integrated and obtained from the KEGG and other databases. Proteins that interacted with at least 10 other proteins were identified as the hub proteins of the EC-related genes network. Results. A total of 489 genes were identified as EC-related with P < 0.05, and 32 pathways were identified as significant (P < 0.05, FDR < 0.05). A network of EC-related proteins that included 271 interactions was constructed. The 17 proteins that interact with 10 or more other proteins (P < 0.05, FDR < 0.05) were identified as the hub proteins of this PPI network of EC-related genes. These 17 proteins are EGFR, MET, PDGFRB, CCND1, JUN, FGFR2, MYC, PIK3CA, PIK3R1, PIK3R2, KRAS, MAPK3, CTNNB1, RELA, JAK2, AKT1, and AKT2. Conclusion. Our data may help to reveal the molecular mechanisms of EC development and provide implications for targeted therapy for EC. However, corrections between certain proteins and EC continue to require additional exploration.
Collapse
|
22
|
Grawenda AM, O'Neill E. Clinical utility of RASSF1A methylation in human malignancies. Br J Cancer 2015; 113:372-81. [PMID: 26158424 PMCID: PMC4522630 DOI: 10.1038/bjc.2015.221] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 02/06/2023] Open
Abstract
The high frequency of RASSF1A methylation has been noted in a vast number of patients in a broad spectrum of malignancies, suggesting that RASSF1A inactivation is associated with cancer pathogenesis. However, whether this recurrent incidence of RASSF1A hypermethylation in human malignancies and its association with more aggressive tumour phenotype is a frequent event across different cancer types has not yet been discussed. In this review, we interrogated existing evidence for association of RASSF1A hypermethylation with clinicopathological characteristics that can indicate more invasive lesions.
Collapse
Affiliation(s)
- A M Grawenda
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, UK
| | - E O'Neill
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Banno K, Yanokura M, Iida M, Masuda K, Aoki D. Carcinogenic mechanisms of endometrial cancer: Involvement of genetics and epigenetics. J Obstet Gynaecol Res 2014; 40:1957-67. [DOI: 10.1111/jog.12442] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/03/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Kouji Banno
- Department of Obstetrics and Gynecology; School of Medicine, Keio University; Tokyo Japan
| | - Megumi Yanokura
- Department of Obstetrics and Gynecology; School of Medicine, Keio University; Tokyo Japan
| | - Miho Iida
- Department of Obstetrics and Gynecology; School of Medicine, Keio University; Tokyo Japan
| | - Kenta Masuda
- Department of Obstetrics and Gynecology; School of Medicine, Keio University; Tokyo Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology; School of Medicine, Keio University; Tokyo Japan
| |
Collapse
|
24
|
Hromadnikova I, Kotlabova K, Pirkova P, Libalova P, Vernerova Z, Svoboda B, Kucera E. The occurrence of fetal microchimeric cells in endometrial tissues is a very common phenomenon in benign uterine disorders, and the lower prevalence of fetal microchimerism is associated with better uterine cancer prognoses. DNA Cell Biol 2013; 33:40-8. [PMID: 24283364 DOI: 10.1089/dna.2013.2125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This is the first study carried out to describe the role of fetal microchimerism (FM) in the pathogenesis of uterine cancer. The prevalence and concentration of male fetal microchimeric cells (FMCs) were examined in endometrial tissues in relation to subtypes of uterine cancer, and the histological grade and stage of the tumor. FM occurrence was analyzed in relation to risk factors, including hypertension, obesity, type 2 diabetes, dyslipidemia, age at cancer diagnosis, and patient pregnancy history. The prevalence and concentration of FMCs were examined in endometrial tissues using real-time polymerase chain reaction, SRY and β-globin sequences as markers for male fetal FMCs and total DNA. The studied group involved 47 type 1 endometrial cancers, 28 type 2 endometrial cancers, and 41 benign uterine diseases. While the prevalence of FM was decreased only in type 1 endometrial cancer, compared with benign uterine disorders (38.3% vs.70.7%; odds ratio [OR]=0.257, 95% confidence interval [CI]: 0.105 to 0.628, p=0.003), FMC concentrations did not differ within examined groups. The lower FM prevalence was detected in low-grade (grade 1 and grade 2) endometrioid cancer (38.3% vs. 70.7%, OR=0.256, 95% CI: 0.105 to 0.627, p=0.003) and in FIGO 1 tumors (40.7% vs. 70.7%, OR=0.285, 95% CI: 0.120 to 0.675, p=0.004). No correlation between FM prevalence or FMC concentrations and risk factors was demonstrated. A lower prevalence of male FM seemed to be associated with better prognoses in uterine cancer based on tumor subtype, histological grade, and stage of the tumor.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- 1 Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University in Prague , Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
25
|
FIOLKA ROMAN, ZUBOR PAVOL, JANUSICOVA VERONIKA, VISNOVSKY JOZEF, MENDELOVA ANDREA, KAJO KAROL, LASABOVA ZORA, PLANK LUKAS, DANKO JAN. Promoter hypermethylation of the tumor-suppressor genes RASSF1A, GSTP1 and CDH1 in endometrial cancer. Oncol Rep 2013; 30:2878-86. [DOI: 10.3892/or.2013.2752] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/24/2013] [Indexed: 11/05/2022] Open
|
26
|
Matias-Guiu X, Prat J. Molecular pathology of endometrial carcinoma. Histopathology 2013; 62:111-23. [PMID: 23240673 DOI: 10.1111/his.12053] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review paper discusses the main molecular alterations of endometrial carcinoma, the most common cancer of the female genital tract. Two clinicopathological variants are recognized: the oestrogen-related (type I, endometrioid carcinoma) and the non-oestrogen-related (type II, non-endometrioid carcinoma). Whereas type I shows microsatellite instability and mutations in PTEN, PIK3CA, K-RAS and CTNNB1 (beta-catenin), type II exhibits TP53 mutations and chromosomal instability. Recent investigations regarding the role of non-coding RNA have provided important information regarding tumour progression. Understanding pathogenesis at the molecular level is essential for identifying biomarkers of potential use in targeted therapies.
Collapse
Affiliation(s)
- Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Lleida, Spain.
| | | |
Collapse
|
27
|
Park Y, Kim DS, Park KH, Baek SK, Kwon SY, Shin SW, Jung KY, Kim CY, Kim YH, Lee NJ, Kim JS, Kim IS. RASSF1A and ERCC1 expression levels might be predictive of prognosis in advanced, recurrent, and metastatic squamous cell carcinoma of the head and neck treated with docetaxel and cisplatin. ACTA ACUST UNITED AC 2012; 35:673-82. [PMID: 23147544 DOI: 10.1159/000343636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The purpose of this study was to test the hypothesis that the immunohistochemical expression of ERCC1 and RASSF1A would predict both response to and survival after docetaxel and cisplatin combination chemotherapy in inoperable or recurrent head and neck squamous cell carcinoma. PATIENTS AND METHODS A total of 54 patients were treated with frontline systemic chemotherapy composed of docetaxel (60 mg/m(2)) and cisplatin (65 mg/m(2)), every 3 weeks for up to 6 cycles. The expression levels of ERCC1 and RASSF1A were evaluated in the available 36 prechemotherapy samples. RESULTS The overall objective response rate was 35% (complete remission 12% and partial remission 23%). The median progression-free survival and overall survival (OS) times were 5.0 months (95% confidence interval (CI), 3.7-6.4 months) and 24.2 months (95% CI, 3.5-45.0 months), respectively. The status of low ERCC1 and high RASSF1A expression was an independent favorable prognostic factor for OS in multivariate analysis (p = 0.043; hazard ratio, 7.224; 95% CI, 1.060-49.217). Toxicities were comparable with those of previously reported trials. CONCLUSIONS Less intensive doses of cisplatin and docetaxel are active but not effective in reducing toxicity. Also, both ERCC1 and RASSF1A might be useful prognostic markers in this regimen.
Collapse
Affiliation(s)
- Yong Park
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Is serum level of methylated RASSF1A valuable in diagnosing hepatocellular carcinoma in patients with chronic viral hepatitis C? Arab J Gastroenterol 2012; 13:111-5. [PMID: 23122451 DOI: 10.1016/j.ajg.2012.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/01/2012] [Accepted: 03/25/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND STUDY AIMS The detection of the promoter hypermethylation of RASSF1A in serum DNA could be a valuable biomarker for early detection of preneoplastic lesions and early cancer development among high-risk populations who are at a high risk of hepatocellular carcinoma (HCC). Therefore, we aimed determining the serum level of methylated RASSF1A sequence in patients with chronic hepatitis C viral infection and to evaluate the predictive value of it as a diagnostic marker for HCC in patients with chronic hepatitis C viral infection. PATIENTS AND METHODS Serum levels of methylated RASSF1A were detected and measured using real-time PCR after digestion with a methylation-sensitive restriction enzyme in 40 patients with chronic HCV infection, 40 patients with HCC (on top of HCV) and 20 controls. RESULTS Methylated RASSF1A was detected in 10% of the controls, 62.5% of HCV group and in 90% of HCC group. Chronic HCV patients had insignificantly higher levels than the controls. The levels were significantly higher in patients with HCC compared to the controls (p=0.0001) and chronic HCV patients (p=0.001). By logistic regression analysis, the serum methylated RASSF1A was found to differentiate HCC patients from healthy controls with an AUROC of 0.83nmol/L, and an overall predictive accuracy of 77.5%. It was able to differentiate patients with HCC from those with chronic HCV infection alone with an AUROC of 0.733 and an overall predictive accuracy of 72.5%. CONCLUSION The mean serum levels of methylated RASSF1A could be of value for early diagnosis of HCC especially in high risk patients with HCV infection.
Collapse
|
29
|
Gil EY, Jo UH, Jeong H, Whang YM, Woo OH, Cho KR, Seo JH, Kim A, Lee ES, Koh I, Kim YH, Park KH. Promoter methylation of RASSF1A modulates the effect of the microtubule-targeting agent docetaxel in breast cancer. Int J Oncol 2012; 41:611-20. [PMID: 22581300 DOI: 10.3892/ijo.2012.1470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/12/2012] [Indexed: 02/05/2023] Open
Abstract
Docetaxel is one of the most commonly used chemotherapeutic agents in breast cancer. To avert from significant toxicities with no clinical benefit, identification of predictive markers for response is one of the most important unsolved clinical needs. Therefore, the potential associations of RASSF1A hypermethylation and response to docetaxel-based chemotherapy were evaluated, and the underlying mechanism was studied. The expression of RASSF1A in breast cancer cell lines and tissues of normal breast, ductal carcinoma in situ (DCIS), and breast cancer (n=45) was analyzed by immunohistochemistry and western blot analysis. Immunohistochemical staining showed that the expression of RASSF1A was frequently lost in primary breast cancers and human breast cancer cell lines, while normal breast tissues or DCIS displayed moderate to strong expression. Furthermore, quantitative methylation analysis of the RASSF1A promoter region in 45 primary breast cancers revealed that RASSF1A was frequently methylated in primary breast cancers (≥20% methylation in 53% of the patients), and prospective analysis in patients with locally advanced or recurrent breast cancer showed that the mean level of methylation of RASSF1A was significantly higher in patients who did not respond to docetaxel-based chemotherapy (30.6±8.5%) than patients with partial or complete response (20.1±11.2%, p=0.042). Finally, in vitro studies showed that RASSF1A had cooperative activity in suppression of cancer cell growth and proliferation by enhancing docetaxel-induced cell cycle arrest. Our results suggest that hypermethylated RASSF1A is an important modulating factor for the efficacy of docetaxel-based chemotherapy in breast cancer.
Collapse
MESH Headings
- Adult
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Base Sequence
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation
- DNA Methylation
- Docetaxel
- Down-Regulation
- Epigenesis, Genetic
- Female
- G2 Phase Cell Cycle Checkpoints/drug effects
- Gene Expression Regulation, Neoplastic
- Humans
- Logistic Models
- Multivariate Analysis
- Neoplasms, Ductal, Lobular, and Medullary/drug therapy
- Neoplasms, Ductal, Lobular, and Medullary/metabolism
- Promoter Regions, Genetic
- Sequence Analysis, DNA
- Taxoids/pharmacology
- Taxoids/therapeutic use
- Tubulin Modulators/pharmacology
- Tubulin Modulators/therapeutic use
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Eun Young Gil
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Banno K, Kisu I, Yanokura M, Masuda K, Ueki A, Kobayashi Y, Susumu N, Aoki D. Epigenetics and genetics in endometrial cancer: new carcinogenic mechanisms and relationship with clinical practice. Epigenomics 2012; 4:147-62. [PMID: 22449187 DOI: 10.2217/epi.12.13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endometrial cancer is the seventh most common cancer worldwide among females. An increased incidence and a younger age of patients are also predicted to occur, and therefore elucidation of the pathological mechanisms is important. However, several aspects of the mechanism of carcinogenesis in the endometrium remain unclear. Associations with genetic mutations of cancer-related genes have been shown, but these do not provide a complete explanation. Therefore, epigenetic mechanisms have been examined. Silencing of genes by DNA hypermethylation, hereditary epimutation of DNA mismatch repair genes and regulation of gene expression by miRNAs may underlie carcinogenesis in endometrial cancer. New therapies include targeting epigenetic changes using histone deacetylase inhibitors. Some cases of endometrial cancer may also be hereditary. Thus, patients with Lynch syndrome which is a hereditary disease, have a higher risk for developing endometrial cancer than the general population. Identification of such disease-related genes may contribute to early detection and prevention of endometrial cancer.
Collapse
Affiliation(s)
- Kouji Banno
- Department of Obstetrics & Gynecology, School of Medicine, Keio University, Shinanomachi 35 Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Endometrial Cancer and Hypermethylation: Regulation of DNA and MicroRNA by Epigenetics. Biochem Res Int 2012; 2012:738274. [PMID: 22548175 PMCID: PMC3324134 DOI: 10.1155/2012/738274] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/02/2012] [Indexed: 01/02/2023] Open
Abstract
Endometrial cancer is the seventh most common cancer in women worldwide. Therefore elucidation of the pathogenesis and development of effective treatment for endometrial cancer are important. However, several aspects of the mechanism of carcinogenesis in the endometrium remain unclear. Associations with genetic variation and mutations of cancer-related genes have been shown, but these do not provide a complete explanation. Therefore, in recent years, epigenetic mechanisms that do not involve changes in DNA sequences have been examined. Studies aimed at detection of aberrant DNA hypermethylation in cancer cells present in microscopic amounts in vivo and application of the results to cancer diagnosis have also started. Breakdown of the DNA mismatch repair mechanism is thought to play a large role in the development of endometrial cancer, with changes in the expression of the hMLH1 gene being particularly important. Silencing of genes such as APC and CHFR, Sprouty 2, RASSF1A, GPR54, CDH1, and RSK4 by DNA hypermethylation, onset of Lynch syndrome due to hereditary epimutation of hMLH1 and hMSH2 mismatch repair genes, and regulation of gene expression by microRNAs may also underlie the carcinogenic mechanisms of endometrial cancer. Further understanding of these issues may permit development of new therapies.
Collapse
|
32
|
Endometrial carcinoma: molecular alterations involved in tumor development and progression. Oncogene 2012; 32:403-13. [PMID: 22430211 DOI: 10.1038/onc.2012.76] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the western world, endometrial carcinoma (EC) is the most common cancer of the female genital tract. The annual incidence has been estimated at 10-20 per 100,000 women. Two clinicopathological variants are recognized: the estrogen related (type I, endometrioid) and the non-estrogen related (type II, non-endometrioid).The clinicopathological differences are paralleled by specific genetic alterations, with type I showing microsatellite instability and mutations in phosphatase and tensin homologue deleted on chromosome 10, PIK3CA, K-RAS and CTNNB1 (β-catenin), and type II exhibiting TP53 mutations and chromosomal instability. Some non-endometrioid carcinomas probably arise from pre-existing endometrioid carcinomas as a result of tumor progression and, not surprisingly, some tumors exhibit combined or mixed features at the clinical, pathological and molecular levels. In EC, apoptosis resistance may have a role in tumor progression. Understanding pathogenesis at the molecular level is essential in identifying biomarkers for successful targeted therapies. In this review, the genetic changes of endometrial carcinogenesis are discussed in the light of the morphological features of the tumors and their precursors.
Collapse
|
33
|
O'Hara AJ, Bell DW. The genomics and genetics of endometrial cancer. ADVANCES IN GENOMICS AND GENETICS 2012; 2012:33-47. [PMID: 22888282 PMCID: PMC3415201 DOI: 10.2147/agg.s28953] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most sporadic endometrial cancers (ECs) can be histologically classified as endometrioid, serous, or clear cell. Each histotype has a distinct natural history, clinical behavior, and genetic etiology. Endometrioid ECs have an overall favorable prognosis. They are typified by high frequency genomic alterations affecting PIK3CA, PIK3R1, PTEN, KRAS, FGFR2, ARID1A (BAF250a), and CTNNB1 (β-catenin), as well as epigenetic silencing of MLH1 resulting in microsatellite instability. Serous and clear cell ECs are clinically aggressive tumors that are rare at presentation but account for a disproportionate fraction of all endometrial cancer deaths. Serous ECs tend to be aneuploid and are typified by frequent genomic alterations affecting TP53 (p53), PPP2R1A, HER-2/ERBB2, PIK3CA, and PTEN; additionally, they display dysregulation of E-cadherin, p16, cyclin E, and BAF250a. The genetic etiology of clear cell ECs resembles that of serous ECs, but it remains relatively poorly defined. A detailed discussion of the characteristic patterns of genomic alterations that distinguish the three major histotypes of endometrial cancer is reviewed herein.
Collapse
Affiliation(s)
- Andrea J O'Hara
- National Human Genome Research Institute, Cancer Genetics Branch, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
34
|
Santacana M, Yeramian A, Velasco A, Bergada L, Gatius S, García V, Azueta A, Palacios J, Dolcet X, Oliva E, Matias-Guiu X. Immunohistochemical features of post-radiation vaginal recurrences of endometrioid carcinomas of the endometrium: role for proteins involved in resistance to apoptosis and hypoxia. Histopathology 2012; 60:460-71. [DOI: 10.1111/j.1365-2559.2011.04106.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Gadducci A, Cosio S, Genazzani AR. Tissue and serum biomarkers as prognostic variables in endometrioid-type endometrial cancer. Crit Rev Oncol Hematol 2011; 80:181-92. [DOI: 10.1016/j.critrevonc.2010.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/15/2010] [Accepted: 11/09/2010] [Indexed: 12/18/2022] Open
|
36
|
Gatius S, Velasco A, Azueta A, Santacana M, Pallares J, Valls J, Dolcet X, Prat J, Matias-Guiu X. FGFR2 alterations in endometrial carcinoma. Mod Pathol 2011; 24:1500-10. [PMID: 21725289 DOI: 10.1038/modpathol.2011.110] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fibroblast growth factor receptor 2 (FGFR2) is a tyrosine kinase receptor involved in many biological processes such as embryogenesis, adult tissue homeostasis and cell proliferation. Mutations in FGFR2 have been reported in up to 10-12% of endometrial carcinomas identical to those found in congenital craniofacial disorders. Inhibition of FGFR2 could be a new therapeutic target in endometrial carcinoma. FGFR2 immunostaining was assessed in three tissue microarrays: one constructed from paraffin-embedded blocks of 60 samples of normal endometrium in different phases of menstrual cycle, and two tissue microarrays containing endometrial carcinoma samples (95 and 62 cases). FGFR2 expression was correlated with stage, histological type and grade as well as with immunostaining of PTEN, RASSF1A, estrogen and progesterone receptors, KI67, Cyclin D1, STAT-3 and SPRY2. FGFR2 mutations were assessed by PCR and direct sequencing, with DNA obtained from 31 paraffin-embedded endometrial carcinoma samples. In normal endometrium, FGFR2 expression was higher in the secretory than in the proliferative phase (P=0.001), with an inverse correlation with Ki67 (P=0.00032), suggesting a tumor-suppressor role for FGFR2 in normal endometrium. Cytoplasmic expression of FGFR2 was higher in endometrial carcinoma when compared with the atrophic endometrium from the same patients (P=0.0283), but was lower in comparison with normal endometrium from women in the menstrual cycle. Interestingly, nuclear staining was observed in some cases, and it was less frequent in endometrial carcinoma when compared with the adjacent atrophic endometrium (P=0.0465). There were no statistical differences when comparing superficial and myoinvasive endometrial carcinoma samples. Endometrioid endometrial carcinomas showed higher expression of FGFR2 than nonendometrioid endometrial carcinomas (fold change 2.56; P=0.0015). Grade III endometrioid endometrial carcinomas showed decreased FGFR2 expression when compared with grade II endometrioid endometrial carcinomas (P=0.0055). No differences were found regarding pathological stage. Two missense mutations of FGFR2 gene were detected in exons 6 and 11 (S252W and N549K, respectively; 6.45%). Results support the hypothesis that FGFR2 has a dual role in the endometrium, by inhibiting cell proliferation in normal endometrium during the menstrual cycle, but acting as an oncogene in endometrial carcinoma.
Collapse
Affiliation(s)
- Sonia Gatius
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Lleida, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Steinbakk A, Malpica A, Slewa A, Gudlaugsson E, Janssen EAM, Arends M, Kruse AJ, Yinhua Y, Feng W, Baak JP. High frequency microsatellite instability has a prognostic value in endometrial endometrioid adenocarcinoma, but only in FIGO stage 1 cases. Cell Oncol (Dordr) 2011; 34:457-465. [PMID: 21547578 DOI: 10.1007/s13402-011-0040-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2010] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To analyze the prognostic value of microsatellite instability (MSI) in a population-based study of FIGO stage 1-4 endometrial endometrioid adenocarcinomas. STUDY DESIGN Survival analysis in 273 patients of MSI status and clinico-pathologic features. Using a highly sensitive pentaplex polymerase chain reaction to establish MSI status, cases were divided into microsatellite stable (MSS), MSI-low (MSI-L, 1 marker positive) and MSI-high (MSI-H, 2-5 markers positive). RESULTS After 61 months median follow-up (1-209), 34 (12.5%) of the patients developed metastases but only 6.4% of the FIGO-1. MSI (especially as MSI-H versus MSS/MSI-Lcombined) was prognostic in FIGO-1 but not in FIGO2-4. The 5 and 10 year recurrence-free survival rates were 98% and 95% in the MSS/MSI-L versus 85% and 73% in the MSI-H patients (P = 0.005). CONCLUSIONS MSI-H status assessed by pentaplex polymerase chain reaction is an indicator of poor prognosis in FIGO 1, but not in FIGO 2-4 endometrial endometrioid adenocarcinomas.
Collapse
Affiliation(s)
- Anita Steinbakk
- Department of Pathology, Stavanger University Hospital, Armauer Hansensvei 20, 4068 Stavanger, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Llobet D, Eritja N, Domingo M, Bergada L, Mirantes C, Santacana M, Pallares J, Macià A, Yeramian A, Encinas M, Moreno-Bueno G, Palacios J, Lewis RE, Matias-Guiu X, Dolcet X. KSR1 is overexpressed in endometrial carcinoma and regulates proliferation and TRAIL-induced apoptosis by modulating FLIP levels. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1529-43. [PMID: 21435442 DOI: 10.1016/j.ajpath.2010.12.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/13/2010] [Accepted: 12/23/2010] [Indexed: 11/25/2022]
Abstract
The Raf/MEK/extracellular signal-regulated kinase (ERK) pathway participates in many processes altered in development and progression of cancer in human beings such as proliferation, transformation, differentiation, and apoptosis. Kinase suppressor of Ras 1 (KSR1) can interact with various kinases of the Raf/MEK/extracellular signal-regulated kinase pathway to enhance its activation. The role of KSR1 in endometrial carcinogenesis was investigated. cDNA and tissue microarrays demonstrated that expression of KSR1 was up-regulated in endometrial carcinoma. Furthermore, inhibition of KSR1 expression by specific small hairpin RNA resulted in reduction of both proliferation and anchorage-independent cell growth properties of endometrial cancer cells. Because inhibition of apoptosis has a pivotal role in endometrial carcinogenesis, the effects of KSR1 in regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis were investigated. KSR1 knock-down sensitized resistant endometrial cell lines to both TRAIL- and Fas-induced apoptosis. Sensitization to TRAIL and agonistic anti-Fas antibody was caused by down-regulation of FLIP (FLICE-inhibitory protein). Also investigated was the molecular mechanism by which KSR1 regulates FLIP protein levels. It was demonstrated that KSR1 small hairpin RNA did not affect FLIP transcription or degradation. Rather, FLIP down-regulation was caused by Fas-associated death domain protein-dependent inhibition of FLIP translation triggered after TRAIL stimulation in KSR1-silenced cells. Re-expression of heterologous KSR1 in cells with down-regulated endogenous KSR1 restored FLIP protein levels and TRAIL resistance. In conclusion, KSR1 regulates endometrial sensitivity to TRAIL by regulating FLIP levels.
Collapse
Affiliation(s)
- David Llobet
- Oncologic Pathology Group, Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, Departament de Ciencies Mediques Basiques, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Arafa M, Somja J, Dehan P, Kridelka F, Goffin F, Boniver J, Delvenne P. Current concepts in the pathology and epigenetics of endometrial carcinoma. Pathology 2011; 42:613-7. [PMID: 21080868 DOI: 10.3109/00313025.2010.520307] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the Western world, endometrial carcinoma is the most common malignant tumour of the female genital tract and is the fourth most common cancer in women. Two different clinicopathological subtypes are recognised: the oestrogen-related (type I, endometrioid) and the non-oestrogen related (type II, non-endometrioid). This article reviews the epidemiology, risk factors, genetic alterations during endometrial carcinogenesis, features of tumours and precursors and early detection of the disease. Insights into the epigenetic alterations, with emphasis on DNA methylation during endometrial carcinogenesis, and their diagnostic value are also provided.
Collapse
Affiliation(s)
- Mohammad Arafa
- Department of Pathology, Faculty of Medicine, Mansoura University, Egypt
| | | | | | | | | | | | | |
Collapse
|
40
|
Velasco A, Pallares J, Santacana M, Gatius S, Fernandez M, Domingo M, Valls J, Yeramian A, Encinas M, Dolcet X, Matias-Guiu X. Promoter hypermethylation and expression of sprouty 2 in endometrial carcinoma. Hum Pathol 2011; 42:185-193. [PMID: 21111454 DOI: 10.1016/j.humpath.2010.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 01/13/2023]
Abstract
Sprouty 2 is a key antagonist regulator of receptor tyrosine kinases, and downstream signaling pathways, like fibroblastic growth factor (FGF) and Ras-mitogen-activated protein kinase (RAS-MAPK). By controlling these pathways, sprouty 2 is involved in regulation of cell proliferation, differentiation, and angiogenesis. Alterations in fibroblastic growth factor receptor (FGFR) and members of the RAS-MAPK pathway are frequent in endometrial carcinoma. The expression of sprouty 2 has been found to be decreased in several types of human cancer, by mechanisms of promoter methylation. In the present study, we have assessed the expression of sprouty 2 in endometrial carcinoma, in correlation with sprouty 2 promoter methylation. Sprouty 2 immunohistochemical expression was assessed using 3 different tissue microarrays: one constructed from paraffin blocks of 80 samples of normal endometrium and 2 tissue microarrays containing samples of 157 endometrial carcinoma (1 tissue microarray constructed with 95 endometrial carcinomas previously studied for microsatellite instability and alterations in phosphatase and tensin homolog (PTEN), k-ras, and b-catenin, and 1 tissue microarray containing 62 endometrial carcinoma, which were also subjected to sprouty 2 promoter methylation analysis). The immunohistochemical expression of sprouty 2 was correlated with cellular proliferation (Ki67) and clinicopathologic data. Sprouty 2 promoter methylation was assessed by methylation-specific polymerase chain reaction, with DNA obtained from fresh-frozen samples of endometrial carcinoma and corresponding normal tissues, and correlated with promoter methylation of RAS association domain family-1A (RASSF1A). A highly significant decrease in sprouty 2 immunoexpression was seen in the proliferative phase of normal endometrium (P < .001). Differences were detected between types I and II endometrial carcinoma, but they were not statistically significant. Reduced immunoexpression of sprouty 2 was seen in 19.85% of endometrial carcinoma and was strongly and inversely associated with increased cell proliferation (Ki67; r = -0.367; P = .001). Sprouty 2 promoter methylation was detected in 31 (53.4%) of 58 endometrial carcinomas. Results from our study show that alterations in sprouty 2 may be involved in endometrial carcinogenesis by controlling cell proliferation.
Collapse
Affiliation(s)
- Ana Velasco
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, 25198 Lleida, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kang HS, Baba T, Mandai M, Matsumura N, Hamanishi J, Kharma B, Kondoh E, Yoshioka Y, Oishi S, Fujii N, Murphy SK, Konishi I. GPR54 Is a Target for Suppression of Metastasis in Endometrial Cancer. Mol Cancer Ther 2011; 10:580-90. [DOI: 10.1158/1535-7163.mct-10-0763] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Azueta A, Gatius S, Matias-Guiu X. Endometrioid carcinoma of the endometrium: pathologic and molecular features. Semin Diagn Pathol 2010; 27:226-40. [DOI: 10.1053/j.semdp.2010.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
43
|
Abstract
Endometrial cancer is the most commonly diagnosed gynecological cancer, and it has been shown to be a complex disease driven by abnormal genetic, and epigenetic alterations, as well as environmental factors. Epigenetic changes resulting in aberrant gene expression are dynamic and modifiable features of many cancer types. A significant epigenetic change is aberrant DNA methylation. In this review, we review evidence on the role of aberrant DNA methylation, examining changes in relation to endometrial carcinogenesis, and report on recent advances in the understanding of the contribution of aberrant DNA methylation to endometrial cancer with the emphasis on the role of dietary/ lifestyle and environmental factors, as well as opportunities and challenges of DNA methylation in endometrial cancer management and prevention.
Collapse
Affiliation(s)
- Meng Hua Tao
- Department of Social and Preventive Medicine; School of Public Health and Health Professions; University at Buffalo, NY, USA.
| | | |
Collapse
|
44
|
Huang YW, Luo J, Weng YI, Mutch DG, Goodfellow PJ, Miller DS, Huang THM. Promoter hypermethylation of CIDEA, HAAO and RXFP3 associated with microsatellite instability in endometrial carcinomas. Gynecol Oncol 2010; 117:239-47. [PMID: 20211485 PMCID: PMC2849881 DOI: 10.1016/j.ygyno.2010.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/03/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE DNA promoter methylation is an epigenetic phenomenon for long-term gene silencing during tumorigenesis. The purpose of this study is to identify novel hypermethylated loci associated with clinicopathologic variables in endometrioid endometrial carcinomas. METHODS To find hypermethylated promoter loci, we used differential methylation hybridization coupling with microarray and further validated by combined bisulfite restriction analysis and MassARRAY assay. Methylation levels of candidate loci were corrected with clinicopathologic factors of endometrial carcinomas. RESULTS Increased promoter methylation of CIDE, HAAO and RXFP3 was detected in endometrial carcinomas compared with adjacent normal tissues, and was associated with decreased gene expression of all three genes. In a clinical cohort, promoter hypermethylation on CIDEA, HAAO and RXFP3 was detected in 85, 63 and 71% of endometrial carcinomas, respectively (n=118, P<0.001) compared with uninvolved normal endometrium. Methylation status of CIDEA, HAAO and RXFP3 had significant association with microsatellite instability in tumors (P<0.001). Furthermore, methylation levels of HAAO were further found to relate to disease-free survivals (P=0.034). CONCLUSIONS Hypermethylation of CIDEA, HAAO and RXFP3 promoter regions appears to be a frequent event in endometrial carcinomas. Hypermethylation at these loci is strongly associated with microsatellite instability status. Moreover, HAAO methylation predicts disease-free survival in this cohort of patients with endometrioid endometrial cancer.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jingqin Luo
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, St. Louis, MO 63110, USA
| | - Yu-I Weng
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - David G. Mutch
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, St. Louis, MO 63110, USA
| | - Paul J. Goodfellow
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, St. Louis, MO 63110, USA
| | - David S. Miller
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tim H.-M. Huang
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
45
|
Clinicopathological significance of RASSF1A reduced expression and hypermethylation in hepatocellular carcinoma. Hepatol Int 2010; 4:423-32. [PMID: 20305761 DOI: 10.1007/s12072-010-9164-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 12/05/2009] [Indexed: 01/18/2023]
Abstract
PURPOSE Protein downregulation and hypermethylation of Ras association domain family 1A (RASSF1A) has been recognized as an important early event in different classes of carcinogenesis, but clinicopathological significance of RASSF1A protein expression and methylation in hepatocellular carcinoma (HCC) remains largely unknown. The aim of the study was to investigate the expression of RASSF1A protein and methylation in HCC and their clinical significance. METHODS Immunohistochemistry was employed to detect the expression of RASSF1A proteins in liver tissue microarrays. Aberrant promoter hypermethylation of RASSF1A was investigated in DNA from HCC, matching noncancerous tissues and serum of 35 HCC patients by methylation-specific PCR. RESULTS RASSF1A protein expression in HCC was significantly lower than that in noncancerous (p = 0.015) and paracancerous tissues (p = 0.017). In addition, reduced RASSF1A protein expression is related to TNM stage, metastasis, alpha-fetoprotein, portal vein embolus, capsular infiltration, and multiple tumor nodes. Furthermore, RASSF1A promoter methylation in HCC was significantly higher than that in noncancerous liver tissues (p < 0.05). Meanwhile, RASSF1A promoter hypermethylation was detected in 14 in the serum DNA from HCC patients, whereas no hypermethylation was detected in the normal controls. Hypermethylation of RASSF1A in HCC serum and tissues was negatively correlated with the expression of RASSF1A protein expression (p < 0.05). CONCLUSIONS The loss or abnormal protein downregulation and the promoter hypermethylation of RASSF1A could play important roles in the tumorigenesis development and metastases of HCC. The detection of the promoter hypermethylation of RASSF1A in serum DNA could be a valuable biomarker for early-stage diagnosis in populations at high risk of HCC.
Collapse
|
46
|
|
47
|
Avigad S, Shukla S, Naumov I, Cohen IJ, Ash S, Meller I, Kollender Y, Issakov J, Yaniv I. Aberrant methylation and reduced expression of RASSF1A in Ewing sarcoma. Pediatr Blood Cancer 2009; 53:1023-8. [PMID: 19637319 DOI: 10.1002/pbc.22115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Ewing sarcoma (ES) is the second most common solid bone and soft tissue malignancy in children and young adults with low cure rates indicating the need to identify further prognostic markers. The importance of methylation in the inactivation of key tumor suppressor genes including RASSF1A has begun to be appreciated in context of cancer development, prognosis and therapy. However there is lack of similar broad based studies in ES. The objective of this study was to analyze RASSF1A methylation and assess its clinical significance in ES. PROCEDURE The methylation of RASSF1A was determined 31 ES tumor samples and 4 ES cell lines. ES cell lines were also treated with demethylating agent 5-aza-2'-deoxycytidine to ascertain its effect on methylation. RASSF1A expression was studied in 12 ES tumors. The association between RASSF1A methylation, clinical parameters and outcome was also analyzed. RESULTS Methylation of RASSF1A was observed in 21/31 (68%) tumors and in 3/4 ES cell lines. A significant correlation of methylation to reduced expression of RASSF1A was observed in 12 ES tumors analyzed (P = 0.0013) and in all cell lines. ES patients with methylated RASSF1A had worse prognosis compared to the unmethylated group (P = 0.049). Treatment with 5-aza-2'-deoxycytidine resulted in the re-expression of the unmethylated form of RASSF1A in two ES cell lines. CONCLUSION RASSF1A is frequently methylated in ES.
Collapse
Affiliation(s)
- Smadar Avigad
- Molecular Oncology, Felsenstein Medical Research Center, Petah Tikva, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tarragona J, Llecha N, Santacana M, Lopez S, Gatius S, Llobet D, Dolcet X, Palomar-Asenjo V, Gonzalez-Tallada FJ, Matias-Guiu X. DcR1 expression in endometrial carcinomas. Virchows Arch 2009; 456:39-44. [PMID: 19936781 DOI: 10.1007/s00428-009-0855-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/21/2009] [Accepted: 10/22/2009] [Indexed: 12/22/2022]
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family, which mediates apoptosis by the extrinsic pathway. Up-regulation of decoy receptors, DcR1 and DcR2, may result in diminished binding of TRAIL to their functional receptors. DcR1 expression was assessed in normal endometrial tissue (NE) and endometrial carcinoma (EC) samples by immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (PCR). IHC was performed in two tissue microarrays; one composed of 80 samples of NE and a second one constructed from paraffin-embedded blocks of 62 EC. For quantitative real-time RT-PCR analysis, RNA was obtained from 19 NE and 28 EC samples using Trizol. mRNA expression of DcR1 was assessed with Taqman-based assays in an Abi-Prism 700 SDS. Results were correlated with stage, histological type, and grade. By IHC, cytoplasmic expression of DcR1 was frequently seen in NE (79.6%) and varied according to the menstrual cycle. Positive DcR1 immunostaining was also detected in EC (98.1% of the cases) without any specific statistical association with histological type, grade, and stage. By quantitative real-time PCR, all NE had similar levels of DcR1expression (0.8-1.7 RQ), which were considered the basal levels of DcR1 expression in NE. Increased DcR1 expression (> or =5-fold higher than the basal levels) was detected in 13 of 28 EC (46.4%). High DcR1 expression levels were found in ECs of different stages: IA, four of 12 (33%); IB, two of four (50%); IC, four of six (66%); and IIA and IIB three of six (50%). Results suggest that DcR1 expression occurs in a subset of EC and may contribute to resistance to TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Jordi Tarragona
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida IRBLLEIDA, Av Alcalde Rovira Roure 80, 25198 Lleida, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Qiu XQ, Chen G, Yu HP, Hu L. Detection of RASSF1A promoter hypermethylation in plasma of patients with primary hepatocellular carcinoma and its clinical significance. Shijie Huaren Xiaohua Zazhi 2009; 17:90-93. [DOI: 10.11569/wcjd.v17.i1.90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the promoter methylation of Ras association domain family 1A (RASSF1A) in the serum of HCC and to explore the significance and value of the promoter methylation of RASSF1A as a new tumor molecular marker in early stage noninvasive diagnosis of HCC.
METHODS: Promoter methylation of RASSF1A status in the serum of HCC patients (n = 35) and normal controls (n = 10) were detected by methylation-specific PCR (MSP).
RESULTS: RASSF1A promoter methylation was detected in 14 cases (40%) in the serum from 35 HCC patients, while no RASSF1A methylation was detected in 10 normal controls. No association was found between serum RASSF1A methylation and the clinicopathological parameters, such as sex, para-cirrhosis, HBV, AFP, tumor size, tumor capsular, portal vein tumor embolus or pathological grade.
CONCLUSION: The promoter methylation of RASSF1A may play an important role in tumor genesis of HCC and act as a new tumor molecular marker for HCC.
Collapse
|