1
|
Das S, Sarangi J, Ahlawat S, Jain P, Tiwari P. Fibrosarcomatous Dermatofibrosarcoma Protuberans With COL1A1-PDGFB Fusion in a 2-Year-Old Child: A Rare Occurrence With Spectrum of Histopathological Findings and Review of Literature. Pediatr Dev Pathol 2025; 28:204-209. [PMID: 39835392 DOI: 10.1177/10935266251313604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Dermatofibrosarcoma protuberans (DFSP) is an intermediate-grade fibroblastic neoplasm commonly seen in young and middle-aged patients and rarely in pediatric patients. Fibrosarcomatous transformation is common in adults but extremely uncommon in children. Here, we present a case of a 2-year-old child who presented with a progressively enlarging subcutaneous mass in the knee. Histopathological examination revealed a spindle cell tumor with a storiform and fascicular pattern. Immunohistochemistry showed variable cluster of differentiation 34 (CD34) expression, with positivity in storiform areas and negativity in fascicular regions. Next-generation sequencing confirmed the diagnosis by detecting a collagen type I alpha 1 (COL1A1)-platelet-derived growth factor subunit B (PDGFB) fusion, with the PDGFB breakpoint in exon 2 (chromosome 22) and COL1A1 in intron 47 (chromosome 17). This case represents only the fifth reported instance of fibrosarcomatous DFSP in a child under 10 years old. While wide local excision remains the standard treatment for DFSP, targeted therapy with imatinib may be considered for unresectable, recurrent, or metastatic cases, though guidelines for pediatric patients are not yet established. This case highlights the importance of molecular testing in confirming the diagnosis of rare pediatric soft tissue tumors and contributes to the limited literature on fibrosarcomatous DFSP in very young children.
Collapse
Affiliation(s)
- Sumanta Das
- Department of Pathology, Fortis Memorial Research Institute, Agilus Diagnostics Ltd., Gurugram, Haryana, India
| | - Jayati Sarangi
- Department of Pathology, Fortis Memorial Research Institute, Agilus Diagnostics Ltd., Gurugram, Haryana, India
| | - Sunita Ahlawat
- Department of Pathology, Fortis Memorial Research Institute, Agilus Diagnostics Ltd., Gurugram, Haryana, India
| | - Priti Jain
- Department of Pathology, Fortis Memorial Research Institute, Agilus Diagnostics Ltd., Gurugram, Haryana, India
| | - Priya Tiwari
- Department of Medical Oncology, Artemis Hospital, Gurgaon, Haryana, India
| |
Collapse
|
2
|
Lucas CHG, Gross AM, Romo CG, Dehner CA, Lazar AJ, Miettinen M, Pekmezci M, Quezado M, Rodriguez FJ, Stemmer-Rachamimov A, Viskochil D, Perry A. Consensus recommendations for an integrated diagnostic approach to peripheral nerve sheath tumors arising in the setting of Neurofibromatosis Type 1. Neuro Oncol 2025; 27:616-624. [PMID: 39500722 PMCID: PMC11889724 DOI: 10.1093/neuonc/noae235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Consensus recommendations published in 2017 histologically defining atypical neurofibromatous neoplasm of uncertain biologic potential (ANNUBP) and malignant peripheral nerve sheath tumor (MPNST) were codified in the 2021 WHO Classification of Tumors of the Central Nervous System and the 2022 WHO Classification of Tumors of Soft Tissue and Bone. However, given the shift in diagnostic pathology toward the use of integrated histopathologic and genomic approaches, the incorporation of additional molecular strata in the classification of Neurofibromatosis Type 1 (NF1)-associated peripheral nerve sheath tumors should be formalized to aid in accurate diagnosis and early identification of malignant transformation and enable appropriate intervention for affected patients. To this end, we assembled a multi-institutional expert pathology working group as part of a "Symposium on Atypical Neurofibroma: State of the Science." Herein, we provide a suggested framework for adequate interventional radiology and surgical sampling and recommend molecular profiling for clinically or radiologically worrisome noncutaneous lesions in patients with NF1 to identify diagnostically-relevant molecular features, including CDKN2A/B inactivation for ANNUBP, as well as SUZ12, EED, or TP53 inactivating mutations, or significant aneuploidy for MPNST. We also propose renaming "low-grade MPNST" to "ANNUBP with increased proliferation" to avoid the use of the "malignant" term in this group of tumors with persistent unknown biologic potential. This refined integrated diagnostic approach for NF1-associated peripheral nerve sheath tumors should continue to evolve in concert with our understanding of these neoplasms.
Collapse
Affiliation(s)
- Calixto-Hope G Lucas
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea M Gross
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Carlos G Romo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carina A Dehner
- Department of Pathology, Indiana University, Indianapolis, Indiana, USA
| | - Alexander J Lazar
- Departments of Pathology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Melike Pekmezci
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Martha Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fausto J Rodriguez
- Department of Pathology, University of California Los Angeles, Los Angeles, California, USA
| | | | - David Viskochil
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Arie Perry
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Si C, Wang Y, Zhu J. A Rare Case Report of Intraosseous Spindle and Epithelioid Rhabdomyosarcoma With TFCP2 Rearrangement: A Pathological Diagnostic Conundrum and Literature Review. Int J Surg Pathol 2025; 33:125-130. [PMID: 38500382 DOI: 10.1177/10668969241239676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Rhabdomyosarcoma is a highly malignant tumor with striated muscle differentiation, which is histologically classified as alveolar, embryonal, pleomorphic, and spindle cell/sclerosing histological subtype. Rhabdomyosarcoma with TFCP2 rearrangement, which usually occurs in the bone, is a newly identified rare spindle and epithelioid rhabdomyosarcoma with characteristic clinicopathological features and molecular alterations. We report a 39-year-old female patient who underwent local excision of the mandibular lesion. Microscopically, the intraosseous tumor was composed of spindle-shaped, epithelioid, and rhabdomyoblastic cells with atypical nuclei and atypical mitotic figures. In addition, TFCP2 rearrangement was revealed by the fluorescence in situ hybridization. The tumor was thus correctly diagnosed as rhabdomyosarcoma with TFCP2 rearrangement. The patient was scheduled to undergo radiotherapy, and triple-agent chemotherapy after surgery, and no tumor recurrence or metastasis was detected during the 3-month postoperative follow up. Since this tumor is relatively rare and newly recognized, it can be easily misdiagnosed or missed and might be a conundrum of pathological diagnosis. Familiarity with its clinicopathological features and molecular alterations is essential for its correct diagnosis. Therefore, we summarized the clinicopathological, immunohistochemical, and molecular alterations of 43 cases of this rare rhabdomyosarcoma variant in the English-language literature. In addition, the differential diagnosis of this lesion is crucial either.
Collapse
Affiliation(s)
- Cheng Si
- Department of Pathology, Chibi People's Hospital, Hubei University of Science and Technology affiliated Chibi Hospital, Xianning, Hubei Province, China
| | - Yihuan Wang
- Department of Radiology, Chibi People's Hospital, Hubei University of Science and Technology affiliated Chibi Hospital, Xianning, Hubei Province, China
| | - Jinghua Zhu
- Administrative Department, Chibi People's Hospital, Hubei University of Science and Technology affiliated Chibi Hospital, Xianning, Hubei Province, China
| |
Collapse
|
4
|
Ursem R, Groen JL, Malessy MJA, Briaire-de Bruijn I, McDonnell LA, Heijs BPAM, Bovee JVMG. Spatial Lipidomics Reveals Myelin Defects and Protumor Macrophage Infiltration in Malignant Peripheral Nerve Sheath Tumor Adjacent Nerves. J Transl Med 2025; 105:102186. [PMID: 39542102 DOI: 10.1016/j.labinv.2024.102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas arising from peripheral nerves, accounting for 3% to 5% of soft tissue sarcomas. MPNSTs often recur locally, leading to poor survival. Achieving tumor-free surgical margins is essential to prevent recurrence, but current methods for determining tumor margins are limited, highlighting the need for improved biomarkers. In this study we investigated the degree to which MPNST extends into nerves adjacent to tumors. Alterations to the lipidome of MPNST and adjacent peripheral nerves were assessed using spatial lipidomics. Tissue samples from 5 patients with MPNST were analyzed, revealing alterations of the lipid profile extending into the peripheral nerves beyond what was expected based on macroscopic and histologic observations. Integration of spatial lipidomics and high-resolution accurate-mass profiling identified distinct lipid profiles associated with healthy nerves, connective tissue, and tumors. Notably, histologically normal nerves exhibited myelin degradation and infiltration of protumoral M2 macrophages, particularly near the tumor. Furthermore, aberrant osmium staining patterns and loss of H3K27me3 staining in the absence of atypia were observed in a case with tumor recurrence. This exploratory study thereby highlights the changes occurring in the nerves affected by MPNST beyond what is visible on hematoxylin and eosin staining and provides leads for further biomarker studies, including aberrant osmium staining, to assess resection margins in MPNST.
Collapse
Affiliation(s)
- Rick Ursem
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Justus L Groen
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn J A Malessy
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Liam A McDonnell
- Laboratory of Proteomics and Metabolomics, Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | - Bram P A M Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith V M G Bovee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
5
|
Slachmuylders E, Laenen A, Vernemmen A, Keupers M, Nevelsteen I, Han SN, Neven P, Van Ongeval C, Wildiers H, Smeets A, Floris G. Expression patterns of H3K27me3 for differentiation of breast fibroadenomas and phyllodes tumors. APMIS 2025; 133:e13485. [PMID: 39454207 DOI: 10.1111/apm.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/11/2024] [Indexed: 10/27/2024]
Abstract
Phyllodes tumors (PTs) are rare breast tumors showing overlapping features with fibroadenomas (FAs). Diagnosis on small biopsies is challenging. New diagnostic markers are needed. Here we evaluated immunohistochemical staining of histone 3 trimethyl-lysine-27 (H3K27me3) as a diagnostic and prognostic marker in a series of PTs. Surgically removed PTs at our institution (September 1990 and July 2022) and control FAs. Tissue micro-arrays (4 cores, 2 mm Ø) stained with H3K27me3, and scored with QuPath-derived H-score. Fisher exact test, Mann-Whitney U-test and chi-squared test used for group comparison. ROC analysis applied to define cutoffs. Cox proportional hazards models were used for assessing disease-free survival (DFS), overall survival (OS), and disease-specific survival (DSS) in PTs. We included 81 patients with PTs and 44 patients with FAs. QuPath-derived H-scores of stromal H3K27me3 were statically significantly lower in PTs than in FAs (p < 0.001). We identified exploratory cutoffs to discriminate FAs from benign and malignant PTs (AUC = 0.78 and 0.73, respectively). No associations between DFS, OS, or DSS and H3K27me3 expression were found. H3K27me3 expression differs between FAs and PTs, indicating potential as diagnostic marker, but it is not predictive for DFS, OS or DSS in PTs. Further validation is needed.
Collapse
Affiliation(s)
- E Slachmuylders
- Department of Imaging and Pathology, Laboratory of Translational Cell and Tissue Research, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
| | - A Laenen
- Interuniversity Centre for Biostatistics and Statistical Bioinformatics, KU Leuven - University of Leuven, Leuven, Belgium
| | - A Vernemmen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - M Keupers
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - I Nevelsteen
- Department of Surgical Oncology, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven - University of Leuven, Leuven, Belgium
| | - S N Han
- Department of Oncology, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Gynecology and Obstetrics, KU Leuven - University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - P Neven
- Department of Oncology, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Gynecology and Obstetrics, KU Leuven - University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - C Van Ongeval
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - H Wildiers
- Department of Oncology, KU Leuven - University of Leuven, Leuven, Belgium
- Department of General Medical Oncology, KU Leuven - University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - A Smeets
- Department of Surgical Oncology, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven - University of Leuven, Leuven, Belgium
| | - G Floris
- Department of Imaging and Pathology, Laboratory of Translational Cell and Tissue Research, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Tomczak K, Patel MS, Bhalla AD, Peterson CB, Landers SM, Callahan SC, Zhang D, Wong J, Landry JP, Lazar AJ, Livingston JA, Guadagnolo BA, Lyu HG, Lillemoe H, Roland CL, Keung EZ, Scally CP, Hunt KK, McCutcheon IE, Slopis JM, Gu J, Scheet P, Wang L, Rai K, Torres KE. Plasma DNA Methylation-Based Biomarkers for MPNST Detection in Patients With Neurofibromatosis Type 1. Mol Carcinog 2025; 64:44-56. [PMID: 39600120 PMCID: PMC11636586 DOI: 10.1002/mc.23825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 11/29/2024]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) development is characterized by an altered DNA methylation landscape, which presents a promising area for developing MPNST-specific biomarkers for screening patients with NF1. Genome-wide DNA methylation profiling of a cohort of 13 patients with MPNST (29 samples of tumor and adjacent neurofibroma tissues) and of NF1-MPNST cell lines was performed to identify and validate candidate MPNST-specific CpG sites (CpGs). A logistic regression prediction model was constructed to select MPNST-specific CpGs distinct from adjacent neurofibromas and normal tissues. To test if hypermethylation at selected CpGs can also be detected in plasma from patients with MPNST, cfMBD-seq was applied to profile the cfDNA methylome of blood from patients with MPNST and NF1. Based on stringent feature-selection criteria and predictive modeling, we identified 73 candidate MPNST-specific CpGs (67 with unique CpG island locations) that reliably discriminated MPNSTs from neurofibromas. Validation of five candidate biomarkers confirmed successful MPNST detection (sensitivity: > 88%, specificity: > 91%) in tissues. In plasma samples, 63 of 67 selected genomic regions had greater than 1.2-fold higher methylation in patients with MPNST than those with NF1. Further, we identified 15 CpG islands that consistently separated plasma from patients with confirmed MPNST diagnosis from plasma of individuals with NF1 without a diagnosis of malignant transformation (FDR < 0.1). Our findings confirmed a unique hypermethylation pattern present during malignant transformation. This study highlights the potential to be investigated further as biomarkers in clinical settings for early MPNST detection in patients with NF1.
Collapse
Affiliation(s)
- Katarzyna Tomczak
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Manishkumar S. Patel
- Department of Tumor Microenvironment and MetastasisH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Angela D. Bhalla
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Christine B. Peterson
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sharon M. Landers
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - S. Carson Callahan
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Di Zhang
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Justin Wong
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jace P. Landry
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Alexander J. Lazar
- Department of PathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - J. Andrew Livingston
- Department of Sarcoma Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - B. Ashleigh Guadagnolo
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Heather G. Lyu
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Heather Lillemoe
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Christina L. Roland
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Emily Z. Keung
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Christopher P. Scally
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Kelly K. Hunt
- Department of Breast Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ian E. McCutcheon
- Department of NeurosurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - John M. Slopis
- Department of Neuro‐OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jian Gu
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Paul Scheet
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Liang Wang
- Department of Tumor Microenvironment and MetastasisH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Kunal Rai
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Keila E. Torres
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
7
|
Kondratowski S, Cohen D, Deyell RJ, Sandhu A, Bush JW. Immunohistochemical study of histone protein 3 modification in pediatric osteosarcoma identifies reduced H3K27me3 as a marker of poor treatment response. PLoS One 2024; 19:e0309471. [PMID: 39570878 PMCID: PMC11581320 DOI: 10.1371/journal.pone.0309471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/07/2024] [Indexed: 11/24/2024] Open
Abstract
The most common pediatric primary malignant bone tumor, osteosarcoma, is often described as genetically non-recurrent and heterogeneous. Neoadjuvant chemotherapy is typically followed by resection and assessment of treatment response, which helps inform prognosis. Identifying biomarkers that may impact chemotherapy response and survival could aid in upfront risk stratification and identify patients in highest need of innovative therapies for future clinical trials. Relative to conventional genetics, little is known about osteosarcoma epigenetics. We aimed to characterize the methylation and phosphorylation status in osteosarcoma using histone markers found in primary diagnostic biopsies and their paired metastases. We constructed two tissue microarray sets from 58 primary diagnostic samples and 54 temporally-separated but related metastatic or recurrent samples, with tissue blocks available from 2002-2022. Clinical charts were reviewed for post-therapy necrosis response, presence of metastatic disease or recurrence, and overall survival. We evaluated 6 histone H3 residues using immunohistochemistry, including H3K4me3, H3K9me3, H3K27me2, H3K27me3, H3S10T11phos, and H3S28phos. Tumors were scored with low (<25%) or high (≥25%) nuclear staining of tumor cells. Diagnostic biopsies with low H3K27me3 nuclear staining were associated with poor treatment response (≤90% necrosis) at the time of definitive excision (P<0.05). We observed loss of H3S10T11phos expression in metastatic and recurrent resections specimens compared to the primary tumor (P<0.05). Expression patterns for the remaining histone markers did not show significant associations with disease parameters or survival. Although larger cohort studies are needed, these results support the expanded evaluation of histone markers, particularly H3K27me3 and H3S10T11phos, in osteosarcoma biology and risk stratification.
Collapse
Affiliation(s)
| | - Danielle Cohen
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rebecca J. Deyell
- Department of Pediatrics and Division of Hematology, Oncology, and Bone Marrow Transplant, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Ash Sandhu
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Jonathan W. Bush
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Division of Anatomical Pathology, BC Children’s and Women’s Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
White MJ, Cimino-Mathews A. Diagnostic Approach to Mesenchymal and Spindle Cell Tumors of the Breast. Adv Anat Pathol 2024; 31:411-428. [PMID: 39466698 DOI: 10.1097/pap.0000000000000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Mesenchymal and spindle cell tumors of the breast represent a broad and heterogeneous group of lesions that may be sampled on core needle biopsy or surgical excision. Mesenchymal lesions unique to the breast are those that derive from the specialized breast myofibroblast, such as mammary myofibroblastoma and pseudoangiomatous stromal hyperplasia. However, any mesenchymal lesion arising in extramammary soft tissue may also arise in the breast, including fibroblastic, peripheral nerve sheath, adipocytic, and vascular lesions. The spindle cell lesions pose the greatest diagnostic challenge, due to the significant radiographic, morphologic, and immunophenotypic overlap within the category of mesenchymal lesions and more broadly with other nonmesenchymal breast lesions. The distinction is particularly challenging on the limited material of breast core needle biopsies, and caution should be taken before definitively classifying a breast spindle cell lesion on core needle biopsy to avoid unnecessary treatment if misdiagnosed. Consideration of a wide differential diagnosis, adequate sampling of a resection specimen, use of a targeted immunopanel, and selective use of molecular assays are essential steps for accurate classification of mesenchymal lesions in the breast. This review covers the clinical, histologic, and immunophenotypic features of mesenchymal tumors of the breast, with a special emphasis on the differential diagnoses unique to the breast and challenges encountered on breast core needle biopsy.
Collapse
Affiliation(s)
- Marissa J White
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
| | | |
Collapse
|
9
|
Angelico G, Mazzucchelli M, Attanasio G, Tinnirello G, Farina J, Zanelli M, Palicelli A, Bisagni A, Barbagallo GMV, Certo F, Zizzo M, Koufopoulos N, Magro G, Caltabiano R, Broggi G. H3K27me3 Loss in Central Nervous System Tumors: Diagnostic, Prognostic, and Therapeutic Implications. Cancers (Basel) 2024; 16:3451. [PMID: 39456545 PMCID: PMC11506073 DOI: 10.3390/cancers16203451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Central nervous system (CNS) tumors represent a formidable clinical challenge due to their molecular complexity and varied prognostic outcomes. This review delves into the pivotal role of the epigenetic marker H3K27me3 in the development and treatment of CNS tumors. H3K27me3, specifically the trimethylation of lysine 27 on the histone H3 protein, plays a crucial role in regulating gene expression and maintaining chromatin architecture (e.g., in X-chromosome inactivation). Notably, a reduction in H3K27me3 levels, frequently tied to mutations in the H3 gene family such as H3F3A and HIST1H3B, is evident in diverse brain tumor variants, including the diffuse midline glioma characterized by the H3K27M mutation and certain pediatric high-grade gliomas. The loss of H3K27me3 has been linked to more aggressive behavior in meningiomas, with the trimethylation loss associated with significantly shorter recurrence-free survival (RFS) among grade 2 meningiomas, albeit not within grade 1 tumors. Pediatric posterior fossa ependymomas characterized by a lowered H3K27me3 and DNA hypomethylation exhibit poor prognosis, underscoring the prognostic significance of these epigenetic alterations in CNS tumors. Comprehending the role of H3K27me3 in CNS tumors is vital for advancing diagnostic tools and therapeutic interventions, with the goal of enhancing patient outcomes and quality of life. This review underscores the importance of ongoing investigations into H3K27me to refine and optimize management strategies for CNS tumors, paving the way for improved personalized medicine practices in oncology.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy;
| | - Manuel Mazzucchelli
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Giulio Attanasio
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Giordana Tinnirello
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Jessica Farina
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.P.); (A.B.)
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.P.); (A.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.P.); (A.B.)
| | | | - Francesco Certo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (G.M.V.B.); (F.C.)
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Nektarios Koufopoulos
- Second Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 15772 Athens, Greece;
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| |
Collapse
|
10
|
Gui C, Canthiya L, Zadeh G, Suppiah S. Current state of spinal nerve sheath tumor management and future advances. Neurooncol Adv 2024; 6:iii83-iii93. [PMID: 39430389 PMCID: PMC11485951 DOI: 10.1093/noajnl/vdae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Nerve sheath tumors are the most common tumors of the spine after meningiomas. They include schwannomas, neurofibroma, and malignant peripheral nerve sheath tumors. These can arise sporadically or in association with tumor predisposition syndromes, including neurofibromatosis type 1, neurofibromatosis type 2, and schwannomatosis. Though surgery is the traditional mainstay of treatment for these tumors, the discovery of the genetic and molecular basis of these diseases in recent decades has prompted investigation into targeted therapies. Here, we give a clinical overview of spinal nerve sheath tumors, their imaging features, current management practices, and explore ongoing advances in systemic therapies.
Collapse
Affiliation(s)
- Chloe Gui
- MacFeeters-Hamilton Centre for Neuro Oncology, Princess Margaret Cancer Research Center, Toronto, Ontario, Canada
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Luxshikka Canthiya
- MacFeeters-Hamilton Centre for Neuro Oncology, Princess Margaret Cancer Research Center, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- MacFeeters-Hamilton Centre for Neuro Oncology, Princess Margaret Cancer Research Center, Toronto, Ontario, Canada
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Suganth Suppiah
- MacFeeters-Hamilton Centre for Neuro Oncology, Princess Margaret Cancer Research Center, Toronto, Ontario, Canada
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Lajara S, Jo VY. Soft Tissue Fine-Needle Aspiration: Current and Future Impact on Patient Care. Surg Pathol Clin 2024; 17:483-507. [PMID: 39129144 DOI: 10.1016/j.path.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Soft tissue neoplasms pose many diagnostic challenges on fine-needle aspiration (FNA), owing largely to their rarity, large number of entities, and histologic diversity. Advances in ancillary testing now allow detection of the characteristic immunophenotypes and molecular alterations for many neoplasms and include reliable surrogate immunohistochemical markers for underlying molecular events that are highly efficient in small biopsies. A morphology-based framework is recommended to guide appropriate differentials and judicious selection of ancillary tests for small biopsies. The accurate diagnosis of soft tissue tumors is crucial for patient management and prognostication, with many potential implications in this era of precision medicine.
Collapse
Affiliation(s)
- Sigfred Lajara
- Department of Pathology, UPMC Shadyside Hospital, Cancer Pavilion, Suite 201, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Vickie Y Jo
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Chen Y, Chen T, Zhu W, Li L, Fang C, Zhang H. Rare primary intrapulmonary malignant peripheral nerve sheath tumor showing significant response to sintilimab: A case report and literature review. Oncol Lett 2024; 28:423. [PMID: 39035047 PMCID: PMC11258603 DOI: 10.3892/ol.2024.14556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024] Open
Abstract
Primary pulmonary malignant peripheral nerve sheath tumor (MPNST) is a rare soft tissue sarcoma with a low incidence, poor prognosis and limited treatment options. The present study reported a case of lung MPNST in a 63-year-old male patient without any pulmonary symptoms. Immunohistochemical analysis of the tumor indicated a programmed death-ligand 1 (PD-L1) expression tumor proportion score of 60%. A total of six courses of sintilimab were used in this patient and a remarkable response was achieved. In summary, sintilimab single-agent immunotherapy may be a novel treatment for pulmonary MPNST. When encountering analogous cases in the future, oncologists can test for the expression of PD-L1 in patients to guide the therapy's design.
Collapse
Affiliation(s)
- Yunqi Chen
- Oncology Department, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong 528400, P.R. China
| | - Ting Chen
- Oncology Department, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong 528400, P.R. China
| | - Wanshan Zhu
- Oncology Department, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong 528400, P.R. China
| | - Luzhen Li
- Oncology Department, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong 528400, P.R. China
| | - Cantu Fang
- Oncology Department, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong 528400, P.R. China
| | - Huatang Zhang
- Oncology Department, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong 528400, P.R. China
| |
Collapse
|
13
|
Patrichi AI, Gurzu S. Pathogenetic and molecular classifications of soft tissue and bone tumors: A 2024 update. Pathol Res Pract 2024; 260:155406. [PMID: 38878666 DOI: 10.1016/j.prp.2024.155406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 08/09/2024]
Abstract
Soft tissue and bone tumors comprise a wide category of neoplasms. Their diversity frequently raises diagnostic challenges, and therapeutic options are continuously developing. The therapeutic success rate and long-term prognosis of patients have improved substantially due to new advances in immunohistochemical and molecular biology techniques. A fundamental contribution to these achievements has been the study of the tumor microenvironment and the reclassification of new entities with the updating of the molecular pathogenesis in the revised 5th edition of the Classification of Soft Tissue Tumors, edited by the World Health Organization. The proposed molecular diagnostic techniques include the well-known in situ hybridization and polymerase chain reaction methods, but new techniques such as copy-number arrays, multiplex probes, single-nucleotide polymorphism, and sequencing are also proposed. This review aims to synthesize the most recent pathogenetic and molecular classifications of soft tissue and bone tumors, considering the major impact of these diagnostic tools, which are becoming indispensable in clinicopathological practice.
Collapse
Affiliation(s)
- Andrei Ionut Patrichi
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu-Mures, Romania; Research Center of Oncopathology and Translational Medicine (CCOMT), Targu-Mures, Romania
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu-Mures, Romania; Research Center of Oncopathology and Translational Medicine (CCOMT), Targu-Mures, Romania; Romanian Academy of Medical Sciences, Romania.
| |
Collapse
|
14
|
Zhang Z, Huang J, Zhang Z, Shen H, Tang X, Wu D, Bao X, Xu G, Chen S. Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia. Biomark Res 2024; 12:60. [PMID: 38858750 PMCID: PMC11165883 DOI: 10.1186/s40364-024-00600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.
Collapse
Affiliation(s)
- Zhiyu Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jiayi Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Hirbe AC, Dehner CA, Dombi E, Eulo V, Gross AM, Sundby T, Lazar AJ, Widemann BC. Contemporary Approach to Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Am Soc Clin Oncol Educ Book 2024; 44:e432242. [PMID: 38710002 PMCID: PMC11656191 DOI: 10.1200/edbk_432242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Most malignant peripheral nerve sheath tumors (MPNSTs) are clinically aggressive high-grade sarcomas, arising in individuals with neurofibromatosis type 1 (NF1) at a significantly elevated estimated lifetime frequency of 8%-13%. In the setting of NF1, MPNSTs arise from malignant transformation of benign plexiform neurofibroma and borderline atypical neurofibromas. Composed of neoplastic cells from the Schwannian lineage, these cancers recur in approximately 50% of individuals, and most patients die within five years of diagnosis, despite surgical resection, radiation, and chemotherapy. Treatment for metastatic disease is limited to cytotoxic chemotherapy and investigational clinical trials. In this article, we review the pathophysiology of this aggressive cancer and current approaches to surveillance and treatment.
Collapse
Affiliation(s)
- Angela C Hirbe
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St Louis, MO
| | - Carina A Dehner
- Department of Anatomic Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Vanessa Eulo
- Division of Oncology, Department of Medicine, University of Alabama, Birmingham, AL
| | - Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
16
|
Rizvi SWA, Rizvi SAR, Qadri S, Khalid S, Siddiqui MA, Khan AA, Akhter A. Orbital malignant peripheral nerve sheath tumor: A case report and review. Oman J Ophthalmol 2024; 17:254-260. [PMID: 39132121 PMCID: PMC11309527 DOI: 10.4103/ojo.ojo_299_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/07/2023] [Accepted: 05/25/2024] [Indexed: 08/13/2024] Open
Abstract
Malignant peripheral nerve sheath tumor of the orbit is an exceedingly rare entity. These tumors exhibit locally aggressive behavior, recurrences, distant metastasis, and poor response to existing treatment protocols. Orbital nerve sheath tumors are often associated with neurofibromatosis 1, and malignant transformation of neurofibroma into malignant nerve sheath tumor has also been seen. The recommended treatment for localized disease is radical or wide surgical excision to achieve negative margins followed by chemoradiation. For extensive disease, chemotherapy and radiotherapy can be utilized to stabilize the disease. Due to poor response and outcomes with current regimens, the focus has been shifted to approaches utilizing molecular targets and immunological agents. Despite all the advancements, the outcomes still remain discouraging for moderate- to high-grade lesions and thus necessitate studies to design promising treatment modalities.
Collapse
Affiliation(s)
- Syed Wajahat Ali Rizvi
- Department of Ophthalmology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | | - Shagufta Qadri
- Department of Pathology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Saifullah Khalid
- Department of Radiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | | - Adeeb Alam Khan
- Department of Ophthalmology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Afeefa Akhter
- Department of Ophthalmology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
17
|
Brockman QR, Rytlewski JD, Milhem M, Monga V, Dodd RD. Integrated Epigenetic and Transcriptomic Analysis Identifies Interleukin 17 DNA Methylation Signature of Malignant Peripheral Nerve Sheath Tumor Progression and Metastasis. JCO Precis Oncol 2024; 8:e2300325. [PMID: 38820476 PMCID: PMC11552688 DOI: 10.1200/po.23.00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 06/02/2024] Open
Abstract
PURPOSE Sarcomas are a complex group of highly aggressive and metastatic tumors with over 100 distinct subtypes. Because of their diversity and rarity, it is challenging to generate multisarcoma signatures that are predictive of patient outcomes. MATERIALS AND METHODS Here, we identify a DNA methylation signature for progression and metastasis of numerous sarcoma subtypes using multiple epigenetic and genomic patient data sets. Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are highly metastatic sarcomas with frequent loss of the histone methyltransferase, PRC2. Loss of PRC2 is associated with MPNST metastasis and plays a critical noncanonical role in DNA methylation. RESULTS We found that over 900 5'-C-phosphate-G-3' (CpGs) were hypermethylated in MPNSTs with PRC2 loss. Furthermore, we identified eight differentially methylated CpGs in the IL17D/RD family that correlate with the progression and metastasis of MPNSTs in two independent patient data sets. Similar trends were identified in other sarcoma subtypes, including osteosarcoma, rhabdomyosarcoma, and synovial sarcoma. Analysis of scRNAseq data sets determined that IL17D/RD expression occurs in both the tumor cells and the surrounding stromal populations. CONCLUSION These results might have broad implications for the clinical management and surveillance of sarcoma.
Collapse
Affiliation(s)
- Qierra R. Brockman
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Jeffrey D. Rytlewski
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Mohammed Milhem
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Varun Monga
- Division of Hematology/Oncology, University of California, San Francisco, California
| | - Rebecca D. Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
18
|
Chen JJ, Lee CK, Yang CY. High-Grade Malignant Peripheral Nerve Sheath Tumor Arising From Common Peroneal Nerve Neurofibroma. Cureus 2024; 16:e59607. [PMID: 38832183 PMCID: PMC11144666 DOI: 10.7759/cureus.59607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
This article presents a case report of a 45-year-old male with neurofibromatosis type I (NF1) who developed a high-grade malignant peripheral nerve sheath tumor (MPNST) originating from a neurofibroma within the common peroneal nerve over popliteal fossa. MPNSTs are aggressive tumors associated with NF1, causing significant mortality. The patient underwent tumor resection surgery and received postoperative radiation therapy. Follow-up examinations showed no impairment of motor function and no tumor recurrence after regular MRI evaluation for four years. This article explores the challenges of distinguishing benign neurofibromas from malignant MPNST via MRI image and biopsy, and achieving a balance between tumor excision and preserving nerve functionality during surgical treatment. However, caution is warranted due to the risk of recurrence.
Collapse
Affiliation(s)
- Jian-Jiun Chen
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, TWN
| | - Chien-Kuan Lee
- Department of Pathology, Kuang Tien General Hospital, Taichung, TWN
| | - Chen-Yuan Yang
- Department of Orthopedic Surgery, Kuang Tien General Hospital, Taichung, TWN
| |
Collapse
|
19
|
Catelas D, Sousa D, Rodrigues AP, Cardoso P. Bulky malignant peripheral nerve sheath tumour of the left thigh in a pregnant woman presenting with a pathological fracture of the proximal femur. BMJ Case Rep 2024; 17:e253070. [PMID: 38569727 PMCID: PMC11002337 DOI: 10.1136/bcr-2022-253070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Malignant peripheral nerve sheath tumour (MPNST) is an aggressive soft tissue sarcoma with a poor prognosis, affecting most commonly the extremities. The lungs constitute the most frequent location for distant metastases. Half of all MPNSTs arise in patients with neurofibromatosis type 1, while approximately 10% are radiation induced and the rest are sporadic.The authors present a pregnant woman in her 40s with a sporadic MPNST of the lower limb and with lung metastases at diagnosis. Treatment consisted of interilioabdominal amputation, followed by adjuvant chemotherapy. Partial response and disease stabilisation were achieved with chemotherapy.Surgical resection with negative margins is the only potentially curative therapy, while radiation therapy and chemotherapy might be useful in the neoadjuvant or adjuvant setting, but their advantage in survival is not demonstrated. In the reported case, chemotherapy permitted the achievement of partial response and stabilisation of the disease.
Collapse
Affiliation(s)
- Diogo Catelas
- Department of Orthopedic Surgery, Centro Hospitalar Universitario de Santo António, Porto, Portugal
- School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Duarte Sousa
- Department of Orthopedic Surgery, Centro Hospitalar Universitario de Santo António, Porto, Portugal
| | - Ana Patrícia Rodrigues
- Department of Surgical Pathology, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Pedro Cardoso
- Department of Orthopedic Surgery, Centro Hospitalar Universitario de Santo António, Porto, Portugal
- School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
White EE, Rhodes SD. The NF1+/- Immune Microenvironment: Dueling Roles in Neurofibroma Development and Malignant Transformation. Cancers (Basel) 2024; 16:994. [PMID: 38473354 PMCID: PMC10930863 DOI: 10.3390/cancers16050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder resulting in the development of both benign and malignant tumors of the peripheral nervous system. NF1 is caused by germline pathogenic variants or deletions of the NF1 tumor suppressor gene, which encodes the protein neurofibromin that functions as negative regulator of p21 RAS. Loss of NF1 heterozygosity in Schwann cells (SCs), the cells of origin for these nerve sheath-derived tumors, leads to the formation of plexiform neurofibromas (PNF)-benign yet complex neoplasms involving multiple nerve fascicles and comprised of a myriad of infiltrating stromal and immune cells. PNF development and progression are shaped by dynamic interactions between SCs and immune cells, including mast cells, macrophages, and T cells. In this review, we explore the current state of the field and critical knowledge gaps regarding the role of NF1(Nf1) haploinsufficiency on immune cell function, as well as the putative impact of Schwann cell lineage states on immune cell recruitment and function within the tumor field. Furthermore, we review emerging evidence suggesting a dueling role of Nf1+/- immune cells along the neurofibroma to MPNST continuum, on one hand propitiating PNF initiation, while on the other, potentially impeding the malignant transformation of plexiform and atypical neurofibroma precursor lesions. Finally, we underscore the potential implications of these discoveries and advocate for further research directed at illuminating the contributions of various immune cells subsets in discrete stages of tumor initiation, progression, and malignant transformation to facilitate the discovery and translation of innovative diagnostic and therapeutic approaches to transform risk-adapted care.
Collapse
Affiliation(s)
- Emily E. White
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven D. Rhodes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Patrizi S, Miele E, Falcone L, Vallese S, Rossi S, Barresi S, Giovannoni I, Pedace L, Nardini C, Masier I, Abballe L, Cacchione A, Russo I, Di Giannatale A, Di Ruscio V, Salgado CM, Mastronuzzi A, Ciolfi A, Tartaglia M, Milano GM, Locatelli F, Alaggio R. Malignant peripheral nerve sheath tumor (MPNST) and MPNST-like entities are defined by a specific DNA methylation profile in pediatric and juvenile population. Clin Epigenetics 2024; 16:9. [PMID: 38178234 PMCID: PMC10768529 DOI: 10.1186/s13148-023-01621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Malignant peripheral nerve sheath tumors (MPNSTs) account for 3-10% of pediatric sarcomas, 50% of which occur in neurofibromatosis type 1 (NF1). Sporadic MPNSTs diagnosis may be challenging due to the absence of specific markers, apart from immunohistochemical H3K27me3 loss. DNA methylation (DNAm) profiling is a useful tool for brain and mesenchymal neoplasms categorization, and MPNSTs exhibit a specific DNAm signature. An MPNST-like group has recently been recognized, including pediatric tumors with retained H3K27me3 mark and clinical/histological features not yet well explored. This study aims to characterize the DNAm profile of pediatric/juvenile MPNSTs/MPNST-like entities and its diagnostic/prognostic relevance. RESULTS We studied 42 tumors from two groups. Group 1 included 32 tumors histologically diagnosed as atypical neurofibroma (ANF) (N = 5) or MPNST (N = 27); group 2 comprised 10 tumors classified as MPNST-like according to Heidelberg sarcoma classifier. We performed further immunohistochemical and molecular tests to reach an integrated diagnosis. In group 1, DNAm profiling was inconclusive for ANF; while, it confirmed the original diagnosis in 12/27 MPNSTs, all occurring in NF1 patients. Five/27 MPNSTs were classified as MPNST-like: Integrated diagnosis confirmed MPNST identity for 3 cases; while, the immunophenotype supported the change to high-grade undifferentiated spindle cell sarcoma in 2 samples. The remaining 10/27 MPNSTs variably classified as schwannoma, osteosarcoma, BCOR-altered sarcoma, rhabdomyosarcoma (RMS)-MYOD1 mutant, RMS-like, and embryonal RMS or did not match with any defined entity. Molecular analysis and histologic review confirmed the diagnoses of BCOR, RMS-MYOD1 mutant, DICER1-syndrome and ERMS. Group 2 samples included 5 high-grade undifferentiated sarcomas/MPNSTs and 5 low-grade mesenchymal neoplasms. Two high-grade and 4 low-grade lesions harbored tyrosine kinase (TRK) gene fusions. By HDBSCAN clustering analysis of the whole cohort we identified two clusters mainly distinguished by H3K27me3 epigenetic signature. Exploring the copy number variation, high-grade tumors showed frequent chromosomal aberrations and CDKN2A/B loss significantly impacted on survival in the MPNSTs cohort. CONCLUSION DNAm profiling is a useful tool in diagnostic work-up of MPNSTs. Its application in a retrospective series collected during pre-molecular era contributed to classify morphologic mimics. The methylation group MPNST-like is a 'hybrid' category in pediatrics including high-grade and low-grade tumors mainly characterized by TRK alterations.
Collapse
Affiliation(s)
- Sara Patrizi
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Evelina Miele
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Lorenza Falcone
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Pathology Unit, Augusto Murri Hospital, Azienda Sanitaria Territoriale di Fermo - Marche, Fermo, Italy
| | - Silvia Vallese
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabina Barresi
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Lucia Pedace
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Nardini
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ilaria Masier
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luana Abballe
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Cacchione
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ida Russo
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Di Giannatale
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Di Ruscio
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Maria Salgado
- Division of Pathology, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Angela Mastronuzzi
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Giuseppe Maria Milano
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
22
|
Rerkpichaisuth V, Hung YP. Mesenchymal tumours of the pleura: review and update. Histopathology 2024; 84:163-182. [PMID: 37691389 DOI: 10.1111/his.15035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
Primary mesenchymal tumours of the pleura are uncommon and can be diagnostically challenging due to their overlapping histopathologic and immunophenotypic features. Herein we discuss selected mesenchymal tumours of the pleura, including solitary fibrous tumour, calcifying fibrous tumour, desmoid fibromatosis, synovial sarcoma, schwannoma, malignant peripheral nerve sheath tumour, inflammatory myofibroblastic tumour, follicular dendritic cell sarcoma, epithelioid hemangioendothelioma, and desmoplastic small round cell tumour. We review their clinicopathologic characteristics, along with an update on the relevant immunohistochemical and molecular features.
Collapse
Affiliation(s)
- Vilasinee Rerkpichaisuth
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yin P Hung
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
den Bakker MA, Weissferdt A. Neurogenic tumours of the posterior mediastinum and differential diagnosis considerations. Histopathology 2024; 84:238-252. [PMID: 37771117 DOI: 10.1111/his.15045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
The mediastinal compartment harbours vital organs and structures, including the heart, great vessels, major airways, and thymus. These structures are embedded in and associated with soft-tissue elements consisting of adipose and fibro-collagenous tissue in which soft-tissue tumours may develop. A detailed inventory of soft-tissue tumours that may be encountered in the mediastinum based on the WHO 2013 classification was published in 2015. In addition, several comprehensive reviews on mediastinal soft-tissue pathology are available, including reviews focusing specifically on a single tumour type. This review will focus on primary neurogenic and spindle cell tumours of the somatic soft tissue of the posterior mediastinum and provide a discussion of the pertinent differential diagnoses.
Collapse
Affiliation(s)
- Michael A den Bakker
- Department of Pathology, Maasstad Hospital, Rotterdam, the Netherlands
- Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Annikka Weissferdt
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Høland M, Berg KCG, Eilertsen IA, Bjerkehagen B, Kolberg M, Boye K, Lingjærde OC, Guren TK, Mandahl N, van den Berg E, Palmerini E, Smeland S, Picci P, Mertens F, Sveen A, Lothe RA. Transcriptomic subtyping of malignant peripheral nerve sheath tumours highlights immune signatures, genomic profiles, patient survival and therapeutic targets. EBioMedicine 2023; 97:104829. [PMID: 37837931 PMCID: PMC10585232 DOI: 10.1016/j.ebiom.2023.104829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Malignant peripheral nerve sheath tumour (MPNST) is an aggressive orphan disease commonly affecting adolescents or young adults. Current knowledge of molecular tumour biology has been insufficient for development of rational treatment strategies. We aimed to discover molecular subtypes of potential clinical relevance. METHODS Fresh frozen samples of MPNSTs (n = 94) and benign neurofibromas (n = 28) from 115 patients in a European multicentre study were analysed by DNA copy number and/or transcriptomic profiling. Unsupervised transcriptomic subtyping was performed and the subtypes characterized for genomic aberrations, clinicopathological associations and patient survival. FINDINGS MPNSTs were classified into two transcriptomic subtypes defined primarily by immune signatures and proliferative processes. "Immune active" MPNSTs (44%) had sustained immune signals relative to neurofibromas, were more frequently low-grade (P = 0.01) and had favourable prognostic associations in a multivariable model of disease-specific survival with clinicopathological factors (hazard ratio 0.25, P = 0.003). "Immune deficient" MPNSTs were more aggressive and characterized by proliferative signatures, high genomic complexity, aberrant TP53 and PRC2 loss, as well as high relative expression of several potential actionable targets (EGFR, ERBB2, EZH2, KIF11, PLK1, RRM2). Integrated gene-wise analyses suggested a DNA copy number-basis for proliferative transcriptomic signatures in particular, and the tumour copy number burden further stratified the transcriptomic subtypes according to patient prognosis (P < 0.01). INTERPRETATION Approximately half of MPNSTs belong to an "immune deficient" transcriptomic subtype associated with an aggressive disease course, PRC2 loss and expression of several potential therapeutic targets, providing a rationale for molecularly-guided intervention trials. FUNDING Research grants from non-profit organizations, as stated in the Acknowledgements.
Collapse
Affiliation(s)
- Maren Høland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kaja C G Berg
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ina A Eilertsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bodil Bjerkehagen
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway; Division of Laboratory Medicine, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Matthias Kolberg
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kjetil Boye
- Division of Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Ole Christian Lingjærde
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Tormod K Guren
- Division of Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Nils Mandahl
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | - Eva van den Berg
- Department of Genetics, The University Medical Center Groningen, the Netherlands
| | - Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sigbjørn Smeland
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway; Division of Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Piero Picci
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Fredrik Mertens
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | - Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
25
|
Chowdhury A, Vivanco-Suarez J, Teferi N, Belzer A, Al-Kaylani H, Challa M, Lee S, Buatti JM, Hitchon P. Surgical management of craniospinal axis malignant peripheral nerve sheath tumors: a single-institution experience and literature review. World J Surg Oncol 2023; 21:338. [PMID: 37880773 PMCID: PMC10601280 DOI: 10.1186/s12957-023-03227-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Malignant peripheral nerve sheath tumor (MPNST) is an exceedingly rare and aggressive tumor, with limited literature on its management. Herein, we present our series of surgically managed craniospinal MPNSTs, analyze their outcomes, and review the literature. METHODS We retrospectively reviewed surgically managed primary craniospinal MPNSTs treated at our institution between January 2005 and May 2023. Patient demographics, tumor features, and treatment outcomes were assessed. Neurological function was quantified using the Frankel grade and Karnofsky performance scores. Descriptive statistics, rank-sum tests, and Kaplan-Meier survival analyses were performed. RESULTS Eight patients satisfied the inclusion criteria (4 male, 4 female). The median age at presentation was 38 years (range 15-67). Most tumors were localized to the spine (75%), and 3 patients had neurofibromatosis type 1. The most common presenting symptoms were paresthesia (50%) and visual changes (13%). The median tumor size was 3 cm, and most tumors were oval-shaped (50%) with well-defined borders (75%). Six tumors were high grade (75%), and gross total resection was achieved in 5 patients, with subtotal resection in the remaining 3 patients. Postoperative radiotherapy and chemotherapy were performed in 6 (75%) and 4 (50%) cases, respectively. Local recurrence occurred in 5 (63%) cases, and distant metastases occurred in 2 (25%). The median overall survival was 26.7 months. Five (63%) patients died due to recurrence. CONCLUSIONS Primary craniospinal MPNSTs are rare and have an aggressive clinical course. Early diagnosis and treatment are essential for managing these tumors. In this single-center study with a small cohort, maximal resection, low-grade pathology, young age (< 30), and adjuvant radiotherapy were associated with improved survival.
Collapse
Affiliation(s)
- Ajmain Chowdhury
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Nahom Teferi
- Neurosurgery and Biomedical Engineering, Department of Neurosurgery, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - Alex Belzer
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Hend Al-Kaylani
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Meron Challa
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sarah Lee
- Neurosurgery and Biomedical Engineering, Department of Neurosurgery, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - John M Buatti
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Patrick Hitchon
- Neurosurgery and Biomedical Engineering, Department of Neurosurgery, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.
| |
Collapse
|
26
|
Ngubo M, Moradi F, Ito CY, Stanford WL. Tissue-Specific Tumour Suppressor and Oncogenic Activities of the Polycomb-like Protein MTF2. Genes (Basel) 2023; 14:1879. [PMID: 37895228 PMCID: PMC10606531 DOI: 10.3390/genes14101879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
The Polycomb repressive complex 2 (PRC2) is a conserved chromatin-remodelling complex that catalyses the trimethylation of histone H3 lysine 27 (H3K27me3), a mark associated with gene silencing. PRC2 regulates chromatin structure and gene expression during organismal and tissue development and tissue homeostasis in the adult. PRC2 core subunits are associated with various accessory proteins that modulate its function and recruitment to target genes. The multimeric composition of accessory proteins results in two distinct variant complexes of PRC2, PRC2.1 and PRC2.2. Metal response element-binding transcription factor 2 (MTF2) is one of the Polycomb-like proteins (PCLs) that forms the PRC2.1 complex. MTF2 is highly conserved, and as an accessory subunit of PRC2, it has important roles in embryonic stem cell self-renewal and differentiation, development, and cancer progression. Here, we review the impact of MTF2 in PRC2 complex assembly, catalytic activity, and spatiotemporal function. The emerging paradoxical evidence suggesting that MTF2 has divergent roles as either a tumour suppressor or an oncogene in different tissues merits further investigations. Altogether, our review illuminates the context-dependent roles of MTF2 in Polycomb group (PcG) protein-mediated epigenetic regulation. Its impact on disease paves the way for a deeper understanding of epigenetic regulation and novel therapeutic strategies.
Collapse
Affiliation(s)
- Mzwanele Ngubo
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Fereshteh Moradi
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Caryn Y. Ito
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - William L. Stanford
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
27
|
Li L, Ma XK, Gao Y, Wang DC, Dong RF, Yan J, Zhang R. Clinicopathological study of malignant peripheral nerve sheath tumors in the head and neck: Case reports and review of literature. World J Clin Cases 2023; 11:5910-5918. [PMID: 37727493 PMCID: PMC10506041 DOI: 10.12998/wjcc.v11.i25.5910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Malignant peripheral nerve sheath tumor (MPNST) is a rare and aggressive soft tissue sarcoma that poses a major diagnostic and therapeutic challenge. CASE SUMMARY We retrospectively reviewed patients with head and neck MPNSTs treated in our hospital from 2000 to 2021. The clinical features, pathological manifestations, treatments, and prognoses were summarized. We also reviewed the literature, focusing on MPNST in the mandible and maxilla. The study population consisted of five women and five men aged 22-75 years (mean age, 49 years). Of the 10 patients, 7 were initial cases and 3 were recurrent cases. All lesions were sporadic. The most common site was the mandible. The most frequently encountered symptoms were a progressive mass and local swelling. Complete or partial loss of trimethylation at lysine 27 of histone H3 (H3K27me3) was evident on staining in four of nine cases (one case was excluded due to lack of tissue for evaluation of loss of H3K27me3). The 2- and 5-year disease-specific survival rates were 86% and 43%, respectively. The average survival time was 64 mo. CONCLUSION MPNST is a highly malignant tumor with a poor prognosis, prone to a high risk of recurrence and distant metastasis. Complete surgical resection is the main treatment.
Collapse
Affiliation(s)
- Long Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100000, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing 100000, China
- Department of Oral Pathology, Xiangya Stomalogical Hospital & School of Stomatology, Central South University, Changsha 410078, Hunan Province, China
| | - Xiao-Kun Ma
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou 215000, Jiangsu Province, China
| | - Yan Gao
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100000, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing 100000, China
| | - Dian-Can Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100000, China
| | - Rong-Fang Dong
- Department of Pathology, Beijing Jishuitan Hospital, Beijing 100000, China
| | - Jing Yan
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100000, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing 100000, China
| | - Ran Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100000, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing 100000, China
| |
Collapse
|
28
|
Kim C, Chung YG, Jung CK. Diagnostic conundrums of schwannomas: two cases highlighting morphological extremes and diagnostic challenges in biopsy specimens of soft tissue tumors. J Pathol Transl Med 2023; 57:278-283. [PMID: 37608551 PMCID: PMC10518245 DOI: 10.4132/jptm.2023.07.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023] Open
Abstract
Schwannomas are benign, slow-growing peripheral nerve sheath tumors commonly occurring in the head, neck, and flexor regions of the extremities. Although most schwannomas are easily diagnosable, their variable morphology can occasionally create difficulty in diagnosis. Reporting pathologists should be aware that schwannomas can exhibit a broad spectrum of morphological patterns. Clinical and radiological examinations can show correlation and should be performed, in conjunction with ancillary tests, when appropriate. Furthermore, deferring a definitive diagnosis until excision may be necessary for small biopsy specimens and frozen sections. This report underscores these challenges through examination of two unique schwannoma cases, one predominantly cellular and the other myxoid, both of which posed significant challenges in histological interpretation.
Collapse
Affiliation(s)
- Chankyung Kim
- Department of Anatomical Pathology, SA Pathology, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Yang-Guk Chung
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
29
|
Dermawan JK, Dashti N, Chiang S, Turashvili G, Dickson BC, Ellenson LH, Kirchner M, Stenzinger A, Mechtersheimer G, Agaimy A, Antonescu CR. Expanding the molecular spectrum of gene fusions in endometrial stromal sarcoma: Novel subunits of the chromatin remodeling complexes PRC2 and NuA4/TIP60 as alternative fusion partners. Genes Chromosomes Cancer 2023; 62:152-160. [PMID: 36445224 PMCID: PMC9825654 DOI: 10.1002/gcc.23109] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
Endometrial stromal sarcomas (ESS) are morphologically and molecularly heterogeneous. We report novel gene fusions (EPC1::EED, EPC1::EZH2, ING3::PHF1) identified by targeted RNA sequencing in five cases. The ING3::PHF1-fusion positive ESS presented in a 58-year-old female as extrauterine mesocolonic, ovarian masses, and displayed large, monomorphic ovoid-to-epithelioid cells arranged in solid sheets. The patient remained alive with disease 13 months after surgery. The three ESS with EPC1::EED occurred in the uterine corpus in patients with a median age of 58 years (range 27-62 years). One tumor showed a uniform epithelioid nested morphology, while the other two were composed of monomorphic spindle cells in fascicles with elevated mitotic figures, focal tumor cell necrosis, and lymphovascular invasion. At a median follow-up of 20 months, two patients developed local recurrence, including one with concomitant distant metastasis, while one patient remained free of disease. All three patients were alive at the last follow-up. The EPC1::EZH2-fusion positive ESS presented in a 52-year-old female in the uterus, and displayed uniform spindled cells arranged in short fascicles, with focally elevated mitotic activity but without necrosis. The patient remained free of disease 3 months after surgery. All cases were diffusely positive for CD10; four diffusely express estrogen and progesterone receptors. Our study expands the molecular spectrum of EPC1 and PHF1-related gene fusions in ESS to include additional novel subunits of the PRC2 and/or NuA4/TIP60 complexes. These cases displayed a monomorphic epithelioid or spindled phenotype, spanning low-grade and high-grade cytomorphology, all expressing CD10 and commonly ER and PR, and are prone to local and/or distant spread.
Collapse
Affiliation(s)
- Josephine K. Dermawan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nooshin Dashti
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sarah Chiang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gulisa Turashvili
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA, USA
| | - Brendan C. Dickson
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, Canada
| | - Lora H. Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martina Kirchner
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | - Abbas Agaimy
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Cristina R. Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
30
|
Cortes-Ciriano I, Steele CD, Piculell K, Al-Ibraheemi A, Eulo V, Bui MM, Chatzipli A, Dickson BC, Borcherding DC, Feber A, Galor A, Hart J, Jones KB, Jordan JT, Kim RH, Lindsay D, Miller C, Nishida Y, Proszek PZ, Serrano J, Sundby RT, Szymanski JJ, Ullrich NJ, Viskochil D, Wang X, Snuderl M, Park PJ, Flanagan AM, Hirbe AC, Pillay N, Miller DT. Genomic Patterns of Malignant Peripheral Nerve Sheath Tumor (MPNST) Evolution Correlate with Clinical Outcome and Are Detectable in Cell-Free DNA. Cancer Discov 2023; 13:654-671. [PMID: 36598417 PMCID: PMC9983734 DOI: 10.1158/2159-8290.cd-22-0786] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Malignant peripheral nerve sheath tumor (MPNST), an aggressive soft-tissue sarcoma, occurs in people with neurofibromatosis type 1 (NF1) and sporadically. Whole-genome and multiregional exome sequencing, transcriptomic, and methylation profiling of 95 tumor samples revealed the order of genomic events in tumor evolution. Following biallelic inactivation of NF1, loss of CDKN2A or TP53 with or without inactivation of polycomb repressive complex 2 (PRC2) leads to extensive somatic copy-number aberrations (SCNA). Distinct pathways of tumor evolution are associated with inactivation of PRC2 genes and H3K27 trimethylation (H3K27me3) status. Tumors with H3K27me3 loss evolve through extensive chromosomal losses followed by whole-genome doubling and chromosome 8 amplification, and show lower levels of immune cell infiltration. Retention of H3K27me3 leads to extensive genomic instability, but an immune cell-rich phenotype. Specific SCNAs detected in both tumor samples and cell-free DNA (cfDNA) act as a surrogate for H3K27me3 loss and immune infiltration, and predict prognosis. SIGNIFICANCE MPNST is the most common cause of death and morbidity for individuals with NF1, a relatively common tumor predisposition syndrome. Our results suggest that somatic copy-number and methylation profiling of tumor or cfDNA could serve as a biomarker for early diagnosis and to stratify patients into prognostic and treatment-related subgroups. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Isidro Cortes-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | - Christopher D. Steele
- Research Department of Pathology, University College London Cancer Institute, Bloomsbury, London, United Kingdom
| | - Katherine Piculell
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | - Alyaa Al-Ibraheemi
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Vanessa Eulo
- Division of Oncology, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marilyn M. Bui
- Department of Pathology, Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Aikaterini Chatzipli
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Brendan C. Dickson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Dana C. Borcherding
- Division of Oncology, Departments of Internal Medicine and Pediatrics, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew Feber
- Clinical Genomics Translational Research, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Alon Galor
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jesse Hart
- Department of Pathology, Lifespan Laboratories, Rhode Island Hospital, Providence, Rhode Island
| | - Kevin B. Jones
- Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Justin T. Jordan
- Pappas Center for Neuro-oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Raymond H. Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Sinai Health System, Toronto, Ontario, Canada
- Hospital for Sick Children, University of Toronto, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Daniel Lindsay
- Department of Histopathology, Royal National Orthopaedic Hospital, NHS Trust, Middlesex, United Kingdom
| | - Colin Miller
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | - Yoshihiro Nishida
- Department of Rehabilitation Medicine, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Paula Z. Proszek
- Clinical Genomics Translational Research, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jonathan Serrano
- Department of Pathology, New York University Langone Health, Perlmutter Cancer Center, New York City, New York
| | - R. Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey J. Szymanski
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Nicole J. Ullrich
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - David Viskochil
- Division of Medical Genetics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Xia Wang
- GeneHome, Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, Perlmutter Cancer Center, New York City, New York
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Adrienne M. Flanagan
- Research Department of Pathology, University College London Cancer Institute, Bloomsbury, London, United Kingdom
- Department of Histopathology, Royal National Orthopaedic Hospital, NHS Trust, Middlesex, United Kingdom
| | - Angela C. Hirbe
- Division of Oncology, Departments of Internal Medicine and Pediatrics, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Nischalan Pillay
- Research Department of Pathology, University College London Cancer Institute, Bloomsbury, London, United Kingdom
- Department of Histopathology, Royal National Orthopaedic Hospital, NHS Trust, Middlesex, United Kingdom
| | - David T. Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | | |
Collapse
|
31
|
Yao C, Zhou H, Dong Y, Alhaskawi A, Hasan Abdullah Ezzi S, Wang Z, Lai J, Goutham Kota V, Hasan Abdulla Hasan Abdulla M, Lu H. Malignant Peripheral Nerve Sheath Tumors: Latest Concepts in Disease Pathogenesis and Clinical Management. Cancers (Basel) 2023; 15:1077. [PMID: 36831419 PMCID: PMC9954030 DOI: 10.3390/cancers15041077] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is an aggressive soft tissue sarcoma with limited therapeutic options and a poor prognosis. Although neurofibromatosis type 1 (NF1) and radiation exposure have been identified as risk factors for MPNST, the genetic and molecular mechanisms underlying MPNST pathogenesis have only lately been roughly elucidated. Plexiform neurofibroma (PN) and atypical neurofibromatous neoplasm of unknown biological potential (ANNUBP) are novel concepts of MPNST precancerous lesions, which revealed sequential mutations in MPNST development. This review summarized the current understanding of MPNST and the latest consensus from its diagnosis to treatment, with highlights on molecular biomarkers and targeted therapies. Additionally, we discussed the current challenges and prospects for MPNST management.
Collapse
Affiliation(s)
- Chengjun Yao
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
- School of Medicine, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
| | - Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
| | - Sohaib Hasan Abdullah Ezzi
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, #138 Tongzipo Road, Changsha 410013, China
| | - Zewei Wang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
- School of Medicine, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
| | - Jingtian Lai
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
- School of Medicine, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
| | - Vishnu Goutham Kota
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
| | | | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
32
|
Chatterjee D, Mitra S, Jolly S, Sinha A. Low-grade myofibroblastic sarcoma of the mandible: A rare tumour of childhood. J Oral Maxillofac Pathol 2023; 27:S10-S14. [PMID: 37082294 PMCID: PMC10112689 DOI: 10.4103/jomfp.jomfp_256_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/19/2022] [Indexed: 03/15/2023] Open
Abstract
Low-grade myofibroblastic sarcoma is a rare and indolent tumour of soft tissue. This tumour is relatively common in the head and neck region followed by extremities. Primary low-grade myofibroblastic sarcoma of the mandible is very rarely reported and the occurrence of this tumour in a child is very unusual. A 7-year-old male child presented with a swelling in right angle of mandible. X-ray and computed tomography scan showed a lytic lesion. The lesion was excised and the tissue was sent for histopathological evaluation, which revealed a cellular spindle cell neoplasm arranged in fascicles. The tumour was partly circumscribed and lobulated. On immunohistochemistry (IHC), these tumour cells showed cytoplasmic positivity for vimentin, and smooth muscle actin showed 'tram-track' pattern of positivity. The case was diagnosed as low-grade myofibroblastic sarcoma. There are no definite clinical features or pathognomonic radiological appearances of this tumour that can differentiate this rare tumour from other commonly encountered gnathic bone tumours, such as osteosarcoma, inflammatory myofibroblastic tumour, etc., Histopathological diagnosis coupled with ancillary investigations such as IHC is important to establish a definite diagnosis and rule out the differentials. The exact biological behaviour of this tumour is not known.
Collapse
|
33
|
Gilardi A, Ciofalo A, Colizza A, Altomari R, de Vincentiis M. A Rare Case of Extracranial Schwannoma of the Hypoglossal Nerve Located in the Parapharyngeal Space Mimicking a Deep Neck Abscess. EAR, NOSE & THROAT JOURNAL 2023; 102:NP46-NP48. [PMID: 33459562 DOI: 10.1177/0145561320988365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Schwannomas are neurogenic benign tumors originating from the myelin sheath of peripheral nerves, and hypoglossal Schwannomas account for 5% of nonvestibular ones. Extracranial localizations are substantially rare, especially those affecting exclusively the parapharyngeal space; for this reason, the retrostyloid neoformations could initially masquerade as a carotid tumor or deep organized neck abscess. The purpose of this report is to highlight the importance of a multidisciplinary approach in the correct management of differential diagnosis.
Collapse
Affiliation(s)
- Antonio Gilardi
- Department of Sense Organs, Sapienza University, Rome, Italy
| | - Andrea Ciofalo
- Department of Sense Organs, Sapienza University, Rome, Italy
| | - Andrea Colizza
- Department of Sense Organs, Sapienza University, Rome, Italy
| | - Roger Altomari
- Department of Sense Organs, Sapienza University, Rome, Italy
| | - Marco de Vincentiis
- Department of Oral and Maxillofacial Sciences, Sapienza University, Rome, Italy
| |
Collapse
|
34
|
Tang H, He Y, Chen Y, Xu W, Xu Y, Li X, Guo D. Sinonasal mucosal melanoma with smooth muscle differentiation: a potential pathological diagnostic pitfall. Diagn Pathol 2022; 17:95. [PMID: 36564790 PMCID: PMC9784021 DOI: 10.1186/s13000-022-01280-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sinonasal mucosal melanoma (SNMM) is a rare malignant melanoma originating from melanocytes derived from multipotent neural crest cells. Its incidence accounts for less than 1 % of all malignant melanomas, with five-year survival rate about 25 %. Occasionally, it is incredibly formidable to make a compelling diagnosis when malignant melanoma with other diverse differentiation. CASE PRESENTATION Herein, we presented a 54-year-old male case of SNMM with smooth muscle differentiation, defined by histopathology and positive immunostaining for the smooth muscle specific markers of a-SMA, H-caldesmon, calponin and Desmin, as well as specific melanocyte markers of HMB-45, Melan-A, SOX10, and PNL2. CONCLUSIONS Mucosal melanoma with smooth muscle differentiation is remarkably infrequent, and reported only 4 cases to date. It would be a potential pathological diagnostic pitfall. It is important to understand this variation of malignant melanoma for avoiding misdiagnosis.
Collapse
Affiliation(s)
- Hao Tang
- Department of Pathology, Guiqian International General Hospital, Guiyang, Guizhou Province China
| | - Yutao He
- grid.412787.f0000 0000 9868 173XSchool of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei Province China
| | - Ying Chen
- Department of Pathology, Guiqian International General Hospital, Guiyang, Guizhou Province China
| | - Wenfeng Xu
- Department of Pathology, Guiqian International General Hospital, Guiyang, Guizhou Province China
| | - Yujuan Xu
- Department of Pathology, Guiqian International General Hospital, Guiyang, Guizhou Province China
| | - Xianyun Li
- Department of Pathology, Guiqian International General Hospital, Guiyang, Guizhou Province China
| | - Deyu Guo
- Department of Pathology, Guiqian International General Hospital, Guiyang, Guizhou Province China
| |
Collapse
|
35
|
Tekavec K, Švara T, Knific T, Mlakar J, Gombač M, Cantile C. Loss of H3K27me3 expression in canine nerve sheath tumors. Front Vet Sci 2022; 9:921720. [PMID: 35968018 PMCID: PMC9372589 DOI: 10.3389/fvets.2022.921720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Nerve sheath tumors (NSTs) are characterized by neoplastic proliferation of Schwann cells, perineurial cells, endoneurial and/or epineurial fibroblasts. Diagnosis of NST is often challenging, particularly in distinguishing malignant NST (MNST) from other soft tissue sarcomas, or sometimes between low-grade MNST and benign NST. Recent studies in human pathology have demonstrated loss of trimethylation at lysine 27 of histone 3 (H3K27me3) in a subset of MNSTs using immunohistochemistry. Loss of H3K27me3 expression is rare in other high-grade sarcomas and also appears to be useful in distinguishing benign and low-grade MNSTs from high-grade subsets. In our retrospective study, we performed H3K27me3 immunohistochemistry in 68 canine tumors previously diagnosed as NST. We detected loss of H3K27me3 expression in 25% (n = 17) of all canine NST, including one neurofibroma, whereas 49% (n = 33) of tumors had mosaic loss of expression and 26% (n = 18) retained expression. No statistically significant differences were found between H3K27me3 expression, histopathological features of tumors, and their immunoreactivity for Sox10, claudin-1, GFAP, and Ki67. Because the classification of canine NST is not yet fully established and its correlation with the prognosis and clinical course of the disease is lacking, prospective studies with possible genetic analyses are needed to assess the true diagnostic value of H3K27me3 loss in canine NST.
Collapse
Affiliation(s)
- Kristina Tekavec
- Department of Veterinary Science, University of Pisa, Pisa, Italy
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Kristina Tekavec
| | - Tanja Švara
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Knific
- Veterinary Faculty, Institute of Food Safety, Feed and Environment, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Mlakar
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Mitja Gombač
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Ljubljana, Slovenia
| | - Carlo Cantile
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| |
Collapse
|
36
|
Predominantly epithelial-type synovial sarcoma with overwhelming neuroendocrine differentiation: a potential diagnostic pitfall. Diagn Pathol 2022; 17:59. [PMID: 35820955 PMCID: PMC9277931 DOI: 10.1186/s13000-022-01243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background Synovial sarcoma is an uncommon soft tissue tumor of soft tissue, characterized by a specific SS18 rearrangement. It generally manifests as a lesion composed of monomorphic spindle cells and sometimes shows variable epithelial differentiation. Epithelial-type synovial sarcoma is rare, and synovial sarcoma with overwhelming neuroendocrine differentiation has not been reported previously. Case presentation Here, we present a case of a young man with an epithelial-type synovial sarcoma of the right leg that showed an overwhelming neuroendocrine differentiation. The diagnosis was confirmed by the detection of targeted fusion re-arrangement associated with synovial sarcoma. Conclusions This study emphasizes the importance of molecular approaches in modern soft tissue pathology. Detecting the expression of neuroendocrine antigens in synovial sarcoma is a pre-requisite to avoid misdiagnosis of metastatic neuroendocrine tumor, malignant peripheral nerve sheath tumor with glandular differentiation, and carcinosarcoma.
Collapse
|
37
|
Savary C, Picard C, Corradini N, Castets M. Complex Elucidation of Cells-of-Origin in Pediatric Soft Tissue Sarcoma: From Concepts to Real Life, Hide-and-Seek through Epigenetic and Transcriptional Reprogramming. Int J Mol Sci 2022; 23:6310. [PMID: 35682989 PMCID: PMC9181261 DOI: 10.3390/ijms23116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
Soft tissue sarcoma (STS) comprise a large group of mesenchymal malignant tumors with heterogeneous cellular morphology, proliferative index, genetic lesions and, more importantly, clinical features. Full elucidation of this wide diversity remains a central question to improve their therapeutic management and the identity of cell(s)-of-origin from which these tumors arise is part of this enigma. Cellular reprogramming allows transitions of a mature cell between phenotypes, or identities, and represents one key driver of tumoral heterogeneity. Here, we discuss how cellular reprogramming mediated by driver genes in STS can profoundly reshape the molecular and morphological features of a transformed cell and lead to erroneous interpretation of its cell-of-origin. This review questions the fact that the epigenetic context in which a genetic alteration arises has to be taken into account as a key determinant of STS tumor initiation and progression. Retracing the cancer-initiating cell and its clonal evolution, notably via epigenetic approach, appears as a key lever for understanding the origin of these tumors and improving their clinical management.
Collapse
Affiliation(s)
- Clara Savary
- Childhood Cancer & Cell Death (C3), LabEx DEVweCAN, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Cécile Picard
- Department of Pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, 69002 Lyon, France;
| | - Nadège Corradini
- Department of Pediatric Oncology, Institut d’Hematologie et d’Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France;
- Department of Translational Research in Pediatric Oncology, Centre Léon Bérard, 69008 Lyon, France
| | - Marie Castets
- Childhood Cancer & Cell Death (C3), LabEx DEVweCAN, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
- Department of Translational Research in Pediatric Oncology, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
38
|
Bhalla AD, Landers SM, Singh AK, Landry JP, Yeagley MG, Myerson GSB, Delgado-Baez CB, Dunnand S, Nguyen T, Ma X, Bolshakov S, Menegaz BA, Lamhamedi-Cherradi SE, Mao X, Song X, Lazar AJ, McCutcheon IE, Slopis JM, Ludwig JA, Lev DC, Rai K, Torres KE. Experimental models of undifferentiated pleomorphic sarcoma and malignant peripheral nerve sheath tumor. J Transl Med 2022; 102:658-666. [PMID: 35228656 PMCID: PMC11959861 DOI: 10.1038/s41374-022-00734-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Undifferentiated pleomorphic sarcoma (UPS) and malignant peripheral nerve sheath tumor (MPNST) are aggressive soft tissue sarcomas that do not respond well to current treatment modalities. The limited availability of UPS and MPNST cell lines makes it challenging to identify potential therapeutic targets in a laboratory setting. Understanding the urgent need for improved treatments for these tumors and the limited cellular models available, we generated additional cell lines to study these rare cancers. Patient-derived tumors were used to establish 4 new UPS models, including one radiation-associated UPS-UPS271.1, UPS511, UPS0103, and RIS620, one unclassified spindle cell sarcoma-USC060.1, and 3 new models of MPNST-MPNST007, MPNST3813E, and MPNST4970. This study examined the utility of the new cell lines as sarcoma models by assessing their tumorigenic potential and mutation status for known sarcoma-related genes. All the cell lines formed colonies and migrated in vitro. The in vivo tumorigenic potential of the cell lines and corresponding xenografts was determined by subcutaneous injection or xenograft re-passaging into immunocompromised mice. USC060.1 and UPS511 cells formed tumors in mice upon subcutaneous injection. UPS0103 and RIS620 tumor implants formed tumors in vivo, as did MPNST007 and MPNST3813E tumor implants. Targeted sequencing analysis of a panel of genes frequently mutated in sarcomas identified TP53, RB1, and ATRX mutations in a subset of the cell lines. These new cellular models provide the scientific community with powerful tools for detailed studies of tumorigenesis and for investigating novel therapies for UPS and MPNST.
Collapse
Affiliation(s)
- Angela D Bhalla
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharon M Landers
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anand K Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jace P Landry
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle G Yeagley
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabryella S B Myerson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian B Delgado-Baez
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Puerto Rico-Medical Science Campus, San Juan, PR, USA
- Partnership for Diversity, Sponsored by Women and Minority Faculty Inclusion, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie Dunnand
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Partnership for Diversity, Sponsored by Women and Minority Faculty Inclusion, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Theresa Nguyen
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoyan Ma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Svetlana Bolshakov
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian A Menegaz
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Xizeng Mao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ian E McCutcheon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John M Slopis
- Departments of Pediatrics and Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dina C Lev
- Department of Surgery, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keila E Torres
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
39
|
Thangaiah JJ, Westling BE, Roden AC, Giannini C, Tetzlaff M, Cho WC, Folpe AL. Loss of dimethylated H3K27 (H3K27me2) expression is not a specific marker of malignant peripheral nerve sheath tumor (MPNST): An immunohistochemical study of 137 cases, with emphasis on MPNST and melanocytic tumors. Ann Diagn Pathol 2022; 59:151967. [DOI: 10.1016/j.anndiagpath.2022.151967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/11/2022]
|
40
|
Odeyemi OO, Ozawa MG, Charville GW. CDX2 expression in malignant peripheral nerve sheath tumour: a potential diagnostic pitfall associated with PRC2 inactivation. Histopathology 2022; 80:995-1000. [PMID: 35122289 PMCID: PMC9097546 DOI: 10.1111/his.14626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
Abstract
AIMS Malignant peripheral nerve sheath tumour (MPNST) is a soft tissue sarcoma that exhibits features of Schwann cell differentiation. Heterologous, often mesenchymal-type differentiation occurs in a subset of MPNST, while glandular morphology also is encountered in rare cases. We observed in MPNST unanticipated expression of CDX2, a transcription factor that regulates intestinal epithelial differentiation, and aimed to further characterize this phenomenon. METHODS/RESULTS Expression of CDX2 was assessed by immunohistochemistry in a total of 32 high-grade MPNSTs lacking morphological evidence of epithelial differentiation, including twelve tumours (38%) that developed in the setting of neurofibromatosis and four (13%) in the setting of prior radiation therapy. CDX2 was expressed by 14 of 32 MPNSTs (44%), wherein immunoreactivity, varying from weak to strong, was present in 2-95% of neoplastic spindle cells (median 10%, mean 23%). Notably, CDX2 expression was limited to tumours with PRC2 inactivation (22/32; 69%), as evidenced immunohistochemically by diffuse loss of trimethylated histone H3K27. Analysing publicly available RNA-sequencing data from twelve MPNST cell lines, two of which are clonally related, we observed CDX2 expression in all six PRC2-inactivated cell lines, while CDX2 expression was negligible in six cell lines with intact PRC2, amounting to a 58-fold increase in CDX2 expression on average with PRC2 inactivation. CONCLUSIONS CDX2 is expressed in a subset of MPNSTs, even in the absence of morphological evidence of epithelial differentiation. CDX2 expression in MPNST is strongly associated with underlying PRC2 inactivation.
Collapse
Affiliation(s)
- Olumide O. Odeyemi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael G. Ozawa
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory W. Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
41
|
Somatilaka BN, Sadek A, McKay RM, Le LQ. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 2022; 41:2405-2421. [PMID: 35393544 PMCID: PMC9035132 DOI: 10.1038/s41388-022-02290-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/29/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8-13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.
Collapse
Affiliation(s)
- Bandarigoda N. Somatilaka
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Ali Sadek
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Renee M. McKay
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Lu Q. Le
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Simmons Comprehensive Cancer Center, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,UTSW Comprehensive Neurofibromatosis Clinic, University of
Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Hamon Center for Regenerative Science and Medicine,
University of Texas Southwestern Medical Center at Dallas, Dallas, Texas,
75390-9069, USA,O’Donnell Brain Institute, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| |
Collapse
|
42
|
Jo VY, Demicco EG. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Soft Tissue Tumors. Head Neck Pathol 2022; 16:87-100. [PMID: 35312984 PMCID: PMC9018918 DOI: 10.1007/s12105-022-01425-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/03/2022] [Indexed: 01/27/2023]
Abstract
The fifth (5th) edition of the World Health Organization (WHO) Classification of Head and Neck Tumors introduces a new chapter dedicated to soft tissue neoplasms commonly affecting the head and neck. While the diversity, rarity, and wide anatomic range of soft tissue tumors precludes a discussion of all entities that may be found in the head and neck, the addition of this new chapter to the head and neck "blue book" aims to provide a more comprehensive and uniform reference text, including updated diagnostic criteria, of mesenchymal tumor types frequently (or exclusively) arising at head and neck sites. Since publication of the previous edition in 2017, there have been numerous advances in our understanding of the pathogenesis of many soft tissue tumors which have facilitated refinements in tumor classification, identification of novel entities, development of diagnostic markers, and improved prognostication. This review will provide a focused discussion of the soft tissue tumors included in the 5th edition WHO Head and Neck classification, with an emphasis on updates.
Collapse
Affiliation(s)
- Vickie Y Jo
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Nakamura H, Kukita Y, Tamiya H, Takenaka S, Yagi T. A novel EWSR1-HOXB13 rearrangement in a fibroblastic tumor from the abdomen of a young woman. Virchows Arch 2022; 481:499-503. [PMID: 35072774 DOI: 10.1007/s00428-022-03282-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
We describe a novel EWSR1-HOXB13-fusion in a fibroblastic tumor from the abdominal wall of a 29-year-old woman. This tumor caused intermittent intense pain and had grown to approximately 5 cm in size over two years. The tumor was located beneath subfascial section of the abdominal wall and was invading the abdominal cavity and pressing on the liver. The tumor was well-circumscribed and consisted of intersected fascicles of monomorphic spindle-shaped cells with uniform ovoid nuclei lacking nuclear pleomorphism or mitotic activity. This tumor was immunohistochemically negative for pan-cytokeratin AE1/AE3, desmin, SMA, S100, myogenin, MyoD1, CD34, melanosome, SOX10, STAT6, SS18-SSX, and ERG. H3K27me3 was retained. RNA sequencing revealed a unique EWSR1-HOXB13-fusion, and strong, diffuse nuclear immunostaining for HOXB13 was observed. No local recurrence or evident distant metastasis were observed over eight months without chemotherapy, implying that the behavior of this tumor is not yet known.
Collapse
Affiliation(s)
- Harumi Nakamura
- Laboratory of Genomic Pathology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 5418567, Japan.
| | - Yoji Kukita
- Laboratory of Genomic Pathology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 5418567, Japan
| | - Hironari Tamiya
- Department of Orthopedic Surgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 5418567, Japan
| | - Satoshi Takenaka
- Department of Orthopedic Surgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 5418567, Japan
| | - Toshinari Yagi
- Department of Outpatient Chemotherapy, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 5418567, Japan
| |
Collapse
|
44
|
Ferreira I, Droop A, Edwards O, Wong K, Harle V, Habeeb O, Gharpuray-Pandit D, Houghton J, Wiedemeyer K, Mentzel T, Billings SD, Ko JS, Füzesi L, Mulholland K, Prusac IK, Liegl-Atzwanger B, de Saint Aubain N, Caldwell H, Riva L, van der Weyden L, Arends MJ, Brenn T, Adams DJ. The clinicopathologic spectrum and genomic landscape of de-/trans-differentiated melanoma. Mod Pathol 2021; 34:2009-2019. [PMID: 34155350 DOI: 10.1038/s41379-021-00857-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 02/03/2023]
Abstract
Dedifferentiation and transdifferentiation are rare and only poorly understood phenomena in cutaneous melanoma. To study this disease more comprehensively we have retrieved 11 primary cutaneous melanomas from our pathology archives showing biphasic features characterized by a conventional melanoma and additional areas of de-/trans-differentiation as defined by a lack of immunohistochemical expression of all conventional melanocytic markers (S-100 protein, SOX10, Melan-A, and HMB-45). The clinical, histologic, and immunohistochemical findings were recorded and follow-up was obtained. The patients were mostly elderly (median: 81 years; range: 42-86 years) without significant gender predilection, and the sun-exposed skin of the head and neck area was most commonly affected. The tumors were deeply invasive with a mean depth of 7 mm (range: 4-80 mm). The dedifferentiated component showed atypical fibroxanthoma-like features in the majority of cases (7), while additional rhabdomyosarcomatous and epithelial transdifferentiation was noted histologically and/or immunohistochemically in two tumors each. The background conventional melanoma component was of desmoplastic (4), superficial spreading (3), nodular (2), lentigo maligna (1), or spindle cell (1) types. For the seven patients with available follow-up data (median follow-up period of 25 months; range: 8-36 months), two died from their disease, and three developed metastases. Next-generation sequencing of the cohort revealed somatic mutations of established melanoma drivers including mainly NF1 mutations (5) in the conventional component, which was also detected in the corresponding de-/trans-differentiated component. In summary, the diagnosis of primary cutaneous de-/trans-differentiated melanoma is challenging and depends on the morphologic identification of conventional melanoma. Molecular analysis is diagnostically helpful as the mutated gene profile is shared between the conventional and de-/trans-differentiated components. Importantly, de-/trans-differentiation does not appear to confer a more aggressive behavior.
Collapse
Affiliation(s)
- Ingrid Ferreira
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Université Libre de Bruxelles, Brussels, Belgium
| | - Alastair Droop
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Olivia Edwards
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Kim Wong
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Victoria Harle
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Omar Habeeb
- Department of Anatomic Pathology, Middlemore Hospital, Auckland, NZ, New Zealand
| | | | - Joseph Houghton
- Department of Pathology, Royal Victoria Hospital, Belfast, Ireland
| | - Katharina Wiedemeyer
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Thomas Mentzel
- Dermatopathology Friedrichshafen, Friedrichshafen, Germany
| | | | - Jennifer S Ko
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Laszlo Füzesi
- Center for Pathology, Robert-Weixler-Straße 48a, Kempten, Germany
| | | | - Ivana Kuzmic Prusac
- Department of Pathology, University Hospital Split and Split University School of Medicine, Split, Croatia
| | - Bernadette Liegl-Atzwanger
- Diagnostic and Research Centre for Molecular Biomedicine, Diagnostic and Research Centre for Pathology, Translational Sarcoma Pathology, Comprehensive Cancer Centre Subunit Sarcoma, Medical University Graz, Graz, Austria
| | - Nicolas de Saint Aubain
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Helen Caldwell
- Division of Pathology, Cancer Research UK Edinburgh Centre, The University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, UK
| | - Laura Riva
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, The University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, UK
| | - Thomas Brenn
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Division of Pathology, Cancer Research UK Edinburgh Centre, The University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, UK.
- The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
45
|
Li W, Hu C, Zhang X, Wang B, Li Z, Ling M, Sun S, Guo C, Li D, Liu S. SUZ12 Loss Amplifies the Ras/ERK Pathway by Activating Adenylate Cyclase 1 in NF1-Associated Neurofibromas. Front Oncol 2021; 11:738300. [PMID: 34692515 PMCID: PMC8526866 DOI: 10.3389/fonc.2021.738300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Patients with germline neurofibromatosis type 1 (NF1) microdeletions frequently exhibit hereditary syndromes such as cardiovascular anomalies and have an increased risk of malignant peripheral nerve sheath tumors (MPNSTs). This study aimed to identify the genes codeleted with SUZ12 that are related to MPNST. We used differential gene expression and enrichment analyses to analyze the SUZ12-mutant and SUZ12-wild-type gene expression profiles in the GSE118186 and GSE66743 datasets in Gene Expression Omnibus (GEO). PPI network analysis combined with MPNST patient survival analysis was used to identify ADCY1, which catalyzes the conversion of ATP to cAMP, as a key gene. Moreover, chromatin immunoprecipitation sequencing (ChIP-Seq) showed that the distribution of H3K27me3 in the ADCY1 promoter region and gene body was significantly reduced in SUZ12-mutant cells. To verify the role of ADCY1 in SUZ12 mutation, we used RNA interference and plasmid transfection to interfere with SUZ12 expression in plexiform neurofibroma (pNF) and MPNST cell lines and then treated the cells with forskolin, IBMX and H89. ERK phosphorylation was accelerated and prolonged after siRNA transfection, especially in ipNF05.5 cells, and the intensity and duration of ERK activation were reduced after SUZ12 overexpression. Importantly, the level of p-ERK was consistent with that of Rap1-GTP. Moreover, H89 completely blocked Rap1 activation and the changes in the p-ERK level after SUZ12 siRNA transfection. In conclusion, our findings suggested that SUZ12 loss potentiates the effects of NF1 mutations by amplifying Ras signaling through the ADCY1/cAMP/Rap1/ERK pathway and that SUZ12 may serve as a therapeutic and prognostic biomarker in NF1-associated neurofibromas.
Collapse
Affiliation(s)
- Weijie Li
- Department of Injury and Repair, and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chenhao Hu
- Department of Injury and Repair, and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xingnan Zhang
- Department of Injury and Repair, and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Binbin Wang
- Department of Injury and Repair, and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhen Li
- Department of Injury and Repair, and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Miao Ling
- Department of Injury and Repair, and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shengqiao Sun
- Department of Injury and Repair, and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chao Guo
- Department of Injury and Repair, and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Dezhi Li
- Department of Injury and Repair, and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Song Liu
- Department of Injury and Repair, and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,U 1195, Institut national de la santé et de la recherche médicale (INSERM) and University Paris-Sud and University Paris Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
46
|
Thway K, Fisher C. Undifferentiated and dedifferentiated soft tissue neoplasms: Immunohistochemical surrogates for differential diagnosis. Semin Diagn Pathol 2021; 38:170-186. [PMID: 34602314 DOI: 10.1053/j.semdp.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022]
Abstract
Undifferentiated soft tissue sarcomas (USTS) are described in the current World Health Organization Classification of Soft Tissue and Bone Tumours as those showing no identifiable line of differentiation when analyzed by presently available technologies. This is a markedly heterogeneous group, and the diagnosis of USTS remains one of exclusion. USTS can be divided into four morphologic subgroups: pleomorphic, spindle cell, round cell and epithelioid undifferentiated sarcomas, with this combined group accounting for up to 20% of all soft tissue sarcomas. As molecular advances enable the stratification of emerging genetic subsets within USTS, particularly within undifferentiated round cell sarcomas, other groups, particularly the category of undifferentiated pleomorphic sarcomas (UPS), still remain difficult to substratify and represent heterogeneous collections of neoplasms often representing the common morphologic endpoints of a variety of malignant tumors of various (mesenchymal and non-mesenchymal) lineages. However, recent molecular developments have also enabled the identification and correct classification of many tumors from various lines of differentiation that would previously have been bracketed under 'UPS'. This includes pleomorphic neoplasms and dedifferentiated neoplasms (the latter typically manifesting with an undifferentiated pleomorphic morphology) of mesenchymal (e.g. solitary fibrous tumor and gastrointestinal stromal tumor) and non-mesenchymal (e.g. melanoma and carcinoma) origin. The precise categorization of 'pleomorphic' or 'undifferentiated' neoplasms is critical for prognostication, as, for example, dedifferentiated liposarcoma typically behaves less aggressively than other pleomorphic sarcomas, and for management, including the potential for targeted therapies based on underlying recurrent molecular features. In this review we focus on undifferentiated and dedifferentiated pleomorphic and spindle cell neoplasms, summarizing their key genetic, morphologic and immunophenotypic features in the routine diagnostic setting, and the use of immunohistochemistry in their principal differential diagnosis, and highlight new developments and entities in the group of undifferentiated and dedifferentiated soft tissue sarcomas.
Collapse
Affiliation(s)
- Khin Thway
- Sarcoma Unit, Royal Marsden Hospital, London, SW3 6JJ, United Kingdom; Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Rd, London, SW3 6JB, United Kingdom.
| | - Cyril Fisher
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Rd, London, SW3 6JB, United Kingdom; Department of Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, United Kingdom
| |
Collapse
|
47
|
Sugita S, Aoyama T, Emori M, Kido T, Takenami T, Sakuraba K, Terai K, Sugawara T, Tsujiwaki M, Hasegawa T. Assessment of H3K27me3 immunohistochemistry and combination of NF1 and p16 deletions by fluorescence in situ hybridization in the differential diagnosis of malignant peripheral nerve sheath tumor and its histological mimics. Diagn Pathol 2021; 16:79. [PMID: 34461930 PMCID: PMC8404283 DOI: 10.1186/s13000-021-01140-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/17/2021] [Indexed: 01/20/2023] Open
Abstract
Background A definitive diagnosis of malignant peripheral nerve sheath tumor (MPNST) is challenging, especially in cases without neurofibromatosis 1 (NF1), because MPNST lacks specific markers on immunohistochemistry (IHC). Methods We performed IHC for histone 3 trimethylated on lysine 27 (H3K27me3) and evaluated the percentage of cells with H3K27me3 loss using measured values at 10% intervals, categorized as complete loss (100% of tumor cells lost staining), partial loss (10% to 90% of tumor cells lost staining), and intact (no tumor cells lost staining). We conducted fluorescence in situ hybridization (FISH) for NF1 and p16 deletions comparing 55 MPNSTs and 35 non-MPNSTs, consisting of 9 synovial sarcomas (SSs), 8 leiomyosarcomas (LMSs), 10 myxofibrosarcomas (MFSs), and 8 undifferentiated pleomorphic sarcomas (UPSs). We assessed the percentage of cells with homozygous and heterozygous deletions and defined “deletion” if the percentage of either the NF1 or p16 deletion signals was greater than 50% of tumor cells. Results Among the 55 MPNSTs, 23 (42%) showed complete H3K27me3 loss and 32 (58%) exhibited partial loss or intact. One each of the 9 SSs (11%), 8 LMSs (12%), and 8 UPSs (12%) showed complete H3K27me3 loss and many non-MPNSTs exhibited intact or partial H3K27me3 loss. Among the 55 MPNSTs, 33 (60%) and 44 (80%) showed NF1 or p16 deletion, respectively. Co-deletion of NF1 and p16 was observed in 29 (53%) MPNSTs. Among the 23 MPNTSs showing H3K27me3 complete loss, 18 (78%) and 20 (87%) exhibited NF1 or p16 deletion, respectively. Among the 32 MPNSTs with H3K27me3 partial loss or intact, 15 (47%) and 24 (75%) exhibited NF1 or p16 deletion, respectively. The frequency of NF1 and/or p16 deletion tended to be lower in non-MPNSTs than in MPNSTs. Approximately 90% of MPNSTs included cases with H3K27me3 complete loss and cases showing H3K27me3 partial loss or intact with NF1 and/or p16 deletion. Approximately 50% of MPNSTs showed co-deletion of NF1 and p16 regardless of H3K27me3 loss. Conclusions FISH for NF1 and p16 deletions, frequently observed in high-grade MPNSTs, might be a useful ancillary diagnostic tool for differentiating MPNST from other mimicking spindle cell and pleomorphic sarcomas.
Collapse
Affiliation(s)
- Shintaro Sugita
- Department of Surgical Pathology, Sapporo Medical University, School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Tomoyuki Aoyama
- Department of Surgical Pathology, Sapporo Medical University, School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Makoto Emori
- Department of Orthopedic Surgery, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, 060-8543, Japan
| | - Tomomi Kido
- Department of Surgical Pathology, Sapporo Medical University, School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Tomoko Takenami
- Department of Surgical Pathology, Sapporo Medical University, School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Kodai Sakuraba
- Department of Surgical Pathology, Sapporo Medical University, School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Kotomi Terai
- Department of Surgical Pathology, Sapporo Medical University, School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Taro Sugawara
- Department of Surgical Pathology, Sapporo Medical University, School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Mitsuhiro Tsujiwaki
- Department of Surgical Pathology, Sapporo Medical University, School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University, School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.
| |
Collapse
|
48
|
Walczak A, Radek M, Majsterek I. The Role of ER Stress-Related Phenomena in the Biology of Malignant Peripheral Nerve Sheath Tumors. Int J Mol Sci 2021; 22:ijms22179405. [PMID: 34502310 PMCID: PMC8430526 DOI: 10.3390/ijms22179405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are rare but one of the most aggressive types of cancer. Currently, there are no effective chemotherapy strategies for these malignancies. The inactivation of the neurofibromatosis type I (NF1) gene, followed by loss of TP53, is an early stage in MPNST carcinogenesis. NF1 is a negative regulator of the Ras proteins family, which are key factors in regulating cell growth, homeostasis and survival. Cell cycle dysregulation induces a stress phenotype, such as proteotoxic stress, metabolic stress, and oxidative stress, which should result in cell death. However, in the case of neoplastic cells, we observe not only the avoidance of apoptosis, but also the impact of stress factors on the treatment effectiveness. This review focuses on the pathomechanisms underlying MPNST cells physiology, and discusses the possible ways to develop a successful treatment based on the molecular background of the disease.
Collapse
Affiliation(s)
- Anna Walczak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Maciej Radek
- Department of Neurosurgery and Peripheral Nerve Surgery, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-647 Lodz, Poland;
- Correspondence:
| |
Collapse
|
49
|
Clinicopathological and prognostic significance of H3K27 methylation status in malignant peripheral nerve sheath tumor: correlation with skeletal muscle differentiation. Virchows Arch 2021; 479:1233-1244. [PMID: 34432163 DOI: 10.1007/s00428-021-03189-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a very aggressive peripheral nerve sheath-derived sarcoma, which is one of the most difficult tumors to diagnose due to its wide spectrum of histological findings and lack of specific immunohistochemical markers. Recently, it has been reported that losses of expression of H3K27me3 and H3K27me2 caused by PRC2 dysfunction may be useful diagnostic markers for MPNST, but there is no consensus on their clinicopathological significance. Here, we investigated the relationship between loss of H3K27 methylation and various parameters and clarified the clinicopathological significance of such loss. We analyzed the clinicopathological and immunohistochemical features in 84 MPNST cases. Complete losses of H3K27me3 and H3K27me2 were observed in 37 (44%) and 29 (35%) cases, respectively. Losses of H3K27me3 and H3K27me2 were significantly correlated with myogenic immunopositivity (H3K27me3 vs. desmin, P = 0.0051; H3K27me3 vs. myogenin, P = 0.0009; H3K27me2 vs. myogenin, P = 0.042). Meanwhile, there were significant correlations between preservation of immunohistochemical neurogenic markers and intact H3K27me3 and H3K27me2 (H3K27me3 vs. S-100 protein, P = 0.0019; H3K27me3 vs. SOX10, P = 0.014; H3K27me2 vs. S-100 protein, P = 0.0011; H3K27me2 vs. SOX10, P = 0.0087). In multivariate analysis, local recurrence, distant metastasis, high FNCLCC grade, and loss of SOX10 expression were independent prognostic factors for overall survival. H3K27me3 and H3K27me2 expression was retained in all 26 cases of rhabdomyosarcoma non-alveolar subtype. In conclusion, we suggest that H3K27me3 and H3K27me2 immunonegativity is useful but not definitive for diagnosing MPNST. Complete loss of H3K27 methylation may be involved in aggressive transdifferentiation from neural differentiation to skeletal muscle differentiation in MPNST.
Collapse
|
50
|
Affiliation(s)
- Sandro Santagata
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Keith L Ligon
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|